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Abstract—Centralization in 5G radio access networks brings
two main benefits: reducing cost and improving performance.
Although an ideal, fully-centralized architecture would provide
minimum cost and maximum performance, actual deployments
cannot simultaneously optimize both. Previous research focuses
on how to select the functional split of a 5G network to either
maximize performance or minimize cost on partially-centralized
architectures, without exploring which approach is the most
appropriate. In this work, we investigate the trade-off between
cost and performance of both approaches, in order to figure
out which one is more adequate for real network operators. We
provide a comprehensive study under a wide range of network
conditions and show that, in general, a performance-maximizing
approach is more likely to produce a higher net revenue.

Index Terms—5G, performance, cost, functional split

I. INTRODUCTION

One of the key features of 5G radio access networks (RAN)

is high cell density [1]. This is a necessary condition in order

to provide high data rates over the air interface, since denser

deployments of small base stations (gNodeBs, or simply gNBs,

in 5G terminology) consume less power and provide a more

uniform coverage than sparse deployments. The obvious draw-

back of dense deployments is, however, increased inter-cell

interference, which needs to be countered with interference-

mitigating techniques, such as coordinated scheduling and

beamforming, or joint transmission and reception.

Implementing these interference-mitigating techniques re-

quires, ideally, a fully centralized RAN architecture, in which

the operation of all gNBs is moved to a single central location.

This way, centralized functions can easily cooperate among

one another to coordinate their transmissions [2]. Furthermore,

a centralized RAN architecture has another major advantage:

it may be substantially less costly to deploy and operate than

distributed architectures [2]. The reason for this is twofold.

First, centralization implies converting stiff hardware units

into flexible software functions, which can be affordably de-

ployed into general-purpose data centers. Second, the pooling

of computational resources benefits from multiplexing gain,

which translates into less required resources with respect to

distributed architectures.

This work is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 647158 - FlexNets).

Consequently, it is generally agreed that a fully centralized

RAN would feature these two major advantages: high perfor-

mance (in terms of user data rates) and low deployment and

operating cost. Nonetheless, a centralized architecture requires

high-capacity links connecting the remote cell sites with the

central location [3], which renders such an architecture infea-

sible in many cases. As a result, the current 5G architecture is

just partially centralized: a centralized unit (CU) hosts a subset

of the software functions that make up each gNB, whereas the

remaining functions are located at a distributed unit (DU). This

division is called the 5G functional split.

Although feasible, a partially centralized architecture raises

two new issues with respect to a fully centralized archi-

tecture. On the one hand, the optimal functional split of a

partially centralized architecture is not static, but it varies with

the instantaneous network conditions and user traffic. This

motivates the adoption of a dynamically-adapting functional

split to track the optimal operation point [4], which is even

considered in the early description of 6G networks [5, p. 13].

On the other hand, whereas a fully centralized architecture is

simultaneously optimal at both performance and cost (except

for the cost of the high-capacity network), this may not be

true for partial centralization. That is, the performance-optimal

functional split may not be cost-optimal, and vice-versa.

To the best of our knowledge, this latter issue is not

addressed in detail yet. Previous work mainly focuses on

selecting the functional split which either maximizes per-

formance [6] or minimizes operating cost [7], without ex-

ploring how big the performance-to-cost gap is for either

approach. This is, nevertheless, an important issue, since

both performance and operating cost contribute to the net

revenue of a 5G/6G network [8]. In this paper, we investigate

this topic by comparing performance-maximizing and cost-

minimizing approaches and show that their performance and

cost differ substantially. In summary, our contributions are

mainly three: (i) we present a simple, unified formulation

for directly comparing performance-maximizing and cost-

minimizing approaches to select the optimal functional split,

(ii) we provide comprehensive simulation results to estimate

the cost and performance of both approaches under a wide

range of network conditions, and (iii) we identify the network

conditions at which each approach is superior.
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Figure 1: Example network with G = 11 gNBs (including

macro and small cells) and eight fronthaul switches.

The rest of this paper is organized as follows. In Sec. II, we

describe the system model. Sec. III presents the performance-

maximizing and cost-minimizing approaches to find the op-

timal functional split. In Sec. IV, we simulate and compare

the cost and performance of both approaches. Finally, Sec. V

concludes the paper.

II. SYSTEM MODEL

In this section, we present the network under consideration,

including an overall description, the possible functional split

options, a detailed description of the connection between DUs

and CUs, and the modeling of the users.

