Comparison of Guaranteed State Estimators for Linear

Time-Invariant Systems

*

Matthias Althoff* and Jagat Jyoti Rath®

& Department of Informatics, Technische Universitdt Minchen, 80333 Mimnchen, Germany.

b Department of Mechanical and Aero-Space Engineering, Institute of Infrastructure Technology Research and
Management, Ahmedabad - 380026 India.

Abstract

Guaranteed state estimation computes the set of possible states of dynamical systems given the bounds of model uncertainties,
disturbances, and noises. For the first time, we evaluate and compare a broad class of guaranteed state estimators for linear time-
invariant systems regarding scalability, accuracy, and real-time applicability. In particular, we consider strip-based observers,
set-propagation observers, and interval observers. The performance of most guaranteed state estimators is significantly affected
by the chosen set representation. Zonotopes have emerged as a popular set representation since important operations such as
linear maps and Minkowski sum can be computed exactly and efficiently. Furthermore, we provide comparisons with ellipsoids
and constrained zonotopes as set representations. The comparison is conducted on various models for state estimation of

autonomous vehicles.
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1 Introduction

Systems are becoming increasingly autonomous, such as
automated road vehicles, surgical robots, automatic op-
eration of smart grids, and collaborative human-robot
manufacturing. Hence, they are increasingly safety-
critical and/or operation-critical [54], [47]. Controlling
these systems requires state observers, because the full
system state is typically not measured due to, e.g., a lack
of measuring devices, packaging problems, or just eco-
nomic reasons. While estimating the most likely state is
sufficient for non-critical applications, critical systems
require the entire set of possible states from guaran-
teed state estimation [1,10, 11, 18,22, 61]. The set of
possible states can be used to rigorously predict future
behaviors [5, 25], perform robust control [40, 60], per-
form conformance checking [58], or apply robust fault
detection [75]. We consider rigorous state estimation of
linear time-invariant systems, which can also be used
to observe nonlinear systems when using conservative
linearization techniques, see, e.g., [8,20].
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Types of Set-Based Observers: In essence, three
types of set-based observers have been developed in
the last decades: strip-based observers, set-propagation
observers, and interval observers. Strip-based observers
propagate the set of possible states forward using
reachability analysis [3], followed by intersecting it
with strips of possible states from measurements; see,
e.g., [1,11, 18, 61]. Set-propagation observers do not
require intersecting sets and propagate sets based on
the joint use of reachability analysis and the concept
of a Luenberger observer [22,50]. Finally, interval ob-
servers consist of two separate observers that provide
an upper and lower bound so that state variables are
bounded within intervals [24,29, 46, 55, 77]. We would
like to mention that historically, strip-based observers
are often also referred to as set membership observers;
however, in principle all guaranteed observers compute
set memberships. Also, some papers bound their states
by intervals and refer to them as interval observers;
however, we prefer to categorize the observers algorith-
mically rather than based on the set representation.

Typical Set Representations: One of the barriers
to wide-spread use of guaranteed state estimation is
their higher computational cost compared to classical
observers. Choosing an appropriate set representation

26 May 2021



is a key design choice. For instance, by modeling sets
as the convex hull of vertices, an axis-aligned box in
R"™ would already have 2™ vertices so that just storing
a single set is infeasible in high-dimensional spaces.
Besides the representation size, it is important that
relevant operations can be efficiently computed or over-
approximated. Guaranteed state estimation requires
linear maps and Minkowski sum. For strip-based ap-
proaches, one additionally requires intersection. The
importance of set representations led to exploring ellip-
soids [10,11,17,61], zonotopes [1,22,50,52], constrained
zonotopes [56, 57, 62], and polytopes [32]. However,
ellipsoids are not closed under Minkowski sum and
intersection, requiring to compute overly large over-
approximations [23,28,48]. To obtain tighter sets, poly-
topes have been suggested at the expense of large com-
putational costs, e.g., computing the Minkowski sum of
two polytopes for n = 20 is computationally infeasible.
To reduce computation time, parallelotopes as a special
class of polytopes are discussed in [18, 32]. However,
paralellotopes are also not closed under Minkowski sum,
resulting in conservative results. While constrained
zonotopes can represent any polytope and perform
Minkowski sums more efficiently, it requires linear pro-
gramming to compute the ranges of values in a given
direction. To obtain a good balance of accuracy and
computational costs, zonotopes [3,33] are widely used
in recent works since they are closed under Minkowski
sum and linear maps. Due to the recent popularity of
zonotopic state observers, we focus on this set represen-
tation subsequently.

