
Visually Perceiving
Symbolic Representation for

Manipulation Tasks in Robotics

Scientific work to obtain the degree
Master of Science (M.Sc.)

at the Human-centered Assistive Robotics
Technical University of Munich

Submitted by cand. ing. Leandro Pereira
on 17. 09. 2021

First supervisor: Univ.-Prof. Dr.-Ing. Dongheui Lee

Second supervisor: Dr. Hyemin Ahn

FEUP supervisor: Prof. Anibal Matos





TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

In order to perform a task planning of manipulation, an autonomous robot must
perceive the status of the environment of its workspace to be able to make correct
decisions. This can be done by recognizing the objects and understanding the vi-
sual relationship between the different pairs of objects in the scene. Finding the
relationship between two objects involves identifying the subject, the object, and a
predicate relating them. To characterize these relationships is often used symbolic
representations of the observed environment (i.e., book-under-cup). Previous works
did not use relationship detections for robotic manipulation, therefore in this thesis
we propose a deep learning-based model capable of recognising objects and pre-
dicting the relationships between them in an environment suitable for manipulation
robots. To train a neural network model is often necessary a huge amount of data,
however, this can be difficult and expensive to obtain. To tackle this problem, we
propose a new synthetic dataset covering a total of three different robotic tasks that
is used to train our deep learning-based model.
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Chapter 1

Introduction

Over the past half century, robots have become part of our everyday life. They
help us to clean the house, perform surgical operations and carry out a wide range
of manufacturing operations with high speed and precision. The precision is usu-
ally obtained using a rigorous mechanical design. Furthermore, the robots operate
in controlled and familiar environments, which makes task execution easier and
decreases monitoring equipment. The potential for autonomous manipulation ap-
plications is huge: robots capable of manipulating the environment can be deployed
in hospitals, child and elderly care, factories, outer space, restaurants, service indus-
tries, and homes. Even in a specialized environments such as food preparation, this
wide deployment scenario and unsystematic environmental changes indicate that an
effective manipulation robot must be able to handle environments that the engi-
neers did not anticipate, or that the robot did not encounter before. Until some
years ago, robots were only used to perform repetitive tasks. Nowadays, robots are
becoming more intelligent with the use of machine learning. Several techniques in
the field of deep learning [PG17], reinforcement learning [KBP13], and imitation
learning [HGEJ17], allowed robots to learn how to perform complicated tasks such
as walking or preparing meals with high precision and accuracy.

When it comes to understand the environment where the robot operates, com-
puter vision plays an important role. Computer vision aims to extract relevant
information from images or videos collected by cameras in order to gain a high-
level understanding of the scenes. It has enabled a big advance in face detec-
tion, image captioning, medical image understanding, biometrics, and many more
[HLZ03, WZY20, LKB+17]. In robotics, this is called robot vision. Without robot
vision the robot is blind and can only move according to its programming being ideal
for repetitive tasks. But when it comes to have a multi-purpose robot or a robot
that can take decisions, this plays an important role for the robot to understand its
surroundings. To create a reliable vision system for a robot an enormous amount
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of data is necessary to train deep neural networks capable of recognizing scenarios,
objects and the actions performed. One of the most challenge problems to solve
when modeling a deep neural network is to choose the proper data and the proper
format. Having the proper data means that the collected data must correlate with
the outcome we want to predict. The data used must be aligned with the problem
the robot wants to solve, for example, images of dogs are not useful when the goal
is to implement a facial identification system in the robot. Training a deep learning
model requires to have a huge amount of labeled data, this data is usually labeled
by humans manually which makes the process inefficient and costly. Moreover, the
labeled can contain errors and be inconsistent.

1.1 Problem Statement

In the era of AI, data is a very important resource, and it is known that the quality
and the quantity of the dataset will have a direct impact on performance of the
model trained. The problem is that many times a big quantity of good quality data
is not available, or it is very costly or challenging to obtain.

Simulating data in a 3D virtual environment gives us the possibility of changing
every parameter that will have an impact in the final rendered image. We can
generate images that cover all possible light scenarios as well as all camera positions.
Additionally, the ground-truth label is highly precise and does not contain errors
that could be introduced by manual annotation. Contrarily to manual annotations
in which we need a lot of human time to annotate thousands of images, in synthetic
datasets only CPU time is consumed for the generation of these annotations and
the rendering process. Furthermore, we can generate as many images as we want in
a much shorter time.

In order to perform a task planning [GNT04], a robot must perceive which ob-
jects are in the scene, where they are localized and what their relationships are.
Finding the visual relationship between two objects involves identifying the ob-
jects and a predicate relating them [YLMD17]. To characterize these relationships,
symbolic representations of the observed environment are often used, for instance,
book-under-cup, when the book is localized under the cup. This representation
uses an asserting notation compatible with human language which facilitates the
human-robot interaction. This allows humans to ask the robot to change the current
status of the environment in a intuitive way, for instance, change the relationships
book-on-bookcase to book-on-table. Moreover, as a mid-level learning task, de-
tecting visual relationships may improve many image comprehension tasks such as
image captioning and visual question answering. Unlike image understanding based
on a single object, visual relationship detection is used to describe two objects which
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greatly increases the number of possible relationships. Using the representation for
relations as a subject-predicate-object, the number of possible relations is O(N2K)
when there are N types of objects and K predicates.

1.2 Related Work

1.2.1 Synthetic Dataset

Over the years, computer graphics have improved considerably, making it possi-
ble to create virtual images and videos that are very close to reality. Due to
the difficulties in acquiring data for machine learning training, many researchers
[JSVZ14, PSAS15, RBH17, WSW+19, TPA+18, MBB17, HBKK15, JHvdM+16,
TKWU17, GWCV16, MCL+18, MHLD17, ZQC+18, QY16, NEP+16, FDI+15] have
used generated synthetic data to train their models. When it comes to computer vi-
sion, the images or videos are generated using game engines or 3D computer graphics
softwares. Synthetic data has been used successfully in [JSVZ14] where an engine
was used to generate the images to train a neural network capable of recognizing
text in pictures.

In [PSAS15] free 3D models were used to generate images to train a deep CNN
object detector. They showed better results than models trained on real images
when these come from different domains. Other works [RBH17, WSW+19] also
focused in object detection used synthetic images generated using Blender and Unity
3D. In the solution using Blender, the Cycles engine is used which renders images
with higher quality and more realistic. The solutions presented focused in getting
as close to reality as possible which is not a problem when only a small number
of images is necessary. When a huge number of images need to be generated, the
process can be accelerated by losing some image quality.

The CLEVR [JHvdM+16] dataset represents a diagnostic dataset to test a range of
visual reasoning abilities. The dataset contains detailed descriptions to represent the
reasoning that each question requires. This dataset can be used to conduct rich di-
agnostics to have a better understaning of the visual capabilities of Visual Question
Answering. This requires tight control over the dataset, therefore the researchers
generated synthetic images and automatically generated questions. The images have
associated ground-truth object locations and attributes, and the questions have an
associated machine-readable form. Their images were generated by randomly sam-
pling a scene graph and rendering it using Blender [Com18]. In this dataset, every
scene contains between three and ten objects with random shapes, sizes, materials,
colors, and positions. The researchers ensured no objects intersected, that all objects
are at least partially visible, and that there are small horizontal and vertical margins
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between the image-plane centers of each pair of objects. Moreover, the position of
the light and the camera were randomly jittered in each image. In this case, simple
3D object shapes were used (cubes, spheres and cylinders) with different materials
in eight different colors. They also uses four spatial relationships (left, right, behind,
in front). These semantics depend not only on the relative position of the objects
but also on the perspective of the camera.

In the last years the number of 3D models available online increased substantially
in repositories like Trimble 3D warehouse, providing millions of 3D CAD models
covering thousands of object categories. However, many of these models are not well
organized or and often grouped in gross categories, moreover, it is not common to see
a textual description being provided together with the model. To solve this problem,
researchers presented the ShapeNET [CFG+15] dataset which is a richly-annotated,
large-scale repository of shapes represented by 3D CAD models of objects. The
dataset has indexed three million models, with 220000 models classified in 3135
categories. They were able to collect and centralize 3D models that can be used
for data-driven methods, evaluation and comparison of algorithms for fundamental
tasks involving geometry and serve as base knowledge for representing real-world
objects and their semantics.

