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Optimizing Sets of Solutions for Controlling
Constrained Nonlinear Systems

Bastian Schürmann and Matthias Althoff

Abstract—We present a novel control approach for for-
mally solving reach-avoid problems for constrained and
disturbed nonlinear systems by optimizing over reachable
sets. Reach-avoid problems arise in many modern con-
trol applications of safety-critical systems, such as au-
tonomous driving and human-robot collaboration. They
require us to control all states from a set of initial states
in finite time into a final set while guaranteeing the sat-
isfaction of state and input constraints despite the pres-
ence of disturbances, both external and in the form of
uncertain measurements. We optimize over reachable sets,
thereby simultaneously improving the control performance
and guaranteeing constrain satisfaction for all solutions.
Moreover, our new approach involves a novel combina-
tion of state-dependent feedforward and feedback control,
which leads to better control performance compared to
existing approaches as demonstrated in several numerical
examples. Our algorithm is particularly suited for comput-
ing motion primitives used in maneuver automata, which
realizes fast and efficient online planning. The online appli-
cability is supported by the simple structure of the resulting
controller which is a time-varying linear tracking controller.

Index Terms— Set-based control, reach-avoid problems,
nonlinear systems, disturbed systems, constrained sys-
tems, reachability analysis, optimization

I. INTRODUCTION

In many modern control applications, such as autonomous

driving or robots collaborating with humans, guaranteeing

safety becomes increasingly important. This is a hard task

since these systems have complex, nonlinear dynamics, are

limited by state and input constraints, and are affected by

uncontrollable inputs such as sensor noise or external distur-

bances.

These kinds of problems can be seen as reach-avoid prob-

lems, where the system has to be controlled in a fixed

time from some initial set towards a desired goal set, while

avoiding unsafe regions despite disturbances and constraints.

For example, a car should be steered from its initial position

to a goal position while avoiding unsafe regions, such as

other lanes, other traffic participants, or velocities that are

too high. At the same time, the input set of the controller

is limited by maximum acceleration, maximum braking, and

maximum steering capabilities. The same is true if we consider

a robotic manipulator that should move from one configuration
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to another, while satisfying torque constraints and not colliding

with human co-workers, surrounding objects, or itself.

For a single initial state and undisturbed systems, these

reach-avoid problems can be solved efficiently using numerical

optimization tools such as multiple shooting [1]. However, if

we have to consider a set of initial states, e.g., if the exact

initial state is not known beforehand or cannot exactly be

measured due to noisy sensors, these methods fail, as they

would have to solve an optimization problem for each of the

uncountably many states of a continuous set.

In this paper, we present a new way of computing controllers

which formally solve reach-avoid problems for a set of so-

lutions despite disturbances that can be efficiently executed.

In contrast to classical optimal control algorithms, which

only consider a single trajectory and therefore are able to

numerically integrate this trajectory in the cost and constraint

functions, we optimize directly over the whole reachable set

[2]–[4] and include the reachable set computation directly in

the cost and constraint functions.

As the computations of reachable sets require some time,

we significantly reduce the online computation time by pre-

computing the controllers and corresponding reachable sets a

priori and storing them in a safe maneuver automaton [5];

see Fig. 1. There, many short trajectory pieces with different

initial and final sets are pre-computed, which are often referred

to as motion primitives (Fig. 1, ➀). These motion primitives

can be concatenated if the initial set of a motion primitive

is completely contained in the final set of the previous one

(Fig. 1, ➁). The maneuver automaton contains the motion

primitives as states and connectable motion primitives as

transitions, as presented in Fig. 1, ➁. After pre-computing

all of the motion primitives and constructing the maneuver

automaton offline in advance, the online planning and control

problem simplifies to a discrete planning problem (Fig. 1, ➂–

➅). In order to have a maneuver automaton with as many

transitions as possible – to be more flexible during the online

planning – we need controllers which are able to steer all states

from a large initial set into a small final set.

Related Work

There exist many methods in the literature which aim to

control constrained nonlinear systems despite disturbances.

However, it is still an open challenge to provide guarantees

without becoming too conservative or resulting in too large

computation times. A direct way to obtain optimal control in-

puts, which satisfy state and input constraints, is by solving the
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Fig. 1. Overview of robust maneuver automata (MA) design for an
example in automated driving using our new control approach.

Hamilton-Jacobi-Bellman (HJB) equation or using dynamic

programming [6]–[9]. Since solving the HJB equation is only

possible for low-dimensional systems, it becomes difficult to

apply for high-dimensional systems.

Another well-known method is to use model predictive

control (MPC), which allows us to take state and input con-

straints into account. There are two different approaches: In the

explicit case, the state space is divided into different regions,

and for each region, an optimal control law is computed which

satisfies the constraints [10]–[17]. Due to this division of

the state space, this approach becomes easily computationally

infeasible for higher-dimensional systems. In implicit MPC,

on the other hand, the optimization problem is solved online,

requiring to find a solution in real time, which is often

infeasible if formal guarantees are required.

An established form of robust MPC is tube-based MPC,

where an auxiliary controller is used to keep the system in

a tube around the optimized trajectory [18]–[20]; for linear

systems, the superposition principle is exploited, but it is

also possible for nonlinear systems [21]–[24] under certain

assumptions and with increased conservativeness, as explained

in Sec. III and illustrated in Fig. 4. An approach that combines

MPC with reachability analysis is shown in [25]; however, they

also consider fixed feedback controllers and use conservative

approximations of the reachable sets.

Another method which controls all states around a single

trajectory is presented in [26]. This method exploits so-

called trajectory robustness, which is, however, restricted to

feedback-linearizable and differentially flat systems, and it

does not take disturbances into account. An extended version

using feedback control is shown in [27].

Controlling all states in so-called funnels, similar to the

tubes in tube-based MPC, to a final set for disturbed nonlinear

systems can be done using LQR trees [28]–[30]. There, the

authors use sums-of-squares programming to find LQR track-

ing controllers, which satisfy certain constraints. This method

is also successfully applied to safe maneuver automata [31];

however, the complexity of sums-of-squares techniques can

grow very fast with the system dimension. Similar approaches

which can be used for motion planning are shown in [32],

where the positive invariant sets of different controllers are

concatenated in trees to obtain maneuver automata. More

approaches for safe motion planning using maneuver automata

can also be found in [33], [34] and using reachability analysis

for verifying the safety of maneuvers in [35].

A large class of controllers which provide formal guarantees

are abstraction-based controllers [36]–[52]. They have the

advantage that they can even take complex specifications into

account; however, as they often do this by discretizing the

state and input spaces, they suffer from the curse of dimen-

sionality. Some methods try to avoid computing abstractions

of the whole state space [53]–[57], but mainly focus on the

satisfaction of more complex requirements and only consider

undisturbed systems. Other approaches for controller synthesis

with formal specification (again, only for undisturbed systems)

combine genetic algorithms with Lyapunov functions [58].

In earlier works, we addressed the problem at hand by

combining optimal control with reachability analysis. In [59],

[60], we obtained a piecewise-constant control law by in-

terpolating optimal open-loop trajectories of extreme states

and generators, respectively. In [61], we optimized continuous

feedback controllers, but only for disturbed linear systems.

