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Abstract

Machine learning has become an established practice of scientific modeling, making
use of ever-increasing data availability. In system identification a model extracts the
dynamics of a system from time series data. For this task, however, many machine
learning methods face serious limitations. Moreover, a complex model structure often
obstructs further insight into the model’s characteristics and the underlying system.

This thesis focuses on an operator-based approach to help overcome these limita-
tions. Two linear operators are central to my thesis: the Laplace-Beltrami and Koopman
operator. Both can extract, store, and describe essential information from time series
data. The Laplace-Beltrami operator describes the geometry, whereas the Koopman
operator captures the dynamics of the identified system. I also use time delay embed-
ding to reconstruct partially observed system dynamics. This thesis aims to combine
these three components into a single model and perform operator-informed system
identification.

To explore the approach, I draw on three concrete data applications. In all three
examples I show that the model accurately estimates the system and, moreover, that
the approximated operators give valuable information to understand and interpret the
model. First, I investigate a pendulum system to compare the model against known
equations. The next two datasets stem from pedestrian dynamics and have no govern-
ing equations. For the second scenario, I build an efficient surrogate model to capture
the macroscopic state dynamics that originate from a microscopic pedestrian simula-
tion. In the third and most challenging scenario, I analyze data from pedestrian traffic
in Melbourne, Australia. I demonstrate that the modeling approach captures the di-
verse traffic patterns and is robust to difficulties often faced in real-world settings.

Scientific software is essential for data-driven modeling. However, suitable software
is lacking for my operator approach. Within my thesis I develop datafold as an in-
novative scientific software to unify the numerical frameworks (Diffusion Maps and
Extended Dynamic Mode Decomposition) required for the operator approximation.
Datafold covers the entire system identification workflow to promote flexible model-
ing and algorithmic experimentation.

By contributing scientific software and the analysis of concrete data scenarios, I en-
able new research possibilities to model dynamical systems from time series. I show
how the approach advances a deeper understanding of systems, for which complex
and inaccessible models are often adopted.

Keywords: system identification, data-driven modeling, scientific software, dynamic
mode decomposition, diffusion maps, time delay embedding
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Zusammenfassung

In der wissenschaftlichen Modellierung hat sich das maschinelle Lernen aufgrund stetig
wachsender Datenverfügbarkeit etabliert. Bei der Systemidentifikation extrahiert ein
Modell die Dynamik aus Zeitreihen. Dabei stoßen jedoch viele Methoden des maschin-
ellen Lernens an Grenzen. Eine tiefere Einsicht in die Modelleigenschaften und das
zugrunde liegende System werden oft durch eine komplexe Modellstruktur erschwert.

Diese Dissertation visiert einen operatorbasierten Ansatz an, um die Einschränk-
ungen zu überwinden. Zwei lineare Operatoren stehen im Fokus meiner Arbeit: der
Laplace-Beltrami- und der Koopman-Operator. Beide eignen sich, um wesentliche
Informationen aus Zeitreihen zu extrahieren, zu speichern und zu beschreiben. Der
Laplace-Beltrami Operator erfasst die Geometrie, während der Koopman Operator die
Dynamik eines identifizierten Systems beschreibt. Zudem verwende ich Zeiteinbettun-
gen, um eine unvollständige Systemdynamik in den Daten zu rekonstruieren. Das Ziel
dieser Arbeit ist es, diese drei Komponenten in einem Modell zur Systemidentifikation
zu kombinieren.

Um den Ansatz zu untersuchen, wähle ich drei konkrete Anwendungen. In allen
Fällen zeige ich, dass das Modell die Systemdynamik genau beschreiben kann. Darüber
hinaus liefern die approximierten Operatoren wertvolle Informationen, die sich zum
Verständnis und zur Interpretation des Modells eignen. Im ersten Fall untersuche ich
ein Pendelsystem, um das Modell anhand bekannter Gleichungen zu untersuchen. Die
anderen beiden Datensätze stammen aus der Fußgängerdynamik und sind nicht mit
Gleichungssystemen beschrieben. Im zweiten Fall entwickle ich ein effizientes Ersatz-
modell, um die makroskopische Zustandsdynamik einer mikroskopischen Fußgänger-
simulation zu erfassen. Im dritten und anspruchsvollsten Fall analysiere ich Sensor-
daten zum Fußgängerverkehr in Melbourne, Australien. Der Modellierungsansatz kann
die unterschiedlichen Verkehrsmuster identifizieren und ist gegenüber den Heraus-
forderungen von Realdatenanalysen robust.

Für den von mir verfolgten operatorbasierten Ansatz mangelt es an wissenschaft-
licher Software, welche für die datengetriebene Modellierung unverzichtbar ist. Im
Rahmen meiner Dissertation entwickle ich deshalb die Software datafold. Dabei vere-
inige ich die numerischen Verfahren zur Approximation der Operatoren (Diffusion
Maps und Extended Dynamic Mode Decomposition) in einem innovativen Framework.
Die Software deckt den gesamten Ablauf der Systemidentifikation ab, so dass eine flex-
ible Modellierung und algorithmische Experimente möglich werden.

Mein Beitrag zur Software und konkreter Analysen treibt die neuen Forschungsan-
sätze zur datengetriebenen Modellierung von dynamischen Systemen voran. Ich zeige,
dass der operatorbasierte Ansatz ein tieferes Systemverständnis eröffnet. Auch in Fäll-
en, in denen oftmals komplexe und unzugängliche Modelle verwendet werden.

iv



Contents

Abstract iii

Zusammenfassung iv

1 Introduction 1
1.1 Motivation and research questions . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Scientific context 9
2.1 What is a dynamical system? . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Data-driven estimation of dynamical systems . . . . . . . . . . . . . . . . 15

2.2.1 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Challenges in system identification . . . . . . . . . . . . . . . . . . 18
2.2.3 Modeling approaches . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Koopman operator perspective on dynamical systems . . . . . . . . . . . 25
2.3.1 Koopman operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Dynamic Mode Decomposition . . . . . . . . . . . . . . . . . . . . 30

2.4 Geometry in time series data . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Neighborhood graphs: A basis for explicit manifold learning . . 36
2.4.2 Laplace-Beltrami operator . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Time delay embedding . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.4 Research links to system identification and Koopman operator . 50

2.5 Software for system identification . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 System identification loop . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.2 Python scientific computing stack for machine learning . . . . . . 56

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Software for operator-informed system identification 63
3.1 Main operator-informed setting . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Introduction to datafold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Statement of need . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Software architecture and design decisions . . . . . . . . . . . . . 67
3.2.3 Measures for sustainable software development . . . . . . . . . . 71

3.3 pcfold : Data structures for point cloud manifolds . . . . . . . . . . . . . . 74
3.3.1 Data structure for time series collection . . . . . . . . . . . . . . . 75
3.3.2 Computing dense or sparse distance matrices (with Rdist) . . . . 84

v



CONTENTS

3.4 dynfold : State representation and linear system identification . . . . . . . 90
3.4.1 Mixin design pattern to organize data-driven methods . . . . . . 91
3.4.2 Time delay embedding . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.3 Diffusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.4 Dynamic Mode Decomposition . . . . . . . . . . . . . . . . . . . . 100

3.5 appfold : Nonlinear system identification . . . . . . . . . . . . . . . . . . . 104
3.5.1 Extended Dynamic Mode Decomposition . . . . . . . . . . . . . . 104
3.5.2 Parameter optimization and validation of EDMD . . . . . . . . . 109
3.5.3 Comparing EDMD to other software projects . . . . . . . . . . . . 114

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Data analysis to extract geometry and dynamics from time series data 118
4.1 Pendulum: Extracting geometric and dynamic coordinates . . . . . . . . 119

4.1.1 Description of the dynamical system and data collection . . . . . 119
4.1.2 Reconstructing partial observations with time delay embedding . 121
4.1.3 Uncovering hidden state space geometry . . . . . . . . . . . . . . 123
4.1.4 System identification with mode decomposition . . . . . . . . . . 128

4.2 Bus station: Surrogate model of a microscopic pedestrian simulator . . . 135
4.2.1 Data-driven dynamic surrogate model on a macroscopic scale . . 137
4.2.2 Data generation for bus station scenario . . . . . . . . . . . . . . . 138
4.2.3 Building data-driven dynamic surrogate model . . . . . . . . . . 142
4.2.4 Forward uncertainty quantification . . . . . . . . . . . . . . . . . 148

4.3 Melbourne sensors: Gaining insight into pedestrian dynamics . . . . . . 152
4.3.1 A short review of related research . . . . . . . . . . . . . . . . . . 153
4.3.2 Data description and selection . . . . . . . . . . . . . . . . . . . . 154
4.3.3 Operator-informed model architecture and parametrization . . . 157
4.3.4 Error analysis of day ahead forecasting . . . . . . . . . . . . . . . 162
4.3.5 Gaining insight into the identified system . . . . . . . . . . . . . . 168

4.4 Benchmark analysis of rdist . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.4.1 Benchmark setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.4.2 Generated data: Swiss-roll . . . . . . . . . . . . . . . . . . . . . . . 180
4.4.3 Real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5 Conclusion and future directions 187
5.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Bibliography 195

Supplementary Material 216

vi



1 Introduction

The observation, experimentation, and analysis of systems that change over time are
integral to many scientific fields. Seemingly unrelated subjects from diverse areas can
be described in the generic framework of a dynamical system, comprising a state and its
evolution over time. This includes well-known physical systems such as a pendulum or
planetary motions, or systems with complex interactions such as Earth’s climate [Froy-
land et al., 2021], epidemic outbreaks [Chowell, 2017], or crowd movements [Helbing
et al., 2007]. Dynamical systems can also describe more abstract phenomena, such as
the iterative learning progress of an artificial neural network [Dietrich et al., 2020]. A
common goal in science is to develop a formal description of a system within a model:

By a model is meant a mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work — that is
correctly to describe phenomena from a reasonably wide area.

— John von Neumann, 1955

Within a traditional equation-driven workflow, scientists create models by experiment-
ing within the system under well-controlled conditions, from which they can derive
explicit equations. For example, Galileo Galilei discovered the physical laws of falling
bodies by dropping cannonballs from the Tower of Pisa. While setting up governing
equations excels at capturing human knowledge within the system formulation, it is
also very research-intensive and limited by expert knowledge. On the other hand, the
ever-increasing availability of computing power and sensor technologies has spurred
the development of new modes of modeling. This includes data-driven approaches
whereby a model is directly “crafted” from (large-scale) time series data.

Nowadays, “machine learning” is often used as an overarching term to describe com-
puterized system estimation to enable the analysis of systems for which rich observa-
tional data are available but principle terms are lacking. Often for these systems, the
options to perform classical experimentation are also limited [Runge et al., 2019]. For
example, in a “smart city” where a network of sensors measure the traffic flow, a data-
driven model can predict the future traffic based solely on the historic observations
[Lehmberg et al., 2021].

A drawback of data-driven modeling, however, is that model structures tend to be-
come increasingly complex in the attempt to make more accurate predictions. Conse-
quently, models are no longer simple enough for verbal interpretation, opposing von
Neumann’s requirement of a model. Or as Saltelli et al. [2020, p. 483] state, “complexity
can be the enemy of relevance”. While a practitioner may be satisfied with a “black box”
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1 Introduction

model that can accurately forecast a system, a scientist may also wish to understand
the information encoded in the model’s structure that makes it an accurate model. Ide-
ally, an explainable model provides descriptions to understand the model and interpret
its operations [Gilpin et al., 2018]. This increased understanding helps to identify the
situations for which the model assumptions are valid and to understand the uncertain-
ties associated with the model. These aspects of computerized mathematical modeling
have received much attention during the SARS-CoV-2 pandemic, especially if models
predicting epidemic developments are integrated into political decisions [Saltelli et al.,
2020]. However, there are no clear guidelines for what makes a model “interpretable”.
Gilpin et al. [2018, p. 81] state that “for a system to be interpretable, it must produce sim-
ple enough descriptions for a person to understand using vocabulary that is meaningful to the
user”. From a mathematical perspective, this is a challenging task: Systems within a
data-driven modeling context almost always show (unknown) nonlinear dynamics, but
only linear systems have a well-founded mathematical theory. The situation becomes
even more challenging when using multivariate, large-scale and noise-corrupted ob-
servational data.

1.1 Motivation and research questions

The goal of my thesis is to estimate dynamical systems from empirical time series data. I
pursue an approach that allows researchers to predict and better understand dynamical
systems. In my thesis, this includes systems from pedestrian traffic for which typically
no governing equations are available.

My modeling approach centers around three concepts: time delay embedding, the
Laplace-Beltrami operator and the Koopman operator. Table 1.1 provides the essence of
each component in the context of my thesis. All three components were recently discov-
ered to have deep theoretical connections to each other [Arbabi and Mezić, 2017; Das
and Giannakis, 2019; Giannakis, 2019; Kamb et al., 2020]. These studies also demon-
strate the analytical power of combining the components for estimating dynamical sys-
tems from data. Together the components relate to both the geometry and dynamics of
the inferred system. Admittedly, these concepts can be difficult to grasp at first. How-
ever, I explain and build on the three components throughout my thesis, where I focus
on software, numerical, and data-driven rather than theoretical treatment.

Operator-informed model approach
An operator-informed approach complements other modeling approaches from statis-
tics and “classical” machine learning. The promise is to mitigate some of the common
limitations of other methods and to provide a new perspective on the system represen-
tation that is easier to access.

I seek to combine the three components of Table 1.1 into a single operator-based
model architecture in which each component fulfills a separate task. My particular
interest is to explore the capabilities of this operator-informed approach within a “sci-
entific machine learning” setting. This means that the modeling approach is guided by

2



1 Introduction

Table 1.1: The main mathematical components and the associated numerical tasks used in my
thesis, with a key reference for each component.

Component Task Reference

1 time delay
embedding

state space reconstruction
from partial observations

Deyle and Sugihara [2011]

2 Laplace-Beltrami
operator

extract geometrically
aligned state coordinates

Coifman and Lafon [2006b]

3 Koopman operator extract linear dynamics in
suitable state representation

Williams et al. [2015]

an underlying mathematical theory, here the operator theory. This aspect is interesting
for data-driven analysis to increase scientific understanding of safety-relevant applica-
tions, such as the movement of crowds [Coveney et al., 2016]. A model forms a predic-
tion based on intrinsic coordinates that connect to the theory and give insight into the
identified system. The entire approach that I follow is data-driven and equation-free.
Therefore, only minimal a priori system knowledge is required and the method is easy
to transfer to new data applications.

Before I give an overview of the three components outlined in Table 1.1, I provide an
intuitive example of an operator. Informally, an operator “manipulates” a function to
obtain a new function. In other words, an operator is a “function of functions” [Levy,
2006]. Here I only consider the common case of linear operators. This means the op-
erator map can be expressed similar to a matrix-vector product: Af(x) = f ′(x). One
example is a differential operator which is commonly written in Leibniz’s notation,
Af(x) = d

dxf(x). Applying the operator to a function of the monomial basis, f(x) = xn,
maps (linearly) to its derivative, f ′(x) = nxn−1.

Operator theory is a vast research field that studies linear operators as part of func-
tional analysis. While the theoretical advancements are profoundly abstract and typi-
cally only accessible to mathematicians, this research field is also shown to be of high
value for application-oriented problem settings [Coifman and Lafon, 2006b; Williams
et al., 2015]. In this thesis, I focus on the value of operator theory in a data-driven con-
text. For this, an intuitive understanding of an operator is usually sufficient and many
concepts transfer to standard linear algebra. In the example above where A captures
the derivative of the monomial basis, the explicit linear map can only be stored up to a
finite degree. For capturing the entire map we could think of the true operator as being
an infinite-dimensional matrix. The formalism of linear operators is also suitable to de-
scribe other and more diverse phenomena. However, unlike the “standard derivative
map”, the operator’s structure is unknown and “hidden in data”. In my thesis, the goal
is to use operator theory as a way to (1) extract and describe the geometry and dynam-
ics of observational time series data and (2) analyze the structure of the finite matrix
(approximating the operator) in order to gain insight into the data-generating system.

3



1 Introduction

In the scope of dynamical systems theory, Bernhard O. Koopman [1931] introduced
an operator-based perspective on a dynamical system. For every canonical (nonlinear)
dynamical system, there is a linear operator that describes the exact same dynamics.
This means that from a Koopman perspective every dynamical system has a (typi-
cally unknown) operator that shifts functions linearly forward in time. Intuitively, this
means we turn (nonlinear) observational time series data into a new time series with
(approximately) linear dynamics. In fact, this is a popular idea in methods that are
based on computational learning theory, whereby the original data is projected to a fea-
ture space in which the problem becomes easier to solve [Bishop, 2006]. A prominent
example is the Support Vector Regression, in which nonlinear (static) observations are
mapped to a (high-dimensional) feature space representation in which linear regression
is applied [Drucker et al., 1997; Müller et al., 1997]. The Koopman operator methodol-
ogy is similar in that it provides a theoretical framework that translates between time
series states in a measurement and feature space (in both directions). Ultimately, given
a suitable state representation, we can compute the Koopman matrix (approximating
the operator) and reconstruction map with standard linear regression [Williams et al.,
2015]. The major advantage is that capturing linear dynamics in a feature space is
much easier to handle than a model that aims to capture nonlinear state dynamics di-
rectly. In this way, Koopman operator-based methods can be competitive against neural
network-based models [Eivazi et al., 2021; Lange et al., 2021].

An important question, however, remains: How do we find a suitable state represen-
tation to approximate the Koopman operator? Addressing this question is a challenging
task because it depends on several often unknown system factors [Williams et al., 2015].
Within the framework, this question is therefore left open and needs to be addressed for
the concrete system. In my thesis, I follow a geometric approach, comprising the other
two main components in Table 1.1 — time delay embedding and the Laplace-Beltrami
operator. Both components embed into an (unsupervised) “representation learning”
task to augment and extract hidden explanatory data features from the measured time
series. In particular, the new states have high analytic value to describe and also model
time series data [Berry et al., 2013; Dietrich et al., 2016; Giannakis and Majda, 2013]. Im-
portantly, they provide a generic data transformation that is able to linearize the state
dynamics and is, therefore, a great candidate within the Koopman operator framework
[Arbabi and Mezić, 2017; Giannakis, 2019]. Time delay embedding is an established
procedure in time series modeling and goes back to Takens [1981] theorem. The em-
bedding can be seen as a temporal feature extraction because it can reconstruct essential
dynamic information from partial system observations. The Laplace-Beltrami opera-
tor is a second-order differential operator and is a generalized form of the common
Laplace operator (divergence of gradient, commonly denoted as ∆f(x) = ∇ · ∇f(x)).
The operator is of high interest because it encodes valuable and informative factors that
relate to the geometry and data-generating process [Berry and Sauer, 2016; Levy, 2006].
For data-driven settings, there is a popular class of kernel-based methods that can ap-
proximate the Laplace-Beltrami operator from high-dimensional and unstructured data
[Coifman and Lafon, 2006b]. The kernel describes the point relations in the data and is
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the basis to extract the new geometric aligned data coordinates. As a secondary objec-
tive of my thesis I also contribute a novel algorithm that aims to accelerate computing
a sparse kernel matrix. The algorithm is implemented in a separate software rdist.

The core advantage of describing a model architecture in terms of linear operators, is
that the linear algebra machinery can be applied in a straightforward fashion. In par-
ticular, the operator’s spectral components as the eigenvalues and eigenvectors (trans-
lating to eigenfunctions in operator theory) describe essential model characteristics. In
my setting, this includes a description of the intrinsic geometry of spatio-temporal data
[Berry et al., 2013] or the model’s prediction stability. In light of these advantages,
the Koopman operator methodology is frequently promoted as the main candidate for
estimating, describing and controlling dynamical systems based on time series data
[Budišić et al., 2012; Mauroy et al., 2020; Mezić, 2020; Surana, 2020].

Lack of scientific software
As already stated, my aim is to unify the three components in Table 1.1 into a single
model architecture to reflect the underlying theory that connects these components. All
three components come from diverse lines of research (e.g. geometry versus dynam-
ics). Connecting them into a single data-driven model to estimate a dynamical system
therefore requires transferring the components to a machine learning perspective.

Making use of operator theory in a data-driven setting means adopting numerical
frameworks that are able to approximate the operators from data. Widely-used frame-
works are the Diffusion Maps [Coifman and Lafon, 2006b] for the Laplace-Beltrami
operator and the Extended Dynamic Mode Decomposition [Williams et al., 2015] for
the Koopman operator. A major obstacle for modeling on concrete datasets, however,
is a lack of available software solutions that fully reflect these frameworks. Partial soft-
ware solutions exist, but are incompatible with each other and lack essential features
needed to be connected in a single data processing pipeline. In my view, this absence
of versatile, extensible and openly available software within a data-driven context of
operator theory is a major shortcoming of the methodology as a whole.

A computational scientist is typically both a developer and user of scientific soft-
ware. This makes software a central element in modern computerized research [Goble,
2014; Hannay et al., 2009]. In a data-driven modeling workflow, the building process
and final model essentially stem from data and the source code. However, despite its
importance for reproducibility and its value to enable new research, contributions to
scientific software are considered secondary in the research community [Anzt et al.,
2020; Hafer and Kirkpatrick, 2009]. This often leads to neglected software management
and poor financing of software projects [Nowogrodzki, 2019]. As a result, the true po-
tential of methodological innovations — here operator-informed machine learning —
often remain hidden in the scientific literature [Rice and Boisvert, 1996]. While there
is ongoing research to incrementally improve on numerical frameworks, this also in-
creases the complexity and hence raises the barrier for newcomers and modelers to
actually make use of the methodology. Source code that produces published results is
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1 Introduction

typically written in a “once-off” fashion and, moreover, often not openly shared [Goble,
2014; Sonnenburg et al., 2007].

Transferring methodological research to a problem-solving software is a nontrivial
task, that requires developing skills and expertise within the application field, com-
puter science and numerics [Rice and Boisvert, 1996; Wiese et al., 2020]. On the other
hand, openly available software that unifies and transfers algorithmic innovations can
tremendously accelerate a methodological approach as a whole. A good example is
the neural network community where many scientists gather around large software
projects — mainly TensorFlow [Abadi et al., 2016] or PyTorch [Paszke et al., 2019].

The promising operator-informed approach, as well as the current software gap, lead
to the two central research questions of my thesis:

Research questions

1. How can the operator-informed modeling approach for system identification
— comprising the Laplace-Beltrami operator and Koopman operator — be
translated into a machine learning perspective?

2. Can the setting from (1) provide insight into the model and (hidden) dynami-
cal system by making use of the operators that store geometric and dynamical
information?

Regarding the first question, research within the operator-informed methodologies
is highly active [Budišić et al., 2012; Mauroy et al., 2020]. Common research goals are
to (incrementally) improve the quality of the approximation of the operators from data
or to extend the methods to new problem sets. To answer my first research question
I transfer widely-adopted numerical frameworks to the broader picture of a machine
learning context. Furthermore, I address many aspects that are typically not discussed
within the literature of operator-based research, such as numerical robustness, algo-
rithmic efficiency, data structures, interface design, parameter optimization or dealing
with missing data. Rather than being content with setting up a software solution that
“just works”, I aim to follow good practices of software engineering and management.
Each component of the software should be usable on its own but also within a larger
model architecture. While I rely on established software concepts of machine learning
for static data, I also extend these to data with temporal context if necessary. Ultimately,
a software solution that unifies the diverse concepts in Table 1.1, supports algorithmic
experimentation and enables new research is the answer to the first research question
of my thesis.

For the second question I apply the operator theory and approximation methods
within the software solution to analyze three concrete scenarios of time series data.
In this operator-informed setting, I want to promote and discover the possibilities of
the innovative methods within a “scientific machine learning” context. I explore the
operator-informed approach to not only perform accurate predictions, but also to ex-
tract geometric and dynamic coordinates from time series data. I account for a wide
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range of challenges within the three scenarios, such as diverse temporal patterns, high
dimensional data, noise corrupted measurements and intervals of missing data. The
model approach and software should be robust to these factors. The urgent need for
software solutions is also highlighted by the fact that several new software projects
with a similar objective were initiated since I commenced my thesis [de Silva et al.,
2020; Hoffmann et al., 2021; Martensen and Rackauckas, 2021].

   Chapter 2  
   Scientific context 

Notation of dynamical system 
Introduction                              2.1 
Data-driven perspective            2.2

Geometric state representation 
Laplace-Beltrami operator    2.4.2 
Time delay embedding          2.4.3 

   Chapter 3  
   Machine learning perspective 

Operator perspective             2.3  
Koopman operator                   

1. Layer                                    3.2 
Time series collection            3.2.1  
Sparse distance matrix          3.2.2   

2. Layer                                    3.3 
Diffusion Maps                      3.3.2 
Time delay embedding           3.3.1

3. Layer                                    3.4 
Extended Dynamic  
Mode Decomposition             3.4.1 

   Chapter 4 
   Concrete data analysis

Pendulum                 4.1       
Bus station                4.2 
Melbourne sensor     4.3

Benchmark Rdist       4.4

Figure 1.1: Visualization of the main methodological components of my thesis. All numbers
refer to sections within the thesis. Chapter 2 focuses on the methodological background
that is required for the machine learning perspective of Chapter 3. Chapter 4 then includes
concrete data analysis, which requires both of the preceding chapters to interpret the model’s
components and software solution. Sections in italics denote an additional contribution that
follows a secondary objective to accelerate kernel-based methods (not covered by the main
research questions).

1.2 Structure of the thesis

I divide my thesis into three main chapters, which are visualized in Fig. 1.1. Note that in
Chapter 2, I follow a top-to-bottom approach. I first describe the operator perspective
for a dynamical system before I highlight the need for a suitable state representation.
Conversely, I follow a bottom-to-top approach in Chapter 3, because this successively
increases the complexity of the software methods involved.

Chapter 2 begins with a general notation of dynamical systems as well as an overview
of common data-driven approaches to extract a model from time series. Here I mostly
focus on a data-driven and discretized perspective that becomes relevant to address
the first research question. In Section 2.3, I introduce the Koopman operator and its nu-
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merical treatment as the main modeling approach for dynamical systems in the thesis.
In Section 2.4, I introduce a composed data transformation, which comprises the time
delay embedding and the eigenfunctions of the Laplace-Beltrami operator. This also
includes research links back to the Koopman operator. In Section 2.5, I introduce the
software perspective on data-driven modeling of dynamical systems. Here I describe
the “system identification loop” that mandates a flexible software design and give an
overview of relevant available scientific software within the Python programming lan-
guage.

Chapter 3 addresses the first research question and marks the first contribution of my
thesis. I describe datafold as a sustainable software in which I transfer the mathematical
methods covered in the second chapter from a machine learning perspective. The soft-
ware promotes operator-based modeling of dynamical systems and covers the entire
machine learning pipeline in a hierarchical structure that mirrors the system identifi-
cation loop. This also includes additional aspects of software design and data-driven
modeling that are not addressed within the operator literature. Section 3.3 describes a
data structure for time series to enable important model generalizations. Here I also
contribute a new fundamental algorithm to compute a sparse distance matrix, with the
objective to accelerate the computation of a kernel matrix, as a basis to extract geo-
metric coordinates. In Sections 3.4 and 3.5, I transfer the numerical frameworks Diffu-
sion Maps (Laplace-Beltrami operator) and Extended Dynamic Mode Decomposition
(Koopman operator) to approximate the respective operators from finite data.

Chapter 4 contains my second thesis contribution. This includes the concrete analy-
sis of simulated and real-world data with the operator-informed setting. The modeling
and analysis would not be possible without the software from Chapter 3. In the first sce-
nario, I analyze a simple pendulum system as an “academic example”. This allows me
to both validate the main setting against available equations and to highlight the func-
tionality of datafold. The following two data scenarios “Bus station” (Section 4.2) and
“Melbourne sensor data” (Section 4.3) come from the field of crowd dynamics. These
traffic systems exhibit complex interactions for which no governing equations are avail-
able. For the “Bus station” scenario I exemplify the model approach in an uncertainty
quantification analysis of a microscopic pedestrian simulator. The “Melbourne sensor
data” represents the most challenging analysis. Here I use multi-variate and real-world
sensor data that are noise-corrupted and time series come with intervals of missing
data. I finish the chapter with a separate benchmark analysis on static data (Section
4.4) as a result of my algorithmic contribution of accelerating the sparse neighborhood
computation from the previous chapter.

Finally, in Chapter 5 I reflect on the contributions and value of my thesis results for
advancing methods for the data-driven analysis of dynamical systems. By contribut-
ing to an active research field, I also highlight promising directions for future software
development and research. All software that I developed for the thesis and scripts and
data for the analysis are included in the Supplementary Material.
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In this first chapter, I describe the scientific context of my thesis. I transfer the central
mathematical concepts outlined in this chapter into a software solution (Chapter 3)
and use them to analyze concrete data scenarios (Chapter 4). The modeling approach
brings together different mathematical theories. I intend to highlight the essence of each
of the concepts from a data-driven perspective. I leave the mathematically rigorous
explanations to the linked literature.

In Section 2.1, I briefly introduce dynamical systems as a broad research field. Start-
ing from Section 2.2, I then focus on a data-driven modeling perspective and in Section
2.3 highlight the Koopman operator as the main framework in my thesis to estimate
a dynamical system. In Section 2.4, I highlight the Laplace-Beltrami operator and time
delay embedding within a geometric perspective of time series data. Finally, Section 2.5
describes the “system identification loop” as a general data-driven workflow that man-
dates high flexibility in scientific software. I also give an overview of software packages
in Python as a popular programming language for data-driven tasks.

2.1 What is a dynamical system?

Dynamical systems are a mathematical framework to describe, analyze and predict pro-
cesses that evolve with time. The discipline has a rich history that includes many turn-
ing points in how science understands time-dependent processes in nature. While time
itself could be interpreted as a system variable along with spatial coordinates, because
of its peculiar properties and the wide range of temporal-specific phenomena it is typ-
ically treated separately. In this section, I briefly describe some important concepts of
dynamical systems. For a comprehensive introduction I refer to Layek [2015] and Stro-
gatz [2015].

A dynamical system consists of the two components of a state and an evolution rule to
describe the change of states over time. Established in the 17th century by Isaac New-
ton and Gottfried Leibniz, the mathematical formalism for describing time-dependent
systems are ordinary differential equations (ODEs). The system is represented with a
smooth (Lipschitz continuous) function f that describes an infinitesimal change in time

d

dt
x(t) = f(x(t)), (2.1)

acting as the evolution rule on the system’s state in a numeric column vector of size
N , x ∈ RN . A state contains all system-relevant quantities, which can have different
physical units and meaning (e.g. pressure and velocity). But it is assumed that all
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quantities originate from the same underlying system to be modeled. Time itself is
a real-valued scalar value and typically positive, t ∈ R+. Note that the evolution rule
itself could also change with time — in which case the description of state evolution has
time as an additional argument f(x, t) — but for simplicity, I only consider autonomous
systems.

The differential form in Eq. 2.1 is still omnipresent in mathematical modeling — from
describing classic physical laws to data-driven approaches. The function f(x) describes
a “vector field”, because it assigns to each state x a vector d/dt x which indicates the
direction of change. An example of a vector field is given in the left plot of Fig. 2.1.

To perform future state predictions of a system, we can evaluate the flow, denoted as
F∆t, which is obtained by integrating along the vector field with

x(t2) = F∆t(x(t1)) = x(t1) +
∫ t2

t1
f(x(τ))dτ. (2.2)

Instead of describing the change of a state, the flow F∆t : RN → RN maps an (initial)
state x(t1) to a future state x(t2) with time increment ∆t = t2−t1. The flow map satisfies
the semi-group property such that Ft(Fs(x)) = Ft+s(x). Evaluating the flow at multi-
ple discrete future times t ∈ {t1, t2, t3, . . .} (with tj+1 > tj) from an initial condition
at t1 then describes a solution trajectory (or orbit for a trajectory that is continuously
evaluated). The left plot in Fig. 2.1 shows two example trajectories with different initial
states within the vector field, in which the trajectory follows the direction of the local
vector. The right graphs of the figure show how the two state coordinates change over
time.

Once a flow representation of Eq. 2.2 is available, it can then be used to generate
solutions of prediction tasks, based on a given initial state x(t1). However, with the ex-
ception of linear and a few nonlinear systems, it is not possible to obtain a closed-form
solution of the flow. Instead, one has to make use of numerical integration schemes,
such as the Euler or Runge-Kutta scheme.
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Figure 2.1: Example of a Hopf differential system. The dynamics are given with,
d/dt x1 = −x2 + x1(1 − x2

1 − x2
2) and d/dt x2 = x1 + x2(1 − x2

1 − x2
2) and is taken from

Bollt [2021, Example 2]. Left: The vector field in the plane. The length of a vector correlates
with the rate of change at the respective state. The two example trajectories have an initial
condition x1 = [2, 2] (red) and x1 = [0.1, 0.1] (blue) respectively. Right: The solution trajec-
tories plotted over time. Both trajectories converge to the stable limit cycle as an attractor of
the system, where the vertical lines mark the time at which the respective trajectory is close
to the attractor.

An example of a “simple system” that has been proven to have no analytical solution
is the notorious three-body problem, describing the orbits of three planets under grav-
itational force. Based on this problem, in 1890, Henri Poincaré developed a new per-
spective that marks the beginning of the scientific field of “dynamical systems” [Layek,
2015]. While the mathematical system representation of Eq. 2.1 – 2.2 remains the same,
the novelty in Poincaré’s perspective is to collectively view all possible system states in
a single geometrical object, which is referred to as the state space of the system. Instead
of quantitative future state evaluations, which require an initial state, the geometric
analysis is suitable to identify qualitative system characteristics [Layek, 2015]. For ex-
ample, the “Poincaré map” can evaluate a system’s stability or periodicity by recording
intersections of a trajectory with a hyperplane in the state space. In Fig. 2.1 the state
intersections with a line at x2 = 0 (corresponding to a low-order hyperplane) would
reveal that after a transition phase the system is periodic and stable.

For systems with a low state dimension (small N ) the state space geometry can be
curves or planes as shown in Fig. 2.1. In a more general notion, the geometry is de-
scribed as smooth and curved surfaces in higher-dimensional spaces (leaving out more
complicated structures such as fractals here). These geometric objects are referred to
as manifolds and I give a brief introduction to these geometric objects in a data-driven
context in Section 2.4.

The state space contains all possible solution trajectories x(t) that can be generated
with Eq. 2.2, because any point of the state space can serve as an initial state; Fig. 2.1
includes two example trajectories. The state space itself can also be subdivided into
geometric objects, describing different characteristic parts of the dynamical system. For
example, attractors describe a part of the state space to which many trajectories converge
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after a transient phase. Attractors can be a single point where all points converge to,
but also generalize to a manifold. In the example of Fig. 2.1 the system has a circle as
an attractor, which is referred to as a “limit cycle” [Layek, 2015, Sec. 5.5].

The analysis of a dynamical system includes classifications about its long term be-
havior. A major interest are ergodic systems in which every state of the system returns
to all other states of the state space in the long term (t→∞). In the example of Fig. 2.1,
only the states of the limit cycle and the (unstable) point at the origin are ergodic. All
other states are transient and the system never returns to these states. Ergodicity comes
with many suitable properties and is an often-stated assumption for the analysis of
dynamical systems.

Moreover, dynamical systems can also be described on multiple scales, ranging from
fast to slow dynamics. Often only slow manifolds are considered which describe a re-
duced dynamical system that only contains the principal dynamics [Dsilva et al., 2016].
This is because in terms of the slow dynamics the system reduces to the essential de-
scription that is relevant for long term predictions [Gear et al., 2005]. On the other hand,
fast dynamics are more corrupted by noise and measurement errors.

Overall, the geometric notion in dynamical systems as introduced by Henri Poincaré
has advanced the analysis of nonlinear dynamics and profoundly changed the under-
standing of many natural phenomena. One landmark research of Edward N. Lorenz
[1963] could show that even seemingly simple deterministic differential systems ex-
ist, that have solutions that are not predictable within bounds for larger time horizons.
What is also known as the “butterfly effect” could explain why weather forecasts fail for
larger time horizons. Tiny differences in a state in the order of machine precision, which
can be introduced by measurement errors or numerical integration schemes, can lead to
fundamentally different long term solutions. Such systems complicate the state space
geometry to fractals and are characterized as chaotic. Another important contribution
was made by Takens [1981], who provides a theory to reconstruct a qualitative copy
(diffeomorphic, in mathematical terms) of an attractor manifold, if only partial obser-
vations are available. This is particularly important for settings in which measurements
contain physical (spatial) quantities that have insufficient temporal information.

In recent decades, the perspective and modeling of dynamical systems have shifted to
a new data-driven era. Unlike solving differential systems with numerical algorithms,
such as the Navier-Stokes equations in the field of computational fluid dynamics, the
goal is to identify complex dynamical systems based on empirical data, because an ex-
plicit state evolution (the differential f or flow F∆t) are hard or impossible to obtain.
This branch of dynamical systems connects to the general trend in science to data-
driven and equation-free modeling to approximate systems through observational data
[Brunton and Kutz, 2019].

Linear dynamical systems
In the theoretical foundation of dynamical systems, the best developed systems are
ones with linear dynamics. In contrast, processes observed in nature have almost al-
ways nonlinear state interactions. This creates a large gap between practice and math-
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ematical foundation, because directly applying the theoretical rich formalism to real-
world observations usually fails dramatically. A common procedure to still profit from
a deeper understanding of linear dynamical systems is to approximate the nonlinear
system in a smaller regions of interest, such as around an equilibrium state [Brunton
and Kutz, 2019].

Here I continue to highlight the describe linear dynamical systems and how these
profit from the linear algebra machinery. The main reason is that these basic concepts
prepare the operator view on dynamical systems. In Section 2.3, I show that the Koop-
man operator provides a promising framework that has the potential to close the gap
between nonlinear systems and linear system theory. Many of the statements high-
lighted here have their equivalent counterpart in the operator view.

A vector field of a linear dynamical system has the form

d

dt
x(t) = A · x(t), (2.3)

where A ∈ RN×N is a time-invariant system matrix, acting on a column-vector state
x ∈ RN . Eq. 2.3 corresponds to a homogeneous linear differential equation, which has
a closed-form solution for the flow

x(t) = exp(At)x(t1), (2.4)

where exp(.) corresponds to the matrix exponential and x(t1) the initial condition (com-
monly t1 = 0). Since a unique solution exists for any initial state, it follows that the tra-
jectories never intersect on the state space. With a constant sampling rate, tj+1 = t1+j·∆t,
the flow describes a discrete map of the continuous dynamical system

xj+1 =
A∆t︷ ︸︸ ︷

exp(A ·∆t) xj = Aj∆tx1, (2.5)

for j = (1, 2 . . .). The system matrix for the continuous system representation in Eq. 2.3
induces a family of discrete maps with sampling intervals ∆t > 0. It is therefore also
referred to as the generator of the matrices A∆t.

The discrete flow representation is often more suitable for data-driven modeling, be-
cause it matches the discrete measurement events in the available time series data. Ap-
proximating a system from data with a linear model form as per Eq. 2.5, requires finding
the system matrix A∆t, which can be achieved by solving a linear regression problem
A∆txj ≈ xj+1 of available snapshot pairs (xj ,xj+1).

Alternatively, the generator matrixA itself can be approximated, which requires pairs
of state and corresponding derivative, (xj , d/dt xj). However, the derivatives are often
not available or can only be approximated with finite difference schemes. Because of the
clear correspondence between A∆t and A in Eq. 2.5 the generator can also be obtained
with the matrix-logarithm A = logA∆t/∆t. However, this operation may not be well-
defined; for details see Dietrich et al. [2020]; Mauroy and Goncalves [2020]. To avoid
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such issues, the relation can also be expressed through an Euler discretization of the
system in Eq. 2.4

xj+1 ≈
A∆t︷ ︸︸ ︷

(I + ∆tA) xj , (2.6)

where I ∈ RN×N is the identity matrix. From this follows thatAx = lim∆t→0 (A∆tx−x)/∆t
as a common representation of the generator matrix found in literature [e.g. Dietrich
et al., 2020; Klus et al., 2020; Otto and Rowley, 2021].

A major advantage of linear dynamical systems over nonlinear ones is that the rep-
resentation can be easily transformed into system-intrinsic components. In particular,
the system matrix can be decomposed into spectral components, which serve as spatio-
temporal “building blocks” that are easier to comprehend.

For simplicity, we assume that the system matrix is diagonalizable A∆t = ΦΛΦ−1,
where Λ = diag(λ1, . . . , λN ) is a matrix with eigenvalues on the diagonal, Φ contains
the right eigenvectors in the matrix columns and Φ−1 the left eigenvectors in the rows
(by convention). All three spectral components are considered complex-valued and of
size C[N×N ]. Following up on the discrete dynamical system in Eq. 2.5, the spectral
representation becomes

xj+1 = ΦΛjΦ−1x1 (2.7)

= ΦΛjb1 =
N∑
n=1

φnλ
j
n[b1]n. (2.8)

In the last statement φn ∈ Φ is the n-th column vector and the initial state is spectrally
aligned by the left eigenvectors, b1 = Φ−1x1 ([b1]n denotes the n-th element of the
vector b1). The spectral form of the discrete system again relates to the underlying
respective continuous system. While the left and right eigenvectors remain the same for
both systems, the eigenvalues of the differential form are µn = log(λn), which follows
from the system relationship in Eq. 2.5.

The main advantage of the spectral representation is that the only time-dependent
quantities of the system are the eigenvalues; both the eigenvectors and initial condition
remain constant throughout a prediction. This gives valuable insight into the long term
behavior of the system. Table 2.1 lists the stability criteria of the respective system type,
which can be directly read from the eigenvalues. For a discrete map the corresponding
eigenvalue’s magnitude, |λn|, indicates how the product in Eq. 2.8 evolves over time.
The overall system is considered asymptotically stable if all eigenvalues, n = (1, . . . , N),
are stable.
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Table 2.1: Stability criteria for a linear dynamical system in discrete or continuous form.
Continuous (Eq. 2.3) Discrete (Eq. 2.5) Stability

<(µn) = 0 |λn| = 1 stable, long term
<(µn) < 0 |λn| < 1 stable, converging to zero
<(µn) > 0 |λn| > 1 unstable, exponential growth

As highlighted before, using a linear system form is usually only feasible to ana-
lyze local regions of an underlying nonlinear system. In the next section, I highlight
data-driven approaches that aim to estimate global (nonlinear) representations of a dy-
namical system.

2.2 Data-driven estimation of dynamical systems

Based on the notion of a dynamical system introduced in the previous section, I now
follow up on a data-driven perspective. Data-driven modeling bypasses the workflow
of more traditional approaches: Instead of integrating knowledge of first-principles
into explicit equations (or update rules within larger simulation codes), the model is
directly “crafted” from empirical observation data [Tangirala, 2018]. With a suitable
model structure, the model’s quality is more limited by the quality of the data or re-
quired computational resources and less by the complexity of the actual system itself.

Many data-driven modeling approaches only require minimal prior knowledge of
a system, which makes it especially useful when the underlying system is too diffi-
cult or complex to obtain governing equations. But even for systems for which there
are explicit equations available, data-driven models are increasingly often integrated
[Brunton and Kutz, 2019]. This is because measurement data can include a wealth of
information about the system, that may not be covered by first-principle terms, poten-
tially leading to better performance measures. Besides using real-world measurements
(e.g. from sensors) data-driven approaches also complement the analysis of scientific
simulations, often producing large amounts of data [Dietrich et al., 2018].

In the next section, I first describe the term “system identification” as the process of
building models of dynamical systems from the empiric relations in time series data.
Section 2.2.2 highlights challenges that are introduced in system identification and Sec-
tion 2.2.3 gives an overview of model approaches from different research directions.

2.2.1 System identification

The discovery process to describe the relationship of observational data (input to out-
put) has its origins in probability theory and statistics. In the era of “big data” and
increased computational resources, new types of algorithms have evolved into the field
of machine learning along with a new terminology [Murphy, 2012]. While the overall
goal of finding a suitable model based on empirical data remains, in contrast to its sta-
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tistical heritage machine learning algorithms often better scale with the amount of data,
both in the number of samples and dimension.

dynamical system 
(hidden) 

system identification

 
state representation:      

dynamics:  
reconstruction:  

 

Figure 2.2: Schematic illustration of system identification to build a model from time series data
as snapshot pairs (xj ,xj+1) of input and output of the dynamical system. The two main
tasks are (1) find a suitable state representation g(x) = z and (2) model the dynamics in this
state F∆t(z) and (3) reconstruct the observational data G(z) (cf. Eq. 2.10 – 2.11). Adapted
from Tangirala [2018, Fig. 1.1.].

Machine learning in a “traditional sense” often disregards a temporal relation in data
and views it as static. However, the broad categories of machine learning [Murphy,
2012]

• supervised learning — model the functional relation h(x) = y between input and
target {xj ,yj}Jj=1

• unsupervised learning — extract a suitable data representation g(x) from the (un-
labeled) data itself {xj}Jj=1.

transfer to the modeling of dynamical systems. The goal is to capture the dynamics
through either the vector field f (Eq. 2.1) or flow F∆t (Eq. 2.2). As a distinction to
static data, the modeling procedure for dynamical processes is referred to as system
identification, which as described by Tangirala [2018, p. 2] “concerned with the means and
techniques for studying a process system through observed / experimental data, primarily for
developing a suitable (mathematical) description of that system”. Fig. 2.2 highlights the input-
output relations in the data that are the basis for the modeling. Since this temporal
context is essential for system identification, the available data is represented as a time
series

X = [x1,x2, . . . ,xJ ], (2.9)

where X ∈ R[N×J ] is in a matrix form. The time series has N rows, corresponding
to the spatial states at a given measurement time (also referred to as snapshots), and J
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columns that describe the temporal evolution of the snapshots in discrete time steps
with a constant time interval ∆t > 0. Each (column) vector xj has an associate unique
time value tj+1 = j ·∆t (with t1 = 0). The time values impose an inherent order on the
data such that tj < tj+1.

An important aspect in modeling is that the measurement data x — as a fundamental
source in the modeling procedure — is often not suitable to describe the dynamical
system. Possible reasons are more detailed in Section 2.2.2 below. The emerging and
challenging task then becomes to first extract a suitable state representation from the
available data [Pintelon and Schoukens, 2012]. This is summarized in the general state-
space representation for nonlinear system identification [Nelles, 2020, Eq. 19.6a - 19.6b]:

zj+1 = F∆t(zj) + εj (2.10)
xj+1 = G(zj+1) + νj+1, (2.11)

where F∆t : RP → RP is again the flow (a similar system can be set up in terms of
the vector field f ). However, instead of acting on the measurement states x directly,
the flow acts on a new (intrinsic) state vector z ∈ RP that is suitable to describe the
spatio-temporal system dynamics. The additional function G : RP → RN reconstructs
the original measurements states from the intrinsic state. The terms εj and νj account
for time-dependent system and measurement noise respectively.

The future state zj+1 in Eq. 2.10 is solely based on the current state zj . In engineering
settings the flow F∆t(z) often also includes additional variables to capture exogenous
forcing, such as from boundary conditions [Nelles, 2020; Pintelon and Schoukens, 2012].
However, in the context of my thesis I leave out the treatment of such additional terms.
I instead focus on learning the (unforced) flow F∆t : RP → RP and reconstruction map
G : RP → RN (Section 2.3) as well as on extracting a latent state representation g(x) = z
(Section 2.4). The later corresponds to an unsupervised task, whereas finding the two
system functions is a supervised task.

While there is a common goal in system identification to approximate an observed
dynamical system well, the applications of a model once it is available can differ. The
following list is adapted from [Kutz et al., 2016a]:

• Diagnostics
Given the initial motivation to make use of data-driven modeling is to identify sys-
tems of which governing equations are not available, it is a natural application to use
a model to obtain a deeper understanding of the process [Berry et al., 2020; Brunton
et al., 2016].

However, this is often a challenging task, as often machine learning methods are
black-boxes, compared to fully transparent first principle models. As a compromise,
some methods allow incorporating a priori knowledge, such as physical understand-
ing (e.g. conservation laws), structural constraints or symmetry [Karniadakis et al.,
2021; Tangirala, 2018]. To decrease the complexity of high-dimensional states, a typi-
cal approach is to describe the system state in fewer and easier to comprehend coor-
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dinates (i.e. P � N ). As a result methods for dimension reduction, such as Singular
Value Decomposition (SVD) become important [Tu et al., 2014].

• Prediction
The recursive model description in Eq. 2.10 makes it straightforward to perform pre-
dictions over larger time horizons than simply the next state. A fundamental model
requirement is that the model behaves “reasonably” in that it performs predictions
that are covered by the example time series.

Moreover, a successful model that can predict a dynamical system well can also be
used to monitor a process. This is considered a special task of prediction, in which
the goal is to identify unusual discrepancies between predicted and observed states
[Zameni et al., 2019].

• Control
In many engineering applications it is possible to manipulate the state of a system
through additional input quantities in Eq. 2.10 – 2.11. It then becomes possible to
change the characteristics of the system measurements over time, leading to the
broad field of control theory [Brunton and Kutz, 2019; Mauroy et al., 2020].

The three tasks tend to increase in their difficulty. This means that finding a model to
diagnose the system’s characteristics is often easier than controlling it.

In the data analysis in Chapter 4, I focus on a model architecture that addresses the
first two tasks. This means gaining insight into the dynamical system while also ob-
taining an accurate prediction model. Since I do not include forcing terms in the system
formulation used in this thesis, I do not consider control tasks.

System identification is faced with specific challenges that are introduced when deal-
ing with temporal data. The next section includes a list of challenges that can largely
influence the choice of which modeling approach to use (an overview is given in Section
2.2.3).

2.2.2 Challenges in system identification

While the modeling efforts of a data-driven approach are often significantly reduced
compared to explicit equation-driven modeling, the approach comes with its own set
of challenges. Because observation data are a fundamental factor, a model can only be
as good as the data quality. Moreover, compared to data-driven modeling with static
data, there are key challenges and aspects that are introduced by the temporal aspect of
dynamical systems and their observations in time series data. These are summarized
in the non-exhaustive list.

• Nonlinear dynamics

Most, if not all, processes in nature show nonlinear state evolution in the flow of a
system. A successful data-driven model needs to capture this. However, in contrast
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to static data, the dynamics can introduce a new set of often difficult to compre-
hend phenomena. These patterns could include transient, periodic, quasi-periodic
to chaotic system behaviors [Brunton and Kutz, 2019]. There can be also system
configurations (bifurcation) in which the system behavior fundamentally changes
[Kevrekidis and Samaey, 2009]. In general, nonlinear dynamics can limit the pre-
dictability of a system, which is mathematically described by the Lyapunov exponent
which can be associated with every dynamical system. Typically, when data-driven
modeling is applied, however, the exact characteristics of the dynamics are unknown
and need to be extracted from the available empirical data.

• Recursive model evaluations

The identified flow of a system in Eq. 2.10 describes a recursive model, in which any
predicted state z can be again fed back to the model’s input [Beckers and Hirche,
2020]. This allows simulations over larger time horizons to be performed based on
a single initial state. This contrasts to a typical single input and output model in
time-independent regression problems. A challenge is that the recursive evaluation
of the model prediction errors can quickly accumulate, especially if the underlying
dynamics are highly nonlinear [Tangirala, 2018]. This can lead state predictions into
regions that are not covered by the observation data, resulting in nonsense solutions.
In prediction settings it is therefore an important task to evaluate both the forecasting
stability of a model and a prediction horizon to which the model remains in required
accuracy bounds.

• Noisy observations

For many real-world datasets, the time series snapshots are corrupted by measure-
ment errors and process noise. Part of the system identification is then to capture the
deterministic underlying dynamics supported by data, of which there can be patterns
on different scales [Berry et al., 2013]. If a model tends to also capture unpredictable
noise terms it overfits the data. While this is also the case for static datasets, an im-
portant characteristic of temporal processes is that noise itself can be time dependent.
It therefore violates the common assumption in regression methods of independent
and identically distributed (i.i.d.) data.

• Insufficient dynamical information

Typically, a measurement state x contains physical quantities of interest. However, if
these quantities do not provide sufficient dynamical information, then approximat-
ing the flow in Eq. 2.10 based on data is not well-defined. For example, imagine a set
of sensors producing a time series that describe the temperature over a domain. Be-
cause the physical quantity “temperature” does not include an instantaneous change
in the form of a derivative or no trend information on larger time scales, the state dy-
namics are ill-defined. Increasing the number of temperature sensors only leads to
better sampling of the spatial dimension and therefore does not solve the problem.
Uncovering latent variables that are dynamically relevant is a major challenge in sys-
tem identification [Brunton and Kutz, 2019; Dietrich et al., 2016]. Fortunately, in such
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cases, the inherent temporal context in time series data is available to enrich a state.
This can be achieved, for example, by estimating the derivative or applying state
space reconstruction methods [Deyle and Sugihara, 2011; Takens, 1981].

• Sampling distribution on state space

Data-driven models usually only operate well in regimes that are sufficiently cov-
ered by the data. A model that aims to provide a global system description can
therefore vary in accuracy, depending on the sampling. Naturally, rare events occur-
ring in a system are sparsely sampled. That such events are often poorly covered in
data-driven models, is an inferior property compared to models that are based on
governing equations [Tangirala, 2018].

The sampling procedure is, therefore, an important part of data-driven modeling.
While static datasets sample only spatial dimensions, time series data additionally
includes a temporal dimension in the sampling procedure; corresponding to the rows
and columns in Eq. 2.9. An important characteristic is the sampling rate ∆t between
samples. This is because it limits the dynamical patterns that can be extracted by a
model, relating to the Nyquist–Shannon theorem in signal processing.