1.2.2 Relationship Detection

A paper published in 2016 [LKBFF16], suggested a method to detect visual rela-
tionships between objects in images. The researchers proposed a visual appearance
module that learns the appearance of objects and predicates, and fuses them together
to jointly predict relationships. They showed that their model was able to detect
O(N2K) relationships by only using O(N +K) relationships. To detect infrequent
relationships, this model proposed also a language module that uses pre-trained
word vectors to cast relationships into a vector space where similar relationships are
optimized to be close to each other. This makes the proposed method be able to
detect infrequent or unseen relationships due to the semantic similarity between dif-
ferent relationships. The proposed model outperformed previous methods as Visual
Phrases [SF11] and Image Scene Graphs [JKS+15]. In this paper [LKBFF16], they
also proposed a new dataset suitable to detect visual relationships since the existing
datasets did not contain sufficient variety of relationships or predicate diversity per
object category. One of the weakness of their method is the separation between the
extraction of visual appearance features and the final task. To tackle this problem,
several papers were published in 2017, [DZL17, LOWT17, ZKCC17, LLX17], how-
ever, in most of these papers the author choose to model relationship detection as
a multi-class classification problem ignoring the relationship co-occurrence.
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In a new paper published in 2018 [LGCC18], the author proposed a deep struc-
tural ranking framework for visual relationship detection. They proposed a model
based on a convolutional neural network which combines different cues to learn the
representation for an input instance. In order to facilitate the co-occurrence and
incompleteness of visual relationships, they proposed a structure of ranking loss
which enforces the annotated relationships to have higher relevance score since the
annotated relationships are usually more salient. In their experiments, they used
two important tasks to evaluate the proposed method: Predicate detection and Re-
lationship detection. On both learning tasks, the proposed method outperformed
the most recent state-of-the-art methods dramatically. In fact, for predicate de-
tection, they were able to improve the state-of-the-art by around 11% according
to Recall@100 on the datasets tested and for relationship detection, about 2.4%
according to the same metric.

All these works were applied in datasets containing images of environments found
by humans in their everyday lives and, therefore, not focused in manipulation rela-
tionships.

The closest work to ours was published in 2018 [ZLZ+18], the researchers aimed to
help a robot to infer the grasping order of a stack of objects. They proposed an
end-to-end neural network that receives an image as input and predicts the object
classes, their locations and a manipulation relationship tree. However, they only
focused in detecting the stack order of the objects, excluding any other possible
relationships between the objects.

1.3 Our Approach

Many approaches that tried to detect visual relationships from images only covered
scenarios found by humans in their daily lives, for example, person-wear-shirt

or person-ride-horse. These scenarios are not of interest to manipulation robots
because it is not intended that they interact with these kind of objects and predicates
(e.g., horse, ride, wear).

In this thesis, we are interested in detecting relationships in objects that will possibly
be found in manipulation tasks. We propose a deep learning-based model capable
of localizing the objects, predict their category and the relationships between the
pairs of objects from an RGB image. Manipulation robots interact with tools and
objects that are frequently small and easy to operate, therefore the dataset to train
our model must capture the variety of these objects in their different states. Since
previous datasets did not cover this kind of environments, we propose a new image
dataset covering three possible manipulation tasks. We chose to build a synthetic
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dataset since a large amount of data is hard and expensive to obtain. To render
the dataset images we use Blender [Com18] to automatically generate the scenes
and randomly change the conditions of the environment covering a wider range of
possibilities. We use 3D models of objects from the ShapeNET dataset [CFG+15]
and using Blender API we randomly display them on a table. Lastly, we use Python
[VRD09] to generate the annotations of the corresponding generated image.

We use our dataset to train our deep neural network-based model aiming to classify
the object category and predict the relationships between the pairs of objects in the
scene. Contrarily to the work proposed in [ZLZ+18] we aim to detect every possible
relationship between the objects. Our model is divided in two parts: the first is
responsible for object detection, for this we use the SSD300 due to its real time
properties and good accuracy; the second is responsible for relationship prediction,
this model uses a visual appearance cue, responsible to extract the features of the
object and a spatial cue to learn the relative spatial location of the objects.

With this information, the robot can infer not only the grasping order of the ob-
jects when these are stacked but also be able to organize objects, or even answer
to questions about the scenes which can be useful for Task and Motion Planning
(TAMP).
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Chapter 2

Technical Approach

This chapter explains the technical details of the chosen approach in this thesis. It
starts by describing how the synthetic dataset was generated. Secondly, we describe
how we modeled our deep learning based-model capable of recognizing objects and
the predicate between them.

2.1 Synthetic Dataset

Acquiring data for neural network training is an expensive and labor-intensive task,
especially when such data is difficult to access. We proposed a new synthetic dataset
that covers the scenarios we are interested in training our neural network model on.
To generate the synthetic images we used the 3D Blender software as a tool to au-
tomatically generate synthetic images using 3D models from the ShapeNET dataset
[CFG+15]. We used Blender Python API [Com18] to automate the scene rendering
by automating the loading of the 3D models into the scene and its positioning, and
the generation of the ground-truth information. We used Cycles Render Engine
since it supports ray-tracing to render the synthetic images which improves their
quality.

Real world images embed a lot of information, for instance, the environment, the
lightning, the shapes, the texture and so on. In order to make the synthetic images
closer to real world images, giving the possibility of transferring the learning to the
real world applications, we considered the following aspects during the generation
of each scenario:
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• Illumination

• Position and orientation of the camera

• Positioning of the objects

• Texture, shape, and materials of the objects

• Number of objects

• Number of relationships.

We also took into consideration of which tasks the robot can perform, in order to
decide which 3D models should we use to render the dataset. Regarding this, we
proposed three different tasks:

• Task 1: Pouring water in a mug,

• Task 2: Setting a dinner table,

• Task 3: Stacking storage food containers.

For all the tasks we used the object Table as the platform where the robot will
perform the manipulation. Additionally, we considered the following objects for
every task:

• Task 1: Mug, Book, Bottle

• Task 2: Plate, Fork, Knife, Spoon, Wine Glass

• Task 3: Storage Food Containers.

From the ShapeNET dataset, we selected different 3D models for each object cate-
gory and added them to our model repository (M0). We used a total of 42 distinct
models for Task 1, 33 for Task 2 and a total of 12 for Task 3. We also used 27 models
of the object Table that are shared among the different tasks. Every category has a
different number of models due to different availability of models in the ShapeNET
dataset.

To generate a diverse dataset, the 3D scenes must be distinct. We should not only
maximize the variety of objects across the dataset but also the different relationships
in the dataset. Therefore, we started by randomly selecting the table model and
loading it into the scene. Then we randomly chose the number of object models in
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the scene between 2 or 3 models. After that, we randomly selected a predicate from
our list of possible predicates (P0). For the given predicate, we randomly selected
an object category for the subject. For the selection of the object, it is necessary
to filter out the object categories that are not physically possible to occur given the
predicate and the subject. For example, if the selected predicate is inside and the
subject category is mug, bottle must be removed from the object candidates since
it is not possible to have the relationship mug-inside-bottle. If the random number
of objects is three, we repeat the process by selecting another predicate, a 3D model
and applying the same restrictions to make sure that the relationships generated
were as intended.

To place the objects on the table in such a way that the predicate between the mod-
els is present, we applied geometric constrains to generate the possible 3D space
positions for the models, from which we randomly selected a 3D point. After en-
suring that all the objects are positioned without intersecting each other and they
are inside the table area, we randomly varied the illumination of the scene. This
ensures that the images are not biased to a well illuminated environment since this
can be applied in scenarios with brighter or dimmer lighting. To increase the range
of camera perspectives in our dataset, we set a different position and orientation of
the camera for every scene. Then, we confirmed whether all the models are com-
pletely visible by the camera, except for the table that can be partially occluded.
The bounding box information of the models present in the scene was extracted
by using a world-to-camera function that maps every 3D coordinate in the scene
to a 2D image-space coordinate. This information, together with the relationships
between the different objects in the scene and their categories, is used to generate
the annotations for the rendered image. Figure 2.2 shows examples of synthetically
generated images.

Figure 2.1: Examples of 3D models used in the generation of the synthetic dataset.
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Figure 2.2: Examples of the synthetic generated images for the different tasks

2.1.1 Generated Datasets

The datasets were rendered on a workstation with Intel(R) Core(TM) i7-4790K
CPU @ 4.00GHz and with the GPU NVIDIA GeForce RTX 2080 SUPER using the
Cycles render from Blender.

Manipulation Task 1

For the first manipulation task, we generate 5000 images. The graphs in figure 2.3
shows the distribution of relationships and objects. In the object distribution, we
can see that the objects are approximately equally distributed.

Figure 2.3: (Left) Number of relationship instances per predicate in the dataset
generated for Task 1. (Right) Number of object instances per category in the dataset
generated for Task 1.