Zonotopic Strip-Based Observers: Although zono-
topes are mnot closed under intersection like ellip-
soids, intersection of zonotopes can be efficiently over-
approximated. Previous works mostly differ in how the
intersection is over-approximated: a) singular value de-
composition is used in [19], which is computationally
efficient, but does not optimize a particular perfor-
mance metric; b) segment minimization and volume
minimization [1] overcome limitations of the singular-
value-decomposition approach. However, segment min-
imization leads to conservative results when handling
uncertainties across multiple dimensions [35, 38], while
volume minimization is computationally expensive [35].
Combining the merits of both approaches, a novel P-
radius minimization technique provides a good ratio of
accuracy and computation costs [35, 36, 38, 39]. Since
the previously-mentioned designs lead to conservative
results for high-dimensional systems, a novel P-radius-
based estimation is proposed in [37] for uncertain multi-
output linear systems considering all measurements
simultaneously. The continuous improvement of zono-
topic strip-based observers led to several applications
for parameter estimation and fault diagnosis, among
others [12,51].

Zonotopic Set-Propagation and Interval Ob-
servers: Let us subsequently survey zonotopic set-

propagation observers. P-radius minimization has also
been applied to set-propagation observers [64, 71, 73].
Similarly, in [22], a special type of set-propagation ob-
server is proposed to minimize the Frobenius norm
of the estimation error while ensuring robustness and
making explicit links with Kalman filters. Zonotopic
set-propagation observers have also been applied to
fault detection [13,21,69,70], parameter estimation [66],
and feedback control problems [74]. To avoid the wrap-
ping effect of zonotopic observers, an H-infinity interval
observers is presented in [65].

Contributions: In summary, many aspects of zono-
topic state observer design, such as accuracy, scalabil-
ity, and computational costs are not yet compared in
detail. A comparative analysis between zonotopic strip-
based and set-propagation observers for a single-output
system was presented in [49]|3 Extending this work, a
comparison analysis for fault detection using zonotopic
strip-based and set-propagation observers is performed
in [SO]E For the first time, we present a comprehen-
sive comparison of different zonotopic observers for lin-
ear time-invariant systems with the following features:

e Comparison between strip-based observers, set-
propagation observers, and interval observers.

e Comparison between observers using different mini-
mization techniques, such as volume minimization, F-
radius minimization, P-radius minimization, and H-
infinity minimization.

e Comparison between zonotopes, constrained zono-
topes, and ellipsoids as set representations.

e Consideration of single-output and multi-output esti-
mation.

e Scalability analysis and assessment of real-time capa-
bilities.

e Performance analysis with respect to different param-
eter settings, such as the used zonotope order.

For performing the comparison, we consider vehicle-side-
slip estimation for road vehicles [68].

2 Preliminaries

Let us first give a brief introduction to strip-based
observers, set-propagation observers, and interval ob-
servers for linear time-invariant systems.

2.1 Set Representations

Before we introduce specific sets, let us first introduce
the following set operations for &1, So C R™:

e Linear map: MSy = {Msy | s1 € S1} ,M € R"*".

1 That work refers to strip-based observers as set member-

ship observers and to set-propagation observers as interval
observers.



o Minkowskisum: S1®Ss ={s1 + s2 | 81 € S1, 82 € Sa}.

One of the simplest set representations are intervals:
[2,7) = {x € R | 2 <2 <ZT}. An axis-aligned box is an
interval vector [ [z, Z1], g, Za, ... [2,,, Tn] | . We define
the unit interval as B = [—1,1] and the unit box in R
as B™. A more general set representation than intervals
are polyhedra, which can be defined as the intersection
of m half-spaces (H-representation) [17, eq. 3.20]:

PZ{I‘ERn

Dz < d}, (1)

where D € R™*™ and d € R™. A bounded polyhedral
set is called a polytope. A class of centrally-symmetric
polytopes are called zonotopes and are represented as

Z=c®dGB",

where ¢ € R™ is the center, G € R™*" is a matrix rep-
resenting the generators, and r/n is the order of the
zonotope [3, Sec. 2.1]5 When adding a linear constraint
A€ = b to zonotopes, where A € R™*" b € R", and
¢ is the vector that is mapped by the generator matrix,
one obtains a constrained zonotope [62, Def. 3]:

CZ={c+G¢E e B", A = b}.
Finally, we present ellipsoids, which are defined by a

symmetric positive definite matrix H = H? = 0, and
the center ¢ € R™ as [17, eq. 3.33]

E(H,c) = {J; eR”

(x—c)TH(x—¢) < 1}.