Contributions

In this paper, we combine formal verification with controller

synthesis. Instead of treating both steps – controller synthesis

and verification – independently, we combine them by opti-

mizing the controller to obtain a tighter reachable set, which

in turn is used to verify the controller. This allows us to obtain

controllers with optimized performance and safety guarantees

despite constraints, external disturbances, and measurement

noise. The resulting approach is easy to apply and scales well

with the system dimension, and the resulting controller has a

simple structure, therefore allowing fast sampling times during

its application. We develop a novel unification and extension

of the feedforward control from [60] and the closed-loop

feedback optimization from [61], which leads to improved

performance and faster computation times compared to the

previous works. The resulting controller includes a state-

dependent feedforward controller, which provides a unique

reference trajectory for any state from the initial set. We track

them with a continuous feedback controller, which is obtained

by optimizing over reachable sets.

Organization

The remainder of this paper is organized as follows. After

a formal problem statement in Sec. II, we give an overview

in Sec. III. The main part of this paper is Sec. IV, where
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we present the new approach in detail. This is followed by

a discussion of the algorithm in Sec. V. The applicability

of the algorithm is shown in four numerical examples in

Sec. VI, where we compare it to existing approaches, before

we conclude with a summary in Sec. VII.

II. FORMAL PROBLEM STATEMENT

We consider a disturbed, nonlinear, time-continuous system

of the form

ẋ(t) = f(x(t), u(t), w(t)), (1)

with states x(t) ∈ R
n, inputs u(t) ∈ R

m, and disturbances

w(t) ∈ W ⊂ R
d (W is compact, i.e., closed and bounded).

We do not require any stochastic properties for w(·); we only

assume that any possible disturbance trajectory is bounded at

any point in time in the compact set W . We denote this by

w(·) ∈ W , which is a shorthand for w(t) ∈ W , ∀t ∈ [0, tf ],
where tf ∈ R

+
0 is the final time. The same shorthand is also

used for state and input trajectories throughout the paper. We

denote the solution of (1) with initial state x(0), input u(·),
and disturbance w(·) at time t as ξ(x(0), u(·), w(·), t). The

solution satisfies the following two properties:

ξ(x(0), u(·), w(·), 0) = x(0),

ξ̇(x(0), u(·), w(·), t) = f
(

ξ
(
x(0), u(·), w(·), t

)
, u(t), w(t)

)

,

∀t ∈ R
+
0 .

If we consider an undisturbed system, we use ξ(x(0), u(·), 0, t)
to denote the solution without disturbances, i.e., W = 0.
The measurement of the system is modeled by a function h,

returning the measurement vector x̂ ∈ R
n subject to a compact

set of measurement errors V ⊂ R
o:

x̂ ∈ {h(x, ν)|ν ∈ V}.

The task is to find a control law uctrl(x̂, t) for system (1)

which guarantees that all states in an initial set X0 ⊂ R
n

are steered into a final set Sf ⊂ R
n around an end state x(f)

after time tf despite disturbances and measurement errors. We

minimize the size of the final set by solving

min
uctrl

max
x∈Sf

‖x− x(f)‖1. (2)

In addition to its numerical advantages, the reason for using

the ℓ1 norm for our cost function is that many target sets are

axis-aligned boxes. Therefore, we prefer a set whose bounding

axis-aligned box is as small as possible. When using the

ℓ1 norm, we minimize the sum of the side lengths of this

bounding box. If we used, for example, the ℓ2 norm instead,

we would minimize the sum of the squared sides, therefore

not appropriately considering smaller dimensions. The extreme

case would be using the infinity norm, as illustrated with

the following example: Let us consider a two-dimensional set

whose maximum expanse in the first dimension is denoted

by s1 and in the second dimension by s2, with s1 ≥ s2. In

the case that there exist constraints which prevent us from

reducing the size of s1, there is no change in the ℓ∞ norm if

we reduce the size of s2, while any cost function using the ℓ1
norm would actually benefit from reducing s2.

Furthermore, we consider convex constraints on the states

and inputs, i.e.,

ξ(x(0), u(·), w(·), t) ∈ X , ∀t ∈ [0, tf ],

u(t) ∈ U , ∀t ∈ [0, tf ],

where X and U are both convex sets in R
n and R

m, respec-

tively.

Note that during offline computation, the locations of most

non-convex constraints, such as other traffic participants in

automated driving, are not known. Therefore, we use this

approach to compute the maneuvers offline in advance, while

taking convex input constraints, e.g., maximum acceleration or

steering, and convex state constraints, e.g., maximum velocity,

into account. The non-convex dynamic constraints are handled

during the online planning using motion primitives (see Fig. 2),

which is a standard approach and can be done using existing

techniques (see e.g., [62]).

x(f)

X0

obstacles

final reachable
set of first

motion primitive

initial set
of subsequent

motion primitive

Fig. 2. Using motion primitives (gray) to steer all states from X0 to x
(f)

while avoiding nonconvex obstacles (red). The final set (blue box) of one
motion primitive is always contained inside the initial set (black box) of
the following motion primitive.

For most of the paper, we want to find a final set Sf
which is as small as possible. If instead the task is to steer

all states into a given final set, then we would have to adapt

our algorithms by adding this as an additional constraint. In

this case, however, it might be possible that no solution exists,

depending on the choice of constraints, final time, and final

set.

III. OVERVIEW

Many classical control schemes tackle the reach-avoid prob-

lem in Sec. II with a feedforward reference trajectory and a

feedback controller which tracks this reference trajectory [63]:

uclassic(x̂, t) = uff(t) + ufb(x̂(t), t).

While this works well if the actual trajectory starts close to

the reference trajectory or if there are no input constraints,

this approach struggles with satisfying the input constraints

and providing a good performance for states further away from

the reference trajectory. To balance performance and constraint

satisfaction, we propose the idea illustrated in Fig. 3: Instead of

a single feedforward trajectory, we introduce a state-dependent

feedforward controller uff(x̂(0), t) together with a feedback

controller ufb(x̂(t), t):

uctrl(x̂, t) = uff(x̂(0), t) + ufb(x̂(t), t).

We thereby obtain a unique reference trajectory for each of the

infinitely many initial states. The feedback controller therefore
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only has to counteract the disturbances, which allows it to be

much more aggressive without violating input constraints.

initial
set X0

reference trajectory

for center of X0

desired
final state

(a)

individual feedforward
for all states in X0

(b)

reachable set of feedforward
and feedback controller

final
reachable

set

(c)

minimized reachable set
of feedforward and
feedback controller

(d)

Fig. 3. Our combined control approach: Computing a reference
trajectory from the center of the initial set to the desired final state (a).
Computing the feedforward controller for each state of the initial set,
which steers them to the origin (b). Counteracting disturbances with
feedback controller; minimizing over the reachable set by optimizing the
controller parameters (c). Obtaining state-dependent feedforward and
feedback controllers with reachable sets of reduced size (d).

Since we compute the different parts – reference trajec-

tory, state-dependent feedforward for all states, and feedback

controller – after each other, we have to ensure enough

remaining input capacities and a sufficient distance to con-

straints. Therefore, we have to tighten the constraints for the

reference trajectory and for the state-dependent feedforward

controller, respectively. Let us introduce the new constraint

sets Xref ,Xff and Uref ,Uff such that

Xref ⊆ Xff ⊆ X , (3)

Uref ⊆ Uff ⊆ U . (4)

In previous works, such as [18], the above sets are exclusively

reserved, resulting in the distribution of input utilization il-

lustrated in Fig. 4. In contrast, we introduce a flexible and

therefore less conservative distribution, shown in Fig. 5. We

minimize the applied inputs in an optimization problem and

are able to use the unused capacities of previous steps in

contrast to the previous example.

