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M A S T E R ’ S T H E S I S

Discriminate Human Interaction from Task Contact

Problem description:

It has been shown in literature that robots are able to discriminate if a physical contact is a desired
interaction or unwanted collision [3]. This work considers only contacts with the environment but no
physical contacts with a human. Instead, we want to focus on situations, where the robot can come
into contact either with the environment (task contact) or with the human in order to interact with
the robot (human interaction).
In detail, we want to consider different situations which benefit from a classification between human
interaction and task contact. During the learning phase, task contact and unintended human inter-
ference might occur alongside kinesthetic teaching. In the execution phase, the robot gets into task
contact, interacts with a human, or interferes with the human in an unintended way, which can be
a collision. A combination of task contact and human interaction has already been analyzed in a
preceding work [4]. Different detection schemes (model-based [2] and model free) to discriminate
between task contact, intended human interaction or unintended interference shall be compared.

Tasks:

• Literature survey on contact classification in human and task context [1]
• Development of features for a context aware classification algorithm
• Implementation and comparison of classification schemes (classification based, knowledge based)
• Experimental evaluation of your results on a real robot
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Abstract

This work introduces a Contact Event Pipeline to distinguish Task-Contact from
Human-Robot interaction during task execution. The increasing need for close
proximity physical Human-Robot Interaction (pHRI) in the private, health and
industrial sector demands for new safety solutions. One possible approach is the

robust classification of contacts between human and robot.
A solution is designed, that enables simple task teaching and accurate contact
monitoring during task execution. Besides an external force and torque sensor,
only proprioceptive data is used for the contact evaluation. Two approaches are
designed to distinguish contact events from normal execution. A contact type

classifier, based on a Support Vector Machine, is trained with the identified events.
The system is set up to quickly identify contact incidents and enable appropriate

robot reactions.
Simulations are conducted with data recorded from intended and unintended

contacts as well as examples of task-contacts like manipulating and interacting
with surrounding objects. The Contact Event Detector and the Contact Type

Classifier are evaluated separately for both approaches. Special focus lies in the
robustness of the classification as well as the fast detection of contact events . The

performance is evaluated on different experiments, including a real world task.
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Chapter 1

Introduction

Collaborative robots or Cobots are a minor but steadily increasing sector in robotics.
The International Federation of Robotics (IFR) predicts a Compound Annual Growth
Rate between 50% and 60% [ifr18b]. Collaborative robotics is traditionally part of
the service robotic sector and increasingly used for research purposes. Currently,
it is progressing to be a more considerable option for industrial automation. With
the typical industrial robot working in evacuated workspaces, there is a steadily in-
creasing demand for more and more tasks to be performed with the joined effort of
human operator and robot. The driving factors for the increasing number of Cobots
are: Falling component prices, improvement of technical gear as well as sensors and
research advances in artificial intelligence [ifr18b].

The collaboration of robot and operator in industrial surroundings can be of dif-
ferent forms. The IFR specifies four levels of collaborative applications in the field
[ifr18a]. When ordered with increasing amounts of collaboration, the first is mere
Coexistence. No boundaries are separating the workspaces of human and robot,
but they do not overlap. Both partners perform their work separately form each
other. When work is done sequentially in an overlapping workspace, it is defined as
Sequential Collaboration. Robot and human can work on the same workpiece but
not simultaneously. When the operator is working on the workpiece, the robot is
at rest. To increase the efficiency, both partners can work simultaneously, which is
the called Cooperation. In an even more advanced step, the robot responds to the
movements of the worker. This is defined by [ifr18a] as Responsive Collaboration.
The most frequently used types of collaboration in todays industrial surroundings
are Coexistence and Sequential collaboration. But, to increase the range of possible
applications and to further increase the economic value of cobots, more Cooperation
or even Responsive Collaboration must be introduced.

Safety of the worker, such as summarized by the ISO 10218-1:2011 standard, is
thereby the most pressing objective. Different perspectives of safe human robot in-
teraction are analyzed in numerous prior works. Where some analyze the possible
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injuries or inflicted pain [PHSA11, HHK+12, YHH+97], others propose safety strate-
gies [IIN03], actuation mechanisms [ZRKS04], interaction control schemes [BT04],
collision detection [EH02], reaction strategies to collisions [HADH08] or even com-
plete contact avoidance during interaction [HDOEW19]. In general, when humans
want to work with robots in close proximity, especially when direct interaction con-
tacts are possible, complete safety cannot be guaranteed without sacrificing pro-
ductivity. In industrial surroundings most machines still are safety hazards when
not operated with caution. Robots are no exception to this fact. When robots are
being used, a trade-off must be found between usability and total safety. For exam-
ple, by reducing the executed forces and velocities to a minimum, almost complete
safety can be guaranteed. But this makes the robot unprofitable for the factory use.
Unintended contacts can therefore not be completely avoided if normal speeds and
forces are kept. A monitoring system must therefore classify such unwanted interac-
tion and avoid severe injuries. These monitoring systems can be camera or motion
sensor-based [HDOEW19, EH02], tactile-based [GOH15, HADH08, KDA18] or a
combination of both.

The advantages of using robots for production are straightforward: Robots can pro-
duce highly accurate motions for long periods of time. They can operate at very
fast rates while being able to exert high forces. If servicing is neglected, they can
be operated continuously without needing a break. Their advancing sensors enable
them to analyze objects in an extremely detailed way. In contrast, humans still
have a far more advanced visual perception and scene understanding. Humans are
considerably quicker to understand the context of a task and develop strategies to
reach their goal. Besides that, they have excellent fine motor skills. They are quick
to understand logical connections and find solutions to complex problems. In com-
bining the best abilities from both partners, collaborative robotics can automate
tasks, enhance productivity and decrease long term health issues of tasks tradition-
ally being done by human workforce. Many of those tasks also impose physical
and mental stress on the worker. Among the most occurring symptoms are chronic
back injuries [CPC+16]. Besides having significant health benefits, cobots increase
productivity. Only the most coordinative demanding production steps are left to
the worker, while more simple and monotonous steps are taken over by the robot.
The most prominent industrial sector for the application of cobots is the assembly
line. Among several possibilities, Kildal et al. [KTFM18] also list machine tending,
inspection, welding, deburring and palletizing. With the increasing public focus on
environmental conservation, also dis-assembly is a newly emerging sector for cobots.
Another certain future goal is to incorporate cobots to assist healthcare workers
[ifr18b]. Generally, cobots will be introduced in fields where qualified work person-
nel is increasingly hard to find.

Besides safety, flexibility is the second most important requirement for collabora-
tive robotics, according to industry professionals in the statistics of [KTFM18].
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Frequent changes in the production lines are increasingly important since products
are rapidly updated and highly specialized [ifr18b]. The goal is to reduce the
long period of time needed for system integration, installation, programming and
parameter tuning. The setup of new production processes must be designed in a
more intuitive way, for even less skilled workers to be able to perform these steps
of re-tasking [ifr18b]. The lack of knowledge is one of the main barriers for the
usage of cobots [KTFM18]. Therefore, more intuitive ways of programming and
usage must be developed. This will open up new markets for end-users who are
less familiar with robots. Even the usage in the private sector is possible. Highly
versatile and flexible robots will become essential multi-purpose service assistants in
home applications [HDA17]. It will be necessary that tasks can easily be trained,
without extensive knowledge in robot programming. When tasks are ”run” by the
user, intuitive interaction with the robot must be enabled. A monitoring system,
running in the background, should be able to analyse all contacts. The robot must
be able to differentiate between contacts that are occurring because of the task,
which is often called task-contact, and those that are initiated by the user.

For Sequential Collaboration like in [CPC+16], human interaction is often confined
to the workpiece. Interaction with the robot arm itself, on the other hand, occurs
more natural to the operator. Physical Human Robot Interaction (pHRI) mimicking
the physical interaction between humans is more intuitive. The teaching process for
a robot task is therefore often done by kinesthetic teaching. In more conservative
robot collaboration applications, the worker must be briefed in which way interaction
is allowed. It is thus more desirable to enable all intuitive types of pHRI. Examples
are:

• Guidance of the robot when a task is not executed correctly

• Deformations of the trajectory to avoid obstacles in the path

• Hindering of the robot’s movement when the operator is in the way

Because of these examples, a direct classification of intended user interaction is
needed for the robot to be able to react accordingly. All the mentioned examples
of intended contacts are initiated by the human. But likewise, contacts can hap-
pen in unintended ways if the operator is not minding the robot’s movement or if
the robot behaves in an unintended way. These collisions, of many possible types,
must be quickly identified to guarantee the workers further safety. A collaborative
human-robot system must thus be able to identify all possible human interactions
and classify their type.

In summary, the growing market shows that there is a need for highly versatile and
flexible industrial cobots. There is a growing number of tasks still performed by
human personal, which can be done more efficiently with close proximity collabo-
ration of human and robot. Appropriate safety measures must be taken for this
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type of close interaction. This essentially means that a monitoring system must
always be aware of the state of contact the robot is in. Whether this is done by
camera, motion capture, tactile monitoring or artificial skin. The more sensors are
used for this purpose, the more complex and expensive the system gets. But these
systems are also not without faults, problems like occlusion can occur. According
to [MMP+10, ifr18b], high technological flexibility is a key economic factor. High
amounts of sensor tuning for very specific tasks like in [CPC+16] are inefficiently
time-consuming. Furthermore, discrimination between contacts due to the task and
contacts due to engagement with the human body must be performed. This is
essential for the applicability of the monitoring system. Unnecessary reactions to
contacts resulting from task engagement would make the system unreliable in indus-
trial surroundings. Lastly, such a monitoring system should be able to operate in
any given situation, without the need of extensive reprogramming for different tasks.

1.1 Problem Statement

It is therefore the goal of this work to provide a system that can distinguish task-
contact from human interaction during Human-Robot Cooperation. It is desirable to
develop a framework that enables simple recording of robot tasks by way of Learning
form Demonstration (LfD) via Kinesthetic teaching, making it easily adaptable to
various automation problems without extensive knowledge of robot programming.
The system should not be confined to specific types of tasks, a small set of movements
or very specific types of contacts. It is the main goal of this work, to provide
a system that monitors the task execution to enable safe and productive pHRI.
Therefore, contacts must be analyzed towards their detectability and in what way
they can be distinguished from normal execution through the given sensor data.
A method must be found and tested that can accurately and quickly classify a
number of different contact types from said data. By way of identification and
classification the system should recognize when and how the robot is interacting
with the environment, the workpiece or the operator. The only sensors needed are
the robot’s proprioceptive sensors and an externally mounted force torque sensor.
Finally, with a quick detection and accurate classification of the contact type, the
goal is to enable the system to provide a reaction strategy that is appropriate to the
identified and classified contact in a further step. The main focus must therefore lie
on the robustness and accuracy of the classification and on the time delay between
the detection of and the reaction to a contact.