A. Network description

We consider a network consisting of G gNBs, each of which

is split into a CU and a DU. The DUs are deployed at remote

locations, close to the radio equipment, whereas all CUs are

deployed in a single, centralized data center. DUs are not

necessarily collocated with their radio equipment. Instead, the

radio equipment of a gNB may be deployed independently as

an additional remote unit (RU) some distance away from the

DU. Nonetheless, since we assume that each RU is connected

to its DU by means of a dedicated link [3], they do not play a

role when selecting the optimal functional split. CU and DUs

are connected via a packet-switched fronthaul1 network [9],

whose modeling is addressed in Sec. II-C. A simple network

consisting of G = 11 gNBs is depicted in Fig. 1.

The geographical distribution of DUs plays an important

role in finding the optimal functional split, since it impacts the

interference experienced by the UEs. In order to be as realistic

as possible, we follow the recommendations for generating

a dense urban scenario as specified in 3GPP TS38.193 [10].

Consequently, DUs are divided into two categories: macro and

1When RUs are considered in the architecture, it is preferable to use the
term midhaul for the network connecting DUs and CUs, reserving the term
fronthaul for the links between RUs and DUs. Since RUs are not relevant
in our system model, we just refer to this network as fronthaul network, as
opposed to the backhaul network between CUs and the mobile core.

Figure 2: Scheme of the considered functional splits.

micro DUs. Macro DUs make up one fourth of all DUs and are

located on a hexagonal layout 200 m away from one another.

The remaining, micro DUs are randomly distributed over the

area covered by the macro DUs. This results in an average

cell density of ca. 115 DUs/km2.

In this work, we focus on the downlink direction, that is, on

communication originated at the gNB and terminated at the

UE. Nonetheless, extrapolating the analysis and conclusions

to the uplink is straightforward. In addition, we assume

that all gNBs share the same spectrum, so that their main

way of avoiding interference is to use interference-mitigating

techniques at the CU.

B. Centralization levels

The full operation of a gNB can be decomposed into smaller

functions. For instance, these functions are usually defined as

the layers of the RAN protocol stack: SDAP, PDCP, RLC,

MAC, PHY, RF, etc [3]. As mentioned before, we refer to

each possible way of splitting gNB functions as a functional

split. Since functions belong to the same processing chain,

each functional split leads to a different centralization level.

High centralization levels require high fronthaul capacity [3],

but they allow for more functions to coordinate at the CU,

thus enabling advanced interference-mitigating techniques.

Conversely, low centralization levels require low fronthaul

capacity, but only support basic interference management.

We denote by Q the number of functional splits that are

available to the network. For example, in Fig. 2 there are

Q = 4 centralization levels (PDCP-RLC, RLC-MAC, MAC-

PHY, and C-RAN). At any time instant, the centralization level

of a gNB g is denoted by xg ∈ Q, where Q , {0, ..., Q− 1}.

We consider that xg = 0 represents the lowest centralization

level, i. e., the functional split with the lowest number of

centralized functions. In contrast, xg = Q− 1 represents the

highest centralization level. In Fig. 2, xg = 0 corresponds

to the PDCP-RLC split, whereas xg = 3 corresponds to

the C-RAN split. The centralization vector containing the

centralization levels of all gNBs is defined as x , [x1, ..., xG].

C. Fronthaul network

We model the fronthaul network as a directed graph D =
(N,E), where N is the set of network nodes (including CUs,

DUs, and network switches) and E is the set of links. The

node corresponding to the CU is referred to as n0, whereas

those modeling the DUs are denoted by ng, ∀g ∈ G, where

G , {1, ..., G}. Each link e ∈ E has a fixed capacity φe. We

model downlink communication from the CU to DU g as a



data flow between nodes n0 and ng . The fraction of this flow

carried over link e is denoted as fg
e . We define the vector of

all flows as f , [f1
1 , ..., f

1
|E|, f

2
1 , ..., f

G
|E|]. Each centralization

level x is related to a maximum data flow value r(x), which

is the result of the highest possible user data rate plus the

overhead required by the functional split [3].