2.2  Cost Functions

To minimize the size of the estimated sets, we define the
following costs of a zonotope Z = c® GB":

e Volume: The volume of a zonotope (see [1, Sec. 6.2]).

e Fp-radius: Given a symmetric weighting matrix P €
R*n P = PT = 0, the Fp-radius is the weighted
Frobenius norm of G [22, Def. 2]:

Fp = ||G||r,p = y/trace(GT PQ).
When the weighting matrix is the identity, i.e., P =
I € R"*™ we say that the F-radius instead of the Flp
radius is obtained.

e P-radius: For a positive definite symmetric matrix

2 Please note that, in some other works, the order of a zono-
tope is defined as r, see, e.g., [1, Sec. 4.1], [15, Def. 6].

P = PT =0, the P-radius [38, Sec. 2] is

6 = max(|l2 - ¢l}) = max((z — " Pz — ¢)).

2.3 Problem Statement

We consider discrete-time, linear, time-invariant dis-
turbed systems, with state z; € R", input u; € R,
output yr € R™v, disturbance w; € R™», and sensor
noise v € R™ at step k:

Tht1 = Azxy, + Bug + wy, (2)

yr = Cxp + vy,
where A, B, and C are matrices of proper dimensions.
It is assumed that the system is observable and that the
disturbance is bounded by the zonotopes W = EB™w
and the noise is bounded by the set )V = FB"v. Please
note that other works use Ewj, and F'7, instead of wy,
and vy in (2), however, this is not a more general case
since one can simply choose W = EW and V = FV. A
possible way to automatically find proper sets W and V
is through conformance checking, see, e.g., [30,41, 59].
For a given state xy, input ug, and disturbance wy, let
us denote the next state of (2) by x(zx, uk, wg).

Our objective is to find the sets of possible states at
time step k, which we define inductively starting with
the initial set So C R™:

Si = {xk = X(xk—lauk—la wk—l) ’fk—1 € Sk—1,

wi—1 € W, v Ev,ykzcwk-i-vk}. (3)

We aim at computing an over-approximation of S
that minimizes the previously-presented cost functions.
This goal is pursued differently for the strip-based,
set-propagation, and interval observers presented sub-
sequently.

2.4 Strip-Based Observers

Strip-based observers first propagate the possible set of
states according to the system dynamics, which is inter-
sected by the set of possible states due to the current
measurement:

(1) Prediction: By evaluating (2) in a set-based fashion,
one obtains the next set of possible states [38, Def.
2]:
SP = ASk—1 ® Bug—1 & W.
(2) Measurement update: Due to the linear measure-
ment function in (2), the possible states from the
measurement of the j** output signal Yk,; at time



step k are bounded by a strip of width o; [1, Prop-
erty 2|:

Sj:{xeR"‘|ij—yk7j|§aj}, (4)

where Cj is the j th row of the measurement matrix
C'in (2) and o is the symmetric bound of the box
enclosing the sensor noise: [—o, o] = Box(V). The
entire measurement set Sy is computed by over-
approximating the intersection of all strips:

S‘Q 3105’2...08ny. (5)

(3) Correction: The set consistent with the prop-

agated set SP and the measurement set S is
simply obtained by intersection, which is often
over-approximated for computational efficiency [1,
Sec.3]:

S 2 SPNS. (6)

Next, we present set-propagation approaches, which do
not require to perform intersections.