1.2. RELATED WORK 9

1.2 Related Work

When robots are used likewise by trained and untrained personal, safe and intuitive
interaction are the key features. The system must be able to detect and evaluate
the state of contact between the robot and the human. Furthermore, the robot
must react to certain contacts appropriately. We now give a resume on the prior
work. We analyze how contacts are defined and how contacts are classified. Work
concerning reactions to dangerous contacts are discussed. We also mention different
solutions to the problem.

In their study, Burghart et al. [BYK+02] provide both a classification for hu-
man robot co-operation as well as for robot contact classification. The developed
framework first distinguishes between a robot behavior that either does or does not
include a further object to be manipulated. Without an object, the robot can be led
or restricted by the human or the robot restricts the human. In our research, the
robot can be interacted with or restricted by the user, with and without an object.
The meaning of the term ”object” is not restricted to movable objects only. Ob-
jects can also be fixed in the environment e.g. screws. Situations may also include
the robot acting on parts of the environment with certain tools. Tools fastened to
the robot are not counted as objects. On the other hand, regarding co-operations
including an object, the object can either be handed over or simply be manipulated
together. We will focus on objects that are manipulated by the robot together with
the human in a symmetric way or totally independent of the human. A symmetric
interaction thereby describes a situation where the human and the robot perform
the same actions on the same object simultaneously. We interact with the robot
while it is manipulating fixed and movable objects. The robot also interacts with
the environment and movable objects by itself.

Furthermore [BYK+02] classify human-robot and environmental contacts into three
main classes depicted in Fig. 1.1: collision, control contact and task-contact. A
collision is, by their definition, a non-voluntary contact between a human and a
robot or an unintended contact of the robot with the surrounding environment.
Thereby, it is not closer defined if the robot interacts in a dynamic way with the
human or by clamping the user in an unintended way. The purpose of a control
contact is to give commands to or to correct the robot. In our case, control contacts
will always be initiated by the operator. The defined sub-class of positioning could
be for example a correction of the robots end effector in a placement task with the
operators hand. Command inputs on the other hand, might be carried out as taps
on the robots arm, to signal the robot to take up the task again after a stop. Finally,
task-contacts are contacts that are, as the name suggests, related to the actual task
of the robot. Where control contacts in our case are solely initiated by the operator,
task-contacts are mostly initiated by the robot. In our context, task-contact will
mainly be handling objects in a predefined way or intended contact between the tool
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and the environment to facilitate a task. With the help of certain decision criteria
Burghart et al. [BYK+02] form a classification model which helps to classify a
certain robot contact type. This model is a decision tree which decides by the oper-
ation mode and the expectation of the robot, as well as the status and the intention
of the user. In the following, we will stick to this designed classification and use the
mentioned terminology.

Figure 1.1: Contact types as defined by [BYK+02].

It can be seen by the vast amount of research in this field, that estimating the
contact state of the robot is a critical issue not only for safety reasons but also for
close cooperation and task completion. For that reason, in [HDOEW19] contact
between the human and the robot is totally avoided in order to obviate collisions at
any time. In essence, they create an artificial repulsive force field around the human
operator. It changes the planned trajectory to push the robot away from the human
body at any time. Additionally, to guarantee a fast reaction, the human motion is
predicted by Probabilistic Movement Primitives. By using black-box optimization,
the weights of the used Dynamic motion primitives are updated with respect to the
human interaction. A complete avoidance of physical contact however is not desir-
able for our framework, since control contacts could not be enabled. We also do not
use any motion tracking sensors.

Instead, a framework is needed that can classify contacts while executing a task
and react accordingly. Golz et al. [GOH15] propose a framework that distin-
guishes between intentional and unintentional physical human-robot contacts. The
classification is done with non-linear support vector machines that are trained with
features from the robots joint torque sensory data. By considering insights from a
physical contact model, their simulation results show the possibility to even discrim-
inate between collisions with different body parts. Despite mentioning four different
contact classes, distinguished by the robots contact with the environment and the
intention of the contact, they do not include task-contact at all e.g. contact with
a manipulatable object, or other types of task-contact mentioned above, into their
framework. Their classification is confined to intended (control) and unintended
(collision) contacts.
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On the other hand, Haddadin et al. [HDA17] present a survey on different algo-
rithms for collision detection. All algorithms rely solely on proprioceptive infor-
mation. While most mainly monitor the external torques applied to the joints via
different computational methods, collisions are detected with the help of a function
comparing a moment observer with an experimentally evaluated threshold. In an
isolation step, the affected link and associated contact point is estimated. A prior
assumption is made, that only a single link can be affected. In the final identifica-
tion step, the collision joint torques and/ or the Cartesian wrenches at the contact
point are calculated. Those three steps are part of a seven-step collision event
pipeline, consisting of a pre-collision state, detection of the contact, isolation of the
contact point, identification, classification, reaction and post-collision. We chose to
not include any pre-contact measures. Thus, we do not impose restrictions on the
workflow by reducing the speed or altering the robot trajectory in order to avoid
contact. Such precautionary measures are computationally expensive for online ap-
plication and need additional external sensors. To us, only three of the mentioned
are relevant. Those are: Detection, classification and reaction.

Lastly, in [KDA18] contact situations are analyzed with the help of the Spectral
Norm Derivative of force sensor data measured on the end effector or in the robot
joints. Advantageously, this approach does not rely on any specific model with
a prior training phase or data recordings of example interactions. Rather, a slid-
ing window of force measurements is taken into consideration. The fast Fourier
transform is applied to the windows time series and the spectral norm derivative is
computed from the spectrum. A threshold is experimentally evaluated by which the
contacts are classified. High frequency changes within a specific margin thereby indi-
cate undesired collisions, whereas lower values could hint at voluntary collaboration.
Even though this method is considerably faster than compared methods in detect-
ing unexpected collisions, it works best for collisions with high frequency changes,
velocity and energy transfer. Another disadvantage is the distinction threshold be-
tween intended and unintended human-robot interactions. The threshold must be
picked and can vary between execution examples. Furthermore, no task-contact can
be evaluated by this method.

Additionally, some research is performed on expanding the variety of sensor data. By
using multiple instead of a single sensory modality, Park et al. [PEBK16] state that
a wider variety of deviation from the normal execution can be detected. During task
execution, haptic, visual, auditory and kinematic sensor data is evaluated. Hidden
Markov models are trained with likewise non-anomalous sensory readings. Addi-
tionally, a varying log-likelihood threshold which indicates faulty behavior during
the execution is utilized. This threshold varies over time and is execution progress
dependent. Evaluation on complex tasks shows a better performance compared to
unimodal anomaly detection.
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Task-contact on the other hand is only studied as a separate subject, mostly in rela-
tion to assembly tasks. A. Rodriguez et al. [RBM+10] study the force signature of
assembly tasks. They identify successful and failed industrial production processes
with Support Vector Machines. Their supervised date-driven approach does not re-
quire prior knowledge of the specific task for classification of the result. Rather, by
compressing the force signatures with Principal Component Analysis only a small
amount of training examples is needed and therefore a new task can easily be trained.
Also, as stated by them, a single load cell which is properly aligned provides enough
discriminative information to classify the attempts. With this approach, the force
signals could be monitored online with the system set up to detect erroneous force
time-series at an early stage.

As can be seen from the preceding work, no classification has been designed that
includes control contact along with collisions and task-contact. The aim of our work
will therefore be to come up with a solution for a task monitor that can perform
online detection of the three contact classes. After prior kinesthetic teaching, the
robot should be able to perform a collaborative task in close proximity to the hu-
man without posing a safety hazard. While for example performing collaborative
assembly tasks, the robot must be able to detect collision at an early stage, while
not falsely classifying a task-contact with the environment as such. Additionally,
during the task execution, the possibility to physically and intuitively control the
robot must be given to the human operator. This control contact must thereby be
clearly distinguished from the two other contact forms, in order to prevent injury.
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Chapter 2

Technical Approach

In this chapter we will in detail describe a system to distinguish human-interaction
from task-contact. For this purpose we will introduce a Contact Event Pipeline. It
will be explained what kind of data is used and how the system is set up to achieve
this goal. Two approaches will be compared on how to detect and distinguish
between contacts. Lastly, it will be shown how the proposed system is implemented.

2.1 Design of Solution

The primary target of this work is to discriminate human interaction from task-
contact at any time instance the robot is executing a predefined task. Learning
from Demonstration via Kinesthetic teaching is used to teach tasks to the robot.
During this teaching phase, human and robot are in direct contact for the majority
of the time. The robot is guided through the motion that is to be executed later.
Additionally, the robot is in the state of gravity compensation, which means that
it cannot exert any force or momentum on the teacher by itself. It solely follows
the forces applied to it and freely follows along the given path. Simultaneously, all
sensors record data. An external force and torque sensor, applied in between the
last link of the robot and a two-finger gripper, records forces and torques in three
Cartesian directions. At the same time, the Cartesian position of the end effector
with the associated rotation matrix, the angular position of each robot joint and the
joint motor torques are recorded. Mathematically, the gravitational force influences
of the gripper mass on the external force and torque sensor are compensated. The
saved force/torque sensor data then represents only the real exerted forces and
torques. This is done with the raw sensor data in what is generally known as a
force-torque compensation and based on the work of [KKW07]. The position of
the center of mass of the gripper as well as the mass itself and the bias of the force-
torque sensor are estimated by driving the robot into predefined positions. Likewise,
an estimate of the external joint torques τ̂ext in each robot joint can be calculated
by subtracting the internal model dynamics from the joint motor torques τjoint in
(2.1).
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If the manipulator (2.1) is controlled by the impedance controller (2.2), an estimate
of the external torques can be computed as:

τext = Kj(qd − q) +Dj(q̇d − q̇) +M(q)(q̈d − q̈),

We assume that the following assumptions hold:

• M̃ ≈M , c̃ ≈ c, g̃ ≈ g

• ĥ ≈ h is a close estimate of the real internal friction and damping.

Dynamic model of the manipulator:

τjoint = M(q)q̈+ c(q, q̇) + g(q) + h(q, q̇) + τext, (2.1)

where q is a vector of joint angles, M(q) is the inertia matrix, c(q, q̇) are the
Coriolis and centrifugal torque, g(q) is the gravitational torque and further torques
h(q, q̇) that are resulting from damping and friction.