System identification based on simulated data — for example, to build a surrogate
model as in Dietrich et al. [2016] — is a privileged situation in that is possible to
strategically sample the state space and select important state variables. In contrast,
for real-world data there is often no access to adapt the characteristics of the sampling
procedure. Measurements may be corrupted or not be reliable in that the observa-
tions are interrupted.

• High-dimensional states

Many complex dynamical systems are described in terms of a high dimensional state
to describe a spatial domain well (i.e. N � 1). Consequently, identifying a flow F
from data is usually a multi-valued regression problem, with the same dimension
in the input and output. While classical regression models of machine learning are
designed to handle high-dimensional input, many standard methods often only sup-
port single-valued output. A naive approach is to construct a separate model for each
state variable (i.e. N models). However, this increases the overall modeling efforts,
model complexity and computational requirements.

• Generalizing a model

In data-driven modeling it is vital to verify whether a model generalizes to situations
that are new to the model [Ding et al., 2018]. That is, to empirically validate that
the model performs well in situations that are not covered by the data used for the
model construction [Bergmeir and Benı́tez, 2012]. There are established procedures,
such as cross-validation, that allow estimating the generalization error [Bergmeir and
Benı́tez, 2012]. However, the temporal order in the data prohibits common good
practices such as taking random subsets of the data as this breaks important charac-
teristics of the data [Bergmeir and Benı́tez, 2012]. Moreover, as highlighted above,
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snapshots in time series data are often not i.i.d. and the error may then be biased by
the specific data allocation.

2.2.3 Modeling approaches

In addition to the quality of underlying time series data, a crucial factor for system
identification is model selection [Bergmeir and Benı́tez, 2012; Murphy, 2012]. In a first
step, this means to select a suitable model structure, for example, a linear, polynomial
or neural network type of model. Only in a second step, a suitable parametrization
needs to be found [Murphy, 2012]. The model structure greatly influences the character
of the model and an improper choice can lead to severely misleading conclusions and
disappointing predictive performance [Åström and Eykhoff, 1970; Ding et al., 2018].

Technically, a model selection is understood as an optimization over the model and
parameter space to find the best model among candidates. The optimization is per-
formed by minimizing some cost function, which could be the prediction error over a
specified time horizon. However, the selection of candidate models is also constrained
by a myriad of additional factors, including available a priori knowledge of the system,
the state dimension, its intended use, computational requirements or available software
[Åström and Eykhoff, 1970; Nelles, 2020, p. 11]. A well-suited model has a structure
that meets the requirements of the application. This means that the optimization does
not have to be strict; a simple model should be favored over a complex one if the accu-
racy improvements are only marginal [Tangirala, 2018].

Broadly, different model structures can be classified in terms of the number of pa-
rameters [Åström and Eykhoff, 1970; Murphy, 2012]:

• Parametric models have a fixed number of parameters. The models include strong
assumptions about the underlying data relation, which reduce the optimization
problem to parameter estimation. If the specified model complexity does not
match the system properties, this can result in a strongly biased model and large
errors. An example of a parametric model, is a linear or polynomial model form
because the number of coefficients is constant.

• Non-parametric models have a variable number of internal parameters. This
means that this model type can “automatically” increase the number of internal
parameters to better describe the data. The greater flexibility comes with higher
computational demands and the models are prone to overfitting, whereby the
model complexity is much larger than the one covered by the data (or system).
Typically, the models contain hyperparameters which control the number model
parameters [Murphy, 2012]. An example of a non-parametric model is a decision
tree, which can “grow” indefinitely by adding more parameters to describe the
decision branches.

In the common setting in which prior knowledge of principle dynamics is scarce,
non-parametric are usually more suitable, because they are more generic compared to
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parametric models. As a consequence, for complex and high-dimensional systems, they
tend to be better suited [Beckers and Hirche, 2020].

Because dynamical systems appear in many scientific disciplines, different data-driven
modeling approaches exist. These often come with their own terminology — depend-
ing on their origins — but often translate to each other. The headers in Table 2.2 give
an overview of these approaches, which are also briefly described in Sections 2.2.3.1 to
2.2.3.3 below. The last column of the table, representing the operator perspective, is a
central part of this thesis and is introduced in more detail in Section 2.3.

Table 2.2: Overview of modeling approaches from different disciplines.

Statistics Probabilistic Machine learning Operator theory

• Autoregressive
Moving Average
Regression

• Gaussian
process

• Support
Vector Regression
• (Deep)
Neural Networks

• Extended
Dynamic Mode
Decomposition

Table 2.2 also includes representative methods that are used for time series model-
ing. The methods aim to provide a global description of the system. All approaches
have some common ground but also key differences, meaning none of the approaches
is universally suitable for system identification. Within each perspective and represen-
tative model, many extensions often exist. The edges between perspectives are soft, in
that it is also common to combine benefits of different categories in new model types
or generate ensembles of methods [Chan and Pauwels, 2018].

2.2.3.1 Statistics

Models coming from statistics have a strong mathematical foundation in data-driven
analysis. Typically these models are not formulated in a dynamical system theory, but
instead directly in data-oriented terms. A central model for time series data is the Auto-
Regressive Moving Average (ARMA). The basic model assumption is that the future
(univariate) system state is determined by past observed states x and errors e

xj+1 = c+
p−1∑
i=0

aixj−i +
q−1∑
k=0

bjej−k. (2.12)

From the interaction of terms follows that the model has a linear structure and is,
therefore, amendable for closed-form model analysis. The method explicitly accounts
for temporal context in the time series by integrating time-delayed states. Moreover,
probably as a result of its statistical heritage, the model acknowledges that noise is
typically not i.i.d. within the temporal context. This is often disregarded by other
modeling approaches.
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The model has two parameters that correspond to the number of delayed states q
and error terms p. Both parameters describe a family of parametric models, which is
usually denoted as ARMA(p, q).

There are many extensions, which often address different temporal characteristics
found in time series. This includes non-stationary processes (ARIMA), seasonality
(SARMA) or vector states (VARMA). Despite their linear structure, ARMA-based mod-
els are also used in competitive time series forecasting scenarios [Makridakis et al.,
2020].

2.2.3.2 Bayesian

A Bayesian (or probabilistic) perspective provides a framework for data-driven model-
ing that systematically handles uncertainty in the data and system [Roberts et al., 2013].
The uncertainty is also available in the model for forecasting. This is a distinct feature
from other perspectives, which often only provide point estimations without indicating
the model’s fidelity.

A popular representative method in the Bayesian modeling is Gaussian Processes
(GPs), as a powerful class for nonlinear regression tasks. GPs are often considered
for static data settings [Rasmussen and Williams, 2006]. However, because of their
strong foundation in probability theory and desirable features in risk-averse applica-
tions, model adaptations for system identification also exist [Beckers and Hirche, 2020;
Roberts et al., 2013; Umlauft et al., 2018]. The basic model representation of a Gaussian
Process for regression is

Fn(x) ∼ GP(m(x),K(x,x)), (2.13)

where the model is fully characterized by its mean function m(x) and kernel function,
K(x,x) : RN × RN → R+. The kernel is a central element and corresponds to a covari-
ance function, with which the GP describes a distribution over functions. The covari-
ance function encodes prior beliefs and can be constructed by combining simpler func-
tions that separately describe periodicity and degree of noise [Rasmussen and Williams,
2006; Roberts et al., 2013]. By using the model in Eq. 2.13 it then becomes possible to
sample functions, which are distributed accordingly [Umlauft et al., 2018]. Because the
model is described by its available training data, the model is non-parametric as the
number of parameters varies with the number of available data samples.

Typically, a single GP describes a regression function for a single target variable. In the
formalism of a dynamical system the future state is then normal distributed Umlauft
et al. [2018, Eq. 11],

xj+1 ∼ N (m(xj , σ2(xj))). (2.14)

One way to generalize this to multi-dimensional states it to concatenate N indepen-
dent Gaussian Processes [Beckers and Hirche, 2020; Umlauft et al., 2018]. The drawback
is that this prohibits the analysis of a single model that integrates all dynamics in a sin-
gle representation. Furthermore, the nature of a dynamical system poses challenges
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that complicate the accurate treatment of uncertainty [Beckers and Hirche, 2020]. This
is because the recurrence of the model’s output to the input creates correlations between
the states, that is, a state xj+1 not only depends on xj but on all previous states. To be
computationally tractable, the number of past states considered is usually restricted,
which in turn limits the simulation horizon of the model [Beckers and Hirche, 2020].

2.2.3.3 Machine learning

The term “machine learning” is often used in a broad sense to express a general data-
driven modeling workflow that uses large amounts of data. This also includes the other
approaches of Table 2.2. Within this section, I use the term to express a dedicated mod-
eling perspective that combines a statistical heritage with algorithmic innovations from
computer science. The “isolated” machine learning perspective in Table 2.2 provides
a collection of powerful methods for regression. However, a major focus has been on
static problem settings [Längkvist et al., 2014].

An established method that is well-founded on computational learning theory is the
Support Vector Regression (SVR) [Bishop, 2006; Drucker et al., 1997]. SVR performs an
often applied idea in machine learning: It transfers data measurements to a new feature
space, where the assumption is that the regression task is well-described in a linear form.
The approach led to significant contributions to learning theory that were developed by
Vladimir Vapnik [see Drucker et al., 1997; Müller et al., 1997]. Like GPs, a shortcoming
of the standard method description is that it only supports univariate output (however,
multi-output adaptations exist [Borchani et al., 2015]).

Nowadays, conventional machine learning methods are overshadowed by a renais-
sance of neural network (NN) models. The evolution to so-called deep neural network
(DNN) has attracted a large interest in these methods. This is mainly because the ap-
proaches often require less modeling expertise to extract meaningful features and often
scale much better in terms of quality of fit with increasingly larger datasets (see Le-
Cun et al. [2015] for a review on this matter). Oftentimes, DNNs are considered as an
evolved field of machine learning, but here I consider them within the same class.

A standard feedforward NN consists of a multitude of layers. The more layers the
deeper the network, where each layer can have an arbitrary number of neurons to be
specified. The first and last layers correspond to the model’s input and output; see
Fig. 2.3. A NN ultimately corresponds to a graph, of which the weights describe a
composition of simple functions to approximate a global function. During the training
phase, the weights are adapted with the backpropagation algorithm.

Setting up an DNN leaves a lot of freedom to design the network structure. As a
result, many diverse architectures exist, which have been designed to solve different
tasks [Brunton and Kutz, 2019; LeCun et al., 2015]. While technically a DNN is para-
metric because it has a fixed number of parameters (the neurons), DNN have often so
many neurons (in the order of millions) that they essentially appear as non-parametric.
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Figure 2.3: Schematic illustration of a Recurrent Neural Network (RNN) architecture. The
green neurons correspond to input, white to neurons on hidden layers and red neurons
to the model’s output. Connections of a standard feedforward neural network are in black,
whereas self-interactions specific to RNN are in purple. The figure is adapted from Brunton
and Kutz [2019, Fig. 6.18]

A suitable NN architecture for addressing sequential data as in time series data are
Recurrent Neural Networks (RNNs); Fig. 2.3. Unlike in a standard NN, in a RNN the
neurons can self-interact. This gives rise to feedback loops and time delays as units
can depend on its value at the previous time step [Brunton and Kutz, 2019]. A popular
variation of RNN that solves some numerical issues and often applied for time series
analysis, is the Long Short-Term Memory (LTSM) [Hochreiter and Schmidhuber, 1997].

Compared to previously mentioned methods, DNN come with a set of distinct fea-
tures, making them one of the most generic approaches to approximate a function
from data. DNNs are capable to capture complex nonlinear relations between high-
dimensional input and output states and can scale better for highly complex tasks if
more data becomes available, such as artificial intelligence (e.g. image or language
recognition). The training of a DNN can be performed in a per-sample (or mini-batch)
fashion, which makes it much easier to process massive datasets as individual chunks
of data in an iteration. In contrast, kernel methods such as the standard SVR and GPs
require all data at once in computer memory.

On the other hand, frequently mentioned drawbacks of DNN include a lack of estab-
lished theory. Often the DNN architectures are based on heuristics and seem to “just
work” for accurate predictions, but are otherwise black-box models that do not provide
much insight to the identified system [Castelvecchi, 2016]. Moreover, DNNs usually
require large datasets on which multiple epochs are processed during training. The
computational cost for training is prohibitive if dedicated hardware, such as process-
ing units on the graphic card, are not available [Thompson et al., 2020]. Furthermore,
the model is typically not deterministic if the initial weights are set randomly.

2.3 Koopman operator perspective on dynamical systems

This section focuses on an operator perspective on dynamical systems as a complemen-
tary approach to those introduced in the previous section (cf. Table 2.2). At the center
of the theory is the so-called Koopman operator, for which I give a brief theoretical
introduction in Section 2.3.1. Because of its strong foundation in dynamical systems,
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functional analysis and geometry, the methodology has become increasingly popular
in recent decades [Budišić et al., 2012; Mauroy et al., 2020; Mezić, 2020].

The Koopman operator is usually computationally intractable in its exact form. How-
ever, because of its linear structure it is amenable for numerical approximation schemes.
These lead to non-parametric methods that are capable to capture a wide range of non-
linear dynamics. Koopman operator-based methods have been shown to be competi-
tive in terms of accuracy with popular LTSM models and come with significantly re-
duced computational requirements Eivazi et al. [2021].

Section 2.3.2 introduces the Dynamic Mode Decomposition as a numerical scheme
to approximate the Koopman operator in system identification tasks. Because the final
model structure is linear, the approach can reduce the gap between nonlinear dynam-
ical systems found in practice and the well-founded mathematical understanding of
linear systems. Ultimately, through a spectral form of the system it is possible to gain
insight into the identified system [Avila and Mezić, 2020; Lehmberg et al., 2021; Mezić,
2020].

2.3.1 Koopman operator

In the theory of dynamical systems there is an established alternative perspective of
a system’s flow representation (and similarly also vector field). For every canonical
dynamical system with nonlinear flow F∆t, there is a linear operator describing the exact
same system dynamics — the Koopman operator [Budišić et al., 2012; Mauroy et al.,
2020; Mezić, 2020; Otto and Rowley, 2021].

The Koopman operator was first described for systems of classical mechanics by
Bernhard O. Koopman [1931]. The established theory was highly relevant at the time,
as it was already utilized by John von Neumann [1932] and George Birkhoff [1931] to
prove the highly important “mean ergodic theorem” as part of dynamical system the-
ory.

However, interest tapered off as evidence by the original paper being only cited only
around 100 times between 1931 and 1990 [Mezić, 2020]. The discovery for a numeri-
cal treatment and its potential for data-driven modeling have renewed the interest in
recent decades, which has led to a revival of the theory and an active research field
[Budišić et al., 2012] (the original paper has now around 1400 citations since 1990). The
seminal works on the numeric side are attributed to Igor Mezić [2005], who described
the Koopman Mode Decomposition. An often cited paper of Budišić et al. [2012], pro-
viding an introduction to the theory, refers to the new research interest as “Applied
Koopmanism”. The overall interest is further fueled by general advances in data-driven
modeling and the need to describe high-dimensional and complex dynamical systems
[Reichstein et al., 2019].

In general, a linear operator describes a map between two vector spaces. The Koop-
man operator linearly forwards a function as element of a function space forward in
time. This means that instead of describing a state evolution of a finite state x ∈ RN ,
the Koopman operator advances functions g(x) ∈ F forward in time. The change in
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perspective can be understood as a coordinate transformation of the original measure-
ment states x into a new function representation. During this lift the nonlinear state
dynamics become linear in the function space representation. However, this system
transformation comes also with a trade-off: To capture the full nonlinear system dy-
namics the Koopman operator is usually infinite-dimensional (i.e. F has an infinite-
dimensional basis), even when the state space dimension is finite [Budišić et al., 2012].
Already simple forms of systems require infinitely many terms (Kutz et al. [2016a, Sec.
3.4] highlights this at d/dt x = −µx) and only few exceptions with a finite representa-
tion exist [e.g. Budišić et al., 2012, Example 1]. It follows that for most systems, the
exact Koopman operator representation is computationally intractable. Nevertheless,
the main advantage of its linear structure remains, making the operator amenable for
numerical approximation schemes and data-driven modeling. The aim is to approxi-
mate and describe the operator in a computationally tractable finite function basis. A
generic framework for the approximation is the Extended Dynamic Mode Decomposi-
tion (EDMD), which I describe in the next Section 2.3.2.

This section continues to describe the main theoretical statements, which often relate
the equations of a finite linear dynamical system in Section 2.1. In its mathematical
representation the Koopman operator, U∆t : F → F , expresses an (autonomous) dy-
namical system with flow F∆t,

[U∆tg](x) = g(F∆t(x)), (2.15)

corresponding to the alternative dynamical system perspective to the integral form of
the flow (Eq. 2.2). The operator acts on functions g :M→ C, which are defined on
the system’s state space M. The scalar and complex-valued functions are referred to
as observables. To anticipate a geometrical setting, covered in the next Section 2.4, the
state space geometry M is assumed to be a smooth Riemannian manifold (but also
generalizes to other forms, such as fractals [Otto and Rowley, 2021]).

The system representation in Eq. 2.15 is global and holds for all observables of a func-
tion space, g ∈ F , at any state x [Budišić et al., 2012]. Intuitively, the observables cor-
respond to a coordinate change in which the linear dynamics forward the system by
a time step of ∆t, which is equivalent to the nonlinear state evolution of the flow F∆t
[Budišić et al., 2012; Kutz et al., 2016a].

A particularly relevant set of observables are those that describe the original full sys-
tem state, gID(x) = x, which correspond to an identity function [Williams et al., 2015].
In this case it is convenient to describe the observables in a vectorized form of Eq. 2.15
(g in bolt). This means, that the Koopman operator notation of U∆t is overloaded to
evolve multiple (stacked) scalar observables in g(x) simultaneously (see also Budišić
et al. [2012, Eq. 4]). Ultimately, this leads to the original state evolution in terms of the
Koopman operator, [U∆tgID](xj) = xj+1.

For an easier notation, the Koopman operator representation in Eq. 2.15 is stated in
terms of deterministic system dynamics. While this is rarely the case for real-world
applications, the representation can be extended to a stochastic Koopman operator, in
which the right hand side corresponds to the expected function values, E[g(F (x)] [Klus
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et al., 2020; Mauroy et al., 2020, Eq. 13.14]. Furthermore, in favor of a follow-up numer-
ical treatment, the observables are considered to be an element of the Lebesgue space
of square-integrable functions [Otto and Rowley, 2021; Williams et al., 2015],

F = L2(M;R) :=
{
g :M→ R,

∫
R
|g(τ)|2dτ <∞

}
, (2.16)

because it facilitates methods from function analysis, such as Galerkin approximations.
When F is a vector space, as in Eq. 2.16, then the Koopman operator U∆t is linear

[Budišić et al., 2012]. The linear structure is a key feature, because it relates to properties
of finite linear systems covered in Section 2.1. For example, if the underlying system is
continuous in time, then the Koopman operator has a generator,

[Lg] (x) = d

dt
g(x), (2.17)

corresponding an operator representation of the vector field f in Eq. 2.1 [Klus et al.,
2020, Sec. 2.1]. This also means, that a canonical time-continuous dynamical system is
equipped with a semi-group of Koopman operators, describing the flow of the system
at different time intervals ∆t > 0 and L = lim∆t→0 (U∆t−I)/∆t [Dietrich et al., 2020; Klus
et al., 2020]. Note that this again relates to the statements of a standard linear system in
Eq. 2.5 – 2.6.

Furthermore, the linear property allows the Koopman operator to be described in
spectral terms:

[U∆tξp] (x) = ξp(F∆t(x)) = λpξp (x) , (2.18)

where λp is an eigenvalue and ξp(.) an eigenfunction. The spectral representation has a
great potential to analyze nonlinear dynamics in terms of a linear and system-intrinsic
basis. For example, Mauroy and Mezić [2016] use the eigenpairs for global stability
analysis. The scalar eigenvalues are now the only quantity that evolve with time; λj

corresponding to the j-th time step. A single step of the system and its relation to the
original flow is schematically depicted in Fig. 2.4.

Like for the operator itself, the dimension of the eigenbasis is generally infinite (Fig. 2.4
contains four illustrative functions). However, the “type of infinity” differs with the un-
derlying system properties. For ergodic systems there are countable infinite eigenpairs,
i.e. discrete point spectrum, which permit the decomposition in Eq. 2.18 [Giannakis,
2019]. For transient and chaotic systems the entire complex plane can contain eigenval-
ues in a continuous spectrum [Bollt, 2021; Korda and Mezić, 2020].
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Figure 2.4: Schematic illustration of the Koopman Mode Decomposition in comparison to its
nonlinear flow. Each of the Koopman eigenfunctions ξp(.), as special observables, are de-
fined on the state space M. Forwarding the Koopman system in time is a simple multi-
plication with each corresponding eigenvalues λp. The Koopman modes V reconstruct the
full-state observables x (Eq. 2.20).

Continuing with the more common assumption of a discrete point spectrum, the
dynamical system can be described in terms of its eigenpairs {λp, ξp(x)}∞p=1. The eigen-
functions, ξp(x) correspond to system-intrinsic observables (i.e. scalar functions), that
form a basis for the function space F . The eigenpairs connect to the underlying state
space and have interesting properties [Budišić et al., 2012; Mezić, 2020] (a list is given
in Giannakis et al. [2015]).

Using the eigenbasis of the Koopman operator, any observables g ∈ F that lies in the
span of the spectral basis can be expressed as

g(x) =
∞∑
p=1

vpξp(x), (2.19)

where the coefficients vp are the so-called Koopman modes [Rowley et al., 2009, Eq. 2.4].
For the special case when gID(x) = x is the (vectorized) full-state observable,

gID(F∆t(x)) = F∆t(x) = U∆t

∞∑
p=1

vpξp(x) =
∞∑
p=1

vpλpξp(x), (2.20)

then this describes the Koopman Mode Decomposition of the system [Mezić, 2005;
Rowley et al., 2009, Eq. 2.5]; see Fig. 2.4 for an illustration. The three mathematical
objects {(vp, λp, ξp(x))}∞p=1 are denoted as the Koopman triplet [Williams et al., 2015].
Importantly, Eq. 2.20 has the form of a linear system (cf. Eq. 2.8 on page 14) but is
nevertheless able to describe a nonlinear state evolution in the full-state observables x.
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The Koopman operator has the Frobenius-Perron operator (also transfer operator) as
its dual [Klus et al., 2016]. Instead of evolving observables forward in time it evolves
densities, such as probability density. This makes the Frobenius-Perron operator par-
ticularly interesting for uncertainty quantification tasks in dynamical systems. Even
though both operators contain the same information, the different entities have led to
separate approximation techniques. However, there is also research that addresses both
operators [Giannakis, 2019; Klus et al., 2016].

While the operator-based approach to dynamical systems is appealing, the data-
driven approximation has to deal with the fact that both the number of functions and
the point evaluations thereof are infinite in theory but finite for data-driven approxi-
mation schemes. The promise of the approach for system identification is that if the
approximation of the Koopman operator is successful, it is possible describe nonlinear
spatio-temporal patterns in terms of a standard linear dynamical system. The following
section describes a prominent algorithm-class to achieve this.

2.3.2 Dynamic Mode Decomposition

Based on the established theory of the Koopman operator, this section navigates to a
numerical and data-driven treatment. The question of how to deal with the infinite-
dimensional operator based on an only finite amount of data is at the center. The the-
ory from the previous section promises to perform a linear system identification in an
observable space (a feature space) instead of a nonlinear one in the original state space.
In fact, the approximation of the Koopman operator falls back to solving a linear re-
gression problem, making the methodology particularly relevant for high-dimensional
states, but also robust to noise and able to deal also with small data regimes [Karimi and
Georgiou, 2021]. This greatly relaxes some of the challenges of the other approaches for
system identification highlighted in Section 2.2.3. Instead of dealing with nonlinear
dynamics, the main modeling challenge is now shifted to finding a suitable finite func-
tion basis in which (1) the state dynamics linearize and (2) is suitable to reconstruct the
original measurement quantities.

The early works that made ground for the Koopman operator methodology in its
modern data-driven setting go back to Igor Mezić [2005], who used the Koopman oper-
ator for model reduction. Schmid [2010] introduced the Dynamic Mode Decomposition
(DMD) to decompose high dimensional states time series data from fluid dynamics.
Rowley et al. [2009] connected DMD to the Koopman operator theory. The basic DMD
can be classified as a “typical” matrix decomposition found in linear algebra

U∆t

X−︷ ︸︸ ︷
[x1, . . . ,xJ−1] =

X+︷ ︸︸ ︷
[x2, . . . ,xJ ] (2.21)

U∆tΦ = ΦΛ, (2.22)

where X− and X+ are matrices that contain the data and are shifted in the index. In
this standard form, the state x ∈ RN are typically assumed to be high-dimensional
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with short time series (i.e. J < N ). Notably, already at this stage U∆t is a matrix that
approximates the Koopman operator (in the basis of gID(x = x. This becomes clearer
within the more generic numeric extended DMD framework detailed below.

Oftentimes, within Eq. 2.21, the states x are linearly reduced to a low-rank form by in-
tegrating SVD Kutz et al. [2016a, Eq. 1.18 ff]. This reduces the size of the system matrix
U∆t to a manageable size if the states are high-dimensional and promotes noise terms
to be truncated in the data. Eq. 2.22 performs the actual decomposition by computing
the eigenbasis of the system matrix. This leads to a model

xj+1 ≈ ΦΛjb1, (2.23)

where b1 = Φ−1x1 are spectrally aligned initial states (alternatively, b1 = Φ†x1 with †
being the Moore-Penrose inverse). Overall, the DMD performs a linear spatio-temporal
decomposition of time series data, which are assumed to have linear dynamics in high-
dimensional states. There are various approaches for the numerical treatment, which
also depends on the time series format. For an in-depth analysis in terms of a numerical
linear algebra perspective I refer to Mauroy et al. [2020, Ch. 7].

The DMD relates to the Principal Component Analysis (spatial) and Fourier trans-
formation (temporal) Kutz et al. [2016a, p. 119 ff] as other prominent data decomposi-
tion methods. But also to established methods in from data-driven modeling, such as
the Hidden Markov Model (HMM) or Eigensystem Realization Algorithm (ERA) [Kutz
et al., 2016a, Chapter 7]. While various approaches for the approximation exist, the
DMD has become probably the most popular algorithmic class. Both the broader con-
text in a theoretical setting and an easy-to-extend linear representation, led to numerous
extensions of the DMD. The main variations in the numerical methods are to extend
the problem set, address new dynamical patterns and improve the operator regression
[Otto and Rowley, 2021]. Table 2.3 provides a list of selected DMD variants that seek
to address different applications or aspects in dynamics. Moreover, the methodology is
not isolated from ideas of the other perspectives in data driven modeling. For example,
Bayesian formulations and the methods have been used to improve the convergence of
neural networks [Manojlović et al., 2020], while DNN can be integrated to approximate
the Koopman operator [Li et al., 2017].

Many application settings have an underlying continuous dynamical system. Instead
of approximating the Koopman operator — relating to the flow of a system — there are
also algorithms that target the Koopman generator [Brunton et al., 2016; Giannakis, 2019;
Klus et al., 2020]. A popular algorithm is Sparse Identification of Nonlinear Dynamical
systems (SINDy), which employs sparse regression to obtain a parsimonious model of
a system to deduce physically informed equations [Brunton et al., 2016]. However, as
highlighted in Klus et al. [2020], SINDy becomes a special case in an slightly adapted
form of the extended DMD (termed gEDMD). A major drawback of approximating
the Koopman generator, however, is that it requires access to time derivatives in data.
These are often not available and finite difference schemes are sensitive to noise [Klus
et al., 2020]. On the other hand, with the relations established in Section 2.1 for linear
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dynamical system, it is also possible to obtain the Koopman generator through the
operator; for details see Dietrich et al. [2020].

Table 2.3: A selection of DMD (above line) and Extended Dynamic Mode Decomposition
(EDMD) (below line) variants.

Method Short description Reference

HankelDMD include time-delayed states Arbabi and Mezić [2017]
fbDMD forward and backward dynamics Dawson [2016]
DMD-RRR robustly approximate random

dynamical systems
Črnjarić-Žic et al. [2020]

Online DMD update when new data becomes
available

Zhang et al. [2019]

DMDc include system control Proctor et al. [2016]
Optimized DMD generalize to unevenly spaced

samples
Askham and Kutz [2018]

Bayesian DMD probabilistic formulation Takeishi et al. [2017]
MR-DMD model dynamics at multiple scale

resolutions
Kutz et al. [2016b]

EDMD-DL learn dictionary with deep learning
model

Li et al. [2017]

kernelEDMD make use of a kernelized dictionary Williams et al. [2014]
gEDMD approximate the Koopman generator Klus et al. [2020]
SINDy discover governing equations with

sparse regression
Brunton et al. [2016]

KEEDMD approximate Koopman
eigenfunctions in dictionary

Folkestad et al. [2020]

Extended Dynamic Mode Decomposition
One important and generic extension of DMD is the EDMD framework, in which the
“classical DMD” is a special case [Williams et al., 2015]. The numerical steps can be
explicitly described in the Koopman operator notation of the previous section.

EDMD is a Galerkin approximation of the operator, such that a finite matrix approx-
imates the operator, U∆t ≈ U∆t, based on time series data. Once the matrix is available,
the Koopman triplet — eigenpairs and modes — can be computed with standard linear
algebra.

To cover a broader variability of sampling schemes, instead of a single time series,
EDMD builds up on a collection of time series

X =
[
x(1)

1 , . . . ,x(1)
J1
| . . . |x(I)

1 , . . . ,x(I)
JI

]
=
[
X(1), . . . , X(I)

]
∈ RN×

∑
i
Ji , (2.24)
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in which the column vector x(i)
j ∈ RN corresponds to spatial snapshots as the sys-

tem’s state. The tuple of the snapshot’s index (i, j) maps to a time stamp t, such that
each time series is temporally ordered, t(i)j < t

(i)
j+1 and has a constant sampling rate,

t
(i)
j = t

(i)
1 + (j − 1)∆t. Each state is an element of an associate multivariate time series

X(i) = [x(i)
1 , . . . ,x(i)

Ji
], which I stack horizontally into the final matrix. Depending on the

measurement modalityX can be both “short and fat” (having long time series with few
spatial measurements) or “tall and skinny” (having short time series with rich spatial
information).

The generalization from a single coherent time series to a collection of time series
goes back to Tu et al. [2014] and is also integrated in EDMD described in Williams et al.
[2015]. In an extreme case the data could consist only of snapshot pairs, represented as
a collection of time series each with length two.

The key idea of the approximation scheme in EDMD is to set up a finite set of observ-
ables, in which the Koopman operator is approximated. This selection is referred to as
the dictionary of EDMD and is described as a vector-valued observable:

g(x) = [g1(x), . . . , gP (x)]T = z ∈ RP . (2.25)

Together with the data in Eq. 2.24, the dictionary is integral to EDMD. The actual
choice of dictionary can be seen as a “dynamic prior” and is critical for the goodness of
fit because it strongly influences the quality of the model, for an example see Kutz et al.
[2016a, Sec. 10.2]. The dictionary performs the coordinate change from the physical
space to a feature space. While in theory the dynamics linearize with infinitely many
observables P = ∞, the task is now to find a set of observables in which the dynamics
become approximately linear with P < ∞. In other words, in a best case, the dictio-
nary spans a finite function subspace of principal directions of the underlying infinite
dimensional Hilbert space, F in Eq. 2.16. The approximated Koopman matrix is then
an orthogonal projection onto the subspace of observables spanned by the dictionary
g(x) in the limit of infinite data [Kamb et al., 2020; Williams et al., 2015]. For details on
the convergence of EDMD see Korda and Mezić [2018].

Because the dictionary choice is left open, EDMD is a highly flexible and generic
framework to realize a computable Koopman theory. Some DMD variations are special
cases of EDMD. There are different strategies of how to set up the dictionary, such
as making use of prior knowledge or using generic methods that extract a suitable
function basis from data [Giannakis, 2019]. A good dictionary includes “informative”
observables which are usually not known a priori and depend on several factors, such
as the underlying system or the sampling strategy [Williams et al., 2015]. The actual
dictionary choice is therefore frequently stated to be an open problem, since the task is
comparable with the general “model selection” procedures in machine learning [Kutz
et al., 2016a; Surana, 2020]. But also computational costs — memory or computation
time — can be factors. The problem of dictionary choice has also attracted follow-up
research that try to “learn the dictionary” to automatically approximate a wider range
of systems; for example EDMD-DL in Table 2.3.
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The following block of mathematical statements contains the main numerical steps
of EDMD to set up a linear system and describe it in its spectral terms. Each statement
is then described in more detail. For an easier notation, I use the same corresponding
symbols as for the exact Koopman theory, but now mean to express finite representa-
tions and data-inferred approximations of the mathematical objects.

1. Given: time series collection X (Eq. 2.24) and dictionary g(x) (Eq. 2.25).

2. Apply dictionary to available data to obtain feature state matrix Z and
compute linear map Bz = x

g(X) =
[
z(1)

1 , . . . , z(1)
J1
| . . . |z(I)

1 , . . . , z(I)
JI

]
= Z (2.26)

B = XZ† (2.27)

3. Approximate Koopman operator U∆t ≈ U∆t ∈ R[P×P ] in a least-squares
sense with time shift matrices

U∆t = Z+Z
†
− (2.28)

Z+ =
[
z(1)

2 , . . . , z(1)
J1
| . . . |z(I)

2 , . . . , z(I)
JI

]
Z− =

[
z(1)

1 , . . . , z(1)
J1−1| . . . |z

(I)
1 , . . . , z(I)

JI−1

]
4. Diagonalize Koopman matrix with eigenvalue matrix Λ = diag(λ1, . . . , λP )

and the right and left eigenvectors respectively (Φ,Φ−1)

U∆t = ΦΛΦ−1 (2.29)

For a clearer notation, in Eq. 2.26, I overload the dictionary function of Eq. 2.25 to map
the data matrix X to a feature matrix Z, i.e. the dictionary is applied for each snapshot.
Because we are ultimately interested in the measurement state evolution of x, we also
compute a matrix B, which linearly maps feature states back to the physical states (the
symbol † denotes the Moore-Penrose inverse). Notably, this means that the dictionary
state representation z should be suitable for both linearly describing the dynamics and
reconstructing the measurements.

Eq. 2.28 sets up two time shifted matrices in the feature space, such that in the matrix
Z+ every first state of a series and Z− every last state is dropped accordingly. The
Koopman matrix is then computed in a least squares sense between these two matrices,
mapping from zj to zj+1.
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At this stage the system can be already stated in a linear state space representation,
corresponding to the general system identification form in Eq. 2.10 – 2.11. The intrinsic
form F (zj) = U∆tzj = zj+1 — relating to the operator representation in Eq. 2.15 —
describes the dynamics and the original state evolution is reconstructed with the output
matrix, G(zj) = Bzj = xj .

However, we continue to decompose the system into its favorable spectral represen-
tation. In Eq. 2.29, the Koopman matrix is diagonalized, allowing us to set up the final
model

xj+1 ≈ B
(
U j∆tz1

)
(2.30)

≈ B
(
ΦΛj∆tΦ

−1z1
)

(2.31)

≈ V Λj∆tξ (x1) =
P∑
p=1

vpλjpξp (x1) , (2.32)

where the last equation corresponds to the Koopman Mode Decomposition [Mezić,
2005; Rowley et al., 2009]. The matrix V = BΦ contains the Koopman modes and re-
constructs the states, whereas (λp, ξp(x))Pp=1 correspond to the approximate Koopman
eigenvalues and eigenfunctions. In the discrete map a single iteration, j → j + 1, asso-
ciates to the sampling interval ∆t. Again the single terms can be mapped to the general
system identification form in Eq. 2.10 – 2.11.

Because Eq. 2.32 describes an autonomous and finite linear dynamical system there
is a unique and analytical solution for every initial condition. Moreover, the stabil-
ity criteria of Table 2.1 on page 15 apply. This means that the prediction is now fully
determined by the Koopman triplet and oscillates according to the imaginary part in
eigenvalue and either grows, decays or stays stable over time depending on the mag-
nitude of the eigenvalue. Moreover, it is possible to select only principal triplets, which
leads to reduced order models [Mauroy et al., 2020].

To perform a prediction with Eq. 2.32 it is required to evaluate the P Koopman eigen-
functions at the initial conditions, ξ : RN → CP (ξp corresponds to the p-th coordinate
in Eq. 2.32). Importantly, this mapping should also be available for states x that are not
contained in the data used to set up the model. The (vectorized) eigenfunctions require
the evaluation of the dictionary and spectrally align it with the left eigenvectors of the
Koopman matrix, ξ(x) = Φ−1g(x),x /∈ X .

In case U∆t is not diagonalizable in Eq. 2.29, it is also possible to compute generalized
eigenfunctions in a Jordan block-form, for details see Korda and Mezić [2020]. Another
way to circumvent computing the left eigenvectors is to approximate the Koopman
eigenfunctions in a least-squares sense ξ(x) = Φ†g(x), which only requires the right
eigenvectors [Kutz et al., 2016a].

In the current formulation the dictionary is left intentionally open. The next section
describes data transformations and functions that relate to the underlying geometry of
time series data. As such they can provide a well-defined and data-adaptive function
basis for the Koopman operator.
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2.4 Geometry in time series data

The success in data-driven modeling often depends on finding a suitable representation
of data [Bengio et al., 2013]. In the context of system identification, it is essential to
find a state representation that is suitable to describe the spatio-temporal patterns of
the system. This is highlighted in the general system identification form in Eq. 2.10 –
2.11 (page 17), in which the system dynamics are defined on a separate (intrinsic) state
variable z and not on the original measurements x. Since the measurement data is the
main source of knowledge, the data transformation can be described as

g(x) = z, (2.33)

in which both g(x) and target values z have to be inferred from data. In a machine
learning terminology this corresponds to an unsupervised task.

In Eq. 2.33 I re-use the notation of the EDMD dictionary of the previous section. This
highlights the equivalence to EDMD where z expresses a suitable new state representa-
tion which in the best case has the quality of having (approximately) linear dynamics.
In fact, the methods covered in this section are later combined with the Koopman op-
erator approach with exactly this objective.

In this section, I continue to find such meaningful intrinsic state representations from
measurement data. Unlike for learning the system dynamics itself this task is much less
well-defined. This is because there is no obvious way of how to describe the data or
extract “interesting patterns” [Murphy, 2012]. For setting up the function g(x) there is
no error metric available since the target states z itself are unknown. It is therefore not
possible to quantify of how suitable a new representation is.

There are different approaches for representation learning. Here I highlight data
transformations that are motivated by an geometric understanding of the time series
data and the underlying system. This section includes both a spatial and temporal fea-
ture extraction method to obtain a new state representation. Ultimately, both methods
have a solid theoretical foundation, are noise robust, have strong analytical power and
connect well to the Koopman operator.

In Section 2.4.1, I first provide the notation of a neighborhood graph as a basis to
describe nonlinear geometry in static point clouds. This setting is then used in Section
2.4.2 to extract a geometrically aligned function basis. Section 2.4.3 extends the geomet-
ric understanding to the time delay embedding as a method to reconstruct dynamics
from measurement time series. Finally, Section 2.4.4 discusses the composition of the
two methods to obtain a spatio-temporal state representation and gives links to research
that combines the main methods described in this thesis.

2.4.1 Neighborhood graphs: A basis for explicit manifold learning

Many data-driven methods only contain an implicit description of identified geometric
patterns of the underlying process. These are hidden in the model’s parameters and,
therefore, hard to relate to the modeled system or interpret. Other popular methods
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from linear algebra have a clear description of geometry (e.g. Principal Component
Analysis), but have the too restrictive assumption of a linear geometry, which is mostly
not satisfied in practice. This section introduces the foundation of kernel-based algo-
rithms, aiming to give an explicit description of nonlinear geometry in data [Belkin and
Niyogi, 2008; Belkin et al., 2009; Berry and Sauer, 2019; Coifman and Lafon, 2006b].

The geometry in a data-generating system, can be described with the mathematical
notion of a manifold. Here, I only provide an introduction of a manifold by outlining the
most important aspects to convey an intuitive understanding. This is mostly sufficient
for a data-driven modeling, in which the manifold remains unknown. Both Bishop
[2006] and Murphy [2012] as common reference books for machine learning use the
term “manifold”, but never give a detailed explanation. For an in-depth introduction, I
refer to Lee [2012]; Ma and Fu [2012].

A (compact) manifold is a topological space, that can be imagined as an n-dimensional
nonlinear (i.e. curved) surface that locally resembles Euclidean space (homeomorphic,
in mathematical terms) [Lee, 2012]. Fig. 2.5 illustrates a concrete example manifold.
The blue-wired structure describes the so-called “swiss-roll” as an easy-to-analyze ge-
ometry that is often used in literature. The swiss-roll has a dimension of n = 2, but is
itself embedded in a N = 3 dimensional ambient space. The local property of a mani-
fold states that a patch — corresponding to a blue cell in the wire — is an “almost flat”
two-dimensional surface (i.e. homeomorphic to R2). For the swiss-roll it is possible to
extract two geometrically aligned coordinates, which describe the position on the man-
ifold. The reduction from three to two coordinates corresponds to an embedding. In this
case it can be imagined as an “unrolling” of the swiss-roll (this is performed in Section
2.4.2).

An example of an invalid manifold is when the geometry crosses with itself. This
would be the case in a geometry that forms a figure “eight” (8). The problem lies at
the intersection point, because the local space around this point is not flat anymore and
therefore does not resemble Euclidean space. If the geometry describes a state space for
a dynamical system, it would not be clear which “branch” to follow at the intersection.
Furthermore, in other settings with a valid manifold it is not always possible to embed
it into a space that corresponds to its intrinsic dimension. For example, if a geometry
“closes” on itself, such as a line that forms a “zero” (0), can only be described in two
coordinates, despite its intrinsic dimension of one. An embedding into one coordinate
would require a “cut”, which then no longer describes the local geometry around the
cut.
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Figure 2.5: The swiss-roll manifold. The wired (blue) grid corresponds to the true manifold on
which points are sampled on. Each of the plots includes a neighborhood graph to capture
the local geometry of the manifold, with too few (left), well-suited (middle) and too many
connections (right).

A main challenge in learning a manifold from data is that there are only a finite
number of points available. Here I drop the temporal context of a time series and only
consider a static point cloud. The aspects seamlessly transfer to time series data in that
the additional time information is carried along.

The typical assumption is that the available samples in a dataset, x ∈ X ∈ R[J×N ], are
sampled directly (or near, in the presence of noise) on an unknown manifoldM. The
manifold itself is embedded in the ambient (measurement) space, x ∈ X ⊂ M ⊂ RN .
This is also referred to as manifold assumption. In the example of Fig. 2.5, x ∈ R3 is a
point in the ambient space, X the point cloud, and M the true underlying swiss-roll
geometry. The goal of manifold learning — a way of geometrically-informed representa-
tion learning — is to find and extract geometric coordinates, without loosing significant
structural information. Two major use cases are to obtain a new basis of the data that
becomes suitable for further processing [Berry et al., 2015; Giannakis, 2019; Lehmberg
et al., 2021] and to select principal coordinates for nonlinear dimension reduction if
n � N [Coifman and Lafon, 2006b]. Through the explicit and sorted representation of
the manifold it is possible to gain insight into and interpret the data-generating process.

A central procedure of many manifold learning methods is setting up a neighborhood
graph on the point cloud [Strange and Zwiggelaar, 2014]. Ultimately, the graph acts as
an empirical surrogate of the manifold and, as Coifman and Lafon [2006b, p. 5] state,
“offer an advantageous compromise between their simplicity, interpretability and their ability
to represent complex relationships between data points”. A crucial aspect in setting up the
neighborhood graph is that it acknowledges the local property of a manifold. This is
typically achieved by giving close-distanced (in Euclidean metric) point pairs a larger
weight than further distanced point pairs, if they are in a neighborhood relation. In
contrast, point pairs that are not in a neighborhood relation have no connection. Ulti-
mately, the graph should span the entire point cloud and provide a new orientation on
the geometry. Instead of measuring the Euclidean distance in the ambient space, it is
now possible to take the shortest path on the graph as a way to measure the geodesic dis-
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tance along the curved geometry [cf. Isomap method in Balasubramanian, 2002]. If the
graph includes “false connections” then these shortcut the true geodesic distance and
lead to misleading representations. This is exemplified in the Fig. 2.5, where the right
plot includes too many connections and represents the geometry poorly. On the other
left side it is also possible to include too few connections. This can lead to disconnected
neighborhood graphs in which there is no relation between all point pairs in the point
cloud. Only the middle plot is well-connected and represents the swiss-roll manifold
well.

The important follow-up question is, how to set up the graph algorithmically. For this
task a kernel is introduced. A kernel gives a weight for each pairwise sample K(xi,xj),
which can also be seen as similarity measure between the point pair. A kernel has the
following properties [Coifman and Lafon, 2006b]:

• symmetric, K(xi,xj) = K(xj ,xi)

• positive, K(xi,xj) ≥ 0

Often the actual choice of a specific kernel is left open and can be specified for the
concrete application. This provides a way to include prior knowledge about the sim-
ilarity between points. The kernel then corresponds to a “geometric prior” because it
induces the local geometry of the inferred manifold [Berry and Sauer, 2016; Coifman
and Lafon, 2006b]. If no specific domain knowledge is available, there is a set of generic
priors that can be used [Bengio et al., 2013]. A typical standard kernel in manifold
learning is the Gaussian kernel

K(xi,xj) = exp
(
−d(xj ,xi)2

2ε

)
, (2.34)

with a Euclidean distance function d(xi,xj) = ‖xj − xi‖2 and bandwidth parameter
ε. So far, the kernel only maps a weight to each point pair, but does not actually ex-
clude any connection in the graph. However, kernels that exponentially decay for large
distance values, such as the Gaussian in Eq. 2.34, assign negligible weights for far-
distanced points. Given a suitable bandwidth ε, even if the actual neighborhood graph
is fully connected, it can essentially describe a similar graph to the one in the middle of
Fig. 2.5.

Based on the notion of a kernel, we can now describe the neighborhood graph in a
matrix form K ∈ R[J×J ]. Each element in the matrix describes the pairwise weight.
Given the above properties of a kernel, the matrix K is symmetric and positive semi-
definite.

Algorithmically, it is suitable to separate the construction of the kernel matrix into
two main steps [Strange and Zwiggelaar, 2014].

1. Compute distance matrix:

di,j =
{
d(xi,xj) , if xi and xj are in neighborhood relation
∞ , else

(2.35)
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2. Compute neighborhood graph with kernel function:

Ki,j = K(di,j) = K(xi,xj) (2.36)

Note that in the second step, the kernel function is overloaded and performs the
evaluation on an already computed distance value in the argument.

The advantage of this separation is a dedicated treatment of the distance matrix in the
first step. This allows an early exclusion of far-distanced connections, and gives rise to
sparse neighborhood graphs. As highlighted above the commonly used exponentially
decaying kernels can also provide reasonably neighborhood graphs (despite being fully
connected). However, adopting sparse matrices can also be motivated by limited com-
puting resources. A full distance matrix has memory requirements that scale quadratic
with the number of samples in the dataset, O(J2), and similarly the number of floating
point operations O(J ·N).

There are two primary approaches to compute a sparse distance matrix (leading to
a sparse kernel matrix). The first is the k-nearest neighborhood (k-NN) which stores a
fixed number neighboring points per sample. The second is a δ-range neighborhood
graph (δ-range) which includes all neighboring points that are within a ball of radius
δ, centered at the respective point Strange and Zwiggelaar [2014, Sec. 3.1]. Both ap-
proaches have different qualities, which are summarized in Table 2.4.

Table 2.4: Overview of characteristics between k-NN and δ-range neighborhood graph.

k-NN δ-range

sparsity fixed variable
outliers connected disconnected
sparse region far-distanced neighbors few neighbors
dense region short-distanced neighbors many neighbors
symmetry non-symmetric symmetric

The k-NN includes a fixed number of neighbors per sample, whereas the δ-range
has a variable number and, therefore, a less predictable sparsity. The graph of k-NN is
always connected, whereas outliers in δ-range can be disconnected. The two algorithms
also handle varying sampling densities differently. In k-NN sparsely sampled regions
become apparent if neighbors are far-distanced, in δ-range there are less neighboring
points included. This relates to densely sampled regions accordingly. Finally, given
the two properties the final kernel matrix of k-NN is non-symmetric and symmetric for
δ-range.

Both methods require a careful selection of their respective parameters k and δ to
describe a suitable neighborhood relation, such as exemplified in middle plot of Fig. 2.5.
A challenge, however, are varying degrees of point densities on the manifold. Selecting
a single global parameter to describe the entire point cloud then often represents a trade-
off.
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For both methods there is extensive literature and also many extensions. These exten-
sions are often motivated by storing the point cloud in tree-based data structures (com-
ing from computer science) that have already a coarse neighborhood relation which can
limit the number of pairwise evaluations [Muja and Lowe, 2014].

A kernel matrix K is the foundation of spectral methods that aim to extract geo-
metric information. Ultimately, the construction requires making choices about how to
define the neighborhood via the connections (distance algorithm, d(xi,xj) and weights
(kernel, K(di,j)). The optimality of the choices are problem specific and depend on
the underlying pairwise distances and point distribution. Different choices can lead to
fundamentally different manifold extractions [Berry and Sauer, 2016].

2.4.2 Laplace-Beltrami operator

This section continues to robustly extract geometrical coordinates from a neighborhood
graph (kernel matrix) set up in the previous section. In particular the class of “kernel
eigenmap methods” manipulate a kernel matrix in certain ways and then compute the
eigenvectors [Belkin and Niyogi, 2008; Coifman and Lafon, 2006b; Strange and Zwigge-
laar, 2014]. The set of eigenvectors then describe new latent variables that adapt to the
underlying geometry. This can be understood as a nonlinear projection g(x) from the
original point cloud onto the eigenvectors z. At best the new eigen-coordinates pre-
serve the local geometrical structure of the true underlying manifold [Coifman and
Lafon, 2006b]. Examples of methods in this class include the Local Linear Embed-
ding [Roweis and Saul, 2000], Laplacian Eigenmaps [Belkin and Niyogi, 2007], Hessian
Eigenmaps [Donoho and Grimes, 2003] and Diffusion Maps (DMAP) [Coifman and La-
fon, 2006b].

Compared to general (unsupervised) representation learning, kernel eigenmap meth-
ods promote a sound theoretical foundation to describe geometry. In particular, the
method variations in eigenmap methods have increasingly focused on estimating the
Laplace-Beltrami operator [Belkin and Niyogi, 2007, 2008; Berry and Giannakis, 2020;
Garcı́a Trillos et al., 2020]. The operator generalizes the usual Laplace operator as the
divergence of the gradient to manifolds, ∆Mf = div(∇Mf). The Laplace-Beltrami
operator has a strong foundation in differential geometry and encodes important geo-
metric information of Riemannian manifolds on which it is defined [Belkin et al., 2009;
Berry and Giannakis, 2020; Berry and Harlim, 2016]. Because the Laplace-Beltrami op-
erator is linear, its primary interest lies in finding its spectral components, that is, the
eigenfunctions and eigenvalues.

Fig. 2.6 illustrates an example of approximated eigenfunctions of Laplace-Beltrami
operator for the swiss-roll manifold. Similar to Principal Component Analysis (PCA)
the eigenvalues provide an order of importance and associate to the length of the coor-
dinate that is aligned on the manifold [Dsilva et al., 2018]. A central objective in research
of kernel eigenmaps is to process the neighborhood graph such that it becomes consis-
tent, that is, that it converges to the Laplace-Beltrami operator in the limit of large data
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in a variety of data settings [Belkin and Niyogi, 2007; Berry and Sauer, 2019; Coifman
and Lafon, 2006b].

Figure 2.6: Example of the first six approximated eigenfunctions of the Laplace-Beltrami op-
erator on the swiss-roll manifold. The dataset includes 5000 samples and is approximated
with the DMAP on a neighborhood graph with Gaussian kernel of bandwidth ε = 6 (cf.
Eq. 2.34) and a sparse δ-range distance matrix with δ = 3 (in Euclidean metric). The color-
code encodes the variation of the respective function from minimum (blue) to maximum
(red) values. A script to generate the plot is contained in the Supplementary Material.

There are a range of interesting applications, in which the Laplace-Beltrami operator
becomes useful. In this thesis, the main focus lies on the following two use cases:

1. Nonlinear dimension reduction The typical manifold assumption states that high di-
mensional states in an ambient space are in fact sampled on a much lower dimen-
sional manifold [Lin et al., 2015]. The eigenfunctions of the Laplace-Beltrami op-
erator are suitable to “disentangle” different manifold directions in the point cloud
and provide them in a hierarchical order (given by the eigenvalues) [Bengio et al.,
2013; Coifman and Lafon, 2006b]. Nonlinear dimension reduction becomes possi-
ble if the eigenfunctions are seen as a set of new coordinates in which the high-
dimensional data can be embedded in [Coifman and Lafon, 2006b]. For dynamical
systems, these coordinates can then provide dynamically meaningful reduced (or
macroscopic) variables [Dsilva et al., 2016, 2018; Nadler et al., 2006].

An important task in the nonlinear dimension reduction is to keep the essential ge-
ometrical structures relevant for the application. However, unlike for linear dimen-
sion reduction (e.g. PCA), finding the suitable set is not straightforward. Instead
of truncating low-order coordinates solely based on their eigenvalue, nonlinear di-
mension reduction often requires an additional selection process. This is because
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there can be “repeated eigendirections” [Dsilva et al., 2018]. In Fig. 2.7 this becomes
apparent where the first four eigenfunctions, ψ2−5, have varying oscillations but are
otherwise aligned in the same direction (along the long side of the swiss-roll). Only
ψ6 aligns a new and independent axis along the short side of the swiss-roll.