2.5 Set-Propagation Observers

A disadvantage of the strip-based approach is that ef-
ficient set representations, such as ellipsoids and zono-
topes, are not closed under intersection. Set-propagation
approaches eliminate this problem, which are typically
based on the update equation of a Luenberger observer:

Tpy1 = AZp + Bug +wp + L(ye — Cip — i), (7)

where %41 is the estimated state at step k + 1. The
observer gain L is designed so that the estimated state
quickly converges to the true state. A simple and direct
way to obtain guaranteed state estimation is to evaluate
(7) in a set-based fashion [22, Sec. 4.1]:

Sk+1 = (A — LO)Sk @ Bui & Ly, & (—L)V SRA% (8)

It is fairly easy to see that (8) is over-approximative if
Ty € Sp and V as well as VW contain the origin: The true
solution is xy41 = Axg+Bug+wy according to (7). Since
V and W contain the origin, their set-based evaluation
only inflates the true evolution of the state so that the
state inclusion holds for any L. The matrix gain L can
thus be used to optimize the estimation accuracy based
on cost functions from Sec. 2.2, either offline (constant
gain) or online (time-varying gain).

2.6 Interval Observers

Yet another possibility to avoid intersections is to bound
the state by two observers when exploiting monotonicity
of the system dynamics [65, Sec. VI]. Since often the

dynamics is not monotone, a new method is presented
in [65, Alg. 1], which is proven to be at least as good as the
classical interval observers exploiting monotonicity. The
proposed approach in Alg. 1 is based on (8) and avoids
the wrapping effect by re-arranging the computation of
(8) and using the box operator analogously to [27].

Algorithm 1 Interval observer from [65, Alg. 1].

Input: input sequence ug, output sequence ¥y,
Output: Sequence of state bounds z;,, Zk.

1: #9 ¢ CENTER(X)), Do+« WD (—=L)V
2: Sw,o +— Xy, Swv,O 0
3: for all £k > 0 do
4: ler, €] = BOX(Sz k) ® Swo k
5 [z, Tkl = Tk + [ey, €kl
6: Tka+1 = ATy + Bug + L(yk — C.@k)
7 Sx,k;Jrl = (A — LC)SJE,]c
8: Swv,k-i—l = S’wv,k S BOX(Dk)
9: Dyy1 = (A — LC)Dk
10: end for
2.7 Summary

In [71, Sec. 5] it has been shown that there exists a
parameterization for the set-propagation approach and
the strip-based approach such that both approaches pro-
duce exactly the same result. However, no general pro-
cedure is known that converts one approach into the
other one. Given a state-of-the art parameterization of
each method, it is unclear which method performs bet-
ter in which application. We try to shed some light into
this question in this paper. Next, we present concrete
realizations of the presented observer types when using
zonotopes as a set representation.

Strip-based observers can only finish their computation
of the estimated set Sy after receiving the measure-
ment yi. As a consequence, the estimated set Sy ar-
rives with a delay. This problem does not occur when
using set-propagation observers and interval observers,
which obtain Sy, before time step k when the implemen-
tation is real-time capable. To retain formal correctness,
it would be required for strip-based observers to addi-
tionally compute a one-step prediction of the set of states
and use this set as the set of initial states as shown in [60,
Sec. III]. Since some practitioners may want to ignore
the delayed computation (e.g. in a fault-detection algo-
rithm), we list the computation times in Tab. 3 without
the additional prediction step, but indicate that these
algorithms are not necessarily ready to be used for con-
trol. Our experiments have shown that adding a second
prediction would roughly increase the computation in
Tab. 3 by 0.1 ms.

3 Zonotopic Observers

As shown in Sec. 2, guaranteed state estimation mainly
requires linear maps, Minkowski sums, and intersections.



While constrained zonotopes are closed under these op-
erations, they require solving linear programs to ob-
tain ranges of state intervals. A comparison between the
remaining set representations, namely ellipsoids, zono-
topes, and polytopes, is shown in Tab. 1 for the men-
tioned operations. We assume that the resulting sets in
Tab. 1 are not reduced, e.g., redundant inner points of
a V-polytope are not removed.

Table 1

Comparison of set representations for unreduced results
when the linear map M S is performed with a square matrix
M of full rank (X: not closed under set operation).

Set Repre- Linear Map Mink. Sum Intersection
sentation
H-Polytopes O(n3) t O(2™) O(1)
(spanned by n [14, Tab. 1] [14, Tab. 1] eq. (1)
generators)
V-Polytopes O(n?2m) O(n22n) super-
(spanned by n [14, Tab. 1] [14, Tab. 1] polynomialm
generators) [16, Ch. 6.1]
Ellipsoids O(n?) X X

[34, Sec. 2.2.1]
Zonotopes O(n?) O(n) X
(n generators) [6, Tab. I] [6, Tab. I]

It can be seen from Tab. 1 that zonotopes provide higher
accuracy compared to using ellipsoids and lower com-
putational complexity compared to polytopes. Thus, we
will only present zonotopic observers in this section; we
assume that the set of initial states Xj, the set of distur-
bances W, and the set of noises V are bounded by zono-
topes. If these sets are not zonotopes, one could over-
approximate them by zonotopes.

