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Abstract

This doctoral thesis investigates nonsmooth, nonconvex optimization problems in Hilbert spaces. We
develop a novel inexact bundle method which can be used to minimize arbitrary locally Lipschitz con-
tinuous functions as long as the user can provide sufficiently steep subgradient-based linearizations.
The method is specially designed to allow for inexact function value and subgradient evaluations. We
demonstrate how to efficiently solve the subproblem of the bundle method which is a piecewise qua-
dratic optimization problem in Hilbert space. As a primary application, we consider optimal control
problems governed by variational inequalities. For the numerical realization of the algorithm, we deve-
lop error estimates which bound the error of an approximate solution of the subproblem. We perform
numerical verifications for examples from the problem subclass of optimal control problems governed
by the obstacle problem.

Zusammenfassung

Diese Doktorarbeit befasst sich mit nichtglatten, nichtkonvexen Optimierungsproblemen in Hilbert-
räumen. Es wird eine neuartige Bundlemethode entwickelt. Diese kann beliebige lokal Lipschitz-
stetige Funktionen minimieren, solange genügend steile subgradientenbasierte Linearisierungen ver-
fügbar sind. Die Methode benötigt lediglich inexakte Funktionswerte und Subgradienten. Besonderes
Augenmerk wird darauf gerichtet, wie das Teilproblem der Bundlemethode, welches ein stückweise
quadratisches Optimierungsproblem im Hilbertraum ist, effizient gelöst werden kann. Als Hauptan-
wendung werden Optimalsteuerungsprobleme mit Variationsungleichungsnebenbedingungen betrach-
tet. Für die numerische Umsetzung des Algorithmus entwickeln wir Fehlerschätzer, welche die Güte
der approximativen Lösung des Teilproblems beschreiben. An Beispielen aus der Teilproblemklasse der
Optimalsteuerungsprobleme mit Hindernisnebenbedingungen werden numerische Tests durchgeführt.

i



Notation

The following notation is used in this thesis:

/0 empty set
|S| cardinality of the set S
2S power set of the set S
S×T product set of the sets S and T
N the natural numbers: N= {0,1,2, . . .}
N+ the positive natural numbers: N+ = {1,2,3, . . .}
R the real numbers
C the complex numbers
R̄ extended real line R̄= R∪{−∞,∞}= [−∞,∞]

(0,∞), [0,∞) set of positive and nonnegative real numbers, respectively
[x]+ the positive part, [x]+ = max{x,0} for x ∈ R
(a,b), [a,b], [a,b), (a,b] open, closed, half-open line segments, respectively, with endpoints

a,b ∈V , V vector space, e.g., [a,b] = {ta+(1− t)b : 0≤ t ≤ 1}
Rn Euclidean space equipped with the inner product (x,y) = x>y and norm

‖ · ‖ ≡ ‖ · ‖Rn

Ck(S,Rm),Ck(S) Space of n-times continuously differentiable functions from S ⊂ Rn to
Rm, Ck(S) :=Ck(S,R)

C∞
c (S) C∞

c (S) := {v ∈ ∩∞
n=0 Cn(S) : the support of v is a compact subset of S}

Lp(Ω) Lebesgue space of p-integrable functions on the domain Ω⊂ Rn

Hk(Ω) Sobolev space of k-times weakly differentiable square integrable func-
tions on the domain Ω⊂ Rn

H1
0 (Ω) Subspace of H1(Ω) containing the functions with zero boundary in the

sense of traces
x> transpose of the vector or matrix x
In identity matrix in Rn×n, n ∈ N+

‖ · ‖op the operator norm, i.e., ‖M‖op := max‖x‖Rn=1 ‖Mx‖Rn

|M| the absolute value (componentwise) |M|i, j := |Mi, j|, M ∈ Rn×m

‖ · ‖X induced norm on the Hilbert space X with inner product (·, ·)X :
‖ · ‖2

X := (·, ·)X

B̄X(x,r) the closed unit ball of the space X centered at x ∈ X with radius r ≥ 0
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δA the indicator function of a set A ⊂X , δA (y) = 0 for y∈A and δA (y) =
1 for y /∈A

χA the characteristic function of a set A ⊂ X , χA (y) = 0 for y ∈ A and
χA (y) = ∞ for y /∈A

NA (y) the normal cone of a convex set A ⊂ X , NA (y) = ∂ χA (y)
dom f the effective domain of a function f : X → R∪{∞}, dom f := {x ∈ X :

f (x)< ∞}
∂ the convex subdifferential
∂C Clarke’s subdifferential
cl(S) closure of the set S⊂ X in the space X
co(S) convex hull of the set S⊂ X
xn→ x̄ convergence of the sequence (xn)n∈N ⊂ X in the Banach space X to the

point x̄ ∈ X
xn ⇀ x̄ weak convergence of the sequence (xn)n∈N ⊂ X in the Banach space X

to the point x̄ ∈ X
IdX identity function on the space X , IdX(x) = x for all x ∈ X
RH the Riesz map RH : H→ H∗ in the Hilbert space H, cf. Section 2.1
PM orthogonal projection onto the closed linear subspace M of a Hilbert

space H, cf. Section 2.1.2
L (X ,Y ) the space of linear and bounded operators from the Banach space X to

the Banach space Y, cf. Section 2.1

A selection of frequently used variables:

ι embedding from the space X to the space Y
p nonsmooth, outer part of the objective function, p : Y →R cf. Chapter 3
f nonsmooth part of the objective function, f = p◦ ι , cf. Chapter 3
w smooth part of the objective function, w : X → R, cf. Chapter 3
G subgradient multifunction, G : Y ⇒ Y ∗, cf. Section 3.1.2
τi proximity parameter in iteration i, cf. Section 3.1.6
Qi curvature operator in iteration i, cf. Section 3.1.6
1
2‖ι( · − xi)‖2

Qi+τiRY
proximity term in iteration i, cf. Section 3.1.6

φi cutting plane model in iteration i, cf. Section 3.1.4
Φi local model in iteration i, Φi = φi +w+δF , cf. Section 3.1.1
Ψi piecewise quadratic model in iteration i, Ψi = Φi +

1
2‖ι( · − xi)‖2

Qi+τiRY
,

cf. (3.1.2)
α Tikhonov regularization parameter, cf. Section 4.2
Ẽ Ẽ := RY ιR−1

X ι∗ ∈L (Y ∗), cf. Section 4.3.1
D̃τ D̃τ := α IdY ∗+τẼ ∈L (Y ∗), cf. Section 4.3.1
Dτ Dτ := αRX + τι∗RY ι ∈L (X ,X∗), cf. Section 4.4.3
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1. Introduction

We are interested in optimal control problems of the form

minimize
(y,u)∈H×U

J(y)+ α

2 ‖u‖
2
U

subject to 〈Ay− F̊(ιu),v− y〉H∗,H ≥ 0 ∀v ∈ K

y ∈ K,u ∈Uad,

(P)

where U,H are Hilbert spaces such that ι ∈ L (U,H) is a compact embedding, J : H → R, α > 0,
F̊ : H→H∗, A∈L (H,H∗), and K ⊂H and Uad ⊂U are nonempty, closed and convex. The governing
variational inequality

Find y ∈ K : 〈Ay−b,v− y〉H∗,H ≥ 0 ∀v ∈ K (VI)

arises naturally in many physics and engineering applications such as the contact of an elastic body
with a rigid foundation (Signorini’s problem), the filtration of a liquid through a porous medium and
lubrication [66, 67, 40]. Under appropriate assumptions on the data, the variational inequality (VI) has
a unique solution and the solution map S : H∗→ H, b 7→ y, is Lipschitz continuous but not necessarily
Gâteaux-differentiable. Inserting the solution operator into the objective function gives rise to the
reduced problem

minimize
u∈Uad

J(S(F̊(ιu)))+ α

2 ‖u‖
2
U . (P′)

This is a nonconvex and nondifferentiable optimization problem posed in Hilbert space and thus quite
challenging to solve. Furthermore, any solution procedure that can be executed on a computer has to
deal with discretization issues which occur when elements of an infinite dimensional Hilbert space can-
not be fully described by a finite dimensional vector. Therefore, the need arises to incorporate inexact
function value and subgradient evaluation into the solution method.

Based on the work of [99], we develop a novel bundle method in Hilbert space setting which is tailored
for the structure of Problem (P′). It aims at solving problems of the form

min
x∈X

p(ιx)+w(x), x ∈F , (1.0.1)

where X and Y are Hilbert spaces such that ι ∈ L (X ,Y ) is a compact embedding, p : Y → R and
w : X → R are Lipschitz on bounded sets, w is additionally continuously differentiable and strongly
convex and F is a nonempty, closed and convex set. As it is common for bundle methods, the algo-
rithm collects function values and subgradient information to build a piecewise quadratic model of the
objective function. Our method requires only inexact evaluations of function values f̃ and subgradients
g. In particular, at the point x ∈ X , the error of the function value | f̃− p(ιx)| has to be bounded and

1



1. Introduction

an inexact subgradient g has to be drawn from the set G(ιx), where the multifunction G : Y ⇒ Y ∗ acts
as a subdifferential approximation. We carve out the minimal assumptions on G required to show con-
vergence of the bundle method. A possible choice of G is G := ∂C p(·)+ B̄Y ∗(0,δ ), where ∂C denotes
Clarke’s subdifferential and δ ≥ 0. These possible choices for the function value and the subgradient
yield a very flexible algorithm. The model of the objective function can also incorporate curvature in-
formation of the nonsmooth part p, which can be obtained, for example, using the BFGS-method. The
model has a unique minimizer called minimizing iterate. Depending on the function value at the min-
imizing iterate, either the current model is improved or a new model is constructed. The minimizer of
the model does not have to be computed exactly but rather an approximation thereof, called trial iterate,
can be used. The convergence analysis of the bundle method is presented in an abstract framework for
which we only require that the model value at the trial iterate converges to the minimum of the model
as the algorithm progresses. We proof that any weak subsequence of iterates is η-stationary, where the
radius η ≥ 0 depends on how well the model captures the behavior of the objective function. This is a
novel result which, to the best of the author’s knowledge, is not even available in the finite dimensional
setting.

We then investigate conditions which ensure a bound on the size of η . On the one hand, if one further
assumes additional regularity of the objective function beyond Lipschitz continuity (such as weak or
approximate convexity) and one uses sufficiently exact function values and subgradients, then one can
guarantee a priori that η is below a given threshold. On the other hand, if no further regularity beyond
Lipschitz continuity of the objective function is given, one can track a simple indicator of the quality
of the model and improve the model whenever this indicator suggests to do so. Improving the model is
done by adding new inexact function values and subgradients at appropriate points. If one can always
find a sufficiently good model (in the sense of this indicator), then η also can be guaranteed to be be-
low a given threshold. A sufficiently good model always exists, however, how to find such a model is
problem dependent.

In order to execute the bundle method, one needs a way to solve the piecewise quadratic subproblem
efficiently. For the case of w := α

2 ‖ · ‖
2
X , we investigate a dual reformulation. This dual reformula-

tion results in a np-dimensional piecewise quadratic optimization problem, where np is the number of
quadratic regions of the bundle subproblem. As np is typically small, the cost to solve this problem can
be neglected. However, to set up the dual problem, the inverse of an operator F : X → X∗ has to be
evaluated. In the applications considered here, the evaluation of F−1 corresponds to the solution of a
linear elliptic partial differential equation (PDE) which dominates the costs of solving the subproblem.
As it is not possible to evaluate F−1 exactly, we provide error estimates for the accuracy of the solution
if approximations of F−1 are used. These error estimates are then used to enforce that the computed
approximate solution of the subproblem meets the accuracy requirements of the bundle method.