Impedance control:

τcom = Kj(qd − q) +Dj(q̇d − q̇) + M̃(q)q̈+ c̃(q, q̇) + g̃(q) + ĥ(q, q̇), (2.2)

where qd denotes the desired joint angular positions, Kj and Dj are the stiffness

and damping parameters and M̃ , c̃, g̃ are the internal model of the corresponding
mechanical terms, where ĥ is an estimate of the damping and friction.

Generally, there are two main phases in which the robot can have task-contact or
human interaction. The first being the described physical teaching phase and the
second being the phase of executing the taught procedure. During the teaching phase
no harm can come to the teacher from the robot. Considering the three main classes
of contact, defined in the introduction, only control contacts and task-contacts (no
collisions) could occur. The discrimination of task-contact and human interaction
during this teaching phase would more likely be interesting in the face of analyzing
the effects of environmental contact versus human contact, which we do not focus on
at this point in time. We rather prioritize the phase in which the robot reproduces
the taught movements. As discussed, during this execution of the learned task, the
most harm can come to the human. Especially when working in close proximity or
in direct contact with the robot. If the operator is incautious or does not know the
task, the robot reproduces a motion that could lead to a collision with the human or
a clamping situation. The entire process must therefore be monitored continuously
and any harmful situation must be eradicated as quickly and efficiently as possible.
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Regarding this premise [HDA17] introduce a Collision Event Pipeline. Its focus
lies on the specifics of the sensor data. It extracts and evaluates specific details of
collision events, which results in very specific reactions to the collisions. In contrast,
we introduce a Contact Event Pipeline (CEP) with some similarities to the one
mentioned before. The main differences are that more than just one contact class is
defined and that we propose a data driven approach that does not require a hand
tuned threshold based on a momentum observer. Furthermore, our more extensive
detection and classification system still has comparable small delay. Haddadin et
al. [HDA17] mention a reaction time of 200 ms for one of their approaches. Specifi-
cally, we introduce two more contact types that can occur in industrial settings and
during human robot interaction. Besides the involuntarily collision, we desire to
detect planned or constructive human-robot interaction. Additionally, we plan on
detection and classifying contact resulting from the robot task. In accordance with
[HDA17] a detected collision should eventually lead to a stop of the robot motion.
But the additional contact types must be detected while continuing the task. The
full CEP is depicted in Fig. 2.1. From here on forward, a contact or contact event
will be defined as everything that deviates from a robot movement in free air. This
includes contacts of the robot with its surrounding objects as well as the human
operator.

Figure 2.1: Contact Event Pipeline for the detection, classification and reaction to
contact events in robotic scenarios.

Considering the appropriate reaction to each of the three types of classifiable con-
tacts (task-contact, control contact and collision), one must find a good trade-off
between the robustness of the classifier and the time that will pass until the robot
reacts. It is trivial that, especially for collisions, the time duration must be as short
as possible i.e. taking into account as few consecutive sensor readings as possible.
While on the other hand evaluating as many consecutive sensor readings as possible
to analyze the contact and maximize the reliability of the classification without sac-
rificing the proceeding of the task due to a false classification. Both, the trade-off
between quickness and accuracy and the linkage between classification and reaction
will be discussed later on.

Other than [HDA17], we do not incorporate a Pre-contact Phase into our Con-
tact Event Pipeline out of two reasons: First, all methods to avoid or minimize
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the impact of contacts need additional external sensors that monitor the robot’s
environment. We only use the robots proprioceptive sensors with the addition of
an external force torque sensor. Secondly, besides being computationally expensive
[HDA17] many prior strategies change the trajectory or its parameters or try to
avoid any contact at all. Additionally, [HDA17] state that even with the extensive
robot motion planning algorithms it is not possible to guarantee collision-free be-
havior at the moment, due to the quickness of human motion.

The first step in the Contact Event pipeline is the detection of a contact event.
The output of this step is a simple boolean information, if at the current time in-
stance a contact event occurred or is still ongoing. This information is decided by
evaluating the current measured sensor data. At this point, two approaches are
compared on this matter. The Threshold-Based Method and the Distance-Based
Method, as can be seen in Fig. 2.1. The Contact Event Detector (CED) extracts
all the sensor readings xt = [pt,ot, τt,wt, qt] ∈ R26 that are characterized as being
part of the contact event. Where pt = [x, y, z] ∈ R3 is the Cartesian end effector
position, the orientation either in euler angles ot = [α, β, γ] ∈ R3 or unit quater-
nions ot = [qw, qx, qy, qz] ∈ R4 depending on the approach, τt = [τ1, ..., τ7] ∈ R7 the
external torques in each joint, wt = [fx, fy, fz, tx, ty, tz] ∈ R6 the wrench from the
external sensor and the joint angles qt = [q1, ..., q7] ∈ R7at each time stamp t.

In a second step, the Contact Type Classifier (CTC) uses only the data samples
characterized as to be part of the contact event. They are classified as one of the
contact classes. Instance for instance the entire contact is classified. This is done
with a Support Vector Machine (SVM). The predictors are features computed from
a sliding window of sensor readings Xt,...,t+N ∈ RNx26, where N is the length of
the sliding window.

One of the main reasons for choosing SVMs for classification is that they are con-
sidered to be one of the most robust and accurate among the supervised machine
learning algorithms [BG12, GOH15]. Since for our recorded data, sample points
related to the same contact class are not in a compact cloud, the use of e.g. K-
Nearest Neighbor would not be wise. On the contrary, Support Vector Machines
maximize the hyperplane separating the class representing data points, which can
be of any given form and direction. Gaussian kernels are used to project the data
into a higher dimensional feature space incorporating a non-linear SVM classifier to
further enhance the performance. Despite taking a long time for the optimization
process, SVMs are among the fastest in classification. This is essential for online
classification. Additionally, they work well with large numbers of features compared
to the number of training instances while being less prone to overfitting than other
methods [BG12]. Since it is not always the case that each feature is a valuable
contribution at every time, SVMs offer another valuable attribute.
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They are considered to be ”excellent” in tolerating irrelevant attributes and ”very
good” in tolerating redundant attributes [BG12].

We use features derived from the sensor data to classify contacts. This is more
likely to succeed compared to using the sensor data directly, since different samples
of contact events within a contact class can differ immensely. Features, on the
other hand, are more likely to capture specific aspects of the data and generalize
more within a contact class. Additionally, sign and direction of the contact become
irrelevant. Golz et al. [GOH15] derive the maximal resulting contact force in a
contact event (collision or control contact) between a robot and a human as

fmax
ext =

√
MRMH

MR +MH

√
Kẋ0

R,

where MR and MH are the reflected inertia of robot and human respectively. K is
the effective contact stiffness which is mainly given by the human contact area in the
case of a rigid robot [HASH09] and ẋ is the relative impact velocity. Respectively,
the maximal contact forces in the case of introducing task-contacts besides results
in:

fmax
ext =

√
MRMX

MR +MX

√
Kẋ0

R

where MX represents either the human or the environmental contact stiffness. It is
made clear by [GOH15] that the signal cannot effectively be represented by linear
features alone. This is due to several reasons, among which are the non-linearity
of the sensing process or the eigenfrequency that factors into the resulting contact
force. We therefore choose for most of our features to be nonlinear. Their math-
ematical expression can be seen in Tab. 2.1. The first twelve features are adapted
from [GOH15]. The Hjorth Complexity along other features is a widely used fea-
ture in touch modality identification via tactile sensing [KLC15, BAA15]. Other
features are not adopted due to reasons of small informative value or long processing
time. It has been found out during testing that some features used by [GOH15] do
not produce values that are correlated to the type of contact. Other features are
computationally very expensive, which makes them unusable for real time applica-
tion. Additionally, if the computation of one feature prolongs the entire process, it
can not be applied.

Additionally, we incorporate the features 13-17. When it comes to distinguish be-
tween task-contact and collision, an important aspect can be the general movement
properties in that instant. Therefore, features of velocity and acceleration are in-
cluded. Kouris et al. [KDA18] draw the line between collision and control contact
based on the rate of change of a predefined frequency band. The Spectral Norm
Derivative (SND) is the time derivative of the 1-norm of a predefined frequency
band defined by an upper and lower bound. The computed SND-value is compared
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to a threshold to detect collisions. The SND is used as a feature, with the differ-
ence that the considered frequency band in the positive spectrum is defined only
by an upper bound ωmax. This is done to reduce the influence of sensor noise.
Frequencies of task contact and control contact lie in the lower bands, therefore the
lower frequency bound is set to zero. To give the model an idea of which joint is
mainly involved in the contact event and in what way, the last features represent
the physical work executed in the joints and the external sensor. This indicates in
what way the environment or the human is acting on the robot or vice versa. The
work feature indicates if energy is transmitted from the robot to the environment
or from the environment to the robot.

The effectiveness of the selected features is evaluated with two selected algorithms:
The ReliefF [RŠK03] and the Minimum Redundancy Maximum Relevance (MRMR)
algorithm [DP05]. With the MRMR we analyze if any of the chosen features is
irrelevant. The algorithm maximizes the relevance

VS =
1

|S|
∑
x∈S

I(x, y)

of the feature set S with the number of features |S| by considering the mutual
information

I(X, Y ) =
∑
i,j

P (X = xi, Y = yj)log
P (X = xi, Y = yj)

P (X = xi)P (Y = yj)

between the feature X and the class label Y , while minimizing the redundancy

ΛS =
1

|S|2
∑
x∈S

I(x, z)

of the set by computing the pairwise mutual information between the predictors X
and Z. A mutual information value of zero implies that X and Z are independent.
Additionally, the robustness of the features is analyzed by the RelifF algorithm,
which uses a nearest neighbor type approach. Predictor weights are computed by
rewarding if the k-nearest neighbors of a certain observation are also within the
same class. The weight is reduced if these neighbors belong to a different class.

After all features are calculated from the training samples, they are normalised
along each of the feature dimension to the range of [0 1]. This avoids that features
with high values are favoured during the training. All features are computed from
Xt,...,t+N . Velocity and acceleration are derived once per time instance t. When
calculating all features over a total of seven joints, three external forces and tree
external torques, a total of 184 features are computed per time instance. Only
one Support Vector Machine model is trained for the entire Robot. As opposed to
[GOH15] where one model represents each one senor dimension or joint respectively,
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we propose to use only one model over all sensor dimensions out of many reasons.
The process proposed by [GOH15], trains many individual models, subsequently
lets each model predict a contact class with associated posterior probability upon
receiving a contact instance and finally calculates an overall probability for every
contact as the mean of all probabilities for each contact class. This process does
not represent the robot involved in the contact instance thoroughly. Additionally,
this takes a lot of time for computation. Most importantly, not every sensor or joint
contributes the same amount of discriminative information. Golz et al. [GOH15]
propose to adapt factors by which the individual model results should be weighted
for specific robot configurations or tasks. But this would sacrifice the generality of
the entire process and simultaneously increase the time for manual programming for
individual tasks. Some kind of reference table would have to be set up, adapting
the weights for each individual task configuration. One model on the other hand
combines the wide range of sensors and features respectively taken from the entire
physical robot and models the contact instance in its whole complexity.