2.1. SYNTHETIC DATASET 15

Images
Rel.

Types
Rel.

Instances
Obj.

Instances
Pred. per

Image
Obj. per

Image
5000 13 45056 16185 9.0112 3.237

Table 2.1: Statistics of the synthetic dataset generated for Task 1

Manipulation Task 2

In the second task, more objects are used per image. In addition, higher variety of
objects makes the scene more complex with more predicates per image (see Table
2.2). In this task, regarding the relationship distribution, we have similar results to
the previous task, however, here we do not have the relationship inside given that
we do not have objects that can be inside of some other object.

Figure 2.4: (Left) Number of relationship instances per predicate in the dataset
generated for Task 2. (Right) Number of object instances per category in the dataset
generated for Task 2.

Images
Rel.

Types
Rel.

Instances
Obj.

Instances
Pred. per

Image
Obj. per

Image
5000 12 134800 22467 26.96 4.4934

Table 2.2: Statistics of the synthetic dataset generated for Task 2

Manipulation Task 3

The third task is the simplest when it cames to the variety of object categories,
having only two: table and box. Here the goal is stacking the boxes and organize
them.
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Figure 2.5: (Left) Number of relationship instances per predicate in the dataset
generated for Task 3. (Right) Number of object instances per category in the dataset
generated for Task 3.

Images
Rel.

Types
Rel.

Instances
Obj.

Instances
Pred. per

Image
Obj. per

Image
5000 12 127910 22473 25.582 4.4946

Table 2.3: Statistics of the synthetic dataset generated for Task 3

2.2 Neural Network Structure

In this work, we aim to implement a neural network model that receives a RGB
image as input and is capable of classifying the objects present in a scene, localize
them and predict the relationships between each pair of objects. The final output is
a list of symbolic representations of the observed environment. Figure 2.6 illustrates
the general goal of our model.

Figure 2.6: General structure of the Neural Network Model

Our proposed method for relationship detection is split in two models: The first
is responsible for localizing the objects and predicting their category. The second



2.2. NEURAL NETWORK STRUCTURE 17

receives the proposed objects from the first model as an input, and predicts the
relationships between the detected objects.

All the developed code related with the neural networks was implemented in Python
3.7.0 using the library Pytorch. We used the Google Colab notebooks to write and
execute the code.

2.2.1 Object Detection

For the first module of our neural network, which is responsible for object detection,
we based our model in the Single Shot MultiBox Detector (SSD)[LAE+16] structure,
given its real-time capacity and the well performance demonstrated in [LAE+16]

Other architectures for object detection, such as Fast-RCNN [Gir15] and Faster-
RCNN [RHGS16], use two distinct stages, a region proposal network that performs
object localization and a classifier for detecting the categories of the proposed re-
gions. This makes this networks slower than the SSD that only needs one single
shot to detect multiple objects within the image. This network is also faster than
other single shot detectors (You Only Look Once [RDGF16]).

Single Shot MultiBox Detector (SSD)

SSD is a pure Convolutional Neural Network (CNN) that can be distinguished in
three parts: the base convolutions used from an existing image classification archi-
tecture that will provide the low-level feature maps, the auxiliary convolution layers
that will supply the higher level features, and the prediction convolution layers that
will identify and localize the objects using the feature maps.

Figure 2.7: Structure of the Single Shot MultiBox Detector. Image credit: [LAE+16]
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The base convolution layers are built from the VGG-16 [SZ15] architecture, all
the layers are used except for the fully connected layers, figure 2.8 shows the rep-
resentation of the layers of the network. VGG-16 [SZ15] is used due to its high
performance in classification tasks, as well as the possibility of using these layers al-
ready pre-trained on a well founded classification dataset. By using transfer learning
from a different but closely related task, we have made some progress in our training
task, reducing the time of training. We used one pre-trained on the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) [RDS+15] classification task that
is already available in PyTorch. The fully connected layers from the VGG used
for classification in the original network are not used here since they are used for
object classification, instead they reworked into convolution layers conv6 and conv7
by reshaping its parameters. Due to the different input image size, we add to make
some adjustments in the base convolution layers, namely in the 5rd pooling layer
from a 2 × 2 kernel and 2 stride to a 3 × 3 kernel and 1 stride to avoid the halve
dimensions of the feature map from the preceding convolutions layer.

Figure 2.8: Structure of the VGG16 [SZ15]

The output of the convolution layer 5 3 in the original VGG which receives as input
images of size 224× 224, will be of size 7× 7× 512. Therefore, the FC6, shown in
figure 2.8, will have an input size of 7 × 7 × 512 and an output size of 4096, the
equivalent convolution layer has a kernel size of 7× 7, 512 input channels and 4096
output channels, therefore there will be 4096 filters of size 7× 7× 512.
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The FC7 from the VGG16 has an input size of 4096 and output size of 4096. The
input can be seen as an image with dimension 1× 1 and 4096 input channels. The
equivalent convolution layer will have a kernel of 1 × 1, 4096 input channels and
4096 output channels, thus there will be 4096 filters of size 1× 1× 4096.

Considering that there is a big number of filters and these are large which is compu-
tationally expensive, the authors opt to reduce the number of filters and their size
by sub-sampling the parameters from the converted convolution layers. Therefore,
both convolution layers will have 1024 filters, for conv6 with dimensions 3× 3× 512
and for conv7 with a size of 1× 1× 4096.

After the base convolution layers we add some auxiliary layers to provide addi-
tional feature maps that are progressively smaller than the last. We add 4 convo-
lution block with 2 convolution layers each. Here the output size reduction is the
result of the stride 2 in every second convolution layer, contrarily to the previous
layers that was the result of the max pooling operation.

Object predictions can be quite varied, not only in terms of their type but also in
any position they appear, size or shape. However, we should not go so far as to
say that there are infinite possibilities for where and how an object can appear.
While this is mathematically correct, many options are simply unlikely to occur.
Furthermore, we don’t need to insist on pixel-perfect boxes. We can simply discretize
the mathematical space of potential bounding box predictions into just thousands
of possibilities.

Priors or default boxes are fixed pre-calculated boxes which collectively represent
the universe of approximate box predictions. These are similar to the anchor boxes
from Faster R-CNN [RHGS16] except that, in this case, the boxes are applied from
low-level feature maps to high-level feature maps, more precisely, the ones from
conv4 3, conv7, conv8 2, conv9 2, conv10 2, conv11 2 in figure 2.7.

We design the set of default boxes so that specific feature maps learn to be responsive
to particular scales of the objects. If we use m feature maps for prediction the scale
of the default boxes for each feature map can be computed as:

sk = smin +
smax − smin
m− 1

(k − 1), k ∈ [1,m] (2.1)

where smin is 0.2 and smax is 0.9, meaning that the lowest layer has scale 0.9 and
the highest 0.2 and the intermediate have values regularly spaced. For the feature
map conv4 3 we use a scale of 0.1. We impose the following ratios for the default
boxes: {1, 2, 3, 1

2
, 1
3
} We can also compute the width (wak = sk

√
ar) and height

(hak = sk/
√
ar) for each default box, with ar representing the ratio of the default

box. For aspect ratio 1, there is an additional box with scale s′k =
√
sksk+1. The
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center of each default box is located at ( i+0.5
|fk|

, j+0.5
|fk|

) where fk is the size of the k-

th square feature map and i, j ∈ [0, |fk|]. The distribution of default boxes can
be adapted for different datasets, however we chose to keep the same structure as
presented in the original paper. The table 2.4 resumes the prior boxes derived from
each feature map.

Feature
Map

Origin

Feature
Map Di-
mensions

Prior
Scale

Aspect
Ratios

Number
of Priors

per
Position

Total
Number
of Priors

conv4 3 38, 38 0.1
{1
1
, 2
1
, 1
2
} +

extra
4 5776

conv7 19, 19 0.2
{1
1
, 2
1
, 1
2
, 3
1
, 1
3
}

+ extra
6 2166

conv8 2 10, 10 0.375
{1
1
, 2
1
, 1
2
, 3
1
, 1
3
}

+ extra
6 600

conv9 2 5, 5 0.55
{1
1
, 2
1
, 1
2
, 3
1
, 1
3
}

+ extra
6 150

conv10 2 3, 3 0.725
{1
1
, 2
1
, 1
2
}

extra
4 36

conv11 2 1, 1 0.9
{1
1
, 2
1
, 1
2
}

extra
4 4

Total - - - - 8732 priors

Table 2.4: Summary of the priors calculation for the SSD300

The boxes obtained are an approximated starting point that will be later adjusted
to obtain a more precise bounding box. It is necessary to calculate the deviation
between the prior box and the predicted bounding box. For that we calculate the
four offsets (gcx, gcy, gw, gh) using the equations 2.2. The offsets are normalized by
its corresponding dimension, height or width, of the prior because a certain offset
would be less significant for a larger prior that it would be for a smaller one.