It is shown by previous research that fronthaul networks

can be very heterogeneous, exhibiting a large variability in

the number of links and nodes. In order to take into account

this variability into our experiments, we define the fronthaul

network degree Ψ, defined as the ratio of number of links to

nodes (CU, DUs, and switches) in the network. The minimum

fronthaul network degree is Ψ = 2, which corresponds to

a tree network. We consider a maximum network degree of

Ψ = 5 based on the data provided in [9]. In our simulations,

we generate the fronthaul network by laying out the nodes,

computing the minimum spanning tree to connect the CU

with all DUs, and finally adding redundant links according to

Waxman model [11] until the desired value of Ψ is achieved.

D. User distribution

For any considered interval, the network serves U simulta-

neously active user equipments (UEs). In our simulations, we

set U = 10G as recommended in 3GPP TS38.193 [10] for

a dense urban scenario. The geographical distribution of UEs

has to be taken into account when comparing the performance

or cost achieved by any approach, as user clustering influences

the interference distribution. This motivates the definition of a

metric to quantify the level of concentration or dispersion of

UEs. We use the metric proposed in [6], so that our results can

be directly compared to those of previous work. We refer to

this metric as the UE concentration index Θ, which is defined

as the Gini coefficient of the 2-dimensional distribution of

the number of UEs in a 50 × 50 m square grid. Thus, a

value of Θ = 1 corresponds to all UEs being located in a

single 50 × 50 m square, whereas Θ = 0 corresponds to a

perfectly homogeneous distribution. In practice, however, the

lowest observed value is usually Θ ≈ 0.5, which corresponds

to a uniformly random distribution of UEs.

III. PROBLEM FORMULATION

As mentioned before, when selecting the functional split

there are two possible objectives to optimize: cost and per-

formance. Ideally, selecting the highest centralization level

for every gNB would optimize both of them. Nonetheless,

in an actual RAN the problem is constrained by the fronthaul

network, which forces us to choose a combination of cost and

performance as the optimization objective. It is not possible

to define a single combination of cost and performance that

maximizes revenue for all networks, since there are many

factors influencing how performance is converted into revenue

that are specific to each network. However, we can formulate

the performance-maximizing and cost-minimizing functions in

a homogeneous manner, so that they can be straightforwardly

combined when this specific combination is known. In this

section, we present such formulations.

A. Performance-maximizing formulation

Based on the analysis of the functional split selection

problem shown in [6], we take the geometric mean of the

spectral efficiency over all UEs as our performance indicator.

Maximizing this indicator is equivalent to maximizing the data

rate of all UEs in a proportionally fair manner [12]. This is

due to the fact that performing proportionally-fair rate maxi-

mization translates into maximizing the sum of the logarithm

of the rates [13]. From a performance perspective, the utilities

are the user data rates, which are calculated as the product

of ηu (x), the spectral efficiency achieved by UE u given a

centralization vector x, and Bu, the bandwidth allocated to

UE u. As a result, we are interested in maximizing:

U∑

u=1

log (Buηu (x)) = U log(η̃(x)) +

U∑

u=1

log (Bu) , (1)

where η̃(x) =
(∏U

u=1 ηu(x)
) 1

U

is the geometric mean of

the spectral efficiency over all UEs. It is clear that any x

maximizing η̃(x) also maximizes
∑U

u=1 log (Buηu (x)).
The spectral efficiency that a UE may achieve is influenced

by the centralization level of its serving gNB and all other

gNBs. If the gNB is highly centralized, the interference

received from other gNBs with the same or a higher centraliza-

tion level would be small, owing to the interference-mitigation

techniques that can be applied. Based again on [6], we model

the ability of a centralization level to cancel interference by

means of the function c(x) : Q 7→ [0, 1], which represents the

maximum cancellation factor that a gNB with centralization

level x may apply to reduce the interference experienced by

its served UEs. Using this function and Shannon’s formula,

we can formulate the spectral efficiency of UE u as [12]:

ηu (x) = log2

(
su

ς +
∑G

g=1 iu,g · c(min(xhu
, xg))

)
, (2)

where ς is thermal noise power, su is the signal power received

from its serving gNB, hu ∈ G is the index of its serving

gNB, and iu,g is the interference power received from gNB g.

