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Abstract—Safe motion planning for autonomous vehicles is a
challenging task, since the exact future motion of other traffic
participant is usually unknown. We present a verification tech-
nique ensuring that autonomous vehicles do not cause collisions
by using fail-safe trajectories. Fail-safe trajectories are executed
if the intended motion of the autonomous vehicle causes a safety-
critical situation. Our verification technique is real-time capable
and operates under the premise that intended trajectories are
only executed if they have been verified as safe. The benefits of
our proposed approach are demonstrated in different scenarios
on an actual vehicle. Moreover, we present the first in-depth
analysis of our verification technique used in dense urban traffic.
Our results indicate that fail-safe motion planning has the
potential to drastically reduce accidents while not resulting in
overly conservative behaviors of the autonomous vehicle.

Index Terms—Formal verification, motion planning, au-
tonomous vehicles, fail-safe operation, safe states, set-based
computation.

I. INTRODUCTION

SAFE motion planning remains an open issue in terms of
realizing autonomous vehicles. Although existing motion-

planning techniques are able to generate collision-free trajecto-
ries in many situations, they still can cause accidents in critical
situations. Online verification approaches are particularly well
suited for ensuring that autonomous vehicles do not cause
accidents [1]–[3]. In contrast to testing-based methods, online
verification approaches perform the safety analysis online in
each situation and thus never miss verifying a scenario that
results in a safety-critical situation. For this reason, these ap-
proaches are able to ensure that planned motions are provably
correct with respect to a given specification and require less
effort for certification.

Nevertheless, existing online verification approaches are
not yet ready for autonomous vehicles. The reasons for this
deficiency are manifold: 1) Online verification approaches are
still not computationally efficient enough to be used in motion
planning frameworks with fast replanning rates of 20 Hz and
higher. 2) These approaches cannot ensure that the vehicle
will not cause collisions for arbitrarily planned motions and
in arbitrary traffic situations over an infinite time horizon.
3) In case a situation is unsafe, many approaches lack a
mechanism that provides alternative motion plans to avoid
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Fig. 1. Snapshot from our driving experiments with a BMW 7-series test-
vehicle. Our verification technique is real-time capable and can be used to
verify the safety of arbitrarily planned trajectories online.

collisions. These shortcomings still endanger passengers and
other traffic participants and must be resolved to exploit the
full potential of online verification.

A. Literature overview

In the following paragraphs, we extensively review state-
of-the-art motion planning and verification techniques for
autonomous vehicles.

a) Trajectory Planning: Many exciting motion-planning
approaches have been introduced in the last decade. Extensive
overviews of these techniques are given in [4]–[6]. Although
machine learning techniques have become very popular re-
cently, e.g., [7]–[12], we do not consider them for generating
fail-safe trajectories, since candidate fail-safe planners need to
be strictly real-time capable and auditable.

Discrete planning approaches are popular planning tech-
niques for autonomous vehicles. These approaches discretize
the search space (state or input space) to obtain feasible
trajectories. For instance, planning with motion primitives
is one discrete planning technique. Motion primitives are
precomputed trajectory pieces which are concatenated online
through search-based algorithms [13]–[18]. Since the under-
lying motion primitives are precomputed offline, the primitive
computation can incorporate complex vehicle models, such as
multi-body models [19].

Sampling-based trajectory planners sample states in the
search space to obtain feasible trajectories. For instance,
rapidly-exploring random trees (RRTs) [20]–[23], randomly
sample and connect states toward a goal region to generate
trajectories. Through the random sampling strategy, RRTs
are perfectly suited for traversing high-dimensional search
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spaces. Nevertheless, RRTs and their variants might not obtain
(optimal) motions in time due to the randomized sampling [4].

Graph-search approaches, such as state lattices, are yet
another form of discrete planning techniques and work on
fixed graph structures [24]–[29]. They obtain sets of trajec-
tories whose goal states are vertices in a fixed predefined
grid, resulting in a lattice structure. State lattices have been
combined with optimal control techniques in [30] to compute
jerk-optimal trajectories. In general, state lattices generate
drivable trajectories, but lack optimality and completeness due
to the fixed grid.

Although discrete planning approaches are often easy to
implement and solve motion problems effectively, they have
major disadvantages. Due to the discretization strategy, they
may fail to obtain solutions in safety-critical scenarios with
small and convoluted solution spaces. For the same reason,
they may also fail to determine trajectories ending in small safe
terminal sets (cf. completeness in [31, pp. 79-80]). However,
both requirements are crucial for meeting the high demands
of fail-safe trajectory planning.

To overcome the limitations of discretization, continuous
model predictive control approaches generate collision-free
trajectories by minimizing a cost function with respect to state
and input constraints (and possibly a set of disturbances). The
underlying optimization problems are defined, e.g., as mixed-
integer programs in [32]–[37] and as sequential quadratic
programs in [38]–[42]. In general, the resulting optimization
problems are non-convex and are thus harder to solve and
usually not real-time capable; one of the reasons for this is
that solvers can get stuck in local minima [43].

The generally non-convex motion planning problem can be
approximated as a convex problem, e.g., by linearizing the
non-linear, non-holonomic vehicle dynamics [44], [45] and
separating the motion into a longitudinal and a lateral com-
ponent [46]. The resulting convex optimization problems can
be efficiently solved with global convergence as succesfully
shown in [47]–[51]. Convex optimization techniques provide
promising results for real-time planning in complex traffic
situations. However, approaches which separate the longitu-
dinal and lateral motion may obtain infeasible trajectories
in complex scenarios in which both components are heavily
linked [52]. We address this feasibility problem by focusing
on simple evasive maneuvers and providing safe fallback
solutions (see experiments in Sec. VI).

b) Safety Verification: Different verification techniques,
such as barrier certificates, correct-by-construction controller
synthesis, or model checking, have been introduced over the
years. In this paper, we focus on popular formal verification
techniques within the domain of autonomous vehicles.

In theorem proving, desired system properties are formu-
lated using logical formulas. The verification is then performed
by checking the satisfiability of the logical formulas. For
instance, theorem proving has been applied to highway entry
systems [53], to lane change controllers [54], and to adaptive
cruise control systems [55], [56]. Although theorem proving
is quite powerful and effective, it usually requires manual
intervention to generate desired system behaviors and logical
formulas must often be adapted to new scenarios.

Autonomous vehicles are also safe if they never enter
inevitable collision states (ICS) [57]. ICS are states in which
all possible trajectories of the autonomous vehicle eventually
collide with an obstacle [58]–[64]. Note that ICS reason over
infinite time horizons. Determining ICS in arbitrary traffic
scenarios is computationally expensive, and most works lower
the computational effort by only considering a single trajectory
prediction of traffic participants [61].

Complementary to ICS, controlled invariant sets (CIS) [65]–
[67] guarantee persistent feasibility. By definition, there exist
at least one collision-free trajectory for every state within a CIS
with respect to the future behavior of other traffic participants;
thus, the vehicle remains safe. Unfortunately, obtaining CIS in
dynamic environments is challenging due to the unknown fu-
ture motion of obstacles. However, in our previous work [68],
we have shown that invariably safe sets guarantee persistent
feasibility and that an under-approximation of these sets can
be obtained in real-time.

Set-based reachability analysis has also been succesfully
applied to check whether trajectories are collision-free while
accounting for any feasible future motion of dynamic ob-
stacles [1], [69]–[71]. Loosely speaking, the reachable set
of a dynamical system corresponds to the set of states the
system is able to reach over time considering an initial set
of states and all possible system inputs. Future collisions of
the autonomous vehicle can be identified by checking for
intersections of its reachable set with the ones associated with
the obstacles. However, reachability analysis comes with the
disadvantage that unsafe regions may grow rapidly over time,
since any feasible future motion of obstacles is considered.
As a result, planned motions may often be rejected as being
potentially unsafe, leaving the autonomous vehicle without
a safe trajectory. We resolve this issue in our verficiation
technique by combining reachable sets with fail-safe trajectory
planning.

Recent efforts in vehicle safety are made towards pro-
viding a formal safety model such Responsibility-Sensible
Safety (RSS) [72]. Inspired by traffic rules (e.g., vehicles
are not allowed to cause rear-end collisions), RSS identifies
safety-critical situations and appropriate responses by the au-
tonomous vehicle. In particular, RSS involves the computation
of (longitudinal and lateral) safe distances to other traffic
participants and braking maneuvers to avoid collisions if safe
distances will be violated [73]. Nevertheless, RSS in its current
form is not able to provide strong safety guarantees, since it
assumes that other traffic participants act according to common
sense rules which may not prove true in reality [72, Sec. III].
Moreover, RSS does not provide a formal specification, which
makes it hard to verify trajectories of the autonomous vehi-
cle during operation. In contrast, our verification technique
provides a formal (and parameterizable) model that can be
certified by authorities.

