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Abstract

The aim of this thesis is to study the derivation of the lattice Boltzmann method from

a coarse-graining of an underlying Molecular Dynamics simulation.

In the rapid development of the lattice Boltzmann method, the link to its predecessor

Lattice-Gas Cellular Automata has been compromised. To recover this link, we introduce

the Molecular Dynamics Lattice Gas analysis tool, which coarse-grains the trajectories of

an underlying Molecular Dynamics simulation to reproduce the formalism of the lattice

Boltzmann method. The Molecular Dynamics Lattice Gas approach establishes a direct

link between a Lattice Gas method and a coarse-graining of a Molecular Dynamics

simulation. As a result, the Molecular Dynamics Lattice Gas method allows us to

connect the lattice Boltzmann method to physical reality.

We use this analysis tool to derive more precisely key elements of the lattice Boltz-

mann method such as its equilibrium distribution function, relaxation parameters, and

collision rules. Furthermore, the MDLG method can be extended to derive the fluctuat-

ing properties, forcing fields, and boundary conditions of the lattice Boltzmann method;

however, this is beyond the scope of this work.
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Kurzfassung

Das Ziel dieser Arbeit ist die Ableitung der Lattice-Boltzmann-Methode aus der Ver-

gröberung einer zugrunde liegenden Molekulardynamik-Simulation.

Bei der schnellen Entwicklung der Lattice-Boltzmann-Methode wurde die Verbindung

zu ihrem Vorgänger Gitter-Gas-Zellular-Automaten vernachlässigt. Um diese Verbin-

dung zu rekonstruieren, stellen wir das Analysewerkzeug Molekulardynamik-Gitter-Gas

vor, das die Trajektorien einer zugrunde liegenden Molekulardynamik-Simulation ver-

gröbert, um die Lattice-Boltzmann-Methode abzuleiten. Der Molekulardynamik-Gitter-

Gas-Ansatz stellt eine direkte Verbindung zwischen einer Lattice-Gas-Methode und einer

Molekulardynamik-Simulation her. Als Ergebnis ermöglicht uns die Molekulardynamik-

Gitter-Gas-Methode, die Lattice-Boltzmann-Methode mit einer physikalischen Realität

zu verbinden.

Wir verwenden dieses Analysewerkzeug, um Schlüsselelemente der Lattice-Boltzmann-

Methode wie ihre Gleichgewichtsverteilungsfunktion, Relaxationsparameter und Kolli-

sionsregeln genauer abzuleiten. Darüber hinaus lassen sich mit dem MDLG-Verfahren

auch die fluktuierende Eigenschaften, Kraftfelder und Randbedingungen des Lattice-

Boltzmann-Verfahrens ableiten, dies ist jedoch nicht Gegenstand dieser Arbeit.
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“An intelligent being knowing, at a given instant of time, all forces acting in nature,

as well as the momentary positions of all things of which the universe consists,

would be able to comprehend the motions of the largest bodies of the world

and those of the smallest atoms in one single formula, provided it were

sufficiently powerful to all the data to analysis; to it, nothing would be uncertain,

both future and past would be present before its eyes.”

— Pierre Simon Laplace,

Theorie analytique des probabilites

(Paris: V. Courcier, 1820)





CHAPTER 1

Introduction

Over the last three decades, the LBM has experienced a meteoric rise. It has become

the method of choice in a number of areas such as automotive and, to a lesser degree,

aerospace industries [2, 3]. With its intrinsic parallelism and ability to cope with complex

geometries, the LBM has been developed to solve problems in turbulence [4, 5, 6], mul-

tiphase and multicomponent flows [7, 8, 9, 10], and thermal and reactive flows [11, 12],

to name just a few. The LBM has also proven useful beyond Newtonian mechanics in

disciplines such as quantum and relativistic fluids [13, 14, 15, 16].

To understand the lattice Boltzmann method, we first need to show how it relates to

other Computational Fluid Dynamics (CFD) methods [17, 18, 19, 20, 21]. Fluid flows

can be defined at different length scales as shown in Fig. 1.1. We have the following

regimes from small to large length scale: microscale, mesoscale, and macroscale [22].

First, in the microscopic description, the length scale la is the size of the fluid atom or

molecule, with a time scale tc → 0, being the time needed for a collision. This regime is

often referred to as a molecular description governed by Newtonian dynamics [23, 24, 25].

In Molecular Dynamics (MD), the collisions are resolved, thus the method needs to

execute a large number of iterations to simulate a single physical second. This makes

the MD extremely expensive and therefore, inefficient for large simulations.

Second in the hierarchy is the mesoscopic scale, where we do not track the evolution

of individual particles, but rather a distribution of particles. This regime is described by

the kinetic theory of gases [26, 27]. The mesoscopic length and time scales are given by

the distance or time between two consecutive collisions, also known as mean free path

lmfp, and mean free time tmft, respectively.

Third, the macroscopic regime considers a continuum description with length scale

l and time scale t much larger than the one of the previously described regimes (la ≪
lmfp ≪ l, and tc ≪ tmft ≪ t). The governing equation in macroscopic regime is the
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tc

lmfp

l

la
tmft t

Microscale

Mesoscale

Macroscale

Figure 1.1: The hierarchy of length and time scales for fluid dynamics simulations. They
obey the following rules la ≪ lmfp ≪ l, and tc ≪ tmft ≪ t.

Navier-Stokes Equation (NSE) [28], and the observables are quantities such as velocity

and density.

The LBM is a mesoscale method that tracks the distribution of particles [1]. Initially,

it was developed as a postprocessing algorithm to eliminate the statistical noise of the

Lattice-Gas Cellular Automata (LGCA) method and to obtain useful macroscopic quan-

tities such as velocity and density [27, 29, 30, 31]. Later, it was realized that LBM can

solve some of the shortcomings of the lattice gases, and thus, can be used as a stand-

alone CFD method. In the last three decades, scientists have developed the LBM and

in this process, they have found three independent ways to derive the LBM as shown

schematically in Fig. 1.2.

The bottom-up approach corresponds to the already described link between LGCA

and LBM methods. The first LBM had a striking similarity to its predecessors by

deriving LBM from its LGCA foundation. In his book, Sauro Succi calls this derivation

method the “statistical physics approach” [1]. Later, when significant improvements

were suggested to the LBM definition, this link was broken.

4



Molecular Dynamics
Lattice Boltzmann (MDLB)

Lattice-Gas Cellular
Automata (LGCA)

/physics/

Lattice Boltzmann 
Method (LBM)

Navier-Stokes 
Equation (NSE)
/engineering/

Boltzmann 
Equation (BE)
/mathematics/

Molecular Dynamics 
Lattice Gas (MDLG)

/physics/

Molecular Dynamics
(MD)
/physics/

side-up

bo
tto
m
-u
p

top-dow
n

bo
tto
m
-u
p

co
ar
se
-

gr
ai
ni
ng

Figure 1.2: Ways to derive LBM. The LBM was first derived from the LGCA using a bottom-
up approach based on statistical physics. Later, this link was compromised after
realizing that the LBM can be significantly improved by deriving it from Navier-
Stokes and Boltzmann equations. We introduce a novel approach to derive the
LBM through a coarse-graining of MD simulation. In this way, we restore LBM’s
lost connection to a physical reality. This figure has been adapted from Sauro
Succi’s “The Lattice Boltzmann Equation: For Complex States of Flowing Mat-
ter” [1] book, and it has been extended to show how the novel MDLB approach
relates to the LBM derivation methods.
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1 Introduction

The top-down approach is also called “reverse engineering”, where the LBM can be

used to recover the NSE. This derivation method ensures that the LBM can be used to

simulate the behavior of fluids. Many of the existing LBM solvers were derived using

the top-down approach.

The derivation of LBM from the Boltzmann equation provides a “mathematical” per-

spective to the method. It shows that LBM is a discrete representation of the continuum

Boltzmann equation [32]. However, due to the limited number of discrete velocity di-

rections, LBM is, in general, a poor solver of the Boltzmann equation. Nevertheless,

this derivation contributed to significant improvements to the LBM such as usage of

Maxwellian equilibrium distribution function and an Bhatnagar–Gross–Krook (BGK)

collision rule. This link between kinetic theory and LBM allowed for the development of

methods for higher-order thermal problems, relativistic schemes as well as entropic and

non-ideal LBMs. Furthermore, it proves that as a mesoscopic method LBM can solve

problems beyond the hydrodynamic limit [22].

Each of these derivation methods brings a unique perspective and inspires further de-

velopment of the LBM. However, suggesting an improvement from one of the derivation

methods could compromise others. Examples for this are (1) the introduction of the

Maxwellian instead of previously used Fermi-Dirac equilibrium distribution function,

and (2) the BGK collision rule, both coming from kinetic theory of gases. In the Fermi-

Dirac equilibrium distribution function the velocity is viscosity dependent, and in the

advection term, it has a density dependent prefactor that requires additional rescaling

to recover the NSE [33]. This drawback is not present when using the Maxwellian equi-

librium function. The BGK collision rule made LBM more efficient by not relying on

complex LGCA collision rules as discussed in Section 2.4. The resulting LBM method

with Maxwellian equilibrium distribution function and a BGK collision operator cannot

be recovered from the LGCA. This means that the physical underpinning of the result-

ing LBM method is lost. One could say that as long the method performs well, there is

no reason for concern, but we believe that this can threaten the very foundations that

made the LBM such a surprisingly strong competitor to standard CFD methods. LBM

is not simply another method for discretizing the NSE, and the fact that it outperforms

classical CFD in modeling of automotive hydrodynamics and it makes significant inroads

in the aerospace industry is proof [3, 2]. The success of the lattice Boltzmann method

must be firmly attributed to its grounding in some physical reality, and the inability to

do this is a worrying shortcoming.

One example of the missing link between the LBM and physical reality is the ability

of the former to experience over-relaxation, which is considered to be a numerical trick

without a physical underpinning. LBM with over-relaxation can no longer be related

to LGCA (bottom-up derivation) methods by a statistical average, since the local col-

lisions can only achieve equilibrium, but never over-relax. Deriving over-relaxation as

a discretization of the Boltzmann equation (side-up derivation) equally fails to justify

6



over-relaxation as shown by Bösch and Karlin [34]. Over-relaxation is also not a concept

used in continuum mechanics and the Navier-Stokes equation (top-down derivation).

Then why is over-relaxation such an intrinsic part of the LBM?

We anticipate to answer this and other questions by deriving the lattice Boltzmann

method in a novel way using a direct mapping from an average over MD simulations

onto LBM. This approach has its roots in the Molecular Dynamics Lattice Gas (MDLG)

method pioneered by Parsa et al. [35].

The MDLG method restores the broken connection between the LBM and the physical

reality. It provides a new perspective for the justification of the LBM, which can be

used to analyze the building blocks of the LBM. Within this work, we derive the LBM

equilibrium distribution function and the collision operator for a simple shear show.

For the latter, we observe a natural transition from under-relaxation to over-relaxation

depending on the regime (ballistic to diffusive) of the underlying MD simulation.

Future work is needed to obtain a generic MDLG description of the collision operator.

The question of the form of the collision operator has been explored by a number of

research groups, which is the reason why nowadays there is a “zoo” of collision rules

[36] such as Single-Relaxation Time (SRT) LBM [37], Multi-Relaxation Time (MRT)

LBM [38, 39, 40, 41], Two-Relaxation Time (TRT) LBM [42, 43], regularized LBM [44,

45, 46], entropic LBM [47, 48, 49, 50], cascaded LBM [51, 52], and cumulant LBM [53, 54,

55]. Another area of interest is bringing back fluctuations to the noise-free LBM, which

are much needed when simulating thermodynamic systems [56, 57, 58, 59]. Furthermore,

one can consider improving the following LBM properties: incorporating force fields [60,

61, 62], handling boundary conditions for complex flows [63, 64, 65, 66], or estimating

coefficients having crucial influence on the flow for multiphase and multicomponent

systems [7, 8, 9, 10].

The rest of the thesis is structured as follows: In Chapter 2, we briefly discuss the

foundations of this work and introduce the relevant CFD methods. In Chapter 3 we

summarize the main contributions of this thesis. In Chapter 4, we conclude our work and

give suggestions for further application areas and improvements of the MDLG analysis

tool.

The list of peer-reviewed publications and selected talks can be found in Appendix A.

The full texts of the peer-reviewed publications can be found as follows: In Appendix B,

we investigate the validity of the MDLG equilibrium distribution function. In Appen-

dices C and D, we propose a more accurate MDLG equilibrium distribution function and

show that it can recover the measured MDLG equilibrium function. In Appendix E, we

investigate a non-equilibrium MD system and measure over-relaxation using the MDLG

analysis tool. This confirms that the MDLG method is a powerful novel way to derive

the LBM and restore the link between the LGCA and LBM.

7





CHAPTER 2

Methods

In this chapter, we provide a brief introduction to the numerical methods, which serve

as a foundation for this work.

2.1 Molecular dynamics

The MD simulation is a microscopic method [67, 22], tracking the individual position and

the velocity of particles for a given domain. The MD simulations are often compared to

actual experiments due to the similarities of the procedure [24]: prepare a sample of the

system of interest consisting of N particles; solve Newton’s equation of motion until the

system equilibrates, and then collect sufficient data until the statistical noise is reduced

to a minimum to ensure accuracy of the measurement.

MD is a fundamental approach that models the actual physical forces using inter-

molecular interactions. Once we know the total force applied to each particle, we can

write Newton’s second law
d2xi

dt2
=

f i

mi

=
1

mi

∑

j ̸=i

f ij (2.1)

where xi is the particle position, f i(t) is the total force on the i-th particle from all other

particles. Having this information, we can calculate the acceleration of each particle.

Then, we obtain the updated particle position by integrating the Newton’s second law.

The most commonly used integrator is the velocity Verlet algorithm [24] given as

xi(t+∆t) = xi(t) + vi(t)∆t+
1

2

f i(t)

mi

∆t2,

vi(t+∆t) = vi(t) +
1

2

(
f i(t)

mi

+
f i(t+∆t)

mi

)
,

(2.2)

9



2 Methods

where vi is the particle velocity. In this algorithm, the velocity and position are cal-

culated at the same value of the time variable. A schematic representation of a two-

dimensional MD simulation is given in Fig. 2.1.

(a) Time step: t (b) Time step: t+∆t

Figure 2.1: Schematic representation of a two-dimensional MD simulation. The direction of
the lines represent the velocity direction of each particle, while the lines length
represent the velocity magnitude.

MD is a useful method for simulating microscale phenomena such as chemical reac-

tions, protein folding, nanoconfinement effects, and phase change. Even though this

approach is very accurate, it is not typically used for macroscopic phenomena due to its

high computational cost even when using the current HPC technologies. This happens

because MD tracks individual positions of atoms, which is computationally expensive

and effectively limits the simulation time and domain size. This makes MD highly im-

practical as a Navier-Stokes solver, and one should use a more suitable numerical method

for such applications.

Our MDLG analysis tool uses particle positions obtained from an underlying MD

simulation to calculate the particle displacements for a specific coarse-grained time step.

This procedure allows for first principles investigation of the LBM.

2.2 Continuity and Navier-Stokes equations

The equations of interest for conventional CFD methods are the continuity and the

Navier-Stokes equations. These equations are valid as long as the representative physical

length scale of the system is much larger than the mean free path of the molecules

representing the fluid. Such fluids are referred to as a continuum. The ratio between the

10



2.2 Continuity and Navier-Stokes equations

mean free path, λ, and the representative length scale, L, is called the Knudsen number

Kn =
λ

L
(2.3)

The NSE is valid for Kn < 0.01. For larger Knudsen numbers 0.01 < Kn < 0.1, it can

still be used; however, such flows require special boundary conditions.

The two-dimensional continuity and Navier-Stokes equations for steady, incompress-

ible flow with constant properties are

continuity
∂ux

∂x
+

∂uy

∂y
= 0 (2.4)

x-momentum

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2ux

∂x2
+

∂2ux

∂y2

)
+ fx (2.5)

y-momentum

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2uy

∂x2
+

∂2uy

∂y2

)
+ fy (2.6)

where ux and uy are the velocities in x- and y- directions, respectively. P is the pressure,

ρ is the density of the fluid, ν is the viscosity and fx and fy are the body forces for a two-

dimensional flow. The continuity equation represent the conservation of mass, while the

NSE handles the conservation of momentum for Newtonian fluids. Due to the nonlinear

character of the full compressible NSE a generic analytical solution does not exist. In

order to obtain analytical, exact and approximate solutions to the NSE, it is necessary to

simplify the equations by making assumptions about the flow, the fluid or the geometry

of the problem. Some of the commonly used assumptions are: the flow is laminar, steady,

two-dimenstional; the fluid is incompressible with constant properties; and the geometry

contains parallel plates. Examples of analytic solutions are the parallel flow through a

straight channel, Hagen-Poiseuille flow and the Couette flow [68].

When an analytical solution is not possible, the NSE need to be discretized in space

and time. In this way, one can approximate their solution using a computer. Commonly

used methods to solve the continuity and Navier-Stokes equation are the finite difference,

finite volume and finite element method [69, 70]. Details about these conventional

Navier-Stokes solvers is out of the scope of this dissertation.

The standard LBM can recover the continuity and Navier-Stokes equations and it is

often seen as a second-order accurate solver for the weakly compressible NSE.

11



2 Methods

2.3 Boltzmann equation

The kinetic theory of gases is considered a bridge between the microscale methods, where

we track the motion of individual particles, and the macrosocale where we describe the

fluid flow using quantities such as density and velocity. As shown in Fig. 1.1, the

mesoscopic kinetic theory describes the distribution of particles in a gas, where the

length and time scales are around the mean free path and the mean free time (lmfp and

tmft), respectively.

The Boltzmann Equation is given by

∂f

∂t
+ ξβ

∂f

∂xβ

+
Fβ

ρ

∂f

∂ξβ
= Ω(f) (2.7)

where f is the probability density function which represents the probability of finding

a particle at position x at time t. Ω(f) = df/dt is the effect of collisions on f . The

parameter ξ describes the particle velocity with the first two terms representing the

advection of the distribution function with velocity ξ. The third term describes the

forces applied on the velocity. On the right hand side, we have a source term which

redistributes f according to collisions and it is called collision rule.

The collision rule in kinetic theory is mathematically represented by a double integral

over the velocity space. It models all outcomes of two-particle collisions considering the

intermolecular forces.

The LBM is considered a numerical solver for the Boltzmann equation [9]. However,

for regimes where a good solution for the Boltzmann equation is needed, the LBM is not

applicable due to the small number of discrete velocities. This limitation of the LBM

is also its main advantage; it allows for much simpler collision rule. This link to kinetic

theory enables LBM to simulate phenomena beyond the hydrodynamic limit.

2.4 Lattice-gas cellular automata

LGCA emerged as a Boolean analogue of MD and provided a much needed trade-off

between computational efficiency and physical accuracy. Later on in 1986, Frisch, Has-

slacher, and Pomeau [71] published an LGCA method capable of simulating fluid flows.

Compared to previously suggested LGCA models such as the Hardy-Pomeau-de Pazzis

(HPP) [72], the Frisch-Hasslacher-Pomeau (FHP) model uses hexagon lattice cells in-

stead of the square domain used by the HPP model as shown in Fig. 2.2. The HPP

model obeys the conservation laws; however, it did not have enough isotropy to solve

the Navier-Stokes equations.

In general, the LGCA methods adhere to the following rules:
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Figure 2.2: (a) Square lattice used in the HPP model with only four prescribed directions;
(b) Hexagon lattice used in the FHP model with six prescribed directions.

• Particles can move only along the discrete directions allowed for the specific LGCA

model, e.g., in the FHP model only six discrete directions ci are allowed. This

leads to a Fermi-Dirac equilibrium distribution function;

• Particles can move only to the nearest neighbor;

• Exclusion principle, which says that only one particle can be present in a node at

any time.

The absence (value of 0) or the presence (value of 1) of a particle at a site x and time

t is defined by a Boolean occupation number ni(x, t). The mass and momentum can be

recovered from the occupation numbers [27, 73] as

ρ(x, t) =
m

v0

∑

i

ni(x, t), (2.8)

ρu(x, t) =
m

v0

∑

i

cini(x, t), (2.9)

where m is the particle mass, and v0 is the volume of the node. The LGCA evolution

equation can be divided into two simple steps – collision and streaming. The collisions

are local operations that redistribute particles according to collision rules

n∗
i (x, t) = ni(x, t) + Ξi(x, t), (2.10)
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Figure 2.3: FHP collision with two possible collision outcomes.

that conserve particle number and local momentum

∑

i

Ξi(x, t) = 0, and
∑

i

ciΞi(x, t) = 0, (2.11)

as shown in Fig. 2.3. The effectiveness of collisions can be tuned [33, 74], and as a result,

the viscosity can be reduced up to a certain degree. However, depending on the LGCA

model and the number of discrete directions ci, it becomes cumbersome to express all

the possible collision rules mathematically [27, 29].

After the collision step, particles propagate from one node to a neighboring node

following the prescribed velocity direction ci according to the following equation

ni(x+ ci∆t, t+∆t) = n⋆
i (x, t). (2.12)

The complete LGCA evolution equation is given by

ni(x+ ci∆t, t+∆t) = ni(x, t) + Ξi(x, t). (2.13)

The main advantage of the LGCA model is its perfect collisions due to the Boolean

occupation numbers, which ensure that there is no round-off error, commonly observed

for floating-point operations. In addition, the collision is a local operation, where each

site is calculated independently of the others, and thus, no communication between

processors is needed making the model intrinsically parallel.
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2.5 Lattice Boltzmann method

At this stage of the development of the LGCA, their main disadvantage is the large

amount of statistical noise, which could be helpful in certain applications such as mea-

suring thermal fluctuations of a real gas [27]. However, when analyzing the properties of

a macroscopic simulation, the fluctuations are rather a source of concern. LGCA meth-

ods also suffer from Galilean invariance and velocity-dependent fluid pressure caused by

the exclusion principle. In addition, they are not capable of simulating high Reynolds

numbers due to high viscosity. Even though the collision rule is perfectly parallelizable,

in higher dimensions, the complexity of the collision rules grows exponentially, e.g., in

three-dimensions with 24 velocities, the model has 224 collision rules in a node [22]. In

such cases, lookup tables are often used to assign a collision rule [1].

Later on, Boghosian et al. [75] introduced the integer lattice gases, where one can

control the level of fluctuations while maintaining the exact conservation laws and having

unconditional stability. In the pursuit of understanding better the fluctuating systems,

Blommel et al. [76] constructed a new integer lattice gas with Monte Carlo collision

operator.

In the late 80s, the LBM was proposed as a remedy to most of the shortcomings of

the LGCA [77, 78, 79]. The original LBM was derived from lattice gases, and its link to

kinetic theory was not fully understood until the mid-90s [9].

2.5 Lattice Boltzmann method

In 1988, in order to reduce the statistical noise of the LGCA method, McNamara and

Zanetti [77] replaced the Boolean occupation number ni with its expectation value given

by

fi = ⟨ni⟩ (2.14)

resulting in an Lattice Boltzmann Equation (LBE). This increased the computational

efficiency of the method, since additional averaging over lattice gas results is no longer

required. This counteracts the higher computational cost arising from transitioning from

a Boolean lattice gas to an LBM requiring real numbers. Since, the LBM was derived

directly from the revolutionary FHP lattice gas method [71], some limitations inherited

from its predecessor remained. The most significant shortcoming of the novel LBM are

low Reynolds flows due to low collisionality of the underlying LGCA rules, and mildly

Galilean invariance violating terms, caused by the usage of a Fermi-Dirac distribution

function [33].