In Fig. 2.7 I perform a data embedding on the coordinates of Fig. 2.6. Based on these
embeddings we can see that (ψ2, ψ6 does in fact “unroll” the swiss-roll to two di-
mensions. The two coordinates align to the length and width (cf. Fig. 2.6). The other
displayed combinations collapse to a one-dimensional embedding, which results in
a loss of essential geometric information (ψ3,4,5 repeat the direction of ψ2. For an au-
tomatic way to select coordinates and a more in-depth discussion, see [Dsilva et al.,
2018].

Figure 2.7: A selection of possible embeddings to project the three-dimensional points samples
of the swiss-roll. The color-code corresponds to the function values of ψ2, which describe
the length of the swiss-roll (cf. upper left graph in Fig. 2.6).

2. Specify a function basis on the manifold In the context of this thesis, which analy-
ses time series, I assume that the time series data is spatially and temporally coher-
ent, forming a single and connected manifold [Bengio et al., 2013]. This contrasts,
for example, to applications of the methodology, where one seeks to cluster sepa-
rate point clouds into their respective class [Bengio et al., 2013; Coifman and Lafon,
2006b]. A further assumption about the underlying manifold is that it is smooth,
meaning that a tangent plane on the manifold varies continuously from point to
point. These topological structures enable defining general functions on the mani-
fold [Coifman and Lafon, 2006a; Lee, 2012].

Of particular interest are the eigenfunctions of the Laplace-Beltrami operator itself,
because they form a function basis for square integrable functions on the manifold
(L2(M,R), cf. Eq. 2.16) [Belkin et al., 2009]. In fact, the eigenfunctions correspond to
so-called geometric harmonic functions, that are analogous to Fourier modes1 and
refer to generalized sine and cosines on the manifold (analogous to Fourier modes)

1Because of the connection between harmonic functions and geometry, the question “Can one hear the
shape of a drum?” was raised in https://www.math.ucdavis.edu/∼hunter/m207b/kac.pdf
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[Belkin et al., 2009; Berry et al., 2013]. In Fig. 2.6 the harmonic waves can be visual-
ized for the swiss-roll manifold. This quality is particularly interesting in the context
of observables in the Koopman operator [Berry and Sauer, 2016; Giannakis, 2019].

Algorithmic framework of Diffusion Maps (DMAP)
To approximate the Laplace-Beltrami operator, I focus on the DMAP framework. The
method performs normalization steps on the kernel matrix to that are suitable to obtain
a consistent graph for more general data settings compared to the other kernel eigen-
map methods [Coifman and Lafon, 2006b]. For example, DMAP is noise robust and can
de-bias the point density as an artifact of the data collection. This maintains consistency
for arbitrary point distributions on Riemannian manifolds [Coifman and Lafon, 2006b].
The method has become probably the most popular kernel eigenmap method, because
it is the subject of ongoing research and adaptations to improve the convergence to the
Laplace-Beltrami operator [Berry and Giannakis, 2020, Table 1.1] [Coifman and Lafon,
2006b; Garcı́a Trillos et al., 2020]. While the DMAP has its origins in nonlinear dimen-
sion reduction of static data, it has also been integrated into the analysis and modeling
of dynamical systems in follow-up research [e.g. Alexander and Giannakis, 2020; Berry
et al., 2013; Dietrich et al., 2016; Giannakis, 2019; Kemeth et al., 2018].

The following block of mathematical statements describe the DMAP. All equations
of the framework refer to the discrete case of processing finite data X ; the continuous
counterparts for a theoretic treatment are contained in the original work of [Coifman
and Lafon, 2006b].
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1. Given: data X ∈ R[J×N ] with manifold assumption X ⊂ M, distance
function d(., .) (Eq. 2.35), kernel K (Eq. 2.36), re-normalization parameter
α ∈ [0, 1]

2. Compute kernel matrix

Ki,j = K(d(xi,xj)),∀(xi,xj) ∈ X (2.37)

3. Normalize sampling density (P is a diagonal matrix)

K
(α)
i,j = P−αKP−α, with P−αi,i =

∑
j

Ki,j = q(xi) (2.38)

4. Describe a diffusion process in a symmetric matrix, M (con), which is conju-
gate to the non-symmetric Markov matrix diffusion process:

M (con) = S−
1/2K(α)S−

1/2, with Si,i =
∑
j

K
(α)
i,j (2.39)

5. Compute eigenpairs {wp, ωp}Pp=1 sorted by eigenvalues in descending or-
der and recover eigenvectors of Markov matrix:

M (con)w(con)
p = w(con)

p ωp (2.40)

wp = S−
1/2w(con)

p (2.41)

6. Define out-of-sample vectors for samples xoos /∈ X ([.]i describes the i-the
component of a vector):

[K(α)
oos ]i = K(xoos,xi)

q(xoos)q(xi)
,∀xi ∈ X [Moos]i = [K(α)

oos ]i∑
j [K

(α)
oos ]j

(2.42)

7. Define Nyström [1930] extension [see also Rabin and Coifman, 2012]

ψp(x) = 1
ωp
〈Moos,wp〉 (2.43)

8. Define DMAP embedding with P computed coordinates,
gdmap : RN → RP

gdmap(x; t) = [ωt1ψ1(x);ωt2ψ2(x); . . . ;ωtPψP (x)], for x ∈M (2.44)
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For an easier notation, I omit the time reference in the data, where the i-th sample is
xi ∈ X . If X is a time series collection, the indices and temporal order is maintained
during the transformation such that x := x(i)

j (using the index notation in Eq. 2.24).

Statements 1 and 2: The kernel function K(d(., .)) with the distance in the argument
follows the notation of setting up a neighborhood graph, described in the previous
section. The choice of kernel can be task-specific and is flexible in the framework
[Coifman and Lafon, 2006b]. The theoretical work for DMAP was extended in Berry
and Harlim [2016] to so-called local kernels. The Gaussian kernel in Eq. 2.34 is the
usual default and is itself parametrized with a kernel bandwidth ε. However, there
are also interesting alternatives such as “continuous nearest neighbor” kernel, which
leads to a sparse and (unweighted) adjacency graph that still converge to the Laplace-
Beltrami operator [Berry and Sauer, 2019]. It is also possible to include a temporal
context in “cone-kernels”, which give more weight to samples that lie in the direction
of the flow [Giannakis, 2015].

Statements 3 to 5: Based on the available kernel matrix K, Eq. 2.38 corresponds to a
normalization of the sampling density. The density values, q(xi), are on the diagonal
matrix of P , of which the normalization degree is steered by the parameter α. At one
end, α = 0, disables the correction of the sampling density (P = I corresponding
to the identity matrix). This corresponds to the typical graph Laplacian and requires
uniform sampling on the manifold to be consistent. At α = 0.5 the Fokker-Plank
operator is approximated and at the other end, α = 1, the normalization removes the
influence of the sampling density. The latter case recovers the Riemannian geometry
of compact manifolds for arbitrary sampling distributions in the data [Coifman and
Lafon, 2006b].

The core idea of DMAP in the next step is to compute a suitably normalized row-
stochastic Markov matrix M , to describe a diffusion process. An entry Mi,j corre-
sponds to a diffusion probability from sample xi to xj . However, the standard left
normalization to a row-stochastic matrix, M = S−1K(α), leads to a non-symmetric
matrix M .

Instead, statement 4 performs a similarity transformation, S−1/2M (con)S1/2 = M such
that M (con) is symmetric and similar to M (i.e. shares same eigenvalues and eigenvec-
tors can be recovered in Eq. 2.41). For a more detailed description on the conjugate
matrix in DMAP see Berry et al. [2013].

Eq. 2.40 then computes the eigenpairs of the manipulated matrix M (con). Computa-
tionally, this operation now benefits from the similarity transformation, because dedi-
cated eigensolver algorithms for symmetric matrices are more stable and robust [Her-
nandez et al., 2009]. Moreover, the matrix is positive semi-definite, due to its relation
to the original Markov matrix. The largest eigenvalue is ω1 = 1 with an associated
constant eigenvector and all subsequent eigenvalues are real-valued and decrease to-
wards zero ωi → 0 for i → ∞. To process larger datasets this allows computing only
the first P leading eigenpairs and truncate pairs with eigenvalue near zero.
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An eigenvector’s i-th element corresponds to the point evaluation of the approximate
eigenfunction of the Laplace-Beltrami operator, [wp]i = ψp(xi). For α = 1, N → ∞
and kernel bandwidth ε → 0 the eigenvectors converge to the operator for compact
manifolds [Coifman and Lafon, 2006b, Proposition 3].

Statements 6 and 7: From the eigenvectors in the previous step only a finite set of func-
tion evaluations are available. However, for practical relevance in a machine learning
setting, it is essential to extend the function to arbitrary points in the neighborhood
of the point cloud, i.e. ψp(x) with xoos /∈ X . This is typically referred to the “out-of-
sample” extension [Strange and Zwiggelaar, 2014, Sec. 5.2]. The inverse from latent
space to ambient space is referred to as “pre-image” [Strange and Zwiggelaar, 2014,
Sec. 5.3].

A typical default for the out-of-sample mapping is the Nyström extension described
by Eq. 2.43 – 2.42. The extension does not introduce additional parameters and instead
only requires the same kernel evaluations to be applied for new samples xoos with
respect to the available data X (Eq. 2.43). With an abuse of notation the vectors K(α)

oos
and Moos have capital letters (which are used for matrices) to highlight the connection
to the respective previous operation. New samples are required to be in the vicinity of
the available point cloud — if a point is an extreme outlier, this can result into a zero
vector Moos.

The equation in Eq. 2.42 then describes a function representation of the extended
eigenvectors. The extension follows from the relation to the eigenproblem in Eq. 2.40.
Note that eigenfunctions ψp(x) with associate eigenvalue ωp ≈ 0 are unstable and are
usually truncated.

Statement 8: The final step constitutes the diffusion mapping gdmap(x. The parameter
t (positive value defaulting to zero) corresponds to the diffusion time of the process
and induces a family of mappings that describe the geometry at different scales [Coif-
man and Lafon, 2006b]. The function basis gdmap contains P approximated eigenfunc-
tions of the Laplace-Beltrami operator, ψp : RN → R.

Since DMAP is an unsupervised machine learning method, there is no objective func-
tion that allows different parametrizations (e.g. kernel bandwidth) to be compared di-
rectly. This also prohibits cross-validation methods, which only become accessible if
the data transformation is integrated in a supervised task [Belkin et al., 2009; Strange
and Zwiggelaar, 2014]. Later this corresponds to the system identification.

The Nyström out-of-sample extension is the typical default in the DMAP framework.
However, there are also a separate series of publications to improve the method. Of-
ten these methods use multiple kernels to better model the manifold [e.g. Coifman
and Lafon, 2006a; Fernández et al., 2020; Rabin and Coifman, 2012]. Nevertheless, the
Nyström extension often produces accurate and competitive mappings; see Chiavazzo
et al. [2014] for a comparison of methods.
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2.4.3 Time delay embedding

The previous two sections set the basis to extract geometric coordinates from static
data. This section continues to highlight important aspects of geometric considerations
of time series data connecting to the state space manifold of a dynamical system. A
state has a spatial neighborhood but is also an element of a trajectory that is induced by
the system’s flow (cf. Fig. 2.1).

An important issue in system identification is that time series states often contain
insufficient temporal information to perform a regression from one state to the next, i.e.
F∆t(xj) = xj+1 is not well-defined. This problem is also highlighted as one of the main
challenges of system identification in Section 2.2.2. This can be a result from a poor
selection of state quantities — favoring spatially relevant quantities over temporal ones
— but also limitations in the measurement capabilities or the overall high complexity
of the system.

In the geometric perspective, the time series data provide evidence to the underlying
state space manifold. The measurement quantities form a geometry that can be seen
as a projection from the true state space to the ambient data space. In the event of non-
Markovian dynamics in the measured states, the projection only provides a partial view
of the true state space manifold [Deyle and Sugihara, 2011; Dietrich et al., 2016; Kamb
et al., 2020]. As a result, trajectories that do not cross on the true state space manifold,
now cross in the data projection, leading to ambiguous dynamics at intersection points
[Deyle and Sugihara, 2011]. This is illustrated for a single trajectory in Fig. 2.8. After
the projection to the measurement space in step 1, the trajectory includes an intersec-
tion. Even if the measurement state has a higher dimension than the true state space
the intersection persists. The only way to resolve the intersection is to include new
temporally informative state quantities.

3 D 2 D (d+1) D

(1) (2)

(3)

Figure 2.8: A schematic illustration of the effect of time delay embedding. The left plot dis-
plays the true system trajectory, which is projected into the measurement space (1). The
highlighted area (red) around the intersection is a “false neighborhood” region. In the next
step (2) the time delay embedding into a (d+ 1)-dimensional space is performed, where the
intersection resolves. The dashed connection (3) highlights a one-to-one mapping between
the original and reconstructed trajectory.
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The actual point cloud — formed by the time series data — may not contain the exact
intersection point of a trajectory. However, as pointed out in the previous sections,
data-driven methods like manifold learning often rely on pairwise distance measures.
Consequently, the points near to the intersection create false neighborhood relations. This
means that point pairs appear as short-distanced in the projection, while they are far-
distanced on the true state space (see Fig. 2.8).

In contrast to static point clouds which can also suffer from partial view projections,
for time series data the temporal context becomes beneficial. One way to include tem-
poral information is to estimate the time derivative. However, this only approximates
instantaneous change and does not include time information on larger scales and is also
sensitive to noise.

An established approach in time series modeling are “state space reconstruction”
methods, which augment the measurement states from the temporal context in “time
windows” [Sauer et al., 1991; Takens, 1981]. Moreover, the methods are robust to noise
and can reconstruct dynamics on larger time scales [Deyle and Sugihara, 2011; Mezić
and Banaszuk, 2004; Sauer et al., 1991]. This is in contrast to instantaneous change in
a time derivative of a state. A classical state space reconstruction method is the time
delay embedding, which is first expressed in its equation form:

gtd(xj ; d, κ) = [xj , e−κxj−1, e
−2κxj−2, . . . , e

−dκxj−d] = yj . (2.45)

The embedding gtd augments a state xj with d prior samples of the time series. Each
delayed state in the embedding is also weighted with a factor that exponentially decays
the of delay (1, . . . , d) and parametrized with κ ≥ 0. The semicolon denotes a vertical
stacking of the state column vectors, leading to a final time-delayed vector y ∈ RN(d+1).
Note that the embedding cannot be performed on the first d states of a time series.

Intuitively, the time delay embedding stretches point samples apart that are in a false
neighborhood relation. In a successful reconstruction this ultimately resolves the inter-
section points and the embedded states become Markovian [Deyle and Sugihara, 2011].

The theoretical foundation of time delay embedding lies in theorems of Whitney and
Takens [1981] which are valid for the attractor of a dynamical system [Sauer et al., 1991].
The theory states that including a sufficient number of delayed states (d) in the em-
bedding, reconstructs a space that is topologically equivalent to the original state space
manifold. In the theory it is “sufficient” if the delay is set to d ≥ n + 1 if the com-
pact manifold is of dimension n [Sauer et al., 1991]. The “equivalence” means, that a
smooth and invertible one-to-one mapping between the two spaces exists. In mathe-
matical terms this is referred to as diffeomorphism [Deyle and Sugihara, 2011; Takens,
1981].

According to the embedding, Eq. 2.45 induces a (reconstructed) manifold that relates
to the hidden system’s state space manifold (given sufficiently many delays d). Fig. 2.8
exemplifies this in the second step where the projected trajectory is embedded in the
delayed space of dimension d + 1 (original state plus d delays). After the embedding,
the intersection-free trajectory in the right image has the same structural qualities as the
original trajectory, denoted by (3) in the figure to highlight the diffeomorphism.

49



2 Scientific context

The additional weight parameter κ in Eq. 2.45 is for regularization and a projection
onto a dynamically relevant space (the Oseledets space); for details see Berry et al.
[2013]; Dietrich [2017].

The foundation of the embedding theorems of Whitney and Takens have led to nu-
merous extensions and theoretical research, and has become an established procedure
in system identification. While the original works focus on univariate time series, the
theory has been extended to multivariate cases in Deyle and Sugihara [2011] (which is
captured in Eq. 2.45). The assumption here is that all state quantities in the time series
origin from the same underlying data-generating system. Lagged states are also often
implicitly included in statistics-based methods, which model a time series in terms of
a auto-regression (cf. Eq. 2.12). The next section provides research links that connect
time delay embedding to the Koopman operator.

2.4.4 Research links to system identification and Koopman operator

As introduced in the general form of system identification in Eq. 2.45, finding a suitable
(intrinsic) state representation is a vital task. The previous two sections introduced a
nonlinear projection to the eigenfunctions of the Laplace-Beltrami operator with DMAP
and time delay embedding, as rich transformations to extract spatial and temporal fea-
tures from data. Each method is based on a strong theoretical foundation. In this section
I highlight research that combines the methods to a single state representation and also
connects it to the Koopman operator theory of Section 2.3.1.

An interesting and often applied combination is when time delay embedding is per-
formed on time series data before it is passed to DMAP. This can be understood to first
augment necessary temporal information and subsequently remove redundant spatial
information from the states. In a geometric perspective, the time delay embedding
induces a new geometry relating to the state space manifold, the subsequent DMAP
then extracts relevant and geometric aligned coordinates. The transformation can be
expressed in terms of a composed function:

g(x) = [gdmap ◦ gtd](x) (2.46)

= [ωt1ψ1(y);ωt2ψ2(y); . . . ;ωtPψP (y)] = z ∈ RP

where gtd(x) = y are the time-delayed coordinates from Eq. 2.45 and gdmap(y) = z the
evaluated eigenfunctions of the Laplace-Beltrami operator, approximated with DMAP
in Eq. 2.44. To perform the composed transformation, the states are elements of a time
series collection, x := x(i)

j (as per Eq. 2.24 for the EDMD framework). When the time
delay embedding is considered part of the kernel, then this can be interpreted as a
“dynamically-adapted kernel” [Giannakis, 2015].

The following two subsections first link time delay embedding to system identifi-
cation and Koopman operator theory and then in its composed transformation with
DMAP.
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2.4.4.1 Research highlighting time delay embedding

Performing time delay embedding on a single coherent time series leads to a special
matrix form, which is termed “Hankel matrix”. This matrix and its structure is often
central to the analysis of time series data. As such it was integrated early in the system
identification method Eigensystem Realization Algorithm [Juang and Pappa, 1985].

A downside of time delay embedding is that is typically results in a much higher di-
mensional state, depending on the original state dimension and the number of delays.
Despite its intended use to enrich the state with temporal context, the lagged quan-
tities are usually highly correlated. A natural follow-up operation to the embedding
was therefore to perform a truncated SVD on the lagged states. This has led to well-
established methods originating from the Singular Spectrum Analysis (SSA) [Broom-
head and King, 1986], providing a way to extract principal spatio-temporal features
from incomplete measurements and truncate coordinates that relate to noise.

Time delay embedding has also played a vital role in the revived interest in the Koop-
man operator. Mezić and Banaszuk [2004] describe an analytic method to analyze the
asymptotic behavior of dynamical systems via the Koopman operator by using a “sta-
tistical Takens theorem”. Given that many data settings make state space reconstruc-
tion necessary, time delay embedding has also been integrated in a variety of numerical
schemes to approximate the Koopman operator. The standard DMD of Schmid [2010] is
extended in Tu et al. [2014] to overcome a major limitation of the original algorithm, in
which it was not possible to extract the dynamics of a “standing sine wave” as a simple
form of a dynamical system. Follow up research describes increasingly complex frame-
works, such as the Hankel Alternative View of Koopman (HAVOK) [Brunton et al.,
2017] and “Higher-Order” DMD [Le Clainche et al., 2017]. A particularly relevant vari-
ation is the Hankel-DMD, described in Arbabi and Mezić [2017]. This study contains a
remarkable proof that applying DMD on the Hankel matrix in the limit of infinite de-
lays computes the true Koopman eigenpairs for ergodic systems. In other words, under
the given system assumptions, the proof states that increasing the number of delays in
the embedding linearizes the system dynamics. This is exactly what is required within
the EDMD to approximate the Koopman operator.

2.4.4.2 Research highlighting the composed function

While the above research computes a linear truncated basis of time delay states (such as
in SSA), the composed transformation in Eq. 2.46 generalizes this aspect to a “geometric-
aware” basis. This has led to the “natural extension” Nonlinear Singular Spectrum
Analysis (NLSA), where DMAP is integral with a different dynamics-adapted kernel
[Giannakis and Majda, 2013]. The authors highlight the analytical power for time se-
ries data.

A further study in which the composed function is integral, is the Diffusion-Mapped
Delay Coordinates (DMDC) framework [Berry et al., 2013]. The authors give an inter-
esting theoretical background of the transformation and highlight that DMAP performs
a globally consistent and best-preserved geometry of the point cloud that is formed by
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the time-delayed states. The approximated Laplace-Beltrami eigenfunctions ψ(.) are
time series and give additional dynamical interpretation. Because of the order in the
eigenvalues and the harmonic coordinates, the transformation performs a time scale
separation in slow and fast frequency functions defined on the manifold. That is, the
dynamics are sliced into Fourier-like components, where the eigenvalues relate to the
time scale. While the research mostly aims at gaining insight into and describing the
system properties, Berry et al. [2015] and Dietrich et al. [2016] use these manifold coor-
dinates to directly describe the dynamics on these.

The composed function has then also been integrated into the Koopman operator re-
search branch. Das and Giannakis [2019] provide a connection between the three seem-
ingly different branches of research: attractor reconstruction (Takens), manifold learn-
ing (Laplace) and mode decomposition (Koopman). In particular, Giannakis [2019]
shows that for ergodic systems and for infinitely many delays (d → ∞) the Laplace-
Beltrami operator in Eq. 2.46 commutes with the Koopman generator. From this prop-
erty follows that the Laplace-Beltrami operator shares the same eigenspace to the Koop-
man operator. The proposed method is not stated in the EDMD framework but has par-
allels in the numerical treatment. Moreover, the authors use a variant of DMAP with
variable kernel bandwidth which generalizes better to non-compact manifolds [Berry
and Sauer, 2016]. Based on the results of Giannakis [2019], Kamb et al. [2020] describe
so-called convolutional coordinates, which refer to generic projections of time-delayed
coordinates onto an orthonormal basis to linearize the dynamics and approximate the
Koopman operator.

Justified by these findings and connections, there are a variety of numerical schemes
available that integrate DMAP to perform Koopman operator-based system identifica-
tion tasks. Harlim and Yang [2018] describe a “diffusion forecast” in which the basis
functions computed by the DMAP algorithm are used to perform probabilistic predic-
tions. Alexander and Giannakis [2020] propose a framework for “kernel analog fore-
casting” to forecast nonlinear time series, which also facilitates the analysis of gener-
alization error and quantification of uncertainty. Mauroy et al. [2020, Ch. 14] use the
data transformation to describe a “geometrically informed” filtering, analogous to the
Kalman filter.

2.5 Software for system identification

So far I have mainly described the methodological part of system identification, with
a special focus on operator-based approaches and their numerical approximation. A
central element to make use of these theories and associated data-driven algorithms in
applications is software. Scientific software is an effective way to express, communicate
and replicate results [Goble, 2014]. In modern computationally-centered modeling en-
deavors, software should be available, discoverable, usable and adaptable to conduct
new research [Anzt et al., 2020; Stodden and Miguez, 2014]. Efficient algorithms and
well-designed implementations thereof are a key element for data-driven modeling to
scale with larger datasets and perform “algorithmic experiments”. Software that meets
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these requirements is termed “sustainable software” and has become a research asset
on its own [Anzt et al., 2020].

Software for data-driven modeling differs from more traditional software engineer-
ing approaches in that the exact algorithm to address a problem is not known before-
hand. Instead the final software model has data as an additional and integral part. This
is a paradigm shift, in which testing and verification of a software becomes more chal-
lenging [Khomh et al., 2018]. A typical approach is to make use of well-understood
“academic systems” (e.g. the swiss-roll in the previous section) or use widely adopted
datasets in a community (e.g. the MNIST dataset, containing handwritten digits [Le-
Cun and Cortes, 2010]). To my knowledge there is no such “standard dataset” for time
series data.

Actively maintained scientific software requires a high degree of flexibility and mod-
ularity. The field of machine learning is subject to ongoing research, where scientists
frequently extend the problem set of data-driven models. Moreover, algorithmic re-
search means that there are often many algorithms available to address the same prob-
lem. Because of the different goals to speed up, increase numerical stability or improve
model convergence, algorithms often have their strengths and weaknesses for different
settings. For example, depending on the dataset size and computational restrictions, a
modeler has to decide whether to use an exact algorithm or a fast approximate version.

Section 2.5.1 describes the general interaction points for researchers and modelers for
system identification tasks. Furthermore, Section 2.5.1 highlights relevant and popular
scientific software, with a focus on the Python programming language and its ecosys-
tem for scientific computing [Harris et al., 2020; Virtanen et al., 2020].

2.5.1 System identification loop

A main source that mandates software flexibility is the general “model selection” work-
flow for machine learning tasks. The best suited model structure and parametrization
for a problem are unknown. The “art of modeling” requires skills and specialized
knowledge to manipulate the model and feed back new understanding to iteratively
refine and simplify a model [Pintelon and Schoukens, 2012]. A scientific software for
data-driven modeling has the requirement to provide an expressive interface that can
cover a wide range of structurally different model specifications, without the necessity
for a modeler to look at or manipulate implementation details.

In practice the model selection is often a trial and error procedure, reflecting an op-
timization in a model space. Fig. 2.9 gives an overview of these iterative refinements
at different hierarchical levels of the modeling process in a “system identification loop”
[Nelles, 2020]. Each step of the loop requires interaction of either the modeler or can
be part of an automatized optimization routine [Pintelon and Schoukens, 2012]. Typi-
cally, model specifications in the first three steps require prior knowledge depending on
application-specific criteria. For the last two steps, generic routines and good practice
guidelines are often available that align the model in a best way to the data.
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Figure 2.9: The system identification loop, from [Nelles, 2020, Sec. 1.3]. The first five steps
are statements inside loop and the last box corresponds to the loop condition. The original
source of the figure also covers the case when the system has additional control input.

At the start of the system identification loop is the model state, corresponding to the
observed measurements of a dynamical system. As highlighted in the previous section,
the selection of measurements is critical and should be guided by both spatially and
temporally relevant information. This also includes finding and generating a suitable
state representation from a fixed set of measurement quantities. This can be linear
dimension reduction methods or methods that extract geometric coordinates as covered
in the previous section.

While for (isolated) physical processes the measurement state is often obvious, for
increasingly complex and multi-modal systems the influence of a quantity on the over-
all system is less understood — especially if the model state dimension is high [Nelles,
2020]. This can make revising the model state necessary to include new explanatory
quantities or drop unnecessary ones. Methods for ranking the importance of state
quantities can help. Moreover, there are often quantities that are known to influence
a system but cannot be measured. For example, a traffic scenario is influenced by “hu-
man factors”, which includes the psychology of decision making [Kleinmeier, 2021].
Such factors are unobserved and manifest as noise in the state observations.

In the second step, a user specifies the overall model architecture. Section 2.2.3 pro-
vides a selection of model architectures for system identification coming from diverse
directions, of which the operator-based approach is central in the context of this the-
sis. The choice of an architecture is usually influenced by technical aspects such as
the intended use, accuracy requirements or computational demands. But non-technical
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factors such as the experience of a user and the availability of software are also relevant
[Nelles, 2020].

Within the scope of the selected model architecture, in the third step a modeler can
then specify a dynamical representation. Besides the temporal evolution of the model
state, this can also include other dynamically relevant quantities such as the uncertainty
of a prediction [e.g. Alexander and Giannakis, 2020]. A main distinction in the repre-
sentation is between the system’s (continuous) vector field or its (discrete) flow (Eq. 2.1
– 2.2). Both representations can be independent of time (autonomous) or change with
time (non-autonomous). For the special case in which the dynamics are in a linear form
— as in the Koopman operator framework — this also permits a spectral representation
of the dynamics.

The fourth step requires a modeler to specify the model order and complexity. This
is a vital task in data-driven modeling and typically formalized by balancing the bias-
variance trade-off [Murphy, 2012, Sec. 6.4.4]. The model can be adapted to steer the
complexity and match the model with the available information in the data. Suboptimal
models either fail to capture principal patterns in the data (high bias, low variance) or
overfit the data by describing high order and noise-corrupted patterns (low bias, high
variance). Non-parametric models have no definite complexity order because they can
arbitrarily match the training data by including new parameters.

The last step of the system identification loop describes setting the model parame-
ters, which are introduced along the previous steps of the loop. The parameters explic-
itly specify the internal learning algorithm and functions. Altogether the parameters
can interact and influence different model characteristics, such as the convergence rate,
numerical stability or prediction accuracy. To reduce the risk of overfitting it is impor-
tant to include parameters that regularize the model’s complexity. Fortunately, this last
step is the easiest to automate, because it mainly requires data to quantify what param-
eter settings are better suited. In machine learning there are established procedures for
parameter optimization. A limiting factor here is the build time to fit a new model,
because faster build times permit to sample the parameter space more thoroughly.

Finally, as the loop condition, the model validation describes criteria that must be
fulfilled such that the model is suitable for its intended use. These criteria are problem-
specific and include all model specifications of the preceding steps [Nelles, 2020]. For
the common case of a predictive model, the validation includes evaluating the fore-
casting error between the model and true system observation over a time horizon. For
practical relevance the validation should be performed on data that is excluded from
the model construction process [Nelles, 2020]. Otherwise the validation is highly likely
to be too optimistic about the performance, because the model is biased towards known
data. Moreover, the validation can provide valuable qualitative insights to revise spec-
ifications that are often not possible to automatize. For example, systematic errors can
indicate missing explanatory features in the model states, while errors that bias over
time promote model architectures that support updating a model when new data be-
comes available [Hemati et al., 2014]. Note that many common practices for model
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validation for static data are not transferable to time-dependent settings [Bergmeir and
Benı́tez, 2012].

2.5.2 Python scientific computing stack for machine learning

Covering the system identification loop requires a high degree of flexibility in scien-
tific software. However, the flexibility should not only be restricted to an isolated re-
search project, but also embed to a software environment in a wider sense. Typically,
re-implementing functionality of which good solutions exist should be avoided [Anzt
et al., 2020]. Including existing code then often leads to complex and large software
dependencies [Ma et al., 2016]. The degree of how influential a software is, can be
measured by how many follow-up projects make use of it [Ma et al., 2016]. This sec-
tion gives an overview of the popular scientific programming language Python [Van-
Rossum and Drake, 2010] and related software packages that relate to system identifi-
cation tasks.

Python is an interpreted, platform-independent, object-oriented, and dynamically
typed programming language [VanRossum and Drake, 2010]. It addresses a large tar-
get audience with a growing community of scientists, engineers and practitioners of
diverse disciplines. It has become popular for a variety of applications, such as web de-
velopment, system tools or scientific computing [Ma et al., 2016]. Importantly, because
of its features it has become the primary language for machine learning tasks [Gonza-
lez et al., 2020, Fig. 6]. The quality as a general purpose language is a distinguishing
factor to other “scientific programming languages” that have a more specific target au-
dience; Table 2.5. The advent of open-source movement — as a particular important
factor for data-driven modeling [Sonnenburg et al., 2007] — is a reason of why many
of the scientific community have moved away from proprietary software [Paszke et al.,
2019].

From the start the Python programming language emphasized readability and ex-
pressiveness. It is, for example, possible to exchange any object (attribute, function
and class) easily during runtime without specific type requirements and class hierar-
chies. This favors rapid prototyping and has led Python to become one of the stan-
dard languages for exploratory algorithmic experimentation and modeling [Millman
and Aivazis, 2011]. Specific software patterns applied in this context make use of this
flexibility, which even allows separately developed software packages to become inter-
operable without requiring any explicit dependency. A main pattern to achieve this,
is the so-called “duck typing” principle, which stems from the explanatory phrase: “If
it walks like a duck and it quacks like a duck, then it must be a duck”. The meaning
behind is, that objects are identified by their interface instead of their actual object type.
If an object provides the necessary attributes it can be passed to external software with-
out further manipulation or hard dependencies. In contrast, statically-typed languages
can only achieve a similar flexibility by introducing increasingly abstract and complex
class hierarchies in software architectures.
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Table 2.5: Overview of prominent interpreted programming languages used for scientific tasks.

Name Target audience Availability Est. Web

Matlab scientific computing
and engineering

proprietary 1984 mathworks.com

Julia scientific computing
and engineering

open-source 2012 julialang.org

R statistical modeling
and analysis

open-source 1993 r-project.org

Python general purpose open-source 1991 python.org

All third-party software in Python is organized in packages and available in the of-
ficial index PyPI2. Many popular packages are organized by communities, which de-
spite being third-party to Python, provide quasi-standard packages for the software
ecosystem [Harris et al., 2020; Virtanen et al., 2020]. For scientific computing and data-
driven modeling the quasi-standard packages are part of the Scientific Python (SciPy)
ecosystem, which is managed by NumFOCUS [Harris et al., 2020]. SciPy promotes
open-source Python-interfaced software for mathematics, science and engineering with
high-quality standards in terms of availability, documentation, testing and a culture
that strives to improve the community-driven software development and management
[Millman and Aivazis, 2011; Virtanen et al., 2020]. This has also attracted many other
software projects, which align their interfaces to the packages that are included in SciPy
[Gonzalez et al., 2020]. For example, large technology companies have promoted soft-
ware projects to efficiently design and use deep neural network architectures, such as
TensorFlow (Google, Abadi et al. [2016]) or PyTorch (Facebook, Paszke et al. [2019]).

The flexibility of the Python language, however, also has drawbacks, such as a re-
duced execution speed and reduced capabilities to detect type errors compared to com-
piled languages. A main reason for these drawbacks is the code interpretation dur-
ing runtime, which includes many attribute checks. This is in contrast to compiled
languages suitable for high performance applications, such as C or C++. Another re-
striction is that the Python interpreter process is locked with a so-called Global Inter-
preter Lock (GIL), which reduces the capabilities of parallel code execution. This means
shared-memory parallelization is mostly not possible from within pure Python code
[VanRossum and Drake, 2010].

However, for SciPy-applications that heavily rely on efficient (parallel) code execu-
tion these restrictions turn out to be only a minor issue. This is because in SciPy a two
(or more) language paradigm has been established, where computationally demand-
ing parts are outsourced to low-level and compiled code (usually C, C++ or Fortran)
[Dubois, 2007; Oliphant, 2007; Virtanen et al., 2020]. These low-level code executions
release the GIL and all of its restrictions. The advantage of this paradigm is that Python
provides a high-level and flexible programming front-end which is suitable for scien-

2https://pypi.org/

57

mathworks.com
julialang.org
r-project.org
python.org
https://pypi.org/


2 Scientific context

tists and modelers to steer the data and computation flow, without the need to consider
low-level implementation details such as memory management [Dubois, 2007]. If there
is no low-level implementation of an algorithm available within Python it is also possi-
ble to integrate own low-level code or bridge to existing software projects of compiled
languages [Behnel et al., 2011].

Overall, the two language paradigm aims to integrate the “best of both worlds”.
This has immensely decreased the development time for data-driven applications. This
allows providing complex processing pipelines to be specified at multiple interaction
points (Fig. 2.10) and at the same time execute computationally expensive software
parts in compiled languages.

Implementing software in this setting often obscures the underlying computational
complexity and has also led to a dedicated set of good practice and programming styles
in Python. For example, it should be avoided to reduce the number of costly context
switches between interpreted and low-level language.
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Figure 2.10: Representative Python packages for different modeling approaches involved in sys-
tem identification tasks (Section 2.2.3). The hierarchical order represents the multi language
paradigm of SciPy. The numbers in brackets highlight how often a package was downloaded
in September 2021 (M=million, K=thousand). The download statistics are retrieved from the
two main public package managers PyPI and conda. Note that there are also dependencies
between the packages.
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Fig. 2.10 displays open-source packages in the Python ecosystem which are com-
monly involved for data-driven modeling and can be used for system identification.
This does not represent an exhaustive list and there is a diverse range of packages that
provide alternative implementations. The middle package layer show two software
structures (blocks), leading to the dedicated modeling approaches, as covered in Sec-
tion 2.2.3. The connections only describe the main modeling objective of a package.
There are also cross-connections, for example, scikit-learn also provides an implemen-
tation of a Gaussian Process. The tendency is that the closer a package is to modeling
end, the more alternative packages or implementations there are. While there are well-
defined application programming interfaces (APIs) for data-driven modeling of static
data, there are no such standards for the special task of system identification available.

The left block contains elements of the typical “scientific computing stack” in Python.
The packages in the stack are open, meaning that higher-level projects also often bind
to low-level backend code. The other right block includes software that have evolved
with the rise of DNN in machine learning. The separated software from the “traditional
stack” includes new frameworks, which are dominantly used to specify a diverse range
of DNN model architectures. Because the training of such models is also computation-
ally demanding, these packages typically favor dedicated hardware, such as graphical
processing units (GPUs) to train a model.

• NumPy

The package is the foundation of scientific computing in Python [Harris et al., 2020].
It provides elementary and extensible structures to access, manipulate and operate
on data in multidimensional arrays (vector, matrix or tensor). The main data struc-
ture is the ndarray which captures data of identical type and size (typically numer-
ical types) in row-contiguous memory. The view-based in-memory model tries to
avoid copies of data whenever possible and targets computations on CPU. NumPy’s
backend is mainly written in C and provides access to basic linear algebra routines
through bindings to Basic Linear Algebra Subroutines (BLAS) and Linear Algebra
PACKage (LAPACK).

• SciPy, pandas

The two packages are essential for scientific computing in Python and tightly cou-
ple with NumPy. The SciPy package — giving the name to the overall SciPy com-
munity — provides a large range of fundamental numerical algorithms that appear
across many scientific disciplines [Virtanen et al., 2020]. This includes sparse matrix
data structures, interpolation, optimization routines, solvers for ordinary differen-
tial equations. Moreover, it interfaces to many well-established backends, such as
ARnoldi PACKage (ARPACK ) for iteratively solving an eigenproblem.

The pandas package extends the NumPy data structure to provide a solid foundation
for large scale data analysis [McKinney, 2011]. The most prominent data structure is
the DataFrame, which stores data in a two-dimensional tabular format. Internally,
a DataFrame is managed in column-oriented NumPy arrays. The key extensions
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compared to a standard array are that each data point has an associated index (both
row and column) and that a single DataFrame can have a dedicated data type per
column. Moreover, the package provides a rich set of operations that act on the
data structures, which includes aggregating, grouping, input-output and statistical
operations.

• scikit-learn
The package [Pedregosa et al., 2011] mainly builds on the NumPy and SciPy library
to provide a set of well-established and diverse machine learning algorithms. The
package is part of the “scikit” family, which are domain-specific packages comple-
menting the more general scientific computing ecosystem [Buitinck et al., 2013]. The
API design operationalizes the common machine learning concepts such as super-
vised and unsupervised tasks, but also related procedures like model selection with
cross-validation [Buitinck et al., 2013]. The algorithms in scikit-learn assume time-
independent data, where the data input are typically unlabeled two-dimensional
NumPy arrays.

• statsmodels, PyDMD, PySINDY, deeptime
These four packages are examples of specialized data-driven modeling. All packages
have dependencies to the fundamental scientific computing stack and mimic the API
from scikit-learn. The package statmodels [Seabold and Perktold, 2010] provides an
advanced and specific set of algorithms for statistical data analysis. For the particular
case of time series modeling this includes a variety of state-space models and auto-
regressive algorithms (e.g. Auto-Regressive Moving Average and extensions).

The other three packages have been established recently and relate to the operator-
theoretic approach. The package PyDMD [Demo et al., 2018] includes a variety of
DMD algorithms. PySINDy [de Silva et al., 2020] mainly focuses on the SINDy ap-
proach [Brunton et al., 2016] to find a sparse set of functions that describe a nonlin-
ear dynamical system. Deeptime [Hoffmann et al., 2021] is a package for time series
analysis, which includes an implementation of the EDMD.

• TensorFlow, PyTorch, GPflow, GPyTorch
The two packages TensorFlow [Abadi et al., 2016] and PyTorch [Paszke et al., 2019]
include machine learning frameworks with a focus on constructing and training
DNN architectures. The target audience ranges from scientists that require rapid
research-driven experimentation to practitioners who intend to use the software in
industry applications [Abadi et al., 2016]. Paszke et al. [2019] outlines three impor-
tant trends — array-based programming, automatic differentiation and community-
driven open-source software — that have converged most deep learning frameworks
to provide a Python interface. Because NumPy mainly addresses CPU computations,
the new low-level implementations filled a gap in Python’s ecosystem with new ar-
ray implementations and operations that also run on distributed or GPU hardware
[Harris et al., 2020]. However, both frameworks also provide an API that aligns with
the traditional stack (currently experimental in TensorFlow).
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Because the DNN software frameworks are designed to be flexible and extensible
with custom (differential) functions or operations, this has led to a variety of projects
that build on the frameworks. Fig. 2.10 includes two projects — GPflow [Matthews
et al., 2017] and GPyTorch [Gardner et al., 2018] — that implement kernel-based GPs.
These packages can directly profit from efficient computations and automatic differ-
entiation.

All of the highlighted projects are examples of a sustainable software development,
which includes a variety of additional factors beyond the actual source code, such
as community management, documentation or testing [Anzt et al., 2020]. A well-
maintained project can promote an easy spread of the underlying methodologies, which
is showcased by the deep learning community [Paszke et al., 2019]. The increasingly
high complexity of algorithms and the many interaction points in the modeling process,
often make scientific software a community effort [Sonnenburg et al., 2007].

The next chapter continues by describing a new software, developed in the course
of this thesis. The main focus lies on data-driven algorithms covered in this chapter
to approximate the Koopman operator with EDMD and finding suitable state repre-
sentations by using time delay embedding and manifold learning with DMAP. The
proposed software covers the entire system identification loop, from defining neces-
sary data structures to handle time series collection data to optimizing parameters in a
grid.

Despite a large body of scientific research and interest in these mathematical mod-
els, when I started my thesis no openly available software fully captured and could
combine the methodologies of DMAP and EDMD. The three available packages in this
operator context (cf. Fig. 2.10) have since been initiated during my thesis; I use them to
compare software features in the next chapter.

2.6 Summary

This first chapter has set up the scientific context for my thesis contribution. At the
center are dynamical systems and the identification (i.e. “learning”) of these from time
series data. There are various modeling approaches, which I classified based on their
origin — statistics-based, Bayesian and machine learning. However, I emphasize an
operator perspective as a complementing approach that has emerged as a promising
candidate for system identification.

The Koopman operator theory describes a canonical dynamical system in a linear
albeit infinite-dimensional function basis. A major advantage of the numerical treat-
ment in the generic EDMD framework is that linear regression is sufficient to capture
the system’s dynamics. The main focus on the methodology lies on finding a suitable
state representation in which (1) the dynamics linearize and (2) the original measure-
ments can be (linearly) reconstructed. If such a representation is available, the nonlinear
dynamics can be described in a linear dynamical system. This mitigates many of the
modeling challenges that arise from identifying nonlinear and high-dimensional sys-
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tems directly. Overall, the linear model structure profits from a sound mathematical
foundation, which allows characterizing the system into its spectral components — the
Koopman triplet (modes, eigenvalues, eigenfunctions).

One way to extract a suitable state representation from empiric data is based on geo-
metric understanding of the data-generating system. In particular, the Laplace-Beltrami
operator is a central object to describe and analyze the geometry of data. The eigenfunc-
tions of the operator provide a function basis, in which the elements is oriented on the
intrinsic manifold (cf. Fig. 2.6). As a kernel-based method, Diffusion Maps is a widely-
adopted numerical framework that is capable of approximating the eigenfunctions of
the operator from high-dimensional and unstructured data.

Another data transformation is the time delay embedding. Here the measured states
are augmented with the temporal context within time series. The embedding can re-
construct essential parts of the state space manifold such that the new state dynamics
become well-defined (cf. Takens [1981] theorem). In a geometric perspective, the em-
bedding “stretches apart” false neighborhood relations, which are typically introduced
if the measured state quantities contain insufficient temporal information (cf. Fig. 2.8).
All of the methodologies and underlying theories — connected to Koopman, Laplace,
Takens — are interrelated: For ergodic systems, the eigenspace of the Laplace-Beltrami
operator on infinite-delayed states is the same for the Koopman operator [cf. Giannakis,
2019; Korda and Mezić, 2018].

Making use of the operator-informed approach for system identification, however,
requires scientific software. Python has become established as the main programming
language for data-driven modeling. In a two-language paradigm it provides an easy
syntax that promotes a flexible modeling front end, while making use of efficient algo-
rithms in a low-level and compiled programming language. However, on a software
map of available packages, there are no established standards for system identification
and no software that would allow integrating the covered data-driven methods to ap-
proximate the two main operators in a single processing pipeline. In the next chapter
I start with my contribution of the thesis, where I fill this gap by transferring these
methodologies to scientific software.
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In this chapter, I describe the scientific software datafold as the first part of my the-
sis contribution. In datafold I transfer the numerical methods of the previous chapter
in a structured software design to promote data-driven modeling within a mani-fold
context. The goal is to boost the use of an operator-based modeling approach in a ma-
chine learning setting and to enable the concrete data analysis of Chapter 4, which is
the second part of my thesis contribution.

Datafold covers the entire system identification loop from Fig. 2.9, where a model can
be revised at each of the intersection points within the loop. All methods can therefore
be used on their own, serve as building blocks in new methods or be used together in
a single data processing pipeline. I confine my descriptions of the software to the main
design decisions and ideas. This means that I mostly leave out implementation details,
which are available in the source code provided in the Supplementary Material. The
software has been published and peer-reviewed in the Journal of Open Source Software
(JOSS) in Lehmberg et al. [2020b].

In Section 3.1, I highlight the main target model architecture to perform operator-
informed and nonlinear system identification. My goal is to use this architecture to
extract geometric and dynamically relevant coordinates from the identified system. I
then give an introduction to datafold in Section 3.2, which covers the overall software
architecture and measures installed to promote a high software quality.

Datafold has three main components, which I describe in a bottom-to-top fashion
from Sections 3.3 to 3.5 following the steps of the system identification loop. Note that
this reverses the order in which I describe the methods in the previous chapter. The
main software contributions can be summarized as:

• a new data structure for time series collections (Section 3.3)

• a new efficient algorithm to compute a sparse δ-range distance matrix (Section
3.3.2)

• methods to extract a suitable state representation from data — with an emphasis
on time delay embedding (Section 3.4.2) and Diffusion Maps (Section 3.4.3)

• nonlinear system identification with a generic implementation of Extended Dy-
namic Mode Decomposition (Section 3.5) including parameter optimization (Sec-
tion 3.5.2)
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3.1 Main operator-informed setting

Here I describe an operator-informed model architecture that consolidates the main
methods of the previous chapter. The goal is to build a model to perform nonlinear
system identification that also extracts explicit and accessible coordinates that relate
to the system’s geometry and dynamics. Fig. 3.1 illustrates the overall setting, where
each component fulfills a dedicated task. While I designed datafold to be flexible to
parametrize a wide range of model configurations, I use these main components to
highlight the organization within the software in the following sections.
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Figure 3.1: Schematic overview of the main setting in this thesis to perform operator-informed
system identification and to extract geometric and dynamic coordinates from time series
data. The observable spaces are in ellipses and describe a function basis, that could be used
as a dictionary within Extended Dynamic Mode Decomposition (EDMD). Each observable
space is defined on an associate state space in the attached rectangle. The solid arrows corre-
spond to steps that involve discretization or data-driven approximations. The arrows back
to the measurement states describe the reconstruction map (G(z) in the general system iden-
tification form in Eq. 2.11 on page 17). The dotted arrow highlights an additional procedure
required to obtain the latent space and the dashed arrow corresponds to a one-to-one relation
(diffeomorphic) if the reconstruction was successful.

The true dynamical system corresponds to the system under study. It captures the ex-
act dynamics in hidden (unknown) state variables. To identify this system, the first
step is to collect measurement time series, which are the basis for data-driven model
construction. The data collection can be seen as a discretization and projection of the
hidden state space into the ambient space. Within the Koopman operator view, the
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collected data correspond to measurement observables, gID(x) = x (see Eq. 2.20). The
standard Dynamic Mode Decomposition (DMD) uses these observables directly to ap-
proximate the Koopman operator. However, this assumes linear dynamics, which is
often not fulfilled in practice. All follow up processing steps reconstruct these original
measurements (see arrows on the left side in Fig. 3.1), to be able to perform forecasts
and model validation with the empirical time series of the true dynamical system.

The first two processing steps on the measurement data correspond to the composed
data transformation [gdmap ◦ gtd](x). The objective is to obtain a new and suitable state
representation (Eq. 2.46 on page 50). The time delay embedding augments the states
with temporal context to reconstruct partially observed dynamics in the measurement
states. These “lagged observables” are, for example, used within the Hankel-DMD
[Arbabi and Mezić, 2017]. The subsequent projection onto the eigenfunctions of the
Laplace-Beltrami operator forms a geometrically aligned function basis on the (recon-
structed) data. The requirements on this intrinsic state representation are high: (1) the
dynamics in these states should be (approximately) invariant (i.e. evolve linearly un-
der the dynamics), (2) should be suitable to reconstruct the original measurements, and
(3) provide valuable intrinsic system information. Fortunately, as highlighted in Sec-
tion 2.4.4, this composed function has many favorable (theoretical) qualities such as a
geometric interpretation [Berry et al., 2013] and connection to the Koopman operator
[Giannakis, 2019]. Moreover, I use the function basis to (4) regularize the model’s com-
plexity by choosing how many eigenfunctions to include in a model. The regularization
is possible because the Laplace-Beltrami eigenfunctions are sorted by their respective
eigenvalues, which connect to the frequency of the eigenfunction [cf. Fig. 2.6 and Berry
et al., 2013]. Highly-oscillating functions on the manifold (with small eigenvalues) are
likely to capture directions that associate to noise in the data. In my thesis, I explore
whether these requirements on the intrinsic states hold in concrete data scenarios in
Chapter 4.

Once available, I use the new state representation for two tasks (both of which are
highlighted in Section 2.4.2). First, I parametrize a latent state space that is one-to-
one to the hidden state space (diffeomorphic in mathematical terms, as highlighted
in Fig. 3.1) by selecting a parsimonious and geometrically informative subset of the
Laplace-Beltrami eigenfunctions. Secondly, I approximate the Koopman operator for
system identification, whereby the Laplace-Beltrami eigenfunctions provide the final
(truncated) function basis (vertical direction of Fig. 3.1).

Finally, the identified Koopman operator-based system is decomposed into the spec-
tral components of the Koopman triplet (V,Λ, ξ(z)); modes, eigenvalues and eigen-
functions. Together these components define the final model to describe the original
observations and perform predictions with a linear dynamical system (see Eq. 2.30 –
2.32 on page 35). Ultimately, these spectral coordinates are accessible for interpretation
and provide valuable insight into the identified dynamical system.

In Section 2.4.4, I highlighted research that gives a strong theoretical background to
this setting. However, to the best of my knowledge no other research papers (except
my own in Lehmberg et al. [2021]) describe the combination of time delay embedding
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and Diffusion Maps (DMAP) within the generic EDMD framework (the computations
to approximate the Koopman generator are similar in Giannakis [2019]). Moreover,
no publicly available software would allow specifying this setting without additional
implementation effort. This includes the operator-informed software projects initiated
during the time of my thesis. To highlight my distinctive contributions, I compare the
features of existing software to datafold throughout this chapter.

3.2 Introduction to datafold

Before describing the main software components, I first provide a general introduction
to datafold. In Section 3.2.1, I highlight why it was necessary to start a new software
project and why it became an important element for my data analysis. I then outline
the main design decisions and hierarchical software architecture in Section 3.2.2; the
architecture provides orientation for the detailed sections to follow. Finally, in Section
3.2.3, I highlight measures that I installed to achieve high software quality.

3.2.1 Statement of need

A general rule in computer science is to avoid creating new software for which a well-
suited solution is already available (leaving aside licensing issues or educational pur-
poses) [Anzt et al., 2020]. During my thesis, I identified a gap between the active re-
search field of studying linear operators for data-driven modeling and the availability
of scientific software making these methods accessible. The “promises” often commu-
nicated in research articles, highlighting the advantages of the operator-based research
in system identification, such as

Data-driven modeling using linear operators has the potential to transform the estimation
and control of strongly nonlinear systems [Mauroy et al., 2020, p. 197]

Koopman operator theory has recently emerged as the main candidate for machine learning
of dynamical processes [Mezić, 2020, p. 1].

had not been transferred to the software and application side of research. As high-
lighted in Section 2.5.2, qualitative scientific software is an essential element in data-
driven modeling. It unifies algorithmic innovations within a field and can make a
methodology accessible to a broader audience. Moreover, if a software is accepted by a
wider community it can accelerate the methodology as a whole by incrementally inte-
grating new results [Buitinck et al., 2013; Paszke et al., 2019].

Currently, modelers and researchers new to the field of operator-based methods are
confronted with two main obstacles. First, they must get accustomed to the terminol-
ogy in the literature. Because the methods often have a strong theoretical foundation
(which is certainly a plus from a scientific point of view), articles often include math-
ematical concepts from different lines of research, such as function analysis, geometry
or dynamical systems. These concepts can be hard to comprehend at first (depending
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on the researcher’s background) [Bakker et al., 2020]. For a “challenging example” that
combines the methods of the main model setting of the previous section, I refer to the
research article of Giannakis [2019].