The choice of Uref and Uff are design choices. As the

computations for the reference trajectory and the feedforward

controller can be done very fast, especially compared to

the optimization of the feedback controller, we could also

minimize over the allowed inputs to find the smallest input set

such that all states are controlled close enough to the desired

final state for the undisturbed system.

Remark 1: To accelerate the proposed optimization proce-

dure, we initially simplify the applied reachability analysis

so that it is not over-approximative and we sometimes use

linearized and time-discretized dynamics during our controller

synthesis. Since we use over-approximative reachability anal-

ysis in the end, we ensure that our results are formally correct

for the constrained nonlinear dynamics despite disturbances.

t

u(t)

U

Uref

inputs for feedback

inputs for feedforward

unused
input

capacity

Fig. 4. Illustration of a classical trajectory tracking approach where
the reference trajectory and the feedback controller are designed inde-
pendently. Therefore, the controller cannot benefit from the fact that the
reference trajectory does not use the full input capacities.

t

u(t)

U

Uff

Uref

inputs for feedback (see Fig. 3(c,d))

inputs for feedforward

for initial set (see Fig. 3(b))

inputs for feedforward for

reference trajectory (see Fig. 3(a))

Fig. 5. Illustration of the three different input constraints which are
used in our optimization problem. While we restrict the inputs for initial
optimizations, we allow the later optimizations to apply the unused parts
of the input constraints of previous optimizations.

IV. MAIN PART

Before we explain the two parts of our controller in detail,

let us first define the reachable set of a system.

Definition 1 (Reachable Set): For system (1), the reachable

set Rt,U ,W(S) ⊂ R
n for a time t, inputs u(·) ∈ U ⊂ R

m,

disturbances w(·) ∈ W ⊂ R
d, and a set of initial states S ⊂

R
n is the set of end states of trajectories starting in S after

time t, i.e.,

Rt,U ,W(S) = {x(t) ∈ R
n|∃x(0) ∈ S, u(·) ∈ U , w(·) ∈ W :

ξ(x(0), u(·), w(·), t) = x(t)}.

The reachable set over a time interval [t1, t2] is the union

R[t1,t2],U ,W(S) =
⋃

t∈[t1,t2]

Rt,U ,W(S).

If we consider the reachable set for a system with feed-

back ufb(x̂(t)), we denote by Rt,ufb,W(S) the reach-

able set obtained for the closed-loop dynamics ẋ(t) =
f(x(t), ufb(x̂(t)), w(t)), where the measurement errors are

modeled as disturbances which only affect the control laws.

If we consider systems without disturbances, we use Rt,U (S)
as a shorthand for Rt,U ,0(S), i.e., W = 0. Since it is not

possible to compute exact reachable sets for most systems

[64], we compute over-approximations instead. As shown in
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[65], it is possible to compute the over-approximation to any

desired accuracy.

The efficiency of the computation of reachable sets depends

on the chosen set representation. A type of set which has very

favorable properties for reachability analysis are zonotopes

[66]:

Definition 2 (Zonotope): A set is called a zonotope if it can

be written as

Z =
{

x ∈ R
n
∣
∣
∣x = c+

p
∑

i=1

αig
(i), αi ∈ [−1, 1]

}

.

Here, c ∈ R
n defines the center of the zonotope, and g(i) ∈

R
n, i ∈ {1, . . . , p}, are p = o n generators, with o denoting

the order of the zonotope. We use 〈c, g(1), . . . , g(p)〉 as a more

concise notation of Z. A zonotope with n linearly independent

generators is called a parallelotope.

For simplicity, we assume that the initial set X0, the set of

measured initial states X̂0 := {h(x(0), ν)|x(0) ∈ X0, ν ∈ V},
the disturbance set W , and the set of measurement noise

V are given as zonotopes or can be over-approximated by

zonotopes. This is actually not very conservative in practice,

as the most common class of sets used to specify such sets

are boxes, which are a special class of zonotopes. Zonotopes

offer the advantage that they can represent a set with only

a few parameters. While one needs 2n extreme points to

describe a box, a zonotope needs only n generators. This linear

scaling of generators with dimension allows an efficient set

representation even in high dimensions. Not only the number

of vertices but also the number of half-spaces needed to

represent a zonotope can grow very high: as described in [67],

an n dimensional zonotope with p generators can have up to

2

(
p

n− 1

)

half-spaces.

In the presented control law, we therefore take advantage

of the efficient set representation of zonotopes by designing

algorithms which are based only on the generators and do

not require us to compute any vertices or half-spaces. Let us

now explain the parts of the control law in more detail. The

resulting synthesis procedure is summarized in Alg. 1 and is

explained subsequently.

Algorithm 1 Set-Based Optimal Controller Synthesis Algo-

rithm

1: (xref , uref ) ← solution of optimization problem (9) for

the center trajectory

2: (Ak, Bk) ← linearization and time-discretization of

f(x, u, 0) along xref , uref using (10) and (12)

3: (uff (g
(1)
x̂ ), . . . , uff(g

(p)
x̂ )) ← solution of optimization

problem (15) for feedforward control of initial set

4: (Q,R) ← solution of optimization problem (18) for the

optimal feedback matrix

5: if all optimization problems feasible then store controller

and reachable set

6: end if

A. State-Dependent Feedforward Control

We want to find an individual feedforward control law for

each state x̂(0) ∈ X̂0, such that it is steered as close as possible

to x(f), i.e.,

uff (·) = arg min
uff (·)

max
x̂(0)∈X̂0

‖ξ(x̂(0), uff (x̂
(0), ·), 0, tf)− x(f)‖1

+ γff

∫ tf

0

‖uff(x̂
(0), t)‖1dt (5)

s.t. ∀t ∈ [0, tf ], ∀x̂
(0) ∈ X̂0 : ξ(x̂(0), uff (x̂

(0), ·), 0, t) ∈ Xff ,

uff(x̂
(0), t) ∈ Uff ,

where we minimize the difference between each state to the

desired final state as well as the applied inputs weighted by

γff ∈ R
+. We consider the set of all possibly measured initial

states X̂ , such that we obtain a valid feedforward control law

for each of them.

For a general, nonlinear system with a nonlinear control

law, it is not feasible to solve (5) for every possible state of

the initial set as there are infinitely many. By restricting the

feedforward control to linearized dynamics with linear control

laws, however, we can overcome this problem by interpolating

finitely many solutions using the superposition principle of

linear systems. To find a controller which is easy to compute

and apply online on the real system, we choose a control law

which takes advantage of our zonotopic representation of the

states:

uff(x̂, t) = uff(cx̂, t) +

p
∑

i=1

αi(x̂)uff (g
(i)
x̂ , t), (6)

where αi(x̂) refers to the i-th entry of the parameter vector

α(x̂) encoding x̂ inside the zonotope of initial measured states

X̂0 = 〈cx̂, g
(1)
x̂ , . . . , g

(p)
x̂ 〉, (7)

i.e.,

x̂ = cx̂ +

p
∑

i=1

αi(x)g
(i)
x̂ , (8)

and therefore αi ∈ [−1, 1]. So, the control laws uff(x̂, t)
for any state x̂ depend only on the p + 1 input trajecto-

ries uff(cx̂, ·), uff (g
(1)
x̂ , ·), . . . , uff(g

(p)
x̂ , ·). The basic idea to

solve (5) is the following: Since a zonotope is defined as a

linear superposition of a center and several generators, the

desired final set has a center which is as close as possible

to the desired final state x(f) (see Fig. 3(a)) and generators

which are as small as possible (see Fig. 3(b)).