The SVM model is trained and k-fold cross validated to find the best fit for the
hyperparameters. The model is also able to return posterior probabilities during
a classification. With the help of the trained model and the described process
in this section, a new task can be trained from demonstration and subsequentially
executed while contact instances are classified instantly and simultaneously. A detail
description of the specific implementation of the entire process can be found in Sec
2.3. With the contact class being decided on, a reaction best fit to the contact can
be executed as the last step of the Contact Event Pipeline.
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Feature List

f1 Mean x̄ = 1
n

∑n
i=1 xi

f2 Standard Deviation σ = 1
n

∑n
i=1 (xi − x̄)2

f3 Maximum max(x)

f4 y-Range max(x)−min(x)

f5 Median x̃ = median(x)

f6 Hjorth Complexity C(x) =
σdd
σd
σd
σx

f7 Shannon Entropy H(x) = −∑m
i=0 p(xi)

2log(p(xi))
2

f8 Energy Es =
∫ inf

− inf
‖xt‖2 dt

f9 Skewness s =
1
n

∑n
i=1 (xi−x̄)

σ3

f10 Autocorrelation a =
∑N−κ
i=1 (xi−x̄)(xi+κ−x̄)∑N−τ

i=1 (xi−x̄)2

f11 Phase Phase(FFT (x)) = arctan Im FFT (x)
Re FFT (x)

f12 Amplitude Ampl(FFT (x)) =

√
[ Re FFT (x)]2[ Im FFT (x)]2

N

f13 Velocity v =
∥∥∥∂(x)

∂t

∥∥∥
2

f14 Acceleration a =
∥∥∥∂(v)

∂t

∥∥∥
2

f15 Spectral Norm Derivative I SND =
∂‖fωmin;ωmax‖1

∂t

f16 Work in Joints WJ =
∑t2

t=t1
∂At
∂t
T Tt

f17 Work in Sensor WS =
∑t2

t=t1

∂[Pt,Ot]
∂t

W T
t

Table 2.1: List of all features used for contact classification with mathematical
formulation.
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2.1.1 Possible Reaction Strategies

Since fully executing the trained task is the main goal of the whole operation, the
appropriate reaction to a classified task-contact would most naturally be the further
execution of the task. Detecting a control contact means that the human wants to
alternate the robots trajectory, orientation, improve the robots motion or any other
reason mentioned in the introduction. The robot should then cooperate with the
human in the most natural way. This means that the impedance of the impedance
control should be drastically decreased, as to reduce the forces exerted on the opera-
tor. A switch to admittance control is also possible. After the control contact is lost,
the robot should proceed with the task by possibly updating the trajectory, forces,
torques, etc. But this has not been applied at this point in time. For collisions,
De Luca et al. [DAHH06] propose the best reaction to be a ”bounce back” in the
direction that mostly minimizes the contact forces while coming to a complete hold
once the contact forces have reached a less dangerous level. This kind of reaction is
especially most favorable in the case where collision is of the type that it is clamp-
ing the human. The direction of the most relief can be drawn from the external
joint torques which indicate the amplitude and direction of the resulting contact. A
threshold value, regarding the estimated joint torques, can be defined, at which the
”bounce back” is stopped. To continue the task after a collision, when safety for
the user is regained, applying pressure on the robot exterior for a short moment is
a generally used signal. A more simple measure is to bring the robot to an instant
stop and discard the rest of the motion.
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2.2 Detection Methods

In this section, the specifics of the two proposed event detection methods outlined in
the previous section will be described. In the following, it will be discussed how the
data is recorded, how samples are labeled and how the features are extracted from
the training samples. Special focus lies on the different implementation of the two
approaches for contact event detection. We will elaborate on how the SVM model
is trained and how it performs on testing samples. First, we start by explaining the
process for the Threshold-based Method and go on to discussing the differences to
the Distance-Based Method.

For this work, the sample data is recorded from running the robot through individual
tasks for every contact class. The example trajectories are trained by Kinesthetic
Teaching. Each example is recorded by guiding the robot through free air and with-
out interacting with the environment. It is important to mention that samples for
each contact class are recorded separately, i.e. one recording exclusively for each
contact type. It is desirable for the taught examples to be unique in their way of
movement. A set of examples representing one contact class should span a wide
range of motions. To record samples for control contact, the respective examples
are run, while the operator interacts with the robot during the execution. Again,
these interactions should comprise a most wide spectrum of pushes and pulls in each
possible direction, at each joint and on the tool. The more extensive the range of
contacts are, the more robust the prediction will be. The same postulate holds for
the following two contact types. Collision contacts are recorded similarly by placing
a dummy in the trajectory of the robot arm. To record task-contacts, the robot tra-
jectory is either altered in Cartesian directions, e.g. for the robot to get in contact
with objects in the environment, or objects are placed in predefined positions, e.g.
to be picked up or moved by the robot. For instance, one exemplary trajectory is
altered in negative z-direction to get in contact with a table, in order to simulate a
sliding movement of the end-effector or a tool on a surface.

2.2.1 Threshold-Based Method

The Threshold-Based Method (TBM) for finding a contact event is based on moni-
toring the estimated joint torques and the external sensor readings for non-normal
amplitudes. The normal region is defined by sensor values drawn from the example
trajectories being executed in free air. Therefore, the data only contains forces and
torques exerted by the robot and tool itself together with sensor noise. Since the
example movements consist of motions in various orientations, the data contains
a valid set of data for every joint and sensor dimension. This set of ”normal ex-
ecutions” is taken to calculate reference values. Mean and standard deviation are
calculated from the stacked example recordings. A time instance is flagged as con-
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tact event if one dimension of the associated sensor reading exceeds a given threshold
[τt,wt] > µ+ k ∗ σ where τt and wt are the estimated joint torques and external
sensor data as previously indicated and µ,σ ∈ R13 are the mean and standard de-
viation vectors drawn from the example trajectories. The factor k ∈ R is evaluated
from training samples in a preliminary analysis. A trade-off must be found between
avoiding false positives of no contact situations, which can occur due to high sensor
noise, and triggering correct flags as soon as possible when needed. The value k = 8
is found to produce accurate results. A full list of all used parameters can be found
in Tab. 3.1 in the Chap. 3.

The remaining false positives are hand labeled in a preprocessing step. Data samples
for each of the contact classes are labeled during the recording. The Contact Event
Detector finds each data sample Xt exceeding the threshold. Start and end of the
contact events are defined by hand by considering the output of the CED. Likewise,
the regions of false positive contact events are indicated. The associated contact
label is derived from the label given to the sample recording. The classification is
based on a constant number of samples following the detected instance Xt,...,t+N .
Here, the length of the sliding window N must be found to ensure an accurate
classification but must be chosen short enough to guarantee the quickest possible
reaction. With a sampling time of 2 ms and a set containing 85 samples the resulting
computational reaction time of 0.17 s is considerably short. For each time instance
that is detected by the CED such a set of samples is passed to a function calculating
the features. The term chosen for the set of samples is monitoring window. For the
autocorrelation the shift κ is 10 and the upper bound ωmax for the SND is 110.
The features are calculated for all 13 sensors, one feature at the time. The resulting
features are stacked into a combined features vector Ft = [f1,t, ...,f17,t] with each
fi ∈ R13 except for the velocity f13 and acceleration f14 which are f13,14 ∈ R.
Each set of features is labeled according to the label of the respective sample.

2.2.2 Distance-Based Method

In contrast to the Threshold-Based Method, this approach uses task-knowledge en-
capsulated in the reference sample to detect deviations from the desired procedure
resulting from human interaction. All internal and external sensor measurements
are compared, instance for instance, to an existing example of the same task. Devi-
ations in the robot’s state or movement as well as the exerted forces are considered
as contact by the CED. To make this approach fully autonomous, an algorithm is
used to automatically find the start and end point of contact events to avoid hand
labeling during preprocessing. From the findings of this algorithm, a threshold is
derived for online contact event detection.
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Contact events for this Distance-Based Method (DBM) are found by comparing
a reference task recording with the executed task. This is done by computing a
distance metric over the reference sample yt = [pt,ot, τt,wt, qt] and the executed
recording xt = [pt,ot, τt,wt, qt]. The distance metric measures the dissimilarity
between x and y:

d(xt,yt) =
n∑
k=0

(xtk − ytk)1.5, n = dim(x)
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Figure 2.2: Comparison of different possible vector distance metrics for contact event
detection. Mahalanobis distance with a sliding window of N samples as reference
(top), Euclidean distance (middle) and our chosen distance metric (bottom).

For this approach, the orientation in unit quaternion formulation is used since they
are continuous. This distance metric is chosen among several possibilities because it
is real time compatible and it delivers the most accurate representation of the dis-
similarity of the samples. In a preliminary analysis several possible distance metrics
have been compared. Among them are the Mahalanobis distance, several forms of
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the Minkowski distance (Lp-norm) and mean square error. For real time compati-
bility, the sliding window of the compared samples for the Mahalanobis distance is
bound by the length of the sliding window N for the feature computation. A com-
parison of some of the tested vector distance metrics is depicted in Fig. 2.2. It can
clearly be seen that the Mahalanobis distance does not work well in real time with
a small set of N samples to compare an incoming measurement to. Furthermore, it
reacts poorly to changes in dimensions with high data variance and favors changes in
dimensions with low variance. The Euclidean distance shows more noise in between
contact events compared to our chosen distance metric. This can aggravate the
process of contact event discrimination. The chosen distance metric both smoothes
the areas between contact events and avoids high variance during the a contact event.

An accurate distance threshold at which a dissimilarity is counted as a contact must
be found. Additionally, in this approach we want to avoid hand selecting contacts
from the samples. To find contact events from the distance vector over the whole
length of the sample T , a changepoint detection algorithm is used which finds rapid
changes in a signal [Lav05, KFE12]. More accurately, it partitions the signal into
sections by minimizing the total residual error between the signal and a predefined
statistical property.