We then proceed by applying the bundle method to the optimal control of the obstacle problem, which
is a problem of the form (P). Given a domain Ω⊂Rd , d ≥ 1, the obstacle ψ ∈H1(Ω) defines the set K
via K := {v ∈H1

0 (Ω) : v≥ψ a.e. on Ω}. We use a finite element discretization to numerically approxi-
mate the function value of the reduced objective function. The recent paper [110] provides a formula to
compute an element g ∈ ∂CJ(S(F̊(·)))(w) of the Clarke subdifferential of the reduced objective func-
tion at an arbitrary point w ∈ H−1(Ω). We apply both a priori as well as a posteriori error estimates
to balance the error contributions from inexact objective function evaluation and inexact subproblem

2



1. Introduction

solves. Numerical results for a set of test problems are provided.

Finally, we are interested to obtain a robust solution of Problem (P). To do so, let (Ξ,A ,P) be a
probability space, ξ ∈ Ξ a parameter and consider the parametric obstacle problem

Find yξ ∈ Kξ : 〈Aξ yξ −bξ ,vξ − yξ 〉Z∗,Z ≥ 0 ∀vξ ∈ Kξ , (VIξ )

with the data Aξ , bξ , ψξ and Kξ := {vξ ∈H1
0 (Ω) : vξ ≥ψξ a.e. on Ω}. As for the deterministic problem,

(VIξ ) defines a solution operator Sξ for P-a.a. ξ ∈ Ξ. This leads to the optimal control problem

min
u∈Uad

E
[
Jξ (Sξ (F̊ξ (ιu)))

]
+ α

2 ‖u‖
2
U , (Pξ )

where Jξ : H→R, F̊ξ : H→H∗ and E denotes the expectation with respect to ξ . Under appropriate as-
sumptions, the family of variational inequalities (VIξ ) can be equivalently expressed via the stochastic
obstacle problem

Find y ∈K, 〈Ay−b,v−y〉H∗,H ≥ 0 for all v ∈K, (VI)

which is formulated in the Bochner space H := L2(Ξ,H1
0 (Ω)) and the set K⊂H is given via

K := {v ∈H : v(ξ ) ∈ Kξ for P-a.a. ξ ∈ Ξ}.

Again, (VI) has a unique solution with Lipschitz continuous solution operator S : H∗→H and (Pξ ) can
be reformulated as the stochastic optimal control problem

min
u∈Uad

J(S(F̊(ιu))+ α

2 ‖u‖
2
U , (P)

where J : H→R is defined via J(y) :=E
[
Jξ (y(ξ ))

]
and F̊ : H→H∗ is given via F̊(w)(ξ ) := F̊ξ (w). To

apply the bundle method to (P), one would like to use G= ∂CJ(S(F̊(·)))+ B̄H∗(0,δ ) as the approximate
subdifferential. However, the calculus rules for the Clarke subdifferential, which often take the form
of inclusions, make it difficult to compute an element of the subdifferential of the function J(S(F̊(·)).
As we can compute a subgradient g(w,ξ ) ∈ ∂CJξ (Sξ (F̊ξ (·)))(w) of the reduced parametric objective
function for P-a.a. ξ ∈ Ξ, we consider the enlarged subdifferential

G(w) := {E [g(w,ξ )] : ξ 7→ g(w,ξ ) ∈ L1(Ξ,H−1(Ω)),g(w,ξ ) ∈ ∂wJξ (Sξ (F̊ξ (w))) P-a.e. }

and show that G can be used as a subgradient approximation in the bundle method.

Overview of existing literature

The variational inequality (VI) can equivalently be rewritten as an optimization problem, as the equality
y = S(u) (cf. Section 2.4) or, in the case of the obstacle problem, as the complementarity system

Find (y,ξ ) ∈ H1
0 (Ω)×H−1(Ω) : ξ = Ay−b, y≥ ψ, ξ ≥ 0, 〈ξ ,y−ψ〉H−1(Ω),H1

0 (Ω) = 0,

3



1. Introduction

where ξ ∈ H−1(Ω) is a slack variable (cf. Section 5.1). Depending on the reformulation, Problem
(P) can be classified as a bilevel optimization problem, a mathematical problem with equilibrium con-
straints (MPEC) or a mathematical problem with complementarity constraints (MPCC), respectively.
In finite dimensions, an overview on MPECs is given in [103] and [116] presents stationarity concepts
for MPCCs. Due to a lack of constraint qualifications, deriving necessary optimality conditions is
difficult already in finite dimensions and several distinct stationarity concepts have been established
([92, 131, 75, 57, 117, 132]). Solution algorithms including smoothing [63, 56, 75, 117], regularization
[55, 58] and penalization [81] have been proposed. These approaches have in common that a sequence
of large scale optimization problems has to be solved. Using the reformulation (P′) avoids this, but
the resulting reduced problem is nonconvex and nondifferentiable. To solve it, we develop a bundle
method in function space.

Bundle methods were introduced in 1975 with the works of [77, 134] in the finite dimensional con-
text with exact function and subgradient information. Since then, a vast body of literature was pub-
lished and it is out of the scope of this work to give the numerous references to papers addressing the
convex case. Excellent reviews can be found in [84, 26]. Bundle methods for nonconvex function
include, e.g., [5, 46, 69, 71, 65, 78, 82, 85, 89, 90, 100] and this is still subject to current research.
Bundle methods for convex objective functions which use inexact data can, for example, be found in
[25, 53, 70, 121, 72, 86]. [70] requires eventually exact data and [53] works with exact function values
but inexact subgradients. The convergence theory of bundle methods for nonconvex problems with in-
exact function and subgradient evaluations is quite involved already in finite dimensions and only few
papers such as [25, 47, 48, 83, 119, 99] cover this subject.

The literature for infinite-dimensional convergence theory of bundle methods is scarce and we are only
aware of papers where the convex case with exact function and subgradient values is addressed, such as
[22, 126]. Our approach is inspired by [99] and provides an extension of the method in [99] to infinite-
dimensional Hilbert spaces. First results were already published in [50, 49]. The theory we develop
is more general as in [50] and includes the results [50, Thm. 5.5] and [49, Thm. 2.6] as special cases.
To the best of the author’s knowledge, this work provides the first convergence analysis for bundle
methods in general Hilbert spaces for the optimization of nonconvex problems with inexact function
and subgradient evaluations. In the case that X and Y are finite dimensional and the objective function
is approximately convex, the given convergence theorems recovers the state of the art of the theory
available. However, to the best of the author’s knowledge, the theory for general Lipschitz continuous
objective functions is new, even for finite dimensional spaces.

The works on variational inequalities and in particular on the obstacle problem are vast, see, e.g.,
[91, 115, 40, 67, 38, 39, 120]. A priori error estimates for Finite Element Method (FEM) discretiza-
tions of the obstacle problem have been obtained already in [16, 17]. In recent years, a posteriori error
estimates have been developed. In [98], residual based a posteriori error estimates for the obstacle
problem were derived. Constant free a posteriori error estimates were derived in [95, 111]. To the best
of the author’s knowledge there are no systematic approaches to use these estimators in an adaptive
inexact algorithm to solve optimization problems with variational inequality constraints.

The stochastic obstacle problem has been considered, e.g., in [44, 45]. Compared with the optimal
control of deterministic obstacle problems, the literature concerning the optimal control of stochastic
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1. Introduction

obstacle problems is less developed. Recent publications such as [74, 36, 43] address optimization
problems with stochastic PDE constraints. The first uses stochastic collocation in combination with
sparse grids to approximate the expectation in the objective function, whereas the second uses low-
rank tensors. In [43], error estimates for the finite element discretization of the optimality system are
provided. Stochastic MPECs with finite dimensional control space have been considered, for example,
in [80, 118, 135]. Here, quasi-Monte Carlo or sample average approximation techniques have been
used.

List of prior publications and manuscripts

[49] L. HERTLEIN, A.-T. RAULS, M. ULBRICH, AND S. ULBRICH, An inexact bundle method and
subgradient computations for optimal control of deterministic and stochastic obstacle problems.
Priprint, accepted for publication in SPP1962 Special Issue, Birkhäuser, 2019.

[50] L. HERTLEIN AND M. ULBRICH, An inexact bundle algorithm for nonconvex nonsmooth mini-
mization in Hilbert space, SIAM J. Control Optim., 57 (2019), pp. 3137–3165.

Structure of the dissertation

The doctoral thesis is divided into seven chapters. Chapter 2 starts off with mathematical preliminaries.
In Chapter 3, the bundle method is presented and the convergence theory is developed. Earlier versions
of the bundle method were already communicated in [50, 49]. Chapter 4 is contend with the efficient
solution of the bundle subproblem and provides error estimates for the accuracy of the solution. Chap-
ter 5 is devoted to the optimal control problem governed by the obstacle problem. Chapter 6 includes
implementation details and numerical results. In Chapter 7 we consider the optimal control problem
governed by the stochastic obstacle problem. This chapter is based on the article [49].
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2. Preliminaries

In this dissertation, whenever there is a citation mark at a lemma or a theorem and no proof is given,
then the statement of this lemma or theorem can be found in the given source. It may be quoted literally
or with minor changes in notation to accommodate for the present use of notation.

2.1. Banach and Hilbert spaces

In this section, we review some basic facts about Banach and Hilbert spaces. We choose to use [3] as a
primary reference but there are many more excellent books which cover this topic.

A tuple (X ,‖ · ‖X) is called a (real) Banach space if X is a R-vector space, ‖ · ‖X is a norm on X and
X is complete with respect to ‖ · ‖X (cf. [3, Chap. 2.22]). If no confusion is possible, then we also
say that X is a Banach space. Let X ,Y be real Banach spaces. Denote by (L (X ,Y ),‖ · ‖L (X ,Y )) the
space of linear and bounded operators with the operator norm ‖A‖L (X ,Y ) := sup‖x‖X=1 ‖Ax‖Y . By [3,
Thm. 5.3], L (X ,Y ) is a Banach space. The dual space of X is defined by X∗ := L (X ,R). We denote
L (X) :=L (X ,X). For an operator A ∈L (X ,Y ), we define the Banach space adjoint A∗ ∈L (Y ∗,X∗)
by 〈A∗y′,x〉X∗,X := 〈y′,Ax〉Y ∗,Y for all x ∈ X ,y′ ∈ Y ∗. An operator A ∈L (X ,X∗) is called symmetric if
〈Ax1,x2〉X∗,X = 〈Ax2,x1〉X∗,X for all x1,x2 ∈ X .

DEFINITION 2.1.1. An operator A∈L (X ,Y ) is called invertible if, for all y∈Y , there exists a unique
x ∈ X such that Ax = y and the corresponding map A−1 : y 7→ x is a bounded and linear operator.

For a R-vector space H, a positive definite symmetric bilinear form ( ·, ·)H : H×H → R is called an
inner product on H. A tuple (H,( ·, ·)H) is called a real Hilbert space if H is a R-vector space, ( ·, ·)H

is an inner product on H and H is complete with respect to the norm ‖ · ‖H : x 7→
√

(x,x)H (cf. [3,
Chap. 2.22]). We denote by RH ∈L (H,H∗) the Riesz map defined by

〈RHx,y〉H∗,H := (y,x)H for all x,y ∈ H.

By the Riesz representation theorem (cf. [3, Thm. 6.1]), RH is an isometric linear isomorphism, i.e., RH

is invertible (in particular R−1
H ∈L (H∗,H)) and ‖RHx‖H∗ = ‖x‖H for all x ∈H. Note that ‖R−1

H x′‖H =
‖x′‖H∗ for all x′ ∈ H∗ and

(R−1
H x′,x)H = 〈RHR−1

H x′,x〉H∗,H = 〈x′,x〉H∗,H for all x ∈ H,x′ ∈ H∗.