We find a reference trajectory which steers the center cx̂
of X̂0 as close as possible to the final state by solving an

optimization problem of the form (see line 1 of Alg. 1 and

Fig. 3(a))

uref (·) = arg min
uref (·)

‖(ξ(cx̂, uref (·), 0, tf )− x(f))‖1

+ γref

∫ tf

0

‖uref(t)‖1dt (9)

s.t. ∀t ∈ [0, tf ] : ξ(cx̂, uref (·), 0, t) ∈ Xref ,

uref (t) ∈ Uref ,
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which is similar to (5) but with the center of the initial

set as the only state. We denote the resulting reference

trajectory by xref (·) = ξ(cx̂, uref (·), 0, ·). By restricting the

inputs to be piecewise constant, this control problem can

be efficiently solved using numerical optimization algorithms

such as multiple-shooting [1]. This restriction to piecewise-

constant inputs is a simplification often used in practice, and

their sampling time can be chosen freely by the user without

changing any general properties, as shown later in Thm. 1.

To be able to apply the superposition principle, as an

intermediate step, we linearize the system along the reference

trajectory (see line 2). We use feedforward and feedback

controllers to keep the real trajectories close enough to the

reference trajectory so that the linearization errors do not

get too large. To obtain the linearization points t′k, we first

divide the reference trajectory into N parts of duration ∆t =
tf
N
, N ∈ N and then choose the middle of the time intervals

[tk, tk+1] with tk = k∆t, k ∈ {0, . . . , N}, i.e., t′k = 1
2 (tk+1−

tk), k ∈ {0, . . . , N − 1}. The system matrices of the linear

dynamics are then given by

Ac,k =
∂f(x, u, 0)

∂x

∣
∣
∣
∣x=xref (t

′

k)

u=uref (t
′

k)

, (10)

Bc,k =
∂f(x, u, 0)

∂u

∣
∣
∣
∣x=xref (t

′

k)

u=uref (t
′

k)

.

By restricting the inputs to be constant in each time interval,

we can treat the system as a discrete-time, linear system of

the form

x(tk+1) = Akx(tk) +Bku(tk), (11)

with

Ak = eAc,k∆t, Bk =

∫ ∆t

0

eAc,kτdτBc,k. (12)

Lemma 1: Let us define the shorthands γ̂ff =
tf
N
γff , Ā =

AN−1 . . . A0 and B̄k = AN−1 . . . Ak+1Bk, k ∈ {0, · · · , N −
1} with B̄N−1 = BN−1. Then, for the linearized and time-

discretized dynamics, the optimization problem

min
uff (·)

∥
∥
∥Ācx̂ +

N−1∑

k=0

B̄kuff (cx̂, tk)− x(f)
∥
∥
∥
1

+

p
∑

i=1

∥
∥
∥Āg

(i)
x̂ +

N−1∑

k=0

B̄kuff (g
(i)
x̂ , tk)

∥
∥
∥
1

+ γ̂ff

(
N−1∑

k=0

‖uff(cx̂, tk)‖1 +

p
∑

i=1

∥
∥
∥uff(g

(i)
x̂ , tk)

∥
∥
∥
1

)

,

minimizes an upper bound of the cost function of (5).

Proof: Using the discretized dynamics in (11), it is well

known that the state at time tN can be obtained as

ξ(x̂(0), uff(·), 0, tN ) =Āx̂(0) + B̄0uff (x̂
(0), t0) + . . .

+ B̄N−1uff (x̂
(0), tN−1).

Since the set of measured initial states is a zonotope X̂0 =

〈cx̂, g
(1)
x̂ , . . . , g

(q)
x̂ 〉, we can use the fact that any initial state

x̂(0) can be expressed as

x̂(0) = cx̂ +

p
∑

i=1

αi(x̂
(0))g

(i)
x̂ , ∀x̂(0) ∈ X̂0.

This expression of x̂(0) makes it possible to rewrite optimiza-

tion problem (5) without its input cost term:

min
uff (·)

max
x̂(0)∈X̂0

∥
∥
∥ξ(x̂(0), uff (x̂

(0), ·), 0, tN)− x(f)
∥
∥
∥
1

= min
uff (·)

max
x̂(0)∈X̂0

∥
∥
∥Āx̂(0) +

N−1∑

k=0

B̄kuff (x̂
(0), tk)− x(f)

∥
∥
∥
1

= min
uff (·)

max
α∈[−1,1]p

∥
∥
∥Ācx̂ +

p
∑

i=1

Āg
(i)
x̂ αi +

N−1∑

k=0

B̄kuff(cx̂, tk)

+

p
∑

i=1

N−1∑

k=0

B̄kuff (g
(i)
x̂ , tk)αi − x(f)

∥
∥
∥
1

≤ min
uff (·)

max
α∈[−1,1]p

∥
∥
∥Ācx̂ +

N−1∑

k=0

B̄kuff(cx̂, tk)− x(f)
∥
∥
∥
1

+

p
∑

i=1

∥
∥
∥

(

Āg
(i)
x̂ +

N−1∑

k=0

B̄kuff(g
(i)
x̂ , tk)

)

αi

∥
∥
∥
1

= min
uff (·)

∥
∥
∥Ācx̂ +

N−1∑

k=0

B̄kuff(cx̂, tk)− x(f)
∥
∥
∥
1

+

p
∑

i=1

∥
∥
∥Āg

(i)
x̂ +

N−1∑

k=0

B̄kuff (g
(i)
x̂ , tk)

∥
∥
∥
1
. (13)

The last equality holds due to the fact that we choose the

αi such that they maximize the 1-norm and since |αi| ≤ 1,
the values of αi can be neglected. For the input cost term,

for piecewise constant inputs as obtained from the discretized

dynamics, it holds that

γff

∫ tf

0

‖uff(x̂, t)‖1dt = γ̂ff

N−1∑

k=0

‖uff(x̂, tk)‖1.

This can be bounded analogously to the state costs in (13) as:

max
x̂(0)∈X̂0

γ̂

(
N−1∑

k=0

‖uff (x̂, tk)‖1

)

= max
α∈[−1,1]p

γ̂

(
N−1∑

k=0

∥
∥
∥
∥
∥
uff (cx̂, tk) +

p
∑

i=1

uff(g
(i)
x̂ , tk)αi

∥
∥
∥
∥
∥
1

)

≤ max
α∈[−1,1]p

γ̂

(
N−1∑

k=0

‖uff (cx̂, tk)‖1 +

p
∑

i=1

∥
∥
∥uff (g

(i)
x̂ , tk)αi

∥
∥
∥
1

)

=γ̂

(
N−1∑

k=0

‖uff(cx̂, tk)‖1 +

p
∑

i=1

∥
∥
∥uff (g

(i)
x̂ , tk)

∥
∥
∥
1

)

.