If a researcher is convinced to use operator-based methods, the second obstacle is
to transfer the mathematical concepts into the software. An error-free and efficient
implementation is a challenging task because it requires a numerical and algorithmic
understanding of operator theory [Mauroy et al., 2020, Ch. 7]. This is compounded by
the fact that there are no standards for data structures or application programming in-
terfaces (APIs) for system identification in the Python ecosystem, as the main program-
ming language for data-driven modeling [Gonzalez et al., 2020]. Existing concepts are
mostly incompatible with each other. This contrasts with the case of modeling static
data where the standard data structure is given by a NumPy array and scikit-learn pro-
viding a widely-adopted API. Moreover, the practical aspects of software treatment are
typically not covered in methodological articles and very few publications follow the
good practice of providing source code in the supplementary material. But even if code
is available, the code serves merely as a template. This is because the intention is to pro-
vide the code to reproduce the results and not to cover classical software engineering
aspects that are necessary to provide general purpose and interoperable methods.

I designed datafold to be extensible and open for future development. By building off
widely-used software I could avoid re-implementations of existing functionality. As a
novel contribution, my software covers the complete data-driven workflow, from low-
level specifications, such as time series data structures, to high-level tasks for nonlinear
system identification and procedures for parameter optimization.

3.2.2 Software architecture and design decisions

A common goal in software engineering is to create strong abstraction boundaries be-
tween the software’s components to promote a modular design. This helps to create a
maintainable software basis in which it is possible to make isolated changes and im-
provements that do not affect the entire code basis at once [Sculley et al., 2015].

Datafold is divided into three sub-packages, reflecting a three-layered software ar-
chitecture; Fig. 3.2 gives a visual overview. Each layer is open, in that components can
utilize the functionality of the same or any of the previous layers.
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Figure 3.2: Overview of the three-layered architecture of datafold. The methods that are in
the open layers can be used independently or together in complex model structures. To
avoid re-implementations and provide common interfaces, datafold is based on the scientific
computing stack.

The layered architecture gives a hierarchy that encapsulates important processing
steps in the system identification loop in Fig. 2.9. Note that the way I adopt the three-
layer pattern differs from the usage of a three-layer pattern. Usually, the highest layer
is treated as a “presentation layer” that provides the final interface to the user [e.g.
Yokoyama, 2019, Fig. 1.1]. In contrast, the design idea of datafold is to separate meth-
ods by their complexity: The methods on higher layers are increasingly involved and
sophisticated in that they require the functionality from previous layers. A modeler
can decide to only use methods provided on the first or second layer for the modeling
endeavor. I named each of the sub-packages in the naming style of datafold :

• pcfold (pc refers to point clouds): The lowest package layer includes data struc-
tures and basic numerical algorithms. These build on the fundamental packages
of the scientific computing stack.

• dynfold (dyn refers to dynamics): The intermediate level provides (unsupervised)
machine learning methods to transform time series to a new and more suitable
state representation. Moreover, the layer contains basis DMD variants to perform
linear system identification.

• appfold (app refers to application): The third and highest layer contains methods
that solve the complex task of nonlinear system identification, including parame-
ter optimization on cross-validated errors.

The following list summarizes the main design decisions and software requirements
for datafold and the rationale behind them:

68



3 Software for operator-informed system identification

1. Cover the entire system identification loop

Datafold provides a holistic software solution in which it is possible to specify a
model at the different interaction points of the system identification loop. For exam-
ple, within the main model setting described in Section 3.1 it is possible to specify
a state and dynamics representation. While the model approach is non-parametric,
the complexity can be balanced. Each component has its own set of parameters that
can be optimized by automatically evaluating a validation error.

The flexibility within datafold comes at the cost of computational performance. For
example, connecting multiple methods in a data-processing pipeline may perform
unnecessary data validations and could therefore be implemented more efficiently
in a single dedicated method.

2. Use Python as the main programming language

Python has become the main candidate for machine learning tasks [Gonzalez et al.,
2020]. As highlighted in Section 2.5.2, the language has favorable features that make
it easier to provide an interactive modeling front-end, while steering data to efficient
low-level code executions; see Fig. 2.10.

A feature of Python is that the syntax itself promotes self-documenting and clean
code, which is often referred to “Pythonic code”. While there are no strict guidelines
for what constitutes “clean code”, within the programming language there are many
established conventions and common idioms for the programming style, such as
“explicit is better than implicit”. In larger projects, clean code becomes necessary
to increase development efficiency and maintainability. An in-depth introduction to
Pythonic code is given in Anaya [2021].

3. Integrate into the scientific computing stack

Datafold builds on the Python scientific computing stack to make use of and ex-
tend widely-adopted data structures and align to established APIs’s. The com-
mon packages of the scientific computing stack (left side of Fig. 2.10) provide well-
documented, tested, profiled and widely-adopted numerical algorithms and data
structures. While the stack includes different packages, these are largely compati-
ble with each other. This combination of a large and organized community, where
code is open for inspection, modification and redistribution, provides an excellent
code basis. Ultimately, the design decision to align to existing software structures
prevents “glue code” as a typical anti-pattern often found in machine learning soft-
ware. As Sculley et al. [2015, p. 5] describe: “An important strategy for combating glue
code is to wrap black-box packages into common APIs. This allows supporting infrastructure
to be more reusable and reduces the cost of changing packages”.

A drawback of package integration is an increased maintenance in datafold to keep
up with recent developments in the upstream code. However, because all packages
strive for backwards compatibility, this effort is minimal for publicly exposed ob-
jects.
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4. Align data-driven methods to scikit-learn’s API

The scikit-learn package, as part of the scientific computing stack, defines a quasi-
standard API for machine learning in the Python ecosystem [Buitinck et al., 2013;
Pedregosa et al., 2011]. While the API focuses on static data, in datafold it is neces-
sary to extend the API to process time series data. A great advantage of integrating
scikit-learn is that it already provides a class organization into typical categories of
unsupervised and supervised machine learning tasks by making use of design pat-
terns. For datafold I can mirror this organization — building on the experience of a
large community [Buitinck et al., 2013] — and adapt it to the workflow for system
identification. A further advantage of aligning datafold’s API to a common machine
learning API is that it is familiar to a large audience, which makes it easier for expe-
rienced modelers who are new to datafold.

The scikit-learn package has already been extended for system identification [de Silva
et al., 2020; Demo et al., 2018; Löning and Király, 2020]. However, I found the design
decisions in these packages either impractical or too restrictive for the applications
that I address later in this thesis (Chapter 4) — I compare these aspects in the next
sections.

The following list contains non-requirements, to better highlight the scope of datafold
within this thesis. However, the first two points are highlighted as future directions at
the end of the thesis in Section 5.2.

1. No streaming setting

The nature of time series data is that new samples become available over time. In a
streaming environment a model is updated on the fly whenever new data becomes
available. This is particularly suitable for systems with changing patterns over time.
The model is then capable of adapting to these new patterns. However, most algo-
rithms currently available in the operator-informed setting are described in a batch
processing scheme in which all data is readily available. The algorithms for a stream-
ing setting require dedicated adaptations.

2. No exogenous input or control

The Koopman operator framework also extends well to control tasks [e.g. Mauroy
et al., 2020]. For the data analysis or algorithms in this thesis, I focus on system
identification tasks without any additional exogenous or control input.

3. No dedicated hardware settings

There are sophisticated hardware settings that allow better scaling with the number
of samples in a dataset. For example, this includes graphic processing units (GPUs),
clusters, or supercomputers. However, addressing multiple hardware configura-
tions restricts the general applicability of the software and complicates the imple-
mentation. Therefore, the target hardware setting is a standard CPU setting with
potentially multiple kernels and shared memory parallelization. The software there-
fore works on common general purpose computers.
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4. No graphical user interface

Finding and setting up a data-driven model requires great flexibility. The modeling
process is therefore best specified with a programming language and not in a graph-
ical interface. Experience with Python is therefore expected when using datafold.

3.2.3 Measures for sustainable software development

Developing durable scientific software that provides machine learning to solve general
purpose problems is a challenging task [Anzt et al., 2020; Sculley et al., 2015]. Under
time pressure, especially with the urgency to publish results, it is always tempting to
write sub-optimal code that “just works” to proceed with a task. While this is sufficient
for source code that only serves a single purpose, a sub-optimal increment degrades
the overall quality of software that aims to be reusable and extensible. An established
metaphor in software engineering is technical debt: the term refers to future obligations that
are the consequence of technical choices made for a short-term benefit. [Hinsen, 2015, p. 1].
Analogous to financial debt, technical debt is not always bad, but it is important to
know that it is present in a project and how severe it is. Continuous software main-
tenance strives to not let debt accumulate to an unmanageable degree [Goble, 2014;
Sculley et al., 2015]. In particular, software that is actively developed with many ideas
of future directions and algorithmic experimentation can incur high ongoing mainte-
nance costs. Servicing debt involves refactoring code, improving unit tests, removing
old code, reducing software dependencies or improving documentation [Fowler, 2018;
Sculley et al., 2015].

For datafold I strive for a sustainable software in the sense of Anzt et al. [2020]. To
keep development time and technical debt to a practical minimum, I make use of ad-
ditional tools and procedures [Renggli et al., 2019]. All source code and associate files
are hosted on a publicly accessible repository on “gitlab” 1. While gitlab is a platform
to host source code, it also comes with many additional features that support software
management.

Continuous Integration (CI) pipelines constitute an integrative and indispensable
tool of modern software engineering [Renggli et al., 2019]. A CI pipeline systematically
manages the development efforts and performs various automatable tasks to verify and
check that the software meets certain criteria. Every contributed change of a developer
is tagged as pass, warning or fail. Only code changes that pass are accepted to be in-
tegrated into the main code basis. Fig. 3.3 gives an overview of datafold’s CI pipeline.
The entire pipeline is specified in the file .gitlab-ci.yml as part of the source code
itself.

1gitlab.com/datafold-dev/datafold
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Figure 3.3: Schematic overview of the CI pipeline in datafold. The pipeline includes tests and
checks that foster an organized and sustainable future development of datafold.

The following list includes measures to promote sustainable software management
for datafold, which also includes the steps of the CI pipeline. The numbers in brackets
correspond to points for sustainable software according to Anzt et al. [2020].

Citable and licensed software (2, 9)

Datafold is published in the “Journal of Open Source Software” (JOSS) [Lehmberg
et al., 2020a]. During the publication process of JOSS both an article and the software
itself are reviewed by peers [Smith et al., 2018]. As such, the package is citable in a
traditional way of a scientific contribution. The source code of datafold is distributed
under the permissive and academic “MIT license”2. With these terms, the software
can be used or manipulated as a whole or in parts by anyone who wants to contribute
to the original project or continue development in a separate repository.

Version control and tagged releases (7, 15)

Versioned software makes it easy to recover past snapshots of the source code to doc-
ument the development process and reproduce results. All changes to files in the
repository are tracked with the widely-adopted source control management “git”3.
Additionally, datafold collects multiple code changes in tagged releases in a semantic
version scheme, major.minor.patch (e.g. 1.1.6). An increase in the major number indi-
cates breaking changes in the API, an increment in the minor number of new features
and increasing the last number highlights bug fixes and small improvements. The
version that I describe and use in my thesis is 1.1.6.

Document bugs and open tasks in issue tracker (7)
2https://choosealicense.com/licenses/mit/
3https://www.git-scm.com/
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A danger of technical debt is that it accumulates without the software maintainers
knowing where it lies. Issue trackers are established in many open-source projects to
document open tasks. An issue describes an isolated task, in which the progress of the
task is recorded. This can include necessary refactoring, bug fixes and new features.
For datafold the issue tracker is managed in “gitlab” and is available at gitlab.com/
datafold-dev/datafold/-/issues/.

Publicly available software (6)

Making scientific software code publicly available beyond a research group has many
advantages, such as avoiding repetitive software development in a community or in-
creased trust by publicly reproducing results [Anzt et al., 2020]. In addition to the
“gitlab” repository where the software development is recorded, each datafold ver-
sion is also available at the official “Python Package Index” (PyPI)4. The installation
of datafold is then straightforward with Python’s packaging tool pip in the command
line:

pip install datafold

A new release of datafold is uploaded to PyPI if the steps in stage 4 of the CI pipeline
are manually executed (Fig. 3.3). This is only possible when all previous stages in the
CI pipeline pass.

Interoperable API, avoiding large re-implementations of functionality and depen-
dency management (10, 13, 16)

As highlighted in datafold’s software architecture, the implemented methods use the
existing functionality of Python’s scientific computing stack and align their API for
data-driven methods to the widely-adopted scikit-learn. The packages are not part of
the standard library and need to be installed separately. All dependencies are man-
aged in a standardized file requirements.txt, which is processed for automatic
dependency management. Further dependencies for the software development are
contained in the file requirements-dev.txt.

Separate productive and experimental code

As a scientific software datafold should also be usable and encouraging to perform al-
gorithmic experimentation because it is often not clear beforehand which algorithm is
best suited. With this measure, I try to find a pragmatic way to balance the anti-pattern
“dead experimental code” [Sculley et al., 2015] and the reality of software develop-
ment in research [Wiese et al., 2020]. I organized experimental and production code
within datafold, whereby I explicitly flag classes that have not reached high standards.
These classes are not part of the documentation and raise a warning when used.

Documentation and tutorials (8, 11, 19, 21)

4https://pypi.org/project/datafold/
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The documentation of a software includes the description of the API, tutorials, lit-
erature references, and instructions for new developers. The entire documentation is
hosted on a web page5, which is updated with every new versioned release of datafold
(see stage 4 of the CI pipeline, Fig. 3.3). The HTML pages are generated with the
Python package Sphinx6.

Unit tests and coverage report (14)

All productive code in datafold requires unit tests, which are managed along with the
source code in separate directories. All tests can be executed with the Python packages
pytest7 and coverage.py8. The former executes the test and the latter provides an
additional report in a web page format to highlight which lines in the source code are
part of a test9. As of datafold version 1.1.6 there are 340 tests with a coverage rate of
88%. All tests and tutorials run in the CI stage 2 in Fig. 3.3.

Source code formatting

All source code in datafold is automatically formatted in a deterministic and consistent
way with the two tools black10 and isort11. This increases tremendously the code
readability and is a way to reduce technical debt. Stage 3 of the CI pipeline verifies
whether the source code is correctly formatted according to the rules implemented in
the two tools.

3.3 pcfold: Data structures for point cloud manifolds

In this section, I start with pcfold as the first layer of datafold’s software architecture.
Fig. 3.4 outlines the main components in pcfold. The layer includes a new data struc-
ture TSCDataFrame to capture time series collections, as observations from dynamical
systems. The data structure is a central element for many methodological generaliza-
tions in the higher layers. Moreover, there is a diverse set of basic functionalities that
directly operate on TSCDataFrame. This includes splitting time series in training and
validation data or computing a metric between a true and predicted time series. Both
of these functionalities are necessary for model validation and parameter optimization
within the system identification loop (cf. Fig. 2.9).

5https://datafold-dev.gitlab.io/datafold/
6https://sphinx-doc.org/
7https://docs.pytest.org/
8https://coverage.readthedocs.io/
9latest report: https://gitlab.com/datafold-dev/datafold/-/jobs/artifacts/master/file/coverage/index.

html?job=unittests
10https://black.readthedocs.io/
11https://pycqa.github.io/isort/
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Figure 3.4: Class diagram of TSCDataFrame as a data structure to store time series collections.
Around the data structure are additional functionality required for kernel-based methods
and model validation. The grayed area is covered in Section 3.4.3 within Diffusion Maps
(DMAP) as a kernel-based method.

An important functionality in pcfold is to provide an algorithmic framework to com-
pute a kernel matrix from data (with or without temporal context). This kernel interface
together with the data structure serve as building blocks for kernel-based methods such
as the DMAP included in the dynfold layer.

As outlined in Eq. 2.35 – 2.36, setting up a kernel matrix requires (1) computing a dis-
tance matrix (dense or sparse) and (2) applying a kernel function. Both the optimality of
a metric and kernel depend on the underlying system and dataset. Therefore, there are
many algorithmic variations described in the literature that change either of the com-
ponents [e.g. Berry and Sauer, 2019; Giannakis, 2015]. For this reason, the pcfold layer
includes base classes that provide a flexible and easy integration of specialized algo-
rithms that also go beyond the basic functionality of the scientific computing stack. For
improved readability of the thesis, I postpone describing the kernel interface to Section
3.4.3 where it is required within the DMAP method. Section 3.3.2 covers the interface to
compute distance matrices, which also includes a new algorithm to efficiently compute
a sparse δ-range distance matrix from data with a manifold assumption. I implement
this algorithm in a separate software rdist as an additional contribution of my thesis.

3.3.1 Data structure for time series collection

In contrast to static data, where samples can be treated independently, the temporal
context in time series data requires additional meta-information — the time context
— for each sample. This introduces new dataset characteristics, such as the sampling
frequency (arbitrary or equidistant), number of time series (a single coherent or many
separate) and number of features (univariate or multivariate).
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While the NumPy array is the standard data structure for static data, there is no such
widely-accepted data structure for processing time series. One challenge is that the
additional time information introduces new variations of how the data is organized, as
it is inherently ordered. I suspect that many data structures for time series formats are
created with the assumption of the respective algorithm in mind that operates on the
data structure. As a result, it is hard to re-use the data structure for a different algorithm
with diverging assumptions. Moreover, I found that many proposed data structures
for time series also become incompatible with the standard alignment of static data
in computer memory. This is a disadvantage because additional copy operations are
needed to translate between the two data types.

In this section, I propose my own data structure TSCDataFrame to store time series
collections. In Section 3.3.1.1 I show that I could overcome many limitations that I found
in alternative data structures. The new specification was necessary to generalize the
methods for system identification in higher layers of datafold. Particularly algorithms
associating to the DMD are usually able to handle multiple time series [Tu et al., 2014;
Williams et al., 2015]. In the Sections 3.3.1.2 and 3.3.1.3 I highlight the management
within pcfold of additional basic functionalities that directly relate to the data structure
and are needed for data-driven modeling.

3.3.1.1 TSCDataFrame

The data structure’s name TSCDataFrame is a composite of the abbreviation TSC (time
series collection) and the base class DataFrame from the Python package pandas [McK-
inney, 2011]. An essential feature of DataFrame is that it stores data in a tabular form,
which allows meta-information to be attached to each point sample. For time series
data this is mainly required to store time information. While pandas already provides
functionality for time series, its main focus lies on handling date-based indices. The
additional value of TSCDataFrame is in providing necessary functionality and data
organization for data-driven modeling and system identification.

Fig. 3.5 displays the main data-driven scenarios in which time series collections be-
come relevant. In the left image (a) a time series is observed over time where all states
have a unique time value. If the measurement process is interrupted and re-started, a
new time series is sampled after an interval of missing data. This is a typical scenario
for real-world sensor measurements, where each sample has an associated timestamp.
In the second case (b) of Fig. 3.5 all initial states share the same normalized time ref-
erence (e.g. t1 = 0). The time values in the series are no longer unique in the global
reference of the time series collection. In contrast to the first case, this occurs if a dynam-
ical system is systematically sampled with initial states that all associate with the same
initial time. A typical scenario is when a simulation software is sampled to generate
a surrogate model [e.g. Dietrich et al., 2018]. If the dynamical system is autonomous,
case (a) can be transferred to case (b), however, this loses the global order across the
entire collection. The third and last case (c) is a combination of the previous cases. This
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sampling scenario occurs, for example, if a time interval is removed from time series
collection to perform cross-validation [Bergmeir and Benı́tez, 2012].
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Figure 3.5: The main scenarios of time series collections to use TSCDataFrame. All (multivari-
ate) time series have an initial condition (circle) and share the same spatial features. The
time series in a collection can be of different lengths. A blue block between time series cor-
responds to a time interval of missing data, while a yellow block of initial states denotes an
equal time reference.

Table 3.1 gives a concrete example of the layout of TSCDataFrame. The time series
collection is from the pendulum system covered in Section 4.1. Because all initial states
have a time value t1 = 0, the collection corresponds to the middle case (b) in Fig. 3.5.

The right side of Table 3.1 showcases additional basic functionality, which is at-
tached to TSCDataFrame to better describe the dataset. For example, the first state-
ment queries the number of time series contained in the collection and the attribute
delta_time describes the equidistant time sampling rate across the time series. The
last statement (to_numpy()) removes all row and column indices and returns a NumPy
array with the standard alignment of static data. The function is already provided by
the base class DataFrame and returns a view of the internal data without copying it
(if all columns have the same data type). A conversion from TSCDataFrame to the
standard format is therefore possible with no additional cost.
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Table 3.1: Example of a TSCDataFrame.

feature x y
ID time

0 0.000000 0.87 0.50
0.050366 0.74 0.33
0.100732 0.58 0.18
. . . . . . . . .

1 0.000000 -0.71 1.71
0.050366 -0.78 1.63
0.100732 -0.85 1.52
. . . . . . . . .

2 0.000000 1.00 1.00
0.050366 0.99 0.89
0.100732 0.97 0.76
. . . . . . . . .

tscdf: TSCDataFrame
tscdf.n_timeseries
>>> 3
tscdf.n_features
>>> 2
tscdf.delta_time
>>> 0.050366
tscdf.n_timesteps
>>> 500
tscdf.is_equal_length()
>>> True
tscdf.is_const_delta_time()
>>> True
tscdf.is_same_time_values()
>>> True
static_data = tscdf.to_numpy()
>>> np.array([[0.87 0.5 ],

[0.74 0.33],
... ])

As highlighted before, the main idea of TSCDataFrame is to inherit from DataFrame
as a rich data structure. In TSCDataFrame, the generic form is restricted to the special
layout of a time series collection which has to fulfill certain criteria. The major advan-
tage of class inheritance over composition is that TSCDataFrame remains fully com-
patible with pandas and, therefore, profits from its sophisticated hierarchical indexing
capabilities. The time series collection can easily be processed in a per state, time value,
feature or time series fashion [McKinney, 2011]. The special format of TSCDataFrame
has the following criteria (see Table 3.1 as a concrete example):

1. Each row in TSCDataFrame corresponds to a single state measurement. All values
must be numeric (integer, real or complex), which also includes invalid numbers
“not a number” (nan) or infinity (inf). Other common data types such as strings or
general objects are disallowed in TSCDataFrame.

2. The row index must be a multi-index of two levels. The first level indicates the time
series ID with a positive integer and the second level contains the time values. Each
time series within the collection must be coherent. The time values in each time
series must be non-negative and unique numbers sorted in ascending order.

3. The column index must only contain a single level to identify the spatial features
(numeric or string). In Table 3.1 this is the x and y to indicate the respective column.
All index names must be unique.
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In a mathematical notation, TSCDataFrame captures time series collection data in the
form of

X =
[
x(1)

1 , . . . ,x(1)
J1
| . . . |x(I)

1 , . . . ,x(I)
JI

]
=
[
X(1), . . . , X(I)

]
, (3.1)

where x(i)
j = [x1, . . . , xN ](i)j is an N -dimensional column state (or snapshot) with asso-

ciate time indices i (ID) and j (time index); see Section 2.3.2 for the specification in the
EDMD framework. However, the representation of TSCDataFrame and Eq. 3.1 differ
for their respective context: storing and processing data on a computer versus read-
ability of mathematical notation. In TSCDataFrame the data alignment is row-wise,
while it is column-wise in Eq. 3.1. The orientation in the data structure follows the con-
ventional data alignment of the scientific computing stack. Note that scikit-learn also
supports DataFrame as input data and therefore also TSCDataFrame as a subclass12.

The rows in TSCDataFrame are required to be indexed with two layers to actually
index a time series collection. For each row the tuple (i, t) is stored to be able to capture
all three cases of Fig. 3.5. On the other hand, the mathematical notation in Eq. 3.1
typically works with an index of the time series (i) and time index (j). Both elements
map to the respective timestamp (i, j)→ t.

Overall, TSCDataFrame supports any number of . . .
parameter in Eq. 3.1

. . . features N ≥ 1

. . . time series I ≥ 1
in the collection, as well as . . .
. . . arbitrary time values t

(i)
j ≥ 0

. . . and number of time steps Ji ≥ 1
in each time series of the collection.

Note that for practical reasons a time series can also consist of a single sample, i.e.
Ji = 1. Although a valid time series requires at least two samples, this is permitted to
use the data structure in situations where only a single state per time series is required.
For example, this is the case to describe the initial condition state of each time series.

The above features of TSCDataFrame and the strong integration to pandas — and
ultimately compatibility to many packages of the Python scientific computing stack —
overcome limitations that I found in other Python software projects. Table 3.2 provides
a comparison of multivariate time series collections. These projects already generalize
the two main limitations in many other projects: (1) only support univariate time series
and (2) only support single coherent time series.

12Currently, scikit-learn only supports DataFrame in, NumPy array out, i.e. without for-
warding the indices to the output. However, the maintainers intend to extend the API for
DataFrame in, DataFrame out. This behavior was anticipated in datafold and if the handling
becomes available in the future, the TSCDataFrame integrates seamlessly.
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Table 3.2: Comparison of proposed data structures that model time series collections. (arbit. =
arbitrary, contig. = contiguous, comp. = compatibility)

Package Object Varying
length

Arbit.
time

Contig.
memory

NumPy
comp.

sklearn
comp.

tslearn1 3-dim.
ndarray

no no no yes no

pysindy2 list of 2-dim.
ndarray

yes no no no no

darts3 composition of
DataFrame

yes yes yes no no

sktime4 nested
DataFrame

yes yes no no no

deeptime5 composition of
ndarray

yes no no no no

datafold
TSCDataFrame

multi-indexed
DataFrame

yes yes yes yes yes

1Tavenard et al. [2020]; 2de Silva et al. [2020]; 3Herzen et al. [2021]; 4Löning and Király [2020];
5Hoffmann et al. [2021]

The two main approaches in the alternative data structures of Table 3.2 to capture
time series collections are to (1) generalize the NumPy, ndarray or (2) make use of
DataFrame from pandas (which is also my approach). The first two columns in Ta-
ble 3.2 compare the objects to indicate whether a respective data structure allows time
series of variable length and arbitrary sampling. For example, tslearn describes a time
series collection in a three-dimensional tensor, which forces all time series to have the
same length (or fill invalid numbers). The next column of Table 3.2 indicates whether
the data is stored contiguously in memory. If this is not the case, the object requires in-
efficient copy operations to bring the data in a correct form, before it can be processed
with efficient numerical algorithms as in NumPy [Harris et al., 2020]. The last two
columns include example operations from NumPy and scikit-learn to highlight whether
a data structure is compatible with the respective package,

# X: respective data structures in Table 3.2
np.linalg.svd(X)
sklearn.MinMaxScaler().fit_transform(X)

Both operations are applied directly on the respective data structure X as an indication
of the compatibility —- I only mark whether the operation raises an error (no) or passes
(yes).

Of course, TSCDataFrame is yet another data structure. However, Table 3.2 high-
lights how my proposed data format overcomes many common limitations within al-
ternative formats. Furthermore, the data structure is essential to efficiently address
some of the features of DMD-based methods. But also from a software engineering
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perspective, the data structure is beneficial because it encapsulates various forms of
sampling strategies while storing the data efficiently and remaining compatible with
existing projects.

The next section describes the organization of extended functionality that is required
within method implementations that make use of TSCDataFrame. Section 3.3.1.3 then
describes basic functionality required within the data-driven modeling workflow.

3.3.1.2 Extended functionality: TSCAccessor

The pandas package provides various ways to extend its main data structures13. Inher-
itance is one way that I use for TSCDataFrame. Another way is to organize domain-
specific functionality that associates to the data structure in so-called “accessors”. An
accessor is registered and attached to the data structure to provide additional function-
ality.

In pcfold, I include a TSCAccessor that attaches specific functionality for the data
structure TSCDataFrame in the additional attribute tsc. This allows me to clearly
separate and organize dedicated methods that are often needed when using the data
structure. The following code snippet sketches some methods in the TSCAccessor
and at the end gives an example of its usage:

1 @pd.api.extensions.register_dataframe_accessor("tsc")
2 class TSCAccessor():
3

4 def __init__(tsc_df: TSCDataFrame):
5 self._tsc_df = tsc_df
6

7 def check_tsc(...)
8 # Ex. 1: check_tsc(ensure_const_delta_time=True)
9 # Ex. 2: check_tsc(ensure_min_samples=10)

10

11 def normalize_time() [...]
12 def time_derivative() [...]
13 def shift_matrices() [...]
14

15 # Example: first access attribute "tsc" and then a method
16 X: TSCDataFrame
17 X_minus, X_plus = X.tsc.shift_matrices()

The first function check_tsc(...) provides an easy way to validate specific assump-
tions about input data stored in TSCDataFrame. For example, whether all time series
are equidistantly sampled (Ex. 1) or if all time series have a minimum number of sam-
ples (Ex. 2). The next function normalize_time(...) returns a TSCDataFrame

13https://pandas.pydata.org/pandas-docs/stable/development/extending.html?
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with normalized time, such that all time series in the collection have time values ori-
ented to a (global) reference time starting at t = 0 and a sampling rate of ∆t = 1.
With time_derivative(...) it is possible to approximate time derivatives with fi-
nite difference schemes of arbitrary order. Setting up the scheme and computing the
derivative is performed with the Python package findiff [Baer, 2021]. The last function
shift_matrices(...) performs a typical operation that is required for DMD-based
methods. It creates the shifted matrices required for a regression in a linear system
identification (Eq. 2.28 on page 34). At the end of the code snippet, the shifted matrices
are computed by compiling the shift matrices from all time series in a TSCDataFrame.

Overall, the accessor provides a straightforward approach to collect specific function-
ality for time series collection data, that is not intended to be attached to the actual data
structure.

3.3.1.3 Extended functionality: validation splits and error metric

In data-driven modeling it is important to split the available data into separate parts to
obtain an unbiased model validation. Typically, the available data to construct a model
is split into training data and optimized on separate data, referred to as the validation
data. The training error (i.e. how well the model reconstructs the data) and valida-
tion error (i.e. how well the model predicts out-of-sample scenarios) provide valuable
insight into how well the model approximates the underlying system. For example,
the discrepancy between the training and validation error indicates how well the bias-
variance trade-off is balanced [Murphy, 2012, Sec. 6.4.4]. A large discrepancy indicates
that the model overfits the data.

While there are many established procedures for static data, these do not directly
transfer to the case of time series collection data. Importantly, the data is no longer
independent and cannot be treated as such. For example, data splits need to maintain
characteristics of the time series data, such as a constant time sampling. Fig. 3.6 (left)
exemplifies different ways of how a time series collection can be split.

time

st
at
e

TSCCrossValidationSplit.split(X_true)

S1

S2

# error analysis: 
metric = TSCMetric(metric, mode) 
metric(X_true, X_pred) 
 
# scalar value for optimization routines: 
score = TSCScoring(metric) 
score(X_true, X_pred) 

training:      |  

validation:  |   

                 

Figure 3.6: Overview of basic functionality required for model validation on TSCDataFrame
between true and predicted time series. With TSCCrossValidationSplit the data can
be split either along the time series in a collection (S1) or along the time axis (S2). Based on
the split, the differences between true and modeled time series can be evaluated with the
additional classes TSCMetric and TSCScore.
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In pcfold three dedicated classes perform the basic operations for model validation:
(1) split the data, (2) compute a metric and (3) score a model. The new class defini-
tions within datafold are necessary to account for the special handling of time series
collection data. However, all three classes mimic the behavior of scikit-learn14 to re-
main compatible with the established data-driven workflow. The following list briefly
describes all three operations:

• TSCCrossValidation is a base class to split data stored in a TSCDataFrame. Usu-
ally, this is performed on the measurements Xtrue to obtain separate sets for training
and validation. Unlike for static data, it is important to consider the temporal context
in the splits and maintain the necessary properties for a method, e.g. a constant sam-
pling interval ∆t. Fig. 3.6 includes two typical splits. The first split S1 is performed
along the initial conditions and implemented in TSCKFoldSeries. The second split
S2 is provided by TSCKFoldTime and splits along the time axis. Which splitting
strategy is suitable in a concrete setting depends on the underlying system proper-
ties (e.g. transient or ergodic state evolution) and the sampling form as per Fig. 3.5.
For example, splits along the time axis are more suitable for long time series in case
(a), whereas splits along time series are more suited for case (b).

• The class TSCMetric computes a metric between two TSCDataFrame objects, cor-
responding to true measurements Xtrue and predicted data Xpred. Common metrics
for time series analysis are the root mean squared error (RMSE) or the mean absolute
error (MAE). Contrasting to static data, however, the time information introduces
more “dimensions” in how a metric can be evaluated: per time series, per spatial
feature or per time step. These cases are covered in the argument mode of the metric.
The following list exemplifies the handing for the RMSE metric:

# compute metric for each time series
# requires: multiple time series (I > 1)
# returns: an aggregated error for each time series
rmse = TSCMetric(metric="rmse", mode="timeseries")
rmse(X_true, X_pred)

# compute metric for each time step
# requires: multiple time series with same reference time
# (case (b) in Fig. 3.5)
# returns: an aggregated for each time step
rmse = TSCMetric(metric="rmse", mode="timestep")

# compute metric for each feature column
# requires: multivariate time series (N > 1)
# returns: an aggregated error for each feature (column)
rmse = TSCMetric(metric="rmse", mode="feature")

14https://scikit-learn.org/stable/modules/cross validation.html
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To compute a metric both objects in the argument must have identical indices. Note
that once a metric object is initialized, it is callable. For example, the variables in the
code snippet can be used with error = rmse(X_true, X_pred).

All three modes can highlight different characteristics of the discrepancy between
a model and observation data. All modes are therefore suitable for an extended
error analysis within the model validation (cf. the system identification loop in
Fig. 2.9). For example, if the metric is computed per time step this again results in
an TSCDataFrame object, which can be used to identify systematic time-dependent
patterns of the error, such as periodic changes or steady increases of the error. Such
error analysis can also be used to detect regime transitions in a system as highlighted
in Gottwald and Gugole [2020].

• TSCScoring performs a final aggregation of a specified metric to a scalar value. The
computed metric is averaging to a single value. As per the metric, a score is a callable
object and requires two TSCDataFrame objects with identical indices. According to
scikit-learn, a score is interpreted as “higher is better”. This means error metrics
such as RMSE are negated. A score is suitable as the objective to maximize within
parameter optimization routines as part of the model selection.

3.3.2 Computing dense or sparse distance matrices (with Rdist)

This section continues with an interface in pcfold to compute a distance matrix from
data. As highlighted in Section 2.4.1 — in the context of kernel eigenmaps — a distance
matrix is the first step to set up a neighborhood graph to describe a discrete version
of the underlying manifold. The structure of a distance matrix therefore affects the ex-
tracted geometry. Furthermore, the algorithm to compute the distance matrix largely
influences the computational cost. A dense distance matrix scales O(J2) (where J are
the number of points) both in computational time and computer memory. With a typi-
cal laptop memory of 16 gigabytes (GB), this permits a maximum number of samples of
about J ≈ 44000. The typical stages of escalation to better scale kernel-based methods
are:

1. small to medium — computing and storing all distance pairs in a dense matrix is
possible.

2. medium to large — only relevant nearest neighbors (k-NN or δ-range) are com-
puted and stored. (What constitutes a relevant neighbor is will depend on the
kernel choice.)

3. large — subsample the original point cloud by selecting reference points (also
referred to as landmarks) [Shen and Wu, 2020]. A danger is that sparsely sampled
regions in a point cloud vanish in the reference points.

Sparse matrices provide a first way to improve the memory complexity to O(k · J),
where k � J is the (average) number of neighboring pairs that are stored per point.
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Moreover, there are efficient algorithms dedicated to space matrices in follow-up op-
erations, such as computing the eigenpairs from a sparse kernel. In my thesis, I only
consider cases 1 and 2.

In the next subsection (3.3.2.1) I describe the general interface in pcfold that provides
an easy integration of alternative implementations of either dense or sparse distance
matrix computations. One such available implementation is rdist as a contribution of
my thesis. The underlying algorithm of rdist to compute a sparse δ-range distance
matrix is described in Subsection 3.3.2.2.

3.3.2.1 General distance matrix interface

The pcfold layer provides an interface that allows a dense or sparse distance matrix to
be computed from a point cloud (which can also be a TSCDataFrame). In the dense
case, a NumPy array is returned, whereas in the sparse case a matrix in a compressed
sparse row (CSR) format is returned; as provided by the SciPy package [Virtanen et al.,
2020].

While computing a dense distance matrix is straightforward in a brute force fashion,
there are many different approaches and implementations to compute a sparse distance
matrix. For the sparse case I only consider δ-range algorithms (see Section 2.4.1). The
main advantage is that a pairwise kernel matrix is symmetric for both the dense or δ-
range case (cf. Table 2.4). However, the interface in pcfold is easy to extend to also
support k-NN algorithms.

Fig. 3.7 displays algorithms available in pcfold, which all derive from a single ab-
stract base class DistanceAlgorithm. The interface consists only of a single function
__call__(X,Y), which in Python is a so-called magic function. In this case, the func-
tion makes an object directly callable without the need to access an explicit method
name [VanRossum and Drake, 2010].

A general distance matrix is computed from two static point clouds: (1) reference
points (X) and (2) query points (Y ) (see Curtin et al. [2013]). A component-wise dis-
tance matrix contains all distance values from points included in Y to points in X . The
special case in which the reference and query points are identical Y = X is referred to
as the pairwise case:

Di,j(X,X) = d(xi,xj) pairwise (training) (3.2)
Di,j(X,Y ) = d(xi,yj) component-wise (out-of-sample, test). (3.3)

In kernel-based methods, the reference pointsX are always the training data, whereas
Y contains out-of-sample data. Typically, the two cases of a pairwise and component-
wise distance matrix are treated separately. This is because the pairwise case allows for
algorithmic optimizations as the final matrix is symmetric and square. For example, to
compute a dense pairwise distance matrix in the SciPy package the function pdist(X)
is applicable, whereas for the component-wise case the cdist(X,Y) is used.

85



3 Software for operator-informed system identification

DistanceAlgorithm

__call__(X, Y=None, cut_off=None)

BruteForce Rdist ScipyKdTree SklearnBalltree GuessOptimal

if Y is None:        if cut_off is None: 
   pairwise             dense matrix 
else:                else:  
   component-wise       sparse CSR matrix  

cases

extends

Computes 
all distance 
pairs with SciPy

Section 3.2.2.1 kd-tree  
from Scipy

Ball tree from  
scikit-learn

Automatic 
selection 
based on heuristics

Figure 3.7: Class diagram for distance algorithms in pcfold. The DistanceAlgorithm pro-
vides a base class which requires a implementation of the __call__ function in the sub-
classes. The algorithm highlighted in gray is described in Section 3.3.2.2 as part of my thesis
contribution.

The default setting in pcfold is to choose an algorithm based on a fixed set of rules in
GuessOptimal. Here an algorithm is selected based on simple heuristics that consider
the dataset size and the parameter choices. If no cut_off is set (cut_off corresponds
to δ) then a dense matrix is computed, otherwise a sparse distance algorithm is se-
lected. An optimal selection of δ depends on the relative distances and properties of
the dataset. Moreover, its choice is also constrained by computer memory for large
datasets.

The algorithms to compute a sparse distance matrix usually store the point cloud in
tree-based data structures [e.g. Muja and Lowe, 2014]. These data structures already
provide a coarse neighborhood relation within the point cloud and can therefore limit
the necessary number of distance computations. In Fig. 3.7 a kd-tree and ball tree imple-
mentation from SciPy and scikit-learn are included. While such standard approaches
are a good choice for relatively low point dimensions, the search time often grows sub-
stantially for increasingly larger point dimensions (i.e. N � 1). The next section de-
scribes a new algorithm as a way to speed up existing δ-range algorithms for this case
of larger point dimensions.

3.3.2.2 Rdist: Efficient computation of sparse distance matrix for
high-dimensional data

This section describes a new algorithm that I developed together with Felix Dietrich.
Readers who are primarily interested in datafold and its architecture may skip this sec-
tion.

Rdist is an algorithm to efficiently compute a sparse δ-range distance matrix with
Euclidean metric from high-dimensional data. The idea is a result of algorithmic ex-
perimentation to speed up existing distance matrix algorithms and ultimately kernel-
based methods, such as Diffusion Maps covered in the next section. Unlike probabilistic
approaches such as Locality Sensitive Hashing (LSH) [Andoni and Indyk, 2006] or ap-
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proximate nearest neighbor algorithms [Muja and Lowe, 2014], rdist is exact in that it
can be proven to find all neighbors within a δ radius for each point.

The main idea for speeding up the neighborhood search is based on a simple ob-
servation: linear and unitary projections of a point cloud always preserve the local
neighborhood. This is given by the Johnson-Lindenstrauss lemma for random projec-
tions [Clarkson, 2008]. The manifold assumption is central to the idea, which states
that high-dimensional points within a dataset are assumed to be sampled on a mani-
fold with intrinsic lower dimension (cf. Section 2.4.2). Algorithm 1 describes rdist with
graphics to illustrate the three essential steps.

Input : X ∈ R[J×N ] point cloud with points x ∈ RN oriented row-wise
Parameter: δ > 0, radius

γ ∈ (0, 1], contraction bound
S < J , number of samples to draw in PCA

Output : D, sparse distance matrix in compressed sparse row (CSR) format

1. Z = PCA(n_components=R).fit_transform(XS)
where R =

∑k
i=1 σi ≥ γσ̄ with smallest integer k that fulfills the condition; the

eigenvalues are sorted (σ1 ≥ σ2 ≥ . . . ≥ σN ) and σ̄ =
∑N
i=1 σi

scikit-learn 
(Python package)

project

2. Dcand. = {(i, j) : ||zi − zj || < δ, (zi, zj) ∈ Z}

 

fast -range search algorithm 
(shared library in C++) 

search

3. D = {(i, j, d) : (i, j) ∈ Dcand., d = ‖xi − xj‖2 < δ}

 own implementation 
(translated and compiled C code)

pullback

Algorithm 1: Rdist : Computing a sparse δ-range distance matrix with manifold
assumption. Note that the PCA is expressed in terms of scikit-learn code notation
for easier readability.

Since the distance matrix is computed independently of temporal order in the data, the
time indices are omitted here. The data corresponds to X ∈ R[J×N ] with J samples of
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N -dimensional states.

The idea is expressed in three steps and referred to as “project-search-pullback”:

1. Project the high-dimensional point cloud into a low-dimensional space with a ran-
dom and unitary matrix. In the illustration for step 1, this is exemplified with a pro-
jection from a two-dimensional plane in three dimensions (x ∈ X , corresponding to
high-dimensional samples on the manifold) into a reduced space of two dimensions
(z ∈ Z).

To increase the likelihood that the point distances are well-preserved during this
projection, I perform a Principal Component Analysis (PCA) based on a subsampled
dataset XS (containing S randomly selected points). While it is possible to use any
random unitary matrix, using the (approximate) principal coordinates is justified by
linear dimension reduction, where the principal components orientate to directions
with maximal variance in the dataset [Murphy, 2012, Sec. 12.2]. Another benefit of
computing the PCA is that it also computes eigenvalues {σi}Ni=1, which can be used
to compute a target dimension R of the projection (in the graphic R = 2). For this, I
include the contraction bound, γ ∈ [0, 1], as a new parameter that steers the trade-off
between computational cost and the preservation of distance values according to the
PCA eigenvalues.

2. Search and collect all point pairs (i, j) within the δ-radius in the projected space (Z)
and store the candidate pairs in Dcand.. Note that Dcand. does not store the actual
distances in the projected space. Because the point dimension is reduced, the search
can now be performed more efficiently by standard algorithms such as the kd-tree.

Crucially, according to Johnson-Lindenstrauss lemma, all pairwise Euclidean dis-
tances in the projected space are equal or smaller to the (original) ambient space dis-
tances. From this follows that the set of candidate pairs in Dcand. is guaranteed to
contain all true pairs of the ambient space. In the illustration of Algorithm 1 the δ-
radius contains two points, which correspond to an ellipse (in blue) in the ambient
space.

3. Pullback the candidate point pairs Dcand. to the ambient space. Essentially, this step
corresponds to a filter operation in which all candidate pairs are removed that have
a distance greater than the radius di,j > δ in the ambient space. Ideally, the num-
ber of pairs to be removed is small, which depends on how well the distances are
preserved during the projection of the first step. If many points are removed then
this introduces a larger computational overhead. Finally, once the candidate pairs
are filtered, the distance matrix D is set up in a sparse format and returned by the
algorithm.

The basic form of the algorithm is relatively easy to implement because the search is
executed by existing δ-range algorithms. Rdist is therefore not an algorithm to search
nearest neighbors per se, but provides an approach to speed up computations of existing

88



3 Software for operator-informed system identification

algorithms if the manifold assumption is fulfilled. If a more efficient δ-range algorithm
becomes available, it is possible to incorporate it in rdist.

To justify the additional operations in “project” and “pullback”, the main objective
in rdist is enhancing computational speed. However, as highlighted in Section 2.5.2,
Python itself has drawbacks for efficient low-level algorithms and makes heavy use of
the two-language paradigm. For this reason I implemented the source code of rdist
separately in Cython15 [Behnel et al., 2011]. Cython is a language extension of Python,
which is compatible with Python but at the same time provides features of compiled
languages. Choosing to use another programming language solves various issues for
rdist when used in combination with datafold :

• Make use of high-performance libraries: In the second step of Algorithm 1, I
require an efficient state-of-the-art implementation of a search algorithm. Cython
allows direct and seamless interfacing with high-performance libraries such as
from C, C++ or Fortran. It is possible to translate between standard NumPy ar-
rays and C-style pointer variables such that data can be passed from Python to a
compiled language with zero copy.

• Maintain full compatibility to Python: After the code is compiled, Cython bun-
dles the software to a normal Python package. This means that rdist can be in-
cluded in datafold as a regular package and distance matrix algorithm (cf. Fig. 3.7).

The compatibility also works in the other direction: Cython allows importing
Python packages. I can therefore still use the same packages from the scientific
computing stack. In rdist I make use of this feature in the “project” step, where
I use scikit-learn to perform the PCA, and in the “pullback” step where I can
directly return the final distance matrix in a compressed sparse row format from
the SciPy package.

• Remove restrictions from the Python interpreter: As highlighted in Section 2.5.2,
Python is well-suited for a clear and flexible programming front end. However,
it comes with serious computational limitations because of the interpreter pro-
cess and the Global Interpreter Lock (GIL). In Cython the GIL can be explicitly
disabled, which gives access to shared memory parallelization (e.g. by using
OpenMP16). I utilized this feature for the “pullback” operation in the last step
of Algorithm 1, which is an embarrassingly parallel operation:

# loop over all canidate pairs (i,j) in parallel and compute
# the pairwise distance in the ambient space:
for k in prange(

n_candidates, schedule="dynamic", nogil=True):
i, j = candinate_set[k]
dist[k] = compute_distance(X[i, :], X[j, :])

15https://cython.org/
16https://www.openmp.org/
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The prange acts as a typical Python built-in range operation but performs the
loop in parallel. The code snippet is a simplified version of the actual code in rdist.

In a benchmark analysis in Section 4.4 I include both simulated and real-world datasets.
In the final configuration of rdist, I use a kd-tree of the C++ library mlpack [Curtin et al.,
2018]. This choice is the result of the benchmark analysis, where I found that mlpack
generally provides the fastest state-of-the-art implementations of tree-based algorithms
to construct sparse distance matrices. The success of the “project-search-pullback” idea
is that rdist together with the kd-tree of mlpack outperforms the kd-tree used on its
own.

3.4 dynfold: State representation and linear system
identification

The middle layer of datafold’s software architecture includes two types of data-driven
methods: data transformations to obtain a new state representation (which can be can
also be split into temporal or spatial feature extraction methods), and regressions of
time series data for system identification. The approximation of operators becomes
essential for both types of methods. Mathematically, the two types are described by
deriving the following functions

g(xj) = zj g : RN → RM state representation (3.4)

xj+1 = F∆t(xj) F∆t : RN → RN system identification (3.5)

The (unknown) function g(x) describes a coordinate change of the data x to a new
state representation z. In a machine learning perspective, this corresponds to an un-
supervised task, which means that the target values z are not explicitly given and are
instead extracted from the data. In Eq. 3.5, F∆t describes the flow of a dynamical sys-
tem with a constant time increment of ∆t between the states. This corresponds to a
supervised regression task, which is imposed by the state evolution in the time series.
Importantly, at dynfold all methods that solve either of the two tasks in Eq. 3.4 – 3.5 are
treated separately to promote modularity within the layer. A combination of methods
is then covered in the higher level appfold, which I describe in the next section.

Fig. 3.8 includes the main class organization in dynfold together with the three main
methodological components of this thesis: (1) time delay embedding to extract tem-
poral features (Eq. 3.4), (2) DMAP to extract spatial features (Eq. 3.4) and (3) DMD
for mode decomposition (Eq. 3.5). I describe each of the methodological components in
Sections 3.4.2 – 3.4.4. In the next section I highlight the class organization of data-driven
methods, which perform the two tasks of Eq. 3.4 – 3.5.
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TakensEmbedding
Section 3.4.2

DMD
Section 3.4.4

DiffusionMaps
Section 3.4.3

sklearn.BaseEstimator

fit(X, y=None, **fit_params)

get_params()

set_params(**params)

TSCTransformMixin

transform(X)

inverse_transform(X)

fit_transform(X)

temporal features 
Input/Output: 
   * TSCDataFrame

spatial features 
Input/Output:  
   * NumPy array 
   * TSCDataFrame

system identification  
Input/Output:  
    * TSCDataFrame

mixin
mixin

extends mixin

TSCPredictMixin

predict(X_ic, time_values=None)

fit_predict(X, **fit_params)

reconstruct(X)

Figure 3.8: The class organization in dynfold mirrored from scikit-learn. All classes that solve
data-driven tasks inherit from BaseEstimator and mixins according to which task is ad-
dressed. Attributes in italics are abstract.

3.4.1 Mixin design pattern to organize data-driven methods

According to datafold’s design decision, the application programming interface (API) of
all methods in dynfold align to scikit-learn [Buitinck et al., 2013; Pedregosa et al., 2011].
While the scikit-learn package already covers common tasks such as feature extraction
in Eq. 3.4 or function regression in Eq. 3.5, a main objective in this section is to extend
the class organization and API for time series collection data (TSCDataFrame) and
system identification. A goal is to remain as compatible as possible with scikit-learn to
make use of its available functionality.

To achieve this, the base class of all data-driven methods is BaseEstimator from
scikit-learn, irrespective of the actual task. Because of the generality of the base class,
it does not include any specific functionality and only performs rudimentary checks of
whether an inheriting class follows the design rules of scikit-learn17. BaseEstimator
requires that an inheriting subclass implements a fit(X) method. This performs the
training of a model with data X in the argument.

A principle design pattern in scikit-learn — which I mirror in datafold — are so-called
“mixin classes” (also referred to as “refinement classes”). Mixins are an approach in
software engineering in which a class encapsulates reusable code fragments that can
be integrated into independently-defined classes [Bracha and Cook, 1990; Smaragdakis
and Batory, 2002]. A mixin-based software design promotes a form of “incremental
programming”, in which building blocks can be added to classes that require the same
functionality [Bracha and Cook, 1990].

Because the integration is often performed by class inheritance, the software pattern
is best practiced in object-oriented programming languages that support multiple class

17https://scikit-learn.org/stable/developers/develop.html
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inheritance [Bracha and Cook, 1990], which is the case in Python. The class inheritance
is formulated as a composition of mixins and provides a compromise between “true
multi inheritance” (in a strict sense) and restrictive single inheritance, such as in the
Java programming language [Smaragdakis and Batory, 2002].

In scikit-learn, mixins are used to distinguish between learning tasks and attach com-
mon task-specific code to a class by inheritance. The schematic layout of a data-driven
method that integrates two mixins is:

class MethodImpl(BaseEstimator, Mixin1, Mixin2):
[...]

In this case MethodImpl “is-a” BaseEstimator and integrates two kinds of func-
tionality from Mixin1 and Mixin2. The dynfold layer introduces two mixins, which
correspond to the two tasks of state representation and system identification:

TSCTransformMixin covering tasks in Eq. 3.4:
The class TSCTransformMixin generalizes scikit-learn’s TransformMixin to sup-
port both static and temporal data. The functions that should be available in a “trans-
former class” are transform(X) and inverse_transform(X) (only if the inverse
exists). These functions are identical to the existing TransformMixin and therefore
fully compatible to scikit-learn. However, the prefix “TSC” highlights that the mixin in-
cludes additional functionality to process and validate TSCDataFrame data and main-
tain the time indices in the data structure to the output. In addition to spatial feature
extraction methods, the new TSCTransformMixin therefore enables temporal feature
extraction, such as time delay embedding in TakensEmbedding (Section 3.4.2), which
is currently not possible in the standard scikit-learn.

While Fig. 3.8 includes the main data transformations used in this thesis, Table 3.3
lists a set of standard methods that are included in dynfold. All classes with dependency
use existing and well-tested implementations and require only minor adaptations to
process the data structure TSCDataFrame, which is a benefit from the compatible data
layout of TSCDataFrame (cf. Table 3.2).
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Table 3.3: Standard data transformations to extract spatial (s) or temporal (t) features. All classes
are included in the layer dynfold.

Class Description s/t Dependency
FeaturePreprocess Wrapper for basic pre-processing,

such as data normalization
s/t scikit-learn1

Identity Pass-through data; well-suited for
testing.

s/t -

PrincipalComponent Linear projection on principal
components.

s/t scikit-learn1

RadialBasis Describe data in coefficients of
radial basis functions.

s/t SciPy2

PolynomialFeatures Generate polynomial
combinations of data.

s/t scikit-learn1

ApplyLambda Element-wise data
transformations as specified by
user

s/t -

FiniteDifference Approximate time derivative from
data with difference schemes.

t findiff 3

1Pedregosa et al. [2011]; 2Virtanen et al. [2020]; 3Baer [2021]

TSCPredictMixin covering tasks in Eq. 3.5:
The TSCPredictMixin is utilized in methods that perform system identification from
time series data and can predict future states according to the identified flow (F∆t in
Eq. 3.5). This poses a multivariate regression problem (assuming the common case of
N > 1). TSCPredictMixin therefore templates from the API for supervised tasks.
The main function predict(X) maps an input state to future system states. There is
a key difference compared to regression methods of static data. Because of the recur-
sive nature of a system’s flow F∆t, the time series data X already includes the snapshot
pairs that provide the input and target states, (xj ,xj+1). This means a single sample
can serve both as input and target vector, while in static data these are more separated.
Moreover, applying a flow for a larger prediction horizon than ∆t means that a sin-
gle initial sample can map to many future states. Unlike a one-to-one map in static
regression, the map is one-to-many.