Furthermore, RH is symmetric, i.e.,

〈RHx1,x2〉H∗,H = (x1,x2)H = (x2,x1)H = 〈RHx2,x1〉H∗,H for all x1,x2 ∈ H.
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2. Preliminaries

The inner product (·, ·)H∗ := (R−1
H ·,R

−1
H ·)H induces the norm ‖ · ‖H∗ because

‖x′‖H∗ = ‖R−1
H x′‖H =

√
(R−1

H x′,R−1
H x′)H for all x′ ∈ H∗.

In particular, (H∗,(R−1
H ·,R

−1
H ·)

1/2
H ) = (H∗,‖ · ‖H∗) is the dual space of (H,‖ · ‖H). By [3, Thm. 5.3],

(H∗,‖ · ‖H∗) is complete. Therefore, (H∗,(·, ·)H∗) is a Hilbert space. It holds

(RHx,x′)H∗ = (x,R−1
H x′)H = (R−1

H x′,x)H = 〈x′,x〉H∗,H for all x ∈ H,x′ ∈ H∗.

DEFINITION 2.1.2. If X ,Y are Hilbert spaces, we define the Hilbert space adjoint A~ ∈L (Y,X) of
an operator A ∈L (X ,Y ) by A~ := R−1

X A∗RY . An operator A ∈L (X) is called self-adjoint if A = A~.

From the definition of the Hilbert space adjoint it directly follows that

(A~y,x)X = (y,Ax)Y for all x ∈ X ,y ∈ Y.

LEMMA 2.1.3. For an operator A ∈L (H) it is equivalent:
1) A is self-adjoint.
2) (Ax,y)H = (Ay,x)H for all x,y ∈ H.
3) RHA is symmetric.

Proof. The equivalence of 1) and 2) can be seen by

(Ax,y)H = (y,Ax)H = 〈RHy,Ax〉H∗,H = 〈A∗RHy,x〉H∗,H = (R−1
H A∗RHy,x)H for all x,y ∈ H.

Furthermore, 2) is equivalent to 3) because 〈RHAx,y〉H∗,H = (Ax,y)H and (Ay,x)H = 〈RHAy,x〉H∗,H for
all x,y ∈ H.

2.1.1. Embeddings

DEFINITION 2.1.4. An injective operator ι : X → Y from one Banach space X to another Banach
space Y is called an embedding.

LEMMA 2.1.5. Let ι ∈L (X ,Y ) be an embedding of the Hilbert space X into the Hilbert space Y , let
(xi)i∈N ⊂ X be a bounded sequence and let x̄∈ X be a point. If ιxi→ ι x̄ as i→∞, then xi ⇀ x̄ as i→∞.

Proof. The injectivity of ι implies that ker ι := {x ∈ X : ιx = 0} = {0}. By [12, Fact 2.25(iv)], the
set ι~(Y ) = R−1

X ι∗RY (Y ) is dense in (ker ι)⊥ = {0}⊥ = X . Consequently, by the Riesz representation
theorem, also ι∗(Y ∗) is dense in X∗. For arbitrary y′ ∈ Y ∗, it holds that

〈ι∗y′,xi〉X∗,X = 〈y′, ιxi〉Y ∗,Y → 〈y′, ι x̄〉Y ∗,Y = 〈ι∗y′, x̄〉X∗,X as i→ ∞.

Since (xi)i∈N is bounded in X , [137, Prop. 21.23(g)] shows that xi ⇀ x̄ as i→ ∞.
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2.1.2. Projections

Let M be a nonempty closed convex subset of a Hilbert space H. The metric projection PM : H → H
onto M is defined via

PM(x) ∈M, ‖PM(x)− x‖H = min
v∈H
‖v− x‖H for all x ∈ H.

LEMMA 2.1.6 ([59, Lem. 1.10]). It holds:
1) PM is well-defined.
2) For all x,y ∈ H there holds:

y = PM(x) ⇔ y ∈M, (x− y,v− y)H ≤ 0 ∀v ∈M.

3) PM is nonexpansive, i.e.,

‖PM(x)−PM(y)‖H ≤ ‖x− y‖H ∀x,y ∈ H.

4) PM is monotone, i.e.,

(PM(x)−PM(y),x− y)H ≥ 0 ∀x,y ∈ H.

Furthermore, equality holds if and only if PM(x) = PM(y).

Now let M be a closed linear subspace of the Hilbert space H 6= {0}. Denote the orthogonal complement
of M by

M⊥ := {x ∈ H : (x,v)H = 0 for all v ∈M}.

According to [129, Thm. 2.10.11], the Hilbert space H can be decomposed into the direct sum of M
and M⊥, i.e., H = M⊕M⊥. Thus, every element x ∈ H can be uniquely written as x = y+ z with
y ∈M and z ∈M⊥. We call the mapping x 7→ y the orthogonal projection onto the subspace M. Since
M is a nonempty closed convex subset of H, PM is well-defined and by [137, Prop. 21.44(a), (c)], the
orthogonal projection y ∈ M of x ∈ H onto M is given via y = PM(x). Therefore, we also denote the
orthogonal projection by PM.

LEMMA 2.1.7. The orthogonal projection PM : H→ H has the following properties:
1) PMx ∈M for all x ∈ H.
2) PM ∈L (H) with ‖PM‖L (H) = 1.
3) If x ∈M, then PMx = x.
4) If x ∈M⊥, then PMx = 0.
5) PM is self-adjoint, i.e., P~M = PM.
6) ‖x−PMx‖H = infy∈M ‖x− y‖H for all x ∈ H.
7) The projection y=PMx of an arbitrary element x∈H is characterized by the variational equation

Find y ∈M, (y,v)H = (x,v)H for all v ∈M. (2.1.1)

Proof. Can be found in [129, Thm. 2.10.15], [129, Rem. 2.10.17 (ii)], [129, Ex. 3.5.10 (iv)], [137,
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Prop. 21.44(a), (c)] and Lemma 2.1.6.

2.2. Selected regularity concepts

We start with the definition of lower semicontinuity.

DEFINITION 2.2.1. Let X be a Banach space and x ∈ X. A function f : X → R∪{∞} is called lower
semicontinuous at x if for every sequence (xn)n∈N ⊂ X,

xn→ x ⇒ f (x)≤ liminf
n→∞

f (xn).

Remark 2.2.2. We do not have to distinguish between the notions “sequential lower semicontinuity”
([12, Def. 1.33]) and “lower semicontinuity” ([12, Def. 1.21]) because every Banach space X is a
sequential topological space and thus these notions coincide, cf. ([12, Rem. 1.37]).

2.2.1. Convex functions

Next we give the basic definitions of convexity. Convexity is a corner stone of modern analysis. We
use the precise definitions of the excellent book [12].

DEFINITION 2.2.3 ([12, Prop. 8.4, Def. 10.7]). Let X be a Banach space. A function f : X→R∪{∞}
is called proper if dom f 6= /0. A proper function f : X → R∪{∞} is called convex if

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y) for all t ∈ (0,1),x,y ∈ dom f .

The function f is called µ-strongly convex, µ > 0, if

f (tx+(1− t)y)+ t(1− t) µ

2 ‖x− y‖2
X ≤ t f (x)+(1− t) f (y) for all t ∈ (0,1),x,y ∈ dom f .

DEFINITION 2.2.4 (convex subdifferential, [12, Def. 16.1, Def. 17.1, Prop. 17.14]). Let f : X → R∪
{∞} be proper and convex. For x ∈ domX and v∈ X, the directional derivative of f at x in the direction
v is defined by

f ′(x;v) := lim
t→+0

f (y+ tv)− f (y)
t

and the convex subdifferential of f at x is given by

∂ f (x) := {x′ ∈ X∗ : f ′(x;v)≥ 〈x′,v〉X∗,X for all v ∈ X}.

PROPOSITION 2.2.5 ([12, Prop. 17.14]). If f : X → R∪{∞} is proper and convex, then

f (y)− f (x)≥ 〈g,y− x〉X∗,X ∀g ∈ ∂ f (x), ∀x,y ∈ dom f .

PROPOSITION 2.2.6 ([12, Prop. 17.26]). If f : X → R∪{∞} is proper and µ-strongly convex, µ > 0,
then

f (y)− f (x)≥ 〈g,y− x〉X∗,X + µ

2 ‖y− x‖2
X ∀g ∈ ∂ f (x), ∀x,y ∈ dom f .
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2.2.2. Lipschitz functions

Let X be a Banach space and M be a subset of X . A function f : X → R is said to be Lipschitz on M if
there exist a constant L≥ 0 such that

| f (y)− f (x)| ≤ L‖y− x‖X for all x,y ∈M.

The function f is called Lipschitz near x̄ ∈ X if there exist δ > 0 such that f is Lipschitz on B̄X(x̄,δ ).

DEFINITION 2.2.7 (Clarke’s subdifferential). Let f : X → R be Lipschitz near x ∈ X. For v ∈ X, the
generalized directional derivative of f at x in the direction v is defined by

f ◦(x;v) := limsup
y→x,
t↓0

f (y+ tv)− f (y)
t

and Clarke’s subdifferential of f at x is given by

∂C f (x) := {x′ ∈ X∗ : f ◦(x;v)≥ 〈x′,v〉X∗,X for all v ∈ X}.

LEMMA 2.2.8. Let X be a Banach space, V ⊂ X be a bounded set and F : X →R be a function which
is Lipschitz on bounded sets. Then the set

⋃
v∈V ∂CF(v) is bounded in X∗.

Proof. Let Ṽ be an open and bounded set such that V ⊂ Ṽ and denote the Lipschitz constant of F on Ṽ
by L. By [21, Prop. 2.1.2], there holds ∂CF(v)⊂ B̄X∗(0,L) for all v ∈ Ṽ .

2.2.3. ε-convex and approximately convex functions

DEFINITION 2.2.9 ([64, Def. 3.3]). Let X be a Banach space. A function f : X → R∪{∞} is called
ε-convex, ε ≥ 0, if for each x,y ∈ X and t ∈ [0,1] there holds

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ εt(1− t)‖x− y‖X .

LEMMA 2.2.10. If the function f : X → R∪{∞} is ε-convex, then it holds

f (x+u)− f (x)≥ 〈x′,u〉X∗,X − ε‖u‖X for all x,u ∈ X ,x′ ∈ ∂C f (x).

Proof. Let x,u ∈ X and x′ ∈ ∂C f (x) be arbitrary. The definition of Clarke’s subdifferential yields

〈x′,u〉X∗,X ≤ limsup
y→x
t↓0

f (y+ tu)− f (y)
t

≤ limsup
y→x
t↓0

(
f (u+ y)− f (y)+ ε(1− t)‖u‖X

)
.

First introduced by [128], the class of approximately convex function plays a vital role in nonconvex
optimization.

DEFINITION 2.2.11 ([24, Def. 1]). Let X be a Banach space. A function f : X → R∪{∞} is called
approximately convex at x0 ∈ X if for every ε > 0 there exists δ > 0 such that for all x,y ∈ B̄X(x0,δ )
and t ∈ (0,1)

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)+ εt(1− t)‖x− y‖X .
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THEOREM 2.2.12 ([24, Thm. 2]). Let f be locally Lipschitz on X and x0 ∈ X. The function f is
approximately convex at x0 if and only if for every ε > 0 there exists δ > 0 such that for all x∈ B̄X(x0,δ )
and x′ ∈ ∂C f (x)

f (x+u)− f (x)≥ 〈x′,u〉X∗,X − ε‖u‖X ,

whenever ‖u‖X < δ is such that x+u ∈ B̄X(x0,δ ).

Lower-Ck functions

We start with the basic definition of a Gâteaux derivative.