B. Contributions

Following up on our previous work [68], [74], we present
a verification technique that ensures the safety of planned
motions of an autonomous vehicle, denoted as ego vehicle
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in the following sections, and eliminates the shortcomings
of existing verification approaches. We present the following
innovations compared to our previous work [68], [74]:

1) Fail-safe trajectories are verified over an infinite-time
horizon to ensure that the ego vehicle remains safe at all
times. This property is achieved by linearizing invariably
safe sets and integrating them as additional terminal
constraints.

2) Fail-safe trajectories now start at the latest possible point
in time along planned motions and improve passenger
comfort through the use of slack variables.

3) The benefits of fail-safe trajectories and the utilized
linear vehicle have been extensively tested on an actual
vehicle in safety-critical situations, e.g., when generating
random steering and acceleration inputs.

4) The intervention rate of our verification technique is
evaluated in recorded urban traffic.

C. Outline of the paper

This paper is structured as follows: In Sec. II, we intro-
duce required mathematical models and definitions. Sec. III
presents the general procedure of our verification technique. In
Sec. IV and V, we describe the computation of invariably safe
sets and the generation of fail-safe trajectories using convex
optimization, respectively. The benefits of our approach are
demonstrated in safety-critical situations on an actual test
vehicle in Sec. VI. We finish with conclusions in Sec. VII.

II. PRELIMINARIES

Let us introduce the configuration space X ⊂ Rn as the
possible set of states x, the input set U ⊂ Rm as the set of
admissible control inputs u, and the set Z ⊂ Rq as possible
disturbances z acting on the ego vehicle, whose motions are
governed by the differential equation

ẋ(t) = f
(
x(t), u(t), z(t)

)
. (1)

We use the notation x(i), i ∈ N0, to describe the i-th com-
ponent of the state variable x. We adhere to the notations
x
(
[t0, th]

)
, x(t) ∈ X , and u

(
[t0, th]

)
, u(t) ∈ U , to denote state

and input trajectories for the time interval [t0, th], respectively.
In addition, χ

(
th, x(t0), u([t0, th])

)
denotes the solution of

(1) at the point in time th with respect to the initial state
x(t0) = x0 and the input trajectory u

(
[t0, th]

)
. By an abuse of

notation, we use u
(
[t1, t2]

)
= Φ(φref), t1 ≤ t2, to emphasize

that an input trajectory is generated by a feedback control law
Φ for a given reference φref , e.g., tracking a desired velocity.

We consider a lane-based environment for our online ver-
ification technique, which is modeled as a subset of the
Euclidean space R2 and provided by the environment model
of the vehicle. For motion planning, we use a curvilinear
coordinate system that is aligned to a given reference path
Γ := (p0, p1, . . . , pkΓ),∀i ∈ [0, . . . , kΓ] : pi ∈ R2, kΓ ∈ N.
The reference path is usually given by a high-level route
planner and may, for instance, correspond to the centerline
of the current lane. Using the curvilinear coordinate system,
positions p ∈ R2 will be described in terms of the arc
length s along Γ and the orthogonal deviation d (cf. Fig. 5).

The operator Υ(p) = (s, d)T transforms positions p ∈ R2

to the curvilinear coordinate system. We use the following
operations between two sets X1 and X2: X1 ∪ X2 denotes
the union of sets, X1 ∩ X2 is the intersection of sets, and
X1 \ X2 := {x1 |x1 ∈ X1 ∧ x1 6∈ X2} denotes the set
difference. Moreover, the Minkowski sum of two sets X1 and
X2 is defined as X1 ⊕X2 := {x1 + x2 |x1 ∈ X1 ∧ x2 ∈ X2}.

To obtain the occupied space of the autonomous vehicle
(i.e., its footprint in R2), we introduce the operator occ:

Definition 1 (Occupancy of States)
The operator occ(x) relates the state vector x to the set of
points in the environment occupied by the system as occ(x) :
X → P

(
R2
)
, where P(R2) is the power set of R2. Given a

set X ′, we define occ(X ′) := {occ(x) |x ∈ X ′}.

The set B describes all safety-relevant obstacles within the
environment. The information about obstacles (state, type, and
measurement uncertainties) is provided by the environment
model, which is usually obtained using on-board sensors of
the vehicle [75]. We assume that obstacles are detected as soon
as they enter the ego vehicle’s field of view. To account for
the uncertain future motion of obstacles, we make use of the
set-based prediction in [71], [76] which computes all feasible
legal future motions of obstacles over time using reachability
analysis and provides us with occupancy sets:

Definition 2 (Occupancy Set O)
The occupancy set Ob(t) ⊆ R2 describes the set of possibly
occupied points in the environment by an obstacle b ∈ B at a
point in time t. For a time interval [t1, t2], t1 ≤ t2, we define
Ob([t1, t2]) =

⋃
t1≤t≤t2 Ob(t).

Using the introduced operator in Def. 1 and the predicted
occupancies Ob(t) of obstacles b ∈ B, we can compute the
set of collision-free states at a point in time t:

Definition 3 (Collision-free States F)
The set F(t) ⊆ X is the set of collision-free states at time t
considering the occupancy OB(t) =

⋃
b∈B Ob(t) of obstacles

B, i.e., F(t) := {x ∈ X | occ(x) ∩ OB(t) = ∅}.

For fail-safe trajectories, we are particularly interested in
finding (collision-free) states that allow the ego vehicle to
remain collision-free for an infinite time horizon. We define
such safe states through recursion [68]: we denote a state as
safe if we can determine a collision-free trajectory to another
safe state. This recursive definition allows us to derive subsets
(cf. Fig. 2) of the set of collision-free states F(t) (cf. Def. 3).
By definition, these subsets only contain states that guarantee a
safe transition to another safe state for an infinite time horizon.
As a result, these subsets do not include ICS and are thus
invariably safe. We formally define the set of invariably safe
states as:

Definition 4 (Invariably Safe Set S)
The invariably safe set S(t) for a point in time t contains all
states that allow the ego vehicle to remain safe for an infinite
time horizon and is defined as:

S(t):=
{
x∈F(t)

∣∣∀t′>t : χ
(
t′, x,Φ(φref)

)
∈F(t′)

}
,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Configuration space

Collision-free states

Invariably safe set

X

F(t)

S(t)

Under-approximation
of S(t)

Fig. 2. Relation of the configuration space X , collision-free states F(t), and
invariably safe sets S(t).
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Fig. 3. Safety properties of trajectories. Only trajectory u1 is an invariably
safe trajectory which remains safe for t > th, since it is enclosed in the
invariably safe set S(t). Trajectory u2 leaves S(t) at the time-to-react TTR.
Trajectory u3 is just a collision-free trajectory, since it is only enclosed in
the set of collision-free states F(t). Trajectory u4, on the other hand, is not
collision-free.

where φref is an arbitrary desired reference, e.g., tracking a
desired velocity while remaining in F(t).

With invariably safe sets, we are able to check whether a
given trajectory u

(
[t0, th]

)
, t0 < th, remains safe for times

t′ > th:

Definition 5 (Invariably Safe Input Trajectory)
The input trajectory u

(
[t0, th]

)
, t0 < th, is called an invari-

ably safe input trajectory if u
(
[t0, th]

)
is collision-free and

χ
(
th, x(t0), u([t0, th])

)
∈ S(th) (cf. Def. 4).

Another use of invariably safe sets is to obtain the time-
to-react (TTR) [77, Sec. II], which is the last state along
a trajectory for which a collision-free evasive trajectory still
exists:

Definition 6 (Time-To-React)
Assuming that x(t0) ∈ S(t0), the time-to-react (TTR) is
the maximum time the ego vehicle can continue the input
trajectory u

(
[t0, th]

)
for which the existence of a collision-

free trajectory is guaranteed, i.e., tTTR := sup
{
t ∈ [t0, th] |

χ
(
t, x(t0), u([t0, t])

)
∈ S(t)

}
.

Fig. 3 illustrates the different safety properties of trajectories
and the TTR.

III. OVERVIEW OF THE ONLINE VERIFICATION APPROACH

Before we introduce the general procedure of our verifica-
tion approach, we introduce different types of trajectories to
guide the reader through this section.

1) Intended motion I: Trajectory with a (typically) long
planning horizon that the ego vehicle should follow. I
is planned by an arbitrary motion planner and optimized
for passenger comfort by considering the most likely
motion of other traffic participants.