The residual error is given by:

J(K) =
K−1∑
r=0

kr+1−1∑
i=kr

∆(di;χ([xkr ...xkr+1−1])) + βK , (2.3)

where k0 and kK are the first and the last sample of the signal, χ denotes the
empirical estimate and ∆ is the measured deviation. A penalty is added for an
increasing number of changepoints K and by the proportionality factor β.

A common mathematical procedure is to maximize a log-likelihood instead of min-
imizing the error.

The joint log-likelihood function of N independent observations is given by:

log
N∏
i=1

1√
2πσ2

e−(xi−µ)2/2σ2

= −N
2

(log2π + logσ2)− 1

2σ2

N∑
i=1

(xi − µ)2 (2.4)

where µ and σ are the mean and the standard deviation of a normal distribution
of the observations.

The empirical estimate can be one of a statistical property e.g. mean or standard
deviation. A comparison of all possible statistical properties has proven the root-
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mean-square level to deliver the most accurate results in finding the start and end of
a contact event even with more than one contact event in one sample recording. We
chose the property to be the root-mean-square level, which uses a constant mean
set to zero and a piecewise constant variance. With this setting the changes in the
variance of the distance are analyzed. By maximizing the log-likelihood with respect
to the variance and a fixed mean (2.4) reduces to [Lav05]:

argmax
σ

l(0, σ2) = (n−m+ 1)logσ2

where:

σ2 =
1

(n−m+ 1)

n∑
i=m

(xi − µ)2

In essence, the second sum of (2.3) is then formulated by:

kr+1−1∑
i=kr

∆(di;χ([xkr ...xkr+1−1])) = (n−m+ 1)log(
1

n−m+ 1

n∑
i=m

x2
r)

The number of changepoints can be chosen by hand. The penalty term is there-
fore statically increased towards K, minimizing the risk of too many changepoints.
Figure 2.3 shows an example plot of the distance metric over one control contact
trajectory recording with the changepoints indicated by vertical lines. It can be
noticed that contact event is encapsulated by the boundaries.

The essential drawback of this algorithm is that it does not work in real time. Al-
though it achieves accurate results for the preprocessing of the training samples,
another method must be found for real time classification. Preferably, one using a
related method. The range of possibilities includes taking a mean of the distance
metric at the changepoints as a threshold. Similarly, a threshold comparable to the
Threshold-Based Method can be drawn from data not considered to be part of the
contact by the detector. Another alternative would be to monitor again a sliding
window of samples, where the residual error of the first half is compared to the error
of the second half. The method chosen is to take in to account the mean of all
distances at the indicated changepoints and use them as a threshold.
Analogous to the first TBM approach, a set of N samples are used for the com-
putation of the features. This window of constant size is slid over all samples lying
between the changepoint boundaries.
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Figure 2.3: Distance metric based analysis of control contact recording, indicating
the found change points with vertical lines. Two following changepoints enclose one
contact.

The essential difference between the two methods is the strategy of treating task-
contact. In the TBM, task-contacts are classified along the other possible contact
forms if a contact event is triggered. For the DBM, task-contacts are part of a nor-
mal execution and therefore do not trigger the CED. We call this the task knowledge
of the system. Task-contacts are part of the reference sample taught by kinesthetic
teaching and once run without human interaction. Therefore, only deviations like
control contact or collisions lead to a significant increase in the distance and sub-
sequentially trigger the CED. This makes the kind of task-contact irrelevant to the
classification. The SVM reduces to a classifier that decides between collision or
control contact during contact events. The models of both approaches are capable
of filtering false positives among the detected contact events. These false positives
are labeled as ”no contact” by the CTC. In summary, the label of ”no contact” is
given to instances that are labeled as not part of any contact event by the CED, as
well as to false positives that are classified as such by the CTC.
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2.3 Implementation

In this section, the specific implementation of the process outlined in the previous
section will be described. In the following, it will be discussed how the data has
been recorded, how samples are labeled and how the features are extracted from the
training samples. Special focus lies on the implementation of the two approaches for
contact event detection. We will elaborate on how the SVM model is trained from
the training samples and how it is used in real time. First, we start by explaining the
process of training the SVM and the differences between the Threshold-based and
Distance-Based Method. Later we go on to explaining the real time implementation
for experimental usage.

The implementation of the approach is generally divided into two distinct parts:
the offline training of the model and the real time implementation for experimental
purposes. The sampling, labeling, training of the model and simulation has been
conducted on MATLAB while the real time script is implemented in C++/ROS.
A key difference between the two proposed methods, distance and threshold based,
is the implementation of the labeling process. While for the distance-based method
processes and labels the samples automatically, labeling for the threshold-based
method must be done by hand. This process works as follows: A function using
the determined contact threshold passes the sections believed to be a contact to the
user, who then decides if the particular section is indeed a contact or no contact.
The type of contact is then automatically determined from the description of the
sample. Hence, while recording the samples only one type of contact has been per-
formed. For the distance-based method, the additional information needed is the
number of performed contacts. This integer and the distance between the sample
and the reference data is then passed to a function finding the sections of contact
by way of using the changepoint algorithm. Both these functions return a list of
contact boundaries indicating the sections of contact.
Next, the sample data with the information about the contact sections and the type
of contact are passed to a function which computes the features from the sample
data. Following that, the returned features are normalized and passed to a function
training the model. Pseudo code clarifying this process is shown in Alg. 1.

The real time implementation of the system uses and collaborates with the robot
interface. Therefore, the compatibility with the robot interface cycle time is one of
the most important aspects. Key processes like the detection of contact events and
the computation of the features are computationally inexpensive and can therefore
be computed in the main loop. Opposed to that, a prediction of a contact type label
has an average duration of 9.0 to 9.5 milliseconds which makes it not compatible
with the 2-millisecond robot cycle rate. To solve this problem, the prediction of
the contact type label is outsourced to a separate thread, detached from the main
thread. This makes a contact type label available to the main thread at any time
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while an update is performed roughly every 10 milliseconds without delaying the
main process. For reference, the script is run on a Intel i5 3.30 GHz CPU. Pseudo
code of this real time algorithm is depicted in Alg. 2.

Algorithm 1 Training of SVM

1: procedure Train Model(method)
2: Read sample data
3: Set parameters . Parameters for feature calculation
4: switch method do
5: case ”TBM”
6: contactBoundaries← findContactEvent(data, threshold);

7: case ”DBM”
8: distace← getDistance(data, reference);
9: contactBoundaries← findContactEvent(distance, numContacts);

10: for all contactBoundaries do
11: features← computeFeatures(data, contactBoundaries, parameters);
12: end for
13: model← trainModel(features)
14: end procedure

For the communication between the separate threads, two global variables are de-
fined, to store the features for the prediction and the contact type label returned by
the prediction. After initializing the robot and the associated interfaces, loading the
data for feature normalization and the reference sample as well as loading the SVM
model, a separate thread is started to hold the prediction process. In the loop re-
producing the trajectory, each iteration, the current robot state, estimated internal
torques, Cartesian acceleration and velocity as well as the external wrench data is
derived from the robot and sensor interface. This data is then passed to a function
determining if the robot is currently in a contact state. In case of the TBM this
contact-event-detector function uses the current readings of the reproduced sample
as reference. If the robot is in fact considered to be in the state of contact, a contact
flag is returned to be true and the features are computed from the current data
and stored in the global feature variable. Simultaneously, the prediction function
picks up the newly computed features, when ready, and predicts the contact type
label using the trained SVM model. The type of contact is then displayed to the
user via a dialog window on screen. The dialog window also contains a progress
bar indicating the progress of the current task. If the predicted contact type label
indicates a collision, the robot is configured to stop and end the process.

The influence of the tool to the raw data of the external force/torque-sensor is
subtracted by a function using the current state of the end-effector, the tools weight
and point of mass and sensor bias. The tools parameters can be determined and
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compensated using force torque tools from [Alm18] according to [KKW07]. The
parameter estimation assumes that the robot can be controlled through MoveIt.

Algorithm 2 Real time implementation

1: global contactLabel
2: global features
3:

4: function predictionTread(model)
5: contactLabel← predictContact(model, features)
6: end function
7:

8: procedure Main:(method)
9: System Initialization
10: Get norm data . For feature normalization
11: Get reference sample
12: Load model
13: new tread ← predictionTread(model);
14: while Robot running& !trajectoryF inished do
15: reproduceTrajectory(reference);
16: currentData← getRobotData();
17: currentData← getFTSensorData();
18: switch method do
19: case ”TBM”
20: contactF lag ← contactEventDetector(currentData);

21: case ”DBM”
22: contactF lag ← contactEventDetector(currentData, reference);

23: if contactF lag then
24: features← computeFeatures(currentData);
25: setUserInformationWindow(contactLabel);
26: end if
27: if contactLabel = ”collision” then
28: Stop robot and return
29: end if
30: end while
31: end procedure
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Chapter 3

Evaluation

In this chapter the theoretical approach outlined in the previous chapter is evaluated
towards its functionality. In detail, we will elaborate on how training samples are
generated, how parameters for the contact detection as well as the feature calcula-
tion are derived and how the models are trained. The viability of the Contact Event
Pipeline will be tested both in simulation and experimentally. More specifically, the
two key elements, the accuracy of contact detection as well as the prediction of the
correct contact type by the model, are tested. Finally, both methods will be com-
pared by the outcome of their experimental results. A KUKA LWR-IV+ robot with
a wrist mounted jr3 force/torque-sensor and a Weiss Robotics WSG-Series gripper
is used for both the simulation and the experiment.