DEFINITION 2.2.13 (Gâteaux derivative). Let X ,Y be Banach spaces and V ⊂ X be an open set. An
operator f : V → Y is called Gâteaux differentiable at x ∈V if for each h ∈ X the limit

d f (x,h) := lim
t→0+

f (x+ th)− f (x)
t

exists and the mapping d f (x, ·) is bounded and linear. If f is Gâteaux differentiable at every x ∈ V ,
then f is called Gâteaux differentiable and, in this case, the operator dG f : V →L (X ,Y ), x 7→ d f (x, ·)
is called Gâteaux derivative of f . For k ≥ 1, we denote by Ck

G(V,Y ) the set of all functions f for which
the k-th Gâteaux derivative ∂ k f exists.

The following concept was first introduced by Rockafellar in [114] and was later transferred to the
Hilbert space setting by Penot [107].

DEFINITION 2.2.14 (Lower-Ck). Let X be a Hilbert space, k ∈ N+, and W ⊂ X be an open set. A
function f : W → R is called lower-Ck at w ∈W if there exists an open neighborhood V of w in W,
a compact topological space S and a function F : S×V → R with the property that, for all s ∈ S and
1≤ j ≤ k, it holds F(s, ·) ∈Ck

G(V,R), (s,x) 7→ ∂
j

x F(s,x) is continuous and f (x) = sups∈S F(s,x) for all
x ∈V . If f is lower-Ck at w for all w ∈W, then f is called lower-Ck.

Rockafellar proved in the finite dimensional setting ([114, Cor. 6]) that the classes of lower-Ck functions
coincide for 2≤ k ≤ ∞.

LEMMA 2.2.15 ([24, Cor. 3]). In finite dimensions a locally Lipschitz function is approximately convex
if and only if it is lower-C1.

2.3. The Lax-Milgram theorem

DEFINITION 2.3.1. Let H be a real Hilbert space. A bilinear form a : H×H → R is called bounded
if there exists a constant M > 0 such that

|a(x,y)| ≤M‖x‖H‖y‖H for all x,y ∈ H.

If there exists a constant m > 0 such that

a(x,x)≥ m‖x‖2
H for all x ∈ H,
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then a : H×H→ R is called coercive.

THEOREM 2.3.2 (Lax-Milgram Theorem). Let H be a real Hilbert space, let a : H ×H → R be a
bounded and coercive (with constant m) bilinear form and let f ∈ H∗. Then the variational equation

Find z ∈ H : a(z,w) = 〈 f ,w〉H∗,H for all w ∈ H

has a unique solution and it holds ‖z‖H ≤ m−1‖ f‖H∗ .

Proof. The proof of the first part can be found for example in [32, §6.2 Thm. 1]. For the second part,
the coercivity of a yields

m‖z‖2
H ≤ a(z,z) = 〈 f ,z〉H∗,H ≤ ‖ f‖H∗‖z‖H .

COROLLARY 2.3.3. Let A ∈ L (H) be such that the bilinear form (A ·, ·)H is coercive. Then A is
invertible in the sense of Definition 2.1.1.

Proof. Since (A ·, ·)H is a bounded coercive bilinear form, Theorem 2.3.2 yields that the variational
equation

Find z ∈ H : a(z,w) = ( f ,w)H for all w ∈ H

is uniquely solvable. Denote by A−1 : f 7→ z the solution operator. Obviously, A−1 is linear. Denote the
coercivity constant of a by m. From ‖A−1 f‖H = ‖z‖H ≤ m−1‖( f , ·)H‖H∗ = m−1‖ f‖H we deduce that
A−1 is a bounded operator. Therefore, A−1 ∈L (H) and A is invertible.

2.4. Variational inequalities

Let H be a Hilbert space, A ∈ L (H,H∗) be a symmetric linear operator, b ∈ H∗ and K ⊂ H be a
nonempty closed convex subset of H. We consider the variational inequality

Find y ∈ K : 〈Ay−b,v− y〉H∗,H ≥ 0 for all v ∈ K. (2.4.1)

DEFINITION 2.4.1. An operator A∈L (H,H∗) is called coercive if there exists a number CL > 0 such
that 〈Ay,y〉H∗,H ≥CL‖y‖2

H for all y ∈ H.

THEOREM 2.4.2 (e.g., [67, Thm. 2.1]). If A is coercive with constant CL, then, for all b ∈ H∗, (2.4.1)
has a unique solution y ∈ H and the solution operator S : H∗ → H, S (b) := y, is Lipschitz with
modulus 1/CL.

Now we turn to investigating equivalent reformulations of a variational inequality. To do so, we recall
the following definitions from convex analysis. The tangent cone of a closed convex set K ⊂H at y∈K
is defined by

TK(y) := {w ∈ H : ∃tn→ 0+,wn
H→ w : y+ tnwn ∈ K},

i.e., TK(y) is the closed conic hull of K− y. Further, the polar cone of a set M ⊂ H is defined by

M◦ := {v′ ∈ H∗ : 〈v′,v〉H∗,H ≤ 0 for all v ∈M}.
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LEMMA 2.4.3. Let A ∈L (H,H∗) be symmetric, b ∈ H∗ and γ > 0 be arbitrary. The following for-
mulations are equivalent:

1) Find y ∈ K : 〈Ay−b,v− y〉H∗,H ≥ 0 ∀v ∈ K.
2) Find y ∈ K : Ay−b ∈ −TK(y)◦.
3) Find y ∈ K : y ∈ argminv∈K

1
2〈Av−b,v〉H∗,H .

4) Find y ∈ K : y = PK(y− γRH(Ay−b)).

Proof. 1⇒ 2). Let y ∈ K be a solution of the variational inequality. Let w ∈ TK(y) be arbitrary and
choose tn > 0 and wn ∈ H for all n ∈ N such that vn := y+ tnwn ∈ K and wn→ w in H as n→ ∞. Then

0≤ 〈Ay−b,vn− y〉H∗,H = tn〈Ay−b,wn〉H∗,H for all n ∈ N.

Taking the limit n→ ∞ gives 〈Ay−b,w〉H∗,H ≥ 0 for all w ∈ TK(y), i.e., Ay−b ∈ −TK(y)◦.
2)⇒ 1). Let y ∈ K be such that Ay− b ∈ −TK(y)◦. By the definition of the polar cone, there holds
〈Ay− b,w〉H∗,H ≥ 0 for all w ∈ TK(y). As K is convex, v− y ∈ TK(y) for arbitrary v ∈ K and we find
〈Ay−b,v− y〉H∗,H ≥ 0 for all v ∈ K.
1)⇒ 3). Define g : H→ R by g(y) := 1

2〈Ay−b,y〉H∗,H . For all v ∈ K it holds

g(v)−g(y) =
1
2
〈Av−b,v〉H∗,H −

1
2
〈Ay−b,y〉H∗,H

≥ 1
2
〈Av,v〉H∗,H −

1
2
〈A(y− v),y− v〉H∗,H −

1
2
〈Ay,y〉H∗,H −

1
2
〈b,v− y〉H∗,H

= 〈Ay−b,v− y〉H∗,H ≥ 0.

3)⇒ 1). [59, Thm. 1.46] implies that the necessary optimality condition 〈g′(y),v− y〉H∗,H ≥ 0 ∀v ∈ K
holds. Since A ∈L (H,H∗) is symmetric, g′(y) = Ay−b, i.e., y solves 1).
1)⇒ 4). Can be found in [59, Lem. 1.11].

2.5. Nonlinear optimization problems

We consider the optimization problem

minimize J(u) := j(S(ιu),u)
s.t. u ∈Uad.

(2.5.1)

Here, U is a reflexive Banach space, V,W are a Banach spaces, ι ∈L (U,V ) is compact and S : V →W
is continuous. Further, Uad ⊂U is a nonempty, closed and convex set. Denote Wad := S(ι(Uad)). The
objective function j : Wad×Uad→ R∪{+∞} is bounded below and strong×weak sequentially lower
semicontinuous, i.e., for each strongly convergent sequence yn → y∗ in Wad and weakly convergent
sequence un ⇀ u∗ in Uad it holds liminfn→∞ j(yn,un)≥ j(y∗,u∗).

THEOREM 2.5.1. If the reduced objective function J : Uad→ R∪{+∞} is coercive, then there exists
a solution to problem (2.5.1).

Proof. As j is bounded below on Wad×Uad, it follows that J(Uad)⊂ j(Yad,Uad) is bounded below. Let
(un)n∈N ⊂Uad denote an infimizing sequence, i.e., limn→∞ J(un) = infu∈Uad J(u). There exists a γ ∈ R

13
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such that, for all n ∈ N sufficiently large, the control un is in the level set levγJ, i.e., it holds

un ∈ levγJ := {u ∈Uad : J(u)≤ γ}.

As J is coercive, the level set levγJ is bounded (cf. [12, Prop. 11.12]). This shows that the sequence
(un)n∈N ⊂U is bounded. As U is a reflexive Banach space, there exists a convergent subsequence, also
denoted by (un)n∈N, and an element u∗ ∈U such that un ⇀ u∗. As ι : U →V is compact, it follows that
ιun→ ιu∗ strongly in V . Since S : V →W is continuous, we get yn := S(ιun)→ S(ιu∗) =: y∗. As Uad
is closed and convex, it is weakly closed. Therefore u∗ ∈Uad and y∗ ∈Wad. This gives

inf
u∈Uad

J(u)≤ J(u∗) = j(y∗,u∗)≤ liminf
n→∞

j(yn,un) = lim
n→∞

J(un) = inf
u∈Uad

J(u),

showing that (y∗,u∗) is a solution of the problem.

Remark 2.5.2. If j : Wad×Uad is given via j(w,u) := j1(w)+ j2(u), where j1 : Wad → R is bounded
below and j2 : Uad→ R is coercive, then J is coercive. This can be seen via

J(u) = j1(S(ιu)))+ j2(u)≥ c+ j2(u)→ ∞ as ‖u‖U → ∞,

where c ∈ R is the lower bound of j1.

COROLLARY 2.5.3. If Uad is bounded, then there exists a solution to problem (2.5.1).

Proof. Apply Theorem 2.5.1 to the function j̃ : W ×U → R∪{+∞} defined by

j̃(y,u) :=

{
j(y,u) if u ∈Uad,

∞ else.

2.6. Sobolev spaces

A set Ω ⊂ Rd , d ≥ 1, is called a domain if it is a Lebesgue-measurable set with nonempty interior.
For 1 ≤ p ≤ ∞, denote by Lp(Ω) the spaces of (equivalence classes of) Lebesgue integrable functions
on an open domain Ω ⊂ Rd . We denote by W k,p(Ω), k ∈ N, 1 ≤ p < ∞, the Sobolev spaces with
corresponding norms

‖ f‖W k,p(Ω) :=

(
∑
|α|≤k
‖Dα

w f‖p
Lp(Ω)

)1/p

,

where Dα
w f denotes the weak derivative of f corresponding to the multi-index α . We further define the

semi-norms |·|W k,p(Ω) via

| f |W k,p(Ω) :=

(
∑
|α|=k
‖Dα

w f‖p
Lp(Ω)

)1/p

.

14
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For a bounded, open domain T ⊂ Rd with Lipschitz boundary, by [31, Thm. 4.6] there exists a linear
and bounded operator trT : W 1,p(T )→ Lp(∂T ), called the trace, such that trT f = f on ∂T for all
f ∈W 1,p(T )∩C0(cl(T )). We denote Hk(Ω) := W k,2(Ω), k ≥ 1, and H1

0 (Ω) denotes the space of all
H1(Ω) functions with zero boundary in the sense of traces. We equip H1

0 (Ω) with the inner product

(u,v)H1
0 (Ω) :=

∫
Ω

∇u(ω)>∇v(ω)dλ (ω) for all u,v ∈ H1
0 (Ω).