2) Invariably safe part Isafe: Part of an intended motion I
that is invariably safe, computed using the TTR.

3) Fail-safe trajectory F: An invariably safe trajectory
which serves as an emergency trajectory that keeps the
ego vehicle within a safe state at all times, e.g., standstill
in dedicated areas.

4) Provably safe trajectory Iver: Combination of Isafe and
F that is provably safe with respect to all feasible legal
motions of other traffic participants.

Although motion planning algorithms generate collision-
free motions I, these motions might not be safe when executed
in actual traffic. The reason for this is that planners are
designed to generate comfortable and anticipatory motions:
motions I are only collision-free against the most likely mo-
tion of other traffic participants (cf. intended motion and most
likely trajectory in Fig. 4a). However, if traffic pariticipants
deviate from the most likely trajectory, motions I may no
longer be safe.

Our verification approach is based on the policy that the ego
vehicle is only allowed to execute verified trajectories Iver.
Following the widely accepted Vienna Convention on Road
Traffic [72], [78], we verify if a motion plan is collision-free
against all possible legal motions of other traffic participants.
Therefore, we use the set-based prediction in [71], [76] to
compute all feasible legal1 future motions of obstacles in the
environment (cf. blue regions in Fig. 4).

Since we consider all possible future evolutions of a sce-
nario with the formal prediction, motions I might be rejected
as potentially unsafe (cf. intersection of intended motion and
blue region in Fig. 4a). However, many motions I that are
initially unsafe for the entire considered time horizon might
be safe for a short period of time. Our verification technique
determines the safe part Isafe of I using the TTR (cf. black
circle in Fig. 4). Since Isafe does not ensure that the ego
vehicle will remain within a safe state at all times, e.g.,
standstill in dedicated areas, we append a fail-safe trajectory
F (cf. red paths in Fig. 4). We use the obtained TTR as the
optimal point along I to plan fail-safe trajectories. This choice
reflects the fact that system designers usually want safety
systems to intervene at the latest possible point in time.

An intended motion I is verified if both Isafe and F have
been correctly computed. In this case, we allow the ego vehicle
to execute the provably safe motion Iver, which ensures
safety even if other traffic participants deviate from their most
likely trajectories. Let us now consider how our verification
technique ensures that the ego vehicle only executes verified
motions Iver. Without loss of generality, we assume that
the motion planner of the ego vehicle generates motions Ic
in consecutive planning cycles c ∈ N+, where Ic will be

1The set-based prediction in [71], [76] also adjusts to individual misbehav-
ior of traffic participants. However, an advantage of our approach is that if
a collision occurs, we can verifiably argue that another traffic participant has
violated traffic rules.
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Fig. 4. Fail-safe trajectories are collision-free with respect to any feasible
behavior of obstacles and end in invariably safe sets to guarantee safety for
an infinite time horizon (a). While the ego vehicle proceeds along its intended
motion, new fail-safe trajectories are computed to ensure safety at any time
(b). In case no new valid fail-safe trajectory is found, the previously computed
fail-safe trajectory must be executed.

executed in cycle c + 1. For the sake of brevity, we sketch
the inductive proof of our verification technique:

Base case (c = 0): Initially, the ego vehicle is at a standstill
and the motion planner generates motion I0. If we can verify
the safety of I0, then the ego vehicle is allowed to execute
Iver,0 in cycle c = 1 (cf. Fig. 4a). Otherwise, the ego
vehicle executes fail-safe trajectory F0, which corresponds to
remaining at a standstill.

Inductive step (c = k): Assuming that the ego vehicle is
executing a verified trajectory Iver,k (i.e., both Isafe,k and Fk
are correctly computed) for an arbitrary planning cycle c =
k, k ∈ N+, we show that it remains safe in cycle c = k + 1.
Similar to the base case, we distinguish between two cases:
1) If we can verify Ik+1, then the ego vehicle is allowed to
execute Iver,k+1 (cf. situation in Fig. 4b). 2) If Ik+1 cannot
be verified, then the ego vehicle will still remain safe, since it
can continue to execute the previous provably safe trajectory
Iver,k including Fk (cf. assumption of inductive step), which
ensures that the ego vehicle remains within a safe state at all
times (cf. previous fail-safe trajectory in Fig. 4b).

It should be noted that even though the ego vehicle executes
a fail-safe trajectory, it can return to its comfort driving
mode by verifying a new intended motion if the safety-
critical situation resolves. Moreover, we can integrate model
inaccuracies of the ego vehicle (that result in tracking errors)
in our approach by enlarging the dimensions of obstacles
(see Def. 2) using a conservative safety bound or checking
whether the reachable set of the ego vehicle along its trajectory

intersects with unsafe sets, similar to [1]. In addition, one
can ensure the drivability of provably safe trajectories using
optimal control approaches [13]. However, neither is the focus
of this work.

IV. COMPUTATION OF INVARIABLY SAFE SETS

In our previous work [68], we presented how to obtain
a tight under-approximation of S(t) in real-time. Let us
briefly recall the results from [68]. To compute an under-
appoximation of S(t), we utilize control laws Φ that maintain:

1) Formal safe distances according to [79]. If the ego
vehicle respects the safe distance to its preceding ve-
hicle, it is guaranteed that the ego vehicle can avoid
a collision by braking, even if the preceding vehicle
performs emergency braking.

2) Evasive distances according to [80]. If the ego vehicle
respects the evasive distance to its preceding vehicle, it
is guaranteed that the ego vehicle can avoid a collision
by swerving to an adjacent lane, even if the preceding
vehicle performs emergency braking.

It should be noted that if collisions occur due to misbehaviors
on the part of other traffic participants, e.g., crashing into a
tailback or cutting the ego vehicle off, the ego vehicle would
not be accountable, since the other traffic participants violated
traffic rules [78].

Safe and evasive distances are computed in the curvilinear
coordinate system. Without loss of generality, we model the
state of the ego vehicle as x = (s, d, v)T in the following para-
graphs, where s and d are longitudinal and lateral positions,
respectively, and v is the velocity. We enlarge the predicted
occupancy sets Ob(t) (cf. Def. 2) for each safety-relevant ob-
stacle b ∈ B with a circle Rlon, which denotes the smallest cir-
cumscribing circle covering the dimensions of the ego vehicle.
The enlarged occupancy is computed asOb,enl := Ob(t)⊕Rlon

and allows us to over-approximate collision constraints. Next,
we transform Ob,enl into the curvilinear coordinate system,
resulting in occupancies Ob,cls(t) := {Υ(p) | p ∈ Ob,enl(t)}.

According to [81], [82], the computation of the minimum
required safe distance between the ego vehicle with velocity
vego and absolute deceleration −|as,max| and a preceding
obstacle b ∈ B with velocity vb and maximum absolute
deceleration −|as,max,b| depends on the following condition:(

|as,max,b| < |as,max|
)
∧
(
v∗b < vego

)
∧(

vego/|as,max| < v∗b/|as,max,b|
)
,

(2)

where δbrake denotes the reaction time of the ego vehicle to
perform braking and v∗b denotes the remaining velocity of
obstacle b after an emergency brake maneuver of obstacle b
with duration δbrake, defined as [82]:

v∗b :=

{
vb−|as,max,bδbrake| δbrake ≤ vb/|amax,b|,

0 otherwise.
(3)
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If condition (2) evaluates to true, the ego vehicle has to
maintain the safe distance ∆safe,1 to obstacle b, otherwise safe
distance ∆safe,2 [82]:

∆safe,1(vego, b) :=
(vb − |as,max,b|δbrake − vego)2

−2(|as,max,b| − |as,max|)
− vbδbrake

+ 1/2|as,max,b|δ2
brake + vegoδbrake,

∆safe,2(vego, b) :=
v2
b

−2|as,max,b|
−

v2
ego

−2|as,max|
+ vegoδbrake.

(4)

Note that the initial state of the ego vehicle and the prediction
of other traffic participants are given.

We are now able to define the set of states in which
the ego vehicle respects the safe distance to a preceding
obstacle. Without loss generality, we assume that other traffic
participants are able to decelerate at least as much as the
ego vehicle, i.e., |as,max,b| ≥ |as,max|. With this assumption,
(2) evaluates to false and the ego vehicle has to respect safe
distance ∆safe,2 in longitudinal direction.

Proposition 1 (Safe Distance Set)
The set of states respecting a (longitudinal) safe distance to a
preceding obstacle b ∈ B is defined as S1(t) = {(s, d, v)T ∈
X | ∀(sb, db)T ∈ Ob,cls(t) : s ≤ sb −∆safe,2(v, b)}.