Lemma 1 allows us to obtain a new optimization problem,

which minimizes an upper bound for the size of the reachable

set. While the original optimization problem, which contains

any possible combination of αi, becomes hard to compute,

the new efficient formulation decouples the influences of the

individual generators.
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The optimization problem is still coupled through the con-

straints, as the state and overall input must satisfy the tightened

state and input constraints, Xff and Uff , respectively. For

reasons of computational efficiency, we simplify checking

constraints by only checking them for the reachable sets at

the time points tk, following the principle in Remark 1. To

check if reachable zonotopes Rtk,uff
(X̂0) satisfy convex state

constraints of the form Xff = {x ∈ R
n|Cx ≤ d}, we use the

following lemma.

Lemma 2: A zonotope Z = 〈c, g(1), . . . , g(p)〉 satisfies

convex constraints of the form Xff = {x ∈ R
n|Cx ≤ d}

if

Cc+

p
∑

i=1

|Cg(i)| ≤ d, (14)

where the absolute value and less or equal operators are both

performed element-wise.

Proof: Using the zonotope representation results in

Cx ≤ d, ∀x ∈ Xff

⇔ Cc+

p
∑

i=1

αiCg(i) ≤ d, ∀αi ∈ [−1, 1].

The left side of the above inequality can be further bounded

by

Cc+

p
∑

i=1

αiCg(i) ≤ Cc+

p
∑

i=1

|αiCg(i)|

≤Cc+

p
∑

i=1

|αi|
︸︷︷︸

≤1

|Cg(i)| ≤ Cc+

p
∑

i=1

|Cg(i)|.

In fact, there exists an α with αi = ±1, such that the computed

bound is touched.

We must also ensure that the sum of all possible inputs for

the center and generators does not exceed the input bounds:

Corollary 1: The feedforward control law (6) satisfies the

input constraint Uff = {u ∈ R
m|Cuu ≤ du} if and only if

Cuuff(cx̂, tk) +

p
∑

i=1

|Cuuff (g
(i)
x̂ , tk)| ≤ du,

∀k ∈ {0, . . . , N − 1}.
Proof: Using the same proof concept as in Lemma 2

results in

uff (cx̂, tk) +

p
∑

i=1

αiuff(g
(i)
x̂ , tk) ∈ Uff ,

∀α ∈ [−1, 1]p, ∀k ∈ {0, . . .N − 1}

⇔ Cuuff (cx̂, tk) +

p
∑

i=1

|Cuuff(g
(i)
x̂ , tk)| ≤ du,

∀k ∈ {0, . . . , N − 1}.

To have a more accurate solution, we use the reference in-

puts for the center of the measured initial set, i.e., uff(cx̂, ·) =
uref (·), which we compute for the actual nonlinear dynamics

and therefore without any linearization errors. Let us combine

the results from Lemma 1, Lemma 2, and Corollary 1 into

a single optimization problem, which is presented in the

following theorem and solved in line 3 in Alg. 1.

Theorem 1: For the time-discretized and linearized system

(11), the following optimization problem minimizes an upper-

bound for the cost function in (5) while taking the constraints

Xff and Uff into account:

min
uff (g

(1)
x̂

),

...,uff (g
(p)
x̂

)

∥
∥
∥
∥
∥
∥
∥
∥







Āg
(1)
x̂ + B̄uff(g

(1)
x̂ )

...

Āg
(q)
x̂ + B̄uff(g

(q)
x̂ )







∥
∥
∥
∥
∥
∥
∥
∥
1

+ γ̂ff

∥
∥
∥
∥
∥
∥
∥
∥







uff(g
(1)
x̂ )

...

uff(g
(q)
x̂ )







∥
∥
∥
∥
∥
∥
∥
∥
1

(15)

s.t. ∀k ∈ {0, . . . , N − 1} :

Cuuff(cx̂, tk) +

q
∑

i=1

|Cuuff (g
(i)
x̂ , tk)| ≤ du, (16)

Cxref (tk) +

p
∑

i=1

|Cg(i)(tk)| ≤ d, (17)

with the shorthands γ̂ff =
tf
N
γff , B̄ =

[
B̄0, · · · , B̄N−1

]
,

uff(g
(i)
x̂ ) = [uff (g

(i)
x̂ , t0)

T , . . . , uff (g
(i)
x̂ , tN−1)

T ]T , and

equivalently for uff(cx̂).
Proof: It follows from Lemma 1, together with the fact

that

‖a‖1 + ‖b‖1 =

∥
∥
∥
∥

[
a

b

]∥
∥
∥
∥
1

,

that we can obtain the cost function in the form of (15). The

input constraint (16) follows directly from Corollary 1 and the

state constraint (17) from Lemma 2.

It is shown in [68, Ch. 6] and [69] that the norm and

absolute value can be transformed to linear constraints and cost

functions. Therefore, this problem can be solved efficiently in

a single linear program. As we consider a time-discrete system

for faster computation, we check the state and input con-

straints only at sampling times, too. Since we have piecewise-

continuous inputs, this does not make a difference for the input

constraints. To account for the behavior of the states between

sampling times, we tightened the state constraints Xff . We

formally check the inter-sampling times in the next part by

computing reachable sets which over-approximate all possible

solutions during time-intervals.

B. Feedback Control

To synthesize a feedback controller, we extend the idea

from [61], where it was restricted to linear systems without

measurement noise: We use a time-varying linear feedback

controller whose parameters are obtained by optimizing over

the reachable set of the closed-loop system. This allows us to

find a controller which minimizes the effects from linearization

errors, disturbances and measurement noise, while satisfying

the input constraints at all times (see Fig. 3(c)–(d)).

To simplify the reachability analysis as well as to obtain

a fast-to-evaluate control law, we choose a linear control

structure with time-varying feedback matrix K(t):

ufb(x̂(t), t) = K(t)(x̂(t)− x̂ff (t)),
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with x̂ff (t) = ξ
(
x̂(0), uff(x̂(0), ·), 0, t

)
. Since the computa-

tional effort depends on the number of optimization variables,

we do not optimize all entries of K . Instead, we optimize the

weighting matrices of LQR controllers [70], where we restrict

the matrices Q and R to be diagonal matrices for computa-

tional efficiency. Since we can further normalize the matrices

by choosing the first entry of Q to be equal to 1, we only have

to consider n+m− 1 optimization variables. This is a large

improvement compared to the approach in [61], where the

number of optimization variables increased by M(n+m−1),
where M denotes the number of different sets of optimization

matrices which were needed to compensate the size of the

initial set without violating input constraints. This much larger

number of optimization variables restricted the application of

[61] to linear systems. Note that if desired, one can also use

non-diagonal Q and R matrices. We recompute the feedback

matrix K(t) at each sampling time based on the changing

linearized dynamics. This results in a controller which adapts

to the actual nonlinear dynamics while preserving the simple

control structure of a piecewise linear control law.

The nonlinear optimization problem (line 4) for the Q and

R matrices is given by:

min
Q,R

max
x∈Rtf ,uctrl,W

(X0)
‖x− x(f)‖1 (18)

s.t. Rtf ,uctrl,W(X0) ⊆ X ,

∀x̂ ∈ h(x, ν), ∀x ∈ Rt,uctrl,W(X0), ∀ν ∈ V , ∀t ∈ [0, tf ] :

uctrl(x̂, t) ∈ U .