Later, the LBM was connected to the kinetic theory of gases by introducing the

BGK [37] collision operator with Maxwell-Boltzmann equilibrium distribution function,

which removed the velocity dependent terms in the NSE [80]. These two modifications

allowed for the LBM method to become one of the leading CFD methods worldwide.
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The BGK-LBM evolution equation is defined as

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t), (2.15)

and similarly to the LGCA can be divided into two simple steps:

collision step: f ⋆
i (x, t) = fi(x, t) + Ωi(x, t), (2.16)

streaming step: fi(x+ ci∆t, t+∆t) = f ⋆
i (x, t). (2.17)

The collision step redistributes the populations fi(x, t) and relaxes them towards equi-

librium at rates corresponding to the relaxation matrix Λij. The MRT-BGK collision

operator is given by

Ωi(x, t) =
∑

j

Λij

(
f eq
j (x, t)− fj(x, t)

)
. (2.18)

A simpler version of the BGK collision operator is the SRT-BGK

Ωi(x, t) =
∆t

τ
(f eq

i (x, t)− fi(x, t)) , (2.19)

where all the moments relax to the same relaxation time τ . The LBM collision operator

is constructed such that total density and momentum are conserved

∑

i

Ωi(x, t) = 0, (2.20)

∑

i

ciΩi(x, t) = 0. (2.21)

Often used equilibrium distribution function in LBM is the second-order truncation of

the Maxwell-Boltzmann distribution function given by

f eq
i (x, t) = ρwi

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (2.22)

with a velocity set defined as a combination of the discrete velocities ci and their cor-

responding weights wi given by {ci, wi}. The velocity set is often denoted as DdQq

with d being the number of spatial dimensions, and q the number of discrete veloci-

ties. Commonly used velocity sets are D1Q3, D2Q9 and D3Q27 as shown in Fig. 2.4.

Their corresponding weights wi are given in Table 2.1. The parameter cs describes the

relationship between the pressure and the density for an isothermal model given by

p = c2sρ, (2.23)
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2.5 Lattice Boltzmann method

which corresponds to the speed of sound. For all the lattices presented in this overview,

the speed of sound is c2s = (1/3)∆x2/∆t2, where ∆x and ∆t are the space and time

resolution, respectively. In LBM, these parameters are typically set to unity (∆x =

∆t = 1).

2 0 1

(a) D1Q3 velocity set
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(b) D2Q9 velocity set
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(c) D3Q27 velocity set

Figure 2.4: Commonly used velocity sets: (a) D1Q3 velocity set; (b) D2Q9 velocity set; (c)
D3Q19 velocity set. The weights for each velocity length are given in Table 2.1.
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DdQq Velocities Length Weights
ci |ei| wi

D1Q3 (0) 0 2/3
(±1) 1 1/3

D2Q9 (0, 0) 0 4/9
(±1, 0), (0,±1) 1 1/9

(±1,±1), (±1,±1)
√
2 1/36

D3Q27 (0, 0, 0) 0 8/27
(±1, 0, 0), (0,±1, 0), (0, 0,±1) 1 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1)
√
2 1/54

(±1,±1,±1)
√
3 1/216

Table 2.1: Properties of the most popular DdQq lattices used to solve the NSE. The speed
of sound for all these velocity sets is cs = 1/

√
3.

The discrete-velocity distribution function fi(x, t) and the equilibrium distribution

function f eq
i (x, t) conserve density and momentum

ρ =
∑

i

fi(x, t) =
∑

i

f eq
i (x, t), (2.24)

ρu =
∑

i

cifi(x, t) =
∑

i

cif
eq
i (x, t). (2.25)

The streaming step propagates the collided distribution function f ⋆
i (x, t) to the neigh-

boring cells as given in Eq. (2.17).

The NSE can be recovered from the LBE through the Chapman-Enskog expansion [81],

or the Taylor expansion [82]. According to the derivation, the kinematic shear viscosity

in LBM is given by the relaxation time

ν = c2s

(
τ − ∆t

2

)
(2.26)

and the kinematic bulk viscosity is then νB = 2ν/3. Depending on the value of τ/∆t as

given in Eq. (2.19), we define three different regimes of the collision operator [22]:

• under-relaxation: with τ/∆t > 1, for which fi(x, t) decays exponentially towards

equilibrium.

• full-relaxation: with τ/∆t = 1, for which fi(x, t) decays directly to equilibrium.
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2.6 Molecular dynamics lattice gas method

• over-relaxation: with 1/2 < τ/∆t < 1, for which fi(x, t) oscillates around equi-

librium with a decreasing amplitude. τ/∆t ≥ 1/2 is a necessary condition for

stability.

Over-relaxation is commonly used to reduce the effective LBM viscosity, which allows

for simulating high Reynolds number flows.

In the last three decades, LBM has been constantly improved, and it has grown

in popularity. Nowadays, it is a model of choice for automotive hydrodynamics and

the aerospace industry due to its local operations, close to perfect parallelization, and

simple meshing. However, LBM is often seen as a black box, and even commonly used

properties such as over-relaxation, equilibrium distribution function, fluctuations, and

collision rules, are not always grounded in physical reality. It is concerning that over the

years the LBM has lost its foundation in LGCA, and thus, in its current form, cannot be

derived from it. We developed a novel approach to derive the LBM from an underlying

MD simulation, which restores the connection between lattice gases and LBM.

2.6 Molecular dynamics lattice gas method

We developed a novel method to derive the LBM using a direct mapping approach from

an average over MD simulations onto LBM. This coarse-graining approach has its roots

in the MDLG method, pioneered by Parsa et al. [35].

The MDLG consists of overlaying a square lattice with lattice spacing ∆x onto an

MD simulation. Then, we track the migration of the particles of the MD simulation

to imposed lattice positions with displacement ci after a time step ∆t, as shown in

Fig. 2.5a. The integer lattice gas occupation number ni(x, t) is given by

ni(x, t) =
∑

j

∆x[xj(t)]∆x−ci [xj(t−∆t)], (2.27)

where ∆x[xj(t)] = 1, if particle j is in lattice cell x at time t, and ∆x[xj(t)] = 0,

otherwise. Fig. 2.5b shows a schematic representation of the lattice velocities for an

D2Q49 lattice. The MDLG evolution equation describes essentially a lattice gas defined

as

ni(x+ ci∆t, t+∆t) = ni(x, t) + Ξi(x, t), (2.28)

where the collision operator Ξi(x, t) is defined as

Ξi(x, t) = ni(x+ ci∆t, t+∆t)− ni(x, t). (2.29)

This lattice gas rigorously conserves the hydrodynamic properties of the system up to

the coarse-graining approximation because it is obtained from a coarse-graining of an

underlying MD simulation.
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(a) (b)

Figure 2.5: (a) Sketch of the MDLG analysis. A lattice is superimposed onto the MD sim-
ulation domain. The movement of the particles is tracked from the central node
using their MD trajectories. The green circles represent the position of the par-
ticles at time t −∆t and the red circles are their respective positions at time t.
Using the particle trajectories and the imposed lattice, the occupation number ni

is defined as given in Eq. (2.27). The black arrows are the lattice velocities. Only
the lattice velocities which have at least one particle within their area (i.e. non-
zero occupation number) are shown. (b) Schematic representation of the D2Q49
lattice with the numbering convention for the lattice velocities in two dimensions.
The central point 0 corresponds to the zeroth-velocity v0 = (0, 0) and the rest of
the velocities are given as a vector connecting the central point and the lattice
point in question as shown in (a). The velocities are color coded depending on
their length.

2.7 Molecular dynamics lattice Boltzmann

To obtain a lattice Boltzmann representation of the MDLG method, we average over an

ensemble of MD simulations of the same macroscopic state. Thus, we obtain the particle

probability distribution function

fi = ⟨ni⟩neq. (2.30)

We call this method MDLB. The MDLB evolution equation is given as a non-equilibrium

ensemble average of Eq. (2.28) equivalent to

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t), with Ωi(x, t) = ⟨Ξi(x, t)⟩neq, (2.31)
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2.7 Molecular dynamics lattice Boltzmann

where Ωi(x, t) is the MDLB collision operator. In the MDLB description the probability

distribution function can be derived by tracking the trajectories of a non-equilibrium

MD simulation given as

fi = ⟨ni⟩neq

=

〈∑

j

∆x[xj(t)]∆x−ci [xj(t−∆t)]

〉

= N

∫
dx1

∫
dδx1 P

(1)(x1, δx1)∆x[x1]∆x−ci [x1 − δx1],

(2.32)

where N is the total number of particles and P (1) is the one-particle displacements Prob-

ability Distribution Function (PDF). When considering an equilibrium MD simulation,

we can derive the equilibrium distribution function f eq
i .

The equilibrium distribution function f eq
i is a key element in the LBM context, and the

MDLB formulation allows us to derive f eq
i analytically from the one-particle displace-

ments PDF. In the publications [83, 84], we study the optimal form of the one-particle

displacement distribution function. The simplest one-particle displacement distribution

function, which can be used to derive an equilibrium distribution function is the single

Gaussian. We discuss the validity of this equilibrium distribution function depending

on the area fraction of the MD simulation in Parsa et al. [85]. Under further investiga-

tion, we observe small discrepancies (approx. 5%) between the measured f eq
i and the

one obtained from a simple Gaussian distribution function. Therefore, in the publica-

tions [83, 84], we propose more complex one-particle distribution function – a Poisson

weighted sum of Gaussians, which significantly improves the accuracy of the MDLB

equilibrium distribution function.

Another key component of the LBM is the collision operator Ωi, which in the MDLB

description is derived as

Ωi = ⟨Ξi⟩

=

∫
dx1

∫
dδ1· · ·

∫
dxN

∫
dδNP

N(x1, δ1, . . . , xN , δN , t+∆t)∆x+ci(xj)∆x(xj − δj)

−
∫

dx1

∫
dδ1· · ·

∫
dxN

∫
dδNP

N(x1, δ1, . . . , xN , δN , t)∆x(xj)∆x−ci(xj − δj)

= N

∫
dx1

∫
dδ1P

1(x1, δ1, t+∆t)∆x+ci(x1)∆x(x1 − δ1)

−N

∫
dx1

∫
dδ1P

1(x1, δ1, t)∆x(x1)∆x−ci(x1 − δ1)

(2.33)
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For stationary problems the one-particle distribution function does not depend on time.

In such cases, we obtain

Ωi = ⟨Ξi⟩

= N

∫
dx1

∫
dδ1P

1(x1, δ1)∆x+ci(x1)∆x(x1 − δ1)

−N

∫
dy1

∫
dγ1P

1(y1, γ1)∆x(y1)∆x−ci(y1 − γ1).

(2.34)

The MDLB formulation allows us to express fi(x, t) and Ωi as quantities which depend

solely on the one-particle displacements PDF. We use this description to provide crucial

information about the collision rule. In Section E, we show the derivation of the MDLB

collision operator, and its ability to exhibit over-relaxation. This is a fundamental result,

since until now, the over-relaxation of the LBM has been considered a numerical trick

to improve the stability and reduce the viscosity of the simulations [34].

As mentioned in Section 1, there is a variety of LBM collision rules and currently there

is no way to distinguish which one is more accurate in a specific application. The MDLB

method allows for measuring the true collision rule from an underlying non-equilibrium

MD simulation after a sufficient averaging, and thus, it can rank the applicability of

the existing collision operators. Furthermore, using the MDLG description, we could

reintroduce fluctuations to the LBM and derive better boundary conditions and forcing

LBM schemes. We anticipate to answer these questions using the MDLG analysis;

however, they are out of scope of this work.
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Contributions

The main contribution of this work is the development of a novel derivation method

for the lattice Boltzmann method from an underlying Molecular Dynamics simulation.

This research grew out of the need to recover the missing connection between the LBM

and its predecessor LGCA. As mentioned in Chapter 1, improvements of the LBM from

the top-down and the side-up derivation methods could compromise other derivation

procedures as shown in Fig. 1.2. Example for this is the failure to recover the LBM from

LGCA after introducing the Maxwellian equilibrium distribution function and the BGK

collision rule.

The MDLG analysis tool is pioneered by Parsa et al. [35] and aims to reestablish the

missing link by coarse-graining of an MD simulation.

This chapter summarizes the main contributions for each of the publications, part

of this thesis. The author’s publications support this statement and can be found in

Appendices B-E.

3.1 Publication 1: Validity of the MDLG global equi-

librium distribution function

The publicationM.R. Parsa, A. Pachalieva and A. J. Wagner, “Validity of the Molecular-

Dynamics-Lattice-Gas Global Equilibrium Distribution Function”, International Journal

of Modern Physics C, Vol. 30, No. 10, 1941007 (2019) [85] discusses the validity range

of the MDLG equilibrium distribution function for a variety of area fractions.

This work helps to understand the properties and limitations of the MDLG equilibrium

probability distribution function in respect to different volume fractions. In general, one

can calculate the equilibrium distribution function using a single parameter λ, defined as

a ratio between the velocity correlation function and the mean-squared displacement of

the underlying MD simulation. However, for higher volume fractions this relation breaks
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because the velocity auto-correlation function cannot reproduce the correct behavior of

the mean-squared displacement anymore. This leads to wrong estimation of the equilib-

rium distribution function compared to the measured one from the MD simulation. In

order to recover the correct analytical MDLG f eq
j for high volume fractions, we need to

use the measured mean-squared displacement instead of the theoretical one. Thus, the

MDLG equilibrium distribution function appears to be universally defined as a function

of the mean-squared displacement and the lattice size of the underlying MD system.

Exact knowledge of the equilibrium distribution is important when studying a non-

equilibrium system. In a future publication, we intend to investigate whether the MDLB

collision operator can be expressed in terms of an BGK collision operator Ωi(x, t) =∑
j Λij[f

eq
j − fj(x, t)], with Λij being the relaxation matrix. Here, the knowledge of an

exact local equilibrium distribution is of the essence. Preliminary studies show that for

non-equilibrium cases, we observe a small difference (approximately 0.5%) between the

measured and the analytical f eq
j . The reason for this discrepancy might be due to the

assumption made by Parsa et al. [35] that the displacements probability distribution for

all scales (from ballistic to diffusive regime) is given by a single Gaussian distribution

function. This assumption was made because a Gaussian distribution can describe the

probability distribution for very short or very long time scales. However, intermediate

probabilities between the ballistic and the diffusive regime might have different behavior.

Those intermediate regimes, due to their nature, might be better approximated, for

example, by a combination of two Gaussian distributions. These considerations are a

subject of our next publication [83].

Overall, the exact knowledge of the MDLG equilibrium distribution function is essen-

tial when looking at the deviations from local equilibrium, such as the investigation of

collision operators, which we discuss in Pachalieva et al. [86]. Another area of interest

is when analyzing the fluctuating behavior of the MDLG systems, which will elucidate

the correct form of fluctuations for non-ideal systems.

3.2 Publication 2: Non-Gaussian distribution of dis-

placements for LJ particles in equilibrium

In the publication A. Pachalieva and A. J. Wagner, “Non-Gaussian distribution of dis-

placements for Lennard-Jones particles in equilibrium”, Physical Review E, 102(5),

053310 (2020) [83], we show that the displacements equilibrium distribution for large

range of coarse-graining scales cannot be approximated using a Gaussian distribution,

as assumed previously.

In statistical mechanics, the velocity distribution function of particles is often given

by a Gaussian distribution function referred to as the Maxwell-Boltzmann distribution.

Here, we focus on the distribution of particle displacements as these displacements can
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be seen as time averages of the velocities. Therefore, the displacement distribution

function is typically assumed to be a Gaussian distribution function as well. However,

we investigate the displacements distribution for different finite time steps and found

that the Maxwell-Boltzmann function is only valid in the extreme ballistic (very short

∆t) and diffusive (very large ∆t) regimes. In the transition regime, the Maxwellian

does not capture the correct distribution of displacements and introduces an error to

the collision operator.

We propose a novel one-particle PDF using a Poisson Weighted Sum of Gaussians

(WSG) for the intermediate regime. The Poisson WSG shows a better agreement with

the measured displacements from the MD simulation. This distribution was motivated

by considering the distribution function as a mixture of Gaussian distributions that have

undergone a number of collisions, which are given by a Poisson distribution. A drawback

of this description is that no theoretical solution is available for the fourth-order moment,

which needs to be measured for each time step apriori.

It is important to mention that the system considered in this publication is in equi-

librium, and there are no correlations in the velocities of different particles. This means

that the distribution of the velocities remains Gaussian at all times, even when the

distribution of the displacements in the transition regime becomes non-Gaussian.

Capturing the correct behavior of the displacement distribution function would allow

us to recover a valid equilibrium distribution function. This is of practical relevance for

mesoscale simulation methods like Brownian Dynamics [87], Dissipative Particle Dynam-

ics [88], Stochastic Rotation Dynamics [89], and the lattice Boltzmann method [80, 9], to

name but a few. However, a question remains if the one-particle PDF can reproduce

more accurately the equilibrium distribution function, which is the subject of our next

publication [84].

3.3 Publication 3: MDLG equilibrium distribution

function for LJ particles

In the publication “A. Pachalieva and A. J. Wagner, “Molecular dynamics lattice gas

equilibrium distribution function for Lennard-Jones particles”, Philosophical Transac-

tions of the Royal Society A, (2021)” [84] we investigate the ability of the newly pro-

posed Poisson WSG one-particle probability distribution function to approximate the

measured MD equilibrium distribution function.

The results show that the newly proposed Poisson WSG model captures much better

the MD equilibrium distribution function compared to the previously used simple Gaus-

sian distribution function. This remains true for purely ballistic and purely diffusive

regimes where the Poison WSG distribution function is reduced to a Gaussian. Even

though the deviations between the Poison WSG and the single Gaussian distribution
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function are relatively small, they are of significant importance when a non-equilibrium

system is analyzed. Typically, in hydrodynamics, the system of interest is not too far

from equilibrium, and thus even small deviations play a crucial role in estimating the

correct equilibrium distribution function. A key interest of having a good approxima-

tion of the equilibrium distribution function is to analyze non-equilibrium predictions of

the MDLG mapping. In future work, we aim to investigate the MDLG predictions for

LBM collision operators [86]. This task would be nearly impossible without an in-depth

understanding of the equilibrium behavior of the MDLG mapping.

3.4 Publication 4: Connecting LBM to physical re-

ality by coarse-graining MD simulation

The publication “A. Pachalieva and A. J. Wagner, “Connecting lattice Boltzmann meth-

ods to physical reality by coarse-graining Molecular Dynamics simulation”, submitted to

Physical Review Letters, (2021)” [86] discusses the frequently used over-relaxation, which

has been seen as lacking physical motivation.

Original LBMs are obtained from Boltzmann averages of lattice gases, where local col-

lisions conserve particle number and local momentum. In LGCA, the local collisions can

only bring the simulations to a state of local equilibrium. Later on, to solve the problem

of Galilean invariance, the Fermi-Dirac equilibrium distribution function was replaced

by a Maxwell-Boltzmann equilibrium distribution function and an BGK collision term

defined as

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi, (3.1)

with an BGK collision operator

Ωi =
∑

j

Λij[f
eq
j − fj(x, t)], (3.2)

where the fi are continuous densities associated with a lattice velocity ci that represent

an expectation value for the number of particles moving from lattice site x − ci∆t to

lattice site x at time t. The BGK collision term redistributes those densities and relaxes

them towards an imposed local equilibrium distribution f eq
i . In the simplest case, the

relaxation matrix Λij has a single relaxation time Λij = (1/τ)δij, where τ = 1 implies

that local equilibrium is reached in one time step.

Such lattice Boltzmann methods cannot be justified by averages over Boolean lattice

gases and require a different derivation method. Deriving LBM from the Boltzmann

equation is equally unable to recover over-relaxation as shown by Bösch and Karlin [34].

In this publication, we show that LBM can be derived using the MDLG analysis tool.

The MDLB collision operator is directly calculated using a one-particle displacement
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probability distribution, which can be obtained from an MD simulation. Furthermore,

this approach shows that such lattice Boltzmann collision operators naturally transition

from under- to over-relaxation. Thus, the over-relaxation in LBM can be derived from

first principles and is a consequence of the coarse-grained representation of the LBM.
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CHAPTER 4

Concluding Discussion

Within this work, we have shown that the LBM can be derived directly from an explicit

coarse-graining procedure using microscopic information such as MD simulations, which

we call Molecular Dynamics Lattice Gas analysis tool. To conduct the analysis, we track

the migration of particles between coarse-grained time steps, which is sufficient to derive

the LBM.

The MDLG analysis tool is a novel LBM derivation method, that restores the link

between LBM and its microscopic nature. The MDLG tool has already proved to be

useful in understanding the key elements of the LBM such as equilibrium distribution

function and the collision operator.

We derived an improved MDLB equilibrium distribution function, which is of key

interest when looking at systems with small deviations from local equilibrium [83, 84]. In

such cases, even small deviations of the equilibrium distribution function can compromise

the derivation of a collision operator. Our study showed that a single Gaussian could

not approximate the one-particle displacement distribution function used for deriving the

equilibrium distribution function in the transition region between ballistic and diffusive

regimes. In order to derive a better equilibrium distribution function, we propose a

novel one-particle distribution function, that uses the second- and fourth-order moments

measured from an MD simulation. This distribution is defined as a mixture of Gaussian

distributions that have undergone a number of collisions, given by a Poisson distribution.

Using this distribution function, we obtain nearly perfect approximation of the measured

displacement distribution function.

Next, we studied the MDLG collision operator obtained from a Boltzmann average

from an underlying MD data. We derive the LBM collision operator for a simple shear

flow using the MDLG description. More importantly, in our study we show that the most

frequently used property of the LBM, over-relaxation, arises naturally from physical

lattice gases. Thus, we confirm the firm foundation of the LBM in physical reality.
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4 Concluding Discussion

In the future, we anticipate to use the MDLG analysis tool to derive a generic LBM

collision operator. At this point a critical question remains of which collision operator

captures the best the underlying physical system. Answering this question will resolve

a debate, that has entertained the LBM community for over three decades.

Another key element of the LBM is how to reintroduce fluctuations relevant when con-

sidering a thermodynamic non-ideal system. Parsa et al. has made significant progress

in this field measuring two-particle correlation functions and observing large fluctuations

in a non-ideal gas system [90]. More research is needed to identify the true form of the

thermal fluctuations and reintroduce them to the noise-free LBM.

Furthermore, one should investigate how to reproduce microscopic force fields and

boundary conditions at the mesoscopic level. Boundary conditions and external forces

play an important role in many hydrodynamic problems and can benefit from more

precise representation. This can be achieved using the MDLG analysis tool.

In conclusion, the MDLG method is a powerful tool that restores the lost connection

between LBM and the microscale. It allows us to look at the LBM once again as a

ensemble average of an LGCA. The MDLG tool has the potential to recover the LBM

from an underlying physical system and thereby re-affirm its foundation in physical

reality.
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Publication 1: Validity of the molecular dynamics

lattice gas global equilibrium distribution function

The MDLG method establishes a direct link between a lattice-gas method and the

coarse-graining of a molecular dynamics (MD) approach. Due to its connection to MD,

the MDLG rigorously recovers the hydrodynamics and allows to validate the behavior of

the lattice-gas or lattice-Boltzmann methods directly without using the standard kinetic

theory approach. In this paper, we show that the analytical definition of the equilibrium

distribution function remains valid even for very high volume fractions.
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The molecular-dynamics-lattice-gas (MDLG) method establishes a direct link between a

lattice-gas method and the coarse-graining of a molecular dynamics (MD) approach. Due to its

connection to MD, the MDLG rigorously recovers the hydrodynamics and allows to validate the
behavior of the lattice-gas or lattice-Boltzmann methods directly without using the standard

kinetic theory approach. In this paper, we show that the analytical de¯nition of the equilibrium

distribution function remains valid even for very high volume fractions.
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1. Introduction

The lattice gas automata were introduced by Frisch et al.1 in 1986. These methods

describe the presence of a particle using Boolean states and thus exhibit perfect

collisions. However, the lattice gas methods su®er from statistical noise and their
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collision rules can have very complex mathematical representation.2 Later on,

Boghosian et al.3 introduced the integer lattice gases, where one can control the level of

°uctuations, while maintaining the exact conservation laws and having unconditional

stability. In the pursuit of understanding better the °uctuating systems, Blommel

et al.4 constructed a new integer lattice gas with Monte Carlo collision operator.