Figure 2.9: Representation of the true bounding box and the prior
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gcx =
cx − ĉx
ŵ

gcy =
cy − ĉy
ĥ

gw = log
(w
ŵ

)
gh = log

(
h

ĥ

)
(2.2)

We need to predict the localization of the bounding box and its class. We use
a convolution layer with a 3 × 3 kernel with padding and stride equals to 1 with
four filters for each prior present at the location, these four filters calculate the
offset (gcx, gcy, gw, gh) for the bounding box predicted from that prior. For the class
prediction it is also used a convolution layer with a 3 × 3 kernel with padding and
stride equals 1 with c filters for each prior at a given location, c corresponds to the
number of classes, including a background class. In summary, for each prior out
of k for every location on each feature map with size m × n we compute an offset
(gcx, gcy, gw, gh) and c class scores for the bounding box. This results in a total of
(c + 4)k filters applied to each location in the feature map, yielding (c + 4)kmn
outputs.

During the training we need to find a way to compare the prediction made by
network and the actual ground truth of the bounding boxes and the classes. We
find the overlap between all the priors and the total number of ground truth objects
(N). Then we match every prior with the ground truth box with the highest jaccard
overlap, similarly to MultiBox. However, in SSD we then match the default boxes
to any ground truth box with Jaccard overlap greater than a threshold (0.5). This
is calculated by dividing the area of the intersection of both boxes by its union.
The priors with an overlap inferior to 0.5 will be considered negative matches which
means they don’t contain any object. The positive matches will have the bounding
box coordinates of the ground-truth as targets for localization and its ground truth
label as the target for class prediction. Negative matches will not receive target
coordinates and its target class will be a background class. The loss function consists
in two terms: the localization loss and the confidence loss.

Localization loss Since there is no target for negative matches, the localization
loss will be calculated only for the predicted boxes with positive matches. Addi-
tionally, the predicated boxes are in the form of offsets of the the default boxes,
therefore we need to calculate the ground-truth boxes in the same format. The
localization loss is then given by the smooth L1 loss between the predicted box and
the ground-truth box.

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy ,w,h}

xkijL1;smooth(l
m
i − ĝmj ) (2.3)

where lmi is the m-th offset of the four offsets that represent the predicted box from
the i-th positive match and ĝmj is the correspondent ground-truth box in the offset
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format. xpij = {1, 0} indicates the matching of the i-th default box to the j-th ground
truth box of category p. The smooth L1 is given by the equation 2.4.

L1;smooth =

{ |x| if |x| > α
1
|α|x

2 if |x| ≤ α
(2.4)

where α is a hyper-parameter which was set to 1. In case N=0, we set the loss to 0.

Confidence loss All the predictions have a ground truth label associated with it.
It is not only important to classify correctly the object but also its absence. Consid-
ering that there only a few objects in an image, from the thousands of predictions,
a big majority will not contain any object. If our negative matches overwhelm the
object detections, we will end up with a model less likely to detect objects since
it was taught to have a background class more. Instead of using all the negative
examples, we sort them using the highest Cross-Entropy Loss and we choose those
with top losses. The number of selected negative examples is a fixed multiple of the
positive matches, in this case the authors used a ratio of 3:1.

The confidence loss is the softmax loss over multiple classes confidences (c) which
results from the softmax activation plus a Cross-Entropy Loss, referred in equation
2.5, where cpi is the score for category p for prior i-th prior.

Lconf (x, c) = −
N∑

i∈Pos

xpijlog(ĉpi )−
∑
i∈Neg

log(ĉ0i ) where ĉpi =
exp (cpi )∑
p exp (cpi )

(2.5)

Total Loss The Multibox Loss is the aggregation of the two losses combined a
ratio α, in general this is a learnable parameter. In this particular case the authors
chose to use α = 1.

L = Lconf + αLloc (2.6)

Due to the large number of predicted boxes, it is very likely that more that one box
is predicted for the same object. To solve this problem we sort all the prediction
by its class score and then we calculate the Jaccard overlap between candidate
in a given class, in case the overlap is higher than a specified threshold we keep
the candidate with the highest score and suppress the other - this is called Non-
Maximum Suppression (NMS).
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2.2.2 Relationship Detection

In this section, we introduce the structure of the proposed deep neural network model
for visual relationship detection. To detect the relationships between the objects,
we should receive as input a set of annotated objects in a image and output the
relationships between each pair of objects. We define a visual relationship instance
as subject-predicate-object.

We define the set of all annotated object pairs within an image as A. For each
element (s, o) ∈ A, s and o represents the subject and the object, respectively, in
the pair, P(s,o)∈A is the set of all predicates annotated for the subject-object pair
(s, o). We define all the relationships in an image as following:

R = {(s, p, o)|(s, o) ∈ A ∧ p ∈ P(s,o)∈A} (2.7)

We propose a deep convolution network which combines multiple cues to sufficiently
learn the representation for an input instance. We use a visual appearance cue and a
spatial location cue. In many previous works, a semantic embedding cue was used to
integrate the category information in the prediction. However, in our application,
the semantic relatedness between objects is approximately the same, given that
we are interested in detect spatial relationships in objects that share most of the
predicates.

Visual Appearance Cue From a visual appearance, humans can easily localize
and identity relationships between objects in an image. In our model, we also use a
visual cue, in order to understand the features of the objects that are a associated
with a specific predicate. For this, for every relationship r = (s, p, o) ∈ R we define
the bounding box of the of the subject as bs = (xs, ys, ws, hs) and the object as
bo = (xo, yo, wo, ho). Additionally we use bp to denote the union area of bs and bp,
which represents the predicate. When reasoning about relationships is often useful
to capture the surroundings of the predicate and therefore we also add a small
margin to bp.

For the first five layers of the visual cue we used a VGG16 pre-trained in the Im-
ageNet Large Scale Visual Recognition Competition (ILSVRC) classification task
similarly to the SSD300. This allows us to extract feature maps from images to
which we apply ROI Pooling operations by using bo, bs and bp as the Regions of
Interest (ROI). This produces an output of fixed dimension neither dependent on
the feature map size nor on the proposals size. It is only dependent on the parame-
ters used, in this particular case we chose a size of 7× 7. This also allows to share
the results of the last convolution layer among the different object proposals which
highly reduce the amount of computation. The result of this operation is fed into
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three fully connected layers and later concatenated into a singe vector. We represent
the output of this cue as V (x).

Spatial Location Cue Spatial location is complementary to the visual appear-
ance. Many of the relationships we are trying to predict can be identified by the
spatial position of the object and subject in the scene. It is possible to make a good
guess about the relationship between two objects without even knowing their cate-
gories. Furthermore, it is resilient to photometric variations, for instance, changes
in the illumination or noisy images. As shown in [LGCC18, YLMD17], dual spatial
masks is a good way to explore the spatial information of the objects for a rela-
tionship instance. We use a binary mask for the subject and the objects, derived
from the bounding box of each object. The spatial mask is firstly generated with
the size of the original image where all the pixels contained by the bounding box
are one and the others are zero. The spatial masks are further down-sampled to the
size 32× 32 which makes the learning process faster and require less memory usage.
In [YLMD17] was shown that the size 32×32 is a good balance between fidelity and
cost. Both spatial masks from the object and the subject are merged and used as
the input of a sequence of three convolutional layers followed by a fully connected
layer which reduces the spatial masks into a low-dimensional vector. The results of
these operations are concatenated with the vector from the visual cue and fed into
a fully connected fusion layer. We represent the output of the spatial cue as S(x).

Figure 2.10: Proposed framework for visual relationship detection. Given an image
as input the object detection network gives the bounding boxes and its class. The
objects features and the spatial masks are extracted followed by a fusion layer to
merge both cues and generate multiple relationship instances.
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Loss Function We denote the fused features from the combination of the multiple
clues for a single object pair as f(x, s, o) for a relationship instance r = (s, p, o). The
affinity between an image x and a relationship r is given by the scores learnt for a
pk predicate and the fused features, represented in equation 2.8.