By the Poincaré-Friedrich inequality (cf. [15, Cor. 9.19]), there exists a constant CF,Ω > 0 (which
depends only on Ω) such that

‖w‖L2(Ω) ≤CF,Ω‖∇w‖L2(Ω)2 =CF,Ω‖w‖H1
0 (Ω) for all w ∈ H1

0 (Ω). (2.6.1)

Therefore, the norm ‖ · ‖H1
0 (Ω) induced by (·, ·)H1

0 (Ω) is equivalent to the norm on H1(Ω). The spaces
H1

0 (Ω) and Hk(Ω), k ≥ 1, are Hilbert spaces. We denote H−1(Ω) := (H1
0 (Ω))∗. By the compactness

theorem of Rellich (cf. [137, Prop. 19.25]), the embedding ι̃ : H1
0 (Ω)→ L2(Ω), ι̃(x)(ω) := x(ω)

is compact. Therefore, the (Banach space) adjoint operator ι := ι̃∗ is also compact. The operator
ι : L2(Ω)∼= L2(Ω)∗→ H−1(Ω) is given via

〈ιx,y〉H−1(Ω),H1
0 (Ω) = (x, ι̃(y))L2(Ω) =

∫
Ω

x(ω)y(ω)dλ (ω) for all x ∈ L2(Ω),y ∈ H1
0 (Ω).

For a vector valued function u ∈ L2(Ω,R2) = L2(Ω)2, we denote by ∂i, i ∈ {1,2} the partial weak
derivative with respect to dimension i, whenever this is well-defined. The divergence divu of u is de-
fined by divu := (∂1+∂2)u. The space H(Ω,div) := {w ∈ L2(Ω,R2) : divw ∈ L2(Ω)} of vector valued
square-integrable functions with square-integrable divergence is a Hilbert space when endowed with
the inner product (u,v)H(Ω,div) :=

∫
Ω

uv+ divu> divvdλ . For further information regarding Sobolev
spaces we refer to [15, 14, 137].

The Poincaré-Friedrich constant

The smallest possible constant CF,Ω in (2.6.1) is called the Poincaré-Friedrich constant and plays an
important role in practical implementations (cf. Lemma 5.4.2 and Theorem 5.3.3). Thus, we present
some known values of CF,Ω for several domains Ω. Let Π ⊂ R2 be a rectangle with side lengths a
and b. By [76, §2.2], the choice CF,Π := ((π

a )
2 +(π

b )
2)−1/2 is sharp, i.e., CF,Ω = CF,Π is the smallest

possible constant in (2.6.1). Whenever Ω⊂ Ω̂, the Friedrich constant CF,Ω corresponding to H1
0 (Ω) is

smaller or equal to the Friedrich constant CF,Ω̂, cf. [111, Chap. 1.4.3]. Thus, whenever Ω is contained
in the rectangle Π, we can estimate CF,Ω ≤CF,Π = ((π

a )
2 +(π

b )
2)−1/2. Furthermore, a simple scaling

argument shows CF,aΩ+b = aCF,Ω for all a > 0 and b ∈ R2. In [106, Tab.3], it is numerically verified
that CF,ΩL < 0.162, where ΩL := (0,1)2 \ [1/2,1)2 is the L-shaped domain.

2.7. The finite element method

We give a short review of the finite element method and introduce our notation. More information can
be found, e.g., in [14]. Let Ω⊂ R2 be a bounded domain with polygonal boundary. A triangle T ⊂ R2

15
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is an open polygonal set with three vertices. A triangulation T of Ω is a collection of triangles T ⊂R2

such that
1) cl(Ω) = ∪T∈T cl(T ).
2) The intersection of each pair of distinct triangles is either empty, a single vertex or a single edge

of both triangles.
Denote by hT the diameter of T ∈T and by ρT the diameter of the largest ball inscribed in T . A family
of triangulations of Ω, (T h)h, 0 < h≤ 1, is called regular with parameter σ > 0, if it holds

max
T∈T h

hT

ρT
≤ σ for all 0 < h≤ 1. (2.7.1)

A family of triangulations (T h)h, 0 < h≤ 1, is called quasi-uniform if there exist constants c1 > 0 and
c2 > 0 such that

min{ρT : T ∈T h} ≥ c1h and max{hT : T ∈T h} ≤ c2h for all 0 < h≤ 1. (2.7.2)

Note that a quasi-uniform family of triangulations is always regular with parameter σ := c2/c1. Now
define the piecewise-linear finite element spaces

Uh := {uh ∈C(Ω̄) : uh|T ∈ P1(T ) for all T ∈T h} and V h :=Uh∩H1
0 (Ω). (2.7.3)

Here, P1(T ) denotes the set of affine linear functions on the set T . If desired, one could alternatively
use piecewise constant finite elements for the space Uh, but this is not carried out here. Denote by nU

the number of nodes of the mesh and by nV the number of interior nodes. Denote by ni ∈ R2, 1 ≤ i ≤
nV , the interior nodes and by ni ∈ R2, nV + 1 ≤ i ≤ nU the boundary nodes. Define by φi ∈ H1(Ω),
i = 1, . . . ,nU , the uniquely defined function with φi(ni) = 1, φi(n j) = 0 for j 6= i and φi|T ∈ P1(T ).
Then {φi,1 ≤ i ≤ nU} and {φi,1 ≤ i ≤ nV} form a basis of Uh and V h. For uh ∈Uh and vh ∈ V h, we
denote by u ∈ RnU and v ∈ RnV the coordinates of uh and vh, respectively, if it holds uh = ∑

nU
i=1 uiφi

and vh = ∑
nV
j=1 v jφ j. Denote by I ∈ RnU×nV the prolongation matrix with Ii, j = 1 if i = j and Ii, j = 0

otherwise. If we view vh ∈ V h as an element of H1
0 (Ω), then uh := ι∗vh ∈ L2(Ω) is an element of Uh

and the coordinates u ∈RnU of uh are given via u= Iv, where v ∈RnV are the coordinates of vh. Define
the mass matrix M ∈ RnU×nU and the stiffness matrix K ∈ RnV×nV by

M :=
(∫

Ω

φiφ j dλ

)
i j
, K :=

(∫
Ω

∇φ
>
i ∇φ j dλ

)
i j
.

Since the functions φi are affine linear on each triangle, the mass and stiffness matrices can be assembled
efficiently, cf. [34]. Let uh, ûh ∈Uh and vh, v̂h ∈V h be arbitrary with corresponding coordinates u, û ∈
RnU and v, v̂ ∈ RnV . Then the quantities (uh, ûh)L2(Ω) and (vh, v̂h)H1

0 (Ω) can be computed exactly via

(uh, ûh)L2(Ω) =
∫

Ω

uhûh dλ = u>Mû and (vh, v̂h)H1
0 (Ω) =

∫
Ω

∇vh>
∇v̂h dλ = v>Kv̂. (2.7.4)

Linear Interpolation

Let T ⊂ R2 be a triangle with vertices n1,n2,n3 ∈ R2. The (local) Lagrange interpolation operator
Ih
T : C0(T̄ )→ P1(T ) maps any continuous function x to the linear function Ih

T x which fulfills (Ih
T x)(ni) =

16
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x(ni) for i = 1,2,3. For a given triangulation T h, the (global) Lagrange interpolation operator Ih :
C0(cl(Ω))→Uh is defined via Ihx := ∑

nU
i=1 x(ni)φi. Note that Ih|T = Ih

T for all T ∈ T h. We now apply
the interpolation estimate [20, Thm. 3.1.6] to our situation.

THEOREM 2.7.1. Let (T h)h, 0 < h ≤ 1, be a regular family of triangulations of a polygonal domain
Ω ⊂ R2 and suppose the numbers p,q ∈ R fulfill 1 < p < 2 and p ≤ q ≤ 2p/(2− p) or p = 2 and
q≥ 2. Then the Lagrange interpolation operator Ih

T : W 2,p(T )→ P1(T ) is well-defined and there exists
a constant C (depending only on p, q and the regularity parameter σ in (2.7.1)) such that for s ∈ {0,1}
it holds

|v− Ih
T v|W s,q(T ) ≤Ch2−s+2/q−2/p

T |v|W 2,p(T ) for all v ∈W 2,p(T ),T ∈T h,0 < h≤ 1.

Proof. Let T ⊂Ω be an arbitrary triangle and s∈ {0,1}. By [1, Thm. 4.12], the continuous embedding
W 2,p(T ) ⊂ C0(T̄ ) holds true and thus the Lagrange interpolation operator Ih

T is well-defined. Denote
by T̂ ⊂ R2 the reference triangle of the finite element method, i.e., the triangle with vertices (0,0),
(1,0) and (0,1). For the given values of s, p,q, [1, Thm. 4.12] implies that the continuous embedding
W 2,p(T̂ )⊂W s,q(T̂ ) holds. Therefore, [20, Thm. 3.1.6] yields

|v− Ih
T v|W s,q(T ) ≤Ch2−s+2/q−2/p

T |v|W 2,p(T ) for all v ∈W 2,p(T ),T ∈T h,0 < h≤ 1.

COROLLARY 2.7.2. Let (T h)h, 0 < h≤ 1, be a quasi-uniform family of triangulations of a polygonal
domain Ω⊂R2 and numbers p,q∈R with 1< p< 2 and p≤ q≤ 2p/(2− p) or p= 2 and q≥ 2. Then
the Lagrange interpolation operator Ih : W 2,p(Ω)→Uh is well-defined and there exists a constant C
(depending only on p, q and the quasi-uniformity constants c1,c2 in (2.7.2)) such that for s ∈ {0,1} it
holds

|v− Ihv|W s,q(Ω) ≤Ch2−s+2/q−2/p|v|W 2,p(Ω) for all v ∈W 2,p(Ω),0 < h≤ 1.

Proof. By [1, Thm. 4.12], the continuous embedding W 2,p(Ω) ⊂ C0(cl(Ω)) holds true and thus the
Lagrange interpolation operator Ih

T is well-defined. The definition of the Sobolev semi-norm |·|W s,q(Ω)

yields

|v|qW s,q(Ω) = ∑
|α|=s

∫
Ω

|Dα
w(v)|q dλ = ∑

T∈T h
∑
|α|=s

∫
T
|Dα

w(v)|q dλ = ∑
T∈T h

|v|qW s,q(T ) for all v ∈W s,q(Ω).

As (T h)h is a quasi-uniform family of triangulations, there exist constants c1,c2 > 0 such that

min{ρT : T ∈T h} ≥ c1h and max{hT : T ∈T h} ≤ c2h for all 0 < h≤ 1.

Thus, (T h)h is a regular family of triangulations with regularity parameter σ := c2/c1 and it holds
hT ≤ c2h for all T ∈ T h. By Theorem 2.7.1, there exists a constant C, depending only on p,q and
c2/c1, such that

|v− Ihv|W s,q(Ω) =

(
∑

T∈T h

|v− Ihv|qW s,q(T )

)1/q

≤Cc2h2−s+2/q−2/p

(
∑

T∈T h

|v|qW 2,p(T )

)1/q

.
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Denote by `r, 1 ≤ r < ∞, the space of sequences for which the norm ‖x‖`r := (∑i∈N |xi|r)1/r is finite.
By [20, Chap. 2.27], it holds ‖x‖`q ≤ ‖x‖`p whenever 1≤ p≤ q < ∞. Thus, we conclude the proof via(

∑
T∈T h

|v|qW 2,p(T )

)1/q

≤

(
∑

T∈T h

|v|pW 2,p(T )

)1/p

= |v|W 2,p(Ω).

LEMMA 2.7.3. Let (T h)h, 0 < h ≤ 1, be a regular family of triangulations of Ω. Then there exists a
constant Cσ > 0, depending only on the regularity parameter σ of the triangulations, such that

‖ trT v‖2
L2(∂T ) ≤Cσ h−1

T ‖v‖
2
L2(T )+ChT |v|2H1(T ) for all v ∈ H1(T ),T ∈T h,0 < h≤ 1.