The Molecular-Dynamics-Lattice-Gas (MDLG) method5,6 establishes a direct link

between a lattice gas method and the coarse-graining of a molecular dynamics (MD)

simulation. After comparing the equilibrium properties of the MDLG method to the

lattice Boltzmann equilibrium, Parsa et al.5 found that for any dilute gases for

coarse-graining lattice spacing �x exists a coarse-grained time step �t such that the

MDLG equilibria resembles the lattice Boltzmann method. However, an open

question remained about the range of validity for the predicted analytical solution of

the equilibrium distribution function.

The novelty of the current publication is to investigate the behavior of the MDLG

method for varying volume fractions of the underlying MD simulation. Such a test was

not performed in the initial publication by Parsa et al.5 This analysis shows that the

analyticalMDLGequilibrium function remains valid even for very high volume fractions.

The rest of the paper is summarized as follows: In Sec. 2, we elaborate upon the main

components of the MDLG method. Our ¯ndings on how the equilibrium distribution

function behaves with varying nominal volume fraction are presented in Sec. 3. Finally,

some concluding remarks and future discussions are mentioned in Sec. 4.

2. Molecular-Dynamics-Lattice-Gas Method

The MDLG method was originally introduced by Parsa et al.5 It is based on an

underlying MD simulation, where we track the migration of the particles to imposed

lattice positions with displacement vi after a time step �t, as shown in Fig. 1.

This gives the integer lattice gas occupation number

niðx; tÞ ¼
X
j

�x½xjðtÞ��x�vi ½xjðt��tÞ�; ð1Þ

where �x½xjðtÞ� ¼ 1, if particle x is in lattice cell x at time t, and �x½xjðtÞ� ¼ 0,

otherwise.

The MDLG evolution equation then takes the form of a lattice gas

niðxþ vi; tþ�tÞ ¼ niðx; tÞ þ �i; ð2Þ
where the collision operator �i is de¯ned as

�i ¼ niðxþ vi; tþ�tÞ � niðx; tÞ: ð3Þ

Since this analysis is based on a MD simulation, the resulting lattice gas model

rigorously conserves the hydrodynamic properties of the system, up to the coarse-

graining approximation. We de¯ne a Boltzmann average of the MDLG as

fi ¼ hniineq; ð4Þ
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and by taking a nonequilibrium ensemble average of Eq. (2), we obtain the MDLB

evolution equation:

fiðxþ vi; tþ�tÞ ¼ fiðx; tÞ þ �i with �i ¼ h�iineq: ð5Þ

The global equilibrium distribution function can be numerically approximated by

averaging the lattice gas densities ni over the whole lattice and all iterations for an

equilibrium system:

f eq
i ¼ hniieq ¼

X
h�x½xjðtÞ��x�vi ½xjðt��tÞ�i: ð6Þ

Under the assumption that for an ideal gas the displacements �x of the particles are

independent and that their probability distribution is a Gaussian with variance given

by the mean-squared displacement hð�xÞ2i, the equilibrium function can be analyt-

ically predicted to be

f eq
i

�eq
¼

Yd
�¼1

f eq
i;�; ð7Þ

where

f eq
i;� ¼ N e�

ðui;��1Þ2
2a2 � 2e�

u 2
i;�

2a2 þ e�
ðui;�þ1Þ2

2a2

� �

þ ui;� � 1

2
erf

ui;� � 1ffiffiffi
2

p
a

� �
� erf

ui;�ffiffiffi
2

p
a

� �� �

þ ui;� þ 1

2
erf

ui;� þ 1ffiffiffi
2

p
a

� �
� erf

ui;�ffiffiffi
2

p
a

� �� �
; ð8Þ

(a) a2 = 0 (b) a2 = 0.003 (c) a2 = 0.010 (d) a2 = 0.019

Fig. 1. (Color online) Representation of the MDLG algorithm: a lattice (blue line) is overlaid onto

the MD simulation. The position of each particle is tracked depending on an a priori chosen time (�t)

and space (�x) discretization for the MDLG algorithm. The particles in the central lattice are colored in

red to allow the reader to track their movement, however, each particle in the MDLG method is tracked
and its occupation has been considered at each time step. The results are obtained from a MD simulation

with volume fraction of � ¼ 0:0785, �BT ¼ 50 in Lennard–Jones (LJ) units, � ¼ 0:5, �x ¼ 50 and

�t ¼ 0:0001. The shown time frames correspond to (a) t ¼ 0, (b) t ¼ 0:3, (c) t ¼ 0:6 and (d) t ¼ 0:9 in

LJ units.

Validity of the MDLG global equilibrium distribution

1941007-3

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
9.

30
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 L

O
S 

A
L

A
M

O
S 

N
A

T
IO

N
A

L
 L

A
B

 (
L

A
N

L
) 

on
 1

2/
01

/2
1.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



and

a2 ¼ hð�x�Þ2i
ð�xÞ2 ; N ¼ affiffiffiffiffiffi

2�
p ; ui;� ¼ vi� � u�: ð9Þ

where �x is the lattice size. This is the main result from the publication by Parsa

et al.5 and the derivation can be found there. The weights obtained by the MDLB

method resemble to high extent the standard D2Q9 weights (w0 ¼ 4=9;w1�4 ¼
1=9;w5�8 ¼ 1=36) for a speci¯c time and space discretization with a2 ¼ 1=6. The

weights of the MDLB method for a2 ¼ 1=6 obtained from Eq. (7) are

w0 ¼ 0:45721; ð10Þ
w1�4 ¼ 0:10883; ð11Þ
w5�8 ¼ 0:025907; ð12Þ

where sum over all the D2Q9 velocity weights is slightly lower than 1.0 (� 0:996158)

because the MDLB does not impose restrictions on the number of velocities and thus,

higher velocities also have small contributions to the total sum. We can make pre-

dictions for the form of higher-order lattice velocity sets like the one published in

Refs. 7–9. However, this is out of the scope of the current publication. Due to the lack

of a velocity set restriction, the MDLB models also do not have a lattice velocity

restriction typical for the LBM methods. The equilibrium distribution function given

in Eq. (7) does not resemble any of the already published formulations of the equi-

librium distribution function because it is not explicitly restricted to a speci¯c ve-

locity set. As a comparison, please, refer to the MCLG model published by Blommel

et al.,4 where an apriori restriction of the number of velocities is made and the

equilibrium distribution function obtained by the authors recovers the entropic

formulation of the equilibrium distribution function given by Ansumali et al.10

For ideal gas systems, the mean-square displacement is given in relation to the

velocity correlation function

hð�xÞ2i ¼ 2

Z t

0

dt0ðt� t0Þhv�ðt0Þv�ð0Þi; ð13Þ

which is well approximated by an exponential decay given by

hv�ðt0Þv�ð0Þi ¼ kBT exp � t

�

� �
; ð14Þ

with kB being the Boltzmann constant, T the temperature in Lennard–Jones (LJ)

units, and � the exponential decay constant.11–13 Now, we can express the mean-

square displacement as a function of a single free parameter �:

hð�xÞ2i ¼ 2�BT�
2 exp � t

�

� �
þ t

�
� 1

� �
: ð15Þ

that is depicted in Fig. 3.
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The assumption of uncorrelated displacements, which was used for the prediction

of the equilibrium distribution, is likely only valid when the system can be approx-

imated as an ideal gas. Our aim in this paper is, therefore, to ¯nd the validity range

of this assumption by comparing the measured equilibrium distribution and the

theoretical prediction for di®erent nominal volume fractions.

3. MDLG Equilibrium Distribution Function for Di®erent

Volume Fractions

We have chosen four di®erent setups with varying volume fractions for our under-

lying MD simulations with standard LJ interaction potential de¯ned as

VLJ ¼ 4"
�

r

� �
12 � �

r

� �
6

h i
; ð16Þ

where " is the depth of the potential well, � is the distance where the LJ potential is

zero and r is the distance between particles. The MD simulations were performed

using the open-source LAMMPS framework. We vary the volume fraction � of the

MD simulations from � ¼ 0:0078 to � ¼ 0:8722 (where the low value corresponds to

the density employed in Ref. 5). The velocity has been ¯xed to u ¼ 0, to allow for a

deliberative analysis of the MDLG method in respect only to the volume fraction.

For details, how the system behaves for di®erent velocities, please, refer to Ref. 5.

The volume fraction � is de¯ned for circular LJ particles with radius r ¼ � with �

being the distance at which the inter particle potential goes to zero. Even though, the

simulated volume fraction is above the maximum package density for hard spheres

(� ¼ 0:7405), we still observe di®usion due to the high temperature of the system (50

LJ units). When we increase the volume fraction even more, the system goes into a

solid state and the dynamics slows down considerably. A visual representation of the

variation of the used volume fractions can be seen in Figs. 2(a)–2(d).

All the simulations were initialized with homogeneously distributed particles. The

total number of measured iterations for each simulation setup is 2 000 000 with a time

step of 0:0001 	 , which corresponds to a timescale of 	 ¼ 200. As in the previous

study,5 a su±cient number of initial iterations, (106; 106; 106; 107, respectively), were

discarded from the sampling process to ensure that the system has reached an

equilibrium state before the probing.

After ¯tting the exponential constant � of the velocity correlation function in

Eq. (14) from the MD data, we can use the relation between the velocity correlation

function and the mean-square displacement to obtain an analytical representation of

the mean-square displacement as given in Eq. (13) for each of the nominal volume

fractions (from � ¼ 0:0078 to � ¼ 0:8722). In Fig. 3, we compare the predicted mean-

square displacement from Eq. (13) and the measured value from the underlying MD

simulation data. There is an excellent agreement between the theoretical mean-

square displacement and the measured one based on the velocity correlation expo-

nential ¯t for volume fractions from � ¼ 0:0078 to � ¼ 0:1962. Those volume

Validity of the MDLG global equilibrium distribution
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fractions describe, in general, more gassy systems. For denser systems with

� ¼ 0:8722, the measured mean-square displacement deviate from the predicted one.

As shown in Fig. 2(d), a system with � ¼ 0:8722 is rather in a state close to a melted

solid under high pressure.

To validate the analytical solution of the MDLG global equilibrium distribution

function f eq
i in Eq. (7), we compare it to the measured f eq

i from the underlying MD

simulation as a function of a2 from Eq. (9). In Figs. 4 and 5, we show that the

theoretical prediction of the MDLG global equilibrium distribution function f eq
i

agrees well with the measured one from them MD simulations as long as the mean-

square displacement can be approximated from the theory (see Eq. (13) as depicted

in Fig. 3). However, once this relation breaks, the measured global equilibrium

0.1 1 10
∆t (λ)

1

10

100

1000

〈(
δ x

α)2 〉

〈(δxα)
2〉〈vα(t)vα(0)〉

〈(δxα)
2〉MD(φ=0.0078)

(φ=0.0785)
(φ=0.1962)
(φ=0.8722)

Fig. 3. (Color online) Measured mean-square displacement from the MD simulation data (symbols) for
di®erent volume fractions compared to the corresponding predicted values (dashed line).

(a) �=0.0078 (b) �=0.0785 (c) �=0.1962 (d) �=0.8722

Fig. 2. (Color online) Visual representation and comparison between the volume fractions used for the

underlying MD simulations. The LJ particles are represented by circles with radius r ¼ � with � being the

distance at which the inter particle potential is zero.
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distribution function also starts to deviate from the theoretically predicted values as

shown in Fig. 5. For systems with volume fraction around and above � ¼ 0:8722, the

MDLG global equilibrium distribution function is not well approximated from the

theoretical mean-square displacement given in Eq. (15).
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(b) �=0.1962

Fig. 4. (Color online) Comparison between the measured equilibrium distribution function f eq
i from an

underlying MD simulation and the analytical solution given in Eq. (7) for di®erent volume fractions from
� ¼ 0:0078 to � ¼ 0:1962. The results for volume fraction � ¼ 0:0785 has been already published in Parsa

et al.,5 where we observed the same behavior.
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(a) Theoretical hð�xÞ2i, �=0.8722
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(b) Measured hð�xÞ2i, �=0.8722

Fig. 5. (Color online) Global equilibrium distribution functions f eq
i for volume fraction � ¼ 0:8722: (a)

The equilibrium distribution function is obtained from the ¯tted mean-square displacement and Eq. (15).
There is a strong deviation between the measured and the theoretical data; (b) The equilibrium distri-

bution function is calculated using the measured mean-square displacement from the MD simulation. The

legend can be seen in Fig. 4 (omitted for clarity).
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As a remedy, instead of calculating the theoretical value of hð�xÞ2i, we can

measure the mean-square displacement as a function of the time step �t directly and

use this numerical value to obtain a2. There is a noticeable di®erence between the

MDLG global equilibrium distribution function obtained from the predicted and

from the measured mean-square displacement as depicted in Figs. 5(a) and 5(b),

respectively. Using the measured mean-square displacement, however, we recover

the correct MDLG global equilibrium distribution function from theory even for high

volume fractions.

We ¯nd, therefore, that the analytical prediction of the equilibrium distribution

function is correct for a large range of volume fractions, even after the relation

between the velocity correlation function and the mean-square displacement breaks

and correlations become important. In this case, we need to use the actual mean-

square displacement measured from the MD simulation instead of using the theo-

retical solution in Eq. (14) to obtain a2.

4. Conclusions

In this work, we have investigated the behavior of the MDLG equilibrium function in

respect to di®erent volume fractions. We have shown that for a very large range of

volume fractions, the equilibrium distribution function can be obtained from a single

parameter � based on the relation between the velocity correlation function and the

mean-square displacement of the underlying MD simulation. However, for higher

volume fractions, this correlation does not apply, and the exponential ¯t from the

velocity correlation function does not reproduce the right behavior of the mean-

square displacement anymore, which leads also to wrong estimation of the equilib-

rium distribution function in respect to the measured one from the MD simulation.

We found that by using the measured mean-square displacement instead of the

theoretical, we can still recover the correct analytical MDLG equilibrium distribu-

tion function. We conclude that the MDLG equilibrium distribution function

appears to be universally de¯ned as a function of the mean-square displacement and

the lattice size of the underlying MD system.

An exact knowledge of the equilibrium distribution is important, if one wishes to

examine the deviation of a system from local equilibrium. In a future publication, we

intend to investigate whether the MDLG collision operator can be expressed in terms

of a BGK collision operator �i ¼
P

i�ijðf eq
j � fjÞ with �ij being the relaxation

matrix. Here, the knowledge of an exact local equilibrium distribution is of the

essence. Preliminary studies show that for nonequilibrium cases, we observe a small

di®erence (approximately, 0:5%) between the measured and the analytical global

equilibrium distribution function. The reason for this discrepancy might be due to

the assumption made in Ref 5, that the probability distribution for the displacement

is described as a Gaussian for all scales (from ballistic to di®usive regime). This

assumption was made, because the probability distribution for short scales as well as

the one for long scales can be described by a Gaussian distribution. However,
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intermediate probabilities between the ballistic and the di®usive regime could have

di®erent behavior, as for example the well-known cage e®ect described by Chong

et al.14 Those intermediate regimes due to their nature, might be better approxi-

mated, for example, by a combination of two Gaussian distributions. These con-

siderations are outside the scope of the current paper and will be a subject of future

research.

Additionally, the knowledge of the equilibrium distributions is essential when

analyzing the °uctuation behavior of MDLG systems, which will elucidate the cor-

rect form of °uctuations for nonideal systems. This is the subject of a following

publication.15
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APPENDIX C

Publication 2: Non-Gaussian distribution of

displacements for Lennard-Jones particles in

equilibrium

Most mesoscale simulation methods assume Gaussian distributions of velocity-like quan-

tities. These quantities are not true velocities, but rather time-averaged velocities or

displacements of particles. We show that there is a large range of coarse-graining scales

where the assumption of a Gaussian distribution of these displacements fails, and a

more complex distribution is required to adequately express these distribution functions

of displacements.
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Most mesoscale simulation methods assume Gaussian distributions of velocity-like quantities. These quan-
tities are not true velocities, however, but rather time-averaged velocities or displacements of particles. We
show that there is a large range of coarse-graining scales where the assumption of a Gaussian distribution of
these displacements fails, and a more complex distribution is required to adequately express these distribution
functions of displacements.

DOI: 10.1103/PhysRevE.102.053310

I. INTRODUCTION

A key result of statistical mechanics is that in equilibrium
the velocity distribution of particles is given by a Gaus-
sian distribution function, typically referred to as the the
Maxwell-Boltzmann distribution and that all the velocities are
uncorrelated. Here we focus on the distribution of particle dis-
placements which is often implicitly needed, but has received
far less attention. As these displacements can be viewed as
time averages of the velocities it is typically assumed that this
result generalizes and the particle displacements also follow a
Gaussian distribution.

We report here the surprising result that particle displace-
ments can deviate from a Gaussian distribution. We believe
that this is the first time this unexpected result has been re-
ported in the literature. This can be of practical relevance for
mesoscale simulation methods like Brownian dynamics [1],
dissipative particle dynamics [2], stochastic rotation dynamics
[3], and the lattice Boltzmann method [4,5] to name but a
few. This is because for these methods particle velocities and
particle displacements in a finite time are often implicitly
equated.

The question of physical displacements of particles has
not received a lot of attention but is of general interest in
statistical mechanics, as the short-term displacement is often
modelled by a random walk. This has been discussed recently
by Masoliver et al. [6,7].

The paper is structured as follows: In Sec. II, we show
the numerical evidence that the distribution of displacements
indeed differs from a Gaussian distribution. This is followed
by a detailed description of the simulation setup used to
obtain the MD data given in Sec. III. In Sec. IV, we show
the mismatch between the MD data and the single Gaussian
distribution of displacements. We propose two novel proba-
bility distribution functions which could be adjusted to match
the second- and fourth-order moments of the measured data,
respectively, in Secs. V and VI. Since one could be concerned

*apachalieva@lanl.gov
†alexander.wagner@ndsu.edu

that the good agreement between the experiments and theory
was solely caused by matching these two moments, in Sec. V
we show the results for a ballistic-diffusive Gaussian mixture
mode, which also matches those two moments but the agree-
ment is much poorer. This demonstrates that the agreement
between the Poisson weighted sum of Gaussians probability
distribution function proposed in Sec. VI and the measured
distribution function is better than simply matching those two
moments. Finally, some concluding remarks and future work
are mentioned in Sec. VII.

II. MOTIVATION

In typical hydrodynamic systems, the locally conserved
quantities are relaxed toward local equilibrium much faster
than quantities that can be relaxed through collisions. For
these systems the distribution of particle velocities will be
close to a Maxwell-Boltzmann distribution corresponding to
the local conserved quantities density, momentum, and tem-
perature. This observation is at the core of many descriptions
of nonequilibrium thermodynamics. For the Boltzmann equa-
tion it leads to an approximation which allows the two-particle
collision term to be replaced by a simpler term of relaxing
the velocity distribution toward the local Maxwellian distri-
bution. This is known as the Bhatnagar-Gross-Krook (BGK)
approximation [8]. In the BGK formalism, the entire local
relaxation depends on the details of small deviations from the
local equilibrium distribution function.

In the molecular dynamics lattice gas (MDLG) [9,10]
context, we measure the distribution function of parti-
cle displacements from an underlying MD simulations of
Lennard-Jones particles in equilibrium and thus, obtain an
equilibrium distribution function for a specific simulation.
For the particular application of measuring collisions, it is
required to obtain precise measurements of the deviations
from equilibrium. We noticed that the collision operator did
not appear to relax toward the equilibrium distribution func-
tion predicted by Parsa et al. [9], but instead it relaxes to a
distribution that deviates by a few percentages. This deviation
was not previously noticed but since now we were examining

2470-0045/2020/102(5)/053310(16) 053310-1 ©2020 American Physical Society
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small deviations from equilibrium, these differences between
the predicted and measured equilibrium distributions have the
same order of magnitude as the nonequilibrium contributions
to the distribution function. Since the only ingredient in the
analytical prediction of the MDLG equilibrium distribution
is the distribution of particle displacements [9], we began to
question the validity of the assumption that the distribution
of the local displacements was truly given by a Maxwell-
Boltzmann distribution, as expected.

This lead us to investigate the distribution of displacements
for different finite time steps. For very short time steps �t , the
effect of particle interactions can be neglected and particles
simply displace according to their current velocity. Therefore,
the particle displacement can be expressed as a function of the
velocity and given by δx j = v j�t for particle j. The Maxwell-
Boltzmann distribution function Pv (v j ) as given in Eq. (12)
can be expressed in terms of the particle displacements for the
limiting case of �t → 0 as

P(δx j ) = Pv

(
δx j

�t

)
, (1)

and it is given by a Gaussian distribution which is fully defined
by its mean value and standard deviation. Without loss of
generality, we set the net momentum of our simulations to
zero which corresponds to zero mean value of the distribution
function. The standard deviation can be obtained in two ways:
measured directly from the MD simulation or approximated
from the velocity autocorrelation function. By calculating the
mean-squared displacement from an analytical approximation
of the velocity autocorrelation function, we obtain a simple
dependence including only one parameter. Details about the
performed MD simulations, the derivation of the Gaussian
distribution function and discussion of the results can be found
in Secs. III and IV.

Regardless of the used method to obtain the mean-squared
displacement, Fig. 1 shows that the resulting Gaussian
functions—PG-T (Xi ) and PG-M (Xi ), do not agree with the
measured MD probability distribution function PMD(Xi ). As
suspected from our studies of the deviation of nonequilibrium
systems from equilibrium [11], the equilibrium distribution
functions are close to a Gaussian distribution but they show
noticeable deviations from the MD data. We emphasize that
even though the disagreement between the two displacement
functions is indeed small, it is of the same order of magnitude
or larger than the deviation of a nonequilibrium distribution
function.

In this paper, we investigate for which time steps the
displacement distribution is given by a Maxwell-Boltzmann
distribution and when a better description is needed. We found
that the Maxwell-Boltzmann function is only valid in the
extreme ballistic regime for very short �t , and in the ex-
treme diffusive regime for very large �t . In an intermediate
regime, the Maxwellian does not capture the distribution of
the displacements and introduces an error to the collision op-
erator. This is a practical issue that matters in many mesoscale
methods such as Brownian dynamics [1], dissipative particle
dynamics [2], stochastic rotation dynamics [3], and the lattice
Boltzmann method [4,5].

0 10 20 30
Xi

0

0.005

0.01

0.015

0.02

0.025

P(
X
i)

PMD(Xi)
PG-T(Xi)
PG-M(Xi)

(a)

-40 -20 0 20 40
Xi

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

K
(X
i)

PMD log(PMD/PMD)
PMD log(PMD/PG-T)
PMD log(PMD/PG-M)

(b)

FIG. 1. (a) Displacements probability distribution functions. The
solid line (black) depicts a PDF obtained from an MD simulation
of LJ particles in equilibrium. The lines with empty or full squares
(red) illustrate a Gaussian probability distribution function defined in
Eq. (17) with mean-squared displacement obtained from the velocity
autocorrelation function as given in Eq. (21) and with mean-squared
displacement fitted directly to the MD data, respectively. Only the
data for positive velocities have been depicted due to symmetry.
Panel (b) shows the difference between the distributions per interval
Xi as defined in Eq. (23). The presented data are for the standard pa-
rameters used in the paper and a coarse-grained time step �t = 3.2.