The class TSCPredictMixin also adds a new attribute reconstruct(X) which
does not exist in the scikit-learn API. The function is meant to reconstruct time series
collection data by extracting the initial states from all time series in a TSCDataFrame
(usually containing true measurements) and evaluate the model at the same time values
of the time series. This operation turned out to be practical for model validation and
comparing observed and predicted data (cf. Section 3.3.1.3).
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3.4.2 Time delay embedding

Time delay embedding is a method to deal with ill-defined dynamics. During the em-
bedding previous states are augmented to a new state which can reconstruct the state
dynamics (background in Section 2.4.3). The method classifies as temporal feature ex-
traction and therefore exclusively operates on time series data. The following code
snippet provides a schematic layout of the class to perform time delay embedding in
datafold :

1 class TakensEmbedding(BaseEstimator, TSCTransformMixin):
2 def __init__(self, delays, kappa):
3 # set parameters in Eq. 2.44
4

5 def fit(self, X: TSCDataFrame):
6 # investigate input X and set internal attributes
7

8 def transform(self, X: TSCDataFrame):
9 # inherited from TSCTransformMixin

10 self._validate_data(X, min_length=self.delays+1,
11 delta_time=delta_time_fit)
12

13 # perform data transformation in Eq. 2.44
14 for ts in X.itertimeseries():
15 # perform time delay embedding
16 return X_embedded
17

18 def inverse_transform(self, X: TSCDataFrame):
19 # only return the original feature names
20 return X.loc[:, self.feature_names_in_]

The inheritance profile corresponds to the diagram in Fig. 3.8, where the base class
BaseEstimator and mixin TSCTransformMixin require implementing the fit(X),
transform(X) and inverse_transform(X)method. The transformation is straight-
forward and can be easily performed in a per time series fashion by using the iterators
of TSCDataFrame (X.itertimeseries()). The inverse transformation is trivial in
that it only returns the original states.

The code snippet also exemplifies the use of common functionality that is included
with TSCTransformMixin. In the transform(X) method, the data in X is validated
in _validate_data(...). The statement checks whether the data contain the same
feature names and have the same sampling rate as during training (in fit(X)). Fur-
thermore, all time series must contain an equal or greater number of states than the
specified delay+1 parameter to perform the embedding.

An important side-effect of time delay embedding is that it increases the point di-
mension (M > N ) but reduces the overall number of samples in a time series. A single
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target vector has a dimension of M = N(d + 1), where d is the number of delays. The
first d states of each time series therefore have no corresponding output state. This also
means that in a prediction task to perform the embedding, g(Xd+1) = z, an initial state
now requires a time series X with d+ 1 measurement samples.

3.4.3 Diffusion Maps

Diffusion Maps (DMAP) is a versatile and widely-adopted kernel-based method in
data-driven research [Coifman and Lafon, 2006b]. A primary focus of the method is
to robustly extract interesting geometric structures from point clouds. The method has
been used for static data [e.g. Coifman and Lafon, 2006b] and has been frequently inte-
grated for the analysis and modeling of temporal data [e.g. Berry et al., 2013; Dietrich
et al., 2016; Giannakis, 2019; Mauroy et al., 2020].

In the main setting of this thesis, as displayed in Fig. 3.1, DMAP is a central compo-
nent for operator-informed system identification. In the setting, I make use of DMAP
to approximate the eigenfunctions of the Laplace-Beltrami operator on time series data
(i.e. potentially time-delayed as in Fig. 3.1). The obtained eigenfunctions serve two
purposes: to extract latent manifold coordinates that relate to the hidden state space —
with the assumption of a compact Riemannian state space manifold — and to obtain a
geometric aligned function basis to approximate the Koopman operator.

The main requirements of a method implementation to capture these tasks within
my thesis are

1. support of time series collection data

2. compatibility with the scikit-learn API

3. support of an out-of-sample extension

4. support of a sparse kernel matrix

These requirements are summarized in Table 3.4. Moreover, the table includes three
additional features, which I have integrated into my own implementation:

5. support of an arbitrary kernel

6. conjugate transformation of the kernel matrix to increase numerical stability

7. arbitrary eigenproblem solver for algorithmic experimentation

Despite the importance of DMAP in research, I found that openly available software
packages lack essential functionality; see Table 3.4. As one of the main packages for
machine learning in Python, the scikit-learn project already provides a variety of mani-
fold learning algorithms. However, it only includes “spectral embedding” as a special
case of DMAP in which the characteristic normalization steps are not included (α = 0
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in Eq. 2.38 on page 45). Consequently, the eigenfunctions of the Laplace-Beltrami op-
erator are only well-approximated if the points in a dataset are uniformly distributed
on the underlying manifold, which is rarely the case in practice [Coifman and Lafon,
2006b].

Table 3.4: Comparison of Python packages that implement the Diffusion Maps method
(Abbreviations: arbit.=arbitrary, conjug.=conjugate, compat.=compatibility oos=out-of-
sample, eig.=eigenvalue).

Package time
series

sklearn
compat.

oos sparse
kernel

arbit.
kernel

conjug.
kernel

arbit.
eig.solver

PydiffMap1 no yes yes k no no no
scikit-learn2 no yes no k no no yes
DiffusionMaps3 no no no δ no no no
megaman4 no no yes k no no yes
UQPy5 no no no k yes no no
DiffusionMaps6 yes yes yes δ yes yes yes
1Thiede et al. [2021]; 2 Pedregosa et al. [2011]; 3Bello-Rivas [2017]; 4McQueen et al. [2016];
5Olivier et al. [2020]; 6datafold

Fig. 3.9 gives an overview of the software design of the Python class DiffusionMaps.
The mathematical equations for DMAP are covered in Eq. 2.37 – 2.44 on page 45. Ac-
cording to the class hierarchy established in dynfold, as an unsupervised spatial fea-
ture extraction method DiffusionMaps inherits from BaseEstimator and includes
functionality of TSCTransformMixin.

Much of the necessary flexibility in DiffusionMaps is already established in the
previous pcfold layer, which covers time series collection and an interface to compute
a (dense or sparse) distance matrix. The kernel function is simply applied on a given
pairwise distance matrix (Eq. 2.36 on page 40). The kernel interface is similar to the
distance matrix in that it has a single main function __call__(X, Y) at which the
kernel is computed. Both X and Y can be either static (ndarray) or temporal data
(TSCDataFrame). The second argument distinguishes how the kernel is computed:
pairwise during training (Y=None) and component-wise for out-of-sample evaluations
(Y is given).
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extends

BaseManifoldKernel
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+ __call__(X, Y=None, ...)

DmapKernel

renormalize(kernel_matrix, alpha)
normalize(kernel_matrix)
symmetric_conjugate(kernel_matrix)
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inverse_transform(X)
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DistanceAlgorithm
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use

mixin
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(Example)
GaussianKernel
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use

example

Figure 3.9: Class diagram for DiffusionMaps class. The kernel interface and eigensolver se-
lection is covered in pcfold. In the example a GaussianKernel is used within the dedicated
DmapKernel, which performs the characteristic normalization of a kernel matrix to describe
the diffusion process.

A main design idea in the software layout of DiffusionMaps is that the normal-
ization steps and matrix conjugation (Eq. 2.38 – 2.39) are encapsulated in a dedicated
“meta-kernel” class DmapKernel; Fig. 3.9. This means that the symmetric and posi-
tive kernel, which describes the point similarity (in Fig. 3.9 the GaussianKernel is
shown as the default) is wrapped in DmapKernel as another kernel. This provides
great flexibility because the three operations are now separated: (1) distance matrix,
(2) kernel and (3) DMAP specific normalization/conjugation steps. Ultimately, this al-
lows a user to arbitrarily specify the distance metric and kernel. Surprisingly, only one
(UQPy ) of the other packages in Table 3.9 covers this feature, despite modifications at
the kernel specification being the main source of methodological variation in the DMAP
framework. The following list highlights available kernels from recent research that are
included in pcfold. Detailed explanations are left to the cited articles as this is beyond
the scope of my thesis.

• Various radial basis kernels, such as the Gaussian kernel as the default [Coifman
and Lafon, 2006b].

• Continuous k-nearest neighbor kernel (ContinuousNNKernel); computes an
unweighted kernel matrix, which comes with additional guarantees for topolog-
ical data analysis [Berry and Sauer, 2019].

• A ConeKernel as a “dynamically-adapted kernel”, which integrates the tempo-
ral context in the point proximity by using finite difference schemes [Giannakis,
2015; Giannakis and Majda, 2013].
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Dynamically-adapted kernels are particularly interesting for my thesis because they
include the temporal context of time series data. In fact, the composed data trans-
formation of time-delayed states and subsequent kernel function is also characterized
as a dynamically-adapted kernel [Giannakis, 2015]. Note that in the comparison of Ta-
ble 3.4, DiffusionMaps is the only class that can process time series data and therefore
the only implementation that supports dynamically-adapted kernels.

The following code snippet highlights a typical workflow that follows from the avail-
able API in TSCTransformMixin (cf. Fig. 3.8):

X = make_swiss_roll(5000) # data to fit model
X_oos = make_swiss_roll(250) # out-of-sample data

# set up model
dmap = DiffusionMaps(

# insert arbitrary kernel
kernel=GaussianKernel(6),
# number of eigenpairs to compute
n_eigenpairs=7,
# distance matrix specification
dist_kwargs={"cut_off": 3, }

)

# construct model and map data new state representation
Psi = dmap.fit_transform(X)
# map out-of-sample data to the new state representation
Psi_oos = dmap.transform(X_oos)

The code listing uses data sampled from the swiss-roll manifold, which is also used
as an example geometry in Section 2.4.2. Fig. 3.10 displays the coordinates (ψ2, ψ6), in
which the swiss-roll is embedded into a two dimensional space that keeps important
geometric information of the swiss-roll.

An essential feature for the map is the out-of-sample extension, in which the eigen-
vectors as point evaluations are expanded to the neighborhood region. The out-of-
sample extension is required if the DMAP is integrated into a supervised task, such
as system identification. The standard method in DiffusionMaps is the Nyström ex-
tension, which is also included in Eq. 2.42 – 2.43 on page 45. The Nyström extension
requires the component-wise evaluation of internal normalized kernel (i.e. K(X,Y ),
where Y includes the out-of-sample data). The availability of the component-wise
evaluation of a normalized kernel highlights the advantage of a dedicated meta-kernel
DmapKernel. An example of the out-of-sample mapping for the swiss-roll is given in
Fig. 3.10 where the separate test samples in the right plot have the same mapping as in
the identified eigenmap in the left plot (indicated by the color code).

The dynfold layer also contains implementations of more involved out-of-sample ex-
tensions, such as a multi-scale Laplacian pyramid [Fernández et al., 2020] and geomet-
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ric harmonics [Coifman and Lafon, 2006a]. However, because these methods require
solving a separate regression, I do not detail the additional extensions. In the data anal-
ysis in the next chapter, I only use the Nyström extension.

Figure 3.10: Unrolling the swiss-roll in two coordinates. Left: Embedding of the training data
with 5000 samples onto the second and sixth eigenfunction. Right: Out-of-sample mapping
of 250 samples to the same coordinates that are not in the training data.

The last feature in Table 3.4 describes an ability to choose which eigensolver to use.
This is relevant because computing the eigenpairs (Eq. 2.40) often represents the com-
putational bottleneck. Depending on the kernel and model parametrization different
eigensolvers can be suitable. Typically, only the leading eigenpairs are computed from
the (normalized) kernel matrix (parameter n_eigenpairs). In the standard imple-
mentation, this requires iterative algorithms that handle a matrix that is non-symmetric
because of the row-stochastic normalization step in DMAP. However, if the symmet-
ric conjugation of the matrix (Eq. 2.39) is performed, it is possible to use dedicated
eigensolvers for symmetric matrices. Overall this improves the numerical stability and
computational efficiency, particularly if the matrix is sparse. Depending on the setting
and resulting matrix properties, the default behavior is that the eigensolver backend
is selected from the SciPy package eigs or eigsh, which utilize Arnoldi iterations
[Virtanen et al., 2020].

The flexible choice of eigensolver permits algorithmic experimentation to accelerate
the computation. A student group at the Technical University of Munich used this flex-
ibility to compare the default SciPy eigensolvers with an external C++ library SLEPc
(Scalable Library for Eigenvalue Problem Computations) [Hernandez et al., 2009]. They
could show that it is possible to delegate the iterative computations to a Linux cluster
(using up to 256 cores) and that for larger datasets SLEPc outperforms the default
ARPACK solvers by a factor of about two. The setup and results are contained in an
openly available technical report [Grad and Raith, 2021].
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3.4.4 Dynamic Mode Decomposition

In this section, I continue with variants of the Dynamic Mode Decomposition (DMD)
intending to perform system identification. The assumption for the basic DMD is that
the states in the time series are well-defined and can be described with linear dynamics.
These assumptions are rarely fulfilled in practice. The main objective is to encapsulate
DMD variants as a modular component as part of the broader Extended Dynamic Mode
Decomposition (EDMD) to perform nonlinear system identification in Section 3.5.

Section 2.3.2 describes DMD as a powerful methodology. At its core the most basic
DMD variant first performs a linear regression to solve for a system matrix U∆t and
subsequently diagonalizes this matrix into spectral components:

U∆t = X+X
†
− (3.6)

U∆t = ΦΛΦ−1 (3.7)

X: TSCDataFrame
X_m, X_p = X.tsc.shift_matices(X)
U = np.linalg.lstsq(X_m, X_p).T
Phi, Lambda, Phi_i = diagonalize(U)

The left side shows the central equations and the right side the corresponding code by
using available functionality of the pcfold layer. Note that the mathematical equations
are expressed in column-oriented states, whereas the states in TSCDataFrame are row-
oriented (following the convention of scikit-learn).

The two matrices X+ and X− are obtained by shifting all time series within the time
series collection. The corresponding operation shift_matrices is provided in the
accessor of TSCDataframe (see Section 3.3.1.2). For simplicity I assume that the matrix
U∆t has full rank for the subsequent diagonalization in Eq. 3.7.

The matrix U∆t and the spectral components (Φ,Λ,Φ−1) can either be used to ana-
lyze the estimated dynamical system, or to perform state interpolations or future pre-
dictions. In the class organization of dynfold this corresponds to a (supervised) system
identification task as per Eq. 3.5.

Despite its high theoretical value as a linear decomposition method, openly available
software that provides a well-structured interface to utilize the mode decomposition
for system identification is scarce. The largest Python package providing a software
structure and implementation of various DMD variants is PyDMD [Demo et al., 2018].
Similar to datafold, the PyDMD package is compatible with scikit-learn and builds on
the scientific computing stack of Python (cf. Fig. 2.10). However, it comes with two
significant shortcomings for the requirements of my thesis:

1. Only single and coherent time series are supported for the input data. This coun-
teracts the established data structure TSCDataFrame to support generalized sam-
pling schemes of dynamical systems. In the literature these generalizations are
described for the DMD in Tu et al. [2014]. All of my data analysis in Chapter 4
requires this generalization to time series collection data.

2. PyDMD does not make use of the full capabilities of the underlying linear dynam-
ical system. For example, it is not possible to interpolate states below the time
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sampling rate ∆t or predict the full solution trajectory based on a single initial
condition.

An additional non-essential feature missing from PyDMD is that it does not support
approximating a differential form of the dynamics. To overcome these limitations I
describe a software design to organize standard DMD variants in dynfold. This is illus-
trated in a class diagram of Fig. 3.11. Currently, there are three DMD variants and a
wrapper for the DMD variants in PyDMD:

DMDFull full decomposition as per Eq. 3.7
DMDEco perform an “economical” DMD that linearly reduces the

states with a Singular Value Decomposition (SVD). This is
useful if the original measurements x ∈ RN are high
dimensional N � 1 [e.g. Kutz et al., 2016a]

gDMDFull full decomposition of the system generator L = Ẋ+X
†
−,

where Ẋ contains the time derivatives of the time series
[Klus et al., 2020]

PyDMDWrapper access to the various DMD variants in PyDMD such as the
higher-order DMD [Le Clainche et al., 2017],
multi-resolution DMD [Kutz et al., 2016b] or
forward-backward DMD [Dawson, 2016]

An advantage of having the wrapper class of PyDMD is that it gives access to the
additional DMD variants. These, however, come with the above-mentioned short-
comings. I mainly use the wrapper to cross-check the implementations contained in
datafold’s unit tests.

As shown in Fig. 3.11, all DMD classes have DMDBase as the only base class. DMDBase
already provides implementations for predict, reconstruct and score that are
shared by all concrete sub-classes. Therefore, a new DMD class only requires providing
the fit(X) method in which the decomposition of the time series data in X is carried
out. Ultimately, this is where the Koopman operator is approximated in a matrix form.
Overall, this allows an easy integration of new DMD variants and acknowledges the
active research in the field (cf. Table 2.3).
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Figure 3.11: Class diagram for DMD variants in dynfold. The classes DMDBase and
LinearDynamicalSystem include functionality that are common for all variants.
As a method for system identification the DMDBase (and its variants) inherits from
BaseEstimator and TSCPredictMixin.

DMDBase itself inherits from the standard class BaseEstimator for data-driven
models and TSCPredictionMixin to highlight its usage for system identification.
Within fit each DMD method is responsible for setting up attributes to set up a linear
system within the inherited class LinearDynamicalSystem. These attributes can be
(1) the original system matrix U∆t in Eq. 3.6 or (2) its spectral components (Φ,Λ,Φ−1)
in Eq. 3.7. Table 3.5 highlights these two cases for the flow. Similarly a DMD class can
also describe the system in a differential form with a generator matrix L. Note that
the generator has the same eigenvectors, but different set of eigenvalues Ω = log(Λ)/∆t
(for details see Section 2.1). In principle each case is equivalent and predicts the same
solution trajectory — because of the linearity each solution exists and is unique for any
given initial condition x1 or b1 = Φ−1x1. However, there are analytical and compu-
tational differences. The spectral system form has a higher analytical value because it
describes the system in intrinsic components. Furthermore, the system evaluates more
efficiently because the time dependent matrices Λ and Ω are diagonal. Nevertheless,
setting up a system with the matrix U∆t can be beneficial to analyze structural informa-
tion in the matrix and also avoids the diagonalization.
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Table 3.5: Variants to evaluate the flow of a continuous and time invariant linear dynamical
system. The exp denotes the matrix exponential.

Evaluation Flow (U∆t = Φ·Λ·Φ−1) Vector field (L = Φ·Ω·Φ−1)
system matrix xt = U

t/∆t

∆t · x1 xt = exp (L · t) · x1

spectral components xt = Φ · Λt/∆t

∆t · b1 xt = exp (Ω · t) · b1

The following code highlights a typical system identification workflow with DMDFull:

X: TSCDataFrame # measurement data
X_ic: TSCDataFrame # initial conditions
metric: TSCMetric # specified metric (Section 3.3.1.3)
score: TSCScoring # specified score (Section 3.3.1.3)

# perform decomposition and specify linear system
dmd = DMDFull().fit(X)

# predict time series for each initial condition in X_ic
X_est = dmd.predict(X_ic, time_values=np.linspace(0, 5, 10))

# reconstruct the original measurement data
X_reconstruct = dmd.reconstruct(X)

# investigate model behavior and error
metric(X, X_reconstruct)
score(X, X_reconstruct)

During fit(X), the method decomposes the time series according to Eq. 3.6 – 3.7 and
sets the necessary attributes for a case in Table 3.5 (defaulting to the flow in spectral
form). The model’s function predict(X_ic, time_values) is used to evaluate
multiple initial conditions in X_ic. The returned data type is a TSCDataFrame, which
contains the solution time series for each initial condition in X_ic. Each time series
is evaluated at the time_values given in the second argument — a sorted array of
arbitrary many numbers (real and positive).

From the specification of time_values follows that the requested state evaluations
are independent of the original sampling rate ∆t. From a mathematical and numeri-
cal treatment this can pose a problem: the exponentiation λt/∆t can have a real-valued
exponent and complex-valued base number. Generally, this is a multi-valued function,
that is, the operation can have multiple solutions. To resolve this situation, I use the
so-called principal value as a strategy to always pick a certain solution, which makes the
operation again well-defined. I rely on the standard strategy implemented in NumPy,
which I found suitable to interpolate time-continuous dynamical systems. For details
on this issue see Mauroy and Goncalves [2020] or Dietrich et al. [2020].
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The reconstruct function is introduced in TSCPredictMixin for system identifi-
cation tasks and is not available in the standard scikit-learn API. In the function, a time
series collection X is reconstructed by evaluating the model at identical time values and
the initial condition for each time series in X. This makes it easy to validate the model
on available data with a metric and score (see the last two statements in the above code
snippet). As highlighted in Section 3.3.1.3, this can give valuable information about
the model’s predictive capabilities and can help investigate the structural error in the
model to guide the model revision in the system identification loop.

In the next section, the capabilities of DMD are extended to nonlinear system identi-
fication by making use of all of the established methods.

3.5 appfold: Nonlinear system identification

The third and highest layer appfold is dedicated to methods that solve complex data-
driven applications. Typically, the methods in this layer require the functionality of
the previous two layers. The main focus of my thesis is to provide a generic software
design for the EDMD framework to approximate the Koopman operator and its spec-
tral components for system identification. While I focus on descriptive and forecasting
tasks, the appfold layer is also intended for methods that can solve related tasks. For
example, Surana [2020] describes an interdisciplinary framework based on the Koop-
man operator, which also includes time series classification or anomaly detection tasks.
But methods for model predictive control [Mauroy et al., 2020] or analog forecasting
[Alexander and Giannakis, 2020] could also be integrated in future development.

In Section 3.5.1, I first describe EDMD as the central class in this third layer. Moreover,
in Section 3.5.2 I contribute a class with which it is possible to optimize the parame-
ters contained in a EDMD model by minimizing a cross-validated error. This finalizes
the entire system identification loop with a model architecture based on the Koopman
operator. Finally, I compare the features of my proposed EDMD class to other software
projects in Section 3.5.3.

3.5.1 Extended Dynamic Mode Decomposition

As detailed in Section 2.3, the main objective of EDMD is to compute the Koopman
matrix from time series data and spectrally decompose the matrix into the Koopman
triplet — the modes V , eigenvalues Λ∆t and eigenfunctions ξ(x). These components
define the final model

xj+1 = V Λj∆tξ(x1) (3.8)

which despite being linear is also capable of describing nonlinear state evolution in
the measurement states x. This is possible because the system operates on a different
state representation, indicated by the Koopman eigenfunctions, ξ(x) = Φ−1g(x). The
g(x) are the intrinsic states of the EDMD dictionary and Φ−1 are the left eigenvectors
of the Koopman matrix U∆t. The Koopman modes V (linearly) reconstruct the original
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measurements from the intrinsic states. For the derivation of the model components
see Eq. 2.26 – 2.32 on page 34.

The objective of the EDMD class is to manage the two main tasks: (1) provide a generic
and flexible dictionary g(x) and (2) compute and store the Koopman triplet. Together
this leads to a dynamical system model in Eq. 3.8 as an operator-based approach to
perform nonlinear system identification. My goal for the design of EDMD is to reuse ex-
isting functionality from the previous layers as well as within datafold’s dependencies
to the scientific computing stack.

Table 3.6 compares different aspects of my proposed EDMD implementation in appfold
against the original formulation in Williams et al. [2015]. The aspects show that in the
software design, I continue to support time series collection data. Moreover, I also
generalize two aspects concerning the dictionary and the mode decomposition.

Table 3.6: Comparison of the original formulation of EDMD in Williams et al. [2015] to the EDMD
class in the layer appfold.

Aspect Original EDMD EDMD class
data format time series collection time series collection
dictionary spatial spatial and/or temporal
mode decomposition full DMD arbitrary DMD variant

from DMDBase

Besides the time series data itself, an essential element of EDMD is the dictionary
g(x) = z (Eq. 2.26). The dictionary corresponds to the “extended part” in EDMD and
describes a data transformation of the original measurements to a new state represen-
tation z. In particular, the objective given by the Koopman operator theory is to select a
dictionary that (approximately) linearizes the state dynamics. However, a suitable dic-
tionary for a concrete system depends on many often unknown factors. The dictionary
choice is therefore regarded as an “open problem”. Within a software solution, it is an
important feature to have a flexible choice of the dictionary to be able to test multiple
configurations.

A limitation of the original EDMD is that it only describes spatial transformations
within the dictionary (Williams et al. [2015] use Hermitian or radial basis functions).
On the other side, there are DMD variants that generalize this aspect to temporal fea-
ture extraction, such as the Hankel-DMD [Arbabi and Mezić, 2017]. However, these
variants are again not equipped with a dictionary that would allow including further
spatial transformations. In my EDMD solution I support chaining multiple methods,
which can be both spatial and temporal feature extraction methods. This is particularly
relevant for the main setting of my thesis in Section 3.1, where I include both time delay
embedding (temporal) and Diffusion Maps (spatial).

Another generalization that I perform is in the “DMD part” of EDMD. While the
original formulation describes a full decomposition (as stated in Eq. 3.7), I make use of
available DMD variants organized in DMDBase within the previous dynfold layer. This
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means the actual mode decomposition to approximate the Koopman components can
be performed by an arbitrary DMD variant. For example, this allows approximating
the Koopman generator by setting gDMDFull leading to gEDMD as described in Klus
et al. [2020].

In summary, the EDMD class consists of two parts: one or many methods to describe
the dictionary and a method to perform the final mode decomposition. This is high-
lighted in the class diagram of Fig. 3.12. To specify each of the parts, I can make use of
the functionality of the previous dynfold layer. Ultimately, the EDMD can be interpreted
as a “meta-model” because it organizes available data-driven methods into a single
method.

To achieve this proposed flexibility in EDMD, I make use of the existing functionality
of scikit-learn. The main idea is to use the Pipeline class as a base class of EDMD.
According to the scikit-learn documentation18 (version 1.0.1): “A Pipeline can be used
to chain multiple estimators into one. [...] All estimators in a pipeline except the last
one, must be transformers.”

A pipeline therefore reflects a typical pattern in machine learning, which I transfer
to the EDMD class: Chain one or multiple feature extraction methods (the EDMD dictio-
nary) and then pass the time series to a final estimator — the linear system identification
in the dictionary space. Contrary to the Pipeline, EDMD exclusively processes time
series data of type TSCDataFrame. Furthermore, the class includes the additional pro-
cedures to compute and store the Koopman triplet to set up the final system in Eq. 3.8.

As shown in Fig. 3.12 the EDMD has two mixin classes — TSCTransformMixin
and TSCPredictMixin. It therefore provides both of the main functionalities. The
transform(X) performs the map described by the EDMD dictionary g(x) on time
series, whereas inverse_transform(X) linearly reconstructs the time series in the
dictionary space back to the original measurement states (matrix B in Eq. 2.27) (Note
that the Koopman modes reconstruct the Koopman eigenfunctions.) Like for a standard
DMD variants in Section 3.4.4, the method predict(X_ic, time_values) returns
a time series prediction for each initial condition in X_ic (as per Eq. 3.8).

18https://scikit-learn.org/

106

https://scikit-learn.org/


3 Software for operator-informed system identification

1:N

TSCTransformMixin

DMDBase

dynfold/dmd.py

TSCTransformer

dynfold/dmd.py

TSCPredictMixinsklearn.Pipeline

EDMD

appfold/edmd.py

named_steps
dmd_model
n_samples_ic_
koopman_modes_
koopman_eigenvalues_

fit(X)
predict(X_ic, time_values=None)
transform(X)
inverse_transform(X)
reconstruct(X)
koopman_eigenfunctions(X)

1

extends mixin

Figure 3.12: Class diagram for EDMD as a subclass of scikit-learn’s Pipeline class. Additionally
EDMD has two mixins that support the data transformation to an internal state representation
and system identification.

The following code snippet provides examples of how to set up EDMD to obtain con-
figurations reported in the literature [Arbabi and Mezić, 2017; Klus et al., 2020; Williams
et al., 2015] and also the main setting of my thesis in Section 3.1:

1 # Original EDMD formulation in Williams et al. 2015
2 EDMD(dict_steps=[("rbf", RadialBasisFunction(...))],
3 dmd_method=DMDFull())
4 EDMD(dict_steps=[("hermitian", HermitianBasis(...))],
5 dmd_method=DMDFull())
6

7 # Hankel DMD in Arbabi et al. 2017
8 EDMD(dict_steps=[("timedelay", TakensEmbedding(...))],
9 dmd_method=DMDEco(...))

10

11 # Approximate the Koopman generator (gEDMD) Klus et al. 2020
12 EDMD(dict_steps=[...], dmd_model=gDMDFull(...))
13

14 # Main setting of this thesis (Section 3.1)
15 EDMD(dict_steps=[("takens", TakensEmbedding(...)),
16 ("laplace", DiffusionMaps(...))],
17 dmd_method=DMDFull())

The first argument dict_steps sets up the dictionary and the second argument
dmd_method specifies the DMD variant to perform the mode decomposition. All
classes are from the dynfold layer. Internally, the EDMD initializes a Pipeline. This
is only possible because all data-driven methods align to the scikit-learn pipeline.
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The following code listing exemplifies a data-driven workflow when using EDMD:

1 X: TSCDataFrame # time series collection
2 X_ic: TSCDataFrame # initial condition
3

4 # set up the model as in the previous code snippet
5 edmd = EDMD(...)
6

7 edmd = edmd.fit(X) # compute Koopman triplet
8 X_predict = edmd.predict(X_ic) # transform and evolve system
9 X_dict = edmd.transform(X) # apply dictionary on time series

10

11 # map dictionary states to original states with Koopman modes
12 X_orig = edmd.inverse_transform(X_dict)
13

14 # access and analyze the Koopman triplet
15 edmd.koopman_modes_
16 edmd.koopman_eigenvalues_
17 edmd.koopman_eigenfunctions_(X)

Fig. 3.13 provides a schematic illustration of the internal pipeline principle during
fit(X) and predict(X_ic). The figure includes both a code notation in datafold
and mathematical notation, corresponding to the statements in Eq. 2.27 – 2.32.

To fit an EDMD model the measurement time series X are first passed through the
dictionary pipeline to map to the intrinsic states g(X) = Z. In the second step, the time
series Z are then passed to the specified DMDBase class to perform the linear system
identification and mode decomposition in the intrinsic states. Finally, the EDMD class
stores the Koopman triplet (V,Λ, ξ(x)) in the attributes to describe the final linear dy-
namical system. All of the components are valuable for system analysis and can be
accessed in the EDMD object (see bottom of previous code snippet).

A similar procedure is followed during predict, where the states are first mapped
to intrinsic states. However, the target map is now to a single vector z1 that describes
the initial condition in the intrinsic state coordinates. Importantly, to perform a predic-
tion, all methods within the dictionary pipeline must have an out-of-sample mapping
to evaluate g(x1) = z1 for x1 /∈ X . Finally, with the Koopman modes V and eigen-
values Λ the EDMD model describes the state evolution of the original measurements in
time, xt.
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Figure 3.13: Schematic illustration of the algorithmic steps in fit(X) and predict(X) in
EDMD. The pipeline includes N steps of sequential data transformation, corresponding to
the EDMD dictionary. The final system identification is performed by a DMD variant. The
mathematical statements correspond to Eq. 2.26 – 2.32.

If a EDMD dictionary g includes a temporal transformation method — such as the
time delay embedding — the initial condition in the measurement space is required to
be a time series itself. This is because the time delay embedding requires a time series
of d+ 1 samples to perform the embedding to a single state, which in Fig. 3.13 is high-
lighted by g(X1) = z1. In the EDMD class the number of measurement states required to
define an initial condition is managed in the EDMD attribute n_samples_ic_, which
is automatically obtained by tracking the number of samples that are reduced during
fit.

Fig. 3.13 includes the typical case of a single processing flow where data transforma-
tions are chained in a series. However, in a more general setting, it is also possible to
split and merge separate data flows. The pipeline is then expressed as a directed graph.
This is particularly interesting for heterogeneous data quantities, where each quantity
has a separate dictionary. However, exploring these aspects is left to future work.

3.5.2 Parameter optimization and validation of EDMD

According to the system identification loop of Section 2.5.1 (Fig. 2.9), the EDMD class
provides an operator-based model architecture with a linear and spectral representation
of the dynamics (as per Eq. 3.8). Moreover, the model complexity can be specified via
the choices of dictionary and mode decomposition in the EDMD class. In this section, I
address the final steps within the system identification loop: (1) to find a suitable model
parametrization and (2) to validate a model (as the condition in the loop). Both of these
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steps are essential in a data-driven workflow to construct a model that gives strong
empirical evidence to be practically useful.

Despite the importance of systematic parameter optimization and model validation,
I found that these aspects are usually missing in the operator-based literature. A moti-
vating example is given in Kutz et al. [2016c], where four different kernels are compared
in a EDMD dictionary to approximate the Schrödinger equation. Since the study shows
that all kernels produce different Koopman spectra (Fig. 5 in the paper), this highlights
the necessity to have a structured procedure to assess the quality of each dictionary
configuration and parametrization. In machine learning, the established procedures
are derivative-free optimization routines and cross-validation.

The concrete set of parameters in EDMD depends on the actual choice of dictionary
and mode decomposition. For most of the parameters, the specification is not known
a priori because they depend on the underlying system and time series characteristics.
In this section, I describe EDMDCV as a new class that can systematically optimize the
parameters in a EDMD model and can be used to perform the final validation.

For both the parameter optimization and final model assessment it is important to
obtain unbiased error estimates of the model. This is achieved by evaluating the model
on initial conditions and their respective time series that are not part of the model fit.
Therefore, the time series data is split into two separate datasets:

• The test data (X_test) are completely separated and only used for the final
model validation. Evaluating the model on this data estimates the generalization
error.

• The training data (X) are used for the model construction. In parameter optimiza-
tion routines the training data are again split by a cross-validation scheme, where
one part is used to fit the model (X_fit) and the other to evaluate the model’s
error (X_validate). Often a cross-validation scheme has multiple splitting con-
figurations to better make use of the data [cf. Bishop, 2006, Fig. 1.18].

See Fig. 3.15 for an illustration of splitting data into test and training sets and two
split configurations.

In accordance to datafold’s software architecture and design decisions (see Section
3.2.2), the EDMDCV class reuses functionality from the previous layers and also inte-
grates existing functionality from scikit-learn. Fig. 3.14 displays the class diagram of
EDMDCV.

The main class to perform systematic time series splits as part of the parameter opti-
mization is TSCCrossValidationSplit. The (abstract) class is described in Section
3.3.1.3 and located in the pcfold layer because it directly associates to the data structure
TSCDataFrame. The EDMDCV is initialized with an arbitrary splitting strategy which
can be selected according to the concrete application. To perform the actual parame-
ter optimization, EDMDCV extends the base class GridSearchCV from scikit-learn. The
class provides a naive optimization routine that performs an exhaustive search over a
parameter grid. The candidate parameter set with the highest score is used.
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sklearn.GridSearchCV

EDMDCV

appfold/edmd.py

fit(X, **fit_params)

param_grid
best_estimator_
best_params_

EDMD

TSCCrossValidationSplit

pcfold/timeseries/metric.py

extends
1

1

KfoldSeries KfoldTime

extends

Figure 3.14: Class diagram of EDMDCV. The class has the GridSearchCV from scikit-learn
has a base class and is a composite of an EDMD instance and a cross-validation strategy in
TSCCrossValidationSplit. The optimization is an exhaustive search over a specified
parameter grid, where the cross-validated scores are maximized. For an illustration of see
Fig. 3.15.

The following code snippet exemplifies how EDMDCV is initialized and used. The
three arguments of the class are (1) the EDMD model to be optimized, (2) the cross-
validation splitting strategy and (3) the parameter grid:

1 X: TSCDataFrame # data used for parameter optimization
2 X_test: TSCDataFrame # test data for model validation
3

4 param_grid = dict(par1=[0.1, 0.2, 0.3], par2=[0.1, 0.2, 0.3])
5 # EDMD specification, Section 3.5.1
6 edmdcv = EDMDCV(edmd=EDMD(...),
7 # Cross-validation split, Section 3.3.1.3
8 cv=KfoldTime(...),
9 param_grid=param_grid)

10

11 # perform parameter optimization on training data
12 edmdcv.fit(X)
13

14 # perform model validation
15 gscore = edmd.best_estimator_.score(X_test)

The entire data-driven workflow of EDMD and EDMDCV is also visualized in Fig. 3.15.
The figure highlights the interplay between EDMD and EDMDCV to cover the entire sys-
tem identification loop. As already highlighted, the EDMDCV performs the model opti-
mization using only the data in the training data (X). In the example, the parameter grid
consists of two parameters with three samples each. This leads to a grid of 32 = 9 pa-
rameter pairs. For each candidate pair, the cross-validation error is computed by using
the splitting strategy specified in the second argument of EDMDCV (here KfoldTime
from Section 3.3.1.3).
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Figure 3.15: Schematic overview of the interplay between EDMD and EDMDCV within the system
identification loop (corresponding to Fig. 2.9). A modeler (manually) revises the EDMDmodel
specifications (step 1). The EDMDCV performs an automated parameter optimization on the
training data by maximizing the average validation score in a cross-validation scheme (step
2). The model with the best (average) validation score (best_estimator_) is then again
validated on separate test data (X_test) to estimate the generalization score as the loop
condition (step 3).

The EDMD model with the parameter set that achieves the highest (average) score
is selected as the final model (best_estimator_ attribute in EDMDCV). To assess
the practical relevance of the model it is necessary to validate it on separate test data.
This obtains the best estimate for the generalization error because the strict separation
avoids too optimistic validation results as the data are not used for the model con-
struction process. In Fig. 3.15 this is exemplified by computing the generalization score
(gscore) on the test data. A sufficiently high generalization score (depending on the
problem) would then terminate the system identification loop. The model can then
be used for its intended application. Note that the model validation can also include
a qualitative analysis, where a modeler can investigate structural errors between the
predicted and test time series to better guide the revision of EDMD and EDMDCV.

In practice, the generalization of EDMD can introduce challenges, which I describe in
the following list:

Maintaining temporal order
Most of the standard splitting procedures, such as k-fold cross-validation, assume
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static data that are independent and identically distributed (i.i.d.). This assumption is
violated for temporally ordered time series data. Consequently, separated validation
or test data may not be completely unbiased from data used to fit a model. Moreover,
the data can only be separated into coherent time series (unlike random samples) to
maintain the sampling rate ∆t as an essential characteristic of the time series.

A common splitting strategy for time series is to only separate data at the end of a time
series, to avoid blocks of missing data in the time series and dependencies between
the separate data. However, Bergmeir and Benı́tez [2012] show that making use of
cross-validation despite the “theoretical flaws” leads to more robust model selection.
Fortunately, because I put emphasized the value of time series collections in datafold,
splitting schemes that separate intermediate blocks of time series are possible. For
example, taking an intermediate block from a single time series leads to a collection of
two training and one validation time series.

Computational complexity
The exhaustive grid search performed in EDMDCV prohibits optimizing a large param-
eter grid. This is because of a combinatorial explosion, where each parameter intro-
duces a new dimension in the search space. Overall, there are three loops involved
in Fig. 3.15, which quickly add up to a large number of iterations to fit and validate a
model. The time needed to fit a model is therefore a limiting factor in how thoroughly
the optimization can be performed. Based on the EDMDCV class it is easy to extend the
parameter search to sophisticated optimization strategies that try to reduce the num-
ber of (expensive) model evaluations. One method frequently used for model selection
tasks is a Gaussian Process (in this context also referred to as Bayesian optimization)
[Snoek et al., 2012].

Maintain same validation data for each parameter configuration
The EDMD class also supports temporal feature extraction methods, such as time deriva-
tives or time delay embedding. The parameters in these methods can affect the num-
ber of states that are required for an initial condition, for example, the number of
delays. Including such parameters in the parameter grid, can change the allocation
in validation data. However, for a fair model comparison, the validation data should
remain constant for each candidate parameter set. As a solution, it is possible to either
optimize such parameters separately or include additional logic in a splitting method.

Parameter dependencies within EDMD
Because an EDMD model can contain multiple models in the pipeline, the parameters
may depend on one another. In such cases, it can be difficult to set up a single and
consistent parameter grid. An example where such dependencies frequently occur
are data transformations that change the pairwise distances for a follow-up kernel
method. This is the case in the main EDMD setting of this thesis in Section 3.1. The
number of delays in the time delay embedding change the dimension and pairwise
distances, which also affects the and therefore the optimal kernel bandwidth in the
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subsequent Diffusion Maps. One solution is to optimize parameters separately via
EDMDCV.

3.5.3 Comparing EDMD to other software projects

During my thesis, new projects have been initiated that provide general-purpose soft-
ware to approximate the Koopman operator or generator. This highlights the pressing
need for software to bring the operator-based methodology for system identification
forward. In this section, I compare the functionality of other projects with my proposed
EDMD class.

I only compare packages that are intended as scientific software to address general
purpose problem settings. This excludes publicly available source code which is in-
tended for proof of concept or to reproduce published results. In total there are five
related software projects, which I briefly describe below. Only the first three projects
are included in the more detailed comparison in Table 3.7.

PySINDy [de Silva et al., 2020, v1.4.3] — The Python package provides the Sparse
Identification of Nonlinear Dynamical systems (SINDy) method [Brunton et al., 2016],
which relates to the Koopman generator. The method therefore requires approximating
the time derivative of the data. The idea of the method is to perform sparse regression
to find a parsimonious set of nonlinear terms in the dictionary that best describe the
dynamical system. This means that instead of linearly evolving the identified system
according to the Koopman theory, PySINDy numerically integrates nonlinear dictio-
nary terms with differential equation solvers. The connection between SINDy and
EDMD is highlighted in Klus et al. [2020].

deeptime [Hoffmann et al., 2021, v0.2.9] — The Python package implements a variety
of methods for time series analysis and modeling. This includes dimension reduction
methods, clustering or Markov models. In the scope of my thesis this includes basic
DMD variants, EDMD and SINDy.

DataDrivenDiffEq.jl [Martensen and Rackauckas, 2021, v0.6.6] — The package pro-
vides data-driven methods to identify dynamical systems, including basic DMD vari-
ants, EDMD and SINDy. The source code is written in the programming language Ju-
lia19. To the best of my knowledge, it is the only project that provides operator-based
methods that are not written in Python (under the conditions highlighted above). The
package therefore follows a different workflow.

PyDMD [Demo et al., 2018, v0.4.0] — The Python package provides various DMD
variants and is also accessible through a wrapper in dynfold, Fig. 3.11. PyDMD was
initiated in 2017 and is the earliest openly available project addressing mode decom-
position of time series. However, the software design of the package does not cover
the “extended” part of EDMD and is therefore excluded from Table 3.7.

19https://julialang.org/
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pykoopman [de Silva and Kaiser, 2021, v0.2.0] — The Python package provides an
implementation of EDMD to either approximate the Koopman operator or generator.
The software was initiated in 2020 and is maintained by the same research group as
the PySINDy package. While the scope of pykoopman directly relates to EDMD, the
software is still in a very early stage with only rudimentary documentation and tests;
it is therefore excluded from the comparison in Table 3.7.

Table 3.7: Comparison of functionality between other packages that approximate the Koopman
operator to EDMD in datafold. (Abbreviations: arbit. = arbitrary, dict. = dictionary, gen. =
generator, op. = operator)

PySINDy deeptime DataDriven
DiffEq.jl

datafold
EDMD

initiated (year) 2019 2019 2019 2019
Koopman op./gen. gen. op. op./gen. op./gen.
expose Koopman triplet no yes yes yes
time series collection yes yes no yes
chaining methods in dict. yes no no yes
temporal transformation no no no yes
arbit. mode decomposition yes no yes yes
cross-validation yes no no yes

streaming no no yes no
control yes no yes no
Frobenius-Perron op. no yes no no
learning the dict. no no no no

All Python projects mimic the scikit-learn API and build on the scientific computing
stack (cf. Fig. 2.5). However, because there are no established standards for a system
identification API and time series data structures, the packages diverge and are not
fully compatible.

In Table 3.7 only the two packages DataDrivenDiffEq.jl and deeptime provide an im-
plementation of the EDMD and are therefore suitable for a direct comparison with my
contributed EDMD class. As highlighted above, the package PySINDy has a different
focus on sparse system identification of the Koopman generator.

The table highlights the distinctive features of the EDMD class. The modular design
allows chaining methods in the dictionary pipeline. A distinctive feature is that the
dictionary supports temporal feature extraction methods. Furthermore, EDMD supports
the specification of an arbitrary mode decomposition and performing cross-validation
with time series collections.

All software projects in Table 3.7 provide a flexible and arbitrary dictionary selection
as an essential requirement to provide a generic framework to approximate the Koop-
man operator or generator. However, the packages only include “standard” function
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3 Software for operator-informed system identification

families, such as radial basis functions or Fourier coefficients. In the next chapter, I
show that with EDMD it is possible to integrate and chain time delay embedding and
the Diffusion Maps within the EDMD dictionary (as promoted in Section 3.1). In all of
the other packages, this would only be possible with additional implementation efforts.

On the other hand, there are also features that I have not covered in EDMD, which are
available in other packages. This includes control, a streaming setting, and approaches
to “learn the dictionary”. I refer to these features in the future directions of Section 5.2.

3.6 Summary

In this chapter, I transferred the mathematical concepts of Chapter 2 to a scientific soft-
ware solution: datafold. The software organizes these methods in a machine learning
setting with the objective to analyze the geometry and perform system identification
based on time series collection data. The transfer was necessary because available (par-
tial) software solutions miss important methodological features for these tasks. While I
designed datafold to be modular and flexible for model exploration, I also highlighted
a specific operator-informed model architecture. In the first step, a spatio-temporal fea-
ture extraction is applied on the measurement data, comprising time delay embedding
and Diffusion Maps. In the composed transformation this approximates the eigenfunc-
tions of the Laplace-Beltrami operator on the state space manifold. In a second step,
these new time series are used within the Extended Dynamic Mode Decomposition
(EDMD) to approximate the Koopman operator for system identification. Overall, this
setting is the cornerstone of my thesis to extract geometric and dynamic coordinates
from time series data via the two operators.

For datafold I set up a sustainable software management to reproduce existing and
conduct new research within the operator-informed modeling approach. In the soft-
ware architecture, all methods are organized in three layers. These give a hierarchical
order that provides orientation along the system identification loop and promotes al-
gorithmic experimentation within a clearly defined data-driven modeling workflow.
In the second and third layer, the methods are further organized by mixin classes that
indicate the scope of a method (feature extraction and/or system identification) and
augment shared code to perform the respective task. To avoid re-implementations of
existing and well-tested scientific software, I based datafold on Python’s scientific com-
puting stack. The machine learning software scikit-learn is here particularly relevant
because datafold mirrors the user interface and reuses and adapts functionality for the
contributed methods if applicable.

The first layer pcfold includes a data structure to store time series collection data
(TSCDataFrame). Together with associated basic functionality, the data structure is the
key element to generalize system identification methods to various forms of temporal
sampling schemes. The layer also includes an algorithmic contribution of basic func-
tionality that directly operates on the data structure. With the “project-search-pullback”
idea, implemented in rdist, the objective is to accelerate the computation of a sparse
(radius-based) distance matrix.
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3 Software for operator-informed system identification

The middle layer dynfold includes methods to extract or augment information in time
series data to obtain a new state representation. I focused on time delay embedding
and the Diffusion Maps framework as elements of the main model setting. Further-
more, dynfold provides basic variants of the Dynamic Mode Decomposition (DMD) to
perform linear system identification.

The highest layer appfold provides a software solution to capture the EDMD frame-
work. The main objective is to approximate the Koopman triplet (modes, eigenval-
ues and eigenfunctions) to perform nonlinear system identification. The design of the
EDMD class mirrors a typical machine learning pipeline, in which multiple methods
from the previous layer can be bundled in a single “meta-model”. The EDMD dic-
tionary includes one-to-many methods for feature extraction (the extended part) and
the final mode decomposition is performed by one of the DMD variants. Ultimately,
the class can reflect the main operator-based setting of my thesis to extract geometric
and dynamical coordinates from time series collection data. In addition, appfold in-
cludes a class to systematically optimize the parameters contained in a EDMD model
by minimizing a cross-validated error. Together the two classes capture the entire sys-
tem identification loop where an EDMD model can be revised.

All of the functionality provided in datafold is integral to the data analysis in the
next chapter. The efficient experimentation and model exploration within a data-driven
modeling workflow is essential for the data applications.
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In this chapter, I transfer the theoretical foundation of the operator-based methods to
three concrete data applications. The time series analysis is made possible through the
software implementation in datafold, which provides a robust and well-tested environ-
ment to enable flexible model revisions within the system identification loop. The soft-
ware provides the main operator-informed setting of my thesis, in which I combine the
different aspects of (1) reconstructing dynamics, (2) extracting meaningful geometric
coordinates and (3) performing nonlinear system identification. Within points (2) and
(3) I approximate the Laplace-Beltrami and Koopman operators respectively, which de-
scribe the operator-informed setting of Section 3.1.

In Section 4.1, I analyze data from a pendulum system as an illustrative example with
available equations. I first re-visit the three main methodological components sepa-
rately and then combine them into a single data processing pipeline that mirrors the
full operator-informed setting. I show how I can reconstruct meaningful physical vari-
ables of time series that only include partial information of the system. Furthermore,
I accurately estimate the pendulum’s state evolution until it reaches the equilibrium
state with a linear dynamical system described by the Koopman matrix.

In Sections 4.2 and 4.3, I analyze two systems from pedestrian dynamics. This re-
search field is confronted with partial and noisy observation data for which analytical
equations are typically not available. An increased understanding of such traffic sys-
tems can improve the safety of crowd movements, which makes the approach in which
the model’s components are accessible particularly interesting. Both analyzed systems
have fundamentally different characteristics in terms of data sources and dynamics.
For the first system — simulated pedestrian movement at a bus station — I construct
a coarse-grained surrogate model from the underlying microscopic simulator. The dy-
namics are characterized as transient. For the second system, I investigate real-world
and multivariate sensor measurements of pedestrian traffic from Melbourne, Australia.
For this dataset, I assume an ergodic state evolution with periodic patterns.

The last Section 4.4 includes a benchmark analysis of rdist as an additional contribu-
tion to my thesis to efficiently compute a sparse distance matrix (following from Sec-
tion 3.3.2.2). I compare my implementation against state-of-the-art implementations in
high-performance libraries on both simulated and real-world datasets.

All data and source code that I use in this chapter is available in the Supplementary
Material.
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4 Data analysis to extract geometry and dynamics from time series data

4.1 Pendulum: Extracting geometric and dynamic
coordinates

The pendulum is a classic example of a physical dynamical system. I use the pen-
dulum to illustrate the functionality of datafold and to showcase the capabilities of
the main components of the operator-informed setting for a system with known equa-
tions. After I describe the system and the sampled time series data in Section 4.1.1, I
go through the main steps of (1) time delay embedding (Section 4.1.2) (2) geometric
analysis with DMAP to approximate the eigenfunctions of the Laplace-Beltrami oper-
ator (Section 4.1.3) and (3) construct a Koopman operator-based model with EDMD to
identify the pendulum system (Section 4.1.4).

4.1.1 Description of the dynamical system and data collection

The pendulum can be described by a first-order ordinary differential equation (ODE)
system. By describing the dynamical system in angular coordinates in Eq. 4.1, the ODE
has two state quantities: the pendulum’s position θ1 and the angular speed θ2). This
system is in a closed-form and parsimonious representation. The system equations
can be derived from a second-order ODE (i.e. in terms of a second derivative of the
position, θ̈) from Newton’s 2nd law of motion. The system example is taken from the
web page [Hubbs, 2020], which provides more detailed explanations of the pendulum
and includes the Python code for solving the ODE numerically.

rod (massless)

mass

angle (with
angular speed )

stable equilibrium state 
 and    

mounting point  
(with friction )

mass trajectory

Figure 4.1: Schematic illustration of the pendulum
system with physical parameters ( b = friction,
g =gravitation, l = length of rod,m = mass). The pen-
dulum can be observed through the angular (θ1, θ2)
and Cartesian (x1, x2) coordinate system. The graphic
is adapted from Hubbs [2020].

θ̇1 = θ2

θ̇2 = − b

m
θ2 −

g

l
sin (θ1) , (4.1)
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The system parameters specify the actual physical properties of the pendulum and are
visualized in Fig. 4.1: A mass with m = 1kg is attached to a rod of length l = 1m, with
a positive friction b = 0.45 at the mounting point. The gravity acting on the mass is
g = 9.81m/s2. To simplify the general setting, I do not consider the case in which the
pendulum flips over.

While the analytic differential form of the pendulum is available, I treat the system as
a black box for which only time series from a given initial condition can be generated.
To have a manageable dataset for the illustrative example, I only sample the system at
three initial conditions with resulting time series:

[θ1, θ2](i=1)
j=1 =

[
π

3 ,−4
]

⇒ [θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
500] (4.2)

[θ1, θ2](i=2)
j=1 =

[
−3π

4 , 2
]

⇒ [θ(2)
1 , θ

(2)
2 , . . . , θ

(2)
500] (4.3)

[θ1, θ2](i=3)
j=1 =

[
π

2 ,−2
]

⇒ [θ(3)
1 , θ

(3)
2 , . . . , θ

(3)
500], (4.4)

where j is the time index and i the time series. According to the specified physical
properties, all time series end up in the stable equilibrium state at [θ1, θ2] = [0, 0] (the
system has a second (unstable) equilibrium point at [θ1, θ2] = [π, 0]).