3.1 Strip-Based Observers

Strip-based observers using zonotopes only differ in the
way the intersection in (5) and (6) is over-approximated
after obtaining the predicted zonotope SP = ¢P & GPB".
A graphical representation of the intersection methods
is presented in Fig. 1, which are briefly introduced sub-
sequently.

Intersection method I: By considering the multi-
output system (2) as n, separate single-output systems,
the intersection of the predicted zonotope SP and the
first strip S in (4) can be over-approximated by a
family of zonotopes parameterized by A! € R™ [1, Sec.
6] [38, Sec. 4]:

Zi(\Y) =(I = MO + Ny 1@
(I —XC)GP, Moy |B™H

3 Intersection has to be performed by facet and vertex enu-
meration.

where [ is the identity matrix of proper dimension. The
resulting zonotope is then intersected with the strip S,
corresponding to the second output. This procedure is
repeated until the last measurement to obtain the final
estimated set from Zny_l =@ GBTw 1 [38, Sec. 4]:

Sk = Zn, (\™) =(I = A" Cy ) )e+ ANy, @
(I = A™C, )G, A"y, |B T

Y

For a compact notation, we store all A* in A =
AL .. ] € RXn,

Intersection method II: This method (see [37, Sec.
IV]) first computes the exact polytope of the intersec-
tions in (5):

Sz{xER"

Cx — yx| < 0}.

The intersection with the propagated zonotope in (6)
is over-approximated by a zonotope parameterized by
A [37, Sec. IV]:

Sk(A) :(I — AC)Cp + Ayk
@ [(I — AC)GP, A diag(c)]B" ",

where diag() returns a diagonal matrix.

Intersection method III: The family of zonotopes
over-approximating the intersection of SP with the first

strip according to [15, Sec. IILB] is 21 (j) = c(j)®eG(5)B"

for any integer j, 0 < j < r using the j'* column ¢/ of
GP, where

o= | & a1 < Cigl £,

cP; otherwise,

Gy Go...G,; if 1 < j <1, Cig? #0,

G(j) =
GP; otherwise,
R K QL ifo #
g’y ifo=.

Similar to parameterization method I, this zonotope is
then intersected with the next strips n, times until the
final estimated zonotopic set Sy is computed.

To design A for intersection methods I and II, and to
obtain the optimal bounding zonotope for method III,
different cost functions and convex optimization tech-
niques are employed as shown in Tab. 2. For P-radius
minimization, the design parameters in A can be ob-
tained by solving the respective optimization problems
as bilinear matrix inequalities. For ease of design, the bi-



Intersection method I

Z1(\Y)

Predicted set and
first output strip

Enclosure of the
first intersection

Z,(\2)

Second
output strip

Enclosure of the
second intersection

Intersection method II

Polytope ‘obtained from
intersecting all output strips

@ @ ..

Enclosure of the predicted
set and the polytope

Intersection method III

Predicted set and Smallest zonotope from the
first output strip zonotope family (first output)

3 fv\'— ~
N 20)

Smallest zdnbtope from the
zonotope family (second output)

Sécond
output strip

Fig. 1. Graphical representation of all intersection methods for the multi-output case

linear matrix inequalities can also be solved as a group of
linear matrix inequalities by performing a line search or
using bisection algorithms [37,38]. Such an approach re-
duces the number of decision variables and thus reduces
the complexity of solving the linear matrix inequalities.

Irrespective of the parameterization method, all volume
minimization and F-radius techniques involve solving an
optimization problem in each step during real-time op-
eration. In contrast, A is pre-computed before real-time
operation for all P-radius techniques.

Table 2
Combinations of intersection methods and cost functions.

Cost function

Inter-

section volume F-radius P-radius

I VolMin-A [1] FRad-A [1] PRad-A [38]

1I FRad-B [71] PRad-B [37],
PRad-C-I [71],
PRad-C-II [67],
PRad-D [72]

111 VolMin-B [15]

3.2 Set-Propagation Observers

We now discuss various techniques for optimizing the
observer gain L of (8) for set-propagation observers.