III. SIMULATION SETUP

We are investigating a system of particles interacting with
the standard 6-12 Lennard-Jones (LJ) intermolecular potential

053310-2
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defined as

VLJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6]
(2)

with ε being the potential well depth, σ is the distance at
which the inter-particle potential goes to zero, and r is the
distance between two particles. We set the particle mass to
m = 1 and the LJ particle diameter to σ = 1. All the MD
simulations were executed using the open-source molecular
dynamics software LAMMPS [12,13] that is developed by
Sandia National Laboratories. We performed multiple MD
simulations with N = 99 856 particles in a two-dimensional
(2D) square with length L = 1000 LJ units which corresponds
to an area fraction of φ = 0.078387. The area fraction φ for
circular LJ particles with radius a = σ/2 is defined as the
product of the particle surface area and the number of parti-
cles, divided by the square length L of the simulation box. The
simulations were initialised with homogeneously distributed
particles having kinetic energy that corresponds to a tempera-
ture of 20 in LJ units. The the kinetic theory considered in this
paper (in particular the Poisson distribution of collision times)
are expected to be correct only for dilute systems. Therefore,
we focus our attention here on simulations of fairly dilute
systems.

We have executed simulations of two-dimensional systems
instead of three-dimensional ones to minimize computational
cost. For a three-dimensional MD simulation to be computa-
tionally feasible, we need to reduce the domain size and adjust
the number of particles to recover the same volume fraction
as the 2D area fraction mentioned earlier. By reducing the
domain size, we put a constraint on the coarse-grained time
step �t and therefore, on the maximum average particle dis-
placement. Thus, it will not be possible to simulate extremely
large time steps due to periodic image problems occurring
when the particle displacements are larger than half of the
simulation length L.

According to the definition of the LJ interaction potential
in Eq. (2), we write the timescale as

τLJ =
√

mσ 2

ε
, (3)

which corresponds to the time in which a particle with ki-
netic energy of half the potential energy well ε traverses one
diameter σ of a LJ particle. It is worth noting that there is
a second timescale, i.e., the time it takes a particle with the
kinetic energy of 1/2 kBT to transverse the diameter σ of a LJ
particle, which is given by

τth =
√

mσ 2

kBT
(4)

and we call this scale a thermal timescale. Note that for the
temperature of 20 in LJ units, the thermal timescale is smaller
than the LJ timescale τLJ by factor of 1/

√
20 ≈ 0.22.

The simulation setup characterizes a standard semidilute
gas in equilibrium with average velocity fixed to zero,

Nuα =
N∑

j=1

v j,α = 0, (5)

with N being the total number of MD particles.

TABLE I. LAMMPS simulation details.

MD step MD output Output Total MD Total MD
�t size (τLJ) frequency number time steps time (τLJ)

0.01 0.0001 100 5000 500 000 50
0.1 0.0001 1 000 5000 5 000 000 500
0.2 0.0001 2 000 5000 10 000 000 1 000
0.4 0.0001 4 000 5000 20 000 000 2 000
0.8 0.0001 8 000 2000 16 000 000 1 600
1.6 0.0001 16 000 2000 32 000 000 3 200
3.2 0.0001 32 000 2000 64 000 000 6 400
6.4 0.0001 64 000 2000 128 000 000 12 800
12.8 0.0001 128 000 2000 256 000 000 25 600
25.6 0.0001 256 000 2000 512 000 000 51 200

The MD step size is set to 0.0001 τLJ with total MD sim-
ulation time varying from 50 τLJ to 51 200 τLJ as shown in
Table I. We chose a very small MD step size to ensure high
accuracy of the MD simulation data. Our goal is to obtain
results for MD simulations with wide regime range—from
simulations with mean free time smaller than the time be-
tween collisions (ballistic regime) to simulations with much
larger mean free path than the time step (diffusive regime).
We define the dimensionless coarse-grained time step �t as a
product of the MD step size and the MD output frequency. The
coarse-grained time step �t varies from 0.01 τLJ to 25.6 τLJ.
To ensure the MD simulations have reached equilibrium state
before we start collecting data, the initial 1 200 000 MD
iterations (120 τLJ) were discarded. The values depicted in
Table I do not include the discarded iterations for clarity.
The total number of saved MD iterations of per-particle data
differs depending on the coarse-grained time step �t . For
simulations with smaller time step �t ∈ [0.01, 0.4], we saved
5000 coarse-grained iterations, while for simulations with
�t ∈ [0.8, 25.6], the output number was reduced to 2000
coarse-grained iterations due to their high computational cost.
This corresponds to 500 000 MD time steps for the MD sim-
ulation with the smallest executed coarse-grained time step
�t = 0.01, and 512 000 000 MD time steps for the simulation
with the largest time step �t = 25.6. Since we are simulating
a semidilute gas in equilibrium, the total simulation number is
irrelevant for the physical properties of the system, because
they do not change once the gas has reached equilibrium
state. However, we run the simulations for large number of
iterations in order to produce large amounts of data which
ensures sufficient averaging. An overview of the simulation
parameters is given in Table I.

All the simulations were executed in parallel using 32
processors on the Darwin cluster at Los Alamos National
Laboratory. The longest executed test case with �t = 25.6
took about 120 h wall-clock-time. Depending on the number
of coarse-grained iterations (2000 or 5000) the output data
files took 20- or 50-GB memory space, respectively. The total
memory space used for all LAMMPS simulations exceeded
350 GB.

We have performed a standard molecular dynamics sim-
ulation without the use of a thermostat. In the LAMMPS
nomenclature this is called a NVE integration. The name is
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related to a microcanonical ensamble NVE which is character-
ized by a constant number of particles (N), a constant volume
(V), and a constant energy (E). By using the NVE thermostat,
we sample from the microcanonical ensamble, thus we avoid
any possible complications coming from the altered equations
of motion a thermostat could introduce. However, to ensure
the validity of the MD simulations, we have tested the canoni-
cal NVT thermostat which was used in earlier papers [9,14]
and we have obtained equivalent results. For the canonical
ensamble (NVT) the number of particle (N), volume (V) and
temperature (T) are constant while the energy of the system
fluctuates.

We analyze the collected MD data to recover the proba-
bility distribution function (PDF) P(δx) of the displacements
δx. To obtain an estimate for P(δx), we define the particle
displacement δx j (t ) as

δx j,α (t + �t ) = x j,α (t ) − x j,α (t + �t ), (6)

where x j,α (t ) is the position of particle j at time t , and α refers
to the spatial coordinates α ∈ {X,Y } in 2D.

Two probability distribution functions can be compared in
different ways: In principle, the PDF is defined as a function or
it can be defined through an infinite set of moments. Given the
experimental data set, we are of course limited in how well we
can estimate the PDF. Therefore, here we use a combination
of both approaches.

To obtain the full PDF description, we define a histogram
H (Xi ) for the discrete displacement intervals Xi as follows:

H (Xi ) =
∑T

t=0

∑N
j=1 �Xi (δx j (t ))

T N
, (7)

with number of MD particles N , number of the coarse-grained
time steps T and with �Xi (δx j (t )) being defined as

�Xi (δx j (t )) =
{

1, if δx j (t ) ∈ Xi

0, otherwise. (8)

Xi is a histogram bin and corresponds to a range of ri �
δx < ri+1 with i number of bins. In the current publication,
we use i = 200 number of bins with equal bin width for a
certain coarse-grained time step. The bin width depends on
the particle displacements and varies for different time step
�t . The first and the last intervals are open at the edges to
ensure that there are no empty bins in the histogram and
that all possible displacements have been accounted for. This
histogram has the following property:∑

i

H (Xi ) = 1. (9)

We can then estimate the probability

P(δx ∈ Xi ) =
∫

δx∈Xi

P(δx) dδx ≈ H (Xi ). (10)

Even though the MD data are in discrete space and by using
the collected MD displacements we are able to construct only
a histogram as given in Eq. (7), we will further recall it as a
probability distribution function. By collecting very large data
sets for each coarse-grained time step �t , we ensure that all
histograms are very fine grained and thus agree very well with
the underlying PDF as expressed in Eq. (10).

In our MD simulation setup, momentum is conserved. This
means that we can also define the momentum through the
displacements in addition to Eq. (5). We have

uα = 〈δx j,α〉
�t

=
∑N

j=1 δx j,α

N�t
=
∑N

j=1 v j,α

N
, (11)

which are all equivalent. Even though, we have performed
simulations with zero initial velocity we could obtain re-
sults for different mean velocities uα by applying a Galilean
transformation.

IV. GAUSSIAN DISTRIBUTION FUNCTION

The first theory for the probability distribution function of
the displacements that we consider follows the assumption
made by Parsa et al. [9]. For very short times the particle dis-
placement is given by the velocity v j of the particle j as δx j =
v j�t . Thus, we can write lim�t→0 P(δx j ) = Pv (δx j/�t ) using
the probability distribution of the velocity given by

Pv (v j ) = 1

[2πkBT ]d/2
exp

[
(v j − u j )2

2kBT

]
, (12)

where d is the number of dimensions and kBT is temperature
of the system with kB being the Boltzmann constant. Equation
(12) is also known as the Maxwell-Boltzmann distribution
which approximates the probability of particle moving in a
certain direction. It holds for very short times �t where the
mean free time between two collisions is much shorter than
the time step �t . In this regime, particles undergo simple
ballistic motion and the mean-squared displacement in one
dimension is

〈(δxα )2〉ball = 2kBT (�t )2. (13)

Then the probability for collisionless displacements is

Pball(δx) = 1

[2πkBT (�t )2]d/2
exp

[
− (δx − u�t )2

2kBT (�t )2

]
. (14)

In a diffusive regime, the times are much longer than the
mean free time and the particles undergo multiple collisions
between time steps. Using the self-diffusion constant D, we
write the mean-squared displacement in one dimension as

〈(δxα )2〉diff = 2dD(�t ). (15)

The probability distribution function of the displacements is
given by

Pdiff (δx) = 1

[4πdD(�t )]d/2
exp

[
− (δx − u�t )2

4dD(�t )

]
. (16)

Since both limiting cases are given by a Gaussian distribution
function as shown in Eqs. (14) and (16), Parsa et al. [9]
suggested that the intermediate probabilities can be well ap-
proximated by a single Gaussian distribution defined as

PG(δx) = 1

[2π〈(δxα )2〉]d/2
exp

[
− (δx − u�t )2

2〈(δxα )2〉
]
, (17)

with a mean-squared displacement 〈(δxα )2〉 which can be ob-
tained theoretically or can be measured directly from an MD
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simulation. The displacement of a particle is given by

δx =
∫ �t

0
v(t ) dt . (18)

Now, for a simple semidilute gas system, we express the
mean-squared displacement as a function of the velocity auto-
correlation function,

〈(δxα )2〉 =
〈∫

dt
∫

dt ′v(t )v(t ′)
〉

=
∫

dt
∫

dt ′〈v(t − t ′)v(0)〉

=
∫ �t

−�t
(�t − δt )〈v(δt )v(0)〉 dδt

= 2
∫ �t

0
(�t − δt )〈v(δt )v(0)〉 dδt . (19)

For gases the velocity autocorrelation function is usually esti-
mated by an exponential decay,

〈vα (δt )vα (0)〉 = kBT exp

(
−�t

τ

)
, (20)

where kBT is the temperature of the semidilute gas in LJ units
and τ is an exponential decay constant which approximates
the mean free time [15–19]. The velocity autocorrelation func-
tion for the simulated gas system is depicted in Fig. 2(a).
We have approximated the mean free time to τ ≈ 0.728,
which gives a good prediction of the velocity autocorrelation
function for early times. As shown in Fig. 2(a), the velocity
autocorrelation function has long range contributions for later
times (�t > 4.0) that is typical for two-dimensional systems
[15–19]. The deviations resulting from the long-time tails
are noticeable only for later times and larger displacements.
In this work, we focus on results for �t = 3.2, where the
velocity autocorrelation function is well approximated by an
exponential decay as defined in Eq. (20). For simplicity, we
will therefore neglect the long-time tails shown in Fig. 2(a).

Now, the theoretical mean-squared displacement can be
calculated according to Eq. (19) as

〈(δxα )2〉 = 2kBT τ 2

[
exp

(
−�t

τ

)
+ �t

τ
− 1

]
. (21)

As shown in Fig. 2(b), this prediction recovers the mean-
squared displacement very well. There are small deviations
for later times which are not visible in log-log scale. These
deviations are result of the long-time tails of the velocity au-
tocorrelation function mentioned previously. This completes
the definition of the Gaussian distribution function model
using a mean-squared displacement obtained from Eq. (21).
In general, 〈(δxα )2〉 can be also measured from the MD simu-
lations. Later, we compare the Gaussian distribution functions
obtained using these two approaches.

To estimate how good this PDF matches the MD data,
we transform the formulation of P(δx) from continuous to
discrete using a histogram as defined in Eq. (10). This is
realized by integrating the probability distribution function

FIG. 2. (a) Velocity autocorrelation function measured from an
MD simulation compared to an exponential decay with τ ≈ 0.728 as
given in Eq. (20). The long-time tails are typical for two-dimensional
systems [15–19]. (b) The mean-squared displacement directly mea-
sured from an MD simulation is compared to the theoretical value
given in Eq. (21). Notice the two scaling regimes: 〈(δxα )2〉 ∝ �t for
a ballistic regime with small times and 〈(δxα )2〉 ∝ �t2 for a diffusive
regime with large times.

over predefined intervals Xi as

H (Xi ) =
∫ ri+1

ri

P(δx) dδx

= 1

2

[
erf

(
ri

σ
√

2

)
− erf

(
ri+1

σ
√

2

)]
, (22)
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where Xi corresponds to a rage of ri � δx < ri+1 with num-
ber of bins i = 200. erf (ri ) is an error function encountered
in integrating the normal distribution function with standard
deviation σ and mean equal to zero. Using a histogram to
compare two PDFs is a convenient method to analyze pre-
cisely where two or more distributing functions diverge.

To analyze how well the Gaussian distribution function fits
the MD displacements in the transition regime, we consider a
time step of �t = 3.2. In Fig. 1(a), the MD displacements
(black line) are plotted alongside a Gaussian distribution
function PG-T (Xi ) with theoretical mean-squared displace-
ment (red dashed line with empty squares) and a Gaussian
distribution function PG-M (Xi ) with measured mean-squared
displacement (red line with full squares). Both Gaussian dis-
tribution functions give an adequate prediction of the MD
displacements distribution function; however, there are vis-
ible discrepancies at about 5%. Even though the deviations
between the MD data and the proposed Gaussian distribution
functions are small, they are of significant importance when
examining nonequilibrium behavior and looking at small de-
viations from equilibrium.

Since the deviations between the Gaussian PDFs and the
MD simulation data are relatively small, the following func-
tion is used to quantify more precisely the discrepancies:

K (Xi ) = K (R ‖ Q) = R(Xi ) log

[
R(Xi )

Q(Xi )

]
, (23)

where R(Xi ) and Q(Xi ) are probability distributions over an
interval Xi. By performing a sum over all the bins Xi, we
obtain the well-known Kullback-Leibler (KL) divergence [20]
defined as

DKL(R ‖ Q) =
∑

i

R(Xi ) log

[
R(Xi )

Q(Xi )

]
. (24)

The KL divergence measures the discrepancies of one proba-
bility distribution function to another. It is always nonnegative
DKL(R ‖ Q) � 0 or equal to zero if and only if the probability
distribution functions are identical R(Xi ) = Q(Xi ) [20].

In Fig. 1(b), we show the discrepancies between the Gaus-
sian probability distribution functions and the MD data per
bin element Xi measured using Eq. (23). The solid line (black)
depicts K (PMD ‖ PMD) which is zero by construction. The
lines with full or empty symbols (red) display the divergence
between the MD data and the Gaussian distribution functions
with theoretical or measured mean-squared displacement, re-
spectively. Note here that the K (Xi ) measure identifies both
positive and negative deviations (which is necessary, since
the integral of both probability distribution functions is 1)
but as long as there is any deviation, the integral (or sum) in
Eq. (24) always leads to a positive value. We can see a clear
structure in the error of the MD data and the two Gaussian
probability distribution functions. Thus, we conclude that a
single Gaussian distribution function with the same standard
deviation, being measured or theoretically obtained from the
velocity autocorrelation function, differs significantly from
the MD data in the intermediate regime.

The Kullback-Leibler divergence of the PDF models and
the MD data are illustrated in Fig. 3. The divergence is
calculated for a variety of time steps �t ∈ [0.01, 25.6]. In

FIG. 3. Kullback-Leibler divergence results: Empty or full
squares (red) for DKL(PMD ‖ PG-T ) and DKL(PMD ‖ PG-M ) discussed
in Sec. IV; empty or full circles (green) for DKL(PMD ‖ PBDM-T )
and DKL(PMD ‖ PBDM-M ) discussed in Sec. V; empty or full trian-
gles (blue) for DKL(PMD ‖ PWSG-T ) and DKL(PMD ‖ PWSG-λ1 ), and ×
symbols (yellow) for DKL(PMD ‖ PWSG-λ2 ) discussed in Sec. VI. The
DKL(PMD ‖ PMD) divergence (black line) is zero by definition and it
is shown just as a comparison. All displacements PDFs show small
error for very small �t (ballistic regime) and for large �t (diffusive
regime). However, in the transition regime only the PWSG-λ2 (Xi )
distribution function with average number of collisions λ2 gives a
satisfactory description of the measured MD distribution function.
The KL divergence is calculated for all time steps �t ∈ [0.01, 25.6]
considered in this publication.

the current section, we focus on the two KL divergence
measures DKL(PMD ‖ PG-T ) and DKL(PMD ‖ PG-M ) depicted
by lines with full or empty squares (red), respectively. As
expected, for purely ballistic test cases the constructed Gaus-
sian distribution functions match very well the PDF obtained
from MD data. In the transition regime, the estimated di-
vergence increases rapidly and reaches a peak at �t = 3.2,
which indicates that the MD displacement function cannot be
captured using a single Gaussian distribution function. For
�t = 25.6, the K (PMD ‖ PG-M ) divergence is close to zero
and we conclude that the simulation has reached diffusive
regime. For some of the considered time steps, PG-M (Xi )
delivers slightly better results in comparison to PG-T (Xi ) but
the improvement is not significant. For the particular case
of �t = 3.2, there is no visible difference between the two
Gaussian distribution functions, which explains the complete
overlap of the K (PMD ‖ PG-T ) and K (PMD ‖ PG-M ) results
shown in Fig. 1(b).

To obtain a better theoretical formulation for the distribu-
tion of the equilibrium LJ displacements, we need to analyze
rigorously the displacements’ distribution function obtained
from the MD data. One way to distinguish between two
distribution functions is by looking at their moments. By esti-
mating the PDF using the moments of the MD displacements,
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we eliminate the small error introduced by the histogram in
Eq. (10). From the MD simulation data, we calculate the kth
moment as

μk = 〈(δx)k〉. (25)

Since we are looking at an ensemble average of particle dis-
placements, the moments μk can be averaged in space and in
time, leading to the following approximation

μk =
∑T

t=1

∑N
j=1[x j (t + �t ) − x j (t )]k

T N
(26)

with N being the number of MD particles and T being the
number of the coarse-grained time steps. The zeroth moment
is given simply by the normalization as μ0 = 1. The first
moment defines the average velocity uα , which in our sim-
ulation setup is zero and leads to zero first- and third-order
moments μ1 = μ3 = 0 due to symmetry. The second moment
μ2 is known in statistics as the variance or the mean-squared
displacement and is given by μ2 = 〈(δx)2〉. The fourth mo-
ment μ4 = 〈(δx)4〉 is called kurtosis and it is a measure for
the “tailedness” of a probability distribution function.

A probability distribution function is defined uniquely
through an infinite set of moments. Generally, the better
moments match, the better the distributions agree, and the
higher order a moment is the less important it tends to be.
It is therefore reasonable that we examine the agreements of
the moments. The zeroth moment corresponds to normaliza-
tion and always matches. The second moment should always
match, but small errors can occur for theoretical distributions
that use Eq. (21). The fourth-order moments at this point are
unconstrained, and therefore the deviation of this moment
from the experimental one should give a good estimate of the
accuracy of the theoretical distribution. We therefore focus on
the first two nontrivial moments—μ2 and μ4. The moments
μ0, μ1, and μ3 have been measured for completeness, but
their value for LJ particles in equilibrium are expected to be
μ0 = 1 and μ1 = μ3 = 0 for symmetry reasons.

As mentioned previously, the probability distribution func-
tion PG(δx) in Eq. (17) could be calculated using a theoretical
or a measured 〈(δx)2〉. We measured the second and fourth
moments of the Gaussian distribution functions and compared
their deviation from the MD moments as shown in Fig. 4. The
error is calculated in percentage.

The Gaussian distribution function with theoretical mean-
squared displacement fails to reconstruct the second- and the
fourth-order moments. The second-order moment error, de-
picted with a dashed line (black), is relatively small (below
3%). This error rapidly increases with larger time steps and
reaches its highest point at �t = 25.6. The PG-T (δx) fourth-
order moment error is depicted in Fig. 4 as dashed line (red)
with empty squares. The μG-T

4 error is much larger than the
μG-T

2 error and increases very fast in the transition regime.
The second-order moment of PG−M(Xi ) matches the MD

second-order moment by construction. The fourth-order mo-
ment μG-M

4 , however, differs from the measured fourth-order
moment as shown in Fig. 4 (red line with full squares). For
�t ∈ [0.8, 1.6], PG-M (δx) has a slightly larger fourth-order
moment error than PG-T (δx). Unlike μG-T

4 , which does not
decrease with larger time steps, the μG-M

4 error is large in

FIG. 4. Second- and fourth-order moment error calculated be-
tween the MD simulation data and the theoretical probability
distribution functions. The second-order error is equivalent for all
theoretical PDF models. The fourth-order error varies: The PG-T (δx)
and PG-M (δx) errors are discussed in Sec. IV (red lines with empty
or full squares); the PBDM-T (δx) errors discussed in Sec. V (green
lines with circles); and the PWSG-T (δx) error is discussed in Sec. VI
(blue lines with triangles). For some of the proposed distribution
functions the second and the fourth-order moments have been fitted
to the measured MD moments. These PDFs have zero second- and
fourth-order error by construction, and, therefore, they have not been
depicted. The presented data are for the standard parameters used in
the paper and a time step �t = 3.2.

the transition regime and decreases to less than 1% for later
times. We assume that the larger μG-T

4 error is related to the
larger second-order moment error of PG-T (δx). Figure 4 shows
that the μG-M

4 error is very small for early and late times
which indicates that the Gaussian description with measured
mean-squared displacement is valid for extreme ballistic and
diffusive regimes.

Considering these results, we conclude that a single
Gaussian distribution function cannot recover the MD dis-
placements distribution function in a transition regime. In the
following section, we construct a Gaussian mixture model
which can be adjusted to capture better the MD simulation
data.

V. BALLISTIC-DIFFUSIVE DISTRIBUTION FUNCTION

Going back to the assumption made by Parsa et al. [9],
we take a slightly different approach by approximating the
displacements PDF using a Gaussian mixture model with two
components. The first component is a distribution function in
a ballistic regime given by Eq. (14), while the second compo-
nent is a distribution function in a diffusive regime defined in
Eq. (16). We call this formulation ballistic-diffusive mixture
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(BDM) model and define it as

PBDM(δx) = exp

(
−�t

τ

)
Pball(δx)

+
[

1 − exp

(
−�t

τ

)]
Pdiff (δx), (27)

where the ratio �t/τ relates to the average number of colli-
sions within a time interval �t . The mean free time τ can be
evaluated from the velocity autocorrelation function as given
in Eq. (20). As shown in Fig. 2(a), the mean free time is
estimated to τ ≈ 0.728 which agrees well with the measured
velocity autocorrelation function for early times.

In a transition regime, the BDM model receives contri-
butions from the ballistic and from the diffusive Gaussian
distribution functions. The mixing coefficient exp (−�t/τ )
depends on the time step and controls the ratio of the two
probability distribution functions. For infinite small or infinite
large time steps, PBDM(δx) is reduced to a single Gaussian
distribution given by Eq. (14) or Eq. (16), respectively.