Proof. This follows from the fact that trT̂ : H1(T̂ )→ L2(∂ T̂ ) is a linear and bounded operator on the
reference triangle T̂ and a simple scaling argument (cf. [2, Cor. 1.2]).

2.8. Capacity theory

The concept of capacity plays an important role for the mathematical analysis of the obstacle problem,
cf. Chapter 5.

DEFINITION 2.8.1 ([110, Def. 2.1]). a) Let d ∈ N+ and Ω ⊂ Rd be an open set. The capacity of a
set E ⊂Ω is defined by

cap(E) := inf
{∫

Ω

|∇v|2 dλ : v ∈ H1
0 (Ω),v≥ 1 a.e. in a neighborhood of E

}
.

b) A set O⊂Ω is called quasi-open if for all ε > 0 there exists an open set Ωε such that O∪Ωε is
open. The complement of a quasi-open set is called quasi-closed.

c) A function v : Ω → R is called quasi-continuous (quasi–upper-semicontinuous, quasi-lower-
semicontinuous, respectively) if for all ε > 0 there exists an open set Ωε ⊂ Ω with cap(Ωε) <
ε such that v|Ω\Ωε

is continuous (quasi–upper-semicontinuous, lower-semicontinuous, respec-
tively).

If a set has zero capacity, then it has measure zero, but there exist sets with measure zero and positive
capacity (cf. [7, Prop. 5.8.5]). We say that a property P(ω) holds quasi everywhere (q.e.) on O⊂Ω if
it holds for all ω ∈ O\Z, where Z ⊂ O is a set with cap(Z) = 0.

LEMMA 2.8.2 ([27, Chap. 8, Thm. 6.1]). Every v∈H1
0 (Ω) has a quasi-continuous representative. Any

two quasi-continuous representatives are equal quasi-everywhere on Ω.

In view of this lemma, when we speak about a function in H1
0 (Ω), we always mean the quasi-continuous

representative.

LEMMA 2.8.3 ([131, Lem. 2.3]). Let O⊂Ω be a quasi-open subset and v : Ω→R a quasi-continuous
function. Then, v≥ 0 a.e. on O implies v≥ 0 on O.

In particular, this shows that for two functions v,w∈H1
0 (Ω), the statement v≥w q.e. on Ω is equivalent

to v ≥ w a.e. on Ω. This relation ≥ (a.e. or q.e.) defines a partial order on H1
0 (Ω) and (H1

0 (Ω),≥)
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forms a vector lattice [115, Chap. 4.5]. Therefore, the pointwise maximum (v)+ := max(0,v)∈H1
0 (Ω)

exists for all v ∈ H1
0 (Ω).

LEMMA 2.8.4 ([110, Lem. 2.3]). Suppose v : Ω→ R is a function. The following assertions are
equivalent:

a) v is quasi-lower-semicontinuous;
b) the sets {v > c} are quasi-open for all c ∈ R;
c) −v is quasi-upper-semicontinuous.

This shows that the set {ω ∈Ω : v(ω)< 0} is quasi-open and the set {ω ∈Ω : v(ω)≥ 0} is quasi-closed
for any quasi-upper-semicontinuous function v. For a quasi-open set O⊂Ω, the Sobolev space H1

0 (O)
is defined via

H1
0 (O) := {v ∈ H1

0 (Ω) : v = 0 q.e. on Ω\O}.

As H1
0 (O) is a closed subspace of the Hilbert space H1(Rd), it is a Hilbert space.

2.9. Bochner spaces

This section recalls important concepts of Bochner spaces. We base this on the excellent book [62].
Let (Ξ,A ,P) be a measure space and B be a Banach space. A closed valued multifunction G : Ξ⇒ B
is called measurable if the pre-image G−1(O) := {ξ ∈ Ξ : G(ξ )∩O 6= /0} of every open set O is a
measurable set (cf. [8, Def. 8.1.1]). In particular, a function f : Ξ→ B is measurable if the pre-image
f−1(O) := {ξ ∈ Ξ : f (ξ ) ∈ O} of every open set O is a measurable set. A function f : Ξ→ B is
called P-simple if it is of the form f (ξ ) = ∑

N
i=1 δAn(ξ )bn where δAn is the indicator function of the set

An ∈A with P(An)< ∞ and bn ∈ B for all 1≤ n≤ N (cf. [62, Def. 1.1.13]). A function f : Ξ→ B is
called strongly P-measurable if there exists a sequence of simple functions fn : Ξ→ B converging to f
P-almost everywhere (cf. [62, Def. 1.1.14]).

THEOREM 2.9.1 ([62, Thm. 1.2.20, Prop. 1.1.16, Cor. 1.1.10]). If B is separable and P is σ -finite,
then, for a function f : Ξ→ B, the following assertions are equivalent:

1) f is strongly P-measurable;
2) ξ 7→ 〈b′, f (ξ )〉B∗,B is measurable for all b′ ∈ B∗;
3) f̃ is measurable and f = f̃ P-a.e.

LEMMA 2.9.2 ([62, Cor. 1.1.23]). The P-almost everywhere limit f : Ξ→ B of a sequence of strongly
P-measurable functions fn : Ξ→ B is strongly P-measurable.

Let B̃ be a Banach space. A function f : Ξ→L (B, B̃) is called strongly P-measurable if, for all b ∈ B,
the B̃-valued function ξ 7→ f (ξ )b is strongly P-measurable (cf. [62, Def. 1.1.27]).

LEMMA 2.9.3 ([62, Prop. 1.1.28]). If f : Ξ→ B and g : Ξ→L (B, B̃) are strongly P-measurable, then
g f : Ξ→ B̃ is strongly P-measurable.

A strongly P-measurable function f : Ξ→ B is called Bochner integrable with respect to P if there
exists a sequence of P-simple functions fn : Ξ→ B such that

lim
n→∞

∫
Ξ

‖ f (ξ )− fn(ξ )‖B dP(ξ ) = 0.
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DEFINITION 2.9.4 ([62, Def. 1.2.15]). For 1 ≤ p < ∞, we define Lp(Ξ,B) as the linear space of all
equivalence classes of strongly P-measurable functions f : Ξ→ B for which∫

Ξ

‖ f (ξ )‖p
B dP(ξ )< ∞.

We define L∞(Ξ,B) as the linear space of all equivalence classes of strongly P-measurable functions
f : Ξ→ B for which there exits a r ≥ 0 such that P({ξ ∈ Ξ : ‖ f (ξ )‖B > r}) = 0.

Endowed with the norms

‖ f‖Lp(Ξ,B) :=
(∫

Ξ

‖ f (ξ )‖p
B dP(ξ )

)1/p

and

‖ f‖L∞(Ξ,B) := inf{r ≥ 0 : P({ξ ∈ Ξ : ‖ f (ξ )‖B > r}) = 0} ,

the spaces Lp(Ξ,B), 1≤ p≤ ∞, are Banach spaces.

THEOREM 2.9.5 ([62, Thm. 1.3.10, Thm. 1.3.21]). Let (Ξ,A ,P) be a σ -finite measure space, B be a
reflexive Banach space, and let 1≤ p < ∞ and 1/p+1/q = 1. Every g ∈ Lq(Ξ,B∗) defines an element
φg ∈ (Lp(Ξ,B))∗ via

〈φg, f 〉Lp(Ξ,B)∗,Lp(Ξ,B) :=
∫

Ξ

〈g(ξ ), f (ξ )〉B∗,B dP(ξ ).

Furthermore, the mapping g 7→ φg establishes an isometric isomorphism of Banach spaces

Lq(Ξ,B∗)' (Lp(Ξ,B))∗.

If H is a Hilbert space, [18, Thm. 3.1] implies that L2(Ξ,H) is a Hilbert space. Furthermore, if
(Ξ,A ,P) is a σ -finite measure space, then Theorem 2.9.5 yields Lq(Ξ,H∗) ' Lp(Ξ,H)∗ with 1 ≤
p < ∞, 1/p+1/q = 1.

20



3. The bundle method

In this section we present a bundle method for nonsmooth, nonconvex minimization in Hilbert spaces.
First results were already published in

[50] L. HERTLEIN AND M. ULBRICH, An inexact bundle algorithm for nonconvex nonsmooth mini-
mization in Hilbert space, SIAM J. Control Optim., 57 (2019), pp. 3137–3165.

The results of [50] were extend to the more general setting of locally Lipschitz objective functions in

[49] L. HERTLEIN, A.-T. RAULS, M. ULBRICH, AND S. ULBRICH, An inexact bundle method and
subgradient computations for optimal control of deterministic and stochastic obstacle problems.
Priprint, accepted for publication in SPP1962 Special Issue, Birkhäuser, 2019.

Due to space limitations, most proofs could not be presented in [49]. Instead, the bundle method with
a full convergence theory is outlined in this chapter.

3.1. Algorithm

Convergence proofs for bundle methods, especially in a finite-dimensional setting, usually use strongly
convergent subsequences of compact sets. In finite dimensions, bounded and closed sets are compact.
In infinite dimensions, this is no longer true and in general Hilbert spaces, compactness is a rather
strong property. Therefore, we propose the problem setting below. This setting arises naturally in
applications such as the optimal control of variational inequalities and enables us to proof convergence
also in infinite dimensions. We consider the problem class

min
x∈X

p(ιx)+w(x), x ∈F . (3.1.1)

Here, X and Y are Hilbert spaces and ι ∈L (X ,Y ) is a linear, injective and compact operator, i.e., a
compact embedding. The constraint set F ⊂ X is a nonempty, closed and convex set, FX ⊃ F is
an open convex X-neighborhood of F and FY ⊂ Y is an open convex Y -neighborhood of ι(F ) with
ι(FX) ⊂FY . We assume that p : FY → R is Lipschitz on bounded sets and define f : FX → R by
f = p ◦ ι . Further, we assume that w : FX → R is continuously differentiable, Lipschitz continuous
on bounded sets and µ-strongly convex, cf. Definition 2.2.3. Note that these assumptions imply that
w is also weakly sequentially lower semicontinuous. In this section, we use ∂ f (x) to denote Clarke’s
subdifferential if f is Lipschitz near x. We use the same notation for the convex subdifferential if f
is a real- or extended real-valued convex function. This does not generate any ambiguity since these
subdifferentials coincide for a convex and locally Lipschitz continuous function defined on an open
convex set [21, Prop. 2.2.7].
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Bundle methods progressively build a local model which approximates the function f around a point
x. To do so, in iteration i, a finite set Mi of affine linear functions, called cutting planes, is selected.
The convex function φi := max{m ∈Mi} is chosen as the local model of f at the serious iterate xi. The
bundle method’s subproblem is given by

min
y∈F

φi(y)+w(y)+ 1
2‖ι(y− xi)‖2

Qi+τiRY
.

Here, τi denotes the proximity parameter and Qi may represent curvature information of p at xi. A trial
iterate ỹi is computed as an approximate minimizer of the bundle subproblem such that an approxima-
tion of the function value and of the subgradient at ỹi can be computed. If this trial iterate ỹi fulfills a
certain decrease condition, it is accepted as new serious iterate xi+1 and we start building a new model
around xi+1. Otherwise, a new cutting plane is selected which enriches the old model. If the new
model is not substantially improved, the proximity parameter is increased to gather more cutting plane
information close to the serious iterate xi.

3.1.1. The subproblem of the bundle method

In Sections 3.1.4 and 3.1.6, we define the local model φi and the proximity term 1
2‖ι( · − xi)‖2

Qi+τiRY

properly. Here, however, it is sufficient to know that φi is convex and finite on X and that ‖ · ‖2
Qi+τiRY

=
〈(Qi + τiRY ) ·, ·〉Y ∗,Y is a norm on Y . The subproblem of the bundle method in iteration i is given by

min
y∈X

Ψi(y) := φi(y)+w(y)+δF (y)+ 1
2‖ι(y− xi)‖2

Qi+τiRY
. (3.1.2)

On F , the piecewise quadratic model Ψi is the sum of two convex functions, φi and ‖ι( · −xi)‖2
Qi+τiRY

,
and the strongly convex function w. Thus, Ψi is strongly convex on F and the subproblem has a unique
minimum yi ∈F . We define the local model Φi : X → R∪{∞} by

Φi :=
{

φi +w on F
∞ else

}
= φi +w+δF .