F-radius minimization (FRad-C): Using an analo-
gous procedure as for the Kalman filter, the optimal gain

L to minimize the F-radius of S, = ¢ ® GB" is [22, Sec.
4.3]:
L=AGGTCTIcGGTCT + FFT)~ L.

P-radius minimization (PRad-E): The observer
gain L minimizing the P-radius of Sy is [73, eq. 17]:

L=P*'Q, P*=argmax(trace(P))
subject to
—BP 0 0 ATP-CTQT
x —ETE 0 ETP
<0,
* * —FTF FTQT
* * * -P

where * is a term that can be induced by symmetry,
B €]0,1[ is a design parameter, Q € R"™ ™ and P =
PT » 0 is a symmetric positive definite matrix.

Nominal Gain Design (Nom-G): For the nominal
form of the linear system (2), i.e., in the absence of dis-
turbances and noises, the observer gain L can be de-
signed as [71, eq. (36)]

L =Py,



where P = PT = 0 is a symmetric positive definite
matrix and Y € R™*™ has to fulfill

uP *
PA-YC P

=0

for a scalar p € ]0,1]. The observer gain is stable with a
decay rate p for the nominal form of the system.

3.8 Interval Observer

We only consider one approach to design the observer
gain L in Alg. 1.

H-infinity-based design (Hinf-G): A H-infinity-
based optimization problem to find L is devised in [65,
eq. 16]:

min ~2

subject to

0 -2 x x
7 <0,
—'y2I *

PA-YC PE —-YF —-P

where Y = PL, v > 0 is a scalar, and P = PT = 0 is a
symmetric positive definite matrix. The observer gain is
thus computed such that the estimation error is robust
against disturbances and noise influences.

3.4 Summary

The design of the observer gain L is computed at each
step using the FRad-C technique, while for PRad-E,
Nom-G, and Hinf-G, the gain L is pre-computed off-line.
Considering all the zonotopic state observers discussed
earlier, the order of the zonotopic estimation set Sy in-
creases with k irrespective of the design approach. To cir-
cumvent this problem, several zonotope order-reduction
techniques [3, 19, 26, 31, 33, 76] have been proposed to
bound the higher-order zonotope by a lower-order one,
where [33] proposed the first approach and [19] first re-
duced zonotopes by sorting generators. These methods
are analyzed in our subsequent performance evaluation.

4 Performance Evaluation

In this section, we evaluate the performance of the
presented zonotopic observers and compare them with
the following observers using ellipsoids and constrained
zonotopes:

(1) A strip-based observer with optimal bounding el-
lipsoids (ESO-A), where the intersection with the
measurement set is performed according to [28] and
the prediction step according to [42]. When using
the prediction approach in [28], the results would
have been too over-approximative.

(2) A strip-based observer with selective observation
update for linear-disturbed systems (ESO-B) [42].

(3) An ellipsoidal set-propagation observer using el-
lipsoidal invariant sets for error estimation (ESO-
C) [44].

(4) A robust H-infinity-based ellipsoidal interval ob-
server (ESO-D) [45].

(5) A constrained zonotopic observer with direct inter-
section (CZN-A) [62].

(6) A constrained zonotopic observer with strip-based
intersection optimized using F-radius minimization
(CZN-B) [2].

All ellipsoids (initial set, disturbance set, and sensor
noise set) are chosen so that they are enclosed in the cor-
responding zonotopes. We evaluated all observers on an
Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz machine
with MATLAB 2020b with single thread executiond?]
For all set operations we have used the CORA toolbox [4]
and optimization problems have been solved using the
YALMIP toolbox [43] with the Mosek solver [9].

4.1  Performance metrics

We evaluate all observers with respect to tightness of the
estimated sets and computation time. The relative rms
(root-mean-square) values of the interval radius r; ; of
the i*" state variable at step k out of N, time steps of
observer [ are computed as:

~ stl
S TN [ O
b min(7i 1, ... Fipy) N k=0 o
(9)

We are not using volume as a metric due to its com-
putational complexity for zonotopes (see [1, Sec. 6.2]);
also, volume approximation methods for zonotopes are
not yet accurate enough.