For the BDM model in Eq. (27), the ballistic contribu-
tion is fully defined by the simulation setup with standard
deviation equal to 2kBT (�t )2 as given in Eq. (13). For the
diffusive part Pdiff (δx), one could attempt to simply relate
it to the self-diffusion constant D. This does not give the
correct second-order moment though. Instead, we generalize
the diffusive PDF from Eq. (16) as

Pdiff (δx) = 1[
2πσ 2

diff

]d/2 exp

[
− (δx − u�t )2

2σ 2
diff

]
, (28)

where σdiff is a free parameter and can be expressed as a
function of the second-order moment μ2 approximated by
Eq. (21)

μ2 =
∫ ∞

−∞
PBDM(δx)(δx)2 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)2 dδx

+
∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)2 dδx

= exp

(
−�t

τ

)
kBT (�t )2

+
[

1 − exp

(
−�t

τ

)]
σ 2

diff , (29)

with δx ∈ Xi. Now σdiff given by

σdiff =
√

μ2 − exp
(−�t

τ

)
kBT (�t )2[

1 − exp
(−�t

τ

)] . (30)

We examine the dependence of this diffusion constant on �t
in Fig. 6. Our original motivation would demand that D =
σ 2

diff/2�t is a constant. However, this is not the case and we
will see below that the BDM model only provides a modest
improvement over the single Gaussian description. From now
on, we will refer to this distribution function as theoretical
BDM and denote it as PBDM-T (Xi ), since the mean free time
τ and the mean-squared displacement are estimated using the
velocity autocorrelation function.

FIG. 5. (a) Displacements probability distribution functions. The
solid line (black) depicts a PDF obtained from an MD simulation
of LJ particles in equilibrium. The lines with empty or full cir-
cles illustrate the ballistic-diffusive distribution function defined in
Eq. (27) with mean-squared displacement obtained from the velocity
autocorrelation function as given in Eq. (21), and with mean-squared
displacement fitted directly to the MD data, respectively. Only the
data for positive velocities have been depicted due to symmetry.
Panel (b) shows the difference between the distributions per interval
Xi as defined in Eq. (23). The presented data are for the standard pa-
rameters used in the paper and a coarse-grained time step �t = 3.2.
The y axis has not been re-scaled for a better comparison with Fig. 1.

In Fig. 5(a), we show the resulting PBDM-T (Xi ) distribution
function, which resembles well the displacement distribution
function obtained from the MD simulation. To assess the
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FIG. 6. Dependence of the self-diffusion constant to the time
step �t . The diffusion D = σ 2

diff/2�t converges to a constant for
PBDM-T and PBDM-M , however, for early times it is not fixed. This
demonstrates that the BDM models do not capture the hydrodynam-
ics properties.

discrepancies between the theoretical BDM and the MD dis-
tribution function, we calculate K (PMD ‖ PBDM-T ) defined in
Eq. (23). The results are displayed in Fig. 5(b). The theo-
retical ballistic-diffusive probability distribution function with
�t = 3.2 demonstrates a significant improvement in compar-
ison to the single Gaussian distribution function shown in
Fig. 1. However, there are noticeable deviations between the
PDFs which we will investigate further.

The second- and fourth-order moment errors of the BDM
distribution function are depicted in Fig. 4. The error is
denoted as μBDM-T

2 (back dashed line) and μBDM-T
4 (green

line with empty circles). The second-order moment error is
equivalent to μG-T

2 by construction. This error comes from
the long tails of the velocity autocorrelation function shown
in Fig. 2(a), which are not resolved in the theoretical ap-
proximation of the mean-squared displacement. Overall, the
fourth-order moment error of the theoretical BDM model is
smaller than the one calculated for the two Gaussian mod-
els discussed in Sec. IV. However, for later times this error
increases and becomes as large as the theoretical Gaussian
distribution function error.

In order to reduce the error, we construct a second version
of the ballistic-diffusive mixture model where we fit the μ2

and μ4 moments directly to the MD data. This BDM model
does not rely solely on the approximation of the average
number of collisions (�t/τ ), which cannot be measured pre-
cisely and depends on the approximation made for the velocity
autocorrelation function.

In Sec. IV, we defined the mean-squared displacement
in terms of the velocity autocorrelation function given by
Eq. (19). Now, we define the fourth-order moment in a similar

way

μ4 = 〈(δxα )4〉

=
〈∫

dt1v(t1)
∫

dt2v(t2)
∫

dt3v(t3)
∫

dt4v(t4)

〉

=
∫

dt1

∫
dt2

∫
dt3

∫
dt4〈v(t1)v(t2)v(t3)v(t4)〉, (31)

where we need the four-point time correlators for the velocity,
that are derived from the displacements given by Eq. (18).
This integral, if feasible, would allow us to calculate the-
oretically the fourth-order moment and thus obtain a better
approximation of the probability distribution function of dis-
placements. However, we are unaware of a reliable way to
derive this four-point velocity autocorrelation function and
therefore, we measure the second- and the fourth-order mo-
ments directly from the MD simulation instead.

We have to make the following adjustments to the BDM
probability distribution function, so that the second- and the
fourth-order moments match the MD data: First, instead of
calculating the mean-squared displacement from the velocity
autocorrelation function, we use the measured mean-squared
displacement for μ2 in Eq. (30); second, instead of calculat-
ing the mean free path τ from the velocity autocorrelation
function, we define it as a function of μ2 and μ4. Thus, the
PBDM-M (Xi ) distribution function has zero second- and fourth-
order moments error by construction.

The fourth-order moment then has the form

μ4 =
∫ ∞

−∞
PBDM(δx)(δx)4 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)4 dδx

+
∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)4 dδx

= 3

{
σ 4

diff + exp

(
−�t

τ

)[
(kBT (�t )2)2 − σ 4

diff

]}
(32)

with σdiff obtained using the measured second-order moment.
Now, τ is not a constant anymore and is given by

τ = −�t

ln
{ μ4

3 −σ 4
diff

[kBT (�t )2]2−σ 4
diff

} . (33)

Equations (30) and (33) define a system of linear equations
with two unknowns. The system has a unique solution for
σdiff and τ as a function of μ2, μ4, and �t . Thus, a sec-
ond version of the ballistic-diffusive distribution function is
derived and we refer to it as measured ballistic-diffusive dis-
tribution function PBDM-M (Xi ) because it is fully defined by
the MD moments. Details of the derivation are can be found in
Appendix A.

As mentioned earlier, we demand D = σ 2
diff/2�t to be a

constant, however, Fig. 6 illustrates that D converges to a
constant for both BDM models but is not fixed for early time
steps. This demonstrates that the BDM model does not capture
the physical diffusion properties.

The PBDM-M (Xi ) distribution function matches well the MD
data as depicted in Fig. 5(a). The K (PMD ‖ PBDM-T ) results
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are illustrated in Fig. 5(b) and they show that the divergence
between PBDM-M (Xi ) and PMD(Xi ) is smaller in comparison
to the theoretical BDM distribution function. However, there
is still error with well defined structure, which has to be
accounted for.

To gain a better understanding of how the BDM model
relates to the MD data and the Gaussian distribution func-
tions, we calculate the KL divergence for �t ∈ [0.01, 25.6]
as shown in Fig. 3. The dashed line with empty circles (green)
corresponds to the KL divergence DKL(PMD ‖ PBDM-T ), while
the solid line with full circles (green) illustrates the result of
DKL(PMD ‖ PBDM-M ). The divergence is decreased by more
than half compared to the KL divergence obtained from the
Gaussian distribution functions. However, there is still clear
error in the intermediate simulation regime.

Even though, we have fitted the second- and the fourth-
order moments, we still have an unsatisfying approximation
of the probability distribution function of the displacements.
Thus, we conclude that a Gaussian mixture cannot capture the
form of the distribution of the displacements for LJ particles in
equilibrium. The remaining dependence of D = σ 2

diff/2�t on
�t suggests that it is not appropriate to assume that particles
that have undergone just one collision will then follow a
diffusive displacement. Instead, it might be useful to consider
a range of distribution functions occurring after a number of
collisions. We will follow up this idea in the next section.

VI. POISSON WEIGHTED SUM OF GAUSSIAN
DISTRIBUTION FUNCTIONS

The number of collisions within a time interval plays an
important role in the definition of the probability distribution
function of displacements. We can prove this statement by
a thought experiment: Consider a number of particles in a
domain. When the particles undergo a collision their direction
and velocity changes. This in turn means that the collisions
also change the probability of certain displacements to occur.

In this section, we assume that the intermediate ballistic-
diffusive regime could be described as a Poisson weighted
sum of Gaussian distributions. One can consider that after a
time step �t the particles can be divided into groups depend-
ing on the number of collisions they have experienced. We
model these particle collisions using the Poisson probability
distribution function

P(δx) =
∞∑

c=0

e−λ λc

c!
, (34)

where λ is effectively the average number of collisions given
by

λ = �t

τ
, (35)

where τ ≈ 0.728 is the mean free time obtained using
Eq. (20). In this formulation the mean free time is considered
to be an exponential decay constant. In principle the timing
of the collisions should also be random (i.e., given by a
Poisson process), but the resulting integrals over the collision
times do not admit analytical solutions. Assuming that the
collisions are evenly spaced may introduce a small error, but
it makes the resulting displacements after c collisions again

Gaussian, which simplifies the application of our results. For
details on arbitrary collision occurring at random time refer to
Appendix B.

With this approximation the Poisson weighted sum of
Gaussians (WSG) model is then given as

PWSG(δx) =
∞∑

c=0

e−λ λc

c!

√
(λ + 1)√

2π (c + 1)〈(δx)2〉

× exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(36)

for displacements δx in one dimension. In extreme regimes,
being purely ballistic or purely diffusive, the probability dis-
tribution function PWSG(δx) is reduced to a single Gaussian
distribution given by Eq. (14) or Eq. (16), respectively. How-
ever, in an intermediate regime, we will have contributions
from multiple Gaussian distribution functions weighted by a
Poisson distribution function.

By using the definition of the average number of collisions
given in Eq. (35) and obtaining the mean free time and the
mean-squared displacement based on the velocity autocorre-
lation function, we recover a fully defined theoretical version
of the Poisson WSG model which we refer to as PWSG-T(Xi ).
This probability distribution function is illustrated in Fig. 7(a)
by a dashed line with empty triangles (blue). PWSG-T(Xi )
shows a good fit to the distribution function measured di-
rectly from the MD simulation but there are still visible
discrepancies.

In Figs. 7(b)–7(d), the K (PMD ‖ PWSG-T ) function is illus-
trated for three different time steps: �t = 0.01, �t = 0.1, and
�t = 3.2. The results for �t = 0.01 show noise coming from
the averaging procedure as one can see in Fig. 7(b). With
increasing the time step, we start seeing some structure in
the discrepancies between the theoretical weighted sum of
Gaussians and the MD probability distribution function as
shown in Fig. 7(c). For �t = 3.2, one can see that the rate
of discrepancies is as large as the one shown in Fig. 1(b) cal-
culated for the single Gaussian distribution function but with
an opposite sign. This observation suggests that the theoretical
WSG does not capture well the distribution of the measured
MD displacements.

To compare the overall performance of PWSG-T (X ), we cal-
culate its KL divergence as shown in Fig. 3 (blue dashed line
with empty triangles). The DKL(PMD ‖ PWSG-T ) divergence
is slightly smaller than the one measured for the Gaussian
models presented in Sec. IV.

In order to find the source of the large KL diver-
gence, we display the second- and fourth-order moments
error in Fig. 4. The second-order moment error is equiva-
lent to the error calculated for the other theoretical models
(μG-T

2 = μBDM-T
2 = μWSG-T

2 ). The PWSG-T (Xi ) fourth-order mo-
ment error, however, is larger than the fourth-order moment
error of the other two models. This is true especially for
the intermediate regime and explains the poor results of the
theoretical WSG model.

The average number of collisions λ plays an important
role in the definition of the BDM and WSG models. Unfor-
tunately, it is difficult to make a good approximation for λ

based on the velocity autocorrelation function. Therefore, to
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FIG. 7. (a) Displacements probability distribution functions. The solid line (black) depicts a PDF obtained from an MD simulation of LJ
particles in equilibrium. The dashed line (blue) with empty triangles illustrates the PDF of the theoretical WSG defined in Eq. (36) with λ

obtained using the theoretical velocity autocorrelation function from Eq. (20). The solid lines with full squares or x-symbols denote the Poisson
WSG distribution function with average number of collisions λ1 and λ2, respectively. The time step is �t = 3.2 and due to symmetry only the
data for positive velocities has been depicted. Panels (b)–(d) show the difference between the distributions per interval Xi as defined in Eq. (23)
for a variety of time steps: (b) �t = 0.01, (c) �t = 0.1, and (d) �t = 3.2. The presented data are for the standard parameters used in the paper.
The y axis of (a) and (d) have not been rescaled for a better comparison with Figs. 1 and 5.

reduce the error coming from the theoretical average number
of collisions and to eliminate the second- and the fourth-order
moment errors, we match these moments to the corresponding

moments measured directly from the MD simulations. We
derive the mean-squared displacement from the second-order
Gaussian integral

μ2 =
∫ ∞

−∞
PWSG(δx)(δx)2 dδx =

∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(δx)2 dδx (37)
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and the fourth-order moment from the fourth-order Gaussian
integral

μ4 =
∫ ∞

−∞
PWSG(δx)(δx)4 d (δx)

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉

× exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(δx)4 dδx

= 3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1]. (38)

This ensures that the μ2 and μ4 moments are fully recovered
from the WSG model. Now, we can express λ as a function of
these parameters and solve the resulting quadratic equation

3μ2
2

(λ + 1)2
[λ2 + 3λ + 1] − μ4 = 0 (39)

with μ2 = 〈(δx)2〉 for brevity. The quadratic equation has the
following solutions:

λ1,2 =
−9μ2

2 ±
√

3
[
15μ4

2 − 4μ2
2μ4

]+ 2μ4

2
[
3μ2

2 − μ4
] . (40)

Details of the derivation are omitted but they can be found in
Appendix B.

Since the mean-squared displacement and the fourth-order
moment depend wholly on the time step, we plot λ1(�t ),
λ2(�t ), and λ(�t ) from Eq. (35) as a function of �t , which
is depicted in Fig. 8. We see that the analytical expectation
for λ from Eq. (35) is in better agreement with λ2 for large
�t , while for small �t it is in better agreement with λ1. This
is intriguing, and we do not fully understand the significance
of this result. However, we should note here that both limits
�t → 0 and �t → ∞ lead to a simple Gaussian distribu-
tion. For small �t this is the case because there is only the
c = 0 term in the Poisson distribution matters, and for large
�t because the Poisson distribution will be sharply peaked
around c = λ, leading again to a simple Gaussian distribution
function.

PWSG-M (Xi ) has zero second- and fourth-order moment er-
rors by construction, because these moments have been fitted
to the MD simulation data.

The Kullback-Leibler divergence per element Xi for
PWSG-M

λ1
(Xi ) and PWSG-M

λ2
(Xi ) is illustrated in Figs. 7(b)–7(d).

In each figure, K (PMD ‖ PWSG-M
λ1

) and K (PMD ‖ PWSG-M
λ2

) are
depicted for different time step. Figure 7(b) shows the er-
ror of K (PMD ‖ PWSG-M

λ2
) for �t = 0.01 where the error is

very small and is dominated by noise due to the averaging
procedure. For the coarse-grained time step of �t = 0.1, the
error becomes larger and one sees small structures building;
however, the noise is still dominant in the error contribu-
tion. In Fig. 7(d), we show the K (PMD ‖ PWSG-M

λ2
) results for

�t = 3.2. There is a clear structure of the error for both
WSG-M probability distribution functions. In comparison to
the Gaussian and the ballistic-diffusive mixture models, the
WSG model with average number of collisions λ1 and λ2

shows much smaller error.

FIG. 8. Average number of collisions depending on the coarse-
grained time step �t . λ denotes the number of collisions obtained
from the velocity autocorrelation theory given in Eq. (35), which
is used for the calculation of the PWSG-T (Xi ) distribution func-
tion. λ1 and λ2 are solutions of the quadratic equation given in
Eq. (39). These values are used for the calculation of PWSG-M

λ1
(Xi )

and PWSG-M
λ2

(Xi ) distribution functions, respectively. λ1 and λ2 are
obtained using the second and the fourth-order moments measured
directly from the MD simulations.

For better comparison, we calculate the Kullback-Leibler
divergence for PWSG-M

λ1
(Xi ) and PWSG-M

λ2
(Xi ) and display the re-

sults in Fig. 3. The KL divergence for λ1 shows reduced error
for the transition regime. The second solution of Eq. (39) λ2,
however, shows KL divergence close to zero for all time steps.
This is a significant improvement comparing the results using
a single Gaussian or a mixture of two Gaussian distribution
functions.

The WSG probability distribution function strongly de-
pends on the calculation of the average number of collisions.
By using the theoretical average number of collisions obtained
from the velocity autocorrelation function, the KL divergence
DKL(PMD ‖ PWSG-T ) is almost as large as DKL(PMD ‖ PG)
for the Gaussian models. Even fitting the second- and the
fourth-order moments is not sufficient to obtain a good esti-
mation of the PDF obtained from the MD simulation. The KL
divergence for the WSG model with λ1 shows an improvement
by about a factor of 6 but it still large in the transition regime.
PWSG-M (Xi ) with λ2 gives a unique close to zero Kullback-
Leibler divergence owing to the WSG model and the correct
choice of the average number of collisions.

VII. CONCLUSIONS

In this article we have shown that displacement distribu-
tions are only of a Gaussian form for either very small times
or for long times. The transition region, where a different
distribution function is found roughly corresponds to the re-
gion where the motion of particles transitions from ballistic
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to diffusive regime. One signal of the deviation is the fourth-
order moment of the probability distribution function of
displacements.

By allowing for the distribution to be a mixture of two dis-
tribution functions, one corresponding to the ballistic regime,
and a second one to be selected to give the correct second- and
fourth-order moments gives a PDF that agrees better with the
MD distribution function, by about a factor of 3 measured by
the Kullback-Leibler divergence.

Using the same amount of information, i.e., the second-
and fourth-order moments, we found a different distribution
function that gives a nearly perfect fit. This distribution was
motivated by considering the distribution function as a mix-
ture of Gaussian distributions that have undergone a number
of collisions, which are given by a Poisson distribution.

We would like to add a small note of caution here, because
both in internal discussion and in comments from a referee
a pitfall in our thinking has emerged. It is tempting to think
of this transition regime in terms of nonequilibrium phe-
nomena, where non-Gaussian effects are commonly observed.
One might therefore suspect that in this transition regime
there might be a correlation in the velocities of the different
particles that lead to the correlations in the displacements.
However, the system considered in this paper is in equilib-
rium, and there are no correlations (at equal times) between
the momenta of the different particles. Correlations build up
only in time, through the collisions between the particles. So
the distribution of the velocities remains Gaussian at all times,
even when the distribution of the displacements becomes non-
Gaussian in this regime.

This analytical description is very promising for the
MDLG analysis of collision operators in nonequilibrium sys-
tems. It would be very helpful if a theoretical prediction of the
fourth-order moment equivalent to the second-order moment
derived from the velocity time correlation could be achieved,
because then one could obtain the displacement distribution
for all time steps through one measurement. The current ap-
proach still needs measurements of the fourth-order moment
for each time step. Furthermore, the current study was done
for a semidilute system. In future research, we anticipate to
establish up to what density the distribution with Poisson
weighted sum of Gaussians remains a valid description for the
displacement distribution.
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APPENDIX A: BALLISTIC-DIFFUSIVE DISTRIBUTION
FUNCTION

The BDM probability distribution function is defined in
Eq. (27). We derive the standard deviation σdiff from the
second-order Gaussian integral

μ2 =
∫ ∞

−∞
PBDM(δx)(δx)2 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)2 dδx +

∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)2 dδx

=
∫ ∞

−∞

exp
(−�t

τ

)
[2πkBT (�t )2]d/2

exp

[
− (δx)2

2kBT (�t )2

]
(δx)2 dδx +

∫ ∞

−∞

[
1 − exp

(−�t
τ

)]
[
2πσ 2

diff

]d/2 exp

[
− (δx)2

2σ 2
diff

]
(δx)2 dδx

= exp

(
−�t

τ

)
kBT (�t )2 +

[
1 − exp

(
−�t

τ

)]
σ 2

diff (A1)

for one dimension (d = 1). Now, we express the standard deviation of Pdiff (δx) as

σdiff =
√

μ2 − exp
(−�t

τ

)
kBT (�t )2[

1 − exp
(−�t

τ

)] . (A2)

This completes the definition of PBDM−T(Xi ) using μ2 and σdiff recovered by Eqs. (21) and (20), respectively.
In the second version of the BDM model, we match the second- and the fourth-order moments measured directly from

the MD simulations to the probability distribution function. The mean free time τ is not anymore a function of the velocity
autocorrelation function but a free parameter. The derivation of σdiff in Eqs. (A1) and (A2) is still valid. In addition, we fit the
fourth-order moment μ4 using the fourth-order Gaussian integral

μ4 =
∫ ∞

−∞
PBDM(δx)(δx)4 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)4 dδx +

∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)4 dδx
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= 3
√

π

4

⎡
⎢⎣ (2kBT (�t )2)5/2

√
2πkBT (�t )2

exp (− �t
τ )

+
(
2σ 2

diff

)5/2

√
2πσ 2

diff

1−exp (− �t
τ )

⎤
⎥⎦

= 3 exp
(−�t

τ

)
(2kBT (�t )2)2

√
2πkBT (�t )2

4
√

2πkBT (�t )2
+

3
[
1 − exp

(−�t
τ

)](
2σ 2

diff

)2
√

2πσ 2
diff

4
√

2πσ 2
diff

= 3

[
σ 4

diff + exp

(
−�t

τ

)(
(kBT (�t )2)2 − σ 4

diff

)]
. (A3)

Now we derive the mean free time τ as a function of the time step �t , and the second- and the fourth-order moments measured
from the MD simulation

exp

(
−�t

τ

)
=

μ4

3 − σ 4
diff

(kBT (�t )2)2 − σ 4
diff

τ = −�t

ln
[ μ4

3 −σ 4
diff

(kBT (�t )2 )2−σ 4
diff

] . (A4)

Equations(A2) and (A4) define a system of linear equations with two unknowns. After substituting Eq. (A2) in Eq. (A4), we
found a unique solution for τ given by

exp

(
−�t

τ

)
= μ2

2 − μ4

3

kBT (�t )2[2μ2 − kBT (�t )2] − μ4

3

τ = −�t

ln
{

μ2
2− μ4

3

kBT (�t )2[2μ2−kBT (�t )2]− μ4
3

} . (A5)

The mean free time τ is a function of μ2, μ4, �t and the temperature of the gas given in LJ units. The standard deviation σdiff is
recovered using Eq. (A2).