Initially, motion data is generated from kinesthetic teaching. The robot is put into
gravity compensation and physically guided through the desired trajectory by the
user. In total, 14 different types of movement have been recorded. Each movement
consist of a unique set of motions to encapsulate a wide range of motions from real
robotics tasks e.g. pick and place, pushing button, moving etc. It has been made
sure that at least every rotation of all robot axes as well as different linear move-
ment are among the set. This is to make sure that forces and torques of every kind
can be applied on any joint in all directions. Once the set of representative types
of movements is recorded, they are once run on the robot in free air. This set of
”free-air”-movements solves two purposes. First, from this set the thresholds for the
Threshold Based Method can be derived. The fact that the unique types of move-
ments cover motions of every axes and that the tool applies its own gravitational
forces to every dimension of the internal and external sensors, makes the resulting
thresholds for every dimension most reliable. Therefore, the system is not prone to
errors of falsely triggered contacts if it moves in a different way. Secondly, the ”free-
air”-movements are later used as reference samples for the Distance Based Method.
Since no internal forces as well as reliable external forces on the force/torque sensor
can be recorded during the kinesthetic teaching phase, this prior recording of task
knowledge is inevitable.
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For control contacts, five types of trajectories are recorded. As discussed, they in-
clude linear and angular motions in all possible directions to involve all rotary joints.
Based on them, control contact forces and torques are applied on every rotary axis
as well as on the tool. This will enable the user to perform control contacts on the
entire outer surface of the robot and especially on the tool. Example trajectories for
task-contact include four representative examples from the wide range of all possible
task contact. The first consists of applying repetitive force on a horizontal surface.
This could represent assembly operations, e.g. pressing parts together or applying
pressure on an object. Another possible example could be the instance of contact
between a screwdriver and the screw in a screwing task. The second involves ap-
plying pressure on and sliding along a horizontal surface (Fig. 3.7(b)). The other
examples include the movement of small objects in different directions (Fig. 3.7(a)).
The objects are moved only on the table surface and not lifted. For the recording
of collision samples, a human like dummy, shown in Fig. 3.2 has been used. Five
types of movement are chosen to impact the dummy on the arm, shoulder and head.
This represents the human body parts that would most likely be affected in a real
collision scenario with a single arm robot. For each type of contact at least two,
but mostly four runs have been recorded. Each run contains multiple instances of
contact. Only one type of contact is used for each run and the recordings are labeled
accordingly. All recorded types of motions for every contact class are summarized in
Fig. 3.1. Additionally, the total number of contact events per contact type is listed.
Please note, while there are less contact events for the class of task-contact, some
of these contact events have a considerably longer duration. This produces more
classifiable instances per contact event compared to the other contact types.

Figure 3.1: Total samples and contact events recorded for model training and sim-
ulation.
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The recorded samples are split in half. The first half serves as training samples for
the models while the second serves as testing samples during the simulation. In
this way it is made sure, that for all of the example motions there is at least one
recording that is unknown to the pipeline. For each type of movement there exists
at least one training and one test sample but with unique contacts, since no two
contacts are the same. Furthermore, all of the recordings consist of multiple contact
events. Therefore, the training set consists of ample contacts to train the model
on. The testing set is purposely kept as separate recordings and not partitioned in
to the individual contact events. In this way, the simulation closely represents the
execution of a entire task. Thus, the behavior of the pipeline during an experiment
can be predicted.

Figure 3.2: Dummy for collision sample recording.

To generate the best possible result, first a parameter estimation is performed. The
most fitting parameters are chosen to increase the performance of the Contact Type
Classifier as well as the accuracy of the Contact Event Detector. All variable pa-
rameters are listed in Tab. 3.1. The length of the sliding window N for feature
calculation, the delay κ for the autocorrelation and the upper frequency bound
ωmax are chosen via 10-fold cross validation. Figure 3.3 depicts the misclassification
rate in relation to the change of the evaluated parameters. The factor k for the
TBM is tuned by hand by analyzing the sample data. It is the key factor of accu-
rately distinguishing between contacts and their false positives like sensor noise. It
is chosen to indicate a contact even early and the entire duration of the contact but
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minimize the load to the Contact Type Classifier of filtering out the false positives
i.e. ”No Contact”.

Figure 3.3: K-fold cross validation of parameters N , ωmax and κ.

Parameter List
κ 10
ωmax 110
k 8
N 85

Table 3.1: List of parameters used in the the computation of the features, and
detection of contact events.

With the chosen parameters, the features are extracted from the training samples.
The models for both methods are trained on the training set using k-fold cross
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validation for hyperparameter estimation. The cross validated performance of the
models is shown in the respective confusion matrices in Fig. 3.4.

(a) Confusion matrix TBM model

(b) Confusion matrix DBM model

Figure 3.4: Confusion matrices for SVM models of TBM and DBM for classification
of No contact, Control contacts, Task-contacts and Collisions.

The computed predictor data is used to evaluate the chosen features according to
the discussed methods: The ReliefF and the MRMR algorithm. The resulting fea-
ture importance weights and the associated feature rankings for the MRMR and
ReliefF algorithm are depicted in Fig. 3.5 and Fig. 3.6 respectively. For the MRMR
algorithm, a small drop in the weights indicates that the difference in the predictor
importance are not significant. According to the ReliefF algorithm, only the accel-
eration features show a low level of robustness in the observations. By removing
any of the less robust features, the model accuracy does not increase. The same
accounts for a feature reduction with a principal component analysis.
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Feature ranking using minimum redundancy maximum relevance (MRMR) algorithm
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Figure 3.5: Results from the MRMR algorithm to determine relevance and redun-
dancy of the chosen features.

Feature rankin using ReliefF algorithm
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Figure 3.6: Results from the ReliefF algorithm to determine the robustness of the
chosen features.



3.1. SIMULATION RESULTS 37

3.1 Simulation Results

The simulation is conducted to prove that in principle both approaches, the threshold-
based and the distance-based method, work on data samples from unknown contacts.
The main goals of these tests are to show that first, both the Contact Event Detectors
can accurately distinguish contacts from normal execution. This can be proven by
analyzing the underlying plots of the joint torque and external sensor force/torque
data. The second focus point is on the accuracy of the prediction from the Contact
Type Classifier. The main aspects here are robustness of the classification i.e. if the
entire duration of the same contact is classified as such. Also, how accurate are the
initial instances of the contact classified, especially for collisions. Another aspect is
the filtering performance of the CTC to find false positives among the contacts.

The simulation is performed with the data declared as testing samples. To simulate
a real time implementation of the process, data samples of the recordings xt are
passed to the pipeline one instance at the time. This replicates how, in a real im-
plementation, the data would be received from the robot and sensor interface. The
instances are monitored as described in Sec. 2.2 and contact events are triggered by
the CED. For the TBM the CED compares the incoming sensor data to the thresh-
olds and triggers if they should exceed it. The CED of the DBM compares the sensor
data together with the robot state to the reference data and likewise triggers if the
maximum distance is exceeded. Blocks of data of the size defined by the contact
window and indicated as part of the contact event are then passed to the CTC. The
indication of contact events by the CED and the resulting classification by the CTC
can be seen in the following figures. The following figures depict a comparison of
the three or two contact types for the two approaches respectively.

3.1.1 Results of Threshold-Based Method

The first three figures show the result of the simulation for the Threshold-Based
Method. The top two plots in Fig. 3.8 depict estimated joint torques T and wrench
data W of a sample involving three collisions. Only the force data is depicted in the
second plot for better visibility. The collisions can clearly be seen from the spikes
of the sensor data. Only some of the trajectories show an increase. This is due to
the fact that the forces resulting from the collision are in the direction of only some
of the sensors dimensions. The high rate of change in the contact forces indicate
a quick change of momentum, which is typical for a collision. The sharp peaks in
the external sensor data indicate that the tool was only passively involved in the
contact. Consequentially, the impact must have occurred above the external sensor.
Additionally, rows four and five depict where a contact event occurred as decided by
the CED and the resulting contact classification. The last row shows a plot of the
contact class probabilities for all three possible classes. It can be noticed that the
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initial part of the section declared as contact is always classified correctly (in this
case collision). In the course of the contact the prediction switches to a task-contact.
It can also be noticed that some of the instances declared as contact are predicted
to be of the type ”no contact”. This means that the CTC filtered out some of the
false positives from the CED. Similarly Fig. 3.9 involves five control contacts. The
control contacts occur both above and below the external sensor. This is indicated
by the fact that only two of the five contacts can visually be observed in the exter-
nal sensor data. The rate of change in the force/torque data clearly distinguishes
the previous collision from the control contacts. Most of the indicated contacts are
classified correctly. Only minor irregularities in the classification occur at the end of
the contacts. One coherent task-contact is depicted in Fig. 3.10. The related data
is derived from the task of moving an object along the surface of the table. This is
depicted in Fig. 3.7(a). Again, it can be seen that the tool has been involved in the
action and that the trajectories have a unique structure. The whole duration of the
task-contact is thereby classified correctly. Some of the rows three and four show a
minor delay between the indicated contact event and the beginning of the contact
classification (different from ”no contact”). This can mean that the CTC did not
classify the initial instances as one of the contact types.

(a) Task-contact object (b) Task-contact sliding (c) Task-contact object with in-
teraction

Figure 3.7: Task-contacts as part of the training samples. Depicted are: Moving of
an object (first), sliding on the edge of a table with the tool (second) and a control
contact during the movement of the object (last).
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Figure 3.8: Simulation result of the CEP for TBM approach with three collisions
occurring. The first two plots show the torque and force profile from the internal
and external sensors. The last rows indicate points instances detected to be of a
contact event as well as the predicted contact type.
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Figure 3.9: Simulation result of the CEP for TBM approach with five control con-
tacts both on the robot surface as well as on the tool. The first two plots show
the torque and force profile from the internal and external sensors. The last rows
indicate points instances detected to be of a contact event as well as the predicted
contact type.
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Figure 3.10: Simulation result of the CEP for TBM approach with one task-contact
from moving an object. The first two plots show the torque and force profile from
the internal and external sensors. The last rows indicate points instances detected
to be of a contact event as well as the predicted contact type.

3.1.2 Results of Distance-Based Method

Figures 3.11 and 3.12 show the respective results of the DBM approach. Both
figures include an additional plot. It indicates the total amount of the distance
metric which is used to indicate contacts by the CED. Here, no task-contacts are
shown, since as discussed, these are part of the task-knowledge or reference sample
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and therefore cannot be classified. Again, the collisions are classified not entirely
correctly but correct at the start of the contact. The control contacts are classified
correctly throughout the whole contact.
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Figure 3.11: Simulation result of the CEP for DBM approach with tree collisions
occurring. The first two plots show the torque and force profile from the internal
and external sensors. The third plot shows the distance offset from the reference
sample. The last rows indicate points instances detected to be of a contact event as
well as the predicted contact type.
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Figure 3.12: Simulation result of the CEP for DBM approach with four control
contacts. The first two plots show the torque and force profile from the internal and
external sensors. The third plot shows the distance offset from the reference sample.
The last rows indicate points instances detected to be of a contact event as well as
the predicted contact type.