Proof. The safety that safe distances provide is shown in [81],
[82]. �

To compute evasive distances, we first introduce deva as the
lateral distance necessary to fully enter an adjacent lane from a
given lateral position d (whole shape of the ego vehicle). Based
on the maximum lateral acceleration ad,max, the required time
teva to perform the evasive maneuver is computed as:

teva :=
√

2deva/ad,max + δsteer, (5)

where δsteer denotes the reaction time of the steering system.
Using the dynamics of a double integrator system, we compute
the traveled distance ∆sb of obstacle b during emergency
braking with a deceleration of −|as,max,b|:

∆sb := vbtb −
1

2
|as,max,b|t2b ,

tb := min(teva, vb/|as,max,b|).
(6)

The evasive distance ∆eva to the preceding obstacle b is
obtained by [80, Eq. 12-13]:

∆eva(vego, b) := vegoteva −∆sb. (7)

Similar to safe distances, we are now able to define the set
of states in which the ego vehicle respects the evasive distance
to a preceding obstacle.

Proposition 2 (Evasive Distance Set)
The set of states respecting the evasive distance to a pre-
ceding obstacle b ∈ B is defined as S2(t) = {(s, d, v)T ∈
X | ∀(sb, db)T ∈ Ob,cls(t) : s ≤ sb −∆t

eva(v, b)}

Proof. The safety that evasive distances provide is shown in
[80]. �

Note that the set S2(t) remains safe even if a preceding
vehicle performs a lane change maneuver, since the utilized

set-based prediction considers all feasible legal behaviors of
other traffic participants (see scenario in Sec. VI-B).

Both sets, S1(t) and S2(t), allow us to efficiently compute
an under-approximation of S(t):

Proposition 3 (Under-Approximation of S)
Given the set of states respecting safe distances S1(t) and the
set of states respecting evasive distances S2(t), it holds that
S1(t) ∪ S2(t) ⊂ S(t).

Proof. The soundness has been shown in [68, Prop. 1]. �

The algorithm to compute the under-approximation is given
in [68, Alg. 1]. It should be noted that the set can also be
computed for curved roads by considering the road curvature
as shown in [68]; we omitted this for the sake of brevity.

V. GENERATION OF FAIL-SAFE TRAJECTORIES

To determine fail-safe trajectories with low computational
effort, we make use of a convex approximation of the motion
planning problem [83] by separating motions into longitudinal
(cf. Sec. V-A) and lateral components (cf. Sec. V-B). In
addition, we use linear vehicle models as well as linear state
and input constraints to formulate convex linear-quadratic
programs for each motion component [83, Sec. 4.4].

In Sec. V-A and V-B, we first introduce the optimization
problems for the longitudinal and lateral component, respec-
tively. The presented cost functions J in these sections are
examples and can be modified to include other terms, e.g.,
separate costs for the final state of a trajectory or penalizing
large inputs (cf. cost functions in [19]). Subsequently in
Sec. V-C and V-D, we extract collision constraints from the
predicted occupancy sets of obstacles (cf. Def. 2) and the
computed invariably safe sets to generate fail-safe trajectories.

A. Longitudinal motion
We describe the state of the longitudinal motion as xlon =

(s, v, a, j)T , where s is the longitudinal position, v is the
velocity, a is the acceleration, and j is the jerk of the center
point of the rear axle along a given reference path Γ (cf.
Fig. 5). We choose the center of the rear axle as a reference
point, since this model allows us to disregard the slip angle of
the vehicle [49]. Moreover, we use the input ulon(t) = ä(t)
to generate smooth longitudinal trajectories, and describe the
disturbance-free longitudinal motion of the vehicle by the
linear time-invariant system:

d4

dt4
s(t) = ulon(t). (8)

Since obstacles in the environment may restrict the feasible
positions along the reference path Γ, we add the following
time-variant collision constraint:

smin(t) ≤ x(0)
lon(t) ≤ smax(t). (9)

Furthermore, we apply the following time-invariant state
constraints to ensure that trajectories are feasible:

vmin ≤ x
(1)
lon(t) ≤ vmax,

amin ≤ x
(2)
lon(t) ≤ amax,

jmin ≤ x
(3)
lon(t) ≤ jmax,

(10)
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where vmin/vmax represent the minimum and maximum ve-
locity, amin/amax the minimum and maximum acceleration,
and jmin/jmax the minimum and maximum jerk.

Acceleration profiles with partly constant acceleration
phases enhance driving comfort for passengers by reducing
maximum accelerations [84]. We model these constant accel-
eration phases by integrating slack variables [83, pp. 131-
132] and a two-stage cost increase into our longitudinal
optimization problem. Slack variables are used in optimization
to loosen constraints. For the sake of clarity, we demonstrate
the approach for the case of braking; however, the approach
works analogously for positive accelerations. We introduce
two additional deceleration limits, alim,1 and alim,2, with
amin < alim,2 < alim,1 < 0. Furthermore, we define slack
variables ςlon,1 ≥ 0 and ςlon,2 ≥ 0 and add the following
time-invariant constraints to the longitudinal motion problem:

x
(2)
lon(t) ≥ alim,1 − ςlon,1,

x
(2)
lon(t) ≥ alim,2 − ςlon,2.

(11)

Although the constraints (11) are soft, the constraints (10) still
limit the maximum feasible deceleration. Thus, the introduced
slack variables only affect the acceleration profile, but not the
feasibility of the trajectory.

Note that the slack variables ςlon,1 and ςlon,2 become a part
of the optimization vector (they can be appended to ulon) and
are determined during the optimization. By inducing linear
costs for ςlon,1 and quadratic costs for ςlon,2, we can model
constant acceleration phases, since the solver aims to minimize
costs. Fig. 6 illustrates the resulting acceleration profiles. For
instance, profiles with accelerations a ≤ alim,1 are smoothed
due to the linear costs. In the second stage, profiles with
accelerations a ≤ alim,2 are optimized as partly constant, since
the quadratically increasing costs are minimized.

The quadratic cost function Jlon is chosen to favor comfort-
able longitudinal trajectories by punishing high accelerations
and jerk with weights wa, wj ∈ R+, and the use of slack

Γ

θΓ

θ − θΓ

`
2

`
2

d

d1 d2 d3

s s(t)

Fig. 5. Kinematic model with respect to a curvilinear coordinate system
aligned to a reference Γ with orientation θΓ. The vehicle’s pose is described
by the longitudinal position s, the lateral deviation d, and the orientation θ.

ac
ce

le
ra

tio
n

alim,2

alim,1
ςlon,1 > 0 (active)
ςlon,2 = 0 (inactive)

ςlon,2 > 0 (active)
ςlon,1 > 0 (active)

amin
constant acceleration phase

0

Fig. 6. Obtained acceleration profiles if slack variables are used to enhance
comfort. Planned accelerations are penalized with costs in a two-stage
approach: accelerations a ≥ alim,1 induce linear costs and a ≥ alim,2 induce
quadratic costs, resulting in tub-shaped profiles.

variables with weights2 wς1 , wς,2 ∈ R+:

Jlon

(
x(t), u(t)

)
=wax

(2)
lon(t)2 + wjx

(3)
lon(t)2

+ wς1ςlon,1 + wς2ς
2
lon,2.

(12)

B. Lateral motion

The lateral motion is described by the state vector xlat =
(d, θ, κ, κ̇)T , where d is the lateral distance of the center of
the rear axle to the reference path Γ, θ is the orientation,
κ is the curvature, and κ̇ is the change of curvature of the
ego vehicle. Since the vehicle is supposed to move along the
predefined reference path Γ, we can assume that the orientation
difference ∆ = θ−θΓ between the orientation of the vehicle θ
and the orientation θΓ of the reference path is negligibly small.
This assumption allows us to approximate the trigonometric
functions as sin(∆) ≈ ∆ and cos(∆) ≈ 1.

The computed longitudinal motion profile (cf. Sec. V-A)
is used to determine the longitudinal positions s(t) and the
velocity v(t) of the ego vehicle along reference path Γ. For
collision avoidance, we limit the minimal and maximal lateral
deviation of the vehicle from the reference path Γ at the given
positions s(t) (obtained in the previous optimization of the
longitudinal trajectory). To compute the lateral deviation, we
need to keep track of the orientation θΓ of the reference path.
To not introduce a new state variable, we use the disturbance
term zlat(t) = θΓ(s(t)) instead [49]. The lateral motion of the
vehicle with respect to the input ulat(t) = κ̈(t) is given by
the time-invariant linear system:

ẋlat=


0 v(t) 0 0
0 0 v(t) 0
0 0 0 1
0 0 0 0

xlat(t)+


0
0
0
1

ulat(t)+


−v(t)

0
0
0

zlat(t).