φ(x, r) = φ(x, {s, p, o}) = wp · f(x, s, o) (2.8)

The output of our predicate function should indicate the likelihood for a relationship
to occur. To model this we start by defining the set of relationships instances that
do not appear in a given image as:

R′ = {(s′, p′, o′)|(s′, o′) ∈ A ∧ p′ /∈ P(s′,o′)∈A} (2.9)

Our model should assign a low score to relationship that is very unlikely to occur,
for example, bottle-inside-table, and a higher score to a relationship that is
very likely to occur like bottle-on-table. We define this behavior as a ranking
loss function:

L(x) =
∑
r∈R

∑
r′∈R′

max(0, 1− (φ(x, r)− φ(x, r′)) (2.10)

The loss optimizes a multi-class multi-classification problem. Every pair of objects
can have a variable number of labels and it can be labeled with a certain class from
a multi-class set. This means that every pair can have multiple predicates and this
number is variable across the different pairs.

A prediction is considered correct when the following formula is satisfied:

φ(x, r)− φ(x, r′) ≥ 1 (2.11)

Algorithm 1 Training Algorithm

Input: Training set of images with objects and relationships annotated
Train object classifier with SSD300
Initialize the weights W
while L(x) not converged do

Calculate the visual appearance cue V (x)
Calculate the spatial cue S(x)
Fuse both cues using the fusion layer f(V (x), S(x))
Calculate the scores φ(x, r)
Back-propagate and optimize W using ADAM

end while
Output: Trained weights W
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Chapter 3

Evaluation

In this chapter, we perform a deep evaluation of the different components of our
work. In section 3.1, we perform training with different dataset sizes to study its
impact in the SSD performance. In section 3.2, we compare the performance of our
object detector model in real world data when trained in only synthetic data, real
data and the combination of both. In the next section 3.3, we evaluate the perfor-
mance of our object detector in the generated synthetic dataset. Lastly, we evaluate
the performance of the relationship detector network in synthetic and real data. We
also run experiments to understand the contribution of the different components of
our network model for the final predictions. The speed of the predictions made by
our models is also analyzed.

To measure the performance of the model for object classification we use the average
precision (AP) for each object class. We compute the area of the Precision-Recall
curve for recall between 0 and 1 using 11 equally spaced recall levels. We only
considered a valid prediction when its confidence score was above 0.4. When there
are two or more detections with a IoU of 50% or higher with the same ground
truth, it is only marked as True Positive the detection with the highest IoU and all
the others are marked as False Positives (FP). After calculating the AP for every
class we summarize the performance of a model across all classes by calculating the
mean AP (mAP) which is simply the average AP across all classes. We also only
considered the top 100 predictions per image even if there were more predictions
with a score higher than 0.4 .

By following previous works [ZLZ+18, LKBFF16, LGCC18], the evaluation metrics
for the relationship model that we use are the Recall @ 100, Recall @ 50 and Recall @
25. This metric (Recall @ K) computes the fractions of times the correct relationship
is predicted in the top K confident relationship predictions. For example, for our 13
predicates and with an average of 4 objects per image, the total possible number of
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prediction is 4×13×4, therefore the Recall @ 10 for a random guess is 0.05. All of our
experiments on neural networks were conducted in Google Colab in an environment
equipped with the GPU Tesla K80 and Intel(R) Xeon(R) CPU @ 2.30GHz. For the
evaluation of the deep learning models we used exclusively synthetic data, with 4000
images for training and 1000 for testing.

3.1 Performance of SSD with Different Dataset

Sizes

To understand the impact of the dataset size in the performance obtained in the
object detection we trained our model with different dataset sizes from 500 images
up to 4000. In this case we are not interested in evaluate the network model but
rather understand the impact of changing the size of the dataset in performance.
We used our SSD300 object detector to perform this evaluation, the training was
executed using a fixed learning rate of 0.002. We use the SGD optimizer to train
the whole network with a 0.9 momentum and 0.0005 weight decay, we also set the
batch size to 32. The results obtained are show in figure 3.1 where we plotted the
mAP over the number of epochs trained.

Figure 3.1: Plots of the mean average precision of object detection over the number
of trained epochs for different training dataset sizes. The plots were made for every
task.

For Task 1, we can observe that having 2000 images for training is enough and a
larger data set will not improve the performance of the object detector.

In Task 2, there are a total of six objects, therefore we can see an improvement in
the performance of the detector until the largest dataset, however the performance
gain starts becoming smaller for bigger datasets, we can see that different between
2000 and 4000 is smaller than between 1000 and 2000. When there are more classes,
more training data is necessary to obtain the best performance.
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For Task 3 where we only have two object classes the detector is capable to perform
well while training in only 500 images.The increase of the dataset size, doesn’t give
a significant increase in the performance, due to the low number of classes all the
objects are seen enough times allowing to extract all the required information from
only 500 images.

3.2 Performance of SSD in Real World Data

In this section, we aim to study the effect of using synthetic data when the acquisition
of correctly label data from real world is difficult to obtain. We performed three
trainings with different datasets for every task.

Firstly, we trained our object detector with only synthetic data using 4000 images,
secondly we trained using synthetic data for the first 50 epochs and then purely real
world images for the next 50 epochs and lastly we trained for 100 epochs solely in real
data. In this training we used a real world dataset containing a total of 50 images,
25 for training and 25 for testing that we manually annotated. We perform the
evaluation of the networks trained in different datasets in the test dataset containing
25 real world images.

In figure 3.2, 3.3 and 3.4, we plotted the mAP vs Training epoch for every training
dataset and for every task. Using only real data, performs the worst for task 1 and 3
due to its very reduced size, using synthetic and real data performs always the best,
however for task 3 this difference is very small, the detector was able to learn from
synthetic data quite well. The tables 3.1, 3.2 and 3.3 also show the average precision
for each object after the 100 epochs of training and the mAP for each dataset.

Dataset book bottle mug
mug upside

down
table mAP

Only Synthetic 0.64 0.73 0.57 0.33 0.93 0.64

Synthetic (99.3 %) +
Real World (0.7%)

0.82 0.85 0.98 0.33 0.95 0.79

Only Real (25 images) 0.33 0.09 0.53 0.55 0.83 0.47

Table 3.1: Average precision and mAP for Task 1 trained in different datasets and
evaluated in the real world dataset



30 CHAPTER 3. EVALUATION

Dataset fork knife plate spoon
wine
glass

table mAP

Only Synthetic 0.00 0.02 0.00 0.04 0.00 1.00 0.18

Synthetic (99.3 %) +
Real World (0.7%)

0.62 0.42 0.91 0.43 0.22 1.00 0.60

Only Real (25 images) 0.52 0.51 0.69 0.33 0.26 1.00 0.55

Table 3.2: Average precision and mAP for Task 2 trained in different datasets and
evaluated in the real world dataset

Dataset Box Table mAP

Only Synthetic 0.89 1.00 0.94

Synthetic (99.3 %) +
Real World (0.7%)

0.90 1.00 0.95

Only Real (25 images) 0.64 0.28 0.46

Table 3.3: Average precision and mAP for Task 3 trained in different datasets and
evaluated in the real world dataset

Figure 3.2: Plot illustrating the effect of including synthetic data while training the
neural network for task 1
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Figure 3.3: Plot illustrating the effect of including synthetic data while training the
neural network for task 2

Figure 3.4: Plot illustrating the effect of including synthetic data while training the
neural network for task 3
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3.3 Performance of SSD in Synthetic Data

In order to find the best hyper-parameters for our model, we performed Random
Search which is usually faster that Grid Search [LL19] however, it does not guarantee
the best performance. We performed the evaluation with random hyper-parameters
until we were satisfied with the results. Random search can outperform a grid search,
especially if only a small number of hyper-parameters affect the performance of the
machine learning algorithm.

We performed a training using a fixed learning rate of 0.002. We use the SGD
optimizer to train the whole network with a 0.9 momentum and 0.0005 weight decay,
we also set the batch size to 32. We evaluated the performance of the network for
every task. The AP for every object category and the mAP for every task are
present in Table 3.4. Figures 3.5, 3.6, 3.7, show qualitative results of the model’s
performance.

Dataset Average Precision per Object mAP

Task 1
book bottle mug table mug upside down

0.925
0.907 0.903 0.907 1 0.909

Task 2
fork knife plate spoon table wine glass

0.804
0.908 0.696 0.909 0.595 1 0.718

Task 3
box table

0.954
0.909 1

Table 3.4: Average precision of the object detector for every task evaluated in the
synthetic dataset
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Figure 3.5: Qualitative results for the object detection model. On top are the
ground-truth and in the bottom the predictions made by the model for task 1.