3.1.3 Results of Combined Contacts

Figures 3.13 and 3.14 both show the simulation of combined contact types. For
this test one of the example task-contact movements is run, where the robot is in-
teracted with during the task-contact. This is done to test the ability of the CEP,
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detect a change of contact type or to detect the occurrence of a human interaction
during task-contact. Figure 3.13 shows an example of control contacts during a
task-contact (tool sliding on table depicted in Fig. 3.7(b)) as simulated with the
Threshold-Based Method. The two task-contacts can clearly be distinguished in the
sensor data. To interact with the robot during the task contact, the robot has been
lifted from the table surface. These instances of control contact can be located in
the external sensor force data. When the tool is lifted from the contact, the force
in tool direction drops to around zero. Nevertheless, the Contact-Event detector
indicates that a contact is still exerted. The Contact Type Classifier first classifies
a control contact and then switches back to a classified task-contact. During the
recording of this simulation, the system does not react to the contact event. The
impedance control increases the force to counter the positional offset. Since higher
forces are exerted on the operator, they can lead to a false classification. Therefore,
only the beginning of the contact event is correctly classified. In a real scenario,
as described in the previous section, the system would decrease the stiffness of the
controller as a reaction to a control contact. Since the beginning of the control
contacts are correctly classified, this would lead to a correct reaction during a real
world task. In Fig. 3.14 the same recording is simulated with a Distance-Based
Method. Here, only the interaction (control contact) is detected, for the system has
knowledge about the task. Only small instances in the beginning of the task-contact
are indicated as contact due to high impact forces on the external sensor and the
inelastic impact on the table surface. Most of these false positives are filtered out
by the CTC. The human interaction with the robot is indicated by the high values
of the distance metric. The exerted contact is mainly classified correctly as control
contact. The falsely classified collisions are again due to the constant stiffness of the
impedance controller as explained above. If the stiffness is decreased, after the ini-
tial detection of a control contact, the high forces counter the interaction are avoided.
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Figure 3.13: Simulation result of the CEP for TBM approach with two task-contacts
from sliding on the table surface with two control contacts. The first two plots show
the torque and force profile from the internal and external sensors. The last rows
indicate points instances detected to be of a contact event as well as the predicted
contact type.
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Figure 3.14: Simulation result of the CEP for DBM approach with two task-contacts
from sliding on the table surface with two control contacts. The first two plots show
the torque and force profile from the internal and external sensors. The third plot
shows the distance offset from the reference sample. The last rows indicate instances
detected to be of a contact event as well as the predicted contact type.
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3.2 Experiment

The results of the simulation show that in principle both approaches for the Contact
Event Pipeline work. Contacts resulting from the task as well as human interaction
are detected and classified on prior recorded but real samples. It is therefore now the
intention to experimentally evaluate the system. The goals of the experiment are the
testing of the real time capability of the framework, the adaptability of the system
to unknown settings and its performance on a real-world scenario. The setting of
the experiment is chosen so that interactions with the robot can both be performed
separately and during task contact. Therefore, a task must be found that includes
long phases of continuous task-contact as well as movements in ”free-air” that fa-
cilitates the mentioned contacts. The scenario chosen is a painting trail. Again,
the experimental setup includes a KUKA LWR-IV+ robot with a wrist mounted jr3
force/torque-sensor and a Weiss Robotics WSG-Series gripper. To the end of the
gripper a paint roller is fastened as depicted in Fig. 3.15.

Figure 3.15: Experimental setup. A KUKA LWR-IV+ robot with a wrist mounted
jr3 force/torque-sensor and a Weiss Robotics WSG-Series gripper is used. A paint
roller is fastened to the end of the gripper. Two monitors are placed the line of sight
of the user showing a dialog window indicating the progress of the task as well as
the classified contact.
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The executed task is new to the system and has not been part of the training or
testing set. From its initial position, the robot moves towards the table until the
paint roller touches the surface and applies small amounts of pressure. The contact
to the surface is then kept and the robot performs a painting motion. Thereafter,
the contact is lifted and the arm moves to a second position where the motion is
repeated. After the second painting motion, the robot moves back towards its initial
position. The user is informed of the current contact situation and type by a dialog
window, indicating the type of contact as well as the progress of the current task as
shown in Fig. 3.16.

Figure 3.16: Contact dialog window indicating the current state of contact and the
progress of the current task to the user.

The experiment is divided in two parts. In the first part of the experiment, to
test the CEPs capability of distinguishing task-contact from normal (”free air”)
execution, the described motions are first run without any human interaction. The
execution is monitored and the outputted contact types are analyzed. This test is
run a total of twenty times for each approach. The second part of the experiment
is performed to test the contact type prediction capability of the CEP. Another
twenty trials are run for each approach and per contact type where interactions
during execution are enabled. The contacts performed are of the remaining types
(control contact and collision). They are performed both during task-contacts and
in free air. The contacts are applied both on the robots body as well as on the
tool and paint roller by pushing or pulling. Figure 3.17 shows different types of
interactions with the robot. The contacts simulate practical interactions that could
occur during the tested scenario. As illustrated in Fig. 3.17(b) and Fig. 3.17(d),
the robot might be lifted of the ground to stop painting on a specific section. Or
the tool might be pulled down to increase the contact force as in Fig. 3.17(a).
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(a) Pulling on paint roller (b) Lifting robot on gripper

(c) Simulated collision (d) Lifting robot on arm

Figure 3.17: Four examples of interactions during the experiment to test the contact
type prediction performance of the CEP.
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3.3 Experimental Results

The first part of the experiment is conducted to analyze if the system can distin-
guish task contact from normal execution. The two approaches define two different
methods of doing so. The Distance-Based Method uses the task knowledge encapsu-
lated in the reference sample. Therefore, under this approach, task-contacts count
as normal execution and should not be indicated to the observer. Consequentially,
an indication of the remaining contact types (control contact or collision) is counted
as a failed trial. Practically, this means that during the contact between the paint
roller with the table surface, the dialog window should show ”no contact”. The CEP
based on the TBM on the other hand is configured to detect and systematically clas-
sify task-contact. Here, twenty trials are recorded and the outputted classifications
are shown in Fig. 3.18.

Figure 3.18: Classification output of all trial executions of pure task-contact as a
pie chart using the TBM approach.

The trials for the CEP based on the DBM are all successful, i.e. no other contact
has been shown during the trials. The classification labels from the TBM show
a misclassification rate of six percent towards control contacts. One example of a
complete experimental trial is depicted in Fig. 3.19. Two contacts, resulting from
the painting motion, can clearly be distinguished in the sensor data. Regardless,
the contact forces of the second painting motion are considerably lower. Therefore,
the CED does not consistently detect the contact. The detected contacts are almost
entirely classified correctly. Only a minor number of instances are classified as con-
trol contact around the mark of 0.5. Some of the contact instances of the second
task-contact are falsely classified as ”no contact” (false negatives). In general, for
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both methods, the bare contact events have been correctly detected.
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Figure 3.19: Classification output of one trial execution of pure task-contact using
the TBM approach.
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The goal of the second part of the experiment is to evaluate the performance of
the CEP regarding human interaction. Since the setup is configured to come to an
immediate stop after a collision, they can clearly be distinguished from control con-
tacts during execution. First twenty control contacts are performed on the robot.
A classified collision, consequentially leading to the termination of the motion, is
counted as a failed trail. Likewise, when testing collisions, no termination of the
motion and a classification as control contact is counted as a failed trial. Regarding
the TBM, a classification as task-contact is counted as a fail as well.

(a) Total detected contacts TBM

(b) Total detected contacts DBM

Figure 3.20: Table showing total number of correctly and incorrectly classified con-
tacts in the second part of the experiment.

Figure 3.20 shows the number of correctly and incorrectly detected contacts of the
twenty trails for each contact. Using the TBM approach in Fig. 3.20(a), only
four out of twenty control contacts are correctly classified while there is only one
false classification on the collision side. From the confusion matrices in Fig. 3.21
representing the overall experimental classification results, it can be seen that all in-
correctly classified control contacts are classified as task-contact (Fig. 3.21(a)). For
the DBM, both eighteen and nineteen control contacts and collisions are respectively
classified correctly (Fig. 3.20(b)). The confusion matrix in Fig. 3.21(b) depicts the
total ratio of predicted contacts from the experiment for the second approach. Two
examples of control contacts and a collision are depicted in Fig. 3.23 and Fig. 3.24
respectively. Figure 3.22 shows that the entire control contact is classified correctly,
while in Fig. 3.24 the task is immediately stopped after the collision. Both the
collision and the control contact occur during the task-contact.
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(a) Confusion matrix from experiment for TBM

(b) Confusion matrix from experiment for DBM

Figure 3.21: Confusion matrices for the results of the second part of the experiment.

Figure 3.22: Classification output of a painting trial as pie chart using the DBM.
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Figure 3.23: Classification output of a painting trial with two occurring control
contacts using the DBM.
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Figure 3.24: Classification output of a painting trial with a collision occurring using
the DBM.
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Chapter 4

Discussion

The performance of the Contact Event Pipeline, regarding its ability to detect and
classify contact events, will be now discussed. The substantial differences between
the Threshold-Based and the Distance-Based Method will be identified. Finally, the
output of the Contact Type Classifier is qualitatively evaluated.

Regarding the reaction to a contact event, two methods are proposed, explained and
tested. The main difference lies in the kind of data that is considered. While the
TBM is directly applied to the sensor readings, the DBM uses an intermediate step
of calculating a distance metric. Due to a non-existent ground truth, it cannot be
determined from the simulation nor the experiment which of the proposed Contact
Event Detectors works best. In theory, the DBM is more robust against perturbation
from sensor noise, but both, simulation and experiment, show that both methods
can accurately distinguish contact events from normal execution. Only the TBM
is prone to errors for task-contacts with low exerted contact forces. Their sensor
values fall below all the sensor thresholds and are therefore not detected. But this
problem occurs mostly for the simulated task-contacts and not in the more realistic
experimental task-contacts.

It is discussed in several parts of this work that reaction time is one of the most
pressing factors for the real time applicability of the proposed pipeline. For the
overall computational reaction time of the CEP, the most vital parts in terms of
time consumption are separately analyzed. The results show that the overall time
needed for the robot to be able to react is summed up by the delay of the sample
window as well as the prediction. By using k-fold cross-validation, this delay is
optimized to 0.17s. This value is confined by the cycle rate times the length of the
sample window N and can only be reduced by a higher cycle rate. The other parts
of the pipeline, the detection of a contact event and the calculation of the features,
are quicker than the sampling time of 2ms. The delay from the prediction of 9.0 ms
to 9.5 ms does not considerably prolong the reaction time. The resulting maximum
computational reaction time of around 0.18 seconds is considerably short enough to
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apply the process to a real robot. Compared to the state of the art, we achieved
comparable reaction times with more extensive classification possibilities. Since the
features are always computed and classified once a contact event is triggered by the
CED, the reaction time can possibly be faster than computed upper bound.