(13)

Please note that (13) qualifies as a linear system, since v(t) is
not a state variable for the lateral dynamics, but rather a time-
variant parameter obtained from the longitudinal trajectory.

We approximate the shape of the ego vehicle using three
circles with equal radius r (cf. Fig. 5) to model collision
avoidance [85]. Without loss of generality, the centers of the
first and third circles coincide with the rear and front axles,
respectively. We denote the distance between the center points
of the first and third circle as `. The center of the second
circle is positioned equidistantly between the other circles. By

2wς1 and wς,2 must be carefully chosen to not distort the original solution
of the unaltered optimization problem as described in [49].
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considering the orientation of the ego vehicle and the reference
path, the lateral distance di of the center of circle i ∈ {1, 2, 3}
to Γ is computed as:

di = d+
i− 1

2
` sin(θ − θΓ) ≈ d+

i− 1

2
`(θ − θΓ). (14)

Using linear equation (14), we are able to constrain the
lateral deviation of the ego vehicle in the lateral optimization
problem with respect to the vehicle’s orientation. We define
the constrained values of the lateral motion as xlat,constr =
(d1, d2, d3, κ, κ̇)T , computed as:

xlat,constr =


1 0 0 0
1 1

2` 0 0
1 ` 0 0
0 0 1 0
0 0 0 1

xlat(t)+


0
− 1

2`
−`
0
0

 zlat(t). (15)

Collision avoidance is incorporated by computing the min-
imum and maximum lateral displacements, di,min(t) and
di,max(t), for each circle i ∈ {1, 2, 3} along the reference path
Γ. Together with physical constraints imposed by the steering
system, we apply the following time-variant constraints to
obtain drivable trajectories:

d1,min(t)
d2,min(t)
d3,min(t)
κlim,min(t)
κ̇min(t)


︸ ︷︷ ︸

xmin(t)

≤ xlat,constr(t) ≤


d1,max(t)
d2,max(t)
d3,max(t)
κlim,max(t)
κ̇max(t)


︸ ︷︷ ︸

xmax(t)

, (16)

where di,min/di,max are the minimum and maximum allowed
lateral deviation of circle i ∈ {1, 2, 3}, κlim,min/κlim,max the
minimum and maximum allowed curvature, and κ̇min/κ̇max

the minimum and maximum allowed change of the curvature,
obtained from the technical specification of the steering sys-
tem. To limit the maximum feasible curvature depending on
the velocity of the ego vehicle, we use the friction circle [86]
and set the lateral acceleration to alat = v(t)2κ. Solving for
the curvature results in κ =

√
a2

max−a(t)2/v(t)2, where v(t) and
a(t) are obtained from the preplanned longitudinal motion.
We consider steering actuator limitations by constraining the
possible curvature range to κmin (or κmax) by setting:

κlim,min(t) = max

(
−
√
a2

max − a(t)2

v(t)2
, κmin

)
,

κlim,max(t) = min

(√
a2

max − a(t)2

v(t)2
, κmax

)
.

(17)

The quadratic cost function Jlat with weights
wd, wθ, wκ, wκ̇ ∈ R+ minimizes the lateral distance
and orientation deviation to the reference path Γ and punishes
high curvature rates to achieve comfortable lateral motions:

Jlat

(
x(t), u(t)

)
=wdx

(0)
lat (t)2+wθ

(
x

(1)
lat (t)−θΓ(t)

)2
+ wκx

(2)
lat (t)2 + wκ̇x

(3)
lat (t)2.

(18)

state x0, reference path Γ

1) Obtain longitudinal
constraints (19) and (20)

2) Collision-free braking possible? Prop. 4

4) Plan longitudinal
trajectory Sec. V-A

3) Compute evasive
acceleration Prop. 5

5) Obtain lateral constraints (22) and (23)

6) Lateral motion infeasible? (16)

7) Plan lateral
trajectory Sec. V-B

8) Execute previous
fail-safe trajectory

9) Obtain new verified trajectory
by combining first part of

intended and fail-safe trajectory

Yes No

No Yes

Infeasible

Feasible

Fig. 7. Procedure for computing a fail-safe trajectory with a given initial state
x0 for the emergency trajectory and reference path Γ.

C. Fail-safe trajectory generation

Fig. 7 summarizes the necessary steps to generate fail-safe
trajectories using the planners in Sec. V-A and Sec. V-B. We
compute the initial state x0 of the fail-safe trajectory along the
given intended trajectory using the time-to-react (cf. Sec. II).
We transform x0 to curvilinear coordinates in our planner.

In Step 1 of Fig. 7, the collision constraints for the lon-
gitudinal motion of the fail-safe trajectory are extracted. We
use Bfol ⊆ B and Bpre ⊆ B to denote the sets of following
and preceding obstacles within the lane of the ego vehicle,
respectively. Since we enlarge the occupancies with a circle
(cf. Sec. IV) whose center coincides with the center of the
ego vehicle, we need to transform the reference point of the
longitudinal planning problem. Let us introduce ∆cor as the
correction term to transform the reference point of the ego
vehicle on the rear axle to the center of its shape. Based on
the longitudinal position of the ego vehicle s0, the maximum
longitudinal position constraints s(t) ≤ smax(t) (cf. (9)) are
obtained as (Fig. 8 visualizes the constraint extraction):

smax(t) = inf
{
s−∆cor | ∀b ∈ Bpre : s−∆cor > s0

∧(s, d)T ∈ Ob,cls(t)
}
.

(19)

The minimum longitudinal position constraints s(t) ≥
smin(t) are obtained similarly as:

smin(t) = sup
{
s−∆cor | ∀b ∈ Bfol : s−∆cor < s0

∧(s, d)T ∈ Ob,cls(t)
}
.

(20)

It should be noted that (20) is only used if the ego vehicle
changes lanes as described in [52]. For the current lane of the
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s
Oj,cls(t)

smax(t)smin(t)

Oi,cls(t)

s0 + ∆cor

Fig. 8. Illustration of computing the longitudinal collision constraints, smin

and smax, in a lane for given occupancy setsOi,cls, i ∈ B, andOj,cls, j ∈ B.

ego vehicle, smin(t) is omitted, since following vehicles need
to keep a safe distance to the ego vehicle [78].

For fail-safe planning, we apply the following heuristics
to decide whether to plan a braking or evasive maneuver. In
Step 2, we check if a braking maneuver alone is sufficient
for collision avoidance with any occupancy set, since braking
maneuvers are often considered to be the most preferred
evasive maneuvers for passengers in emergency situations
[87]. Since the occupancy sets include information about the
positions of the obstacles during emergency braking over time,
we can use (19) for this check.

Proposition 4 (Collision Avoidance Through Braking)
A collision with obstacles can be avoided for the initial
position s0, velocity v0, and reaction time δbrake of the ego
vehicle using emergency braking with −|amax| if

∀t ∈ [t0, th] : s0 + v0(τ)− 1

2
|amax|max(τ − δbrake, 0)2

≤ smax(t), τ := min(t, v0/|amax|+ δbrake).

Proof. Using the longitudinal dynamics and applying max-
imum feasible deceleration amax, we compute the future
positions of the ego vehicle over time by: s0 + v0(τ) −
1
2 |amax|max(τ − δbrake, 0)2, where τ := min(t, v0/|amax| +
δbrake) avoids driving backwards. If the ego vehicle does not
occupy positions s > smax(t), it can avoid a collision by
braking. �

If the ego vehicle is able to avoid potential collisions with a
braking maneuver alone, we compute the longitudinal motion
using the longitudinal planner described in Sec. V-A. It should
be noted that this approach also works with crossing traffic.

Otherwise, the ego vehicle may avoid collisions by swerving
to an adjacent lane using an evasive maneuver. For these situ-
ations, we must ensure that the required maximum lateral ac-
celeration aeva for evading is feasible throughout the planned
maneuver despite the decoupled longitudinal and lateral dy-
namics of the vehicle. In the worst case, the evasive maneuver
no longer allows braking, since |amax| = |aeva|. Therefore, let
us first introduce the guaranteed time-to-collision as the time
until the ego vehicle intersects with occupancy sets, encoded
in the maximum allowed position smax(t), when driving with
constant velocity (cf. Fig. 9).