4.2 Case Study

We consider the case study of estimating states of an au-
tonomous vehicle. Typically, the yaw rate and the longi-
tudinal velocity of the vehicle are measurable [68]. Using
these measurements, the lateral acceleration of the vehi-
cle can also be computed. However, the lateral velocity

4 The implementation files for all set-based observers

discussed in this paper and further results are provided at
https://MatthiasAlthoff@bitbucket.org/MatthiasAlthoff/set-
based-observer-comparison-1ti-2021.git



or side slip are difficult to measure [63,68], which are im-
portant values for safe motion planning of autonomous
vehicles. Due to the safety-criticality of autonomous ve-
hicles, it is essential that we reconstruct the set of pos-
sible states instead of a single estimate.

We use the vehicle model in [7] and combine it with
the steer column dynamics in [63] to obtain an Euler-
discretized model in the form of (2) for a sampling time of
Ts = 10 milliseconds (ms). The system states are z,6 =

[B, U, Sy, 0, S}T, where 3, U are the side slip and yaw
angles in radian, s, is the lateral displacement in m, ¥ is
the yaw rate in radian/s, 4 is the steer angle in radian and

J is the steer rate in radian/s. The initial state is chosen
as the origin, the control output uy is the steering torque
from the motor of the electronic power steering unit,
and the measurements y; are the lateral acceleration
ay, steering angle d, and vehicle lateral position s, from
the lane center line [53]. For space reasons, the system
equations and the set of disturbances and sensor noises
can only be found onlinﬂ

We consider a double-lane change maneuver executed at
a fixed longitudinal velocity of 15 m/s. To analyze the
scalability of various set-based observers, we also con-
sider reduced-order vehicle systems with the respective
state vectors z,4 = [, ¥, ¥, 5,]7 and z,0 = [3, ¥]T.
For all these vehicular systems, the side slip angle is not
measurable and thus estimated. It was observed that
the performance of most observers showed no significant
variations with respect to the dimension of the vehicu-
lar system so that we only present the results of the full
system. The results of the other models are provided on-
lind %]

4.8 Results

The performance metrics from Sec. 4.1 are listed in
Tab. 3, where t.omp is the computation time per itera-
tion in milliseconds (ms). Since VolMin-A has extremely
high computational costs, we could only apply it to the
smallest vehicle model and thus it is missing in Tab. 3.
As examples, we visualize the estimated intervals of all
states using the FRad-A observer in Fig. 2, the FRad-C
observer in Fig. 3, and the Hinf-G observer in Fig. 4.

We have also analyzed the effect of using different order
reduction techniques. Overall, order reduction has only
a limited effect (i.e., less than 18 % change in interval
radii of measured states). Due to the limited influence on
the best observers we only present these results onlin

Zonotopes or Constrained Zonotopes or Ellip-
soids?

e Tightness: Since constrained zonotopes are closed
under linear maps, Minkowski sum, and intersection,

they provide the tightest results as shown in Tab. 3.
However, one cannot directly compute their inter-
vals for a given variable since this requires solving
linear programs [62, eq. (25),(26)], which cannot be
solved in real time for the considered problem. In
contrast, intervals of zonotopes and ellipsoids can
be easily obtained. The estimated interval radii of
zonotopic observers are significantly tighter than
those of ellipsoidal observers, irrespective of the used
method; see Tab. 3. The worst zonotopic strip-based
observer PRad-A has a better accuracy than the
best ellipsoidal strip-based observer ESO-A. Like-
wise, the worst zonotopic set-propagation observer
Nom-G is more accurate than the best ellipsoidal
set-propagation observer ESO-C.

o Computational efficiency: The computational costs of
ellipsoidal observers are roughly an order of magni-
tude lower for set-propagation techniques compared
to zonotopic observers in Tab. 3. However, for strip-
based techniques, the computation times are more
similar. Constrained zonotopes have a larger compu-
tation time compared to the other set representations,
except for VolMin-B. This time is significantly en-
larged by 492 ms per time step when the interval of
values for a specific variable is required (zonotopes:
0.1 ms. ellipsoids: 6.6 ms).