APPENDIX B: POISSON WEIGHTED SUM OF GAUSSIAN DISTRIBUTION FUNCTIONS

Without collisions particles will move with a constant velocity drawn from a Gaussian distribution function. In this case, the
distribution of displacements is given by Pball(Xi ) in Eq. (14). If we ought to calculate the distribution of particle displacements
for particles that undergo a single collision at a random time 0 < tc < �t , we would define a sum of two Gaussian distributed
random numbers with a second moment given by

t2
c kBT + (�t + tc)2kBT = (

�t2 + 2t2
c − 2tc�t

)
kBT, (B1)

which is less than the collisionless case except for tc = 0 and tc = �t . The full distribution function in one dimension (d = 1) is
then

Pδxc (δx) =
∫ ∞

−∞

1[
2πkBT t2

c

]d/2 exp

[
− (δxc)2

2kBT t2
c

]
1[

2πkBT
(
�t2 − 2�t tc + 2t2

c

)]d/2 exp

[
− (δx − δxc)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)]dδδxc

= 1√
2πkBT

(
�t2 − 2�t tc + 2t2

c

) exp

[
− (δx)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)], (B2)

where δxc is the displacement for time 0 to tc, and (δx − δxc) for time tc to �t . This results to a Gaussian distribution function
with total displacement δx for a collision taking place at time tc. To ensure that the time tc is arbitrary and collisions at any time
will be uniformly likely, we average over all possible collision times given by

Pδtc (δx) = 1

�t

∫ �t

0
Pδxc (δx) dtc

= 1

�t

∫ �t

0

1√
2πkBT

(
�t2 − 2�t tc + 2t2

c

) exp

[
− (δx)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)] dtc. (B3)

It is difficult to evaluate this integral analytically, but it can be solved numerically. However, this is the theory for only one
collision occurring at a random time tc. For the Poisson weighted sum of Gaussians in Sec. VI, we consider multiple collisions
at multiple arbitrary times, which leads to high-dimensional integrals, whose solution is out of the scope of this publication.
In addition to the numerical difficulty that multidimensional integrals pose, the resulting probability distribution functions are
non-Gaussian. To avoid this, we assume that the collisions are evenly distributed which may introduce a small error.
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The WSG probability distribution function is defined in Eq. (36) and recovers the second-order moment given by

μ2 =
∫ ∞

−∞
PWSG(δx)(δx)2 dδx

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx)2

2(c + 1)〈(δx)2〉
]

(δx)2 dδx

=
∞∑

c=0

e−λ λc

c!

(c + 1)〈(δx)2〉
λ + 1

= 〈(δx)2〉 e−λ

λ + 1

( ∞∑
c=0

cλc

c!
+

∞∑
c=0

λc

c!

)

= 〈(δx)2〉e−λ λ

λ + 1

( ∞∑
c=0

λc

c!
+ eλ

λ

)

= 〈(δx)2〉. (B4)

Analogously, one derives the fourth-order moment as

μ4 =
∫ ∞

−∞
P(δx)(δx)4 d (δx)

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx)2

2(c + 1)〈(δx)2〉
]

(δx)4 dδx

=
∞∑

c=0

e−λ λc

c!

⎧⎨
⎩

3
√

π
[ 2(c+1)〈(δx)2〉

(λ+1)

]5/2

4
√

2π (c+1)〈(δx)2〉
(λ+1)

⎫⎬
⎭

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=0

λc(c2 + 2c + 1)

c!

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=0

λcc2

c!
+ 2e−λ

∞∑
c=0

λcc

c!
+ e−λ

∞∑
c=0

λc

c!

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=1

λcc

(c − 1)!
+ 2λe−λ

∞∑
c=1

λc−1

(c − 1)!
+ 1

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λλ

d

dλ

∞∑
c=1

λc

(c − 1)!
+ 2λ + 1

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λλ

d

dλ
λeλ + λ + 1

]

= 3〈(δx)2〉2

(λ + 1)2
[e−λλ(eλ + λeλ) + 2λ + 1]

= 3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1]. (B5)

This description allows us to adjust λ, such that the fourth-order moment does converge to the measured MD value. We express
λ as a function of �t with mean-squared displacement and fourth-order moment measured directly from the MD simulation

3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1] − μ4 = 0. (B6)

After solving this quadratic equation, we obtain the following solutions:

λ1,2 =
−9μ2

2 ±
√

3
[
15μ4

2 − 4μ2
2μ4

]+ 2μ4

2
[
3μ2

2 − μ4
] . (B7)
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APPENDIX D

Publication 3: Molecular dynamics lattice gas

equilibrium distribution function for Lennard-Jones

particles

The molecular dynamics lattice gas method maps a molecular dynamics simulation onto

a lattice gas using a coarse-graining procedure. This is a novel fundamental approach to

derive the lattice Boltzmann method by taking a Boltzmann average over the molecular

dynamics lattice gas. A key property of the lattice Boltzmann method is the equilib-

rium distribution function, which was originally derived by assuming that the particle

displacements in the molecular dynamics simulation are Boltzmann distributed. How-

ever, we recently discovered that a single Gaussian distribution function is not sufficient

to describe the particle displacements in a broad transition regime between free particles

and particles undergoing many collisions in one time step. In a recent publication, we

proposed a Poisson weighted sum of Gaussians which shows better agreement with the

molecular dynamics data. We derive a lattice Boltzmann equilibrium distribution func-

tion from the Poisson weighted sum of Gaussians model and compare it to a measured

equilibrium distribution function from molecular dynamics data and to an analytical ap-

proximation of the equilibrium distribution function from a single Gaussian probability

distribution function.
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1. Introduction
The molecular dynamics lattice gas (MDLG) method [1,2] uses a coarse-graining procedure
to establish a direct link between microscopic methods—in particular, molecular dynamics
(MD) simulation, and mesoscale methods such as lattice gas (LG) [3,4] and lattice Boltzmann
methods (LBM) [5,6]. The MDLG fully relies on MD data and as such it rigorously recovers
the hydrodynamics of the underlying physical system, and can be used to verify the behaviour
and examine the properties of the LG or the LBM methods directly without using the standard
kinetic theory approach. Aspects that can be examined include fluctuating [7–10], thermal [11,12],
multi-phase and multi component systems [5,13–15].

A key feature in the LBM is the equilibrium distribution function. The LBM equilibrium
distribution was originally derived by analogy to the continuous Boltzmann equation, where
the equilibrium distribution for the velocities is a Maxwell Boltzmann distribution. Similarly, the
LBM moments of the discrete velocity distribution were matched, to the degree possible, with the
velocity moments of the Maxwell Boltzmann distribution. In the alternative derivation of the LBM
from MD, it was shown that these previously postulated equilibrium distributions are indeed, at
least approximately, consistent with the MDLG approach for specific discretization combinations
for lattice and time spacing.

In the original MDLG calculation of the equilibrium distribution by Parsa et al. [1], it was
assumed that the particle displacements in the MD simulation are also Boltzmann distributed.
This assumption gave an adequate prediction of the global equilibrium distribution function of
the LBM. However, later on by examining more carefully the equilibrium system, we noticed
small deviations (up to 5%) between the analytically predicted and the measured equilibrium
distribution functions. These deviations were traced back to the prediction of the one-particle
displacement distribution function. In Pachalieva et al. [16], we proposed a correction of the
displacement distribution function, which shows that a dilute gas with area fraction of φ = 0.0784
and temperature of 20 LJ is better approximated by a Poisson weighted sum of Gaussians (WSG)
probability distribution function. This probability distribution function takes into account that
after a time step �t the particles can be divided into groups depending on the number of collisions
they have experienced. In principle, the timing of the collisions should be random (given by a
Poisson process), however, the resulting integrals over the collision times do not allow for an
analytical solution. Thus, we assume that the particle collisions are evenly spaced, which may
introduce a small error but it makes the resulting displacements again Gaussian distributed.
For details, please refer to [16]. The Poisson weighted sum of Gaussians probability distribution
function also delivers better results for a purely ballistic and purely diffusive regimes (for very
small or very large time steps, respectively), where the Poisson WSG formulation is reduced to
a single Gaussian. In the current publication, we show that the original premise of the paper
[16] does indeed hold. We derive the MDLG equilibrium distribution function from the Poisson
WSG one-particle displacement function and show that it compares favourably to a measured
equilibrium distribution function from MD simulation, whereas the single Gaussian equilibrium
distribution function is a much poorer prediction. Our findings show that the Poisson WSG
approximates the measured equilibrium distribution function significantly better.

The rest of the paper is summarized as follows: we briefly describe the MDLG analysis method
in §2. In §3, we derive the equilibrium distribution function from one-particle displacement
function. In §3a, we show how to derive the equilibrium distribution function when the
distribution is given by a single Gaussian and in §3b when the displacements are instead
distributed according to a Poisson WSG one-particle displacement function. In §4, we give a
detailed description of the MD simulation set-up used to obtain the MD data. The MD trajectories
are later used to validate the theoretical solutions of the equilibrium distribution function.
In §5, we compare the equilibrium distribution function obtained on one hand from theory,
using either a single Gaussian or the novel Poisson weighted sum of Gaussians probability
distribution function, and on the other hand, measured from MD data. Our analysis shows
significant improvement of the equilibrium distribution function analytical prediction when
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the Poisson WSG model is used. Finally, in §6, we give a brief conclusion and suggestions for
future work.

2. Molecular dynamics lattice gas method
In the MDLG analysis, we impose a lattice onto an MD simulation of Lennard–Jones (LJ) particles
and track the migration of the particles from one lattice position to another with displacement vi
after a time step �t as shown in figure 1a. A schematic of the lattice is given in figure 1b where
the numbers 0 to 49 represent the i index of the occupation number of a D2Q49 velocity set. We
run MD simulations and analyse the particles’ trajectories to obtain MDLG occupation numbers
defined as

ni(x, t) =
∑

j

�x[xj(t)]�x−vi [xj(t − �t)], (2.1)

with the delta function �x[xj(t)] = 1, if particle x is in the lattice cell at time t, and �x[xj(t)] = 0,
otherwise. Here, the xj(t) is the position of the j-th particle at time t and vi is the particle
displacement, which in the MDLG description is strongly correlated to the lattice velocities.
We can now cast the evolution of the occupation numbers ni in the form of an LG evolution
equation as

ni(x + vi, t + �t) = ni(x, t) + Ξi, (2.2)

by defining the LG collision operator Ξi in terms of the occupation numbers as

Ξi = ni(x + vi, t + �t) − ni(x, t). (2.3)

The molecular dynamics lattice Boltzmann (MDLB) distribution function is defined as a
Boltzmann ensemble average of the MDLG occupation numbers ni and it is given by

fi = 〈ni〉neq. (2.4)

By taking the non-equilibrium ensemble average of equation (2.2), we obtain the MDLB evolution
equation

fi(x + vi, t + �t) = fi(x, t) + Ωi, with Ωi = 〈Ξi〉neq, (2.5)

where Ωi is the MDLB collision operator. A key element of the LBM is the global equilibrium
distribution function, which in the MDLB context is defined as an average of the LG densities
ni over the whole MD domain and all iterations of an equilibrium MD simulation. The MDLB
equilibrium distribution function is given by

f eq
i = 〈ni〉eq

=
〈∑

j

�x[xj(t)]�x−vi [xj(t − �t)]

〉
eq

= M
∫

dx1

∫
dδx1 P(1),eq(x1, δx1)�x[x1]�x−vi [x1 − δx1], (2.6)

where M is the total number of particles and P(1),eq is the one-particle displacement distribution
function in equilibrium. This allows us to obtain the equilibrium distribution function f eq

i
analytically from the one-particle displacements probability distribution function (PDF).

3. Derivation of the molecular dynamics lattice Boltzmann equilibrium
distribution function

In the MDLB formulation, the equilibrium distribution function depends solely on the one-
particle displacement distribution function. Thus, knowing P(1),eq is crucial for predicting the
equilibrium distribution function. In the following subsections, we derive the equilibrium
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47 41 33 27 31 39 45

43 23 17 11 15 21 37

35 19 7 3 5 13 29

26 10 2 0 1 9 25

30 14 6 4 8 20 36

38 22 16 12 18 24 44

46 40 32 28 34 42 48

(b)(a)

Figure 1. (a) Sketch of the MDLG analysis. A lattice is superimposed onto the MD simulation domain. The movement of the
particles is tracked from the central node using their MD trajectories. The circles (green) represent the position of the particles
at time t − �t and the stars (red) are their respective positions at time t. Using the particle trajectories and the imposed
lattice, the occupation number ni is defined as given in equation (2.1). The black arrows are the lattice velocities. Only the lattice
velocities which have at least one particle within their area (i.e. non-zero occupation number) are shown. (b) Schematic of the
D2Q49 lattice with the numbering convention for the lattice velocities in two dimensions. The central point 0 corresponds to the
zeroth-velocity v0 = (0, 0) and the rest of the velocities are given as a vector connecting the central point and the lattice point
in question as shown in (a). The velocities are colour-coded depending on their length. (Online version in colour.)

distribution function from (a) a single Gaussian probability distribution function and (b) from
a Poisson weighted sum of Gaussians probability distribution function.

(a) Single Gaussian distribution model
In Parsa et al. [1], a good approximation of the MDLB equilibrium distribution function is given
by a single Gussian in one dimension (d = 1)

PG
α (δx) = 1

[2π〈(δxα)2〉]d/2
exp

[
− (δxα − uα�t)2

2〈(δxα)2〉

]
, (3.1)

with displacements δxα , second-order moment 〈(δxα)2〉 and mean velocity uα . The solution
factorizes for higher dimensions and it is given by

PG(δx) =
d∏

α=1

PG
α (δx). (3.2)

Following equation (2.6), the equilibrium distribution function can be expressed as

f eq,G
i
ρeq =

d∏
α=1

f eq,G
i,α , (3.3)

with ρeq being the mass density. The equilibrium distribution function f eq,G
i,α in one dimension is

given by

f eq,G
i,α = N

(
e−((ui,α−1)2/2a2) − 2 e−(u2

i,α/2a2) + e−((ui,α+1)2/2a2)
)

+ ui,α − 1
2

×
[

erf
(

ui,α − 1

a
√

2

)
− erf

(
ui,α

a
√

2

)]
+ ui,α + 1

2

[
erf
(

ui,α + 1

a
√

2

)
− erf

(
ui,α

a
√

2

)]
, (3.4)
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with

a2 = 〈(δxα)2〉
(�x)2 and N = a√

2π
, ui,α = vi,α − uα , (3.5)

where 〈(δxα)2〉 is the mean-squared displacement, �x is the lattice size, and uα is the mean
velocity. We have performed MD simulations with mean velocity set to zero, however, we could
obtain results for different mean velocities uα by applying a Galilean transformation. We have
set the value of a2 to approximately 1/6 for which the MDLG results agree with the values of the
D2Q9 lattice Boltzmann weights. For details regarding the derivation of the Gaussian equilibrium
distribution function, please refer to [1].

Even though this formulation shows very good agreement with the measured equilibrium
distribution function from MD simulations, under more careful investigation we found that
there are discrepancies of up to about 5% for certain parameter regimes. This means that the
displacement distribution function cannot be fully captured by a single Gaussian and a more
complex distribution function has to be applied.

(b) Poisson weighted sum of Gaussians model
In Pachalieva et al. [16], we have introduced a correction of the displacements PDF proposed by
Parsa et al. [1] using a Poisson weighted sum of Gaussians (WSG) instead of a single Gaussian
distribution function. The Poisson WSG is given by

PWSG(δx) =
∞∑

c=0

e−λ λc

c!
Pc(δx), (3.6)

where the Pc(δx) probability distribution function also factorizes for higher dimensions
equivalently to the single Gaussian distribution function as given in equation (3.2). The one-
dimensional Poisson weighted sum of Gaussians probability distribution function Pc

α(δx) is then
given by

Pc
α(δx) =

[
(λ + 1)

2π (c + 1)〈(δxα)2〉
]d/2

exp

[
− (λ + 1)(δxα − uα�t)2

2(c + 1)〈(δxα)2〉

]
, (3.7)

where δxα is the displacement in one dimension, 〈(δxα)2〉 is the second-order moment, uα is the
mean velocity, c is the number of occurrences and λ is the average number of collisions. The fact
that the new displacement distribution function is just a sum of Gaussians makes the calculation
of the new MDLG equilibrium functions surprisingly simple. Thus, we obtain

f eq
i =

∞∑
c=0

e−λ λc

c!
f c,eq
i . (3.8)

The f c,eq
i , similar to equation (3.3), is given by

f c,eq
i
ρeq =

d∏
α=1

f c,eq
i,α , (3.9)

where ρeq is the mass density and f c,eq
i,α in one dimension is given by

f c,eq
i,α =

{
Nc

2
√

π

(
e−((ui,α−1)2/N2

c ) − 2 e−(u2
i,α/N2

c ) + e−((ui,α+1)2/N2
c )
)

+ (ui,α − 1)
2

[
erf
(

(ui,α − 1)
Nc

)
− erf

(
ui,α

Nc

)]
+ (ui,α + 1)

2

[
erf
(

(ui,α + 1)
Nc

)
− erf

(
ui,α

Nc

)]}
,

(3.10)

with

Nc =
√

2a2(c + 1)
λ + 1

(3.11)
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where a2 and ui,α are defined in equation (3.5). The one-dimensional equilibrium distribution
function given in equation (3.10) is similar to the single Gaussian equilibrium distribution
function in equation (3.4), however, their weighting factors are not the same. The equilibrium
distribution function in equation (3.10) also takes into account the average number of collisions
λ, which needs to be defined.

One way to approximate the average number of collisions λ is by using the velocity auto-
correlation function. However, the auto-correlation function is just a theoretical approximation
and is not exact. To eliminate the second-order and the fourth-order moment errors, we match
these moments to the corresponding ones measured directly from the MD simulations. The
second-order moment of the Poisson WSG one-particle distribution function can be derived from
the second-order Gaussian integral

μ2 =
∫∞

−∞
PWSG(δx)(δx)2 dδx

=
∫∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

(
− (λ + 1)(δx − u�t)2

2(c + 1)〈(δx)2〉

)
(δx)2 dδx

= 〈(δx)2〉. (3.12)

Analogously, we obtain the fourth-order moment from the fourth-order Gaussian integral

μ4 =
∫∞

−∞
PWSG(δx)(δx)4 d(δx)

=
∫∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

(
− (λ + 1)(δx − u�t)2

2(c + 1)〈(δx)2〉

)
(δx)4 dδx

= 3〈(δx)2〉2

(λ + 1)2

[
λ2 + 3λ + 1

]
. (3.13)

By solving the quadratic equation for λ

3μ2
2

(λ + 1)2

[
λ2 + 3λ + 1

]
− μ4 = 0 (3.14)

we find the following solutions:

λ1,2 =
−9μ2

2 ±
√

3[15μ4
2 − 4μ2

2μ4] + 2μ4

2[3μ2
2 − μ4]

. (3.15)

where μ2 = 〈(δx)2〉 and μ4 are the second- and fourth-order displacement moments, respectively.
We use the moments measured from MD simulations, which ensures that the Poisson weighted
sum of Gaussians model has the same μ2 and μ4 moments. In Pachalieva et al. [16], we show
that λ2 provides an optimal solution, which we use to derive the Poisson WSG equilibrium
distribution function. For detailed derivation and discussion of the Poisson WSG displacement
distribution function, please refer to Pachalieva et al. [16].

Meaningfully comparing two probability distribution functions is a non-trivial task since
often there are significant deviations in the tails of the distribution that would show up in a
simpler measure like dividing the distributions. However, since the tails carry little weight, these
deviations are not relevant for the system. In Pachalieva et al. [16], we used the Kullback–Leibler
(KL) divergence, a tool commonly used in machine learning. The element-wise definition of this
function is given by

K(Xi) = K(R ‖ Q) = R(Xi) log
(

R(Xi)
Q(Xi)

)
, (3.16)
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Figure 2. (a) Displacements probability distribution functions. The symbols (red) depict a PDF obtained from anMD simulation
of LJ particles in equilibrium. The line (black) illustrates a Gaussian probability distribution function defined in equation (3.1)
with mean-squared displacement fitted directly to the MD data. The dashed line (blue) represents the Poisson WSG obtained
from equation (3.6). Only the data for positive velocities has been depicted due to symmetry. (b) The difference between the
distributions per interval Xi as defined in equation (3.16). The presented data are for the standard parameters used in the paper
and a coarse-grained time step�t = 3.2. (Online version in colour.)

where R(Xi) and Q(Xi) are probability distributions over an interval Xi. By performing a sum over
all the bins Xi, we obtain the KL divergence [17] defined as

DKL(R ‖ Q) =
∑

i

R(Xi) log
(

R(Xi)
Q(Xi)

)
. (3.17)

The KL divergence measures the discrepancies of one probability distribution function to another.
It is always non-negative DKL(R ‖ Q) ≥ 0 or equal to zero if and only if the probability distribution
functions are identical R(Xi) = Q(Xi).

In figure 2a, we see the true probability distribution function obtained from the MD data
PMD(Xi), the Gaussian probability distribution function PG(Xi), and the Poisson WSG distribution
function PWSG(Xi). There is a visible divergence between the Gaussian and the other two
distribution functions. We measured the element-wise KL divergence K(Xi), as defined in
equation (3.16), for PG(Xi) compared to the MD data and the Poisson WSG distribution function
as shown in figure 2b. The results suggest that even though the Gaussian and the Poisson WSG
probability distribution functions have the same second moment, their deviations in the fourth-
and higher-order moments influence strongly the form of the distribution function. In §5, we
show how these deviations effect the LBM equilibrium distribution function.

4. Simulations set-up
All measured data, from probability distribution functions of the displacements PMD(Xi) to

the equilibrium distribution function f eq,MD
i depicted in figures 3–5, are obtained from MD

simulations. To perform the MD simulations we used the open-source MD framework LAMMPS
[18,19] developed by Sandia National Laboratories. The LAMMPS package uses the Velocity-
Verlet integration scheme. The MD simulations consist of particles interacting with the standard
6-12 LJ intermolecular potential given by

VLJ = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (4.1)
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13–20
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21–24

Figure 3. (a) Estimated equilibrium distribution functions f eq,∗i obtained either from MD simulation data (f eq,MDi ) depicted
with symbols, theoretical solution using a single Gaussian distribution function (f eq,Gi ) depicted with dotted lines or theoretical
solution using Poisson WSG (f eq,WSGi ) depicted with dashed lines. (b) Our numbering for the velocities in a D2Q25 lattice. The
equilibrium distribution function f eq,∗i values are colour coded and each colour represents one of the six sets of equilibrium
distribution function contributions. Here, the asterisk (∗) corresponds to the variety of methods used to obtain an equilibrium
distribution function: measured from MD simulation, single Gaussian analytical solution and Poisson WSG analytical solution.
Note that by using a simple-minded direct comparison on a log-scale (rather than a Kulbeck–Leibler measure) practically
irrelevant errors for very small occupation numbers stand out here. (Online version in colour.)

with σ being the distance at which the inter-particle potential goes to zero, r is the distance
between two particles, and ε is the potential well depth. The particle mass and the LJ particle
diameter are set to m = 1 and σ = 1, respectively. The LJ timescale is given by the time needed for
a particle with kinetic energy of half the potential energy well ε to traverse one diameter σ of an
LJ particle. This can be also expressed as

τLJ =
√

mσ 2

ε
. (4.2)

The thermal time scale corresponds to the time it takes a particle with the kinetic energy of 1/2 kBT
to transverse the diameter σ of a LJ particle, which is given by

τth =
√

mσ 2

kBT
. (4.3)

We executed MD simulations with temperature of 20 in the LJ units defined above. This
corresponds to a thermal time scale smaller than the LJ time scale τLJ by factor of 1/

√
20 ≈ 0.22.