As w is defined on the open X-neighborhood FX of F and w is finite on FX , the interior of the effective
domain of w is FX . Furthermore, int domφi = X yields domδF ∩ int domw ∩ int domφi = F 6= /0.
Consequently, the sum rule of the convex subdifferential [12, Cor. 16.50] can be applied and yields
∂Φi = ∂φi+w′+NF . The fact that yi minimizes the subproblem of the bundle method can equivalently
be expressed by

0 ∈ ∂
(
Φi +

1
2‖ι(·− xi)‖2

Qi+τiRY

)
(yi) = ∂φi(yi)+w′(yi)+NF (yi)+ ι

∗(Qi + τiRY )ι(yi− xi),

where the equality results from the sum rule of the convex subdifferential [12, Cor. 16.50]. Therefore,
there exist elements g∗i ∈ ∂φi(yi) and n∗i ∈ NF (yi) such that

ei := ι
∗(Qi + τiRY )ι(xi− yi) = g∗i +w′(yi)+n∗i ∈ ∂Φi(yi) (3.1.3)

and the subgradient inequality gives

〈ei,y− yi〉X∗,X ≤Φi(y)−Φi(yi) for all y ∈ X . (3.1.4)

22
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Using that w is even µ-strongly convex, we get for all y ∈ X the improved inequality

〈ei,y− yi〉X∗,X + µ

2 ‖y− yi‖2
X ≤Φi(y)−Φi(yi). (3.1.5)

3.1.2. Subdifferential approximation

Most bundle methods use subgradients which are drawn from the convex subdifferential, from Clake’s
subdifferential or approximations thereof. In order to cover these cases and to facilitate an abstract
theory, we define a multifunction G which acts as an abstract subdifferential. We only require properties
which are actually needed in the convergence proof. Let V̂ ⊂ Y be a closed set. We require that
G : V̂ ⇒ Y ∗ fulfills the following

Assumption 3.1.1. The multifunction G : V̂ ⇒ Y ∗ has the following properties:
1) For all v̂ ∈ V̂ , the image G(v̂) is nonempty and convex.
2) For all bounded sets B⊂ Y , the set G(B∩ V̂ ) := ∪v̂∈B∩V̂ G(v̂) is bounded in Y ∗.
3) G has a weakly closed graph, i.e., for all sequences (vn)n∈N ⊂ V̂ and (gn)n∈N ⊂ Y ∗ such that

vn→ v̄ in Y , gn ⇀ g in Y ∗ and gn ∈ G(vn) for all n ∈ N, it holds g ∈ G(v̄).

We note that property 3) implies that G(v̂) is closed for all v̂ ∈ V̂ and property 1) implies that G(v̂) is
weakly sequentially compact in Y ∗ for all v̂ ∈ V̂ . Both the Clarke subdifferential and the convex subd-
ifferential, i.e., G := ∂ p, fulfill this assumption (cf. [21, Prop. 2.1.2 (a)], Lemma 2.2.8,[21, Prop. 2.1.5
(b)]). Furthermore, inexact subgradients can be allowed by choosing G := ∂ p+ B̄Y ∗(0,εG), εG > 0,
or, more general, by choosing G := ∂ p+C where C ⊂ Y ∗ is a nonempty closed convex set. Another
example can be found in Section 7.3.

Due to the inexact nature of the algorithm, we can only expect to converge to approximately stationary
points, which we make precise in the following definition:

DEFINITION 3.1.2. Let the multifunction G fulfill Assumption 3.1.1. A point x̄ ∈ X with ι x̄ ∈ V̂ is
called η-G-stationary, η ≥ 0, if

0 ∈ w′(x̄)+NF (x̄)+ ι
∗(G(ι x̄)+ B̄Y ∗(0,η)).

A point which is 0-G-stationary is called G-stationary.

Remark 3.1.3. If G := ∂C p is the Clarke subdifferential, the chain rule [21, Thm. 2.3.10] implies that
∂C f (y) ⊂ ι∗∂C p(ιy) for all y ∈ FX . If p or −p is regular at ιy in the sense of Clarke (cf. [21,
Def. 2.3.4]), then equality holds at this point. Thus, if p or −p is regular at ι x̄, ∂C p-stationarity is
equivalent to 0 ∈ ∂C f (x̄)+w′(x̄)+NF (x̄). If p is convex and G := ∂ p, then the sum rule of the convex
subdifferential [12, Cor. 16.50] yields ∂ f (x̄)+w′(x̄)+NF (x̄) = ∂J(x̄), i.e., stationarity is equivalent
to 0 ∈ ∂J(x̄). Note that if p is convex and G := ∂ p+ B̄Y ∗(0,εG), i.e., one uses subgradients which
are at most εG away of the true subgradient, then G-stationarity as in Definition 3.1.2 corresponds to
0 ∈ ∂J(x̄)+ ι∗B̄Y ∗(0,εG).

3.1.3. Bundle information and trial iterates

For the algorithm, we use points ỹ ∈F at which we compute an approximation f̃ of the exact function
value f (ỹ). Furthermore, we use points v ∈F at which we compute an approximation g̃ of an ele-
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ment of the subdifferential of p at ỹ. The decoupling of points at which function value approximations
are drawn from points at which subgradient approximations are drawn might be helpful to find new
subgradients which improve the local model. However, although it is possible to draw subgradients at
points v, which are far away from the trial iterate ỹ, these subgradients might not be useful. We only
impose very weak restrictions on ỹ, f̃ and v and derive the relevant behavior of Algorithm 3.1 based on
this. To obtain concrete optimality statements, one needs to add further exactness requirements on the
data ỹ, f̃ and v. This can be done in several ways and we carry this out in Section 3.4.

We assume that there is a set T̃ ⊂F such that for every point ỹ ∈ T̃ we can compute a function value
approximation f̃ ∈ R which is assumed to fulfill

| f̃− f (ỹ)| ≤ ∆, (3.1.6)

where ∆≥ 0 is a constant. Further, we assume that there exists a set V ⊂F such that, for every v ∈ V ,
we can compute an approximation of an element of the subdifferential of the function f at v, i.e.,
ιv ∈ V̂ and we can compute an element of G(ιv). We call any element g̃ ∈G(ιv)⊂Y ∗ an approximate
subgradient at the subgradient base point v. Note that for technical reasons we call the element g̃ ∈Y ∗

approximate subgradient and not the canonical choice ι∗g̃ ∈ X∗. In iteration i of the algorithm, we
assume that we can compute an approximation ỹi ∈ T̃ ∩V of the minimizer of the bundle subproblem
yi ∈ X with arbitrary precision, i.e., such that

Ψi(ỹi)−Ψi(yi)→ 0 as i→ ∞. (3.1.7)

We call ỹi a trial iterate. Since 0 ∈Ψi(yi) and Ψi is µ-strongly convex, this assumption yields

0≤ 〈0, ỹi− yi〉X∗,X + µ

2 ‖ỹi− yi‖2
X ≤Ψi(ỹi)−Ψi(yi)→ 0, (3.1.8)

i.e., ỹi− yi→ 0 in X as i→ ∞. Therefore, (3.1.7) implicitly is a richness assumption on T̃ ∩V in the
sense that ι(T̃ ∩V ) has to contain a point which is close to ιyi. Since we do not know the locations of
the minimizers yi in advance, the set T̃ ∩V actually has to be dense in F .

For now, we do not impose any further restrictions on T̃ , f̃, ỹ, or V . In particular, this means that the
function value approximation f̃ might be far away from the exact function value f (ỹ) and approximate
subgradients g̃ can be drawn at points v ∈ V far away from the trial iterate ỹ. During the convergence
proof we will discover which additional properties are needed to guarantee convergence of the bundle
method. In Section 3.5 we discuss several strategies which ensure these properties.

3.1.4. The cutting plane model φi

Fix the downshift parameter c > 0 once and for all. For x ∈ X , f̃ x ∈ R, (ỹ, f̃,v, g̃) ∈ X ×R×X ×Y ∗,
define the tangent tỹ, f̃ ,g̃ : X →R, the downshift sỹ, f̃ ,v,g̃,x ∈R and the downshifted tangent mỹ, f̃ ,v,g̃(·,x) :
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X → R by

tỹ, f̃ ,g̃(·) := f̃ + 〈g̃, ι(·− ỹ)〉Y ∗,Y ,
sỹ, f̃ ,v,g̃,x := [ f̃ + 〈g̃, ι(x− ỹ)〉Y ∗,Y − f̃ x]++ c‖ι(v− x)‖2

Y ,

mỹ, f̃ ,v,g̃(·,x) := tỹ, f̃ ,g̃(·)− sỹ, f̃ ,v,g̃,x .

(3.1.9)

We immediately note

LEMMA 3.1.4. For all (ỹ, f̃,v, g̃) ∈ X×R×X×Y ∗ and x ∈ X it holds

mỹ, f̃ ,v,g̃(y,x)≤ f̃ x + 〈g̃, ι(y− x)〉Y ∗,Y − c‖ι(v− x)‖2
Y for all y ∈ Y.

Proof. For arbitrary λ ∈ R there holds −[λ ]+ ≤−λ . The estimate readily follows from the definition
of the downshifted tangent (3.1.9).

Denote by

Ba := {(ỹ, f̃,v, g̃) : ỹ ∈ T̃ , f̃ ∈ f (ỹ)+ B̄(0,∆),v ∈ V̂ , g̃ ∈ G̃ (ιv)}

the set of all bundle information which can possibly be chosen. In iteration i, the algorithm uses a
nonempty, finite set of bundle information Bi ⊂Ba. Let Di denote the corresponding set of down-
shifted tangents:

Di := {mỹ, f̃ ,v,g̃(·,xi) : (ỹ, f̃,v, g̃) ∈Bi}. (3.1.10)

We choose a nonempty, finite subset Mi of co(Di) to build the cutting plane model φi : X → R by

φi(y) := max{m(y) : m ∈Mi}. (3.1.11)

Whenever the serious iterate is not updated, the set Mi+1 of the next iteration needs to retain informa-
tion from the old bundle Mi. Details on how to choose Mi+1 are given in the next section.

3.1.5. Aggregation of cutting planes

The canonical choice for the cutting plane model is to include all computed bundle information Bi by
setting Mi = Di. This yields the full model

φ
full
i := max{mỹ, f̃ ,v,g̃(·,xi) : (ỹ, f̃,v, g̃) ∈Bi}.

However, if the number of elements in Bi is large, it might be difficult to solve the subproblem of the
bundle method. To overcome this problem, one can aggregate or delete cutting planes, i.e., one can
choose a (possibly small) subset Mi ⊂ co(Di) for the definition of the model φi. It is important not to
delete cutting planes which incorporate relevant information. To make this precise, we need to define
the aggregate, exactness and trial cutting plane.