Numerically integrating the ODE system in Eq. 4.1 with the three initial conditions
results in a time series collection of three time series in angular coordinates. For the
numerical integration I use the standard Runge-Kutta 45 from the SciPy package [Vir-
tanen et al., 2020]. For each time series from the initial conditions I sample 500 mea-
surements between t1 = 0 and t500 = 8π, resulting in a time increment of ∆t ≈ 0.05.

An alternative observation to the angular state quantities is a Cartesian coordinate
system. Here the pendulum is tracked in the coordinates (x1, x2), which can be ob-
tained by mapping the angular states:

x(i)
j = [x(i)

1,j , x
(i)
2,j ]

T =
[
l · cos

(
θ

(i)
1,j −

π

2

)
, l

(
1 + sin

(
θ

(i)
1,j −

π

2

))]T
, (4.5)

where j = 1, . . . , 500 is the time index and i = {1, 2, 3} the time series index, corre-
sponding to the initial condition. The pendulum’s position is relative to the mounting
point at [x1, x2] = [0, l]. See Fig. 4.1 for a visualization of the two reference systems.
Note that the time series can be stored and managed in datafold’s main data structure
TSCDataFrame from Section 3.3.1.1.

Both the angular and Cartesian coordinate systems describe a two-dimensional state.
However, Eq. 4.5 represents a projection from a well-defined system state to the Carte-
sian coordinates in which dynamical information is lost. Unlike the angular states
which are obtained from a closed-form ODE system, the Cartesian coordinates are no
longer well-defined. With only a single measurement state (x1, x2), it is impossible to
determine the next future state without further temporal context: The pendulum may
swing in either direction or be at rest.
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4 Data analysis to extract geometry and dynamics from time series data

In the pendulum example, I assume that we have only access to time series in Carte-
sian coordinates. This could be a result of a selection of measurement quantities or we
may be limited in the observation modality. For example, we could only have video
material of the pendulum from which we can track the Cartesian coordinates.

Furthermore, I only use the first two time series (i = 1, 2) to build a model. Fig. 4.2
displays the solution of the both resulting time series in angular (left) and Cartesian
coordinates (right). The third time series for the comparison with out-of-sample data.

W

−2
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2

θ 1

−1

0

1

x 1

0 10 20
time

−5

0
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θ 2
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time

0

1

2
x 2

Figure 4.2: The orange (dashed) time series are generated with the first initial condition and the
blue (solid) time series with the second in Eq. 4.2 – 4.3. The left column displays the hidden
system states in angular coordinates (θ1, θ2) and the right column shows the measurement
states in Cartesian coordinates (x1, x2) from Eq. 4.5.

In the following sections, I use the methods provided by datafold : First I use time de-
lay embedding to reconstruct the dynamics in the Cartesian coordinates (Section 4.1.2).
Based on the reconstructed states I extract geometrically meaningful coordinates (Sec-
tion 4.1.3). Finally, I use the coordinates to perform system identification with DMD
and EDMD to predict the trajectory of the pendulum (Section 4.1.4).

4.1.2 Reconstructing partial observations with time delay embedding

As highlighted in the previous section, the time series describing the pendulum’s tra-
jectory in a Cartesian reference system are not well-defined. In this section, I apply
time delay embedding to reconstruct the dynamics by augmenting each state (x1, x2)
with prior samples. For this I use the class TakensEmbedding from Section 3.4.2. The
geometric picture of the time delay embedding is described in Section 2.4.3.

Takens theorem provides general guidance of how many delays are required to re-
construct the state space: If the hidden system is on a m-dimensional smooth attractor
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manifold, then an embedding with d ≥ 2m + 1 delays is one-to-one (diffeomorphic)
with the attractor [Deyle and Sugihara, 2011; Takens, 1981]. In the angular coordinate
system of Eq. 4.1 the pendulum has an intrinsic state space dimension of m = 2 (the
angular coordinates). However, because of the positive friction in the pendulum in
Eq. 4.1, most states are in a transient regime of the state space and converge towards a
“point attractor” as the steady state. This means that the assumptions of the theorem
are not fulfilled for the time series data. Nevertheless, I show that the methodology is
able to reconstruct the dynamics and state space geometry in this setting.

To highlight the “reconstruction effect” of the time delay embedding on the Cartesian
time series, I set up a linear dynamical system on different number of delays (d):

gtd(xj ; d, κ) = [xj ; e−κxj−1; e−2κxj−2; . . . , e−dκxj−d] = yj ∈ R2·(d+1). (4.6)

Ay(i)
j ≈ x(i)

j+1 (4.7)

r2 =
∥∥∥Ay(i)

j − x(i)
j+1

∥∥∥2

2
. (4.8)

For the analysis here the weighting factor is considered κ = 0. The system matrix A
is obtained in a least squares sense to map a delayed state yj to its future state xj+1 (see
also the code snippet below). To measure the degree of how well the states are recon-
structed I compute the squared residuals for both coordinates in Eq. 4.8, r2 = (r2

1, r
2
2).

In the setting I increase the number of delays from d = 0 (no reconstruction) to d = 10.
The following code snippet highlights how the above setting can be achieved in only

three statements by using datafold and the compatibility to NumPy [Harris et al., 2020]:

X_cart: TSCDataFrame # time series in Cartesian coordinates

# Perform time delay embedding on pendulum data X
# for d = 0, ..., 10 (see also Sections 2.4.3 and 3.4.1)
X_d = TakensEmbedding(d=d).fit_transform(X_cart)

# Compute shift matrices
# using accessor of TSCDataFrame (Section 3.3.1.2)
Y, X = X_d.tsc.shift_matrices(orientation="rows")

# Only map to original Cartesian states
X = X[:, [0, 1]]

# Fit linear dynamical system in least squares sense with NumPy
A, sqresidues, _, _ = np.linalg.lstsq(Y, X)

122



4 Data analysis to extract geometry and dynamics from time series data

0 2 4 6 8 10

nr delays

10−6

10−3

100

sq
u

ar
ed

re
si

d
u

al
(l

og
)

x1

x2

0

2

Figure 4.3: The squared residual (per coordinate) from Eq. 4.8 plotted against the number of
delays (d) for the two Cartesian coordinates. The residual is plotted on a logarithmic scale.
The small subplot shows a linear scale.

Fig. 4.3 plots the squared residual values obtained for both Cartesian coordinates for
all number of delays d = 0, . . . , 10. The residual values in relation to the pendulum
layout (with a rod of length l = 1) are catastrophic if no time delay embedding is per-
formed; r2

1 ≈ 2.1 and r2
2 ≈ 0.9. Providing context of a single delay (d = 1) already

yields a reasonable mapping with residuals in an order of O(10−2). Further increasing
the number of delays monotonically decreases the residuals and therefore linearizes the
dynamics. This showcases why time delay embedding has become an important com-
ponent in the context of the Koopman operator theory, as highlighted in Section 2.4.4.1
or in Arbabi and Mezić [2017] and Giannakis [2019]. However, including a large num-
ber of delays can become impractical in forecasting settings because a time series with
d+ 1 states is required to perform the embedding, which may not always be available.

4.1.3 Uncovering hidden state space geometry

As highlighted in Fig. 4.3, augmenting the original measurement states with prior sam-
ples reconstructs the dynamics in the delayed states. This introduces a new geometry
on which the dynamics are well-defined (cf. Fig. 2.8 on page 48 and Berry et al. [2013]).
However, a side effect of the time delay embedding is that the state quantities become
highly correlated because of the temporal neighborhood relation in the time series data.
In this section, I continue to extract the leading geometric coordinates from the delayed
states to obtain a latent state representation of the system. For this I use Diffusion Maps
(DMAP) as a manifold learning method (implementation in DiffusionMaps, Section
3.4.3). Together the two operations correspond to a composed data transformation:

g(x) = [gdmap ◦ gtd](x) (4.9)

= [ψ1(y);ψ2(y); . . . ;ψP (y)] = z ∈ RP ,
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which is detailed in Section 2.4.4. The eigenfunctions ψp are the DMAP coordinates
(evaluated on the delayed states) and approximate the eigenfunctions of the Laplace-
Beltrami operator (Eq. 2.44). To obtain a parsimonious set of latent coordinates it is
required to identify “geometrically dependent” eigenfunctions and only select coordi-
nates that are aligned in different directions on the manifold. The overall data process-
ing workflow is schematically depicted in Fig. 4.4.

diffeomorphic

step 2:"dmap"

step 3:"select"

true system 

eigenfunctions 
Laplace-Beltrami 

operator
latent

reconstructed hidden

X_cart 

ambient
step 1:"embed"

latent_coord  

Figure 4.4: A schematic description of the data processing to extract latent coordinates that
relate to the hidden state space geometry. Note that ψ(t) := ψ(gtd(x(t))).

In the software treatment, the three steps embed, dmap and select as shown in Fig. 4.4
can be integrated in a Pipeline class from scikit-learn. The pipeline class sequen-
tially applies the data transformations in the argument steps. This highlights that the
datafold API and also the time series collection data structure remain compatible with
scikit-learn.

1 X_cart: TSCDataFrame # time series in Cartesian coordinates
2 X_cart_oos: TSCDataFrame # out-of-sample time series
3

4 # wrap three processing steps in a meta-model
5 pipeline = sklearn.Pipeline(
6 steps=[
7 ("embed", TSCTakensEmbedding(delays=3, lag=0, kappa=0.2)),
8 ("dmap",
9 DiffusionMaps(kernel=GaussianKernel(epsilon=3.0),

10 n_eigenpairs=6, alpha=1.0)),
11 ("select", LocalRegressionSelection(intrinsic_dim=2)),
12 ]
13 )
14

15 latent_coord = pipeline.fit_transform(X_cart)
16 latent_coord_oos = pipeline.transform(X_cart_oos)
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The first two lines of the code describe the three Cartesian time series generated from
the initial conditions Eq. 4.2 – 4.4, where the first two are contained in X_cart and the
third X_cart_oos is used for out-of-sample time series.

For the time delay embedding (the first data transformation) I use three delays d = 3
and set the weighing factor to κ = 0.2. The latter parameter is result of a cross-
validation with EDMD, which I perform in the Section 4.1.4 below. During this first
step, the original two-dimensional Cartesian states are embedded to a new state di-
mension 2 · (d+ 1) = 8. The second step then computes the six leading DMAP coordi-
nates {ψp}P=6

p=1 (specified with n_eigenpairs=6). By setting α = 1 the non-uniform
sampling density in the point cloud is normalized, which increases the convergence
guarantees to the Laplace-Beltrami operator [Coifman and Lafon, 2006b]. For the geo-
metric prior, I use a standard Gaussian kernel with a bandwidth ε = 3. In the last step of
the pipeline, LocalRegressionSelection performs an automatic selection of two
geometrically informative coordinates in the six DMAP coordinates. The method is im-
plemented in the dynfold layer and described by Dsilva et al. [2018]. The selection is
performed with a correlation analysis in a local linear regression, where coordinate sets
are more likely to describe independent geometrical directions on the manifold if they
are highly de-correlated. By setting the target dimension to two (intrinsic_dim=2),
I use knowledge of the hidden system. In practice the target dimension is typically not
known. However, there are methods to estimate the manifold dimension [Strange and
Zwiggelaar, 2014].

Overall, the pipeline describes a data transformation from two-dimensional Carte-
sian states in the input to two-dimensional latent states in the output. The final map-
ping of the time series is, x(i)

j → [ψ2(x(i)
j ), ψ6(x(i)

j )].
Fig. 4.5 compares different DMAP candidate pairs to justify that the final selection

(ψ2, ψ6) by the local regression is indeed well-suited. The eigenvector ψ1 is omitted
from the start, because it is a constant coordinate — a result of the row-stochastic ma-
trix within DMAP. The first non-trivial eigenvector ψ2 is considered as the coordinate
that aligns to the most dominant direction on the manifold. To identify the second co-
ordinate I combine ψ2 with the other four eigenvectors ψ3 to ψ6. The first row of Fig. 4.5
shows that the coordinate pairs only describe one-dimensional geometries, which can
be identified as “repeated eigendirections” [Dsilva et al., 2018] (Section 2.4.2). In con-
trast, the final pair (ψ2, ψ6) in the second row (left) exhibit highly de-correlated points
and capture a two dimensional geometry. As expected, this coordinate pair is also the
final selection of LocalRegressionSelection.

125



4 Data analysis to extract geometry and dynamics from time series data
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Figure 4.5: Top row: Spatial projections onto pairs of DMAP coordinates. Bottom row left: De-
correlated point cloud as the final selection of the latent state representation. Bottom row
right: Original point cloud of angular coordinates. All plots: The color-code corresponds to
the time value of a sample in the time series, where lighter points have a higher time value.

Comparing the final coordinate pair with the original angular time series (as samples
of the hidden state space) we see that the two point clouds in the second row are on
different scales but otherwise resemble the same shape. In a visual mapping ψ2 cor-
responds to the angle θ1 and ψ6 to the angular speed θ2. It is valid to assume that an
invertible and differential one-to-one mapping — a diffeomorphism — exists between
the two elliptic-shaped point clouds (as representatives of the manifolds).

So far I have performed spatial projections of the Cartesian states to a reconstructed
and latent state. However, throughout the data processing pipeline, the temporal con-
text of the time series data is maintained, making it possible to plot the latent coor-
dinates (ψ2, ψ6) over time. In Fig. 4.6 (first row) I plot the out-of-sample time series
(X_cart_oos). The DiffusionMaps class uses the Nyström extension to perform the
map for samples that are not included in the original dataset.
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Figure 4.6: First row: Latent coordinates of the out-of-sample time series, corresponding to
latent_coord_oos in the code snippet. Second row: Original time series in angular coor-
dinates (position and speed) and overlaid with the time series obtained from the linear map
in Eq. 4.10.

The time series in Fig. 4.6 show that the latent states [ψ2, ψ6] resemble the hidden time
series [θ1, θ2] in the second row. It is apparent that the harmonic functions (describing
the pendulum swings) have a similar decay over time and that the crests (and troughs)
match in their positions.

To showcase a diffeomorphic relation between the two coordinate systems, I solve
for a linear map

M

[
ψ2
ψ6

](2)

j

≈
[
θ1
θ2

](2)

j

, (4.10)

that projects the latent to the (hidden) angular coordinates. Fig. 4.6 displays the result-
ing time series from the map (the second row, dashed). The close overlay suggests that
the diffeomorphic equivalence between the latent and hidden coordinate systems also
holds for the out-of-sample time series.

The reconstruction of the hidden angular state space in its parsimonious coordinates
is astonishing because the Cartesian observations on which the model is built are only
partially observed and do only indirectly have a notion of angle and angular speed
(the inverse function of Eq. 4.5 does not exist). By projecting the time-delayed Carte-
sian coordinates on the eigenfunctions of the Laplace-Beltrami operator, I was able to
recover physically meaningful coordinates. In usual data-driven settings, the hidden
state space is unknown and such direct comparisons cannot be made. The DMAP co-
ordinates are therefore usually treated as dimensionless latent variables that describe a
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“surrogate geometry” which is believed to connect to the hidden state space. The ap-
proach contributes to the general trend in machine learning to also be able to discover
“hidden physics” in complex and high-dimensional problems [Brunton et al., 2016].
In the next section I use the DMAP functions {ψp(.)}Pp=1 as a basis to perform system
identification within the Koopman operator framework.

4.1.4 System identification with mode decomposition

In the previous section, I focused on a geometrically motivated spatio-temporal feature
extraction of Cartesian time series to obtain a more suitable state representation. In this
section, I continue to identify the dynamics of the pendulum system by making use of
the new state representation. This means the perspective switches from an unsuper-
vised to a supervised learning problem, where I aim to approximate the flow of the
pendulum, with system identification based on mode decomposition.

Dynamic Mode Decomposition
I first showcase a system identification with a standard DMD method. However, here I
use the well-defined angular time series (previously treated as hidden). This is because
the Cartesian time series have ill-defined dynamics and without augmenting further
temporal context the system identification fails. For the DMD this is well-exemplified
with the “standing sine wave” in Tu et al. [2014]. The intention of the following analysis
is to highlight that even when the exact angular system states are available, the stan-
dard DMD has limited capacities. This further motivates the dictionary choice when
utilizing EDMD below.

The following code I use the DMDFull class from Section 3.4.4 to identify the pendu-
lum system:

1 X: TSCDataFrame # time series in angular coordinates
2 X_oos: TSCDataFrame # out-of-sample time series
3

4 # perform decomposition on pendulum data
5 dmd = DMDFull().fit(X)
6

7 # reconstruct time series in X with DMD model
8 X_reconstruct = dmd.reconstruct(X_oos)
9

10 # compute difference time series
11 X_diff = X_oos - X_reconstruct

For the time series data in X only the first two generated time series for the pendulum
are used. Note that already at this stage a mode decomposition would not be possible
with the PyDMD package because it does not support time series collections. In the
DMD model the dynamics of the angular time series captured in a linear dynamical
system with a matrix of size U∆t ∈ R[2×2] (see Eq. 3.6 – 3.7). While this setting is ideal
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to visualize and interpret the local dynamics of the time series, the size of the matrix
already indicates that it is not able to capture the nonlinear angular state evolution of
the pendulum.

Fig. 4.7 displays both the true (left) and the identified (right) vector field. Both vector
fields are generated by simulating short time series conditions in a structured grid of
θ1 = (−π/2, . . . , π/2) and θ2 = (−4, . . . , 4) (ten sampling points each). Additionally, each
vector field contains the out-of-sample time series.
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Figure 4.7: First row: The vector field on the left is from the original pendulum system in Eq. 4.1
with a trajectory from Eq. 4.4. On the right is the vector field of the identified DMD system
and respective trajectory prediction with same initial condition. Second row: The difference
time series between the original and identified trajectory for both angular coordinates.

When visually comparing the true and identified vector field (top row of Fig. 4.7) the
DMD model appears to match the true underlying system well and the out-of-sample
trajectory also seems to approximate the original system. However, when plotting the
difference time series (bottom row of Fig. 4.7), we see that the prediction of the pendu-
lum becomes out-of-sync with the original system. After a short time, the difference
time series starts to oscillate to differences up to half of the rod’s length l = 1. Both the
true and predicted trajectories include a blue arrow after t = 4. The mismatch results
from the fact that the DMD model assumes linear dynamics. It is therefore incapable
to capture the nonlinear state evolution, even when the states are “perfect” in that they
are directly generated from an ODE. Nevertheless, the DMD can be a useful analytic
tool for the analysis of dynamics over a short-time horizon.

Extended Dynamic Mode Decomposition
In the final step, I bundle all of the previous analysis and methods into a single EDMD
model. The goal is now to perform nonlinear system identification on the Cartesian
data, by making use of the full operator-informed setting. In particular, I use the com-
posed data transformation of Eq. 4.9 (the eigenfunctions of the Laplace-Beltrami op-
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erator) as a geometrically-aligned basis in the EDMD dictionary to approximate the
Koopman operator.

The following code includes the main interaction points with datafold to set up the
model and optimize its parameters by minimizing the cross-validation error:

1 X: TSCDataFrame # all three time series of the pendulum
2 X_test: TSCDataFrame # solution time series for test
3 X_ic: TSCDataFrame # initial condition of X_test
4

5 # dedicated class to split pendulum data
6 # time series i={1,2} -> build the model
7 # i=3 -> compute validation error
8 class PendulumSplit(TSCCrossValidationSplit):
9 def split(self, X, y=None, groups=None):

10 index_ids = X.index.codes[0]
11 fit_indices = np.where(np.isin(index_ids, [0, 1]))[0]
12 validate_indices = np.where(index_ids == 2)[0]
13 yield fit_indices, validate_indices
14

15 # set up EDMD with dictionary and mode decomposition
16 edmd = EDMD(
17 dict_steps=[ ("delay", TakensEmbedding(delays=3)),
18 ("dmap", DiffusionMaps()),
19 ],
20 dmd_model=DMDFull(),
21 sort_koopman_triplets=True,
22 )
23

24 # specify a grid of three parameters, with three samples each
25 edmdcv = EDMDCV(
26 estimator=edmd,
27 param_grid={ "delay__kappa": [0, 0.75, 1.5],
28 "dmap__n_eigenpairs": [30, 40, 50],
29 "dmap__kernel":
30 [GaussianKernel(epsilon=eps) for eps in [1, 3, 5]],
31 },
32 # splitting strategy for parameter optimization
33 cv=PendulumSplit(),
34 # perform optimization in parallel
35 n_jobs=-1,
36 )
37

38 # Figure 4.8
39 edmdcv.fit(X)
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40 edmd_best = edmdcv.best_estimator_
41

42 # Figure 4.9
43 X_pred = edmd.predict(X_ic, time_values=np.arange(3*dt, 11, dt))
44

45 # Figure 4.10
46 edmd_best.koopman_modes_
47 edmd_best.koopman_eigenvalues_
48 edmd_best.koopman_eigenfunctions_(X_test)

All three sampled Cartesian time series of the pendulum are contained in X and repre-
sent the available data. In the code snippet, the EDMD model describes the main setting
of my thesis to extract geometric and dynamic coordinates from time series data (cf.
Section 3.1 and Fig. 3.1). The EDMD dictionary as in Eq. 4.9 for the previous geometrical
state space analysis. This means that the latent coordinates [ψ2, ψ6] that connect to the
hidden state space geometry remains. However, for the EDMD there is no coordinate
selection. Instead, all DMAP coordinates {ψp}Pp=1 (sorted by their corresponding eigen-
value in DMAP) are used within the dictionary after a truncation P (n_eigenpairs).

For a successful system identification with EDMD, where multiple models interact,
it is important to adjust the parameters involved. Particularly for the specified function
basis that I utilize, Berry et al. [2013] (p. 28) highlights that

“[...] careful adjustment of the time-delay embedding (via our weighting scheme) and the
diffusion map algorithm (via careful selection of parameters) is necessary for these techniques to
work together optimally.”

Without prior knowledge of well-suited parameter choices, it is necessary to system-
atically sample the parameter space by optimizing the model error on the validation
set. In datafold this is achieved with the EDMDCV class. As highlighted in Section 3.5.2
a main component for the parameter optimization is a splitting strategy to optimize
against (unbiased) validation errors. The above code includes a dedicated strategy in
PendulumSplit: The first two time series (i = {1, 2}) are used to fit the model and the
third (i = 3) to compute the validation error.

The last component of performing parameter optimization is to specify a parameter
grid. In the above code snippet this includes the delay weighing (kappa), the number
of eigenvectors (n_eigenpairs) and the bandwidth of a Gaussian kernel (epsilon).
Note that syntax name__parameter is inherited from the base class Pipeline of
EDMD which allows internal model attributes to be accessed in a single point of access.
For each parameter, I sample three values, which results in 33 = 27 models to fit and
validate. All other parameters that are not contained in the grid remain as specified
in the base EDMD. The model with the lowest validation error is then selected as the
final model. For a simpler analysis, I again use the validation time series and its initial
condition in X_test and X_ic. In practice and according to Fig. 3.15 it is better to
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use test data that is completely separated from the parameter optimization to obtain an
unbiased estimate of the model’s predictive performance.

Fig. 4.8 plots the root mean squared error (RMSE) around the optimal parameter set-
ting, highlighted with a red marker. The middle graph shows that the steepest increase
in error is caused by decreasing the number of eigenpairs in DiffusionMaps, which
corresponds to the number of observables in the EDMD dictionary. Since the lowest error
is at the edge (n_eigenpairs=50), this suggests to increase the eigenpairs even more.
However, because the DMAP eigenvalues converge towards zero, the risk of numerical
instabilities increases for the Nyströem out-of-sample mapping (see Eq. 2.43 on page
45). In the final setting, the smallest eigenvalue is in the order of ω50 = O(10−13). The
other two parameters kappa and epsilon have the lowest error at the middle value,
presumably near a minimum of a convex error relation. According to the optimization
the final parameter choice is kappa=0.75, n_eigenpairs=50, epsilon=3.
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Figure 4.8: The three optimized parameters in the EDMD model. The red sample highlights the
best parameter combination in the grid. The other two samples highlight the variation of
each parameter (per plot) around the optimum in the three-dimensional grid.

Another effective parameter in the EDMD model is the delays in the time delay
embedding. I intentionally left out the parameter from the optimization, because it
changes the state dimension within the processing pipeline. Therefore, the pairwise
distances for the kernel in DMAP change and there is no suitable parameter grid: a
different set of epsilon parameters need to be sampled for each number of delays.
It is thus best to optimize the parameter separately. Here I make use of the previous
analysis performed of Section 4.1.2 and select delays=3.

Fig. 4.9 compares the best EDMDmodel against the true pendulum system, by predict-
ing the out-of-sample time series (X_test). In mathematical terms the Cartesian pen-
dulum coordinates x̂ are predicted according to obtained Koopman triplet, consisting
of the modes vp ∈ C2, the eigenvalues λp ∈ C and the eigenfunctions ξp(z) : R50 → C.
All of the components are computed during the EDMD model fit (for derivation see
Eq. 2.26 - 2.32):

x̂j+1 =
P=50∑
p=1

vpλjpξp(z1). (4.11)
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The initial condition z1 is obtained from the time series X_ic (in the above code),
which requires the current state and three prior states in order to perform the time
delay embedding; gtd(x1) = y1 in Eq. 4.6. In the plots of Fig. 4.9 this is highlighted
by the fact that the prediction only starts after 3 · ∆t time steps. Too many delays can
therefore limit the usefulness of a predictive model.
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Figure 4.9: Comparison of the true (top) and predicted (middle) out-of-sample time series
(Eq. 4.11) in Cartesian coordinates. The prediction is performed based only on the initial
condition X1. The included subplots highlight that the prediction starts later because the
first three samples are required for the time delay embedding. The bottom row plots the
mean value of the difference time series x̂j − xj .

The model is able to predict the out-of-sample time series accurately and from the
initial condition until it reaches the steady state (see the bottom row in Fig. 4.9). The
predicted time series is computed in a single prediction loop — after the initial condi-
tion, the states evolve according to the linear system in Eq. 4.11. Given the pendulum’s
rod length of l = 1 the maximum difference in the two coordinates is relatively small
with max{∆x1} ≈ 0.01 and max{∆x2} ≈ 0.02. While the phase and frequencies of
the pendulum oscillations match between the true and predicted time series, the error
still has an auto-correlated structure. This could suggest a need to further revise the
model within the system identification loop. However, as highlighted in Section 2.3, it
is important to acknowledge that even for simple systems an exact representation of the
system in terms of the Koopman operator requires infinitely many observables, which
is computationally intractable.

The Koopman triplet in Eq. 4.11 describes a discrete linear dynamical system with a
sampling rate ∆t of the underlying continuous system. In a matrix form of the system,
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the Koopman modes are captured in V ∈ C[2×50], where each column corresponds
to a mode; Fig. 4.10 displays the first and last elements of each row. The Koopman
modes remain constant in the model and reconstruct the measurement states from the
Koopman eigenfunctions (cf. Fig. 3.1 on page 64). Another useful property is that the
modes provide a way to sort the triplets based on their importance using the norm of
each column in V ; for details see Manojlović et al. [2020]. In the EDMD class, this feature
is enabled with the flag sort_koopman_triplets=True.
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Figure 4.10: The Koopman triplet components are stored within the EDMD model for the identi-
fied pendulum system (based on the Cartesian coordinates). The modes V are left with the
first and last elements of the matrix. The eigenvalues Λ are in the middle plot and scatter
on the complex plane and a circle with unit length |λ| = 1. In the order of the triplets, the
orange points mark the least important values and the blue points the most important. On
the right side are the eigenfunctions plotted over time, where the real and complex parts of
the function are plotted separately. The leading eigenfunction is in black and the following
nine eigenfunctions are in gray.

The middle graph in Fig. 4.10 shows a scatter plot of the Koopman eigenvalues in the
complex plane. The Koopman eigenvalues are the only time dependent quantities. This
makes it easy to analyze the system behavior for each triplet term in Eq. 4.9. Because
the pendulum is simulated with friction, the system is transient until it reaches the
stable equilibrium point. This behavior is reflected by the eigenvalues, which are all
inside the complex unit circle of radius one,

∣∣∣λ∆t
p

∣∣∣ < 1, and therefore decay towards
zero over time. Important components are usually closer to the unit circle because they
describe long term system behavior; In Fig. 4.10 the important eigenvalues in blue are
λ1,2 ≈ 0.97± j0.15 with a magnitude of about 0.98. Ultimately, the selection of leading
Koopman triplets also provides a way to build reduced-order models.

The last component of the triplet is the Koopman eigenfunctions. The two graphs
show that the eigenfunctions exhibit harmonic functions and can contain geometrical
information of the underlying system [Mezić, 2020]. The eigenfunctions are evaluated
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along with the out-of-sample time series X_test; see the last statement in the above
code snippet.

In summary, the approximation of the pendulum system was greatly improved by
utilizing the geometrically adapted state representation within the EDMD. In contrast
to the DMD model in Fig. 4.7, which only obtained a local approximation of easier-
to-predict angular time series, the EDMD can perform a global system identification
based on the harder-to-predict Cartesian time series. The EDMD dictionary contained
the composed transformation (approximating the Laplace-Beltrami operator on recon-
structed states), which showed high analytical power in the geometric analysis. In the
dictionary, the function basis can be interpreted as a generalized Fourier basis [Belkin
et al., 2009; Berry et al., 2013]. Note that the established connection of the two DMAP
coordinates (ψ2, ψ6) to the hidden angular reference system in Fig. 4.5 – 4.6 makes it
possible to predict these coordinates with a minor model adaptation. This means that
the physically meaningful coordinates are recovered through manifold learning and
the dynamics with the mode decomposition in the geometrically aligned coordinates.

The fact that only two time series in Cartesian time coordinates are required to gen-
eralize the model well for out-of-sample initial conditions is remarkable. Moreover, the
EDMD is a linear model that comprises of “building blocks” that are founded in linear
operator theory. These can give insight into the spatio-temporal patterns of nonlinear
systems. I explore this aspect more in Section 4.3. The whole system identification
workflow was performed with datafold using well-defined interaction points that align
to the common machine learning interface from scikit-learn [Buitinck et al., 2013].

In the next two sections, I apply the approach to systems for which an analytic form
of the system is not available.

4.2 Bus station: Surrogate model of a microscopic
pedestrian simulator

This section draws on an example of time series data from the field of pedestrian dy-
namics: a simulation of pedestrian movement at a bus station. In the analysis, I build a
coarse-grained surrogate model from time series data generated from a microscopic
pedestrian dynamics simulator. The microscopic scale refers to a level where each
pedestrian is modeled and simulated individually, whereas the macroscopic scale refers
to aggregated and emerging quantities, such as the crowd density. The goal is that the
data-driven surrogate model describes the specific system behavior independently of
the underlying simulator. Fig. 4.11 gives a schematic overview of the procedure.

Within the data-driven modeling workflow, I transfer the main operator-informed
approach and software implementation in datafold. For the data application govern-
ing equations are no longer available. However, because the data can be simulated,
it is possible to “design” the state quantities and systematically query the underlying
simulator.
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Pedestrian dynamics is an interdisciplinary research field that connects many disci-
plines, such as computer science, mathematics, sociology and psychology [Kleinmeier
et al., 2019]. Simulation software for analyzing pedestrian dynamics draw on different
aspects from these diverse fields. If the models are carefully calibrated and validated,
the pedestrian simulator can become a scientific tool to perform “virtual experiments”
and analyze a wide range of what-if cases in safety-relevant situations for which ex-
perimentation is impossible or too dangerous [Bungartz et al., 2014; Kleinmeier et al.,
2019].

In the next Section 4.2.1, I detail the application setting of creating a surrogate model
from a pedestrian simulator. In Section 4.2.2 I introduce the bus station scenario that I
use as an example to generate time series data, which I then use as a basis for the data-
driven surrogate model in Section 4.2.3. Finally, in Section 4.2.4, I highlight the applica-
bility and computational benefit of the surrogate model in an uncertainty quantification
(UQ) scenario where many model evaluations are required. UQ is an important tool of
pedestrian dynamics because many parameter specifications remain uncertain in a con-
crete scenario even after calibration with real observations.

The results of this section are based on a conference presentation at the 2019 Traf-
fic Granular Flow Conference in Pamplona, Spain and are published in the associated
proceedings [Lehmberg et al., 2020a]. In this thesis, I take a slightly different modeling
configuration and include additional aspects of cross-validation. Ultimately, this leads
to a more accurate model.
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Figure 4.11: Schematic overview of a microscopic simulator (here Vadere – Kleinmeier et al.
[2019]) and a surrogate model. The two models share the same parameter space. The gen-
erated example time series from the “slow simulator” is used as the basis for the surrogate
model. The surrogate model can then efficiently interpolate the parameter space and gener-
ate time series. Adapted from Dietrich [2017, Fig. 3.1].
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4.2.1 Data-driven dynamic surrogate model on a macroscopic scale

For the analysis of the bus station, I use the open-source software Vadere. The simulator
describes the social behavior of pedestrians and topographic conditions in a microscopic
and agent-based perspective [Kleinmeier et al., 2019]. This means that each agent —
corresponding to a pedestrian — is simulated individually and the main modeling en-
deavor focuses on the microscopic update rules of an agent. In general terms Vadere
classifies as a “complex system”, in which many simulated components interact. Mod-
eling at a microscopic scale is often favored in pedestrian dynamics because it is easier
to describe individual human behavior in the explainable and accessible framework of
agent-based update rules. This allows studying the emerging dynamical patterns of in-
teracting agents. For example, the PhD thesis of Benedikt Kleinmeier [2021] describes
how to add a psychology layer to locomotion models in Vadere.

Despite the pedestrians being modeled on a microscopic scale, the analysis and clas-
sification of pedestrian dynamics mostly focus on macroscopic quantities. This is because
a microscopic state is very detailed, high-dimensional and hard to interpret, whereas
crowd density or flow as examples of macroscopic quantities [Bode et al., 2019; Hel-
bing et al., 2007] are much easier to comprehend. Moreover, characteristic macroscopic
patterns can emerge from the collective interactions in real-world observations or sim-
ulations. Such macroscopic patterns are “more than the sum of the individual units”
[Bonabeau, 2002]. This can be, for example, stop-and-go, laminar or turbulent crowd
dynamics as well as transitions between these [Helbing et al., 2007]. Such patterns at
multiple scales are common to many complex systems [Kevrekidis and Samaey, 2009].
The macroscopic patterns are therefore relevant to characterize pedestrian dynamics
and validate simulators against these.

Constructing surrogate models via machine learning methods is an established ap-
proach to mitigate computational demands from microscopic simulators to perform
sensitivity analysis or parameter studies [Niemann et al., 2021]. The idea is that the dy-
namics of the reduced macroscopic state are extracted from a specific scenario, by sys-
tematically sampling from a parameter space and collecting time series that describe
quantities of interest. The parameter space is shared between the simulator and sur-
rogate. But with the out-of-sample extension of the surrogate model, it is possible to
interpolate the dynamics and directly generate time series that approximate the true
dynamics of the original simulator. This is highlighted by the shaded backgrounds in
the parameter space (purple) and the output time series (yellow) in Fig. 4.11.

Instead of evolving the computationally expensive microscopic state of a general pur-
pose pedestrian simulator (here Vadere), surrogate models gain their computational
advantage by directly evolving the reduced macroscopic state in a numerical model.
An in-depth analysis of data-driven surrogate models to perform scale transitions is
provided by Dietrich [2017] in his PhD thesis. Moreover, scale transitions in complex
systems to reduce the computational burden of microscopic simulations are integral to
the “equation-free framework” developed by Kevrekidis et al. [2003]. In a recent study
by Niemann et al. [2021], the Koopman generator has been studied to construct reduced
order surrogate models from agent-based systems with a variant of EDMD.
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4.2.2 Data generation for bus station scenario

For the concrete traffic scenario, I model how pedestrians leave a bus and station exit.
Fig. 4.12 displays a simulation snapshot and the topography as modeled in Vadere.
When designing the scenario I favored the usefulness as a demonstrator for the surro-
gate modeling and follow-up analysis over realistic traffic parameters. Because the
operator-informed approach that I apply is data-driven and does not require prior
knowledge, it could easily be transferred to other scenarios or simulators (including
commercial and closed-source ones).

Since real-world observations or experiments in pedestrian dynamics are often noisy
due to unpredictable human factors and unknown forcing, Vadere includes various
sources where random numbers are generated to anticipate observed variations in
pedestrian dynamics patterns. This also affects the macroscopic quantities which be-
come stochastic.

source

target

density bus (xbus)

density bus door (xbus door)

density station exit 
(xstation)

density = #agents in rectangle

Figure 4.12: Snapshot of the modeled bus station scenario. The agents move from the source
(bus, green) to the target (station exit, yellow) by avoiding collisions with the obstacles and
other agents. The red rectangles highlight the regions in which the crowd density is mea-
sured. Adapted from Lehmberg et al. [2020a].

In Fig. 4.12, the simulated agents are displayed as blue circles, which can only nav-
igate in the area that is not covered by an obstacle (in gray). At the initial simulation
state, all agents are placed randomly with a uniform distribution inside the green rect-
angle, representing the interior of a bus. Furthermore, each agent has an individual
free-flow speed, which is the speed at which an agent moves through an obstacle-free
geometry. The free-flow speed of each agent is selected according to a truncated nor-
mal distribution, Ntrunc(µ = 1.34, σ = 0.26,min = 0.5,max = 2.2), which is the default
setting of Vadere.

After the initialization phase, all agents navigate towards the yellow target region
at the lower right corner, which represents the station exit. Once an agent reaches the
target, it is removed from the simulation. Vadere provides a number of (competing)
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locomotion models to update the agents depending on their individual properties (e.g.
free-flow speed) and near surroundings [Kleinmeier et al., 2019]. For the bus scenario,
I choose the Optimal Steps Model (OSM), developed by Seitz and Köster [2012] and
updated in von Sivers and Köster [2015]. The OSM updates agents in an event-driven
update scheme to mimic “natural” walking behavior. The next future position of an
agent is obtained from an optimization of a utility function. The function is defined
on the “walkable geometry” and includes terms of the navigation field to the target,
obstacles or nearby agents; see Kleinmeier et al. [2019, Fig. 3]. For an in-depth analysis
of simulated pedestrian navigation, I recommend the PhD thesis of Benedikt Zönnchen
[2021].

When building coarse-grained surrogate models, a key problem is selecting a suitable
set of quantities. While the application at hand often dictates quantities of interest, only
choosing these can result in a loss of essential system information [Dietrich et al., 2016].
Selecting appropriate quantities often requires insight (or intuition) into the dynamics.
The quantities in a system state can fulfill different tasks, such as (1) being relevant for
the application (2) being useful to initialize a state and (3) capturing spatio-temporal
patterns [Liu et al., 2014]. While the selection of type (1) is straightforward, the other
two cases classify as “supporting quantities” to have a more informative state that leads
to a more accurate surrogate model. If no guidelines (or intuition) for an appropriate
state selection is available, Liu et al. [2014] describe an “equation- and variable-free”
approach, which uses Diffusion Maps to automatically extract variables.

Within the bus scenario, I specify three regions in which I measure the crowd den-
sity by counting the number of agents for each time step (j). These three density
values then correspond to a macroscopic state that is captured in time series states
[xbus,j , xbus door,j , xstation, j]. Note that in Fig. 4.12 the two regions of the bus and door
overlap. A single run with the scenario generates a time series with 300 time steps,
where a single time step corresponds to ∆t = 0.2 seconds in simulated time.

For the UQ analysis in Section 4.2.4, I use the number of agents in the bus at the start
of the simulation as an uncertain parameter, which I denote as θ. Following Fig. 4.11
it is necessary to reflect this uncertain parameter also in the surrogate model. Here the
state quantity xbus makes the initialization easy to accomplish, because it gives a one-to-
one correspondence between the uncertain parameter and the macroscopic initial state,
θ = xbus,1.

Since the surrogate model is data-driven and views the simulator as a black box,
the next step is to systematically sample the parameter and collect the resulting macro-
scopic time series of each parameter sample. In Fig. 4.11 this is highlighted by the green
dots that lead to the time series. For practical reasons, the simulator has to provide an
interface to both systematically sample the parameter and retrieve results in an auto-
mated fashion. For Vadere this is provided by the Python package suqc (surrogate and
uncertainty quantification controller, version 2.1), which I developed during my thesis
and made openly available1. The suqc package provides an API to sample parameters
of Vadere and collects the time series results in a pandas DataFrame [McKinney, 2011]

1www.gitlab.lrz.de/vadere/suq-controller
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as an easy-to-process format. Moreover, it is possible to parallelize the sampling and
average outputs over multiple simulations. While I am not detailing the software suqc
here, I include code of the main function call to generate the data for the bus station
scenario:

import suqc

# Specify parameter sampling of bus station scenario
# in Vadere to create example time series on macroscopic scale
vadere_sample = suqc.SingleKeyVariation(

scenario_path="./bus.scenario", # vadere scenario file
key="sources.[id==1].spawnNumber",
values=np.linspace(10, 100, 20).astype(int),
qoi="density.txt", # read time series from from output file
model=path_to_vadere_jar_file,
scenario_runs=100, # run each sample multiple times

)

# run simulations and store density time series in vadere_result
overview_table, vadere_result = vadere_sample.run(njobs=-1)

# average the time series at each time step
vadere_mean = vadere_result.groupby(["id", "timeStep"]).mean()

# cast data to TSCDataFrame to process in datafold
X = TSCDataFrame(vadere_mean)

The uncertain parameter spawnNumber is sampled with 20 equidistant values be-
tween 10 and 100 agents at integer values. For the data generation, each parameter
setting is sampled with 100 independent runs with a different random seed each. This
is to average the stochastic effects in Vadere and obtain mean simulation results for the
traffic scenario. For the data collection I therefore perform 20 · 100 = 2000 simulation
runs in total. All runs are in parallel and each run produces a time series, which is
stored in a density.txt file. Once all time series are available in vadere_results,
the runs for each parameter are averaged to a single time series in vadere_mean. The
final statement in the above code snippet is a simple cast to datafold’s time series collec-
tion format (TSCDataFrame) and can now be used as a basis for the operator-informed
surrogate model. The workflow allows the traffic scenario and other specifications in
Vadere to be easily exchanged.
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Figure 4.13: Averaged time series as generated and aggregated from Vadere as the microscopic
simulator. The color code corresponds to the initial number of agents in the bus xbus,1.
Adapted from Lehmberg et al. [2020a].

The final generated and averaged time series of the three density values are displayed
in Fig. 4.13. Note that the system is in a transient regime most of the time, where states
converge to the origin as the attractor state [0, 0, 0] in which all agents have left the
scenario.

The goal is to use the time series data and build a surrogate model, that both recon-
struct the time series from Vadere, but also generates new time series based on initial
conditions not included in the sampling. An important aspect for the modeling is the
closure of the macroscopic dynamics [Dietrich et al., 2018]. That is, that the states are
well-defined and clearly map to a future state. As highlighted in Section 2.4.2, a com-
mon way to reconstruct ill-defined state dynamics is time delay embedding. However,
here I take a slightly different approach, by augmenting a supporting “slack quantity”
to the state. I compute this slack quantity with

xslack,j = xbus,1 − xbus door,j − xstation,j . (4.12)

The additional quantity is similar to a time delay embedding: In a geometric picture,
it stretches states apart which are nearby but originate from time series with different
initial states. Instead of ending at the origin as a single state, with the additional slack
quantity the time series now end on an attractor line [0, 0, 0,−xbus,1]. Note that xbus,1
corresponds to the uncertain parameter and is a constant term in Eq. 4.12.

The final time series collection is then

X(i) = [x(i)
1 ,x(i)

2 , . . . ,x(i)
300] ∈ R[4×300] (4.13)

X = [X(1), X(2), . . . , X(20)], (4.14)
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where each single time seriesX(i) is represented as a matrix and horizontally stacked to
the final matrix X . Each snapshot contains the final state quantities in a column vector,
x(i)
j = [xbus, xbus station, xstation exit, xslack](i)j (i-th time series with time index j). Eq. 4.13 is

therefore the data basis for the surrogate model, which directly captures the bus station
dynamics on the macroscale.

4.2.3 Building data-driven dynamic surrogate model

With the generated time series collection of Eq. 4.13 it is now possible to construct a
data-driven surrogate model, approximating the macroscopic system dynamics of the
bus scenario. This means the surrogate model describes the flow F∆t of the three den-
sity values in Fig. 4.13 and the slack variable contained in a state x,

xj+1 ≈ F∆t(xj ; θ). (4.15)

Because the time series data and process include noise, the flow describes the expected
state evolution. Importantly, the model in Eq. 4.15 should not only reconstruct the
generated data itself, but also generalize to new initial conditions x1 /∈ X . For the bus
scenario, the initial state x1 is specified according to the initial number of agents in the
bus (in Vadere: parameter spawnNumber). For the surrogate model the following map
is set up:

x1(θ) = [θ, 0.08 · θ, 0, 0, xslack,1]T , (4.16)

where θ ∈ (10, 100), corresponding to the sampling bounds. Given the measurement
regions in the bus scenario of Fig. 4.12, the second quantity (xbus door) includes a factor
0.08, which corresponds to the mean number of people inside the bus door region at
initialization. The slack variable is computed according to Eq. 4.12 To identify the
system dynamics of the macroscopic density values, I use the EDMD framework to
approximate the Koopman operator and the implementations in datafold (Sections 2.3
and 3.5). For the EDMD dictionary, I approximate the first P eigenfunctions of the
Laplace-Beltrami operator {ψp(x)}Pp=1 with Diffusion Maps (Sections 2.4.2 and 3.4.3). In
datafold the data-driven operator-informed surrogate model is set up in the following
way:

edmd_base = EDMD(dict_steps=[
("dmap", DiffusionMaps(

GaussianKernel(epsilon=1),
n_eigenpairs=10))

],
include_id_state=False)

A major property of this model setting is that it is equation-free and does not in-
clude any a priori knowledge of the bus scenario itself. Instead the Diffusion Maps
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(DMAP) coordinates are extracted from the data geometry. This makes the model con-
figuration easy to transfer to other settings with different measurement states (e.g. flow
or pedestrian streams). Note that in my own publication Lehmberg et al. [2020a], I
used the related geometric harmonics functions [Coifman and Lafon, 2006a] instead of
DMAP coordinates. At the time the essential out-of-sample extension was missing in
the DiffusionMaps implementation. In comparison to the publication, I can further
improve the model quality in the thesis by using the DMAP coordinates and systematic
parameter optimization.

Mathematically, the final system can be described in terms of the Koopman triplet
(V,Λ, ξ(x)) and the EDMD dictionary gdmap(x) = [ψ1(x), . . . , ψP (x)] (see Eq. 2.44 on
page 45):

x̂j+1 = V Λjξ(x1(θ)) = V ΛjΦ−1gdmap(x1(θ)). (4.17)

The x̂ are predicted states and the matrix Φ−1 includes the left eigenvectors (by con-
vention row-wise oriented) of the Koopman matrix diagonalization, U∆t = ΦΛΦ−1 (see
Eq. 2.26 – 2.29).

Because the model is non-parametric — increasing the number of DMAP functions P
also increases the model complexity — it is important to optimize the model’s param-
eters to avoid overfitting. For the above EDMD specification, I choose to optimize the
bandwidth of the Gaussian kernel (epsilon) and P as the number of leading DMAP
coordinates to include in the EDMD dictionary (n_eigenpairs). For this I make use
of EDMDCV in datafold :

# median value of pairwise distances in X
m = 1360.5066

# set up parameter optimization in a grid search
edmdcv = EDMDCV(

estimator=edmd_base,
param_grid={
"dmap__kernel":
[GaussianKernel(epsilon=eps)
for eps in [m/2, m, m*2, m*3, m*4, m*5, m*6]],

"dmap__n_eigenpairs": [100, 120, 140, 160, 180, 200, 220],
},
cv=TSCKfoldSeries(5, shuffle=True, random_state=1),
n_jobs=-1,
refit=True

)

# run the optimization with the training data
edmdcv.fit(X)
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# obtain final EDMD model
edmd_final = edmdcv.best_estimator_

EDMDCV performs a naive search on a parameter grid, as covered in Section 3.5.2 and
Fig. 3.15. The best parameter specification for the final model is the pair with the lowest
mean error (or highest mean score) in the validation data. For both parameters I spec-
ified seven values, which describe a grid with 7 · 7 = 49 candidate pairs. Note that the
optimal kernel bandwidth (epsilon) depends on the sample density in the dataset. I
therefore describe the parameter in terms of the median of the pairwise squared Eu-
clidean distances in the training dataset

ε = c ·median(‖xi − xj‖)2
2, ∀(i, j) ∈ Xtrain. (4.18)

The relative setting of ε provides a good starting value for different datasets with
different pairwise distances and hence makes it easier to transfer the model.

For each parameter sample, the time series collection is allocated in different training
and validation configurations. Because the system mostly shows transient dynamics, it
is best to perform splits along the separate time series (cf. Fig. 3.6 on page 82). In con-
trast, splits along the time axis would always exclude essential parts of the state space
and require the model to extrapolate these missing validation parts. As per Fig. 4.11,
for the surrogate model, I am only interested in generating time series that interpolate
the state space. The specified TSCKfoldSeries class in the above code snippet per-
forms five different configurations, such that 16 time series are used to train the model
and four are used for the validation. In total 5 · 49 = 245 model fits are performed for
the optimization plus one final model for the entire dataset.

Fig. 4.14 displays the reported errors of EDMDCV for both the training and valida-
tion error. The marked squares denote the parameter combination with the respective
lowest mean error. The red color in the left training square shows that the errors are
almost indistinguishable. The best parameter setting is located in the lower left corner,
suggesting that further decreasing the kernel bandwidth ε and increasing the number
of eigenpairs P could decrease the error. This shows that the two parameters steer the
model’s complexity because the training error can be “arbitrarily” decreased. However,
there is a danger to choosing a parameter setting that overfits the training data.

The validation error in the right plot of Fig. 4.14 is suitable to balance the complexity
and find a parameter pair that also adequately reconstructs time series that are not
available to the model. In contrast to the reported training error, the plot shows that
there is more variation in the validation error and that the largest error rates are located
in the lower left corner. This highlights that the model indeed overfits at the lowest
training error.

To the best of my knowledge, such model selection and validation analysis is cur-
rently missing in the literature for Koopman operator-based methods. There is also
no software available that would support such an analysis for the EDMD framework.
Because it is easy to fall into the trap of only basing the reconstruction optimization
on available data, it is likely that often overly complex models are reported which also
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include non-essential patterns such as measurement noise and would perform poorly
for out-of-sample data.
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Figure 4.14: Visualization of the error rates in the parameter grid in EDMDCV for the training
(left) and validation set (right). A black cross marks the best candidate pair in a grid. Note
that the epsilon is in terms of the factor c of Eq. 4.18.

For the analysis, I proceed with the model that is fitted to the entire data set and
parametrized with the lowest validation error. According to Fig. 4.14 the final parame-
ter selection is epsilon=5442.0264 and n_eigenpairs=200. With this parameter
set, I accept a worse reconstruction error to obtain a more accurate generative model.

Given the interface of the EDMDmodel, the data of Eq. 4.13 can easily be reconstructed
with the surrogate model:

X: TSCDataFrame
X_reconstruct = edmd_final.reconstruct(X)

Fig. 4.15 compares the original data from Vadere and the reconstructed time series
with the surrogate model. The figure separates each density quantity into a dedicated
column. It is apparent that the three density quantities have different spatio-temporal
patterns and state evolution. The more agents that are in the bus at the start of the
simulation, the longer the duration of (high) crowd density at the bus door and station
exit.

While for all initial conditions the density increases at around the same time (at j = 1
for the bus and about j = 50 for the station exit), the location of peaks with high density
and the slope for increasing or decreasing density vary. For example, at the bus door,
all agents move immediately to the measurement region, such that the highest density
peaks appear shortly after the simulation starts. In contrast, the peaks in density at the
station exit appear later and are lower, which is a result of a wider exit door compared
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to the narrow bus door. Note that the color-coded density is relative to the maximum
observed value in the measurements.
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Figure 4.15: Comparison of the data generated by the simulator (top row) and the reconstructed
time series with the surrogate model (middle row). The color code in the first two rows is
relative to the maximum observed value highlighted in brackets. The bottom row highlights
the difference values of the two plots.

All patterns in Fig. 4.15 are distinct and specific to the simulation settings, such as
the topography and the locomotion model. While the original crowd density in X are
only accessible through Vadere, the Koopman operator-based surrogate model makes it
possible to describe and interpolate the patterns that emerge from the microscopic state.
All quantities and dynamics are captured in the EDMD dictionary and a Koopman
operator-based linear dynamical system; Eq. 4.17.

The third row in Fig. 4.15 shows the relative error between the surrogate model and
simulated data. In general, the error is relatively low for all three quantities, which
suggests a good fit of the surrogate model. The largest error occurs at the station exit
for the initial conditions of 10 to 15 agents at times of positive density. A possible
reason is that low densities have greater relative fluctuations in the time series. Smaller
numbers of agents in the scenario make it harder to transition to a positive density in
the station exit. The reconstruction error analysis is therefore valuable because it points
to problematic state dynamics.

I want to highlight that the surrogate model is described in terms of oscillatory func-
tions, both in the dictionary and Koopman eigenfunctions. This means that the model
can also have (slightly) negative density values. These unrealistic values could easily
be removed by setting them to zero. However, I choose not to further manipulate the
surrogate model with knowledge of system constraints.