With the optimized parameters a considerable good performance of the models in
10-fold cross validation is obtained. All the misclassification errors are well below
one percent. This means that the chosen type of model is able to generalize well
among new samples. This fact is further substantiated by the robustness, relevance
and redundancy evaluation of the features. As shown by the results of the Minimum
Redundancy Maximum Relevance algorithm in Fig. 3.5, all of the chosen features
contribute toward the contact type classification. None of them is considerably
more irrelevant than the other, which is shown by the small drops of the importance
weights in between the predictors. Especially the newly added features i.e. work
exerted by the joints and tool as well as the end-effector velocity and the Spectral
Norm Derivative show great robustness between contact classes as seen in Fig. 3.6.
Acceleration on the other hand is not as robust due to small value changes for the
observations of different contact classes but is not less relevant for the classification
according to the MRMR.

4.1 Simulation

The results from the simulation prove that the Contact Event Pipeline is able to
detect contact events during task execution, filter false positives and correctly clas-
sify the indicated contact events for unknown recorded tasks. Both approaches,
the distance-based and the threshold-based CED are able to precisely distinguish
contact events from normal execution. Any false contact events triggered by high
sensor noise, mostly from the external sensor, are correctly resolved by the Contact
Event Classifier and eliminated. Only a minor portion of the correct contact events
are falsely classified as noise and labeled as ”no contact” like in Fig. 3.10 around
the 3400 time stamp. This problem occurs entirely for the detection of task contacts
for the TBM and is of a minor issue to the task outcome. An actual task-contact
classified as a no contact is not desirable but does no harm. Solitary control contacts
and collisions are not affected by this problem. The only further occurrence of this
issue is during a task contact that is combined with an interaction. After the contact
is lost, briefly no contact is detected both from the CED and consequentially from
the CTC. This can be identified in Fig. 3.13 around the 8000 time stamp. Most of
the contacts are classified correctly throughout their entire course. However, classi-
fied collisions tend to switch to task-contacts for the TBM approach and to control
contacts for the DBM approach in the course of the contact. This has two specific
reasons. First, the recording of the samples and secondly their labeling. When a
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collision with the robot is recorded, the dummy is placed in the way of the trajectory
as depicted in Fig. 3.2. This is done to simulate an operator interfering with the
robot task during execution. The robot is instructed to move to a certain position
and back to its original state several times. Since the dummy is placed at a specific
position, the robot collides with it at what is an inelastic collision. It then further
goes on to push against the dummy until the contact is finally lost and the robot
moves back. This is not how a human operator would react. A human would move
away from the robot after the initial contact (except if he is clamped by the environ-
ment). This is of course not possible with the dummy. Secondly, during a real task
with a human operator, the robot would be instructed to stop or move back as dis-
cussed in Sec. 1.2. The second, more elastic part of the collision is therefore closer to
a task-contact or a control contact sensor data wise. Considering these restrictions
from the training sample, only the initial inelastic part of the collision is labeled
accordingly. The rest of the contact is not labeled. When considering the possible
reactions to a collision discussed in the prior chapters, only the initial part of the
collision contact must be classified correctly, witch it is. If the robot is stopped due
to a collision, the rest of the classification resulting from the simulation are there-
fore irrelevant and can be ignored. Since the initial part of the collisions are always
classified correctly, the simulation can be regarded as successful. A small portion of
control contacts are misclassified as task-contacts for the TBM. This usually occurs
at the end of the interaction where the contact is lost. The features seem not as
robust for this specific type of interaction between control and task-contact. This is
not a problem for the DBM since no task-contact can be classified. The simulation
results of the combined task- and control contact are also successful. Regarding the
fact that a constant robot stiffness both complicates the human-robot interaction
and consequentially the contact event classification, the misclassification during the
human interaction can be justified. This problem does not occur during a real task,
where the stiffness of the controller is adapted after the detection of a control contact.

4.2 Experiment

An experiment has been found that enables testing of all types of contacts. A spe-
cific focus is put on how the robot can be interacted with during and without task
contact. It has been discussed in the several parts of this work that in order to
facilitate intuitive interaction, it must be possible to interact with the robot on any
part of its surface. Several different positions of interaction are tested during the
experiment.

The results, especially for the second approach (DBM), show that both human in-
teractions, collision and control contact, can be detected in all the tested locations.
It can even be detected if a hand is put in front of the paint roller during the paint-
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ing motion. Additionally, most of the performed interactions are correctly classified
by the CTC. For classified collisions the task is immediately stopped. For control
contacts the task is continued and the contact type is continuously indicated for as
long as it is performed. It is notable that the evaluation metric of the experiment
is different to the simulation. In the simulation, the performance of the classifi-
cation for every instance is evaluated. For the experiment, the evaluation method
is further aggravated. In an industrial setting, each contact event, resulting from
a human-robot interaction, must be classified entirely correctly. Therefore, in this
experiment, the classification of a contact event is evaluated as a whole. Both, the
failed collision trials in Fig. 3.20(a) and Fig. 3.20(b) have resulted from simulated
collisions that have been performed too lightly. One of the failed control contacts
from the experiments using the DBM occurred after the robot has been put down
too abruptly after being lifted.

For the TBM, it is difficult to entirely assure if all the control contacts on all possi-
ble robot and tool surface areas have been successfully detected as a contact event
itself. Most of the performed control contacts have been classified as task-contacts.
Therefore, if a control contact is performed during a task-contact and it is misclas-
sified as such, it can not be said if it has been detected. But the results from the
simulation show that it most certainly is. The classification of the control contacts
itself does not meet the performance of the other contact types. The difference of
these results compared to the simulation can be explained by the difference in the
evaluation method.

From the output of the CTC, it can be clearly seen that the SVM performs well
in predicting the correct contact type, considering the aggravated evaluation met-
ric. In simulation, the initial contact instances are entirely classified correctly, as
well as the further ongoing contact event. This accounts also for the experiment,
except for control contacts using the first approach (TBM). The statistics summed
up in the confusion matrixes in Fig. 3.21 underpin the good performance of the
classifier. Only minimal errors occur during classification in simulation. This can
also be recognized in the trajectories of Fig. 3.9 and 3.10 where the classification
color changes during the contact event for a minor amount of time. The start of
a contact event must be classified most reliably, especially for control contacts or
collisions. For those contact types, the reaction must be correct from the start of the
contact event. The performance of the classifier is also not restricted to the number
of classes. Both the SVM model for the Threshold-Based Method and the SVM for
the Distance-Based Method perform well with multiple contact classes. Only the
hyperplane of the first model has been prone to error during the experiment.
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Chapter 5

Conclusion

In this work, a novel Contact Event Pipeline for the discrimination of task-contact
from human interaction is proposed. It is shown that the system is able to actively
monitor the execution of learned tasks. More specifically, the set-up procedure lets
the user easily record new tasks and monitor the execution without the need for
time consuming parameter tuning. The proposed monitoring system can detect and
classify contact events quickly, enabling a fast robot reaction. It is explained how
the system is implemented using a Support Vector Machine for contact classification
and two different methods for contact event detection. New features are incorpo-
rated alongside existing features from prior literature to classify task-contacts and
human interaction. One of the proven approaches to distinguish and classify con-
tact events, is able to actively classify task-contacts from the set of defined contact
types. The other one uses specific task knowledge to distinguish and classify only
human interaction from normal execution using a distance metric. Additionally, the
trained model can filter out sensor noise from the detected contact events to avoid
false positives. Both models require only the robots internal position/angle and
force/torque data alongside an external wrist mounted force/torque sensor. There-
fore, the proposed method can be used without requiring additional sensors like
artificial skin or tracking devices. The internal and external sensor data are both
gravitationally compensated and show only external contacts. The SVM models are
trained on hand- and automatically labeled data consisting of example task- and
human interaction contacts. The described system can be adapted to various robot
types with the same sensor modality. Only the machine learning model must be
adapted to the specific sensor data. The proposed features as well as the proposed
Contact Event Detector and Contact Type Classifier are tested in simulation and
on a real time experiment.

The results show that relevant and robot’s features have been chosen to perform the
required classification for the contact type prediction. With the features extracted
from example contacts, the chosen model is able to perform even in unknown en-
vironments. Generally, it has been shown that the second approach, the DBM
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with its task knowledge, performs better in distinguishing between task-contact and
human interaction during the experiments. Especially the differentiation between
task-contact and control contact is prone to error for the fist method. Due to a miss-
ing ground truth, it can be said that both detection methods are able to distinguish
contacts among the normal execution. Again, the DBM based on the task knowl-
edge has been less prone to sensor noise during the tests. What has been proven
are the intuitive and safe interaction possibilities during task execution. Compared
to the state of the art, this work includes task contacts into the system. It can
widely distinguish between the contacts resulting from the task and human interac-
tion. Furthermore, this solution is not bound to the initial contact, as in the related
work, but expands over the whole duration of the contact. Therefore, enabling a
wider range of possible reactions, a better adaptability to current industrial tasks
and especially the completion of the desired task.

We started this work on the premise that there is an increasing demand for collabo-
rative robotics in the industrial sector. We showed how the proposed system can be
easily adapted to new robots and industrial settings. Additionally, the classifier has
been able to predict well when used on unknown tasks. This serves the discussed
need for flexibility in frequently changing industrial production lines. A robot inte-
grated with our system is able to react appropriately to intuitive interaction even by
untrained work personnel. Furthermore, we discussed that health and safety of the
human operator or collaborative worker is one of the most fundamental concerns.
With the rather strict evaluation metric, following industrial standards, for the real
experiment, we have shown the classification and reaction capability of the Contact
Event Pipeline with task knowledge incorporated in the second approach. The ap-
plicability of the proposed system for industrial purposes is therefore given.

Future work Task-contacts could also be indicated to the user within the DBM
approach. This could be achieved by combining the two methods. A contact event
as indicated by the threshold-based method would generally indicate a task-contact.
If the distance-based method indicates a human interaction through analyzing the
task-knowledge, this would overwrite the priorly indicated task-contact and could
classify the interaction type. With this procedure, the user would gain all visual in-
dication with both methods. Furthermore, to increase the robustness of the TBM to
distinguish between task-contact and collision, their feature values must further be
investigated. The model could be trained on more realistic samples of task-contacts
from real industrial scenarios. Alternatively, the confidence of the prediction to-
gether with a confidence bound could be used. By incorporating a variable confi-
dence band for the TBM, the minor problem of false positive contact events can
further be reduced. This could also reduce the burden on the SVM model to filter
contact events triggered by sensor noise. The threshold band can be multiplied by
a factor e.g. derived from the exerted forces. It could be investigated if some of the
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sensor dimensions contribute more towards the detection and classification of contact
events. Lastly, a user study could be conducted with multiple probands, to further
validify the experimental results and prove the intuitive interaction possibilities.
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