The number of particles in each simulation has been fixed to N = 99 856 which fills a two-
dimensional square with length L = 1000σ . The area fraction φ of the domain is calculated from
the area of the circular LJ particles multiplied by the number of particles divided by the area
of the domain, where the diameter of the circular LJ particle is given by σ . The MD simulations
considered in this publication have an area fraction of φ = 0.078387. We initialized the simulations
using homogeneously distributed particles with kinetic energy corresponding to temperature
equal to 20 in LJ units. This corresponds to a dilute gas with high temperature. The temperature
is way above the critical temperature for liquid-gas coexistence of Tc = 1.3120(7), and the density
is way below the critical density ρc = 0.316(1) [20]. We focus our attention to MD simulations of a
fairly dilute gas in equilibrium, since the assumption that the collision times is Poisson distributed
is correct only for dilute systems.
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Figure 4. (a) First layer equilibrium distribution functions f eq,∗0−8 scaled to the Gaussian equilibrium distribution function. The
equilibrium distribution functions are obtained either from MD simulation data (f eq,MD0−8 ), theoretical solution using a single
Gaussian distribution function (f eq,G0−8) or theoretical solution using Poisson WSG (f

eq,WSG
0−8 ). (b) Schematic representation of the

D2Q25 lattice. The equilibrium distribution function f eq,∗i values are colour coded and each colour represents one of the six sets
of equilibriumdistribution function contributions. Here, the asterisk (∗) corresponds to the variety ofmethods used to obtain an
equilibriumdistribution function:measured fromMDsimulation, singleGaussian analytical solution andPoissonWSGanalytical
solution. (Online version in colour.)
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Figure 5. (a) Second layer equilibrium distribution functions f eq,∗9−24 scaled to the Gaussian equilibrium distribution function.
The equilibrium distribution functions are obtained either fromMD simulation data (f eq,MD9−24 ), theoretical solution using a single
Gaussian distribution function (f eq,G9−24) or theoretical solution using Poisson WSG (f

eq,WSG
9−24 ). (b) Schematic representation of the

D2Q25 lattice. The equilibrium distribution function f eq,∗i values are colour coded and each colour represents one of the six sets
of equilibriumdistribution function contributions. Here, the asterisk (∗) corresponds to the variety ofmethods used to obtain an
equilibriumdistribution function:measured fromMDsimulation, singleGaussian analytical solution andPoissonWSGanalytical
solution. (Online version in colour.)
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Table 1. Initialization parameters of the molecular dynamics simulations performed using LAMMPS framework. For all MD
simulations, the MD step size is fixed to 0.0001τLJ and the number of coarse-grained iterations is 2000.

MD output total MD
frequency time

�t �x lx (1/τLJ) (τLJ)

0.3911 4 250 3911 782.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5000 5 200 5000 1000.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.5626 5.5 180 5626 1125.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6927 6.6(6) 150 6927 1385.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.9009 8.3(3) 120 9009 1801.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1261 10 100 11 261 2252.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4994 12.5 80 14 994 2998.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6342 13.3(3) 75 16 342 3268.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.0338 15.625 64 20 338 4067.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.9280 20 50 29 280 5856.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1821 25 40 41 821 8364.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1751 31.25 32 61 751 12 350.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since the MD simulations correspond to a dilute high temperature gas, the particle velocities
will also be larger than for a typical MD simulation. Thus, we set the MD step size to 0.0001 τLJ
which is considerably smaller to ensure high accuracy of the MD data. We define a dimensionless
coarse-grained time step �t being the product of the MD step size and the MD output frequency
shown in table 1. The time step �t is chosen such that the MD simulations are restricted to the
ratio of the mean-squared displacement and the squared lattice size being set to

a2 = 〈(δx)2〉
(�x)2 ≈ 0.1611, (4.4)

this corresponds to the parameter a2 given in equation (3.5), which has also been used in earlier
publications [1,21]. By fixing the value, we ensure that most of the LJ particles in equilibrium
will travel up to one lattice space which corresponds to a D2Q9 LBM. To verify that the

Poisson WSG equilibrium distribution function f eq,WSG
i approximated the MD data better than

the single Gaussian equilibrium distribution function f eq,G
i across the length scale, from ballistic

to diffusive regime, we vary the coarse-grained time step �t ∈ [0.3911, 6.1751] and the lattice size
�x ∈ [4, 31.25] of the executed simulations. An overview of the MD simulation set-up is given in
table 1. The number of lattice points lx varies from 250 to 32 depending on the coarse-grained time
step �t. For each coarse-grained time step �t we performed 2 000 iterations which corresponds to
total MD time of 782.2 τLJ to 12 350.2 τLJ for the smallest and largest coarse-grained time step �t,
respectively. In order to bring the MD simulations to equilibrium state before we start collecting
data, the initial 3 000 000 iterations of each simulation were discarded. The discarded iterations
are not included in table 1 for clarity.

The MD simulation set-up characterizes a hot dilute gas in equilibrium with average velocity
uα fixed to zero

Nuα =
N∑

j=1

vj,α = 0, (4.5)

where N is the number of LJ particles.
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We performed standard MD simulations without thermostat. In the LAMMPS framework, this
is called NVE integration. The microcanonical ensamble NVE is characterized by constant number
of particles (N), constant volume (V) and constant energy (E).

5. Results
In order to obtain a measured equilibrium distribution function, we post-process the collected
MD data using the MDLG analysis tool. The MD domain is overlapped with a lattice and we trace
the migration of the particles over time from one lattice to another. By doing this, we obtain the
MDLG occupation numbers ni(x, t) as defined in equation (2.1) which after sufficient averaging

deliver the MDLB equilibrium distribution function f eq,MD
i as defined in equation (2.6).

The analytical models of the equilibrium distribution function defined in §3 depend only on
the choice of the one-particle displacement distribution function. Since we define two different
one-particle distributions, we expect to see also changes in the respective equilibrium distribution
function derived from them, even though their second-order moments are equivalent. However,
a non-trivial question remains how the migration of particles from one node to another changes
within a lattice.

To gain a better understanding, we calculate the equilibrium distribution function for an
extended D2Q25 lattice which corresponds to two neighbouring cells in X- and Y-directions for
a two-dimensional domain. A schematic of the D2Q25 lattice is given in figure 3b. In equilibrium
state with zero initial velocity, one distinguishes six sets of equilibrium distribution function
contributions: f eq,∗

0 , f eq,∗
1−4 , f eq,∗

5−8 , f eq,∗
9−12, f eq,∗

13−20 and f eq,∗
21−24, where each set has a unique displacement

length from the central lattice. When measuring the equilibrium distribution function f eq,MD
i from

the MD simulations, we average over the number of lattices for each set to obtain a symmetric

probability distribution function. It is worth mentioning that the deviations of the f eq,MD
i values

within each set are relatively small.
The MDLG analysis was introduced for a D2Q49 lattice including a third layer of neighbouring

cells, however, the number of considered neighbouring layers depends solely on the problem
at hand. For a simulation in equilibrium with zero velocity, and a parameter a2 as defined in
equation (4.4) being set to approximately 0.1611, we obtain an equilibrium distribution function
which is symmetric and has significant contributions up to D2Q25 lattice nodes.

The estimated equilibrium distribution function f eq,∗
i for a variety of coarse-grained time

steps �t ∈ [0.3911, 6.1751] is shown in figure 3a. The equilibrium distribution function f eq,∗
i ,

as mentioned above, is obtained from three different methods: f eq,MD
i is measured from

an MD simulation, f eq,G
i is theoretically estimated using a single Gaussian distribution

function and f eq,WSG
i is theoretically estimated from a Poisson WSG distribution function. The

theoretical equilibrium distribution function models are described in detail in §3a and 3b,
respectively.

In figure 3a, one can see that the largest equilibrium distribution function contributions
are coming from the first layer neighbours f eq,∗

0−8 . These nodes are approximated very well by
both theoretical models, please refer to figure 4a for a detailed comparison of the measured
and the theoretical f eq,∗

0−8 . The next equilibrium distribution function groups f eq,∗
9−12 and f eq,∗

13−20 are
significantly smaller than f eq,∗

0−8 with one to two order of magnitude. For f eq,∗
9−12 and f eq,∗

13−20, we see
that the deviations of the measured and the theoretical single Gaussian model become larger. The
Poisson WSG f eq,∗

9−20 shows a very good agreement with the measured equilibrium distribution
function. The diagonal nodes in the second layer f eq,∗

21−25 are even smaller and their value could be

considered negligible. However, the measured equilibrium distribution function f eq,MD
i shows a

good agreement with the theoretical Poisson WSG f eq,WSG
i even for very small contributions such

as f eq,∗
21−25. This suggests that these contributions even though really small are not just noise but

theoretically justified.
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Figures 4a and 5a depict the equilibrium distribution functions scaled to the single Gaussian
equilibrium function. They show how the measured from MD simulation and the novel Poisson
WSG equilibrium distribution functions deviate from the single Gaussian. The first layer
equilibrium distribution function values are shown in figure 4a. These nodes have the largest
contribution to the total equilibrium distribution function.

Figure 4a shows more particles staying at node zero and a depression for the first neighbouring
layer (nodes 1 to 8). This very same feature repeats itself in figure 2b. The PWSG

λ2 log(PWSG
λ2 /PG)

values depicted in blue show that the number of small displacements is enhanced Xi/�x ∈ [0, 0.3]
while the number of Xi/�x ∈ [0.3, 1.0] displacements is suppressed.

The second layer equilibrium distribution function values are depicted in figure 5a. As one
can see in figure 2b, there is an enhanced probability of large displacements Xi/�x ∈ [0.9, 1.6]

which corresponds to the larger values of f eq,WSG
9−24 in figure 5a. The deviations (up to approx. 4.5%)

from the theoretical single Gaussian equilibrium distribution function are also larger compared

to the first layer nodes f eq,WSG
0−8 . Since the f eq,WSG

9−24 true values are smaller by multiple orders

of magnitude than the first layer neighbours f eq,WSG
0−8 these deviations are almost irrelevant for

the total equilibrium distribution function, even though they are larger. Nevertheless, figure 5a
shows clearly that the Poisson WSG equilibrium distribution function captures the MD data more
precisely.

6. Outlook
In this article, we have derived a better approximation for the MDLG equilibrium distribution
function. It deviates from the previous best approximation by Parsa et al. [1] in a broad transition
region between the ballistic and diffusive regime of random particle displacements.

Despite the fact that these deviations are small, we expect them to be of great importance in
the analysis of non-equilibrium systems, particularly systems not too far from equilibrium, as
is typical in hydrodynamic systems. What we have outlined here is the equilibrium behaviour
of the MDLG mapping of an MD simulation onto an LG. The key interest, however, lies in
the non-equilibrium predictions of this mapping. In future research, we will investigate MDLG
predictions for LG and lattice Boltzmann collision operators. In such systems, we expect to find
only small deviations from local equilibrium, and to quantify these small deviations it is essential
to have a very good understanding of the equilibrium behaviour of the MDLG mapping.
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the link to any underlying physical reality putting into question the special place of lat-
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over-relaxation arises naturally from physical lattice gases derived as a coarse-graining
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The success of lattice Boltzmann methods has been attributed to their mesoscopic nature as
a method derivable from a physically consistent microscopic model. Original lattice Boltzmann
methods were Boltzmann averages of an underlying lattice gas. In the transition to modern lattice
Boltzmann method, this link was broken, and the frequently used over-relaxation to achieve high
Reynolds numbers has been seen as lacking physical motivation. While this approach has undeniable
utility, it appeared to break the link to any underlying physical reality putting into question the
special place of lattice Boltzmann methods among fluid simulation methods. In this letter, we
show that over-relaxation arises naturally from physical lattice gases derived as a coarse-graining
of molecular dynamics simulations thereby re-affirming the firm foundation of lattice Boltzmann
methods in physical reality.

Lattice Boltzmann methods originated from the revo-
lutionary lattice gas method developed by Frisch, Has-
slacher and Pomeau [1]. In lattice gases, local collisions
redistribute particles according to collision rules that con-
serve particle number and local momentum. The effec-
tiveness of collisions can be tuned to some degree [2, 3],
and the viscosity is reduced as a result. However, such
collisions bring the simulations at most to a state of local
equilibrium.

To derive the macroscopic behavior of these systems,
one first takes a non-equilibrium ensemble average of the
lattice gas method, which results in a lattice Boltzmann
equation [2]. This averaged lattice Boltzmann equation
can be simulated directly, resulting in a noise-free simula-
tion method [4]. This increases computational efficiency,
since additional averaging over lattice gas results is no
longer required, which counteracts the higher computa-
tional cost arising from transitioning from a Boolean lat-
tice gas to a lattice Boltzmann method requiring real
numbers. Instead of directly averaging the lattice gas
collision terms, as was done by McNamara et al. [4], one
can relax the distributions towards local equilibrium dis-
tribution function [5], resulting in the BGK approach.

The original lattice gas models were Boolean lat-
tice gases, i.e. only zero or one particle were allowed
per occupation number, leading to Fermi-Dirac, rather
than Boltzmann equilibrium distribution [2]. This im-
plied that the resulting hydrodynamic equations had
mildly Galilean invariance violating terms [2]. Lattice
Boltzmann methods, that abandoned their direct con-
nection to the underlying lattice gas by imposing a
Maxwell-Boltzmann equilibrium distribution with the
BGK collision term, removed those velocity dependent
terms in the Navier-Stokes equation [6]. They are given

by

fi(r + vi∆t, t+ ∆t) = fi(r, t) + Ωi. (1)

The BGK collision operator is

Ωi =
∑

j

Λij [f
eq
j − fj(r, t)], (2)

where the fi are continuous densities associated with a
lattice velocity vi that represent an expectation value for
the number of particles moving from lattice site r−vi∆t
to lattice site r at time t. The BGK collision term redis-
tributes those densities and relaxes them towards an im-
posed local equilibrium distribution f eq

i . In the simplest
case, the relaxation matrix Λij has a single relaxation
time Λij = (1/τ)δij , where τ = 1 implies that local equi-
librium is reached in one time step. For these methods
the viscosity is

ν = (τ − 0.5)/3, (3)

where the offset of 0.5 is a result of recombining terms
from the Taylor expansion of the occupation probabili-
ties with the terms obtained from the continuous Boltz-
mann equation. A general Λij leads to multiple relax-
ation times, which is unimportant for this letter, since
only one relaxation time turns out to be relevant for sim-
ple shear.

BGK lattice Boltzmann methods can no longer be jus-
tified as ensemble averages of the Boolean lattice gas
models, and it became necessary to consider an alter-
native way of deriving the lattice Boltzmann method [7].
This was achieved by deriving lattice Boltzmann directly
as a discretization of the continuous Boltzmann equation.
Decades later, it was realized that it is still possible to
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derive the BGK lattice Boltzmann methods from lattice
gases with integer occupation numbers [8].

However, any of these derivations require the relax-
ation time in Eq. (3) to be τ > 1, i.e. the aver-
aged collisions bring the distribution functions at most
to local equilibrium. He, Chen and Doolen [9] origi-
nally postulated that deriving lattice Boltzmann directly
from the continuous Boltzmann equation could recover
over-relaxation. Later Bösch and Karlin [10] showed that
it was only an uncontrolled approximation in their deriva-
tion that lead to this result, whereas an exact analysis
showed that the regime of over-relaxation is disconnected
from the kinetic theory domain. Despite this apparent
disconnect between over-relaxation and physical theory,
over-relaxing the densities, i.e. using 0.5 ≤ τ < 1, is ex-
tremely useful in obtaining lower viscosities, and is fre-
quently used in practical applications.

Clearly, lattice Boltzmann methods with over-
relaxation can no longer be related to lattice gas methods
by a statistical average, since the local collisions can only
achieve equilibrium, but never over-relax. Deriving lat-
tice Boltzmann methods directly from discretizations of
the Boltzmann equation equally fails to justify the usage
of over-relaxation as was shown by Bösch and Karlin [10].

One could argue that is not important if lattice Boltz-
mann methods can be connected to some underlying
physical model, as long as the method performs well. We
believe this to be a shortsighted view. Seeing the lattice
Boltzmann method as just another way of discretizing
the Navier-Stokes equations misses the key ingredient al-
lowing lattice Boltzmann to outperform classical Compu-
tational Fluid Dynamics (CFD) approaches in a number
of areas. A stunning example is that lattice Boltzmann
methods have all but displaced classical CFD from the
modeling of automotive hydrodynamics and are making
significant inroads in the aerospace industry [11]. The
success of the lattice Boltzmann method must be firmly
attributed to its grounding in some physical reality, and
the inability of linking the frequently used over-relaxation
to a physical underpinning is a worrying shortcoming.

In this letter, we show how this shortcoming can be
overcome by a novel way of deriving lattice Boltzmann
methods using a direct mapping approach from an av-
erage over Molecular Dynamics (MD) simulations onto
lattice Boltzmann method. This approach has its roots
in the Molecular Dynamics Lattice Gas (MDLG) method,
pioneered by Parsa et al. [12].

Briefly the MDLG method consists of overlaying a
square lattice with lattice spacing ∆x onto an MD sim-
ulation. We define lattice displacements vectors ci con-
necting different lattice sites, using the index i to enu-
merate the possible displacements. After fixing a time
step ∆t, we identify the number of particles that move
from cell r − ci at time t − ∆t to lattice cell r at time
t with ni(r, t) lattice gas occupation number. This pro-
cedure maps the MD simulation onto a lattice gas [12]

as shown in Fig. 1a. The idea of the Molecular Dynam-
ics Lattice Boltzmann (MDLB) is then to average over
an ensemble of MD simulations of the same macroscopic
state to obtain the lattice Boltzmann densities

fi(r, t) = 〈ni(r, t)〉. (4)

Once we have fi(x, t), we can determine the lattice Boltz-
mann collision operator

Ωi = fi(r + ci, t+ ∆t)− fi(r, t). (5)

The focus of this letter are the properties of the
MDLB collision operator and its ability to exhibit over-
relaxation.

While the above described procedure is general and
can, in principle, be applied to any flow, the numerical
cost of averaging over a large number of MD simulations
can be considerable. Instead, we investigate the simplest
non-equilibrium situation: a simple shear flow where the
averaged velocities are given by

ux = γ̇y; uy = 0, (6)

with γ̇ being the shear rate, r = (x, y)T is the posi-
tion vector, and the density remains constant. Since,
this flow is invariant under translation in the x-direction,
and shifts in the y-direction can be related by a simple
Galilean transformation to the y = 0 position, all points
are in this sense equivalent. Thus, we can average over all
lattice points at all times, allowing for ample statistical
averaging.

The MD simulations are executed using LAMMPS
framework [13, 14] developed by Sandia National Lab-
oratories. The system consists of particles interacting
with the standard 6-12 Lennard-Jones (LJ) intermolecu-
lar potential. The particle mass m and diameter σ are
set to one. Each simulation contains N = 99 856 par-
ticles in a two-dimensional square with length L = 1000
LJ units referring to an area fraction of φ = 0.078387.
The area fraction φ for circular LJ particles with van
der Waals radius r = σ/2 is defined as the product
of the particle surface area and the number of parti-
cles, divided by the square length of the simulation box.
We initialised the simulations using homogeneously dis-
tributed particles with kinetic energy equal to 20 in LJ
units, which corresponds to a dilute gas. We use the
LAMMPS nvt/sllod thermostat to generate the desired
non-equilibrium dynamics. The lattice Boltzmann dis-
cretizations in time and space (∆t and ∆x) are fixed so
that 〈(δx)2〉eq/(∆x)2 ≈ 1

6 , where 〈(δx)2〉eq is the equi-
librium mean-squared displacement. This ratio ensures
that the particle displacements are essentially limited to
a neighborhood touching the central cell as shown in
Fig. 1a. This is referred to as an D2Q9 model since it
resides in two dimensions and requires nine lattice ve-
locities. We perform a wide range of simulations – from
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(a) (b)

FIG. 1. (Color online) (a) Sketch of the MDLG dynamics for
D2Q9 lattice. A lattice is imposed onto the MD simulation
domain and the movement of the particles is tracked from the
central node using their MD trajectories. The circles (green)
represent the particle position at time t − ∆t and the stars
(red) are their respective positions at time t. The arrows
(black) depict the lattice velocities. (b) Schematic represen-
tation of the D2Q9 lattice showing the numbering convention
for fi. The symmetries in the lattice are color-coded.

simulations, where mean free time (i.e. the time between
collisions) is much larger than ∆t (ballistic regime) to
simulations, where ∆t is much larger than the mean free
time (diffusive regime). The data is collected after the
simple shear has reached a steady state. For further in-
formation, please, refer to the supplemental material and
the LAMMPS documentation [14].

The symmetry of the simple shear flow puts significant
constraints on the collision term Ωi defined in Eq. (5).
The degrees of freedom for the collision operator at the
point y = 0, where the mean velocity is zero, are sketched
in Fig. 1b. The point symmetry about the center of the
lattice implies f2 = f4, f5 = f7, and f6 = f8. Trans-
lational symmetry in the x-direction implies that f0, f1,
and f3 are unchanged by the collision. Therefore, sym-
metry leaves only three independent values for an D2Q9
velocity set in the collision term Ωi, which is reduced to
two because mass conservation adds the additional con-
straint

∑
i Ωi = 0. Therefore, the D2Q9 collision opera-

tor is determined by two terms that we choose as

Ωα = Ω6 − Ω5 + Ω8 − Ω7, (7)

Ωβ = Ω2 + Ω4, (8)

with Ωα � Ωβ for a simple shear. In this letter, we focus
on the dominant collision contribution Ωα. Now, we can
define the moment before the collision as a function of
the probability distribution function fi

Mα = f6 − f5 + f8 − f7, (9)

and the moment after the collision

Mα,∗ = Mα + Ωα. (10)
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FIG. 2. (Color online) The pre- and post-collision moments
(Mα and Mα,∗) are shown as a function of ∆t. The sign
change between Mα and Mα,∗ indicates the transition from
under- to over-relaxation. Three sets of data are shown: the
measured from MD depicted as symbols (black); analytical so-
lution using the multivariate Gaussian with diffusive moments
depicted as dash-dotted lines (blue); analytical solution using
the multivariate Gaussian with measured moments depicted
as full and dashed lines (red). The zoomed plot shows the
sign change of Mα,∗

MD and Mα,∗
Multi at ∆t ≈ 1.6.

In equilibrium, we have Mα,eq = 0 due to symmetry. The
signature of over-relaxation is, therefore, a sign change
between Mα and Mα,∗. The measured values of these
quantities are shown as symbols in Fig. 2 as a function
of ∆t. For small ∆t both the Mα

MD and Mα,∗
MD are pos-

itive, but Mα,∗
MD changes sign for ∆t ' 1.6. Hence, the

MDLB procedure predicts that for larger coarse-graining
the relaxation towards equilibrium is replaced by an
over-relaxation.

In terms of the relaxation time τ , we have

Mα,∗ = Mα +
1

τ
(Mα,eq −Mα), (11)

with Mα,eq = 0, the relaxation time can be expressed as

τ =
Mα

Mα −Mα∗ . (12)

In Fig. 3, we show (τ − 0.5) as a function of ∆t.
The remainder of this letter focuses on the origin of the

observed over-relaxation. In the MDLG coarse-graining,
fi can be expressed in terms of the one-particle displace-
ment function P (r, δr, t) which gives the probability of
finding a particle at position r at time t that was at po-
sition r− δr at time t−∆t [12]

fi(ξ, t) =

∫ ∫
P (r, δr)∆ξ−ci

(r− δr)∆ξ(r)drdδr, (13)
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FIG. 3. (Color online) The relaxation time (τ−0.5) as a func-
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〈(δx)2〉eq depicted as crosses (blue). For (τ − 0.5) above the
dotted line (green), the collision operator under-relaxes, while
for (τ − 0.5) below that line, the collision over-relaxes.

where ∆ξ(r) is one, if r resides in the lattice site ξ and
zero otherwise, and ci = vi∆t is the lattice displacement.
This reduces the problem of finding fi to the problem of
finding the one-particle displacement function, which can
be very challenging for arbitrary flows. In the diffusive
limit, i.e. when the mean free path is small and parti-
cles effectively undergo Brownian motion, an analytical
solution exist [15–17]. In this case, the one-particle dis-
placement distribution function is given by a multivariate
Gaussian probability distribution

P (x, y, δx, δy) =

√
− σx

σ2
xy

+ 4
σy

2π
√
σx

× exp

(
− (δx− yγ̇∆t)2

σx
− (δx− yγ̇∆t)δy

σxy
− (δy)2

σy

) (14)

with the moments

σx = 〈(δx)2〉eq(1 +
γ̇2∆t2

3
),

σxy =
〈(δx)2〉eq∆tγ̇

2
,

σy = 〈(δx)2〉eq,

(15)

where 〈(δx)2〉eq is the measured equilibrium
mean-squared displacement as defined in [18, 19].
Note that a Galilean transformation is applied to the
x-displacements that are at y 6= 0. Using Eqs. (13)-(15)

we calculate fi and obtain Mα
Diff , and Mα,∗

Diff , which are
shown as dash-dotted lines (blue) in Fig. 2. The trend
is very similar to the MD measurements but the results
obtained using the diffusive moments are offset by a
constant. The analytical result is entirely symmetric
around the origin, leading to a relaxation time of 0.5 for
all time steps.