Note how this interference is multiplied by c(min(xhu
, xg)),

as the cancellation factor that can be applied is limited by

the least centralized gNB. From (2), we can formulate our

proportionally-fair performance-maximizing problem as [6]:

max
x,f

U∑

u=1

log (ηu (x)) , (P0a)

subject to

∑

e∈E+(n)

fg
e −

∑

e∈E−(n)

fg
e =





0 ∀n ∈ N\{n0, ng}

r(xg) for n = n0

−r(xg) for n = ng

∀g ∈ G,

(P0b)

G∑

g=1

fg
e ≤ φe ∀e ∈ E, (P0c)

fg
e ≥ 0 ∀e ∈ E, ∀g ∈ G, (P0d)



where E+(n) is the set of edges leaving node n, and E−(n)
is the set of edges entering node n. Constraint (P0b) is the

flow conservation constraint, which guarantees that the flow

entering the DU and leaving the DU is r(xg) for all gNBs.

Constraint (P0c) is the link capacity constraint for all links.

Problem (P0) is a mixed-integer non-linear problem

(MINLP) which does not follow a standard formulation. In [6],

a simpler, approximate reformulation into a mixed-integer lin-

ear problem (MILP) is presented. In this formulation, the vec-

tor of auxiliary variables z = [z11 , ..., z
1
G, z

2
1 , ..., z

Q
G ] is added

and x variables are replaced by y = [y11 , ..., y
1
G, y

2
1 , ..., y

Q
G ]

variables by means of the following variable change:

xg =

Q−1∑

q=1

yqg , yqg ∈ {0, 1}, yqg ≥ yq
′

g ⇔ q ≤ q′. (3)

This leads to the following performance-maximizing problem

formulation (refer to [6] for the derivation):

max
y,z,f

Q−1∑

q=1

G∑

g=1

zqg (P1a)

subject to

0 ≤ zqg ≤ Zq
gy

q
g ∀q ∈ Q, ∀g ∈ G, (P1b)

zqg ≥

G∑

k=1

ǫqg,ky
q
g−(1−yqg)Z

q
g ∀q ∈ Q, ∀g ∈ G, (P1c)

zqg ≤
∑

k

ǫqg,ky
q
g ∀q ∈ Q, ∀g ∈ G, (P1d)

y1g ≥ y2g ≥ ... ≥ yQ−1
g ∀g ∈ G (P1e)

y ∈ {0, 1}G, (P1f)

and (P0b) − (P0d),

where

ǫqg,k =





(c(q − 1)− c(q))



∑

u∈Hg

iu,k
su

+
∑

u∈Hk

iu,g
su


 if g 6= k,

0 if g = k,
(4)

Hg = {u |hu = g} is the set of UE indices served by gNB

g, and Zq
g =

∑G

k=1 ǫ
q
g,k. Formulation (P1) is an MILP can be

solved quickly by off-the-shelf solvers, which is suitable for

dynamic adaptation of the functional split [6].

B. Cost-minimizing formulation

In order to select a centralization vector x that minimizes

cost, we base on the model and approach presented in [7].

There, the cost of operating a 5G RAN featuring configurable

functional splits is divided into three components: (i) the

cost of instantiating functions at the DUs and CU, (ii) the

computational costs of running these functions, and (iii) the

cost of routing the resulting flows. The first component κinst

can be calculated as:

κinst = (δCU + δDU)G, (5)

where δCU (δDU) is the cost of instantiating the gNB functions

at the CU (DU). According to [7], reasonable values for these

components are δCU = 1 ncu and δDU = 0.5 ncu, where ncu

stands for “normalized cost units”, since absolute cost values

are difficult to provide, as operators rarely disclose them.

The second component, the computational cost κcomp(x), can

be expressed as a function of the centralization vector x as

follows:

κcomp(x) =

G∑

g=1

(αCU(xg)γCU + αDU(xg)γDU) ρg, (6)

where αCU(xg) (αDU(xg)) is the CPU cycles per Gb/s required

to deal with traffic at the CU (DU) with centralization level

xg , γCU (γDU) is the cost in ncu per CPU cycle at the CU (DU),

and ρg is the downlink traffic at gNB g. In our simulation, we

use those reference values provided in [7, Table I]. We can

apply (3) again to replace x with y and yield a linear function

of y:

κy
comp(y) = β0 +

G∑

g=1

Q∑

q=1

(βCU(q)γCU + βDU(q)γDU) ρgy
q
g , (7)

where

β0 =

G∑

g=1

(αCU(0)γCU + αDU(0)γDU) ρg, (8)

and

βCU(q)=αCU(q)−αCU(q−1), βDU(q)=αDU(q)−αDU(q−1). (9)

Finally, the third component, the routing cost κrout(f) is

calculated as:

κrout(f) =
∑

e∈E+(ng)

ωfg
e (10)

where ω is the average normalized cost per Gb/s over all links.