Analogous to Lemma 1, an upper bound for the cost function

can be computed much easier as

min
Q,R
‖c− x(f)‖1 +

p
∑

i=1

‖g(i)‖1,

with c and g(1), . . . , g(p) denoting the center and the generators

of Rt,uctrl,W(X0).

By using the real cost function or the over-approximation

and by checking the constraints for all times as shown in

Lemma 2, we can express the optimization problem in the

standard form, i.e., a cost function which returns a scalar value

subject to minimization and a constraint function which returns

a vector of values which are all negative if the constraints are

satisfied. This allows us to use existing nonlinear programming

solvers. Since we are able to obtain the applied inputs from

the reachability analysis in the form of zonotopes as well, we

can use the same method for state constraints to check the

input constraints for all times. By incorporating reachability

analysis inside the optimization problem, we are able to

directly optimize over all possible trajectories in a single

nonlinear optimization problem (18) (see Fig. 3(d)).

V. DISCUSSION OF THE ALGORITHM

In this section, we discuss different aspects of the presented

control algorithm.

A. Formal Guarantees

One of the advantages of our approach is that it does

not require proofs for stability or for constraint satisfaction.

Verifying the stability or safety of complex, nonlinear dynam-

ics that are affected by disturbances and measurement noise,

restricted by state and input constraints, and controlled by

switching control laws is a very hard task when using classical

approaches. Finding a Lyapunov function for such a system

easily becomes infeasible in practice. Instead, safety and con-

straint satisfaction is guaranteed by the included reachability

analysis for all initial states and all possible disturbances. In

addition, if the optimization results in a feasible controller, we

know that none of the possible trajectories can intersect with

any forbidden states. By computing all optimization problems

and reachable set computations offline in advance, we are able

to only consider motion primitives in our maneuver automaton

for which a feasible solution has been found. Thus, even if we

cannot find a feasible controller for a certain motion primitive,

we know this offline in advance and can recompute this motion

primitive (see Alg. 1 line 5). During online planning, the

resulting maneuver automaton can be applied together with

fail-safe techniques [71] to ensure that a safe control strategy

exists for any situation.

B. Optimality

As we rely on nonlinear programming algorithms that do

not guarantee convergence to a global optimal solution, we

can only expect to obtain a local optimum. In fact, there is

no efficient method able to obtain globally optimal controllers

for disturbed, nonlinear systems [6], [72]. Most optimal con-

trol approaches only consider open-loop dynamics or only

undisturbed feedback controllers [73], [74]. Our synthesis

approach optimizes over the whole reachable set, i.e., all

possible trajectories resulting from any possible disturbance

and measurement noise realization, and chooses the controller

which minimizes all of them. This is not done in any com-

parable method, as most other formal methods consider fixed

controllers, as e.g., in tube-based MPC, or fixed control inputs

for the whole set, such as in abstraction-based methods.

C. Complexity

When we discuss the complexity of our algorithm, we

have to distinguish between online and offline complexity.

The critical part is the online complexity, as this restricts

the sampling times of the controlled system and therefore its

performance.

Since we use a piecewise linear controller, the online

complexity is very low. We can store the different controller

matrices in a look-up table, and the computation itself only

requires two matrix vector multiplication and few additions

with a combined complexity of O(nm) (with n denoting the

number of states and m the number of inputs). Simulation

examples, like in [29], show that this look-up table does not

need to get too large: for an autonomous vehicle example, 20

different motion primitives are already enough for planning in

certain environments. This result matches the observation of
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[75], which states that “a small number of patterns is sufficient

to model the vast majority of traffic scenes.”

We cannot provide fixed complexity bounds for the offline

complexity, as it relies on nonlinear programming for which no

complexity bounds exist. Since we cannot bound the number

of iterations of the nonlinear programming algorithm, we

cannot bound the overall complexity. Let us still give an idea

of the complexity of the different steps.

Computing the reference trajectory requires solving a non-

linear program, however only for a single state with piecewise

constant inputs, which can be solved fast in practice. For the

state-dependent feedback controller, we have to solve a single

linear program. The complexity of solving linear programs

depends on the exact implementation and the number and

type of constraints. There exist algorithms with polynomial

time complexity in the number of optimization variables

and constraints [76]. If we consider zonotopes of a fixed

order, then the number of optimization variables and number

of constraints grows polynomially as well (with O(n2), if

n > m). In practice, the computation time for solving linear

programs, even those with many constraints, is low and does

not add much to the overall computation time.

The most computationally expensive part is the optimization

of the feedback controller. As mentioned in the beginning, the

number of optimization variables grows linearly with n+m−
1. Evaluating the cost and constraint function for a single step

requires the computation of the reachability analysis and some

algebraic operations on the resulting zonotopes, which together

have a complexity of O(n3).

VI. NUMERICAL EXAMPLE

To illustrate the applicability of our new controller and its

improved performance compared to earlier work, we revisit

the examples found in papers [61] and [60], as well as a

nonlinear tube-based MPC example from [77] and a planning

example from [78]. We implement our approach in MATLAB

and use the following toolboxes: the CORA toolbox [79] for

reachability analysis, the ACADO toolbox [80] for optimizing

the reference trajectory, the CVX toolbox [81] for linear

programs for optimizing the generators, and fmincon with the

active-set algorithm from MATLAB for solving the nonlinear

program. The computations are performed on a laptop with a

3.1 GHz Intel dual-core i7 processor and 16 GB memory.

A. Linear Example: Vehicle Platoon

Let us first revisit the numerical example from [61], where

we compute a controller for a continuous-time, linear system

subject to constraints and disturbances. We consider a platoon

with four vehicles, where the dynamics of each vehicle i ∈
{1, 2, 3, 4} is given by

ṗ(i) = v(i), v̇(i) = a(i) + w(i),

where p(i) denotes the position of the i−th vehicle, v(i)

its velocity, and a(i) its acceleration, i.e., the controllable

input. The disturbances, i.e., the uncontrollable inputs, are

denoted by w(i). To model the whole platoon, we use the

absolute states of the first vehicle and the relative states of the

second, third, and fourth vehicles, i.e., we consider the eight-

dimensional state vector x = [p(1), v(1), p(1)−p(2)−cs, v
(1)−

v(2), p(2)−p(3)− cs, v
(2)−v(3), p(3)−p(4)− cs, v

(3)−v(4)]T ,

the input vector u = [a(1), a(2), a(3), a(4)], and disturbance

vector w = [w(1), w(2), w(3), w(4)]. Here, cs ∈ R
+ denotes a

safety constant, defining a minimal safe distance. The resulting

dynamics are given by

ẋ1 = x2, ẋ2 = u1 + w1,

ẋ3 = x4, ẋ4 = u1 − u2 + w1 − w2,

ẋ5 = x6, ẋ6 = u2 − u3 + w2 − w3,

ẋ7 = x8, ẋ8 = u3 − u4 + w3 − w4.