If we instead use a multivariate Gaussian with mo-
ments measured in the MD simulation

σx = 〈(δx)2〉, σxy = 〈δxδy〉, σy = 〈(δy)2〉, (16)

we obtain the predictions for Mα
MD, shown as solid line

(red), and Mα,∗
MD, shown as dashed line (red), in Fig. 2.

They are in excellent agreement with the measured val-
ues. In Fig. 3, we show that the resulting relaxation time
(τMulti − 0.5) is likewise in excellent agreement with the
measurement (τMD − 0.5).

To understand the physical origin of the transition
from under- to over-relaxation let us make a few ob-
servations: for the modest shear considered here with
(γ̇∆t)2 � 3 in Eq. (15), we have 〈(δx)2〉 ≈ 〈(δy)2〉
and both are approximately given by the equilibrium
mean-squared displacement 〈(δx)2〉eq. The key change
occurs in the off-diagonal moment 〈δxδy〉. In Fig. 4, we
show 〈δxδy〉/〈(δx)2〉eq as a function of ∆t. We depict
the off-diagonal moment measured from the MD simula-
tion with symbols (black) and the one calculated using
the diffusive moments in Eq. (15) with a line (red). The
off-diagonal moment 〈δxδy〉MD changes sign at ∆t ≈ 4
and otherwise behaves similar to the diffusive theory, al-
beit with an offset. The qualitative behavior in the diffu-
sive case is straight forward: as particles diffuse into the
positive y-direction they get carried away with the flow,
and obtain an additional positive x-displacement leading
to a positive correlation between x- and y-displacements.
This means that any memory is quickly lost in frequent
collisions. In the ballistic case, however, collisions are
rare, and particles carry a memory of their history over
larger distances. In particular, particles that move into
the positive y-direction will typically have last collided at
a position with negative y. In these regions, the average
velocity is negative, so these particles will carry the av-
erage negative x-velocity prevalent in the region of their
last collision to the regions of larger y. This leads to
an anti-correlation between the x- and y-displacement.
As we are looking at larger ∆t, collisions become more
frequent, and eventually the diffusive behavior becomes
dominant.

The predication of the relaxation time (τSimpl − 0.5)
in Fig. 3, is calculated using a simple model with σx =
σy = 〈(δx)2〉eq and the measured off-diagonal moment
〈δxδy〉. We see that this simple model is also in excellent
agreement with the measured values, showing that the
off-diagonal moment is indeed responsible for the tran-
sition from under- to over-relaxation. Note, however,
that it is not simply the sign change that determines this
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FIG. 4. (Color online) The off-diagonal moment 〈δxδy〉 bears
the main change from under- to over-relaxation, shown here
as the moment is normalized by the equilibrium mean-squared
displacement 〈(∆x)2〉eq. The circles (black) depict 〈δxδy〉MD

measured from the MD simulation. The line (red) depicts
〈δxδy〉Diff obtained using the multivariate Gaussian with dif-
fusive moments. The sign change of 〈δxδy〉 is a key feature
of the transition from under- to over-relaxation, however,
it is not the only factor since the over-relaxation occurs at
∆t ≈ 1.6 and the sign change happens at ∆t ≈ 4.

transition as the sign change occurs at ∆t ≈ 4 whereas
the transition from under- to over-relaxation occurs at
∆t ≈ 1.6.

In conclusion, in this letter we have shown that a lat-
tice Boltzmann collision operator can be directly derived
from one-particle displacement probability distribution,
which can be obtained from an MD simulation. This ap-
proach shows that such lattice Boltzmann collision oper-
ators naturally transition from under- to over-relaxation.
Thus, the over-relaxation in lattice Boltzmann methods

can be derived from first principles and is a consequence
of the coarse-grained representation of a lattice Boltz-
mann method.

∗ apachalieva@lanl.gov
† alexander.wagner@ndsu.edu

[1] U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev.
Lett. 56, 1505 (1986).

[2] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand,
Y. Pomeau, and J.-P. Rivet, Complex Systems 1, 649
(1987).
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In order to ensure reproducibility of the results, we pro-
vide additional information about the complete workflow
to obtain the results shown in the accompanying letter.
First, we give details about the derivation of the MDLB
collision operator, which can be expressed as a function
of the one-particle displacements probability distribution
function. Then, we include the molecular dynamics (MD)
simulation setup and the LAMMPS scripts, which we ex-
ecute to obtain the MD particle positions and trajecto-
ries. Next, we describe the Molecular Dynamics Lattice
Gas (MDLG) and Lattice Boltzmann (MDLB) toolbox,

which consists of an C/C++ framework, three Mathe-
matica scripts and two Excel worksheets.

DERIVATION OF THE MDLB COLLISION
OPERATOR

In this section, we take a closer look at the derivation of
the MDLB collision operator. To do this, first we define
the probability distribution function as

fi(~x, t) = 〈ni(~x, t)〉neq

=

∫
dx1

∫
dδ1· · ·

∫
dxN

∫
dδNP

N (x1, δ1, . . . , xN , δN , t)
∑

j

∆~x(xj)∆~x−~ci(xj − δj),
(1)

with 〈ni(~x, t)〉neq being the non-equilibrium ensem-
ble average and PN (x1, δ1, . . . , xN , δN , t) being
the N-particle displacement distribution function.
PN (x1, δ1, . . . , xN , δN , t) is symmetric in all particles,

thus, we can simplify Eq. (1) to

fi(~x, t) = 〈ni(~x, t)〉neq

= N

∫
dx1

∫
dδ1P

1(x1, δ1, t1)∆~x(x1)∆~x−~c1(x1, δ1),

(2)

where N is the total number of particles and P (1) is the
one-particle displacement distribution function. Thus,
the MDLB collision operator Ωi is given by

Ωi = 〈Ξi〉

=

∫
dx1

∫
dδ1· · ·

∫
dxN

∫
dδNP

N (x1, δ1, . . . , xN , δN , t+ ∆t)∆~x+~ci(xj)∆~x(xj − δj)

−
∫
dx1

∫
dδ1· · ·

∫
dxN

∫
dδNP

N (x1, δ1, . . . , xN , δN , t)∆~x(xj)∆~x−~ci(xj − δj)

= N

∫
dx1

∫
dδ1P

1(x1, δ1, t+ ∆t)∆~x+~ci(x1)∆~x(x1 − δ1)

−N
∫
dx1

∫
dδ1P

1(x1, δ1, t)∆~x(x1)∆~x−~ci(x1 − δ1)

(3)
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For stationary problems the one-particle distribution
function does not depend on time. In such cases, we
obtain

Ωi = 〈Ξi〉

= N

∫
dx1

∫
dδ1P

1(x1, δ1)∆~x+~ci(x1)∆~x(x1 − δ1)

−N
∫
dy1

∫
dγ1P

1(y1, γ1)∆~x(y1)∆~x−~ci(y1 − γ1)

(4)

For a stationary processes with non-equilibrium dy-
namics, the MDLB formulation allows us to express
fi(~x, t) and Ωi as quantities which depend solely on
the one-particle displacements Probability Distribution
Function (PDF). Thus, knowing the analytical solution
for P 1(~x, δ, t) allows us to obtain the Ωi also analytically.

MOLECULAR DYNAMICS SIMULATIONS

We executed a simple shear flow simulation with ve-
locity profile given by

ux = γ̇y; uy = 0, (5)

with γ̇ being the shear rate, the position vector is given
by ~x = (x, y)T and the density remains constant. The
shear rate of the system γ̇ is set to 0.01. A sketch of the
simulation is given in Fig. 1 below.

FIG. 1. Sketch of the MD simple shear flow simulation.

The molecular dynamics simulations were performed
using the Large-scale Atomic/Molecular Massively Par-
allel Simulator (LAMMPS) package developed by San-
dia National Laboratories [1, 2]. The system of interest
consists of particles interacting with the standard 6-12
Lennard-Jones (LJ) intermolecular potential given by

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (6)

The particle mass m and the LJ particle diameter σ are
set to one. Each simulation included N = 99 856 num-
ber of particles in a two-dimensional (2D) square with
length L = 1000 LJ units referring to an area fraction of
φ = 0.078387. The area fraction φ for circular LJ parti-
cles with van der Waals radius r = σ/2 is defined as the

product of the particle surface area and the number of
particles, divided by the square length L of the simulation
box. We initialised the simulations using homogeneously
distributed particles with kinetic energy corresponding
to 20 in LJ units. To ensure that the initial system is in
equilibrium, we execute 200 000 MD iterations as shown
below in Steps 0 and 1. After that, we apply a force field
to the particle velocities to initialize a simple shear flow
and we use the LAMMPS nvt/sllod thermostat to gen-
erate the desired non-equilibrium molecular dynamics as
shown in Steps 2 and 3. The time and space discretiza-
tion ratio is fixed to 〈(δx)2〉/(∆x)2 ≈ 1

6 , where 〈(δx)2〉 is
mean-squared displacement and ∆x is the lattice spac-
ing. We chose a very small MD step size, equal to 0.0001,
to ensure high accuracy of the MD simulation data. We
perform a wide range of simulations – from simulations
where mean free time (i.e. the time between collisions)
is much larger than the time-step ∆t (ballistic regime)
to simulations where the time step ∆t is much larger
than the mean free time (diffusive regime). The sim-
ple shear flow simulations are executed with a variety of
time steps ∆t ∈ [0.3911, 22.3372] as given here in Table I.
For each time step ∆t we saved 2 000 coarse-grained it-

TABLE I. Simulation parameters

∆t ∆x lx

0.3911 4.0 250

0.5000 5.0 200

0.5626 5.5 180

0.6927 6.6(6) 150

0.9009 8.3(3) 120

1.1261 10.0 100

1.4994 12.5 80

1.6342 13.3(3) 75

2.0338 15.625 64

2.9280 20.0 50

4.1821 25.0 40

6.1751 31.25 32

9.5793 40.0 25

14.5580 50.0 20

22.3372 62.5 16

erations. The simple shear flow does not change after
reaching a steady state; however, it still describes non-
equilibrium dynamics. However, we run the simulations
for large number of iterations to collect enough data such
that sufficient averaging is ensured. For further informa-
tion, please, refer to the LAMMPS documentation [2].

LAMMPS SCRIPTS

In order to obtain the final MD data set, we perform
the following steps for each group of simulation parame-
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ters as shown below in Table I.

Step 0: Initialization

We have generated an input data field with homoge-
neous distribution of particles. The length of the two-
dimensional domain is L = 1000 LJ units and we used
N = 99 856 number of particles.

Step 1: Equilibrium Simulation

To initialize our MD simulation, we use the homo-
geneously distributed particles as described in Step 0.
The kinetic temperature is set to a temperature of 20
in Lennard-Jones (LJ) units and the LAMMPS script is
given below:

# 2d Lennard−Jones
# Equi l ibr ium Simulat ion
dimension 2
un i t s l j
a tom sty l e atomic
t imestep 0 .0001
v a r i a b l e o u t f o l d e r un ive r s e / output /
boundary pp pp pp

# I n i t i a l data s t r u c t u r e
read data i n i t S t r u c t 1 0 0 0 . input
mass 1 1 .0
v e l o c i t y a l l c r e a t e 20 87287 loop geom
p a i r s t y l e l j / cut 2 .5
p a i r c o e f f 1 1 1 .0 1 . 0 2 .5
ne igh modi fy de lay 0 every 1 check no
f i x 1 a l l nve

compute rtemp a l l temp/deform
thermo 1000
thermo sty l e custom step dt pe ke c rtemp

run 100000

v e l o c i t y a l l c r e a t e 20 87287 loop geom

run 100000

w r i t e r e s t a r t i n i t . r e s t a r t

We run the equilibrium simulation for 200 000 MD time
steps and output an LAMMPS restart file.

Step 2: Simple Shear Flow

The restart file obtained from Step 1 is transformed
into a text file using the following command:

lmp −r e s t a r t 2 d a t a i n i t . r e s t a r t i n i t . data

We read the resulting ASCII file init.data line by line
and add a velocity profile in x-direction as defined earlier
in Eq. (5).

Step 3: Non-equilibrium Simulation

In the MD context, the simple shear flow is imple-
mented using Lees-Edwards boundary conditions. To
obtain this in LAMMPS, we use the fix deform com-
mand, accompanying with the nvt/sllod thermostat.
The complete LAMMPS script is given below:

# 2d Lennard−Jones
# Non−equ i l i b r i um Simulat ion
dimension 2
un i t s l j
a tom sty l e atomic
t imestep 0 .0001
v a r i a b l e o u t f o l d e r un ive r s e / output
# See Table 1
v a r i a b l e o u t i t e r equal ”11261”
v a r i a b l e out dump equal

${ o u t i t e r }∗2000
boundary pp pp pp

# I n i t i a l data s t r u c t u r e
read data in i tEqVe lSt ruc t 1000 . input
mass 1 1 .0
p a i r s t y l e l j / cut 2 .5
p a i r c o e f f 1 1 1 .0 1 . 0 2 .5
ne igh modi fy de lay 0 every 1 check no

# Lees−Edwards Boundary Condit ions
f i x 1 a l l deform 1 xy e ra t e 0 .01

remap v
f i x 2 a l l nvt/ s l l o d temp 20 .0

20 .0 20 .0

compute rtemp a l l temp/deform
thermo 20000
thermo sty l e custom step dt pe ke c rtemp

dump 1 a l l custom ${ o u t i t e r }
${ o u t f o l d e r }/02 Neq nvt $ { o u t i t e r } . r e l a x
id type xs ys zs vx vy vz

dump modify 1 s o r t id
dump modify 1 format l i n e ”%d %d %.8 f %.8 f

%f %.8 f %.8 f %f ”

run ${out dump}

The number of iterations out_iter varies from ∆t ∈
[0.3911, 22.3372] as given in Table I.

MDLG ANALYSIS TOOL

The MDLG analysis tool can be found in [3]. The
framework is implemented in C/C++. It reads and
post-process the molecular dynamics data obtained from
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the previously described LAMMPS scripts. By coarse-
graining the MD particle positions and trajectories, we
obtain key features of the lattice Boltzmann method.
A complementary Graphical User Interface (GUI) de-
veloped by A. J. Wagner [4] is used for visualization pur-
poses. For more information on how to compile and run
the code, please, contact the authors.

MATHEMATICA SCRIPTS

The Mathematica scripts include the calculation of the
probability distribution function fi from the one-particle
multivariate Gaussian distribution function as defined in
Eq. (14) in the letter. The calculation is carried on for
a variety of time steps and discretization sizes as shown
in Table I. The three Mathematica scripts include the
following:

1. Calculation of the fi using the diffusive moments
as defined in Eq. (15) in the letter;

2. Calculation of the fi using the measured MD mo-
ments as defined in Eq. (16) in the letter;

3. Calculation of the fi using 〈(δx)2〉 = 〈(δy)2〉 set
to the equilibrium values of the mean-squared dis-
placement 〈(δx)2〉eq, and the off-diagonal moment
〈δxδy〉 set to the measured one from the MD sim-
ulation.

We used Mathematica v12.1. More information can be
found within the Mathematica scripts.

EXCEL WORKSHEETS

In the excel worksheets, we calculate the collision op-
erator Ωi, the pre- and post-collision moments Mα and
Mα,∗ and the relaxation time τ as defined in the let-
ter Eqs. (7)-(10) and Eq. (12). These scripts use the
probability distribution functions fi obtained from the
MDLG framework, which are based on the MD data,
and the Multivariate Gaussian probability distribution
function with diffusive and measured moments as given
in Eqs. (14)-(16) in the letter.

In the second worksheet of the excel file, the collision
operator Ωi, the pre- and post-collision moments Mα

and Mα,∗ and the relaxation time τ are calculated us-
ing a more simple definition of the moments. We fixed
the values of 〈(δx)2〉 and 〈(δy)2〉 to the equilibrium val-
ues of the mean-squared displacement 〈(δx)2〉eq and used
the off-diagonal moment 〈δxδy〉 to the measured moment
from the MD simulation.

∗ apachalieva@lanl.gov
† alexander.wagner@ndsu.edu
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[19] Joel H. Ferziger, Milovan Perić, and Robert L. Street. Computational methods for

fluid dynamics, volume 3. Springer, 2002.

[20] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computa-

tional fluid dynamics: The finite volume method. Pearson education, 2007.

[21] Suhas Patankar. Numerical Heat Transfer and Fluid Flow. Taylor & Francis, 2018.
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[34] Fabian Bösch and Ilya V. Karlin. Exact lattice Boltzmann equation. Physical

Review Letters, 111(9):090601, 2013.

[35] M. Reza Parsa and Alexander J. Wagner. Lattice gas with molecular dynamics

collision operator. Physical Review E, 96(1):013314, July 2017.

[36] Ilya V. Karlin. Tutorial on lattice Boltzmann Method. presented at the DSFD

2018, 2018.

[37] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in

gases. I. Small amplitude processes in charged and neutral one-component systems.

Physical Review, 94(3):511–525, May 1954.

[38] Dominique d’Humières. Multiple-relaxation-time lattice Boltzmann models in three

dimensions. Philosophical Transactions of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, 360(1792):437–451, 2002.

97



BIBLIOGRAPHY

[39] Rui Du, Baochang Shi, and Xingwang Chen. Multi-relaxation-time lattice Boltz-

mann model for incompressible flow. Physics Letters A, 359(6):564–572, 2006.

[40] A. Kuzmin, A. A. Mohamad, and S. Succi. Multi-relaxation time lattice Boltzmann

model for multiphase flows. International Journal of Modern Physics C, 19(06):875–

902, 2008.

[41] Goetz Kaehler and Alexander J. Wagner. Derivation of hydrodynamics for multi-

relaxation time lattice Boltzmann using the moment approach. Communications in

Computational Physics, 13(3):614–628, 2013.

[42] Irina Ginzburg, Frederik Verhaeghe, and Dominique d’Humières. Two-relaxation-

time lattice Boltzmann scheme: About parametrization, velocity, pressure and

mixed boundary conditions. Communications in computational physics, 3(2):427–

478, 2008.

[43] Irina Ginzburg, Frederik Verhaeghe, and Dominique d’Humières. Study of simple

hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme.

Communications in computational physics, 3(3):519–581, 2008.

[44] Jonas Latt. Hydrodynamic limit of lattice Boltzmann equations. PhD thesis, Uni-

versity of Geneva, 2007.

[45] Jonas Latt and Bastien Chopard. Lattice Boltzmann method with regularized

pre-collision distribution functions. Mathematics and Computers in Simulation,

72(2-6):165–168, 2006.

[46] Raoyang Zhang, Xiaowen Shan, and Hudong Chen. Efficient kinetic method for fluid

simulation beyond the Navier-Stokes equation. Physical Review E, 74(4):046703,

2006.

[47] Bruce M. Boghosian, Jeffrey Yepez, Peter V. Coveney, and Alexander J. Wager. En-

tropic lattice Boltzmann methods. Proceedings of the Royal Society of London. Se-

ries A: Mathematical, Physical and Engineering Sciences, 457(2007):717–766, 2001.

[48] Santosh Ansumali and Ilya V. Karlin. Single relaxation time model for entropic

lattice Boltzmann methods. Physical Review E, 65(5):056312, 2002.

[49] Shyam S. Chikatamarla, Santosh Ansumali, and Ilya V. Karlin. Entropic lattice

Boltzmann models for hydrodynamics in three dimensions. Physical review letters,

97(1):010201, 2006.

[50] Nicolò Frapolli, Shyam S. Chikatamarla, and Ilya V. Karlin. Entropic lattice Boltz-

mann model for gas dynamics: Theory, boundary conditions, and implementation.

Physical Review E, 93(6):063302, 2016.

98



BIBLIOGRAPHY

[51] Martin Geier, Andreas Greiner, and Jan G. Korvink. Cascaded digital lattice Boltz-

mann automata for high reynolds number flow. Physical Review E, 73(6):066705,

2006.

[52] Yang Ning, Kannan N Premnath, and Dhiraj V Patil. Numerical study of the

properties of the central moment lattice Boltzmann method. International Journal

for Numerical Methods in Fluids, 82(2):59–90, 2016.

[53] Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk. The

cumulant lattice Boltzmann equation in three dimensions: Theory and validation.

Computers & Mathematics with Applications, 70(4):507–547, 2015.

[54] Martin Geier, Andrea Pasquali, and Martin Schönherr. Parametrization of the cu-

mulant lattice Boltzmann method for fourth order accurate diffusion part I: Deriva-

tion and validation. Journal of Computational Physics, 348:862–888, 2017.

[55] Martin Geier, Andrea Pasquali, and Martin Schönherr. Parametrization of the

cumulant lattice Boltzmann method for fourth order accurate diffusion part II: Ap-

plication to flow around a sphere at drag crisis. Journal of Computational Physics,

348:889–898, 2017.

[56] Anthony J. C. Ladd. Short-time motion of colloidal particles: Numerical simulation

via a fluctuating lattice-Boltzmann equation. Physical Review Letters, 70(9):1339,

1993.

[57] Alexander J. Wagner. Theory and applications of the lattice Boltzmann method.

PhD thesis, Theoretical Physics, University of Oxford, 1997.

[58] R. Adhikari, Kyle Stratford, M. E. Cates, and Alexander J. Wagner. Fluctuating

lattice Boltzmann. EPL (Europhysics Letters), 71(3):473, 2005.

[59] Burkhard Dünweg, Ulf D. Schiller, and Anthony J. C. Ladd. Statistical mechanics

of the fluctuating lattice Boltzmann equation. Physical Review E, 76(3):036704,

2007.

[60] Renwei Mei, Dazhi Yu, Wei Shyy, and Li-Shi Luo. Force evaluation in the lattice

Boltzmann method involving curved geometry. Physical Review E, 65(4):041203,

2002.

[61] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the

forcing term in the lattice Boltzmann method. Physical review E, 65(4):046308,

2002.

99



BIBLIOGRAPHY

[62] AA Mohamad and A Kuzmin. A critical evaluation of force term in lattice Boltz-

mann method, natural convection problem. International Journal of Heat and Mass

Transfer, 53(5-6):990–996, 2010.

[63] Shiyi Chen and Gary D. Doolen. Lattice Boltzmann method for fluid flows. Annual

review of fluid mechanics, 30(1):329–364, 1998.

[64] Cyrus K. Aidun and Jonathan R. Clausen. Lattice-Boltzmann method for complex

flows. Annual review of fluid mechanics, 42:439–472, 2010.

[65] Xuewen Yin and Junfeng Zhang. An improved bounce-back scheme for com-

plex boundary conditions in lattice Boltzmann method. Journal of Computational

Physics, 231(11):4295–4303, 2012.

[66] Shyam S. Chikatamarla and Ilya V. Karlin. Entropic lattice Boltzmann method for

turbulent flow simulations: Boundary conditions. Physica A: Statistical Mechanics

and its Applications, 392(9):1925–1930, 2013.

[67] Michael P. Allen and Dominic J. Tildesley. Computer simulation of liquids. Oxford

university press, 2017.

[68] David F Rogers. Laminar flow analysis. Cambridge University Press, 1992.

[69] Sandip Mazumder. Numerical methods for partial differential equations: finite dif-

ference and finite volume methods. Academic Press, 2015.
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