Therefore, the cost-minimizing functional split selection

problem is:

max
y,f

κinst + κy
comp(y) + κrout(f) (P2)

subject to (P0b)–(P0d) and (P1e)–(P1f). Problem (P2) is an

MILP that uses the same variables as (P1), except for the

auxiliary z variables. As a result, it can be easily combined

with (P1) if the relationship between performance and revenue

is known.

IV. APPROACH COMPARISON

A. Metrics

We define (x∗
p, f

∗
p ) as the performance-maximizing central-

ization and flow vectors, respectively, obtained after solv-

ing (P1). The cost κ∗
p and spectral efficiency η∗p of the

performance-maximizing approach are defined as κ∗
p , κinst +

κy
comp(x

∗
p) + κrout(f

∗
p ) and η∗p , η̃(x∗

p), respectively. Similarly,

we define is (x∗
c , f

∗
c ) as the cost-minimizing centralization and

flow vectors, respectively, obtained after solving (P2). The cost

κ∗
c and spectral efficiency η∗c of the cost-minimizing approach



are defined as κ∗
c , κinst+κy

comp(x
∗
c)+κrout(f

∗
c ) and η∗c , η̃(x∗

c),
respectively.

We refer to ξη , η∗

p/η∗

c and ξκ , κ∗

p/κ∗

c , as the performance

and cost ratios, respectively. They quantify how much better

the performance of the performance-maximizing approach is

when compared to the cost-minimizing approach, and how

costly the performance-maximizing solution is with respect

to the cost-minimizing approach. Since η∗p is the maximum

spectral efficiency and κ∗
c is the minimum operating cost, it is

clear that ξη ≥ 1 and ξκ ≥ 1.

Finally, we define ξη,κ , ξη/ξκ as the performance-to-

cost ratio over both approaches. This metric is useful since

it quantifies how good the performance improvement of the

performance-maximizing approach is when compared to the

cost reduction of the cost-minimizing approach. In fact, under

mild assumptions this ratio can be used to conclude which

approach leads to a superior revenue. Namely, if we consider

that the gross network revenue increases linearly2 with the

achieved spectral efficiency, we can express the net revenue

Rc (Rp) of the cost-minimizing (performing-maximizing) ap-

proach as

Rc ≈ aη∗c + b− κ∗
c , Rp ≈ aη∗p + b− κ∗

p, (11)

for some arbitrary a and b. Then, Rc < Rp is equivalent to

aη∗c − κ∗
c < aη∗p − κ∗

p. If aη∗c − κ∗
c > 0 and ξη,κ > 1, the

following holds:

aη∗c − κ∗
c < aξκη

∗
c − ξκκ

∗
c + a(ξη − ξκ)η

∗
c (12)

= aη∗p − κ∗
p (13)

Thus, in that case, ξη,κ > 1 (ξη,κ < 1) is a sufficient

(necessary) condition for a performance-maximizing (cost-

minimizing) network to be more profitable than a cost-

minimizing (performance-maximizing) approach. The same

reasoning can be applied for the case aη∗c − κ∗
c < 0, which

yields reciprocal conclusions. As a result, the value of ξη,κ
can be used as a strong indicator of the potential superiority

of either approach.

B. Simulation setup

In order to evaluate the performance and cost of both ap-

proaches under realistic conditions, simulations are performed

for a network with G = 300 gNBs and U = 3000 UEs

spread over an area of 2.6 km2, corresponding to the center of

medium-sized city. We choose Q = 4 centralization levels and

c(x) = {1, 0.6, 0.2, 0.01} for x = {0, 1, 2, 3}, respectively as

suggested in [4]. The capacity of links in the fronthaul network

is φe = 1 Tb/s ∀e ∈ E. Maximum required capacity of each

split is r(x) = {4, 8, 80, 160} for x = {0, 1, 2, 3} as stated in´

[3]. The fronthaul network degree Ψ and UE concentration

index Θ are kept as variables during the simulations, so as to

evaluate their impact in the performance-to-cost ratio. For each

(Ψ,Θ) pair, the simulation is repeated 300 times to ensure

statistically tight results.

2This can be justified, for instance, by the relatively small range of spectral
efficiencies that can be achieved by either approach.