Figure 3.6: Qualitative results for the object detection model. On top are the
ground-truth and in the bottom the predictions made by the model for task 2.
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Figure 3.7: Qualitative results for the object detection model. On top are the
ground-truth and in the bottom the predictions made by the model for task 3.

3.4 Performance of Relationship Detection

Detecting a visual relationship involves not only predicting the predicate between
two object but also recognizing and classifying both objects. To study our model
performance in these different tasks, we measured the predictions based in different
conditions:

1. Predicate Detection: We use the ground-truth of the objects classification,
their bounding boxes and the image as the input of the network, the output
is the predicate between the different pairs of objects from the ground-truth.
The result is considered correct if the predicate is correct.

2. Relationship Detection: The input is solely the image and the output is a
set of relationships subject-predicate-object. Each triplet is treated as an
whole. The result is considered correct if both objects are correctly detected
which means the category is right and the IoU between the bounding box
predicted and the ground truth is equal or greater than 0.5, and the predicted
predicate is correct.

As shown before, in order to learn the relationship instance of a pair of objects, our
model uses multiple cues to deeply understand the visual and spatial connection be-
tween different object. In this section, we show the experiments performed to study
all the network components to understand how they affect the final performance.
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We use V1 to denote only using the union of the object and subject bounding boxes
(relationship bounding box). We use S to denote the spatial location cue and V2 as
the use of the bounding boxes of the object and subject independently. The visual
appearance cue is denoted by the combination of V1 and V2.

Predicate Detection Relationship Detection

R@25 R@50 R@100 R@25 R@50 R@100

S 98.61 99.18 99.88 92.23 95.75 96.46

V1 84.08 95.15 99.20 77.83 88.62 93.73

V2 90.41 96.64 99.11 84.42 90.33 93.38

V1 + V2 91.90 97.78 99.40 86.39 94.01 96.14

V1 + V2 +S 99.55 99.86 99.94 93.09 96.24 96.54

Table 3.5: Component analysis in our dataset for Task 1

Predicate Detection Relationship Detection

R@25 R@50 R@100 R@25 R@50 R@100

S 56.37 85.52 88.37 45.50 63.23 70.97

V1 30.63 54.40 74.89 29.43 44.60 58.00

V2 54.22 72.17 91.09 44.55 55.72 65.36

V1 + V2 55.30 75.93 93.27 44.30 57.36 71.83

V1 + V2 + S 59.45 95.40 99.91 46.46 69.08 79.41

Table 3.6: Component analysis in our dataset for Task 2

Predicate Detection Relationship Detection

R@25 R@50 R@100 R@25 R@50 R@100

S 60.55 87.39 91.71 54.61 83.58 93.25

V1 37.93 60.29 81.21 36.21 56.48 77.85

V2 57.28 75.40 92.14 53.94 71.89 88.80

V1 + V2 57.89 78.63 93.90 52.87 73.52 90.42

V1 + V2 + S 63.79 95.31 99.83 57.21 90.35 96.69

Table 3.7: Component analysis in our dataset for Task 3

In our comparison of the different components of the visual appearance cue, V2 has
a higher contribution than V1 in all tasks for the total performance of the visual
appearance cue. The spatial cue has the majority contribution to the total model
performance. In task 1 the visual cue only contributes less than 1% in the different
metrics. In task 2, the increase is more significant, being 5.46%, 11.5% and 13% for
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R@25, R@50 and R@100 respectively in predicate detection. In the last task, the
contribution of the visual part is also quite significant with a 5.4%, 9% and 8.85%
increase in the respective metrics in predicate detection.

Qualitative Results

In Figure 3.8, 3.9 and 3.10 we present some qualitative results for the predictions
made in synthetic data using our best model. The correct predictions are marked in
green and the wrong ones in red. We show the results for the predicate detection and
the relationship detection. Only the predictions with score above 1 must considered
if we look at our margin loss function 2.10 which have margin 1.
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Predicate Detection Relationship Detection

bottle - on - table 16.85 bottle - on - table 17.60
table - under - bottle 13.14 mug down - on - table 17.43
bottle - near - mug down 7.21 table - under - mug down 13.94
mug down - near - bottle 7.14 table - under - bottle 13.46
mug down - on - bottle 5.90 bottle - near - mug down 7.21
bottle - inside - mug down 5.08 mug down - near - bottle 7.14
bottle - under - mug down 2.13 mug down - on - bottle 5.90
bottle - in front of - mug down 0.99 bottle - inside - mug down 5.08
mug down - behind - bottle 0.17 bottle - under - mug down 2.13

bottle - in front of - mug down 0.99
mug down - behind - bottle 0.17

Figure 3.8: Qualitative Results of the proposed method in our synthetic dataset
with the confidence scores for Task 1. The model used was trained in synthetic
data. The correct predictions are shown in green while the wrong predictions are in
red. Note: mug down refers to mug upside down

.
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Predicate Detection Relationship Detection

plate - near - knife 10.56 table - under - plate 10.56
table - under - plate 10.41 plate - near - knife 10.06
knife - near - plate 9.77 table - under - knife 9.87
plate - on - table 8.85 knife - near - plate 9.29
plate - under - knife 3.26 knife - on - table 9.13
knife - on - plate 2.90 plate - on - table 8.92

knife - on - plate 3.30
plate - under - knife 3.17

Figure 3.9: Qualitative Results of the proposed method in our synthetic dataset
with the confidence scores for Task 2. The model used was trained in synthetic
data. The correct predictions are shown in green while the wrong predictions are in
red.
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Predicate Detection Relationship Detection

table - under - box 1 11.57 table - under - box 2 11.67
table under - box 2 10.80 table - under - box 1 10.92
box 1 - on - table 9.60 box 2 - on - table 9.72
box 1 - near - box 2 8.27 box 2 - near - box 1 8.22
box 2 - on - table 7.86 box 1 - on - table 7.97
box 2 - near - box 1 7.57 box 1 - near - box 2 7.58
box 2 - left - box 1 5.84 box 1 - left - box 2 5.64
box 1 - right - box 2 5.77 box 2 - right - box 1 5.47
box 2 - left front - box 1 0.39 box 1 - left front - box 2 0.42

box 2 - right behind - box 1 0.09

Figure 3.10: Qualitative Results of the proposed method in our synthetic dataset
with the confidence scores for Task 3. The model used was trained in synthetic data.
The correct predictions are shown in green while the wrong predictions are in red.
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In Figure 3.11, 3.12 and 3.13, we show qualitative results for our predicate and
relationship detection in real world images. We use our predicate detection model
trained in only synthetic data and our object detector trained in real and syn-
thetic data. Since we don’t have the ground-truth of the relationships for real data,
additionally to the green an red marked predictions, we also use yellow to mark
predictions that can be subjective.

Predicate Detection Relationship Detection

mug - on - table 17.44 mug - on - table 17.09
book - on - table 15.98 book - on - table 15.98
mug - near - book 12.91 mug - near - book 12.80
book - near - mug 12.09 table - under - mug 12.01
table - under - mug 11.63 book - near - mug 11.55
table - under - book 10.90 table - under - book 10.73
mug - behind - book 3.60 mug - behind - book 3.02
book - under - mug 0.80 book - in front of - mug 1.53
book - in front of - mug 0.69 mug - on - book 1.06

Figure 3.11: Qualitative Results of the proposed method in real world images with
the confidence scores for Task 1. The model used was trained in real and synthetic
data. The correct predictions are shown in green while the wrong predictions are in
red.
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Predicate Detection Relationship Detection

table - under - fork 9.26 table - under - knife 9.29
table - under - knife 8.96 knife - on - table 9.27
knife - on - table 8.92 table - under - fork 9.13
fork - on - table 8.59 fork - on - table 8.66
fork - far - knife 7.88 fork - far - knife 7.78
table - under - wine glass 7.25 table - under - wine glass 7.72
wine glass - on - table 7.24 wine glass - on - table 7.41
knife - far - fork 5.55 wine glass - far - knife 6.28
wine glass - far - knife 4.81 wine glass - right behind - knife 5.93
fork - right behind - knife 4.69 knife - far - fork 5.36
fork - near - wine glass 4.49 fork - right behind - knife 5.25
knife - far - wine glass 4.44 knife - far - wine glass 5.11
fork - left behind - wine glass 3.78 knife - left front - wine glass 4.73
knife - left front - fork 3.72 knife - left front - fork 3.98
wine glass - right behind - knife 3.46 fork - left behind - wine glass 3.74
wine glass - near - fork 3.13 wine glass - right - fork 3.02
knife - left front - wine glass 3.04 wine glass - far - fork 2.97
wine glass - far - fork 2.57 wine glass - near - fork 2.95
wine glass - right front - fork 2.36 fork - near - wine glass 2.86
wine glass - near - knife 2.19 fork - far - wine glass 2.82
wine glass - right - knife 2.13 wine glass - right front - fork 1.91
knife - left - wine glass 1.99 fork - left - wine glass 1.31
wine glass - right - fork 1.93 knife - near - wine glass 0.97
knife - near - wine glass 1.78 wine glass - near - knife 0.87
fork - far - wine glass 1.26 knife - left - wine glass 0.56
fork - left - wine glass 1.10 fork - behind - knife 0.47
fork - behind - knife 0.91 knife - in front of - fork 0.43
knife - in front of - fork 0.25 wine glass - right - knife 0.21