The last important factor is the out-of-sample extension to interpolate the state space.
For the forward UQ analysis exemplified in Section 4.2.4, the generative property is
essential to define probability distributions on the uncertain parameter; here θ as the
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initial number of agents in the bus. The EDMD dictionary contains the out-of-sample
mapping in DMAP, which is performed by the Nyström extension (cf. Eq. 2.42 and 2.43
on page 45).

Fig. 4.16 plots the three density values of the modeled system by interpolating the
states both in space (by including more initial conditions θ ∈ [10, 100]) and time (by
decreasing the sampling rate ∆t < 0.2). Instead of only having time series as in
Fig. 4.13, which only form a point cloud and no explicit governing equations, the sur-
rogate model now captures the full identified state space with an explicit linear system
(Eq. 4.17).
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Figure 4.16: Left: The interpolated state space (only the density quantities) generated with the
surrogate model by interpolating the initial condition x(θ) with x(θ) ∈ [0, 100]. Right: The
first two non-trivial DMAP coordinates, which describe geometrically independent direc-
tions of the inferred state space manifold. The color-code corresponds to the initial number
of agents in the bus.

Because the DMAP coordinates have their origins in manifold learning (unsuper-
vised machine learning) [Coifman and Lafon, 2006b], they also expose interesting pat-
terns of the identified system and can help to better understand the macroscopic dy-
namics, which are only indirectly described through the microscopic simulator. The
intrinsic spectral coordinates in a geometric perspective can therefore be used to com-
pare different locomotion models or validate models with real-world observations. Ul-
timately, this leads to an interesting future direction to match dynamical systems, for
which the spectrum in the Koopman operator is particularly well-suited, see Bollt et al.
[2018].

As also demonstrated for the pendulum system in Section 4.1, the DMAP coordi-
nates can describe a geometry that relates to the underlying state space. The right plot
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of Fig. 4.16 displays the first two coordinates (after the trivial first constant coordinate),
[ψ2(x), ψ3(x)]. The shape resembles a curved triangle, where the lower end (blue) de-
scribes short time series with a small number of agents in the bus and the higher end
(red) parametrizes time series with a maximum number of agents in the bus. All initial
conditions (parametrized with θ ∈ [10, 100]) lie on the right edge of the geometry and
move towards the attractor line on the left edge. Note that the DMAP coordinates are
computed from the entire state, which also includes the slack variable as a fourth quan-
tity that makes the attractor in the measurement space a line. In the modeling approach
of Dietrich [2017] these intrinsic coordinates are used to construct a nonlinear surrogate
model since these coordinates parametrize a qualitative copy of the underlying state
space manifold.

The EDMD model also stores the (approximated) Koopman triplet as system-intrinsic
components that provide insight into the modeled dynamics. However, in the analysis
of the surrogate model my main objective is to have a model that efficiently evaluates
time series that accurately approximate the underlying system. For an extended anal-
ysis to gain insight into the identified system using real-world data, I refer to Section
4.3.

4.2.4 Forward uncertainty quantification

I now show how the constructed surrogate model can be used in a forward uncertainty
quantification (UQ) analysis. Like with the bus scenario itself, the main purpose of
this analysis is to highlight the applicability of the surrogate model and show how the
methodology supports parameter studies. In particular, I showcase the computational
advantage once the surrogate model is available.

Fig. 4.17 highlights the setup for the forward UQ analysis, where a probability dis-
tribution is defined on the uncertain parameter θ (the initial number of agents in the
bus). This uncertainty is carried through the model and affects the uncertainty in the
observed density time series. UQ is a relevant topic in pedestrian dynamics because the
microscopic models have many parameters that cannot be measured or have no one-to-
one correspondence to real observations. For example, the OSM includes repulsive and
attractive forces to avoid collisions between the agents and obstacles [Seitz and Köster,
2012]. The methodology of UQ allows a simulator to be analyzed under uncertainty,
where the outcome of a simulation is no longer a point evaluation but a distribution in
which the likelihood of worst-case or best-case outcomes can be deduced. von Sivers
et al. [2016] use UQ to analyze the effect of a parameter that describes the social identity.
In a similar setting to the bus station, Dietrich et al. [2018] build a dynamic surrogate
model to perform UQ in an egress scenario at a train station. Florian Künzner [2020]
investigates non-intrusive UQ for large scale simulations (including pedestrian dynam-
ics) in his PhD thesis.

The uncertain number of agents in the bus means that the entire evolution of the
resulting time series is also uncertain. Fig. 4.17 highlights that there is an output dis-
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tribution at each time value for all three density values over time. In the analysis, I
compare the original simulator Vadere with the built EDMD surrogate model.

 parameter uncertainty dynamical system output uncertainty in time series

or

VADERE

EDMD model

Figure 4.17: Schematic representation of the forward uncertainty quantification setting. Starting
on the left, the parameter uncertainty is described with a probability distribution. The objec-
tive is to observe the effect of the uncertainty θ on the output of the multivariate time series
on the right. The uncertain output is described with the median (black line) and the (10%,
90%) quantiles (red band). To obtain the relation between input and output uncertainty ei-
ther the microscopic simulator or the surrogate model (acting as dynamical systems) can be
sampled.

For the forward UQ analysis I specify three different (representative) probability dis-
tributions on the uncertain parameter, which now acts as a random variable:

θ1 ∼ Uniform(loc = 40, scale = 20) (4.19)
θ2 ∼ TruncatedNormal(a = −3.5, b = 3.5, loc = 65, scale = 10) (4.20)
θ3 ∼ TruncatedExponential(b = 100, loc = 20, scale = 10). (4.21)

To describe the distributions I use the arguments of the respective functions in the
statistical module of the SciPy package [Virtanen et al., 2020].

The forward UQ is performed by drawing samples from the distributions in a Monte
Carlo fashion. To compare the microscopic simulator Vadere and the surrogate model,
I generate a time series for each draw of θ respectively. A practical aspect is that micro-
scopic simulators can only be parametrized with integer values of θ, while the surrogate
model has the capacity to also interpolate real-valued states (cf. Fig. 4.11). To facilitate
direct comparison between simulator and surrogate, I truncate all θ values to the next
integer, making the distributions essentially discrete.

Fig. 4.18 shows the uncertain output of the three distributions. The surrogate model
approximates the true output distribution over time well, as all median curves match
satisfactorily. The largest discrepancies are at the lower 10% quantile of the station exit.
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This is a result of the higher error rates observed in the surrogate model for regimes
with a small number of agents (cf. Fig. 4.15). Much of the probability density of the
truncated exponential (θ3) lies in this regime. This highlights the importance of the
reconstruction error analysis. Furthermore, the truncated exponential distribution also
shows the largest variance and reflects the non-symmetric input in a skewed output
uncertainty.

In Fig. 4.18 the evolution of the uncertainty over time shows narrow bands during the
initial density increase; the uncertainty instead manifests in the output during stagnant
and decreasing density regimes. The surrogate model is able to capture these charac-
teristics and separate the different cases over time. Note that the whole simulation is
only based on the single state x1.
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Figure 4.18: Top row: The plots show the output uncertainty over time, each resulting from
the respective input parameter probability distribution functions (pdf) from Eq. 4.19 – 4.21
(also shown in the inset in each plot). Only the density values at the bus door (blue) and
the station exit (orange) are displayed. The curve corresponds to the median and the band
describes the interval of the (10%, 90%) quantiles. The gray band and black curve in the
background is the output uncertainty from Vadere. Bottom row: The convergence rates of
the quantiles, which are incrementally computed for each new Monte Carlo iteration. The
Monte Carlo convergence is measured at a single time step, marked with vertical lines at
j = 50 for the bus door and j = 150 for the station exit.

Because of the linear regression and truncation of DMAP coordinates in the EDMD
model, the surrogate model shows smoother bands compared to the noise corrupted
uncertainty bands (gray) of the original simulator. Similar plots for a forward UQ anal-
ysis of pedestrian dynamics are also presented in von Sivers et al. [2016, Fig. 13] and
Dietrich et al. [2018, Fig. 7].
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For the computational comparison below, I made sure that I drew sufficiently many
Monte Carlo draws from the distributions such that the quantiles converge. The second
row in Fig. 4.18 includes the convergence rates of the quantiles at a specific time value.
The figures show that all quantiles converge after 100 samples. In more complex sce-
narios with a larger set of uncertain parameters, the number of samples can be much
higher.

Table 4.1 compares the computational time between the simulator and the surrogate
model. All Monte Carlo evaluations of the bus scenario were executed in parallel. How-
ever, for an easier comparison, the table includes the summed wall clock time of all
single evaluations. Note that obtaining a single time series from Vadere also requires
100 runs to average the random fluctuations. For the 100 random samples in Vadere
this makes a total of 100 · 100 = 10000 runs for each distribution.

Table 4.1: Runtime between Vadere (microscopic pedestrian simulator) and the EDMD sur-
rogate model. The tasks distinguish between “offline tasks” for model construction and
“online tasks” in which the UQ analysis is performed. Because Vadere is the base to con-
struct a surrogate model, the offline tasks are not applicable (n/a). All numeric values are in
seconds.

Task Vadere EDMD

1 generate time series with Vadere n/a 37913

offline2 model selection with EDMDCV n/a 27355

3 forward uniform distribution Eq. 4.19 190,039 0.296 online4 forward truncated normal distribution Eq. 4.20 214,268 0.285
5 forward truncated exponential distribution Eq. 4.21 167,421 0.278

sum 571,728 65,268

As per Table 4.1 the construction and evaluation of a surrogate model separates be-
tween an offline and online phase (see also Dietrich et al. [2018]). The first row describes
the generation of the crowd density example data with Vadere (Section 4.2.2) and the
second row includes the model fit and error evaluations in the parameter optimiza-
tion with EDMDCV (Section 4.2.3). The rows three to five then include the runtimes to
perform the forward UQ evaluation for each of the three distributions.

In the online phase, the computational advantage of the surrogate model compared
to Vadere is immense. Because the surrogate bypasses the microscopic evaluations and
averaging routines, it only requires a tiny fraction of what is needed to perform an exact
evaluation with microscopic simulations.

Another positive aspect of the surrogate model is that the state evaluations require
a constant number of floating point operations in Eq. 4.17. This means that the model
evaluations remain approximately constant irrespective of the uncertain parameter dis-
tribution (θ1−3). In contrast, the memory requirements and runtime of Vadere are in-
fluenced by the microscopic state and, therefore, how many agents are simulated. For
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example, the truncated exponential distribution — having a higher probability density
at smaller numbers of agents — takes only around 78% of the runtime compared to the
truncated normal distribution.

A fast evaluation and more predictable runtimes make the surrogate model approach
a great candidate in applications where rapid (or even real-time) evaluations and de-
cisions are required, see also Dietrich et al. [2018] and Niemann et al. [2021]. The sur-
rogate model can also be used when the parameter’s uncertainty distribution changes,
as highlighted in Table 4.1. For example, this would be the case in the bus scenario
if the parameter uncertainty changes during the day depending on the current traffic.
This contrasts with other common approaches for surrogate models in UQ, such as the
Polynomial Chaos Expansion (PCE). While PCE also limits the number of evaluations
of the simulator under study, as soon as the parameter distribution changes new ex-
ample data must be generated from the simulator to construct a new surrogate model
[Dietrich et al., 2018].

To conclude the analysis in this section, I could demonstrate the suitability of the
Koopman operator approach to construct an efficient and accurate surrogate model.
The model performed a scale transition of a microscopic simulator to the macroscopic
crowd density patterns.

The model is data-driven and requires no specific a priori knowledge and can there-
fore easily be transferred to other (traffic) scenarios. Furthermore, I could capture the
nonlinear spatio-temporal patterns of multiple quantities of interest in a single Koop-
man matrix describing a linear system. The intrinsic geometric coordinates are suitable
for analyzing the identified systems. I will take advantage of these factors in the next
section, where I analyze real-world sensor measurements.

An interesting direction for future work would be to limit the number of microscopic
evaluations by adopting “active learning” and to vary the sampling rate of the param-
eter space according to the “complexity” of the resulting time series.

4.3 Melbourne sensors: Gaining insight into pedestrian
dynamics

For the data scenarios in this section, I again perform system identification on collec-
tions of time series that originate from pedestrian traffic. However, here I extend the
established operator-informed setting and datafold to real-world sensor measurements,
provided by the City of Melbourne [Melbourne, 2021a]. There are fundamental dif-
ferences in the underlying system and data characteristics between the previous two
scenarios and the sensor-based pedestrian data analyzed here: (1) the states are not
converging to an attractor point, (2) the governing equations of the system are un-
known, and (3) the states are high-dimensional and disturbed by many unobserved
factors. Most of the results covered in this section are also published in a journal article
[Lehmberg et al., 2021].
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In a broader context, the analysis contributes to mobility research of “smart city”
systems. In such settings a network of sensors across a city measure and stream traffic-
related quantities to central units [Carter et al., 2020]. Collectively, all measurements
describe a traffic state on a city scale. Global monitoring can assist authorities to im-
prove traffic and public safety [Carter et al., 2020; Nagy and Simon, 2018]. A key ob-
jective is to describe and forecast the (pedestrian) traffic, because this helps to allocate
limited security resources effectively and identify traffic abnormalities [Zameni et al.,
2019].

In contrast to the simulated traffic scenario in the previous section, the direct data-
driven modeling on real-world observations is advantageous for predicting future traf-
fic at sensors. While simulators such as Vadere for pedestrians [Kleinmeier et al., 2019]
or SUMO for vehicular traffic [Lopez et al., 2018] are useful to understand complex
interactions and perform virtual experiments in what-if scenarios, a forecast based on
macroscopic sensor observations is usually not possible. This is because for large sce-
narios on a city scale, setting up a simulation requires laborious customization [Nagy
and Simon, 2018]. A more serious problem is that the initialization of a microscopic
state in a simulator is ill-defined. The aggregated and macroscopic system information
is insufficient to specify a distinct microscopic state in the simulator. For example, in
the Melbourne sensor data used here, the origin, destination and walking speed of an
individual pedestrian — mapping to an agent as part of the simulation — are unknown.
The ill-defined map from an (aggregated) macroscopic state to a (detailed) microscopic
state is a common problem that is also highlighted in the equation-free framework by
Kevrekidis and Samaey [2009].

This introduction continues with a short review of previous research using machine
learning approaches, including the Koopman operator methodology, to analyze traffic
systems. I then describe the characteristics and selection of the Melbourne sensor data
in Section 4.3.2. In Section 4.3.3 I outline the main model architecture and parametriza-
tion to identify the traffic system. In Section 4.3.4 I show that the modeling approach
under these circumstances leads to an accurate model to collectively forecast all in-
cluded sensors. In the subsequent analysis of Section 4.3.5, I use the model’s compo-
nents to gain insight into model characteristics and analyze the intrinsic geometric and
dynamic coordinates of the identified system. Since these are based on the operator the-
ory, this provides a path to enhance both the predictive capabilities of complex systems
and the scientific understanding of traffic systems.

4.3.1 A short review of related research

Research has utilized a large array of machine learning models to analyze real traf-
fic systems; for review articles I refer to Boukerche and Wang [2020]; Nagy and Simon
[2018]; Vlahogianni et al. [2014]. These methodologies include common data-driven ap-
proaches, which are highlighted in Section 2.2.3. Popular techniques are Support Vector
Regression (SVR) [e.g. Yin et al., 2020] or Autoregressive Integrated Moving Average
(ARIMA) as statistics-based methods [e.g. Boukerche and Wang, 2020; Nagy and Si-
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mon, 2018] and deep neural networks (DNNs) architectures [e.g. Li et al., 2020; Lim and
Zohren, 2021; Lv et al., 2014; Vlahogianni et al., 2014; Yao et al., 2019]. A system iden-
tification model extracts data-intrinsic correlations based on historic traffic states. This
approach therefore complements the ever increasing data availability stemming from
widespread and inexpensive sensors installed in cities. The interaction between the
modeled patterns then determine the forecast of a traffic state [Boukerche and Wang,
2020].

While the aforementioned methods are applied more frequently, the Koopman op-
erator theory has also been introduced recently to traffic analysis. Avila and Mezić
[2020] analyze real-world data from a multi-lane highway. Similar to my analysis they
show how the operator-based approach uncovers intrinsic spatio-temporal traffic pat-
terns. Their model can be used for both system analysis and traffic forecasting. Liu
et al. [2016] explore the DMD for vehicular highway traffic, where they detect temporal
patterns on different time scales.

For pedestrian traffic, Benosman et al. [2017] estimates crowd flow based on incom-
plete spatial measurements. In Dicle et al. [2016] the DMD-variants are useful to an-
alyze a system’s stability by only processing noisy and high-dimensional data from
pedestrian video streams. Finally, Cheng et al. [2021] show that it is possible to use
a DMD-variant from [Le Clainche et al., 2017] to forecast a origin-destination matrix,
describing pedestrian transitions in a metro station.

4.3.2 Data description and selection

For the real-world dataset, I use pedestrian traffic data from sensor measurements pro-
vided by the City of Melbourne, Australia. The full dataset and sensor descriptions
are freely available [Melbourne, 2021a,b] 2. Fig. 4.19 shows an example of a single sen-
sor setting. The sensors are installed on awnings or street poles at main pedestrian
thoroughfares or areas with high retail or event activities. A single sensor records the
number of pedestrians that passed under that sensor in the past hour with a timestamp
on the hour. Together all sensors describe a traffic state, which comprises all measure-
ments at a given time. I detail the final data selection used for the data analysis in
Section 4.3.2.

2An interactive city map with visualized sensor measurements and locations is provided at
http://www.pedestrian.melbourne.vic.gov.au/.
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Figure 4.19: An example of a single sensor, which counts each pedestrian who passes the count-
ing zone (green) in either direction. The sensor stores the data onsite and regularly transmits
the latest measurement to a server.
Source of image: https://youtu.be/isHEXkB2M4A?t=34

Using real-world data introduces a new set of challenges. Unlike the two previous
scenarios, it is no longer possible to freely “craft” suitable system quantities or select the
sampling rate. This means the underlying data characteristics can no longer be changed
or averaged over multiple runs to reduce the noise. Furthermore, the Melbourne data is
influenced by a myriad of non-recurrent, temporary and unknown exogenous factors
which are not available in the data, such as city layout, weather, accidents, construc-
tion works, festivals or protests [Boukerche and Wang, 2020; Nagy and Simon, 2018;
Vlahogianni et al., 2014].

In the Melbourne dataset instead of creating system states, I now describe how I
“filter” the available dataset to obtain suitable data for the system identification and
analysis. The first sensor record is in 2009, starting with 18 sensors and increasing to
71 sensors by the end of October 2021. Not only does the number of sensors vary, but
sensors also vary in the degree to which they provide reliable data.

I select 11 sensors from the Melbourne dataset, taking data from a four-year interval
between 2016 and 2019. Fig. 4.20 displays the selected sensors on a map of Melbourne
(left) and outlines the time series collection data (right). Time intervals for which data
is missing are empty. The first samples of each separate time series are marked in black.
This becomes relevant for the time delay embedding performed during the modeling in
the next section. Even though the available dataset includes more recent years, I do not
include the years 2020 and 2021 in the analysis, because of an expected strong concept
drift in the traffic patterns due to the SARS-CoV-2 pandemic3.

3Melbourne was one of the world’s most locked-down cities during the time of my thesis.
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Figure 4.20: Left: Map of Melbourne, Australia, with corresponding sensor locations. Right:
Schematic overview of data selection in Melbourne pedestrian count dataset. The training
data in blue contains all states before September 2018 and the separated test data in red is
used for the model analysis. The black-colored samples are required to perform a time delay
embedding. The displayed sensor IDs match the original dataset. Adapted from Lehmberg
et al. [2021].

In contrast to the bus scenario which shows mainly transient dynamics (cf. Fig. 4.13),
the state evolution in Fig. 4.20 has reoccurring patterns within the four years. Despite
missing exogenous factors in the sensor measurements (e.g. weather or events), traffic
prediction is made possible through these reoccurring patterns at different time scales
(e.g. daily, weekly or yearly) [Vlahogianni et al., 2014]. I assume that the underlying dy-
namical system is ergodic, that is, each state could be revisited if the system is observed
for a long time.

For the system identification detailed in the next section, I build a single model to ex-
tract and forecast the traffic patterns in a multi-sensor setting. The advantage is that the
forecasting quality of all sensors can improve from the cross-correlations. Ultimately,
the intrinsic model components then provide a common basis of the (hidden) data-
generating system on a city scale (Fig. 4.20, left). This differs to forecasting a single
sensor only, for which the model adapts to patterns of the local sensor position. Fur-
thermore, the multi-sensor state includes cross-correlations of multiple traffic patterns.
A downside, however, is that a valid traffic state requires a valid measurement of all
sensors. If a single sensor has an invalid measurement, the entire traffic state becomes
invalid and is omitted in the dataset.

For the modeling of the data I also highlight the essential functionality of datafold
to store collections of time series in the data structure TSCDataFrame (Section 3.3.1.1).
Nevertheless, for an easier model analysis, I select the 11 sensors according to their
reliability, to avoid highly fragmented time series. To fill small gaps in the sensor mea-
surements of one or two hours, I insert the last observed valid measurement. Moreover,
I remove short time series of fewer than two weeks to have larger batches of coherent
time series. Finally, because I extract the intrinsic state dynamics without including ad-
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ditional event information, I remove public holidays for the state of Victoria that fall on
a weekday as “obvious events” that alter the traffic dynamics.

I store the final data selection of the Melbourne data in TSCDataFrame:

X_train: TSCDataFrame # two thirds of data (blue in Fig. 4.21)
X_test: TSCDataFrame # one third of data (red in Fig. 4.21)

Each data structure separates the time series by gaps of missing data (Fig. 3.5 on 77).
To follow the good practice in data-driven modeling, I split the available sensor data
into a training and test set. As per Fig. 4.20 the split acknowledges the chronological
order in the dataset, where older data are used to fit the model (blue) and more recent
data for testing (red). Each of the two time series collections has the following form:

Xtrain/test =
[
x(1)

1 , . . . ,x(1)
J1
| . . . |x(I)

1 , . . . ,x(I)
JI

]
=
[
X(1), . . . , X(I)

]
. (4.22)

All time series X(i) = [x(i)
1 , . . . ,x(i)

Ji
] ∈ R[11×Ji] have a different length (Ji) and main-

tain a constant sampling rate of ∆t = 1 hour. The number of samples and time series
for the training and test set is given in Table 4.2.

Table 4.2: Allocation of whole dataset into time series collections for training and test; visualized
in Fig. 4.20 (right).

nr. time series (I) nr. samples
(∑I

i Ji
)

training 22 19,130
test 12 9,840

sum 34 28,970

About one third of the data is used for testing.

4.3.3 Operator-informed model architecture and parametrization

I now adopt the operator-based model architecture for the Melbourne sensor time se-
ries. The model architecture is suitable to achieve the main goal of my thesis: to extract
geometric and dynamic coordinates by approximating the Laplace-Beltrami and Koop-
man operators from the time series data. I make use of the established numerical frame-
works: (1) time delay embedding g(td) (Section 3.4.2), (2) Diffusion Maps (DMAP)
g(dmap) (Section 3.4.3) and (3) Extended Dynamic Mode Decomposition (EDMD) (Sec-
tion 3.4.4). While the first two points are responsible to project the time series data into
a new state representation, the EDMD performs the Melbourne pedestrian traffic sys-
tem. As highlighted in Section 2.4.4, all three methodologies have strong theoretical
links. Importantly, I consider that the common assumption of an ergodic dynamical
system is fulfilled for the Melbourne data.
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For a detailed description of this setting, I refer to Section 3.1, from where the Fig. 4.21
is adapted to provide orientation for the Melbourne analysis. The main focus is to
describe the final model parametrization used for the analysis.
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Figure 4.21: The main modeling setting in this thesis as described in Section 2.3. The images
highlight the analyses performed in the next sections.

4.3.3.1 EDMD dictionary

The dictionary comprises the composed data transformation of time delay embedding
gtd(x) on measurements states x and DMAP gdmap(y) on time-delayed states y. The
transformation can be interpreted as a spatio-temporal feature extraction, where first
temporal quantities are augmented and then sorted by relevance and reduced. Mathe-
matically, the functions is represented as:

gtd(xj ; d, κ) = [xj , e−κxj−1, e
−2κxj−2, . . . , e

−dκxj−d] = yj ∈ RN(d+1) (4.23)

g(x) := gdmap(yj ;α,K, P ) = [ψ1(yj); . . . ;ψP (yj)] = zj ∈ RP , (4.24)

where g(x) = z describes the composed map from the original traffic states x to the
data-intrinsic state representation z. Later, the composed map is used in the EDMD
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dictionary as a finite function basis to approximate the Koopman operator. However,
the states themselves also have strong analytic power as they connect to the hidden
state space of the identified dynamical system. I highlight this in the geometric analysis
of Section 4.3.5.1.

The dictionary comes with a relatively small set of parameters in Eq. 4.23 and 4.24.
Table 4.3 lists all six specified parameter settings for the Melbourne dataset. In the data
analysis, I found that the concrete settings are robust; they produce similar results to
those presented for the error analysis in Section 4.3.4 below. For this analysis, I varied
different sensor configurations (including only using a single sensor). I therefore expect
that the parameter setting would provide a good starting point when transferring the
model architecture to similar traffic data, for example from other cities or also vehicular
traffic [cf. Avila and Mezić, 2020]. For a clearer presentation of results, I only include
the analysis of the 11 selected sensors in Fig. 4.20.

Because of the theoretical basis of each data transformation, I can either justify the
parameter setting based on arguments or set up a heuristic. For deriving a heuristic
I performed separate cross-validation runs on the Melbourne training data Xtrain by
using the functionality of EDMDCV in datafold (Section 3.5.2). Because the model anal-
ysis in the later sections is performed on the completely separate test data Xtest, the
analysis is therefore unbiased from this procedure. Since the workflow is similar to
the cross-validations already performed for the pendulum (Section 4.1.4) and bus sta-
tion (Section 4.2.3) scenarios, I do not repeat this for the Melbourne dataset and instead
focus on gaining insight into the final identified system.

Table 4.3: Parameters specified in the EDMD dictionary for the Melbourne sensor data.

Symbol Setting Description

d 168 The number of delays to be included in Eq. 4.23.
Given the data interval of ∆t = 1 this corresponds
to a state that is embedded with the previous
week of measurements.

κ 0 An exponential weighing factor in time delay
embedding as a regularization parameter, as
described in Berry et al. [2013].

α 1 The re-normalization factor in DMAP (Eq. 2.38 on
page 45).

K(yi,yj) exp
(
− ||yj−yi||22

2ε

)
Default Gaussian kernel in DMAP as a geometric
prior to describe the point similarity g2 (default).

ε median(||yj − yi||22) The bandwidth of the Gaussian kernel to describe
pairwise neighborhood relations.

P 500 The number of DMAP coordinates to compute.
This also equals the size of the EDMD dictionary.
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Time delay embedding is often essential for modeling traffic data; see Avila and
Mezić [2020] and Cheng et al. [2021] for Koopman operator-based studies. The tem-
poral feature extraction is needed because the collected measurements have typically
no well-defined dynamics. A traffic state provides a good spatial description if many
sensors are available but misses important temporal system information for the daily,
weekly, or seasonal patterns within the system. A single instantaneous traffic state can
be either part of a positive or negative trend, such as increasing or decreasing rush hour
traffic on a weekday.

The final setting outlined in Table 4.3 highlights that I augment each traffic state with
the states of the prior week. For smaller values of d, such as only embedding the last
day (d = 24), I could observe that the model is unable to capture characteristic traffic
changes between weekdays and weekends. Intuitively, this is because Friday has in-
sufficient dynamic information to transition to the different traffic patterns of Saturday
(the same argument applies to the change from Sunday to Monday). In a geometric per-
spective there are still “false neighborhood” relations in the data as depicted in Fig. 2.8.

Research that uses the composed transformation of 4.24 also suggests to set larger
numbers of delays to further linearize the dynamics [Berry et al., 2013; Das and Gi-
annakis, 2019; Giannakis, 2019]. However, this conflicts with the practical aspect of
forecasting the system: an initial condition requires a time series of d + 1 states to ob-
tain an intrinsic initial state z. Fig. 4.20 marks the first d samples of each time series in
black. For these states, there is no corresponding dictionary state z available and they
cannot be part of the training or test set. Ultimately, I find that the final selection as per
Table 4.3 is a good compromise between the two conflicting aspects of linearizing the
system dynamics and the applicability for forecasting.

The time delay embedding also often includes an additional weighting factor, which
is promoted in Berry et al. [2013]. However, in the cross-validation runs, I could not ob-
serve any improvement in prediction errors with the additional parameter. This might
be due to the relatively small number of delays. I therefore disable the weighing by
setting κ to zero.

The next three of parameters of Table 4.3 refer to DMAP (see Eq. 2.37 – 2.44 on page
45). The method describes the second (nonlinear) map gdmap(y), where the scalar func-
tions ψp(y) approximate the eigenfunctions of the Laplace-Beltrami operator. These
provide the geometrically-aligned function basis as a central element of the architec-
ture in Fig. 4.21. In short, I refer to the eigenfunctions also as “DMAP coordinates”.

Within DMAP I set α = 1 to perform an additional normalization of the point den-
sity in the embedded samples y. This improves the convergence guarantees to obtain
eigenfunctions of the Laplace-Beltrami operator [Coifman and Lafon, 2006a]. The ex-
tracted geometry from the point cloud is induced by the Gaussian kernel as a standard
kernel to measure the point similarity in the data [Berry and Sauer, 2016]. The kernel it-
self introduces a bandwidth parameter ε, which I set to the median value of point-wise
Euclidean distances in y. This bandwidth choice is a result of the cross-validation that
I performed on the training data.
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The last parameter P = 500 in Table 4.3 specifies the number of DMAP coordinates
{ψp}Pp=1 to include in the intrinsic state representation. The parameter therefore speci-
fies the “richness” of the function basis g(x). The functions are inherently ordered by
their respective eigenvalue which relates to the smoothness of the function. Because
of these properties, the parameter P corresponds to a truncation which can regular-
ize a model that operates on these states (later the EDMD): functions ψp(y) with a small
eigenvalue are more likely to associate to noise-corrupted coordinates and can therefore
be truncated [Giannakis, 2019]. I could observe that the error within the final forecast-
ing setting (Section 4.3.4) decreases until P = 500. The corresponding eigenvalue of the
last coordinates has an order of ω500 = O(10−5).

4.3.3.2 EDMD model

The final EDMD model requires only the dictionary g(x) of Eq. 4.24 (with parametriza-
tion in Table 4.3) and the training time series collection Xtrain from Eq. 4.22. I now
summarize how to specify and build the actual EDMD model in datafold to capture the
full data processing pipeline of Fig. 4.21:

X_train: TSCDataFrame # training data from Eq. 4.21

# initialize time delay embedding
takens = ("takens",TSCTakensEmbedding(delays=168))

# initialize the Diffusion Maps algorithm
# (D is the pairwise Euclidean distance matrix)
median_epsilon = lambda D: np.median(D)
laplace = ("laplace",

DiffusionMaps(
kernel=GaussianKernel(epsilon=median_epsilon),
n_eigenpairs=500,
alpha=1,)

)

# specify final model with a slightly modified EDMD class
edmd = EDMDPositiveSensors(

dict_steps=[takens, laplace],
dmd_model=DMDFull(is_diagonalize=True),
include_id_state=False,
sort_koopman_triplets=True,

)

# build model
edmd.fit(X_train)
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First, the EDMD dictionary is specified according to Eq. 4.23 – 4.24 and Table 4.3:
takens (gtd(x)) and laplace (gdmap(y)). Both transformations are chained in the
EDMD dictionary of EDMDPositiveSensors. The class is a specific adaptation of
the standard EDMD class from Section 3.5.1, where all (unrealistic) negative sensor fore-
casts are set to zero. Negative values can occur because the model does not include an
explicit constraint.

Mathematically, the EDMD model (without the extra treatment of negative values)
can be described in terms of the Koopman triplet in a matrix form (see derivation in
Eq. 2.26 – 2.29):

x̂t = V Λt/∆tξ(z1), (4.25)

where x̂t ∈ R11 contains the traffic state prediction of the 11 sensors, V ∈ C[N×P ] the
modes and Λ ∈ C[P×P ] is a diagonal eigenvalue matrix. The (vectorized) function ξ(z)
can be interpreted as a spectrally-aligned state of the linear system in Eq. 4.25:

ξ(z1) = [ξ1(z1), . . . , ξP (x1)] = Φ−1g(z1) = Φ−1z1, (4.26)

where ξp(z) is a Koopman eigenfunction, z ∈ RP the intrinsic state, g(x) the dictionary,
and Φ−1 the left eigenvectors of the Koopman matrix U∆t = ΦΛΦ−1 (cf. Eq. 2.29). Note
that obtaining the initial state z requires a time series of length d + 1 = 169 (i.e. the
minimum number to perform the time delay embedding).

All three Koopman components are available through the EDMDPositiveSensors
class after the model is constructed. In the next section, I analyze the prediction accu-
racy of the EDMD model and continue in Section 4.3.5 to analyze the internal model
components to gain insight into the identified dynamical system.

4.3.4 Error analysis of day ahead forecasting

The main purpose of this section is to show that the EDMD model can accurately recon-
struct the sensor measurements in the training data and generalize to the separate test
data (as depicted in Fig. 4.20). The error analysis occurs in a multi-sensor setting, where
all 11 sensors in the data are simultaneously predicted for 24 hours. I intentionally use
a relatively large test set (about 1/3 of the data) to include a large variety of initial condi-
tions for the analysis. In a more application-oriented setting where the main objective is
to minimize prediction errors, it is common to frequently re-train the model over time
to integrate more recent data. This can be realized in a sliding window scheme or by
adapting the methods to a streaming setting; for DMD see Hemati et al. [2014].

To promote a structured analysis of the model’s forecasting performance I allocate
both the training and test data in pairs of time series{(

X
(c)
1 , X

(c)
true

)}Ctrain/test

c=1
. (4.27)

Fig. 4.22 shows an example of the structured forecasting setting. The number of pairs
in the training set is Ctrain = 622 and for the test set Ctest = 314. The left time series
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X
(c)
1 in the tuple serves as the initial condition and is the only information available for

a model to perform a 24 hour forecast. It includes the entire past week plus the most
recent state, X(c)

1 = [x(c)
−168, . . . ,x

(c)
0 ] ∈ R[N×169]. The last state x(c)

0 always corresponds
to midnight of a day and is the reference state for the initial condition; see markers in
Fig. 4.22. The right time series in Eq. 4.27 contains the measured sensor data of the
subsequent 24 hours of the respective day, X(c)

true = [x(c)
1 , . . . ,x(c)

24 ]. All time series to be
predicted in X

(c)
true are disjoint to each other, whereas the initial condition time series

X
(c)
1 overlap.
Using a pairs of initial condition and subsequent 24 measurements, it is now possible

to initialize and forecast a respective time series X(c)
pred by evaluating the EDMD model

in Eq. 4.25:

x̂(c)
j = V Λj∆tξ(z

(c)
1 ), for j = (1, . . . , 24), c = (1, . . . , Ctrain/test) (4.28)

such that also [x̂(c)
j ]k = max

{
[x(c)
j ]k, 0

}
for k = (1, . . . , 11). (4.29)

The x̂(c)
j is the model prediction for a corresponding true measurement x(c)

j ∈ X
(c)
true.

The Koopman eigenfunction is evaluated according to Eq. 4.26, such that the dictionary
maps the reference state of the time series X(c)

1 to the initial state g(xc0) = z(c)
1 . The sec-

ond statement describes the additional model adaptation of setting negative forecasts
in the k-th sensor to zero.

With the built EDMD model and the data allocation of the prediction setting, the
model can be evaluated by using the prediction API of datafold :

# initial condition time series of length 169
# (left in Eq. 4.21)
X_ic: TSCDataFrame

# test time series to be predicted (right in Eq. 4.26)
X_test_windowed: TSCDataFrame

# 24 hour prediction for each initial condition
X_pred = edmd.predict(X_ic, np.arange(1, 25))

# evaluate difference in model
difference = X_pred - X_test_windowed
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Figure 4.22: A representative week (starting on Monday) of four of the 11 sensors, with distinc-
tive traffic patterns. Each sensor’s plot is scaled to the maximum observed pedestrian count
of the respective sensor in this week. The initial conditions (black markers) are the reference
states at midnight (x(c)

0 ). The true (black) and estimated (red) sensor measurements of the
following 24 hours are compared in the error analysis. Note that each state of a time series
includes all sensor measurements simultaneously. Adapted from Lehmberg et al. [2021].

For a comparison of the model’s error performance, I also set up a heuristic baseline
model, which naively forecasts the future time series based on the sensor measurements
of the same day of the previous week:

x̂(c)
j = x(c)

j−168, for j = (1, . . . , 24). (4.30)

For the error analysis I first look at the mean and standard deviation of the differ-
ence values between true and predicted time series (Xtrue − Xpred). Table 4.4 includes
an overview of the error statistics per sensor. As already mentioned, the collected
measurement data can be expected to be noisy due to missing explanatory factors in
the data. For this reason, a good model should only describe unbiased and meaning-
ful (slow) dynamics of the system. High-frequency dynamics are increasingly noise-
corrupted and should therefore be truncated by a model.
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Table 4.4: The error statistics of the EDMD model for both the training and test set. The errors
are listed per sensor and evaluated on the prediction pairs Xtrue and Xpred from Eq. 4.27.
The sensor IDs match with the original data source in Melbourne [2021a]. The mean and
standard deviation the difference values. The relative root mean squared error (RRMSE)
is computed with Eq. 4.31. The prediction errors of the baseline model of Eq. 4.30 are in
columns with suffix (b). The last row aggregates (agg.) the RRMSE to a mean error metric
over all sensors. Adapted from Lehmberg et al. [2021].

training (Ctrain = 622) test (Ctest = 314)
ID (s) Q95% mean±std RRMSE RRMSE(b) mean±std RRMSE RRMSE(b)

2 3116 -8 ± 198 6.36% 8.69% -11 ± 204 6.55% 7.06%
6 4048 -3 ± 199 4.91% 6.82% 1 ± 254 6.28% 8.03%
9 2805 -2 ± 103 3.68% 4.54% -6 ± 146 5.20% 5.83%
10 592 0 ± 48 8.11% 10.34% -4 ± 57 9.62% 11.46%
18 1540 -1 ± 53 3.47% 4.25% 6 ± 74 4.81% 5.50%
21 1410 -2 ± 118 8.40% 11.82% -9 ± 130 9.27% 11.51%
24 3970 -2 ± 138 3.48% 4.65% 8 ± 170 4.29% 5.11%
26 1629 -1 ± 109 6.69% 8.24% 4 ± 168 10.29% 12.08%
27 339 0 ± 30 8.98% 11.64% 4 ± 35 10.30% 11.88%
28 2662 -4 ± 293 11.01% 16.25% 1 ± 350 13.16% 17.99%
31 719 -2 ± 81 11.33% 14.57% -10 ± 95 13.26% 15.70%
agg. -3 ± 171 6.95% 9.26% -1 ± 207 8.46% 10.20%

According to the Table 4.4, all sensor difference values have a mean close to zero, both
for the training and test set. I therefore conclude that on average the model is unbiased,
despite unobserved events in the data. The standard deviations between sensors are a
way to quantify how well a sensor can be predicted (based on past measurements). For
example, sensor 9 has much “cleaner” patterns and lower standard deviation, when
compared to sensor 28. This becomes apparent in the example week in Fig. 4.22.

Compared to the training set, both the mean error and standard deviation increases
in the test set. One obvious reason is that the training data are merely a reconstruction
of the data that are used to build the model, while the test data contains out-of-sample
initial conditions. Another factor that poses a general challenge for time series model-
ing is that the chronologically separated test data may contain concept drifts that are
not included in the training data. These can be temporary short changes, such as con-
struction works, but also long term trends. For example, an average annual growth
rate of 3.68% for the population of the City of Melbourne for parts of the considered
time interval [Carter et al., 2020, Fig. 4]. As a result, the forecasting errors of the time-
invariant EDMD model can vary or increase over time if the model diverges from the
true system. While this seems to contradict my initial assumption that the Melbourne
traffic system is ergodic, I argue that these long term trends can be neglected, as the
dominating patterns are on a daily and weekly basis, which I highlight below.
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In Table 4.4 I also include the relative root mean squared error (RRMSE) of both the
EDMD model and the baseline model from Eq. 4.30. The metric corresponds to a stan-
dard RMSE relative to the 95% quantile of each sensor’s measurement values computed
on the training data; see column Q95% in the table. For a single sensor s with (scalar)
measurements the metric computes with

RRMSE(s) = 1
Q

(s)
95%

√√√√∑M
m=1

(
x̂

(s)
m − x(s)

m

)2

M
, (4.31)

where x(s) is the measurement or forecast (with a hat) of the sensor. The sum indexes
over all m = (1, . . . , Ctrain/test · 24 = M) measurements of the training and test set
in Eq. 4.27. Because of the squared sum, RRMSE penalizes greater difference values
between the model and forecast.

The comparison of the EDMD model with the baseline of Eq. 4.30 shows that the
EDMD improves the predictions for all individual sensors and the aggregated metric
in the last row with 2.31% for training and 1.74% for the test data. This is not by a
large margin, however, indicating that the baseline is already a good estimator due to
the periodicity in traffic. It is therefore reassuring that the EDMD model captures these
principal dynamics and further improves them. More importantly, the EDMD model
now includes data-specific patterns, which provide insight into the model and under-
lying system. This is not possible with the baseline model, nor with many methods that
promote complex structures to model capture nonlinear and high-dimensional dynam-
ics.

I also compare error results to other available studies that analyze and predict the
sensors of the Melbourne dataset. However, a direct comparison is difficult because
the studies often lack detailed error rates, specific sensor locations (IDs) or information
on the exact forecasting setting. Karunaratne et al. [2017] investigate the Melbourne
data in a 24 hour prediction setting for 10 (unspecified) sensors. They use a Gaussian
process in which they specify a “working-week kernel”. For the error analysis they
specify a mean error relative to x̄ (MER), where x̄ is the mean sensor observation of the
respective day of the prediction. The error is evaluated on a single test month (October
2016), for which they report an MER between 16.53 and 20.68 for three proposed model
variations. Furthermore, they also include an ARIMA baseline model with an MER of
40.11. Compared to the EDMD model in my setting, I could evaluate an MER of 16.98
for the selected 11 sensors. While this is not far away from the best result reported in
Karunaratne et al. [2017], I test the model on a significantly larger test set of 314 days
(compared to 30 days in the other study).

Wang et al. [2018] predict the Melbourne sensor measurements for time horizons
between 24 and 192 hours. In a model selection procedure, the authors present an
ARIMA model that performs best against the alternative models SVR and multiple
linear regression. However, the error rates are only presented in a figure. Moreover,
the selected error metric — the mean absolute percentage error (MAPE) — is in my
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opinion, not a suitable metric: if a sensor measurement has a pedestrian count of zero,
this leads to a division by zero.

Proceeding with the forecasting analysis of the EDMD model, I highlight that the
model can adequately capture the distinct sensor patterns. Fig. 4.23 visualizes the true
(first row) and predicted sensor values (second row). The figure only includes the test
data, which is aligned to the 24 hour prediction setting: Each (color-coded) row in a sen-
sor’s block corresponds to the prediction based on an initial condition c = 1, . . . , Ctest
and has 24 entries, j = 1, . . . , 24, corresponding to the hours of a day.

Most of the time adjacent rows are in a calendrical sequence. However, there are
also intervals of missing data in the test data, which can lead to interruptions of the
patterns in a vertical direction. Because the sensors have different scales in terms of
usual pedestrian volume all values are scaled by the computed 95% quantiles listed
in Table 4.4. The bottom row in Fig. 4.23 shows a heatmap of the difference values
between the scaled true sensor measurements and model estimations.
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Figure 4.23: Each column corresponds to the sensor ID at the top. The true sensor measurements
(first row) are compared to the model estimations (second row) of the test set. The third row
displays the difference, Xpred − Xtrue, indicating over-estimation (red) or under-estimation
(blue). The values are scaled by the computed quantiles Q95% in Table 4.4. Adapted from
Lehmberg et al. [2021].

The sensor profiles in Fig. 4.23 highlight distinctive traffic patterns at each sensor.
This is complemented by Fig. 4.22, showing an example week of four representative
sensors. Sensor 2 has typically a single peak on weekdays and only moderately de-
creased traffic on weekends. Sensors 9 and 18 show a typical rush hour pattern with
two peaks in pedestrian volume in the morning and evening. Moreover, the pedestrian
traffic is much lower on weekends, resulting in horizontal stripes in the two sensors’
profiles in Fig. 4.23.
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In contrast to the previous patterns, sensor 28 has typically high fluctuations during
a day with multiple peaks. These can be observed both during the week and on the
weekend. Sensor 31 is different to other sensors in that it has increased traffic on the
weekend and higher relative traffic during the night.

There are also clear changes in traffic patterns on a seasonal time scale. The darker
colored regions in sensor 2 before initial conditions 100 and past 300 are days in De-
cember. Because sensor 2 is located at a shopping precinct this shows the effect of
Christmas sales. The seasonal patterns are regular and reoccurring and the model can
adapt to such temporary concept drifts to some extent. However, the adaptation to a
(temporary) change usually results in larger errors, because information only becomes
available to the model in the “initial condition window” X(c)

1 (cf. Eq. 4.27).
Often the regular traffic is also “disturbed” by irregular and unpredictable “random

events” (e.g. construction works or extreme weather). These are often intermediate
concept drifts and usually result in larger error bursts in the model forecast. A high
discrepancy between forecast and measured traffic can be a sign of traffic anomalies,
which for the Melbourne dataset is analyzed in Doan et al. [2015]; Zameni et al. [2019].
An example of a short term increase in traffic volume can be seen at sensor 28 between
prediction 100 and 200.

Based on the color-coded sensor profiles in Fig. 4.23, I conclude that the EDMD model
is able to capture weekly, daily and to some extent seasonal dynamics. All patterns of
the sensors could be forecasted simultaneously and are captured in the model. This
means that sensors with a large pedestrian volume are not favored over ones with less
traffic.

Notably, the model structure encodes all patterns in the intrinsic state representa-
tions that relate to the Laplace-Beltrami operator and the spectral components of the
Koopman operator. In the next section, I look into these model objects in more detail.

4.3.5 Gaining insight into the identified system

I now go beyond the typical error analysis in a data-driven modeling workflow. I inves-
tigate the intrinsic pedestrian patterns extracted from the Melbourne dataset and stored
as internal “building blocks” within the EDMD model. All 11 sensors are all located in
the City of Melbourne, from which I assume that the time series collection stems from
a single data-generating system, evolving the pedestrian traffic on a city scale (denoted
as “true dynamical system” in Fig. 4.21).

As highlighted in the previous section all distinctive spatio-temporal sensor patterns
are encoded in a single EDMD model. In Section 4.3.5.1, I use the intrinsic state rep-
resentation of the approximated eigenfunctions of the Laplace-Beltrami operator in
Eq. 4.24 for a geometric analysis. In Section 4.3.5.2, I show how the spectral compo-
nents of the Koopman operator in Eq. 4.25 give insight to the dynamics of the identified
system.
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4.3.5.1 Geometric state space analysis with Laplace-Beltrami operator

The first data transformation on the original sensor measurements to obtain an intrin-
sic state representation is the time delay embedding gtd(x) = y from Eq. 4.23. As
highlighted in Section 3.4.2 (cf. Fig. 2.8 on page 48), this induces a new geometry on
the augmented sensor data. According to Takens theorem, if sufficiently many delays
are included this reconstructs a qualitative equivalent manifold to the state space of
the attractor for an ergodic dynamical system [Deyle and Sugihara, 2011]. However,
the delayed states are high-dimensional and include many highly correlated quantities
in y ∈ R1859 (from N · (d + 1) with N = 11 and d = 168 delays), due to temporal
neighborhood relations.

I therefore assume that the manifold assumption is fulfilled and the new geometry
is actually much lower dimensional than the embedded state. This justifies the second
map in the composed transformation where DMAP performs a nonlinear map onto the
final state representation [ψ1(y), . . . , ψP (y)], as per Eq. 4.24. The function coordinates
ψp(y) correspond to the eigenfunctions of the Laplace-Beltrami operator (I also refer to
the functions also as “DMAP coordinates”).

While the functions serve as a finite basis to approximate the Koopman operator in
the EDMD dictionary, they also contain valuable geometric system information, with a
strong connection to manifold learning (see Section 2.4.2). In particular, research shows
that the composed transformation has strong time scale separation qualities, in which
slow dynamics can be extracted, similar to a Fourier analysis [Belkin et al., 2009; Berry
et al., 2013]. While in the Melbourne dataset I computed 500 eigenfunctions, there is
a parsimonious set of functions that describe principal geometric directions of the in-
ferred manifold [Dsilva et al., 2018]. For the analysis, I mainly rely on a visual rep-
resentation of the intrinsic patterns, provided by the DMAP coordinates. However, it
is also possible to apply further numerical procedures, such as estimating the mani-
fold dimension [Strange and Zwiggelaar, 2014] or automatically identifying principal
geometric coordinates [Dsilva et al., 2018].

With the EDMD model and datafold specifications, the coordinates are easily acces-
sible:

X_test: TSCDataFrame # test data

# compute intrinsic state representation
Psi = edmd.transform(X_test)

# example to access second coordinate
dmap_coordinates.iloc[:, "psi2"]

The variable Psi is again a time series collection (of type TSCDataFrame) that con-
tains the function evaluationsψp(y(i)

j ) = [z(i)
j ]p (similar to Eq. 4.22 in the intrinsic states).

Since X_test is not part of the training data, the coordinates are mapped with the
Nyström extension in DMAP (cf. Eq. 2.43 – 2.44 on page 45).
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Fig. 4.24 displays 10 selected DMAP coordinates ψp(y). The coordinate values are
visually aligned in the 24 hour prediction setting, which I established in the previous
section (cf. Eq. 4.27 and Fig. 4.24). The images correspond to a two-dimensional projec-
tion of the scalar eigenfunctions ψ. In the figure I selected the eigenfunctions based on
“interesting patterns” that are apparent in the visual profile. In each image I only dis-
play the first 100 initial conditions of the test data, because the patterns mostly repeat
along the initial condition axis.

The most dominant direction on the data-inferred manifold is the first non-trivial
eigenfunction, ψ2, after the constant ψ1. The visual profile shows a simple sinusoidal
function over the 24 hour prediction horizon and hardly depends on the initial condi-
tion. The next function, ψ3, is very similar in that it is also sinusoidal with a shifted
phase. Only looking at these first two functions, I deduce that the two coordinates
(ψ2, ψ3) describe a circle. As such the coordinates acknowledge the periodicity in a day,
which is further strengthened in the data projection of Fig. 4.26.

The eigenfunctions to follow, ψ4 to ψ9, basically correspond to harmonic functions
with higher frequencies in a day. In the data projection, they describe the same di-
rection. While in the finite function basis to approximate the Koopman operator these
functions enrich the function basis, in the geometric state space analysis these “repeated
eigenfunctions” do not contain new essential information. This is because the coordi-
nates align in the direction on the manifold which is already covered in previous coor-
dinates [Dsilva et al., 2018] — in this case intraday features. To obtain a parsimonious
description of the inferred state space geometry, it is essential to factor out the repeated
eigenfunctions. Ultimately, this leads to coordinates that describe slow (macroscale)
dynamics of the system [Dsilva et al., 2018].

In the data projections of Fig. 4.24 a new pattern appears in ψ10. The function is again
sinusoidal but now varies along the axis of the initial conditions. Notably, the lines
formed by the peaks (or troughs) are slightly tilted and therefore slowly change over
time. This means that in the 24 hour prediction, the range of values in ψ10 is narrow.
This differs from the previous functions, where the full image of the function appears
in a single day. This “slower” change in coordinates over time makes it possible to
distinguish states on larger time scales. For ψ10 this corresponds to the days in a week
(Fig. 4.26). As with the previous intraday direction, coordinates of higher oscillations
also appear, which can be identified as repeated directions (e.g. ψ12 and ψ18). Since the
coordinates are ordered by the DMAP eigenvalues, I infer that the intraday features are
most important on the reconstructed state space geometry, followed by weekly features.
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Figure 4.24: A selection of DMAP coordinates based on visual features. The values are part
of the dictionary state, which comprises all 500 eigenfunctions in the EDMD dictionary.
Only the first 100 time series of the test set are visualized in the 24 hour prediction setting.
Adapted from Lehmberg et al. [2021].

Fig. 4.24 also includes coordinates that combine previous principal eigendirections.
An example is given with coordinate ψ34, where the two leading directions (intraday
and weekly) form a checkered pattern. Again, such coordinates and higher oscillations
thereof do not carry new geometrical information but are nevertheless suitable for in-
clusion in the function basis as the EDMD dictionary.

The last function with an interesting pattern is ψ33. It differs from the other visual
profiles by not showing an obvious periodic pattern in the data alignment. However,
in Fig. 4.25 I expand the coordinate to the entire time horizon of the selected Melbourne
data (both training and test data). As previously mentioned, sensor 2 is a good example
to identify the seasonal pattern of Christmas sales, as indicated by increased traffic in
December. In Fig. 4.25 it is apparent that the peaks of the intrinsic coordinate ψ33 match
with the increased traffic during December. Notably, temporary high traffic during the
year does not “disturb” the intrinsic coordinate. This is also because ψ33 is a coordinate
of all sensor measurements, which can prevent “false positives”. Moreover, the peaks of
ψ33 roughly correlate to the traffic volume at each year. This shows two interesting as-
pects: (1) the model can extract seasonal patterns from the data and (2) the importance
of this seasonal “Christmas pattern” is highlighted in coordinate index 33.
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Figure 4.25: The seasonal “Christmas pattern” in the measurements of sensor 2, compared to
the intrinsic coordinate ψ33. The data includes both the full dataset with the training in blue
and test set in red. The month of December is highlighted in gray where the traffic increases
due to increased shopping activity before Christmas.