(a) Mean operating cost κ∗

c of the cost-minimizing approach.

(b) Mean operating cost κ∗

p of the performance-maximizing approach.

Figure 3: Mean operating cost of cost-minimizing and

performance-maximizing approaches.

C. Cost comparison

Fig. 3 shows the mean operating cost, in normalized cost

units, of running a 5G RAN under cost-minimizing (Fig. 3a)

and performance-minimizing (Fig. 3b) approaches, for fron-

thaul network degrees ranging from Ψ = 2 to Ψ = 5 and

UE concentration indices ranging from Θ = 0.5 to Θ = 0.98.

We observe that the operating cost decreases linearly as the

fronthaul network degree increases. This is due to the fact that

a denser fronthaul network allows for more RAN functions to

be centralized, which reduces the operating cost. This trend

holds for every UE concentration value and both approaches,

resulting in an average operating cost reduction of 13% to 22%
at Ψ = 5 with respect to Ψ = 2. In addition, the operating

cost also decreases consistently as the UE concentration index

increases. The explanation is that, when users are concentrated,

the majority of the network’s activity comes from the reduced

subset of gNBs whose DUs are close to the user clusters. Thus,

centralizing these gNBs leads to substantial cost reductions,

which becomes more effective the more concentrated the

users and, hence, the less gNBs are involved in serving these

UEs. Namely, the operating cost is 74% to 78% lower when

Θ = 0.98 than when Θ = 0.5. Finally, we observe that

the operating cost of the performance-maximizing approach

is only marginally worse than that of the cost-minimizing

approach, as κ∗
p is less than 4.5% higher than κ∗

c in all cases.

D. Performance comparison

In Fig. 4 we show the geometric mean of the spectral

efficiency achieved by the cost-minimizing (Fig. 4a) and

performance-maximizing (Fig. 4b) approaches. We observe



(a) Mean spectral efficiency η
∗

c of the cost-minimizing solutions.

(b) Mean spectral efficiency η
∗

p of the performance-maximizing
solutions.

Figure 4: Mean spectral efficiency of cost-minimizing and

performance-maximizing approaches.

Figure 5: Mean performance-to-cost ratio ξη,κ.

that the spectral efficiency increases steadily with the fron-

thaul network degree, since a denser networks allows for

more centralized RAN functions and thus better interference

management. In addition, it is clear that the higher the UE con-

centration, the higher achieved the spectral efficiency, owing

to the lower number of involved gNBs. Finally, we observe

that the spectral efficiency of the cost-minimizing approach

is clearly smaller than that of the performance-maximizing

approach. This is specially noticeable for dense fronthaul

networks and concentrated users. For example, at Ψ = 2.75
and Θ = 0.62, η∗c = 1.29 b/s/Hz and η∗p = 1.33 b/s/Hz (a

3.5% improvement), but at Ψ = 5 and Θ = 0.98, η∗c = 2.08
b/s/Hz and η∗p = 2.54 b/s/Hz (a 22.4% improvement).

E. Performance-to-cost ratio comparison

In Fig. 5 we show the performance-to-cost ratio ξη,κ for

Ψ = 2 to Ψ = 5 and Θ = 0.5 to Θ = 0.98. We observe

that ξη,κ > 1 for most points, except when the UEs are

uniformly distributed over the coverage area (Θ = 0.5). This

implies that the performance improvement achieved by the

performance-maximizing approach outmatches its suboptimal

cost when the UEs are only slightly clustered. In addition, even

at Θ = 0.5 the cost-minimizing approach is only marginally

better than the, whereas when UEs are moderately concen-

trated the performance-to-cost ratio reaches ξη,κ ≈ 1.19. This

trend does not continue, however, for highly concentrated UEs

if the fronthaul network is sufficiently dense, although the

performance-maximizing approach remains always superior.

V. CONCLUSION

The ability to adapt its centralization level to the network

conditions is regarded as a highly desired feature of a 5G or

6G RAN. However, partial centralization can be separately

motivated by either cost reduction or performance improve-

ment, and the advantages of selecting one goal over the other

may be unclear. In this work, we provide a comprehensive

comparison between both approaches. We present them with

a unified formulation and perform simulations over a wide

range of network conditions. We observe that the performance-

maximizing approach offers a performance improvement that

is proportionally higher to the optimality gap of its cost for

almost all network conditions.
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