knife - near - fork 0.19

Figure 3.12: Qualitative Results of the proposed method in real world images with
the confidence scores for Task 2. The model used was trained in real and synthetic
data. The correct predictions are shown in green while the wrong predictions are in
red, the yellow is used to mark subjective detections.
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Predicate Detection Relationship Detection

table - under - box 2 14.59 table - under - box 2 14.22
table - under - box 1 12.51 table - under - box 1 12.04
box 2 - on - table 10.40 box 2 - on - table 10.16
box 1 - on - table 8.62 box 1 - on - table 8.48
box 1 - near - box 2 7.00 box 2 - near - box 1 7.36
box 2 - near - box 1 6.99 box 1 - near - box 2 7.22
box 1 - on - box 2 1.56 box 1 - on - box 2 3.33
box 1 - under - box 2 1.24 box 2 - under - box 1 2.49
box 2 - under - box 1 0.73 box 1 - under - box 2 2.25
box 2 - under - table 0.00 box 2 - on - box 1 1.69

Figure 3.13: Qualitative Results of the proposed method in real world images with
the confidence scores for Task 3. The model used was trained in real and synthetic
data. The correct predictions are shown in green while the wrong predictions are in
red.
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3.5 Real-Time Performance

When it comes to robotic manipulation, real-time constraints play a very important
role for the success of the system. In this section we evaluate the timing performance
of our network and compare it with similar works.

According to paper regarding the SSD300 [LAE+16], the average time to detect the
objects in a single image is 21.74ms on Titan X. In our work the average time for
the object detection is 27.45 ms with the graphics card NVIDIA Tesla K80.

In the previous work [ZLZ+18], they also used SSD300 to detect the objects and
reported the detection time as in the original paper. In their model, the relationship
predictor takes 5.5ms per image in average. In our case, it takes 5.8ms, however our
model is capable of detecting different relationships and not only the grasping order
of the objects.

Model
Graphics
Card

Object
Detection (ms)

Pred. Detection
(ms)

Total (ms)

SSD300
[LAE+16]

TitanX 21.74 - -

[LKBFF16] TitanX - - 122

[ZLZ+18] TitanXp 21.74 5.5 27.24

Ours Tesla K80 27.445 5.80 33.24

In a graphics card that takes a total of 30 ms to detect the objects and the relation-
ships, it is possible to make predictions of 33.3 frames per second which is suitable
for real time applications.

3.6 Scene Graphs

Scene Graphs is a data structure that can represent clearly the objects, attributes
and relationships between objects in a scene [CRX+21]. With the development of
computer vision technology we are no longer just interested in simply recognizes ob-
jects in an image; we also aim to have a higher level of understanding and reasoning
of a scene.

Our model for object and relationship detection can be used to generate scene graphs
that can be employed in visual question answering [WTW+16], organizing objects
or to infer the correct grasping order of the objects [ZLZ+18].
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Figure 3.14, shows an example of a scene graph generated from the relationships
predicted by our model.

Figure 3.14: The figure illustrates an example of a scene graph generated from the
objects detected in the figure on the left
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Chapter 4

Discussion

In this chapter, we discuss the results of our experiments as well the quality of the
generated and captured datasets. We also discuss the results of the neural network
models, the contribution of each component and the experiments conducted in these
models.

4.1 Synthetic Dataset

3D Models All the 3D models chosen to render our scenes were obtained from
free sources such as the ShapeNET dataset that gathers annotated free 3D models
from different sources. The advantage of using free 3D models is that they can be
used free of charge for non-commercial purposes. However, these models tend to
be quite simple and lack detail, sometimes the textures of the object are simply a
color instead of a more realistic texture, also the shape of the objects are simple
and can be easily identified as 3D models and not photos of real objects. To solve
this problem, there are several models with great detail available online. Howeve,
these are paid and for that reason we did not use them in this thesis. Using models
closer to real objects will make the generated images more realistic, which is likely to
improve the performance of the models in real environments when they are trained
on synthetic datasets. Another problem related to the 3D models is the limit of
available 3D models with different textures and shapes, in this case we used a total of
114 models, however using a greater diversity of models makes our model prediction
more generalized and able to make correct predictions on a wider range of different
objects.
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Blender Scene Each scene rendered in blender was used to render a synthetic
image, applying variations in light and camera perspective to get closer to real scenes
and cover more possibilities. In the generated images a white background was used,
however, in the real world the background often contains people standing close to
the camera or other elements present in the room such as chairs or tables. Varying
the background randomly would help to create a model that is more robust to this
background changes in real-world applications.

Rendered Relationships To detect the relationships between different objects,
we hard-coded spatial constraints that we defined for a given relationship. For
example, if the position of one object is greater than another object given the size
of the objects the relationship on is generated. By visual inspection, the relations
generated in the final dataset were good, without any relations that should not
exist or missing annotations that should have been generated. This is one of the
advantages of generating synthetic data because the annotations are always correctly
annotated as long as the algorithm is implemented flawlessly. Data labeling done
by humans can introduce random and non-consistent errors.

Object Positioning To position the objects on the table, spatial constraints were
used, not taking into account the physical constraints of the objects. For example, if
the objects are colliding or if the object is suspended in the air, in our case, to avoid
collisions, the objects were placed at a distance greater than the sum of the sizes
of the two objects. Furthermore, some positions will be practically impossible to
appear in the real-world. For example, a mug inside a bottle is not reasonable, even
if it fits inside. Applying physical laws to the generated scenes may make it easier
to generate images without the use of extensive hard-coded constraints. However,
our final datasets appeared to not have any object collisions or objects in unrealistic
positions.

Rendered Datasets We rendered 3 different datasets for the different tasks. In
our experiments we generated statistics that help us understand the content of the
generated datasets. Our datasets contain only 12 or 13 relations unlike previous
works [LKBFF16] using more than 6000, however in this context the number of pos-
sible relations that objects can have is much more limited than in datasets covering
environments with humans. We could increase its number by adding, for example,
comparative relationships, like object 1 is bigger than object 2. Here we also limit
the number of objects per image to 4 for the first task and 5 for the second and
third tasks.
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The objects and the relationships between them are randomly selected by our algo-
rithm and therefore one would expect the total number of objects to be similar for
all categories and the different relations to appear approximately the same number
of times. However, this is not observed by the graphs showing the distributions of
objects and relations in the datasets (Figure 2.3, 2.4, 2.5). Relationships like on,
under, near or far appear more often than others because for each pair of objects
a relation about the distance between them is instantiated. Also, each object will
be on the table and therefore the relations under and on are generated for each
object. Many relationships are mirrored as the result of their spatial opposition,
for example, if object 1 is on the left of object 2, object 2 will be on the right of
object 1 making the sum of these two predicates the same. The rest of the relation-
ships are approximately evenly distributed. However, the relationships behind and
in front of appear slightly less due to the limit considered between behind and
left-behind, for example. From this we can infer that the area of the table where
the object can be located relatively to another object is smaller for the relationships
behind and in front of than for other relationships like left or right.

4.2 Neural Network

Dataset size Increasing the size of the dataset shows generally an improvement
of the object detector performance. However, for a given complexity of a scene,
there is a limit where having more data has none or almost no effect in the final
performance. A smaller number of images may be enough for the network to be
at its maximum capacity for its depth. Increasing the networks depth will make it
more likely to overfit and perform worse in the testing data.

Synthetic to Real In our synthetic to real experiments, we show that adding a
small percentage of real data to the synthetic data generally improves the network
performance on real images. Using only real data generally performs worse than
using both synthetic and real data, and even worse than using only synthetic. The
small size of the real-world dataset does not give enough information to the deep
learning-based model to generalize well. By analyzing the graphs, 3.2, 3.3 and 3.4,
we can see that in task 1 using real data has a significant positive impact. The
mAP increases considerably at epoch 50 when training with real images is started.
In task 2, the knowledge acquired by the model when trained on synthetic data is
quite low. Thus, when real data is introduced, there is a significant increase in the
performance of the network. Moreover, the mAP curve of synthetic+real data is
similar to the curve of only real data from epoch 50 onwards. In task 3, the model
is able to generalize the synthetic objects quite well making the introduction of real
data have almost no impact on the performance obtained. The model is able to
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learn on synthetic data and perform well on real data due to the low number of
classes in this task.