We assume that all inputs are constrained between ui(·) ∈
[−10, 10]m

s
, i ∈ {1, 2, 3, 4} and all disturbances vary freely

in the interval wi(·) ∈ [−1, 1]m
s
. Moreover, we have the

state constraint that the vehicles must keep the minimal safety

distance, i.e., x3, x5, x7 > 0. We consider the following

scenario, which can be used as a motion primitive in a

platooning maneuver automaton: The vehicles start with initial

states ranging freely in the box [−0.2, 0.2]m×[19.8, 20.2]m
s
×

[0.8, 1.2]m × [−0.2, 0.2]m
s
× [0.8, 1.2]m × [−0.2, 0.2]m

s
×

[0.8, 1.2]m× [−0.2, 0.2]m
s
, i.e., the vehicles drive with differ-

ent velocities around 20m
s

behind each other. We consider a fi-

nal state [21m, 22m
s
, 1m, 0m

s
, 1m, 0m

s
, 1m, 0m

s
]T that should

be reached after 1s, i.e., the whole platoon should speed up

to 22m
s

and align in a safe distance of cs +1m between each

vehicle.

In Fig. 6, we show the resulting final reachable sets for the

controller from [61] in blue and with the new approach in

green. We see that the new approach is able to obtain much

smaller reachable sets and its computation time of around one

minute is around five times faster than the old approach. This

is quite impressive as even the old approach performs much

better than constant LQR tracking controllers (red); see [61].

B. Nonlinear Example: Kinematic Vehicle

Let us now consider the autonomous vehicle example from

[60]. The kinematic car model, which covers the most impor-

tant dynamics of a car, is given by

v̇ = a+ w1, Ψ̇ = b+ w2, ẋ = v cos(Ψ), ẏ = v sin(Ψ),

where the states v,Ψ, x, and y are the velocity, the orientation,

and the positions in x and in y directions, respectively. The

acceleration a and the normalized steering angle b are the

inputs, and w1 and w2 are additive disturbances. They are

constrained to lie in the intervals a ∈ [−9.81, 9.81]m
s2

, b ∈
[−0.4, 0.4] rad

s
, w1 ∈ [−2, 2]m

s2
, and w2 ∈ [−0.08, 0.08] rad

s
.

These are the same values as in [60] with the exception of w1

and w2 sets which are enlarged by a factor of four compared

to our earlier work.

We show the reachable set for a “turn left” maneu-

ver in Fig. 7. There, we start from the initial set X0 =
[19.8, 20.2]m

s
×[−0.02, 0.02]rad×[−0.2, 0.2]m×[−0.2, 0.2]m

and want to get as close as possible to the final state x(f) =
[
20 m

s
, 0.2 rad, 19.87m, 1.99m

]T
after 1s. The computation

of the new controller takes around two minutes. For a better
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Fig. 6. Linear platooning example: Initial (black) and shifted final sets (green) for our new controller, projected onto the (x1, x2), the (x3, x4),
the (x5, x6), and the (x7, x8) planes. For comparison, the final sets of our controller from [61] (blue) and an LQR controller (red) are shown.
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Fig. 7. Nonlinear car example: Reachable sets for the “turn left”
maneuver with our new controller, projected to the (v,Ψ) and the (x, y)
planes. The initial set is plotted in black, the final set in green, and the
reachable set for all times between in gray. The black line shows the
center trajectory.
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Fig. 8. Nonlinear car example: Initial (black) and shifted final set (green)
for our new controller, projected to the (v,Ψ) and the (x, y) planes, for
the “turn left” maneuver. For comparison, the final set of the controller
from [60] (blue).

illustration, we show again the initial set with the shifted final

set in Fig. 8. The reachable set of the old controller with the

new disturbance set is again shown in blue and the reachable

set of the new controller in green. We see that the additional

feedback controller allows us to reach the shifted initial set,

while the old controller, which applies only the feedforward

controller in an iterative fashion, similar to MPC, results in a

very large reachable set. In [60], we compare our old controller

with LQR tracking controllers. As their reachable sets with the

increased disturbances would become much larger than the sets

in Fig. 8, we omit them for clarity.

We compute 200 simulations with random disturbances for

this scenario with our new controller and show them in Fig. 9.

We see that the simulations cover almost the whole reachable
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Fig. 9. Nonlinear car example: 200 simulations of the controller for the
“turn left” maneuver are shown in blue.

set for the x, y plane and a large part of the v,Ψ plane. This

demonstrates that our approach is not overly conservative,

but that the reachable sets are justified by actual disturbance

effects. In the same fashion, we can compute other maneuvers

such as “drive straight” or “turn right.” Since the shifted final

sets always fit in the initial set, we can concatenate all of

them with each other and obtain a fully connected maneuver

automaton. Due to the dynamics’ invariance with respect to

the initial position and orientation, we would only need to

discretize the velocity dimension if we want to compute a

maneuver automaton for many possible initial states.

C. Nonlinear Example: Comparison with Tube-Based
MPC

In our third example, we apply our approach to the example

from [77]. The system dynamics are given by

ẋ1 = −x1 + 2x2 + 0.5u,

ẋ2 = −3x1 + 4x2 − 0.25x3
2 − 2u+ w,

with the constrained control input u(·) ∈ [−2, 2] and the

bounded disturbance w(·) ∈ [−0.1, 0.1]. The authors from

[77] solve the control problem of stabilizing the origin for this

unstable system using a nonlinear tube-based MPC controller,

which is applicable for continuous-time nonlinear systems.

The resulting tube for a single example is shown in Fig. 10(a).

We solve the same problem with our approach, where we start

from an initial set which contains their control invariant set.

The results are shown in Fig. 10(b) and take less than 30s to

compute. We see that the system with our controller converges

to a small set around the origin. Our reachable sets are thus
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much smaller than the control invariant set from [77], which

determines the size of the tube. This shows the advantage of

our controller based on the actual reachable sets rather than a

fixed-size tube based on control invariant regions.

(a) Tube-based MPC solution; taken from [77].

-1.2 -0.8 -��� 0 ��� 0.8
-1.2

-0.8

����

0

� !

x1

x
2

final set

initial set

(b) Solution from our algorithm.

Fig. 10. Comparison of tube-based MPC with our approach: Reference
trajectory and control invariant sets of the tube-based MPC solution (a).
Reachable set (gray) of our controller for the same example with initial
set in black and final set in blue (b). The initial set of (a) is contained in
the initial set of (b).

D. Planning Example: Car Model Based on Real Data

Fig. 11. Double lane-change maneuver from [78] driven using motion
primitives with our new controller along planned trajectory (green). Initial
sets of motion primitives are shown in blue, final sets in red, reachable
sets in gray, and their reference trajectories in black.

As a last example, we revisit the planning problem from [78]

to demonstrate how our approach can be applied to trajectory

planning and control of real vehicles. The main question when

modeling a real system is how to find a model which captures

all real world behavior. Since this is not possible with a deter-

ministic model, we use a model with uncertainties and aim on

finding one which includes the real-world behavior in an over-

approximative fashion. In [78], we use conformance testing

Fig. 12. Zoom into a single motion primitive: Full motion primitive on
the left, final set (red) with initial set from following maneuver (blue) on
the right. Initial set is a box rotated by the orientation of the reference
trajectory.

to find such a model for an autonomous car. This is done by

taking a number of test drives with a real vehicle in addition to

simulations of a high-fidelity model and recording the applied

inputs and the measured outputs. In a second step, we increase

the sets for external disturbances and measurement noise until

all measured behavior can be reproduced by our uncertain

model. Doing this allows us to increase the confidence in our

model, as it is able to represent the reality for all of these test

cases.