In Fig. 4.26, I can now select the principal DMAP coordinates and visualize the test
data in a projection of the identified state space manifold. Here I use the three geometri-
cally dominant functions (ψ2, ψ3, ψ10). The left graph displays the original coordinates
as evaluated for the test data in a point cloud and with a discrete sampling rate ∆t = 1
hour. From the visual inspection, the “global point cloud” of the data subdivides into
smaller point clouds. In the cyclic order in (ψ2, ψ3), the small point clouds are separated
by the hour and partly separated in the vertical axis of ψ10. Collectively, the point cloud
forms a hollow cylinder-like geometry.

The small graph at the center gives a schematic sketch of an average week in the
test data in terms of these coordinates. The colored parts at the bottom and top of the
time series highlight that the coordinates divide the week into two equal parts. The top
marker of the cylinder corresponds to Sunday 8 pm, from where the orbit declines to
Wednesday 8 am and vice versa.
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Figure 4.26: Projection of the intrinsic states y onto the geometrically leading coordinates
(ψ2, ψ3, ψ10). The cyclic color-code matches the time of the day for the respective point. Left:
The evaluations of the intrinsic states at the prediction of the test data. Right: The interpo-
lated time series along the flow using the Koopman matrix. Small center plot: A schematic
flow of a week, as the average of all time series in the test data. The yellow colored part
corresponds to Wednesday with a marker at 8 pm and the blue colored part to Sunday with
a marker at 8 am. Adapted from Lehmberg et al. [2021].

However, the discrete point distribution in the left graph of Fig. 4.26 is merely an
artifact of the discrete sampling in the data. While the “classical” manifold learning
only investigates static data, I can also utilize the inferred dynamics in the EDMD model
to interpolate between the intrinsic states. This only requires a small adaptation of the
original model:

zt =

U
t/∆t
∆t︷ ︸︸ ︷

ΦΛt/∆tΦ−1 z1. (4.32)

Instead of reconstructing the measurement states x with the Koopman modes V , the
system remains in the intrinsic state representation (this follows from Eq. 2.30 – 2.32
on page 35). For details on the mathematical treatment of the interpolation, I refer the
reader to the software treatment of DMD methods in datafold, Section 3.4.4.

In the right graph of Fig. 4.26, I use Eq. 4.32 to interpolate the three selected geo-
metric coordinates by evaluating the linear system per minute instead of per hour as
in the original data. With the state interpolation, I obtain a smooth description of the
identified state space geometry (here projected onto the three leading coordinates). The
visualized object suggests an intrinsic dimension of two. But because of the periodicity
in (ψ2, ψ3) it cannot be further reduced. Moreover, because the time series cross in the
vertical direction of ψ10, this suggests that the intrinsic manifold dimension of the state
space is larger than two. One possible way to further improve the visualization is to
project the four leading (periodic) coordinates on a torus manifold.
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4.3.5.2 Dynamics analysis with the Koopman operator

I continue the model analysis by investigating the three spectral components of the
approximated Koopman operator: the modes vp, eigenvalues λp and eigenfunctions
ξp(z) which collectively describe a linear dynamical system,

x̂t =
P=500∑
p=1

vpλ
t/∆t
p ξp (z1) . (4.33)

Despite being linear, the system captures the nonlinear traffic patterns of all sensors
collectively, as highlighted in Fig. 4.23. The spectral system properties are indepen-
dent of the observation modality. In other words, measurements from different sensors
would yield the same result (assuming sufficiently rich information and removing noise
effects) [Giannakis, 2019].

In the EDMD model, all objects are computed from a spectral decomposition of the
Koopman matrix, which is obtained from a linear system identification in intrinsic state
time series zj ; Eq. 2.26 – 2.32). Within the software model, all of the components are
accessible with:

X_test: TSCDataFrame

edmd.koopman_modes_
edmd.koopman_eigenvalues_
edmd.koopman_eigenfunctions_(X_test)

I first investigate the complex-valued Koopman eigenvalues λp. Notably, these are
the only quantities in Eq. 4.33 that change with time with t/∆t in the exponent. The left
graph in Fig. 4.27 shows the point distribution of all P = 500 Koopman eigenvalues
on the complex plane. Importantly, most of the eigenvalues locate around the unit
circle, where the magnitude of the eigenvalue λt/∆t remains constant in the limit of
t → ∞. Since the system is linear, the stability criteria apply (cf. Table 2.1 on page 15).
Eigenvalues inside the circle decay towards zero over time and, therefore, account for
transient components — the additive term vpλ

t/∆t
p ξp(z) in Eq. 4.33 decreases to zero.

174



4 Data analysis to extract geometry and dynamics from time series data

−1.0 −0.5 0.0 0.5 1.0
<(λ)

−1.0

−0.5

0.0

0.5

1.0
=(
λ

)

0 8 16 24
time (t) [hour]

0.00

0.25

0.50

0.75

1.00

|λ
t/

∆
t |

Figure 4.27: Left: The distribution of the Koopman eigenvalues λp ∈ C on the complex plane
with the unit circle; |λ| = 1. Right: The magnitude of the eigenvalues over the prediction
horizon. The red highlighted eigenvalues and curves correspond to Koopman eigenfunc-
tions that are included in Fig. 4.28. Adapted from Lehmberg et al. [2021].

The right graph in Fig. 4.27 shows the eigenvalues’ magnitude over the 24 hour
prediction horizon. From the graph I infer the overall stability of the system in the
specified prediction horizon of 24 hours. The plots highlight how many terms remain
relevant over the prediction horizon. Since most eigenvalues have a magnitude of ap-
proximately one in the Melbourne EDMD model, the contribution of most eigenvalues
remains significant. This highlights that most of the components attribute to periodic
patterns in the data, which is expected in the (idealized) periodic traffic patterns.

Some eigenvalues also have a magnitude of greater than one and therefore classify as
unstable for t → ∞. In the right graph, some curves (including the red ones) increase
slightly. However, because the largest computed eigenvalue is |λmax| ≈ 1.0005, this
does not become “critical” in the considered time horizon. The exponential increase
does not yet lead to rapid absolute increases in the values. It is also possible to project
these slightly unstable eigenvalues onto the unit circle to obtain a model that is guaran-
teed to be stable. However, according to the right graph of Fig. 4.27 this is not necessary
for the 24 hour prediction setting.

In terms of the model’s stability, the EDMD framework largely depends on the dic-
tionary choice, which for the Melbourne data is the composed data transformation g(x)
in Eq. 4.24. Acknowledging the additional challenges for system identification on the
real-world data (including noise, unobserved events and concept drifts) it is evident
that the selected dictionary is robust to these factors and can extract and describe es-
sential periodic patterns. As highlighted in the geometric analysis, the function basis
{ψp(y)}Pp=1 is ordered in terms of frequency on the manifold. This allowed truncating
high-frequency and likely noise corrupted terms in the dictionary of the EDMD model.
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Figure 4.28: The visual selection of five (approximate) Koopman eigenfunctions ξp(z) in the
24 hour prediction setting. The associated eigenvalue is stated in brackets. The displayed
data contain the first 100 initial conditions of the test set. The top and bottom rows display
the real and imaginary parts of the eigenfunctions respectively. The color ranges are scaled
between the minimum and maximum values found in either the real or imaginary part of
each function. Adapted from Lehmberg et al. [2021].

Finally, I visualize the complex-valued Koopman eigenfunctions ξp, that can reveal
intrinsic system properties [Mauroy and Mezić, 2016]. In the linear dynamical system
representation these provide the state in which the system is evolved (cf. Eq. 4.25 –
4.26).

Fig. 4.28 includes a selection of Koopman eigenfunctions ξp(z), based on visually
interesting features. The argument z is obtained from a time series of original sensor
measurements with 169 samples (to perform the time delay embedding). In the figure,
the eigenfunctions are evaluated on a sliding window of size 169 over the test data and
the values are then projected again on the 24 hour prediction horizon. Essentially, this
corresponds to how the initial states change over time.

Unlike for the DMAP coordinates ψp in Fig. 4.24, there is no immediate order for
the Koopman eigenfunctions. Most relevant eigenpairs for the prediction have an
associated eigenvalue that is approximately one in magnitude |λp| ≈ 1. One way
to order the eigenfunctions is to normalize the modes to unit length ‖v‖p = 1, and
take the absolute value of the p-th component of the (vectorized) Koopman eigen-
functions

∣∣∣ξp(z(c)
1 )
∣∣∣ as a measure for the importance; see Manojlović et al. [2020] for

a detailed description (in the EDMD model this option is available through the flag
sort_koopman_triplet=True).

The first eigenfunction, ξ1, which is not displayed in Fig. 4.28 has a constant real part
and is zero in the imaginary part.
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Notably, the subsequent eigenfunctions ξ2−5 (only 2 and 5 are displayed in Fig. 4.28)
strongly resemble the first two DMAP coordinates in Fig. 4.24. The sinusoidal pattern
and shift show up in both the real and imaginary part of the function, with repeated di-
rections. Other patterns, such as higher oscillations (ξ7), weekly (ξ9) and seasonal (ξ15)
patterns also re-appear in the Koopman eigenfunctions. Overall, this highlights that the
geometric state representation in the specified EDMD dictionary provides a suitable ba-
sis to approximate the Koopman operator. Moreover, it highlights that the Koopman
eigenfunctions themselves align to the inferred system geometry [Mezić, 2020]. A plot
containing the first 20 eigenfunctions is located in the supplementary material of Lehm-
berg et al. [2021]4.

For the Melbourne analysis, I showed that the established operator setting and datafold
are promising candidates to analyze high-dimensional time series data. The constructed
EDMD model is robust to common challenges of real-world data. Despite the linear
structure of the model, it is still capable of collectively and accurately forecasting mul-
tiple sensors with diverse characteristic traffic patterns. Importantly, the model is ac-
cessible and explainable through the analysis of the intrinsic components that relate to
the Laplace-Beltrami and Koopman operators.

It is not surprising, yet reassuring, that the dominant directions in the geometric
analysis revealed daily and weekly patterns. However, there was no explicit notion of
what a day or week is. Similar to the pendulum in Section 4.1, these coordinates are
intrinsic to the system and are likely related to “physically meaningful” quantities of
Melbourne pedestrian traffic. In this representation, it could be possible to compare the
patterns of different traffic systems, for example using data from another city.

A useful property is that the model’s prediction stability can be quantified and comes
with the guarantee of a linear dynamical system. Interestingly, the Koopman operator
captures the principal patterns of all 11 sensors on a single spatio-temporal basis of the
eigenfunctions. I hypothesize that it would be possible to describe a new (complex-
valued) function family that is dedicated to traffic systems similar to the Melbourne
data, that mimics the extracted Koopman eigenfunctions. That would avoid extracting
the eigenfunctions again and would instead build on the available patterns to describe
a linear system in which only the Koopman modes reconstruct the concrete traffic pat-
terns. In Section 5.2, I highlight other promising future directions.

4.4 Benchmark analysis of rdist

During my thesis research, I also followed a secondary goal: Accelerate kernel-based
methods (in particular DMAP). The approach is to efficiently compute a sparse δ-range
distance matrix, which decreases the computational requirements in memory and sub-
sequent operations, such as computing eigenpairs.

I highlight the necessity of a distance matrix when constructing a neighborhood
graph as an empirical representation of a geometry in data in Sections 2.4.1 and 2.4.2.

4see the repository at https://github.com/datafold-dev/paper modeling melburnians
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I also describe the “project-search-pullback” idea in Algorithm 1 (page 87) and its im-
plementation in rdist.

The results in this section differ from the previous three sections: Here I perform a
benchmark analysis of rdist against alternative state-of-the-art implementations to con-
struct an exact sparse δ-range distance matrix. Unlike processing time series data, I
consider the data to be static. The underlying idea of a sparse matrix to reduce compu-
tational requirements (apart from geometric reasons) is to avoid the computation and
storage of distance values that lead to negligible kernel values,

K(d(xi,xj))
{
> 0 relevant (small distance)
≈ 0 negligible (large distance)

(4.34)

where d(xi,xj) = ‖xj − xi‖2 is the Euclidean distance function between two points. I
only consider the common case of exponentially decaying kernels K, such as the stan-
dard Gaussian kernel exp(−d(xi,xj)/2ε). In this setting the objective is to avoid storing
and processing pairs with a large distance that exceeds the specified radius d > δ.

Diffusion Maps is an integral part of the main setting of my thesis to obtain an in-
trinsic state representation in geometric meaningful coordinates. It is also the most
computationally expensive component within the model architecture. When develop-
ing rdist the goal was to accelerate operator-based system identification and to scale
better with larger datasets. However, with the ongoing development of datafold, I also
implemented routines to systematically perform cross-validation and parameter opti-
mization in EDMD; see class EDMDCV in Section 3.5.2. These allow optimizing the kernel
values against a validation error. However, these routines only became available after I
had implemented rdist.

An outcome of the parameter optimizations was that larger kernel bandwidth values
led to lower validation errors — for the pendulum see Fig. 4.8, for bus station Fig. 4.14
and for the Melbourne sensor data Table 4.3. Unfortunately, such large kernel band-
width values diminish or even contradict my objective of accelerating DMAP with a
sparse kernel matrix. This is because fewer kernel values are negligible (i.e. near zero
as per Eq. 4.34) and the cut-off radius, δ, needs to be increased accordingly. There-
fore, I did not include rdist for the data scenarios. Besides the reduced applicability, it
has the drawback of introducing an additional parameter and makes the overall model
structure more complex.

Nevertheless, the computation of sparse δ-range distance matrices is a fundamental
task in computer science and a core element of many machine learning approaches. The
underlying “project-search-pullback” idea and benchmark results of rdist are therefore
still interesting. In fact, DMAP is a versatile method that is used for many different
tasks, such as clustering [Coifman and Lafon, 2006b] or data fusion [Dietrich et al.,
2021b; Lafon et al., 2006]. Smaller bandwidth parameters may be more suited in these
other tasks. This is also suggested by the fact that all software projects that provide
an implementation of DMAP in Table 3.4 (page 96) support a sparse kernel matrix (δ-
radius or k-NN).
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4.4.1 Benchmark setting

The goal of the benchmark is to compare rdist against other state-of-the-art algorithms
that compute a sparse δ-range distance matrix. The search has to be exact so that all
distance values d(xi,xj) ≤ δ are stored. The main assumption of rdist is that the given
points x ∈ X are in an high-dimensional ambient space RN , but intrinsically sampled
on an (unknown) manifold with dimension n� N .

As highlighted in Section 3.3.2.2, Rdist can accelerate existing δ-range nearest neigh-
bor algorithms, by performing the additional steps “project” and “pullback”. Through-
out the benchmark analysis, I use the kd-tree implementation within rdist from the high
performance C++ library mlpack for the “search” task, already highlighted in the Al-
gorithm 1. This choice is a result of experimentation within the benchmarks of the next
two sections. A key feature of rdist is that once a faster algorithm or implementation
becomes available it is easy to exchange the search algorithm within rdist.

For the benchmark, I only consider computing a pairwise distance matrix. This oper-
ation usually takes place during the training phase of a model. It is therefore the crit-
ical operation for the model’s construction time. The pairwise distance matrix scales
quadratic in size. However, depending on the sparsity structure, induced by the radius
δ, only a fraction of pairwise distance values are stored. Depending on the method, not
all pairwise distances need to be computed to validate whether the distance is smaller
or larger than the radius. In particular, tree-based data structures are widely adopted
to perform neighborhood search tasks. This is because the data is stored in a way that
already gives a coarse neighborhood relation. Within the structure, only distance of
point pairs in nearby “leaves” in the tree structure need to computed [Muja and Lowe,
2014].

For the analysis, I include six state-of-the-art and widely-used search algorithms,
summarized in the Table 4.5. Like rdist, all included algorithms perform an exact δ-
range nearest neighbor search. Note that each implementation of the table could poten-
tially also be used within rdist.

The source code to perform the benchmarks is available within the rdist repository
in the Supplementary Material. The benchmark analysis in the next two sections is
executed on a Linux server with four processors of Intel® Xeon(R) Gold 6230 CPU
of 2.1 GHz (x86-64 architecture) and a total of 130 GiB of computer memory (RAM)
available. I disabled all parallelization and performed the all computations on a single
processor.
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Table 4.5: Overview of tree-based algorithms and libraries included in the benchmark analysis.
The last column refers to the programming language (“Python/C” indicates the high-level
front-end and low-level implementation).

Software Structure Short description Language

FLANN2 kd-tree Fast library for approximate nearest
neighbors (FLANN) (also provides an
exact search)

C++

nanoflann1 kd-tree fork of FLANN for exact searches,
specialized for point dimensions in R2

or R3

C++

SciPy3 kd-tree standard implementation of Python
scientific computing stack.

Python/C

brute
force

all distance pairs are computed for
reference

mlpack4 kd-tree tree based data structures
processed with dual-tree
algorithms [Curtin et al., 2013]

C++
covertree
balltree

scikit-learn5 balltree tree-based data structures within the
Python machine learning stack

Python/C
kd-tree

1Blanco and Rai [2021]; 2Muja and Lowe [2009]; 3Virtanen et al. [2020]; 4Curtin et al. [2018];
5Pedregosa et al. [2011]

4.4.2 Generated data: Swiss-roll

In this first benchmark, I make use of a generated dataset. While data in such a “clean”
form are not very representative of real-world datasets, it gives a guarantee that the
manifold assumption is fulfilled. The generated data allows both the number of sam-
ples and number of point dimensions to be varied to see how each algorithm in Table 4.5
scales.

I generate data that is sampled on the swiss-roll manifold, which I used as an example
geometry throughout the Sections 2.4.1 and 2.4.2 (cf. Fig. 2.6, page 42). I use the func-
tion make_swiss_roll(n_samples) of scikit-learn [Pedregosa et al., 2011], which
samples three-dimensional data that is distributed on the two-dimensional swiss-roll.
For higher ambient point dimensions of the data N > 3, I project the data with a ran-
dom and unitary matrix into the target dimension. The intrinsic manifold dimension of
n = 2 is maintained.

The benchmarks for the two scaling cases are plotted in Fig. 4.29 for each algorithm
of Table 4.5 (a csv-file in tabular form is available in the Supplementary Material). For
both cases I set the cut-off radius to δ = 2.5. The memory requirements increase when
I scale the number of samples: Both the size of the matrix and the number of neigh-
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bors per point increase, as more samples are generated within the neighborhood radius
of each point. In contrast, when I scale the ambient point dimension N , the sparsity
structure and size of the distance matrix remains constant throughout the increase. I
parameterized rdist with a contraction bound of γ = 0.9, which leads to a projection
into a three-dimensional space (variable R in Algorithm 1 on page 87).

In Fig. 4.29 (top graph), when scaling the number of samples, the brute force algo-
rithm is already out-of-memory after the first increase. A dense matrix would require
(2 · 105)2 · 8byte = 320GB (8byte for the storage of a double precision floating point).
The considered algorithms for computing a sparse distance matrix are able to scale with
the increasing number of samples. However, there are larger discrepancies between the
computational runtime. The algorithm with the largest runtime is the kd-tree of SciPy.
At 6 · 105 samples, the algorithm is terminated because it takes longer than the maxi-
mum given time of 2 hours.

The fastest algorithm is rdist, which performs substantially faster than FLANN (27×
faster), nanoflann (23× faster) and the algorithms from scikit-learn (4× and 8× faster for
the balltree and kd-tree respectively). All improvements refer to the case of 1.2 million
samples and an ambient point dimension of N = 500.

The difference of rdist to the algorithms in mlpack, however, are less significant; it
is 1.94× faster than the covertree and 1.09× faster than the balltree. The difference to
the kd-tree is particularly interesting, because rdist uses the same implementation for
the internal search. Despite the additional processing steps “project” and “pullback”,
rdist is 1.7× faster compared to using the kd-tree directly. The library mlpack uses a
dual-tree approach, which presumably leads to superior computational performance
in comparison to other tree-based implementations [Curtin et al., 2013].

When scaling the point dimension, the benchmark is similar; rdist is again fastest,
closely followed by the tree-based algorithms of mlpack.

The balltree or covertree implementation of mlpack could be also suitable choices to
be used in rdist. However, I decided for the kd-tree. A reason against the covertree is
that the method also comes with a manifold assumption to accelerate the nearest neigh-
bor search [Beygelzimer et al., 2006]. The computational benefit of covertree seems to be
“removed” when using it within rdist. Another reason why I decided against using the
other two alternatives in rdist is that both algorithms are less robust for the real-world
datasets, which I highlight in the next section.
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Figure 4.29: Results of the swiss-roll benchmark analysis for rdist and the nine other algorithms
of Table 4.5. The top graph scales the number of samples with a constant ambient point
dimension of N = 500 (the first sample is at 10000 samples). The bottom graph scales the
ambient point dimension with a constant number of samples of 50000 (the first sample is at
ambient point dimension N = 3). The dashed line at 7200 seconds is the time after which an
algorithm is terminated.

4.4.3 Real-world datasets

I continue to benchmark rdist on a selection of real-world datasets. I only include the
algorithms of mlpack, because these provide the fastest implementation of exact tree-
based nearest neighbor searches. The other algorithms within Table 4.5 perform much
worse and were mostly terminated after 2 hours.

Table 4.6 summaries the data selection of five real-world datasets. Each dataset has
different characteristics in terms of the number of samples and the ambient point di-
mension. Because the data are real-world observations, the exact data characteris-
tics are unknown and the manifold assumption is no longer guaranteed to be ful-
filled. For each dataset, I specified a δ-radius, which determines the number of nonzero
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(nnz) elements in the final distance matrix. The sparsity degree can be obtained with
nnz/nr samples2.

Rdist comes with a parameter γ, which describes the contraction bound to determine
the dimension of the projection. Instead of optimizing this parameter, I include three
version of rdist with γ ∈ {0.7, 0.8, 0.9}.

Table 4.6 shows that rdist is faster than the mlpack algorithms for four of the five
datasets. For the popular MNIST dataset the acceleration factor to the kd-tree is 7.66×
and to the covertree 12.46×. The only case in which rdist falls behind is the CovType
dataset with a dramatic deceleration factor of about 0.16. Since the covertree also per-
forms much worse than the balltree and kd-tree, presumably the manifold assumption
does not hold for this dataset.

Another important factor in the comparison is to look at the robustness of the algo-
rithms. While for rdist only one dataset is terminated due to out-of-memory (YearPre-
dictionMSD with γ = 0.7), the mlpack’s balltree fails for the first three datasets and the
covertree fails for the last. Notably, for the generated swiss-roll dataset, the balltree is
closest to rdist in terms of runtime, but now in the real-world data setting is less ro-
bust. Only the kd-tree and the two configurations of γ = {0.9, 0.8} in rdist successfully
compute a distance matrix for all datasets.

Since rdist includes the kd-tree of mlpack, it is interesting to measure the factor of how
much the additional processing steps “project” and “pullback” accelerate the original
kd-tree implementation. This is highlighted in Fig. 4.30. The largest acceleration is
achieved for the FashionMNIST dataset, where rdist outperforms the original kd-tree
implementation by a factor of about 10×.

Overall, I could show that the algorithmic idea of the “project-search-pullback” is a
promising approach to accelerate δ-range distance matrix computations. Based on the
implementation in rdist, I expect algorithmic improvements that could even further re-
duce the memory footprint and accelerate the computation. For example, in the current
implementation the “search” and “pullback” are fully separated in rdist because of the
communication between rdist and mlpack. However, a combined search and pullback
per point pair can further decrease the memory footprint to essentially the final mem-
ory requirement of the distance matrix. While rdist is not a central result in my thesis,
it is still a promising aspect that I suggest to follow up in future work.

As for the acceleration of DMAP within the main operator-informed system identifi-
cation setting, new ideas are required to better scale with the length of time series (i.e.
the number of points in the dataset). For example, Shen and Wu [2020] describe “RO-
bust and Scalable Embedding via LANDmark Diffusion” (ROSELAND) as a promising
variation of DMAP, which avoids computing a full pairwise kernel matrix.
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4 Data analysis to extract geometry and dynamics from time series data

4.5 Summary

In this chapter, I performed three system identifications and a benchmark analysis on
simulated and real-world data. This represents the second part of my thesis contribu-
tion. For each case, I used the central methodologies in the scientific context of Chapter
2 that were transferred to a machine learning perspective in Chapter 3.

The three system identification scenarios all differ in terms of their data origin, dy-
namics and complexity. I performed the analysis in an equation-free workflow, based
solely on time series collection data. The operators stored in a model describe intrinsic
geometric and dynamic coordinates. This gives insight into the model’s characteristics
and also the hidden system, which is beyond a common error analysis. I ordered the
three systems according to their complexity:

1. For the pendulum system I generated time series from a governing first order or-
dinary differential equation. I intentionally chose the (intuitive) Cartesian coordi-
nates which are only a partial observation of the dynamical system. With the com-
posed transformation of time delay embedding and Diffusion Maps I extract a new
functional state representation that both reconstructs the dynamics and forms a ge-
ometrically aligned basis. Within these states, I selected suitable variables that are
qualitatively equivalent to the angular coordinates as the true and hidden system
variables. Moreover, the function basis was well-suited to approximate a Koopman
operator in a linear dynamical system. This allowed me to accurately predict the
entire (nonlinear) state evolution of the pendulum from an initial condition until it
reaches the steady state.

2. In the bus station system I simulated and averaged stochastic time series from a
microscopic pedestrian simulator. The governing system equations are no longer
available. The generated time series described three crowd density values, which
are the result of a scale transition from the microscopic simulator. In the analysis,
I could show that the surrogate model accurately reconstructs and interpolates the
nonlinear and transient crowd density evolution, parametrized with the number of
agents in the bus. Moreover, I showcased the strong computational advantage com-
pared to the original simulator. The operator-informed model acts as a data-driven
surrogate, which circumvents the microscopic state evolution. In a forward uncer-
tainty quantification, the constructed surrogate model only requires a fraction of the
computational resources. The advantage is particularly relevant for environments in
which the probability distributions of uncertain parameters are changing.

3. For the Melbourne pedestrian analysis, I used real-world time series from 11 sen-
sors in the City of Melbourne, Australia. Each sensor has distinct traffic patterns,
which collectively describe the pedestrian traffic on a city-scale. I could show that
the operator-informed model can accurately predict all sensors collectively and ro-
bustly deal with noisy and interrupted measurements. I performed all analyses in
a 24 hour prediction setting on a large chronologically separated test set. With the
approximated operators contained in the model, I gained insight into the system
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and model. I identified leading geometric coordinates which order and separate the
system’s time scales into daily, weekly and seasonal patterns. Altogether the state
describes a common state space on which all 11 traffic patterns are captured. The
quality to linearize the system dynamics made it suitable to approximate the Koop-
man operator in a matrix. All distinctive traffic patterns were encoded in a single
dynamical system with a matrix of 500 rows and columns. The spectral components
of the linear system expose easy-to-interpret model characteristics, such as the sta-
bility over an arbitrary prediction horizon (including the limit of t→∞).

In each scenario I could show that my proposed consolidation of the numerical frame-
works time delay embedding, Diffusion Maps and Extended Dynamic Mode Decom-
position could accurately identify the dynamical system within an interpretable model.
Datafold was essential to the data analysis and provided the necessary functionality
of data-driven modeling. There is currently no other software available that has the
capabilities to perform this analysis. For each scenario, I could optimize the param-
eters involved by minimizing the validation error and generalize the model to new
prediction settings (EDMDCV in Section 3.5.2). Such procedures are well-established in
machine learning but are often unaddressed in operator-based modeling. Each of the
three data applications required processing a collection of time series — made possi-
ble with the data structure TSCDataFrame in Section 3.3.1.1 — either because of the
sampling procedure or because of intervals of missing data.

In addition to the three system identification analyses, I included a benchmark anal-
ysis from rdist with both simulated and real-world data. I could show that the algorith-
mic idea “project-search-pullback” can accelerate existing state-of-the-art implementa-
tions for the computation of a sparse distance matrix. The task is a core element of
many machine learning algorithms, particularly Diffusion Maps (DMAP) as a kernel-
based method.
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5 Conclusion and future directions

In this last chapter, I reflect on the methods and results of my thesis. Section 5.1 sum-
marizes my contribution to research for data-driven modeling of dynamical systems. I
highlight the value that my software and analysis provide to the scientific community.
Finally, in Section 5.2, I highlight promising directions for future research. For refer-
ence, I repeat my two overarching research questions:

Research questions

1. How can the operator-informed modeling approach for system identification
— comprising the Laplace-Beltrami operator and Koopman operator — be
translated into a machine learning perspective?

2. Can the setting from (1) provide insight into the model and (hidden) dynami-
cal system by making use of the operators that store geometric and dynamical
information?

5.1 Summary and conclusions

The main goal of my thesis was to examine and advance an operator-informed mod-
eling approach to estimate a dynamical system from time series data and gain insight
into the identified systems. In a concrete operator-based model I included three compo-
nents having a different purpose: (1) time delay embedding to reconstruct partial mea-
surement data, (2) the Laplace-Beltrami operator to obtain a geometrically informed
function basis and (3) the Koopman operator for nonlinear system identification. Both
operators are linear and store essential information about the geometry and dynamics
of the system. I transferred this setting to a machine learning perspective with the two
main numerical frameworks to approximate the operators: Diffusion Maps (DMAP)
and Extended Dynamic Mode Decomposition (EDMD). I highlight that this numeri-
cal architecture has not been reported elsewhere in the literature (except by my paper
Lehmberg et al. [2021]). However, there are deep connections established between the
three components that justify this setting [e.g. Berry et al., 2013; Das and Giannakis,
2019; Giannakis, 2019]. The final model performs interpolations and predictions based
on the system-intrinsic coordinates of the operators. In the vocabulary of operator the-
ory the model is interpretable.
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Scientific software for operator-informed system identification
With my first research question I focus on scientific software as an integral part of a
data-driven modeling workflow. For operator-based methods there is rich literature
available that has incrementally improved core numerical frameworks. However, sci-
entific software that unifies these innovations is lacking. Without such software, the
main model architecture within my thesis that consolidates the methods from different
research lines was not possible. I transferred and organized the methods in datafold,
which I conceptualized and implemented to answer the first research question. An
essential part of this transfer was to consider aspects from traditional computer sci-
ence and machine learning, such as interface design, class organization, computational
efficiency, data structures or systematic parameter optimization on validation error. Ul-
timately, the software allowed me to address the concrete data applications covered
within the second research question. At multiple steps, however, I could show that
datafold overcomes limitations which I found in other (partial) software solutions (cf.
Table 3.2, Table 3.4 and Table 3.7).

The main requirement of datafold is to provide high flexibility in the modeling work-
flow by being able to revise a model within the system identification loop (cf. Fig. 2.9).
This flexibility also promotes future development because it is easier to exchange single
components. Datafold’s software architecture comprises three hierarchical layers that
give orientation in the modeling workflow, described by the system identification loop.
In the lowest layer, I contribute a data format to store time series collection data, for
which no standardized and compatible solutions are available in the Python ecosys-
tem. The data format was essential for generalizing the possible sampling schemes
within the operator regression frameworks. All of the concrete data applications in my
thesis comprised multiple time series and therefore relied on the data structure. On the
second software layer, I specified methods that either extract temporal and/or spatial
features from time series data. I exemplified these components to find intrinsic state
representations with the methods involved in my main model approach — time delay
embedding (temporal) and Diffusion Maps (spatial). The main method on datafold’s
third layer is the EDMD, which performs a nonlinear system identification by approx-
imating the Koopman operator. I used a pipeline structure as a “meta-model” that
allows flexible specification of the dictionary of one-to-many data transformations (act-
ing as a basis to linearize the dynamics) and a specification of the method to perform
the actual mode decomposition.

Within each layer, the data-driven methods are clearly separated and serve a dedi-
cated purpose that is highlighted by mixin classes as a design pattern. Most methods in
datafold integrate into Python’s scientific computing stack, which allowed me to re-use
existing and well-tested functionality that is managed by a large community. An impor-
tant element here is the scikit-learn package because it provides core machine learning
procedures. Overall, I relied on the flexibility in datafold for the model exploration,
which guided me to the main operator-based architecture and allowed me to optimize
the parameters for the concrete data applications.
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Datafold provides a valuable gateway for researchers, practitioners and students who
want to explore and apply operator-based methods for their own data analysis. The
high degree of modularity allows each software component to be used on its own or as
building blocks within larger settings that are covered by the numerical frameworks.
The software fulfills high-quality standards as it is open-source, well-documented, and
tested. I made use of datafold in my peer-reviewed publications [Lehmberg et al., 2020a,
2021], but the software has also been used by external research groups: within an uncer-
tainty quantification setting [Upadhyay et al., 2021], for learning stochastic differential
equations from microscopic simulations [Dietrich et al., 2021a] and for time series pre-
diction [Papaioannou et al., 2021].

Another target group are researchers who want to perform algorithmic experimenta-
tion within datafold. The software’s design makes it possible to set up and vary a com-
plex data processing pipeline and analyze, validate and compare the effects of method-
ological and algorithmic changes. This was quality was used by a student group who
investigated efficient sparse eigensolvers on a cluster Grad and Raith [2021]. Within my
thesis, I could demonstrate and make use of the algorithmic experimentation by using
a sparse distance matrix. While my goal was to accelerate the computation of Diffusion
Maps — as the computationally most expensive part of the main operator setting —
the model validation in the concrete data applications revealed unsuitable bandwidth
settings in which sparse kernel matrices are no longer advantageous. Despite this be-
ing a limitation within the concrete data analysis, the “project-search-pullback” idea
as implemented in rdist offers a positive algorithmic contribution. This is because the
computation of a sparse distance matrix is a fundamental operation that often appears
in computer science and machine learning. I showed that rdist can accelerate an exist-
ing kd-tree implementation from the C++ library mlpack such that it outperforms the
original algorithm and other state-of-the-art implementations for most real-world data
settings (Table 4.6). This makes it a promising algorithmic result to follow up on and
integrate the algorithm into other tasks.

Data analysis with operator-informed approach
For the second research question I explored the operator-theoretic approaches to per-
form “scientific machine learning” on concrete data applications with the aid of datafold.
The spectral components of the two linear operators allow the user to gain insight into
the model. These capabilities to interpret the model are beyond typical error evaluation.
In my thesis, I covered three dynamical systems with distinctive temporal patterns and
increasing complexity.

I started with an ordinary differential equation that describes a pendulum. By going
through the main components of the operator-based model architecture I demonstrated
with an “academic system” that I meet my goals. I first extracted geometric coordinates
from time series in Cartesian states, that are qualitatively equivalent to the hidden,
physically meaningful and well-defined angular pendulum coordinates. Secondly, I
used these geometrically aligned coordinates to construct a Koopman operator-based
model and demonstrated that it accurately predicts an entire test trajectory. The pen-
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dulum example allowed me to highlight the workflow and functionality of datafold in
a simple system setting. I would therefore recommend using this as an example when
getting started with datafold.

For the second data application, the bus station scenario, I increased the system com-
plexity to stochastic data. The time series are simulated from the pedestrian traffic
simulator Vadere. Such simulations can be used as a tool to assess crowd safety by
analyzing what-if scenarios. The main goal was to build an operator-informed and
surrogate model that describes the dynamics of three (averaged) pedestrian density
values as macroscopic system quantities. While the access to the data-generating sys-
tem allowed me to freely “design” the state quantities, the governing equations were
no longer available in this setting. This is because Vadere only describes the microscopic
state evolution in which the simulated pedestrians interact. For the model construction,
I systematically optimized the surrogate model’s parameters by following the good
practice of minimizing a cross-validated error. There is no clear evidence that cross-
validation procedures, that are well-established in the machine learning community,
have been adopted within the operator-based literature. In my opinion, the missing
information on how the parameters were selected can jeopardize the results because it
increases the risk of overfitting the available data. Ultimately, with the final model I
was able to generate time series that interpolate the entire state space, from the initial
state line to the attractor where all agents have left the simulation scenario (cf. Fig. 4.13
and Fig. 4.16).

I also demonstrated the computational superiority of the surrogate model: The lin-
ear structure and the scale transition of the surrogate model only require a tiny fraction
of the runtime of Vadere. By performing an uncertainty quantification, I showed that
the computational advantage remains even when the uncertain parameter distribution
changes (the analysis is similar to Dietrich et al. [2018]). This is a clear advantage com-
pared to other established approaches such as Polynomial Chaos Expansion. Because
the underlying pedestrian simulator can be actively queried for new data if necessary,
there is still scope to further reduce the computationally costly microscopic simulation
when constructing a surrogate model.

As the last system identification analysis, I transferred the operator-informed model
to an application with real-world data. In contrast to the previous two systems, there
was no longer access to the data-generating system to manipulate data characteristics,
such as the sampling rate or selection of state variables. The measurement states are
noise-corrupted, have intervals of missing data and include unobserved factors. Fur-
thermore, the state evolution is no longer transient but has near periodic patterns (with
intermittent unobserved forcing) and is assumed to be ergodic. The dataset comprised
11 different traffic sensors in the City of Melbourne that count the pedestrians that pass
a sensor. Each sensor has distinct traffic patterns and pedestrian volume.

To reconstruct essential dynamic information for intraday and weekly traffic pat-
terns, it was necessary to embed the single measurements within a time window of the
entire past week. This resulted in high-dimensional states which were then mapped
onto the geometrically aligned eigenfunctions of the Laplace-Beltrami operator. These
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define a common basis for all traffic sensors. Ultimately, this allowed me to analyze
the data-generating system of Melbourne’s pedestrian traffic and, similar to the pendu-
lum case, analyze the inferred geometry that is presumably one-to-one to the hidden
data-generating system. I visualized the principal geometric coordinates that cover the
intraday, weekly and also seasonal patterns within the time series data. Importantly,
the function basis also (approximately) linearizes the dynamics for all sensors within
the Koopman operator perspective. The spectral components of the Koopman operator
describe a standard time-invariant linear dynamical system that gives valuable insight
into the identified system. Particularly relevant are the eigenvalues that are easy to
interpret and describe the model’s stability over the 24 hour (or any other) prediction
horizon. Furthermore, I could visually show that the complex-valued Koopman eigen-
functions form similar patterns to the real-valued geometric DMAP coordinates (as the
EDMD dictionary). This highlights the connection between the Laplace-Beltrami and
Koopman operators.

Overall, the operator-based model has only a few “critical” parameters that influence
the model’s quality: the number of time delays, the kernel bandwidth and the number
of DMAP coordinates to include in the EDMD dictionary. Each of these parameters
can also regularize the model. For the Melbourne dataset, I could derive heuristics
for each parameter by using datafold’s cross-validation capabilities. I suggest that this
parametrization is transferable to similar data applications that are dominated by in-
traday and weekly patterns. This also includes vehicular traffic, which is likely to show
similar traffic patterns to the ones measured in the pedestrian sensors (i.e. a dominating
working-week pattern).

With the Melbourne sensor data, I contributed an innovative method to advance traf-
fic research. The results are also published in the highly ranked journal “Transporta-
tion Research Part C: Emerging Methodologies” (impact factor of 8.09 at the time of
publication) [Lehmberg et al., 2021]. This reinforces the potential of the operator-based
approach (and datafold) as a promising method to analyze traffic flows in a smart city
setting. Accurate 24 hour predictions can help to describe “usual traffic” and identify
traffic abnormalities to allocate security resources effectively. The operator-based ap-
proach complements the commonly applied methods: neural networks and statistics-
based methods. While the model selection between these two model types often repre-
sents a trade-off between accuracy and interpretability, the operator-informed approach
has the potential to combine the qualities of both approaches and produce accurate and
interpretable models that are capable of describing high-dimensional systems. How-
ever, in future work, it is important to investigate and compare accuracy measures in
fair benchmark settings.

Final conclusion
In my thesis I explored an operator-informed approach to identify dynamical systems
from multivariate time series collection data. The emerging methodology comple-
ments other approaches from statistics or “traditional” machine learning. Datafold fills
an important gap by transferring numerical frameworks to approximate the Laplace-

191



5 Conclusion and future directions

Beltrami and Koopman operators as central components in my model architecture.
While these frameworks are often used in literature, previously available software was
inadequate for integrating them into a single data-processing pipeline. Furthermore,
datafold includes established machine learning procedures with which a model can be
revised and optimized within the system identification loop. Datafold’s design lays
the groundwork for ongoing transfer and unification of algorithmic improvements for
operator approximation. In the data scenarios, I focused on traffic and mobility as a
discipline that is often confronted with systems for which no governing equations are
available. Moreover, observational data often only includes partial system information
and is noise-corrupted. As a novel contribution to pedestrian traffic research, I trans-
ferred the operator-informed approach to such challenging settings. I showed that the
models can accurately forecast different spatio-temporal traffic patterns. I also high-
lighted the usefulness of the approach by extracting system-intrinsic and interpretable
coordinates from which a model compiles its traffic predictions. Ultimately, my thesis
provides an approach and software to increase scientific understanding in data-driven
modeling, including for scenarios where complex and inaccessible models are often
adopted.

5.2 Future work

Both my contribution of datafold and the two traffic analyses provide much scope for
future research. To keep the list concise I only present directions that I find most promis-
ing. For each direction, I sketch the realization in datafold and a possible exploration
for data-driven applications with a focus on traffic systems.

• Integrate system input and output quantities

For the Melbourne sensor data, I pointed out that there are unobserved effects that
influence the traffic state, such as weather, public holidays or accidents. The EDMD
can be adapted to account for these external forcing terms with an additional input
[Mauroy et al., 2020; Proctor et al., 2018; Williams et al., 2016]. For the traffic system,
this would allow the Koopman matrix to be “cleaned” by separating the external
forcing effects into an additional system matrix.

In datafold the interface would need to be extended to an additional time series input
next to the standard measurement time series (commonly denoted with X). A pre-
diction with additional input can only be performed as long as the input values are
available over the prediction horizon. While some quantities are easy to obtain (e.g.
public holidays), other quantities require additional forecasts, such as the weather
from the official forecast. Other events that act on the system are nearly impossi-
ble to predict (e.g. accidents) and information can only be included in hindsight to
describe historic data.

The additional system input also leads to the vast topic of system control. This is
particularly interesting for many engineering systems. In fact, the topic receives a
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lot of attention in the Koopman operator research, because the linear model struc-
ture makes it advantageous to use the well-founded linear control theory. For an
exhaustive book on the topic I refer to Mauroy et al. [2020].

It is also possible to attach additional information to the model output. For example,
for the Melbourne sensor data, it is likely that the discovered intrinsic patterns are
also suitable for additional sensors not included in the data selection. By manipulat-
ing the Koopman modes in the linear system formulation it is easy to capture new
sensors that make use of the common basis of the sensors within the training set.
This feature is interesting if a sensor has fewer data available, for example, because
the sensor was only temporally installed. Computing a new Koopman mode only
requires solving a linear system. Ultimately, this opens doors to further detail the
overall city traffic, based on the measurements of the smaller set of selected sensors.

Another type of information that can be attached to the model’s output are quanti-
ties that enrich a prediction. This can include uncertainty information of a predic-
tion, such as the expected error based on the model error analysis of past data. For
example, for the Melbourne data, it is much harder to predict the pedestrian traffic
during the day than at nighttime. A similar approach to attaching such information
is followed in the context of the kernel analog framework, which also connects to
the Koopman operator theory. Alexander and Giannakis [2020, p. 2] suggest that
“with appropriate choices of the response observable, forecasts can be obtained not just for
the conditional mean of an observed quantity, but also that quantity’s conditional variance
and higher-order moments, which are important for uncertainty quantification.” These “at-
tached observables” can be transferred to the EDMD framework in a straightforward
manner.

• Streaming setting

It is an inherent property of dynamical systems that data becomes available over
time. Throughout my thesis, I processed the data in a batch fashion, in which all
data is readily available. In contrast, in a streaming setting, a model is frequently
updated over time once new data becomes available. A straightforward approach
to make use of the current algorithms are “sliding windows”, where the model is re-
trained by including new data and dropping old data in the window. However, there
are also more sophisticated streaming settings that are suitable if the model training
has to be efficient, such as when the data streams in with a high frequency. In such
cases, it is necessary to avoid re-iterating pas data to reduce computational costs and
efficiently update the model.

There are DMD variants that adapt to such streaming settings [e.g. Hemati et al.,
2014]. By transferring these to datafold the streaming-DMD can also be directly inte-
grated in the EDMD framework (cf. Fig. 3.11). However, a streaming setting would
also be required by all data transformations within the EDMD dictionary. For the
main setting in my thesis, the time delay embedding is easy to adjust, but larger
modifications are required for DMAP. Long and Ferguson [2019] propose a stream-
ing setting with a landmark approach.
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For traffic analysis, a streaming setting is more suitable for long-term and ongoing
observations of a system where concept drifts are expected. In the Melbourne sensor
data, for instance, a streaming setting could be adopted to detect and adapt to tem-
porary changes in single sensors (e.g. due to construction works) or overall traffic.
For example, during the SarS-CoV-2 pandemic the City of Melbourne mandated sev-
eral lockdowns to reduce the spread of the virus. These concept drifts in the traffic
could be used to explore the streaming capabilities.

• Learning the EDMD dictionary

Throughout the thesis, I highlighted that a suitable dictionary choice within the
EDMD framework is considered to be an open problem. This is because the choice
depends on system characteristics that are often not well understood a priori. While I
followed a generic function basis that connects to the data geometry within my the-
sis, there are also studies that aim to remove the burden of having to explicitly choose
a dictionary. Li et al. [2017] use a neural network as a generic regressor within the
EDMD framework to make the dictionary itself trainable. A drawback, however, is
that this increases the overall model complexity and the state representation to lin-
earize the dynamics is hidden in a neural network. Nevertheless, the final model is
linear in the Koopman operator system and provides access to the spatio-temporal
patterns in the spectral components.

• Dataset benchmarks to consolidate methodologies

For the future development of datafold I recommend setting up a benchmark that
includes multiple datasets that cover a variety of system characteristics. The three
data scenarios that I analyzed within my thesis can serve as a starting point.

A benchmark allows methodological results and algorithms to be quantified on these
datasets. It therefore helps to consolidate the many incremental methodological im-
provements that are available in the literature — as exemplified by the numerous
DMD and EDMD variants. I see this as a worthwhile step to structure and justify the
methodological unification within datafold but also the operator-based modeling ap-
proaches.

For the ongoing development of datafold the main objective would be to verify
that any new methodological features are actually profitable by testing them on the
benchmark. This could be either in terms of a higher accuracy or faster evaluation.
Larger changes in the productive code of datafold should only be integrated after
this benchmark phase.

My hope is that the development of datafold continues and enables new research —
either by on the methodology side or by analyzing new data scenarios. In my thesis, I
demonstrated the benefits of the operator setting within an equation-free system identi-
fication. However, there are many degrees of freedom that allow new data applications
to be systematically explored to advance the exciting field of operator-based modeling.
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ploring Koopman Operator Based Surrogate Models—Accelerating the Analysis of
Critical Pedestrian Densities. In Traffic and Granular Flow 2019, volume 252, pages
149–157. Springer International Publishing, Cham. doi:10.1007/978-3-030-55973-
1 19. Series Title: Springer Proceedings in Physics.

206

https://mediatum.ub.tum.de/?id=1575368
https://mediatum.ub.tum.de/?id=1575368
https://doi.org/10.1137/1.9781611974508
https://doi.org/10.1137/15M1023543
https://arxiv.org/abs/1607.07076
https://doi.org/10.1109/TPAMI.2006.223
http://jmlr.org/papers/v22/20-406.html
https://doi.org/10.1016/j.patrec.2014.01.008
https://doi.org/10.1007/978-81-322-2556-0
https://doi.org/10.1016/j.expthermflusci.2017.06.011
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-3-030-55973-1_19
https://doi.org/10.1007/978-3-030-55973-1_19


BIBLIOGRAPHY
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Löning, M. and Király, F. (2020) Forecasting with sktime: Designing sktime’s New Fore-
casting API and Applying It to Replicate and Extend the M4 Study. arXiv:2005.08067
[cs, stat]. https://arxiv.org/abs/2005.08067.

Lopez, P. A., Wiessner, E., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y.-P.,
Hilbrich, R., Lucken, L., Rummel, J., and Wagner, P. (2018) Microscopic Traffic Sim-
ulation using SUMO. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 2575–2582, Maui, HI. IEEE. doi:10.1109/ITSC.2018.8569938.

207

https://doi.org/10.21105/joss.02283
https://doi.org/10.1016/j.trc.2021.103437
https://doi.org/10.1109/SMI.2006.21
https://doi.org/10.1016/j.trc.2019.12.007
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1186/s40535-015-0006-6
https://doi.org/10.1109/CDC.2016.7799448
https://doi.org/10.1007/s40571-014-0030-7
https://doi.org/10.1016/j.acha.2017.08.004
https://arxiv.org/abs/2005.08067
https://doi.org/10.1109/ITSC.2018.8569938


BIBLIOGRAPHY

Lorenz, E. N. (1963) Determinisic Nonperiodic Flow. Journal of Atmospheric Sciences,
20.2:130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

Lv, Y., Duan, Y., Kang, W., Li, Z., and Wang, F.-Y. (2014) Traffic Flow Prediction With
Big Data: A Deep Learning Approach. IEEE Transactions on Intelligent Transportation
Systems, pages 1–9. doi:10.1109/TITS.2014.2345663.

Ma, W., Chen, L., Zhou, Y., and Xu, B. (2016) What Are the Dominant Projects in
the GitHub Python Ecosystem? In 2016 Third International Conference on Trust-
worthy Systems and their Applications (TSA), pages 87–95, Wuhan, China. IEEE.
doi:10.1109/TSA.2016.23.

Ma, Y. and Fu, Y. (2012) Manifold learning theory and applications. CRC ; Taylor & Francis
[distributor], Boca Raton, Fla. : London. ISBN 978-1-4398-7109-6.

Majecka, B. (2009) Statistical models of pedestrian behaviour in the Forum. PhD Thesis,
University of Edinburgh. https://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020)000 time series
and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74.
doi:10.1016/j.ijforecast.2019.04.014.
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Seitz, M. J. and Köster, G. (2012) Natural discretization of pedestrian movement in
continuous space. Physical Review E, 86(4):046108. doi:10.1103/PhysRevE.86.046108.

Shen, C. and Wu, H.-T. (2020) Scalability and robustness of spectral embedding: land-
mark diffusion is all you need. arXiv:2001.00801 [math, stat]. https://arxiv.org/abs/
2001.00801.

Smaragdakis, Y. and Batory, D. (2002) Mixin layers: an object-oriented implementa-
tion technique for refinements and collaboration-based designs. ACM Transactions on
Software Engineering and Methodology, 11(2):215–255. doi:10.1145/505145.505148.

Smith, A. M., Niemeyer, K. E., Katz, D. S., Barba, L. A., Githinji, G., Gymrek, M.,
Huff, K. D., Madan, C. R., Mayes, A. C., Moerman, K. M., Prins, P., Ram, K.,
Rokem, A., Teal, T. K., Guimera, R. V., and Vanderplas, J. T. (2018) Journal of Open
Source Software (JOSS): design and first-year review. PeerJ Computer Science, 4:e147.
doi:10.7717/peerj-cs.147.

Snoek, J., Larochelle, H., and Adams, R. P. (2012) Practical Bayesian Optimization of
Machine Learning Algorithms. In Practical bayesian optimization of machine learning
algorithms, volume 25 of NIPS’12, pages 2951–2959. https://dl.acm.org/doi/10.5555/
2999325.2999464.

212

https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1038/d41586-020-01812-9
https://doi.org/10.1007/BF01053745
https://doi.org/10.1017/S0022112010001217
https://dl.acm.org/doi/10.5555/2969442.2969519
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1103/PhysRevE.86.046108
https://arxiv.org/abs/2001.00801
https://arxiv.org/abs/2001.00801
https://doi.org/10.1145/505145.505148
https://doi.org/10.7717/peerj-cs.147
https://dl.acm.org/doi/10.5555/2999325.2999464
https://dl.acm.org/doi/10.5555/2999325.2999464


BIBLIOGRAPHY

Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., LeCun,
Y., Müller, K.-R., Pereira, F., Rasmussen, C. E., Rätsch, G., Schölkopf, B., Smola, A.,
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Supplementary material

The supplementary material comprises the software that I developed within my thesis
as well as the data that I used to obtain my results. All files are hosted and archived in
an online repository managed by “Zenodo”1.

Download supplementary material (76.5 MB, zipped)

https://doi.org/10.5281/zenodo.5748366

The repository has the following folder structure:

• datafold_1.1.6/: Software datafold version 1.1.6

See README.rst for instructions on how to install the software. For the current
development process of datafold see also:

* Repository: https://gitlab.com/datafold-dev/datafold

* Documentation: https://datafold-dev.gitlab.io/datafold/

• rdist/: Software to efficiently compute a sparse distance matrix. See README.rst
for instructions on how to compile and install mlpack as part of rdist. Note that
the data used for the benchmark analysis is not included because it is too large.

• scripts/: In each folder the Python scripts that are intended to be executed
have the prefix “main_”:

– 01example_ode/: Generate example dynamical system in Fig. 2.1

– 02swiss_roll_manifold/: Generate swiss-roll example in Fig. 2.5, Fig. 2.6,
Fig. 2.7, and Fig. 3.10

– 03package_download_stats/: Obtain the download statistics in Fig. 2.10

– 04pendulum/: Reproduce results of Section 4.1

– 05bus_station/: simulator Vadere, data and scripts to reproduce results
of Section 4.2

– 06melbourne_pedestrian_counting/: Data and scripts to reproduce
results from Section 4.3

– 07benchmark_rdist: Benchmark results and scripts to generate figures
and table in Section 4.4

1Zenodo (https://zenodo.org/) is an open repository to share all kinds of scientific output.
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