Strip-Based or Set-Propagation or Interval Ob-
server?

o Tightness: Except PRad-A, all zonotopic strip-based
observers have an average relative radius below 4 in
Tab. 3, while no zonotopic set-propagation observer
has an average relative score below 4.

o Computational efficiency: The fastest computational
times have been obtained for set-propagation ob-
servers when using ellipsoids. However, also when us-
ing zonotopes, set-propagation observers are slightly
faster compared to the other observer types as shown
in Tab. 3. All approaches have similar computa-
tional costs and are real-time capable (t,, < 10 ms;
step size is 10 ms), except VolMin-B. Obviously, the
computational time of observers requiring real-time
updates of design parameters, i.e., FRad-A, FRad-B,
FRad-C, ESO-A, and ESO-B are slightly higher than
the P-radius techniques, where the design gains are
pre-computed.

e Ratio of tightness compared to computational effi-
ciency: A particularly good ratio of tightness com-
pared to computational efficiency has been obtained
by PRad-B and PRad-C-II in our use case.

5 Conclusions

Irrespective of the design approach, zonotopic observers
outperform ellipsoidal observers in terms of tightness.



Table 3

Relative rms values v; according to (9). Indices of unmeasured states: 1,3, 6. Indices of measured states: 2,4,5 (¢ = ay/v).

Ready

Set repre- for tcomp

Technique sentation control vy V2 vs V4 vs Ve in [ms]
strip-based observers
VolMin-B zonotope X 4.129 1.000 1.636 1.055 7.136 1.286 131.2
FRad-A zonotope X 1.854 1.357 2.893 2.619 2.862 1.584 0.546
FRad-B zonotope X 2.297 1.189 2.878 2.147 2.868 3.124 0.375
PRad-A zonotope X 8.321 214.8 6.240 21.39 6.154 6.537 0.444
PRad-B zonotope X 2.583 1.354 1.750 1.464 1.865 4.317 0.252
PRad-C-I zonotope X 3.239 1.560 6.417 3.438 5.019 3.687 0.259
PRad-C-II zonotope X 2.460 1.237 1.639 1.064 1.234 4.938 0.268
PRad-D zonotope X 2.433 1.002 1.641 1.069 1.247 6.539 0.279
CZN-A constr. zono. X 1.010 1.000 1.000 1.000 1.016 1.009 3.412
CZN-B constr. zono. X 1.000 1.000 1.043 1.003 1.000 1.000 3.245
ESO-A ellipsoid X 3.211 292.8 29.39 9433 6.554 3.502 1.090
ESO-B ellipsoid X 4.232 486.0 35.83 1775 9.418 5.430 1.911
set-propagation observers
FRad-C zonotope v 2.022 32.35 3.315 3.605 3.378 1.926 0.471
PRad-E zonotope v 2.640 32.03 2.552 2.670 3.166 4.379 0.304
Nom-G zonotope v 2.702 32.79 2374 2.293 3.199 4.839 0.258
ESO-C ellipsoid v 1.995 65.90 7.554 4.811 5.184 4.463 0.052
ESO-D ellipsoid v 10.83 3725 42.82 27.25 29.28 25.92 0.051
interval observer
Hinf-G zonotope v 2.669 37.26 3.456 3.298 3.929 3.522 0.251
smallest absolute radii
0.139 0.006 0.061 0.094 0.082 3.236
Max Min —-—-— Estimate — — — True State |
0.5 0.5} f I f

Time (s)

Time (s)

Time (s)

Fig. 2. Estimated interval centers and bounds for all states using the FRad-A technique.

While constrained zonotopic observers are even tighter,
computing the intervals of state variables requires solv-
ing linear programs, rendering them only practical when
explicit bounds for state variables are not required.
Regarding computational costs, ellipsoidal observers
have significantly lower computational costs than zono-
topic observers when using set-propagation designs.
All presented observers, except those based on volume
minimization, can be implemented in real-time for the
considered automotive systems. We also observed that

zonotope reduction techniques had only a minor im-
pact on the overall performance. A particularly good
ratio of tightness compared to computational efficiency
has been obtained by PRad-B and PRad-C-II in our
use case. Due to the recent progress, more real-world
applications would be commendable. When the applica-
tion does not accept delays in the result of guaranteed
bounds, set propagation techniques should be used. If
the application requires explicit bounds for individual
state variables, zonotopes should be selected. Finally,
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Fig. 3. Estimated interval centers and bounds for all states using the FRad-C technique.
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Fig. 4. Estimated interval centers and bounds for all states using the Hinf-G technique.

we would like to stress that we only focused on linear
time-invariant systems. For linear time-varying sys-
tems and nonlinear systems, the performance of certain
concepts might shift substantially.
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