Definition 7 (Guaranteed Time-To-Collision)
Assuming a collision is possible, the guaranteed time-to-
collision (GTTC) with respect to the initial longitudinal posi-

smax(t)

sego(t)

ttGTTC

s

Fig. 9. Illustration of calculating the GTTC using the predicted position of
the ego vehicle sego(t) = s0 + v0t and the maximum longitudinal position
constraints smax(t).

tion s0 and velocity v0 of the vehicle and the maximum allowed
position smax(t), t ∈ [0, th] is defined as

tGTTC := argmin
t∈[0,th]

∣∣(s0 + v0t)− smax(t)
∣∣.

We further introduce the duration of the evasive maneuver
as tGTTC, assuming no deceleration of the ego vehicle (i.e.,
the worst case |amax| = |aeva|), and the lateral distance to
fully reach an adjacent lane as deva > 0. Finally, we are able
to compute the required lateral acceleration during the evasive
maneuver.

Proposition 5 (Evasive Acceleration)
The required lateral acceleration aeva of an evasive maneuver
with initial lateral velocity vlat ≥ 0 over the lateral distance
deva with duration tGTTC and reaction time for steering
δsteer < tGTTC is obtained as:

aeva =
2
(
deva − |vlat|tGTTC

)
(tGTTC − δsteer)2

.

Proof. The soundness has been shown in [80, III-A]. �

Based on the maximum possible acceleration |amax|, the
maximum allowed longitudinal acceleration is:

alon =
√
a2

max − a2
eva, (21)

which is ensured in the longitudinal optimization problem by
adding this limit as a constraint to the longitudinal optimiza-
tion problem.

In Step 5 of Fig. 7, the constraints on the lateral motion are
computed. Therefore, we first predict the poses of the ego ve-
hicle along Γ considering the planned longitudinal motion and
the orientation θ(s(t)) = θΓ(s(t)). As described in Sec. V-B,
we approximate the shape of the vehicle with three circles. For
each of these circles, we compute the minimum and maximum
lateral deviation from Γ under the constraint that no collisions
with occupancies occur. Let circi(d, t) denote the occupancy
of circle i ∈ {1, 2, 3}, which is shifted by d along the normal
direction (note the sign of d) considering the ego pose at time
t along Γ. The maximum lateral offset constraints are:

di,max(t)=sup{d ≥ 0 | circi(d, t) ∩ OB(t)=∅}. (22)

The minimum lateral offset constraints di,min(t) are obtained
similarly for negative values of d:

di,min(t)=inf{d ≤ 0 | circi(d, t) ∩ OB(t)=∅}. (23)

Fig. 10 illustrates the computation of the lateral constraints
for each circle for two consecutive time steps t1 and t2. Note
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Ok(t1)

Oj(t2)

di,max(t2)

di,min(t2)

Oj(t1)

di,max(t1)

di,min(t1)

Ok(t2)

Γ

Fig. 10. Illustration of computing the lateral collision constraints, di,min and
di,max, of each circle i for example time steps, t1 and t2. The pose along the
reference path Γ is predicted according to the planned longitudinal motion.
The constraints are obtained by shifting each circle i along predefined passing
directions so that they do not collide with occupancy sets of obstacles, e.g.,
Ok and Oj .

that if a circle initially intersects with an occupancy set for
d = 0, the circle must be shifted to determine whether the
ego vehicle should pass left or right. For instance, the circles
for the minimum position constraints at time step t2 in Fig. 10
are shifted in positive d-direction to pass occupancy Oj(t2)
on the left. The passing side can be decided with reachability
analysis, for example [64], and is not the focus of this work.

In Step 6, we perform a pre-solve check of the lateral
optimization problem by evaluating whether the condition
∃t ∈ [0, th] : dmin(t) > dmax(t) holds (cf. lateral position
constraints in Sec. V-B). If the condition proves true, there is
no longer a feasible solution, since the position constraint (16)
in the lateral planner has been violated. In this case, we directly
switch to the previously computed fail-safe trajectory, which
is still valid (cf. Fig. 4). However, if the evasive maneuver
option is feasible, we plan the lateral motion of the ego vehicle
as described in Sec. V-B and obtain the new valid fail-safe
trajectory.

D. Invariably safe set constraints

Our fail-safe trajectory planner only accepts linear con-
straints. For this reason, we present how the under-
approximation of S(t) can be transformed to sets of linear
constraints for the convex optimization problems (cf. Sec. V-A
and V-B).

The integration of evasive distance constraints is simpler
than safe distances, since (7) is already in linear form. Evasive
distances are added to the longitudinal optimization problem
with the constraint:

x
(0)
lon(t) + ∆eva(x

(1)
lon(t), b) ≤ smax,b(t), (24)

where smax,b(t) is the maximum position constraint with
respect to the obstacle b. For the preceding obstacle b ∈ B in
the lane (or target lane) of the ego vehicle, we add (24) to the
longitudinal optimization problem, resulting in one additional
terminal constraint in the longitudinal optimization problem.

g1

g2

g3

∆̃safe

∆safe,2safe
long. distance

re
qu

ir
ed

lo
ng

.d
is

ta
nc

e

unsafe

x
(1)
lon

∆̃safe

(
x

(1)
lon

)

Fig. 11. Piecewise linear approximation of safe distances. The ego vehicle
must maintain the longitudinal safe distance ∆safe,2 to preceding obstacles
to remain safe (white area). This convex safe distance ∆safe,2 can be
approximated by a linear piecewise function ∆̃safe, composed of h linear
functions gi, i ∈ {1, . . . , h}. A safe point ∆̃safe

(
x

(1)
lon

)
which respects the

linear safe distance also fulfills ∀i ∈ {1, . . . , h} : ∆̃safe

(
x

(1)
lon

)
≥ gi

(
x

(1)
lon

)
.

Safe distances cannot be directly included in linear-
quadratic programs, since they are quadratic in the velocity
of the ego vehicle. To circumvent this problem, we exploit
the convexity of the safe distance functions and use a piece-
wise linear approximation of the safe distance instead. The
resulting approximation is over-approximative and therefore
still ensures safety.

We use h linear functions g1, g2, . . . , gh : R → R to
approximate the safe distance ∆safe ∈ {∆safe,1,∆safe,2}. To
obtain the linear functions gi, we divide the velocity range
[vmin, vmax], 0 ≤ vmin < vmax, of the ego vehicle into h
equally large intervals [vi, vi+1], i ∈ {0, . . . , h− 1}.

For the sake of brevity, we demonstrate the linearization
with ∆safe,2 in the following paragraphs. The linearization of
∆safe,1 is done similarly. For each interval, we approximate
the safe distance ∆safe,2 using linear functions gi, resulting in
the linear safe distance formulation:

∆̃safe(x
(1)
lon) =


g1(x

(1)
lon), v0 ≤ x(1)

lon < v1,

g2(x
(1)
lon), v1 ≤ x(1)

lon < v2,
...
gp(x

(1)
lon), x

(1)
lon ≥ vh−1.

(25)

Fig. 11 illustrates the piecewise linear approximation of the
safe distance. The ego vehicle is not allowed to enter the
shaded region in order to guarantee safety.

To integrate the h linear functions into the optimization
problem, we make use of the fact that each convex, piecewise
linear function can be represented as a maximum function
[88]. Thus, the safe distance can be reformulated as:

∆̃safe(x
(1)
lon) = max

(
g1(x

(1)
lon), g2(x

(1)
lon), . . . , gh(x

(1)
lon)
)
.

Respecting the maximum of these h linear functions is equiv-
alent to satisfying every single one of them due to convexity
(cf. example point ∆̃safe

(
x

(1)
lon

)
in Fig. 11).

We integrate the safe distance equation ∆̃safe (cf. (4)) into
the longitudinal position constraint (9) to obtain:

x
(0)
lon(t) + ∆̃safe(x

(1)
lon) ≤ smax(t). (26)
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TABLE I
GENERAL PARAMETERS AND DATA OF THE DRIVING EXPERIMENTS.