The resulting model is given by

v̇ = a+ wa,

Ψ̇ =
v

l

(

1 +
(

v
vch

)2
) (δ + wδ),

ẋ = v cos(Ψ),

ẏ = v sin(Ψ),

with the same states as before in Sec. VI.B, the control

inputs acceleration a and steering angle δ, and disturbances

wa ∈ [−0.1, 0.1]m
s2

and wδ ∈ [−0.5, 0.5]◦. In addition, we

assume that there is an additive measurement uncertainty for

each state, with νv ∈ [−0.075, 0.075]m
s

, νΨ ∈ [−0.3, 0.3]◦,
and νx ∈ [−0.025, 0.025]m, νy ∈ [−0.025, 0.025]m. The

characteristic velocity vch is a parameter which computes as

vch =
√

l2cfcr
m(crlr−cf lf )

, with cf , cr denoting the cornering

stiffness of the front and rear wheels, lf , lr the distances

between the front and rear axis to the center of gravity,

l = lf + lr their sum, and m the vehicle mass [82]. We also

consider an input constraint which results from the friction

circle
√

a2long + a2lat ≤ amax,

with the longitudinal acceleration along = a+ wa and lateral

acceleration alat = vθ̇ = v2

l

(

1+
(

v
vch

)2
) (δ + wδ), both with

respect to the orientation of the vehicle.

For the online planning in [78], we first use a simplified

point-mass model to obtain a planned trajectory which consid-

ers other traffic participants and match this planned trajectory

using motion primitives which have been computed using

the conformant model, thereby ensuring the drivability of the

resulting maneuver.
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Here, we use our new approach to compute the required

motion primitives for the planning problem and show in

Fig. 11 the result for a double-lane change maneuver. Each

motion primitive has a duration of 2s, and they are computed

such that for each motion primitive, the shifted final set lies

inside the initial set. In Fig. 12, we show a zoom into a single

motion primitive and see that the final set of this motion

primitive is actually contained inside the initial set of the

following. As in the previous examples, the reachable sets

from our new approach are again smaller than the ones in

[78].

VII. CONCLUSION

We present a novel set-based control algorithm which guar-

antees the satisfaction of constraints for disturbed, nonlinear

systems by optimizing over reachable sets. In contrast to

existing approaches, reachability analysis is not used as a

pure verification tool, but for optimization in the controller

synthesis. This allows us to obtain controllers with smaller

reachable sets, despite the presence of external disturbances

and measurement noise, and the restriction through constraints.

Our approach is particularly suited for the generation of

maneuver automata, which can be used for efficient online

planning. In contrast to existing approaches, we introduce a

state-dependent feedforward controller based on zonotopes,

which steers all states of an initial set to the desired final set.

The feedback controller only has to counteract disturbances

and linearization errors, not initial deviation, and therefore

can be much more aggressive than for classical approaches.

The resulting controller is a time-varying linear controller,

which is easy to implement and allows for fast execution

times. We show in four numerical examples the advantages

of our new approach, where we compare it to three of our

older approaches and a tube-based MPC approach. Our new

approach leads to much smaller reachable sets and can handle

much larger constraints compared to the other approaches.

ACKNOWLEDGMENT

The author gratefully acknowledges financial support from

the European Commission project UnCoVerCPS under grant

number 643921.

REFERENCES

[1] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[2] M. Althoff, S. Bak, D. Cattaruzza, X. Chen, G. Frehse, R. Ray, and
S. Schupp, “ARCH-COMP17 category report: Continuous and hybrid
systems with linear continuous dynamics,” in Proc. of the 4th Inter-

national Workshop on Applied Verification of Continuous and Hybrid

Systems, 2017, pp. 143–159.

[3] X. Chen, M. Althoff, and F. Immler, “ARCH-COMP17 category report:
Continuous systems with nonlinear dynamics,” in Proc. of the 4th

International Workshop on Applied Verification of Continuous and

Hybrid Systems, 2017, pp. 160–169.

[4] E. Asarin, T. Dang, G. Frehse, A. Girard, C. Le Guernic, and O. Maler,
“Recent progress in continuous and hybrid reachability analysis,” in
Proc. of the IEEE Conference on Computer Aided Control Systems

Design, 2006, pp. 1582–1587.

[5] D. Heß, M. Althoff, and T. Sattel, “Formal verification of maneuver
automata for parameterized motion primitives,” in Proc. of the Interna-

tional Conference on Intelligent Robots and Systems, 2014, pp. 1474–
1481.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific Belmont, MA, 2005.

[7] F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Springer,
2008.

[8] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–
370, 1999.

[9] A. B. Kurzhanski, I. M. Mitchell, and P. Varaiya, “Optimization tech-
niques for state-constrained control and obstacle problems,” Journal of

Optimization Theory and Applications, vol. 128, no. 3, pp. 499–521,
2006.

[10] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems.
Springer, 2003.

[11] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for linear

and hybrid systems. Cambridge University Press, 2015.

[12] M. de la Pena, A. Bemporad, and C. Filippi, “Robust explicit MPC
based on approximate multi-parametric convex programming,” in Proc.

of the 43rd Conference on Decision and Control, 2004, pp. 2491–2496.

[13] E. C. Kerrigan and J. M. Maciejowski, “Feedback min-max model
predictive control using a single linear program: robust stability and
the explicit solution,” International Journal of Robust and Nonlinear

Control, vol. 14, pp. 395–413, 2004.

[14] A. Alessio and A. Bemporad, A Survey on Explicit Model Predictive

Control. Springer, 2009, pp. 345–369.

[15] A. Grancharova, T. A. Johansen, and P. Tøndel, Computational Aspects

of Approximate Explicit Nonlinear Model Predictive Control. Springer,
2007, pp. 181–192.

[16] E. N. Pistikopoulos, “Perspectives in multiparametric programming and
explicit model predictive control,” AIChE Journal, vol. 55, no. 8, pp.
1918–1925, 2009.

[17] D. Raimondo, S. Riverso, C. Jones, and M. Morari, “A robust explicit
nonlinear MPC controller with input-to-state stability guarantees,” IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 9284 – 9289, 2011.

[18] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predic-
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Journal on Discrete Mathematics, vol. 6, pp. 246–269, 1993.

[68] G. B. Dantzig and M. N. Thapa, Linear Programming 1: Introduction.
Springer, 2006.

[69] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in
Global Optimization: from Theory to Implementation. Springer, 2006,
pp. 155–210.

[70] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-
interscience New York, 1972.

[71] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in Proc. of the 19th International IEEE Conference on

Intelligent Transportation Systems, 2016, pp. 452–458.

[72] O. Schütze, “Set oriented methods for global optimization,” Ph.D.
dissertation, Univ. Paderborn, 2004.

[73] F. L. Lewis, Optimal Control. Wiley, 1986.

[74] E. B. Lee and L. Markus, Foundations of Optimal Control Theory.
Wiley, 1967.

[75] H. Zhang, A. Geiger, and R. Urtasun, “Understanding high-level seman-
tics by modeling traffic patterns,” in Proc. of the IEEE International

Conference on Computer Vision, 2013, pp. 3056–3063.

[76] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.
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