Object Detector In this thesis, we used the SSD300 object detector due to its
real-time performance and good accuracy. However, we could have used another
objector detector such as Faster-RCNN as in some previous works [LKBFF16]. Ad-
ditionally, we used a VGG-16 [SZ15] as a base network for the object detector and
relationship detector, we could also have used ResNet50 but as shown in [ZLZ+18],
VGG-16 performs slightly better.

Object Detection Performance It is clear that our object detector performs
generally well, obtaining a mAP greater than 0.9 for tasks 1 and 3. By visual
inspection, the detector fails to recognize objects that are nearly occluded by other
objects, or to estimate the bounding box perfectly equal to the ground-truth. In
task 2, the mAP is only 0.8, we can notice that the objects fork, knife and wine

glass have lower AP compared to the other objects contributing for the low mAP.
The fork and knife are usually quite small and difficult to recognize in an image
with only 300x300 pixels, as they do not show enough detail. To solve this problem,
one could use images with a higher resolution. The low AP for the wine glass
is due to its transparent material making it hard to capture the visual features.
Moreover the features learned for the glass are constantly changing depending on
the background, a possible solution would be to augment images containing glasses
to help the network to generalize the object independently of the background.

Figure 4.1: Examples of generated images with difficult visibility of the wine glass
and small cutlery

Real Time Constraints Our experiments showed that our model is suitable for
real-time applications. We evaluated our models in a slower graphics card than
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previous works, however this was still enough to be used in real-time applications
which in important in robotic manipulation tasks.

Relationship Detection In the study of the different components of our model
we can observe that the spatial cue has a huge impact in the networks performance.
From our perspective, the reason for this is the fact that all the relationships learned
describe spatial information of the subject relatively to the object, this information
is learned by our spatial location component.

Qualitative Results Generally, our qualitative results for relationship detection
show good results. In the relationship prediction, in real world images this perfor-
mance is remarkably worse given that the training of the predicate detector was
performed in synthetic data. We can also notice that the relationship under and
on is frequently detected when the object are above or below each other but not
in contact. This means that the visual appearance cue was not able to learn that
the object need to be in contact to predict the mentioned relationships. Adding
the predicates above and under could potently improve the performance consider-
ing that the network would have to learn to distinguish between both predicates.
Currently, if the objects are localized above each other is very likely that they have
the relationship on, since this is very common for this spatial configuration.

Zero-shot Other relationship detection works analyse the zero-shot learning due
to the incompleteness of annotations in images. Having our data synthetically gen-
erated allows us to annotate all possible relationships between every object. This
avoids the problem of detecting relationships that were never seen before during the
training process. During the training all the possible combinations of objects and
predicates are seen by the network.
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Chapter 5

Conclusion

This thesis allowed us to gain more knowledge of the current state-of-the-art of
data synthesis for neural network training and in the area of object relationship
detection. By bringing together several works by different authors we were able
to adapt these methods to a new application, in this case to visually perceiving
symbolic representation for robotic manipulation.

From this research we can draw the following conclusions:

• Generating a synthetic dataset allows to obtain a big amount of data, with-
out any wrong annotations in a relatively small amount of time, the time of
rendering is only determined by the GPU performance.

• The limited number of 3D models available decreases the generalization made
by the network, which increases the difficulty to transfer learning to real world.

• Neural networks trained in uniquely synthetic data may have a low perfor-
mance in real world data compared when evaluated in synthetic data. To
solve this problem training with a very small amount of real data can substan-
tially improve the performance.

• Scenes that are more complex, with more object categories, require more data
to achieve the same performance in object detection than scenes that are less
complex.

• Having a deep-learning based model with a visual appearance cue and a spatial
cue is enough to detect relationships between objects in 2D RGB images.
Moreover, the model is suitable for real time application for the number of
objects and relationships present in this work.
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• Adding more predicates between the objects would improve the information
extracted from the environment which would increase the number of possible
robotic manipulation tasks.

5.1 Future Work

Although we have achieved positive results with performance similar to the state
of the art, there are several improvements that could be done in order to increase
the usability of our method in a real environment. To improve the autonomy of
robotic manipulation, we could improve our framework by increase the extracted
information from the visual input. Next, we present some suggestions that could be
implemented in the future.

End-to-End Network

We chose to train two different networks, one for object detection and another for
relationship detection between the objects previously detected. Both networks share
the same weights in the first layers since they used the same VGG-16. This was cho-
sen in order to decrease the complexity of the networks implementation. However
merging these networks and perform an end-to-end training could improve the over-
all performance [ZLZ+18]. Moreover, we could use the network to make real-time
predictions of objects classes and their relationships. In the current implementation,
the image is passed in the object detector and the output of this model together
with the image are used as input of the relationship detector.

RetinaGAN

The gap between the simulated images and the real world is the reason that makes
the deployment of models in real world trained in synthetic data difficult. To over-
come this visual reality gap we could use pixel-level domain adaptation, these meth-
ods employ generative adversarial networks to translate the synthetic images to the
real world domain [BSD+16], the down side of this method is that a GAN can change
the image by removing information necessary for the given task, for example, it is
important to preserve the scene features that directly interact with the robot.

[HRX+20] proposed a new network model called RetinaGAN that aims to adapt
simulated images in realistic ones with object detection consistency. RetinaGAN is
an extension of CycleGAN [ZPIE17], an approach that learn bidirectional mapping
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between two different domains. The new approach trains with a frozen object de-
tector that provides object consistency loss. Similarly to CycleGAN the model uses
unpaired data without labels.

To keep the object detection invariance, they use a pre-trained and frozen Efficient-
Det model on each image and compute the perception consistency loss. This loss
penalizes the generator for discrepancies in object detections between translations.
The Perception Consistency Loss is given by:

Lprcp(x, y, F,G) = Lprcp(x,G(x)) +
1

2
Lprcp(x, F (G(x)))

+
1

2
Lprcp(G(x), F (G(x))) + Lprcp(y, F (y))

+
1

2
Lprcp(y,G(F (y))) +

1

2
Lprcp(F (y), G(F (y)))

(5.1)

Compared to the CycleGAN loss, the RetinaGAN loss will only have this additional
component for object invariance yielding the following loss function:

LRetinaGAN(G,F,Dx, Dy) = LCycleGAN(G,F,Dx, Dy) + λprcpLprcp(x, y, F,G) (5.2)

The researchers trained a Q2-policy to perform a pushing task in simulation and
obtained 90% of success however when deployed to real they obtained 0% success,
by applying RetinaGAN they where able to create a policy that achieved 90% of
success rate in the real domain. This shows the effective of using a RetinaGAN to
transfer simulated learning to real world.

This work could be used in this thesis to improve the success rate in the real domain
by transferring the synthetic images to a more realistic domain.

Pose Estimation

In robot manipulation, in order to grasp objects with a robot hand or gripper a list
of good grasps may be calculated in advance based of geometric information and the
physical model of the objects grasped. The requirement for the full description of
the physical model of the object makes this approach unsuitable for exploration of
unknown scenes through image and depth sensors only, as they often provide partial
and noisy information.

A paper published in 2020 [BV20], proposed a new approach for 6D object pose
estimation from 2D RGB images. The method is highly accurate, efficient and
scalable achieving a performance of 97.35% in terms of the ADD(-S) metric on the
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6D pose estimation benchmark dataset Linemod using RGB input, being the current
state of art for 6D object pose estimation from RGB input. The method proposes
a end-to-end architecture which improves the real time performance, achieving 27
FPS in a multi-object scenario (up to eight objects).

Figure 5.1: Example prediction for qualitative evaluation of the model performing
single shot 6D multi object pose estimation while running end-to-end at over 26
FPS. Green 3D bounding boxes visualize ground truth poses while our estimated
poses are represented by the other colors. Source: [BV20]

A 6D pose gives the information of the translation and rotation of an object, this
information could be used together with our network to not only classify the object,
their 2D bounding box and their relationships but also their 6D pose which is very
useful for autonomous robotic manipulation. Moreover, the translation and rotation
of the objects can be used to improve the prediction of relationships between the
objects, particularly the spatial ones.
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