Description Parameter with value

Velocity range vego ∈ [0 m/s, 15 m/s]
Desired velocity vdes = 13.9 m/s
Lon. acceleration range aego,lon ∈ [−4.0 m/s2, 2.0 m/s2]
Lat. acceleration range aego,lat ∈ [−8.0 m/s2, 8.0 m/s2]
Jerk range jego ∈ [−10 m/s3, 10 m/s3]
Curvature range κego ∈ [−0.2/m, 0.2/m]
Curvature change range κ̇ego ∈ [−0.2/m, 0.2/m]
Dimensions ego vehicle length= 5.238 m, width= 2.169 m
Circle approx. ego vehicle ` = 3.5 m, r = 1.4 m
Reaction time braking δbrake = 0.3 s
Reaction time steering δsteer = 0.3 s
Time step size ∆t = 0.25 s
Lane width width= 3.5 m
Evasive distance deva = 3.5 m
SPOT parameters amax,veh = 5 m/s2,

vmax,veh = 13.9 m/s, fS = 1.2
amax,ped = 0.6 m/s2,
amax,ped,stop = 0.6 m/s2,
vmax,ped = 2 m/s, dperp = 1.5 m
bcross = bstop = False

Weights in Jlon wa = 1, wj = 2, wς1 = 5, wς2 = 10
Weights in Jlat wd = 0.2, wθ = 2, wκ = 20, wκ̇ = 20
Time for verification Sce. A 13 ms
Time for verification Sce. B 26 ms
Time for verification Sce. C 23 ms

In case the utilized solver of the optimization problem cannot
handle constraints with a maximum function, one can also add
h linear constraints in the form of:

x
(0)
lon(t) +

(
gi(x

(1)
lon) + δbrakex

(1)
lon

)
≤ smax(t). (27)

It should be noted that larger numbers of linear functions h de-
crease the approximation error, but increase the computational
time of solving the optimization problem.

VI. EXPERIMENTAL RESULTS

To demonstrate the drivability of fail-safe trajectories and
the proposed safety benefits, we have implemented our online
verification technique in Python and C++ (for computational
efficiency) for the use in a real test-vehicle. The computer
in the vehicle is equipped with an Intel i7-6900k processor
and 64GB of memory. The frequency of the processor is
underclocked from 3.2GHz to 1.2GHz to improve energy
consumption and heat management. We use discrete time
versions of our planners and the convex optimization packages
CVXPY [89], ECOS [90] and CVXPY-CODEGEN to generate
embedded code. Sec. VI-A to VI-C present selected results of
our 127 conducted driving experiments. Since we are only able
to consider simpler traffic scenarios in the driving experiment,
we have also validated our verification technique by post-
processing recorded scenarios with dense traffic in Sec. VI-D.
Videos of our experiments can be found in the supplementary
files of this paper. The illustrated scenarios are included
in the CommonRoad benchmark suite (Version 2018b) for
reproducability [19]. The parameters of the planners and the
set-based prediction tool SPOT [71] are summarized in Tab. I.
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Fig. 12. Braking maneuver to avoid collisions with a static obstacle
(ZAM Urban-2 1). (A) Camera images of the experiment. (B) The planned
trajectories and the occupancy set of the static obstacle. (C) The measured
data from this experiment.

A. Avoiding collisions with static obstacles

In our first experiment, we show that the proposed fail-
safe motion planning technique is designed to ensure safety
for any given intended trajectory. This property is especially
important when the intended motion planner of the ego vehicle
is changed or machine learning techniques are employed. To
demonstrate this property under extreme conditions, we have
created a malicious intended trajectory planner, which tries
to reach random desired velocities, and performs oscillating
lateral motions with random frequency and amplitude. Nev-
ertheless, all generated trajectories are kinematically feasible.
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Fig. 13. Invariably safe set of the scenario in Fig. 12. The computed fail-
safe trajectory starts at the state x(tTTR), which is the last state along the
intended trajectory that is still enclosed in the invariably safe set S1(t). The
set is shown as a projection onto the s-v plane.
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We consider a two-lane scenario (with an additional shoul-
der), in which we have randomly placed a foam vehicle
dummy in the lane of the ego vehicle. Fig. 12 shows the results
of an intended trajectory (black occupancies) and computed
fail-safe trajectory (red occupancies), which avoids a collision
by braking. When applying the intended trajectory, the ego
vehicle accelerates to a velocity of about 10 m/s without
reacting to the static obstacle. Our verification technique au-
tomatically computes the safe part of the malicious trajectory
and a subsequent fail-safe trajectory. This fail-safe trajectory
with a horizon of tfs = 5 s starts at the time-to-react of
tTTR = 7 s. By automatically executing this trajectory, the ego
vehicle avoids a collision and comes to a standstill directly in
front of the static obstacle.

Fig. 13 illustrates the invariably safe set of the scenario as a
projection onto the s-v plane. Since this scenario is static, the
resulting invariably safe sets are also time-invariant. The fail-
safe trajectory starts at the last state of the intended trajectory,
which is still enclosed in S1(t) (light gray set in Fig. 13). The
set S1(t) has been computed with a reaction time of δbrake =
0.3 s to indicate when fail-safe trajectories need to start.
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Fig. 14. Avoiding collisions with a vehicle that has cut in by swerving
to the adjacent shoulder (ZAM Urban-7 1 S-1). (A) Camera images of the
experiment. (B) The planned trajectories and the predicted occupancy set of
the dynamic obstacle over the whole time horizon and a selected interval. (C)
The measured data from this experiment.
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Fig. 15. Invariably safe set of the scenario in Fig. 14. (a) The computed
safe set S2(t) is shown as a projection onto the s-v plane. (b) The fail-safe
trajectory starts in S2(t) and ends in S1(t), shown as projections onto the
s-d plane.

B. Reacting to cut-in vehicle

In the following experiment, we consider a dynamic envi-
ronment in which a vehicle in an adjacent lane cuts into the
lane of the ego vehicle and then performs emergency braking.
The simulated dynamic vehicle is randomly placed in the
adjacent left lane with an initial velocity of v = 13.89 m/s
in the environment model of the ego vehicle.

Fig. 14 illustrates the results of the experiment. The ego
vehicle is travelling at a constant velocity of v = 12.56 m/s
and the initial distance between the ego vehicle and the other
vehicle is approximately 45 m. The time-to-react is computed
as tTTR = 3.25 s. The generated fail-safe trajectory lets the
ego vehicle swerve to the adjacent shoulder lane to avoid
colliding with the vehicle that has cut the ego vehicle off. The
maximum lateral acceleration during the evasive maneuver is
measured at 4.1 m/s2. Fig. 14B shows the top view of the
scenario for the entire time horizon and selected time steps
t ∈ [4.5, 5.75].

The computed invariably safe sets are shown in Fig. 15
in two different projections. Fig. 15a visualizes S2(t) for the
time step tTTR in the s-v plane together with the intended and
fail-safe trajectory. The s-d plane projections of the invariably
safe sets S1(t) and S2(t) are presented in Fig. 15b for the
time step tTTR and velocity slice v(tTTR) = 12.51 m/s. The
computed fail-safe trajectory starts in S2(t) and ends in S1(t)
of the shoulder lane.

In this scenario, an evasive maneuver can be executed at
a later point in time compared to a braking maneuver. We
illustrate this fact by making use of the computed invariably
safe sets. As a reference, Fig. 15b also illustrates S1(t) for
the adjacent left lane at tTTR. Here, the set S1(t) has the
same size as for the lane of the ego vehicle, because the
minimum longitudinal positions of vehicle b in the occupancy
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Fig. 16. Evading pedestrians by swerving to an adjacent lane (ZAM Urban-
5 1 S-1). (A) Camera images of the experiment. (B) The planned trajectories
and the predicted occupancy set of the pedestrian over the whole time horizon
and a selected time steps t ∈ {0.5 s, 1.0 s, 1.5 s}. (C) The measured data from
this experiment.

set Ob(tTTR) are equal. Since S2(t) is larger than S1(t) on
this lane and it encloses a state at a later point in time, evading
can be performed one step later than braking.

C. Avoiding collisions with jaywalking pedestrians

The last driving experiment highlights how our verification
technique copes with pedestrians that suddenly enter the lane
of the ego vehicle. We have placed a foam pedestrian close to
the right border of the lane of the ego vehicle. The on-board
sensors of the ego vehicle detect the pedestrian and the set-
based prediction computes the set of future behaviors based
on simulated initial dynamics of the pedestrian that we choose
for creating critical situations. In particular, we assume that the
pedestrian does not react to the oncoming ego vehicle and thus
continues crossing the lane.

In our scenario (cf. Fig. 16), the intended trajectory accel-
erates the ego vehicle to the desired velocity of 13.9 m/s.
The pedestrian enters the lane of the ego vehicle with a
velocity of vped = 1.5 m/s. In our simulation, we set the
time when the pedestrian enters the lane to the time-to-react
of tTTR = 6.5 s. This choice enables us to enforce an evasive
instead of a braking maneuver for demonstration; otherwise,
the pedestrian will already be blocking the lane as the ego
vehicle approaches. The computed fail-safe trajectory lets the
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Fig. 17. Invariably safe set of the scenario in Fig. 16. (a) The computed
safe set S2(t) is shown as a projection onto the s-v plane. (b) The fail-safe
trajectory starts in S2(t) and ends in S1(t), shown as projections onto the
s-d plane.

ego vehicle swerve into the adjacent left lane with a velocity of
v(tTTR) = 12.22 m/s. After fully entering the adjacent lane
and passing the pedestrian, the ego vehicle performs a braking
maneuver to come to a standstill. During this experiment, we
measured a maximum lateral acceleration of 4.8 m/s2, which
is the highest among all of our experiments.

Fig. 17 illustrates the computed invariably safe sets in two
different projections. The invariably safe sets S1(t) and S2(t)
are visualized in Fig. 17a as a projection onto the s-v plane.
Similar to previous pedestrian scenario, the fail-safe trajectory
starts in S2(t) and lets the ego vehicle swerve to the left
adjacent lane. As soon as the fail-safe trajectory enters S1(t)
from the adjacent lane, the ego vehicle initiates a braking
maneuver to safely stop. Both sets, S1(t) and S2(t), are
visualized in Fig. 17b as a projection onto the s-d plane.

D. Intervention assessment in urban traffic

In this section, we assess the intervention rate of our
verification technique in typical urban traffic situations. We
recorded urban scenarios with dense traffic. Our approach is
used to verify the safety of the current control input of the
human driver. Thus, the intended trajectory of the vehicle
corresponds to the currently chosen input of the human driver.
Due to safety reasons, we postprocess the data after the test
drives.

Fig. 18 shows the 17 km long route of the driving exper-
iment, which covers different urban (speed limit of 8.3 m/s)
and country road situations (speed limit of 27.8 m/s). For most
of the roads along this route, the human driver has the right of
way. We conduct four test drives (two in each direction) with
a BMW 7-series test vehicle on Wednesday, 13 March 2019,
from 1:30PM until 5PM (usual afternoon commuter traffic).
Each drive takes 23 min on average, which implies a mean
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Fig. 18. The intervention assessment study was conducted on the 17 km
long route between the BMW Autonomous Driving Campus (ADC) in
Unterschleißheim and the BMW Research and Innovation Center (FIZ) in
Munich.

velocity of approximately 12.32 m/s. We sample different
traffic densities for our study. The planning horizon of our fail-
safe planner is set to tfs = 5 s with a step size of ∆t = 0.25 s.
The average computation times of the prediction and the fail-
safe planner are 20.1 ms and 16.1 ms per call, respectively.

Since we are interested in the intervention rate of the safety
layer, we present the results of the test drive with the most
executions of fail-safe trajectories. In total, Nattempt = 6, 157
verification attempts are performed during this test drive.
Among these attempts, NN = 6056 situations (98.36 %) are
verified as safe by successfully computing a fail-safe trajectory
(example shown in Fig. 1 and 19a). In only NP = 101 cases
(1.64 %) is the current traffic scenario not verified and the ego
vehicle has to execute a fail-safe trajectory. We investigate
each verification attempt manually in detail.

Tab. II summarizes the analysis results of the alleged fail-
safe trajectory executions. Half of the fail-safe trajectory
executions amount to true positives, i.e., the situation is in
fact unsafe and the execution of a fail-safe trajectory would
improve safety. Most fail-safe trajectory executions are caused
by the driver violating the safe distance to preceding vehicles
(55.3 %). The second major reason for unsafe situations is the
high degree of uncertainty in the environment model (38.3 %).
Nevertheless, even in uncertain scenarios, verification tech-
niques need to account for these uncertainties to prevent
collisions. The last reason for justified fail-safe executions
is a situation in which a pedestrian suddenly enters the road
(6.4 %).

Considering the 0.87% of unjustified fail-safe trajectory
executions (cf. Tab. II), the majority of false positives (i.e.,
the situation is actually safe) amount to unmodeled priority
rules in the environment model which cannot be used in the
set-based prediction (61.1 %). More specifically, right-of-way
rules are not yet included. For instance, Fig. 19b illustrates a
situation from the test drive in which the ego vehicle begins
to turn right; however, an oncoming vehicle is also allowed to
turn left. Another major cause for fail-safe executions lies in
the utilized solver (25.9 %), which sometimes fails to obtain
fail-safe trajectories. The errors are likely caused by numerical

instabilities of the solver and the Python interface, which
processes the data from the C++ implementation of the solver.
The conversion of the matrices and constraints from Python
to embedded code might result in inaccuracies. Lastly, 13 %
of false positives are caused in one traffic situation in which
a preceding vehicle enters a parking area, leaving the map
area. In this situation, the set-based prediction cannot map the
traffic participant to a certain road and thus assumes that it is
allowed to drive anywhere.

Note that even though the ego vehicle has to execute a fail-
safe trajectory, this trajectory does not necessarily need to be
fully executed. In our experiment, the duration of the longest
unjustified execution of a fail-safe trajectory is 1.75 s, which
would result in slowing down the vehicle by only 30%. In
addition, the vehicle quickly recovered after this situation,
since we were able to verify an intended trajectory again.
Thus, this situation would not be immediately recognized by
passengers in the vehicle.

VII. CONCLUSIONS

This paper proposes fail-safe motion planning to ensure that
autonomous vehicles never cause accidents under the premise
that other traffic participants are allowed to perform any legal
behavior. If a collision occurs nonetheless, we can verifiably
argue that another traffic participant has violated traffic rules.

In contrast to exisiting verification techniques, our approach
is the first verification technique that can be used in arbitrary
traffic situations. It is real-time capable with computation times
of less than 40 ms and works with any provided intended
motion plan, even if it has been generated using machine-
learning techniques. Furthermore, our technique ensures that
the vehicle always has a provably safe plan to follow even
if the intended motion is potentially unsafe. By making use
of invariably safe sets, we are able to ensure that fail-safe
trajectories intervene at the optimal point in time in unsafe
sitations and guarantee safety for an infinite time horizon.

In 127 driving experiments with a BMW 7-series test-
vehicle, we showed for the first time that the safety benefits of
our verification technique prove true in reality. In all experi-
ments, the ego vehicle remained safe through the execution of
fail-safe trajectories. Our fail-safe planner generates drivable
trajectories that can be tracked by a vehicle controller, even in
highly dynamic stuations, validating our linearized kinematic
model. Invariably safe sets further allow us to efficiently
determine the existence of fail-safe trajectories and to ensure
that these trajectories remain safe at all times.

In recorded scenarios with dense traffic in the Munich area,
we performed the first detailed intervention assessment study
for online verification of autonomous vehicles. The results
of our study indicate that our verification technique has low
intervention rates. Even if the ego vehicle has to execute
a fail-safe trajectory, it can recover to its intended motion
when the situation resolves itself. Consequently, employing
our technique does not result in overly conservative behaviors
of the autonomous vehicle.

Our online verification technique has the potential to dras-
tically reduce the number of traffic accidents. However, to
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TABLE II
ANALYSIS RESULTS OF ALLEGED FAIL-SAFE EXECUTIONS.

Type Reason Number Comment

TP Safe distance 26 The driver violated the safe distance to preceding vehicles.
Pedestrian 3 A pedestrian suddenly entered the ego vehicle’s lane.
Uncertainties 18 High uncertainties in the environment model led to rejecting intended trajectories.

FP Solver error 14 The solver failed to obtain a fail-safe trajectory even though the situation was safe. This
error might be a result of inaccuracies in the embedded code generation.

Map information 7 A vehicle entered a parking area and left current map area. In these situations, the
set-based prediction cannot consider lanes and driving directions anymore.

Unmodeled priority rules 33 Right-of-way rules are not included in the environment model. As a result, the set-based
prediction predicts that other vehicles turn in front of the ego vehicle.

fail-safe trajectory

occupancy sets ego vehicle
(a) Verified traffic situation

Occupancy sets Ego vehicle
(b) Unsafe traffic situation

Fig. 19. Snapshots of intervention study. (a) The verification successfully computed a fail-safe trajectory (red regions). (b) Priority traffic rules are not yet
implemented in the environment model. The ego vehicle cannot compute a fail-safe trajectory, since the green vehicle is predicted to turn left, merging into
the ego vehicle’s lane.

realize our verification technique in series production, au-
thorities must first legislate regulations governing autonomous
vehicle safety. Afterward, manufacturers can certify our tech-
nique in their vehicles. In the event that authorities extend
the specification of legal safety, our verification technique
automatically adapts to this new specification through the
provided occupancy sets that capture all the legal behaviors
of other traffic participants.
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