For m ∈Mi, denote by gm := m′(0) ∈ X∗ the gradient of m in X and let ĝm ∈ Y ∗ be the element which
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fulfills ι∗ĝm = gm. As the set Mi is finite, by [21, Prop. 2.3.12] it holds for all y ∈ X that

∂φi(y) = co({ι∗ĝm : m ∈Mi, m(y) = φi(y)}). (3.1.12)

Recall (cf. (3.1.3)) that g∗i ∈ ∂φi(yi). Therefore, there exist numbers λm ≥ 0 with ∑m∈Mi λm = 1 and
g∗i = ∑m∈Mi λmι∗ĝm. In view of this, we call

ĝ∗i := ∑
m∈Mi

λmĝm ∈ Y ∗ (3.1.13)

the aggregate subgradient. For i ∈ N, define the aggregate cutting plane by

m∗i (·) := ∑
m∈Mi

λmm(·). (3.1.14)

Furthermore, note that λm = 0 whenever m(yi) 6= φi(yi) for all m ∈Mi. This implies

m∗i (yi) = φi(yi). (3.1.15)

The algorithm ensures that only points xi ∈ X , where at least one approximate subgradient g̃x
i ∈ G(ιxi)

can be computed, are chosen as the serious iterate. We call g̃x
i the exactness subgradient and define the

exactness plane mx
i : X → R by

mx
i (·) := mxi, f̃ x

i ,xi,g̃x
i
(·,xi) = f̃ x

i + 〈g̃x
i , ι(·− xi)〉Y ∗,Y .

We require that every model φi majorizes the exactness plane model. Furthermore, whenever the current
iteration was not successful, we require that the next model majorizes the aggregate cutting plane

Assumption 3.1.5. For each i ∈ N, the set Mi ⊂ co(Di) is chosen such that φi ≥ mx
i . If iteration i ∈ N

is not successful, then Mi+1 is chosen such that additionally φi+1 ≥ m∗i holds.

At the subgradient base point vi ∈ V , cf. Section 3.1.3, we compute an approximate subgradient
g̃i ∈ G(ιvi) and construct the trial plane mi := mỹi, f̃i,vi,g̃i

: X → R. This gives

mi(·,xi) = f̃i + 〈g̃i, ι(·− ỹi)〉Y ∗,Y − [ f̃i + 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+− c‖ι(vi− xi)‖2

Y . (3.1.16)

Aggregating all cutting planes except the trial plane leads to the aggregate model

φ
agg
i+1 := max{mx

i (·),mi(·,xi),m∗i (·)}.

However, choosing the aggregate model may lead to a situation where one has to recompute subgradi-
ents. Thus it can be beneficial to aggregate only cutting planes with small multiplier λm or, alternatively,
to delete inactive cutting planes. Further, it may be beneficial to recycle some cutting planes from pre-
vious iterations.

LEMMA 3.1.6. Let xi ∈ X be a serious iterate. For all i ∈ N it holds φi(xi) = f̃ x
i .

Proof. By Assumption 3.1.5 and Lemma 3.1.4 we get for all i ∈ N

f̃ x
i = mx

i (xi)≤ φi(xi) = max{m(xi) : m ∈Mi} ≤max{m(xi) : m ∈Di} ≤ f̃ x
i .
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3.1.6. Curvature information and proximity control

If there is curvature information of p around ιxi available, we want to incorporate this into the model.
Fix the constants q̄ > 0, ξ > 0 and T ≥ q̄+ ξ . Let Qi ∈L (Y,Y ∗) be symmetric, i.e., 〈Qix,y〉Y ∗,Y =
〈Qiy,x〉Y ∗,Y for all x,y ∈ Y . We assume that there exists a constant 0≤ qi ≤ q̄ such that

〈Qiw,w〉Y ∗,Y ≥−qi‖w‖2
Y for all w ∈ Y and ‖Qi‖L (Y,Y ∗) ≤ q̄. (3.1.17)

Denote by RY : Y → Y ∗ the Riesz map in Y , i.e., the continuous linear operator which maps w ∈ Y
to (w, ·)Y . For any proximity parameter τi ≥ qi + ξ , the positive definite symmetric bilinear form
〈(Qi + τiRY ) ·, ·〉Y ∗,Y defines a norm on Y via ‖ · ‖2

Qi+τiRY
:= 〈(Qi + τiRY ) ·, ·〉Y ∗,Y . Using the relations

above, we get the estimate

‖ · ‖2
Qi+τiRY

≥ (−qi + τi)‖ · ‖2
Y ≥ ξ‖ · ‖2

Y , (3.1.18a)

and for large τi we can make use of

‖ · ‖2
Qi+τiRY

≥ (−qi + τi)‖ · ‖2
Y ≥ (τi− q̄)‖ · ‖2

Y . (3.1.18b)

Remark 3.1.7. In particular, this setting allows for the use of no curvature information, i.e., Qi = 0
for all i. Furthermore, it is possible to use low rank schemes such as the BFGS formula as curvature
information, cf. Section 4.4.

3.1.7. Full algorithm and preparation of analysis

In Algorithm 3.1 the inexact bundle method is presented. First we show that in every iteration i the
variables ρi and ρ̃i can be computed. Since Ψi(ỹi)< Ψi(xi), we find

Φi(xi)−Φi(ỹi) = Ψi(xi)−Ψi(ỹi)+
1
2‖ỹi− xi‖2

Qi+τiRY
> 0. (3.1.19)

Consequently both ρi and ρ̃i are well-defined. Therefore, if the assumptions of Section 3.1.3 are met
(in particular if we can compute a trial iterate ỹi ∈ T̃ ∩V such that Ψi(ỹi)−Ψi(yi)→ 0 as i→∞), then
every step of Algorithm 3.1 can be executed.

LEMMA 3.1.8. The sequence of approximate function values at serious iterates, (J̃x
i )i∈N, is non-increasing.

Proof. Since xi ∈F is feasible, Lemma 3.1.6 gives J̃x
i := f̃ x

i +w(x) = Φi(xi). For all i∈N with ρi ≥ γ ,
the estimate (3.1.19) yields

J̃x
i − J̃x

i+1 = J̃x
i − J̃i ≥ γ (Φi(xi)−Φi(ỹi))> 0, (3.1.20)

and J̃x
i+1 = J̃x

i for all i ∈ N with ρi < γ . Combining this yields J̃x
i+1 ≤ J̃x

i for all i ∈ N.

The following lemma exploits the structure of the objective function of the bundle subproblem Ψi =
φi+w+ 1

2‖ ·−xi‖2
Qi+τiRY

to estimate the distance between an arbitrary point z ∈ X and the minimizer of
the bundle subproblem.
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Algorithm 3.1: Inexact bundle method
Parameters : 0 < γ < γ̃ < 1, ∆ > 0, 0 < q̄ < q̄+ξ ≤ T . Gradient approximation multifunction

G : F ⇒ Y ∗ fulfilling Assumption 3.1.1.
Initialization: Choose a start iterate x0 ∈ T̃ ∩V . Compute f̃ x

0 ∈ B̄( f (x0),∆) and g̃x
0 ∈ G(ιx0). Set

J̃x
0 = f̃ x

0 +w(x0) and choose a symmetric operator Q0 ∈L (Y,Y ∗) and q0 ≤ q̄ satisfying
(3.1.17). Choose τ0 ∈ [q0 +ξ ,T ], B0 ⊃ {(x0, f̃ x

0 ,x0, g̃x
0)} and M0 according to

Assumption 3.1.5.
1 for i = 0,1, . . . do
2 Set Φi = max{m : m ∈Mi}+w+δF and Ψi = Φi +

1
2‖ι( · − xi)‖2

Qi+τiRY
.

3 Trial iterate generation. Compute a trial iterate ỹi ∈ T̃ ∩V which fulfills (3.1.7).
4 if Ψi(ỹi)≥Ψi(xi) then (subproblem iteration)
5 Set xi+1 = xi, f̃ x

i+1 = f̃ x
i , J̃x

i+1 = J̃x
i , g̃x

i+1 = g̃x
i , Qi+1 = Qi, qi+1 = qi, τi+1 = τi, Bi+1 = Bi,

Φi+1 = Φi. Continue to the next iteration.
6 else
7 Compute f̃i ∈ B̄( f (ỹi),∆) and set J̃i = f̃i +w(ỹi).
8 end
9 Acceptance test. Set

ρi =
J̃x

i − J̃i

Φi(xi)−Φi(ỹi)
.

10 if ρi ≥ γ then (successful iteration)
11 Set xi+1 = ỹi, f̃ x

i+1 = f̃i and J̃x
i+1 = J̃i. Compute g̃x

i+1 ∈ G(ιxi+1) and choose a symmetric
operator Qi+1 ∈L (Y,Y ∗) and qi+1 ≤ q̄ satisfying (3.1.17). Choose τi+1 ∈ [qi+1 +ξ ,T ],
Bi+1 ⊃ {(xi+1, f̃ x

i+1,xi+1, g̃x
i+1)} and Mi+1 according to Assumption 3.1.5. Continue to the

next iteration.
12 else
13 Set xi+1 = xi, f̃ x

i+1 = f̃ x
i , g̃x

i+1 = g̃x
i , J̃x

i+1 = J̃x
i , Qi+1 = Qi, qi+1 = qi.

14 end
15 Update local model. Enrich the set of bundle information by choosing Bi+1 such that

Bi ⊂Bi+1 ⊂Ba, choose a set of cutting planes Mi+1 according to Assumption 3.1.5 and set
Φi+1 = max{m : m ∈Mi+1}+w+δF .

16 Update proximity parameter.

Set ρ̃i =
J̃x

i −Φi+1(ỹi)

Φi(xi)−Φi(ỹi)
and update τi+1 =

{
2τi if ρ̃i ≥ γ̃ (proximity iteration)
τi if ρ̃i < γ̃ (model iteration)

.

17 end

LEMMA 3.1.9. For arbitrary z ∈ X, it holds

1
2‖ι(z− yi)‖2

Qi+τiRY
+ µ

2 ‖z− yi‖2
X ≤Ψi(z)−Ψi(yi).

Proof. Let z ∈ X be arbitrary. Recall from Section 3.1.6 that 〈Qi + τiRY · , ·〉Y ∗,Y is a symmetric and
positive definite bilinear form which defines the inner product (·, ·)Qi+τiRY on Y . By the polarization
identity

‖a‖2
Qi+τiRY

= ‖a+b‖2
Qi+τiRY

−‖b‖2
Qi+τiRY

−2(b,a)Qi+τiRY for all a,b ∈ Y,

28



3. The bundle method

setting a = ι(z− yi) and b = ι(yi− xi), we obtain

1
2‖ι(z− yi)‖2

Qi+τiRY
= 1

2‖ι(z− xi)‖2
Qi+τiRY

− 1
2‖ι(yi− xi)‖2

Qi+τiRY
+(ι(xi− yi), ι(z− yi))Qi+τiRY .

Therefore, (3.1.5) implies the claim via

(ι(xi− yi), ι(z− yi))Qi+τiRY +
µ

2 ‖z− yi‖2
X

≤Φi(z)−Φi(yi)

= Ψi(z)− 1
2‖ι(z− xi)‖2

Qi+τiRY
−Ψi(yi)+

1
2‖ι(yi− xi)‖2

Qi+τiRY
.

LEMMA 3.1.10. If, from iteration i0 onwards, Algorithm 3.1 produces only subproblem iterations,
then the serious iterate xi0 is G-stationary (in the sense of Definition 3.1.2).

Proof. Let i0 be an iteration index such that iteration i is a subproblem iteration for all i ≥ i0. Then
Ψi = Ψi0 , xi = xi0 , yi = yi0 and Ψi0(ỹi)≥Ψi0(xi0) for all i≥ i0. By (3.1.7), Ψi0(ỹi)→Ψi0(yi0) as i→ ∞

which yields

0≤Ψi0(xi0)−Ψi0(yi0) = Ψi0(xi0)−Ψi0(ỹi)+(Ψi0(ỹi)−Ψi0(yi0))≤Ψi0(ỹi)−Ψi0(yi0)→ 0,

i.e., Ψi0(xi0) = Ψi0(yi0). Thus, Lemma 3.1.9 gives xi0 = yi0 . Plugging this into (3.1.4) shows

0≤Φi0(y)−Φi0(xi0) for all y ∈ X .

Since Φi is convex, this shows that 0 ∈ ∂Φi0(xi0) = ∂φi0(xi0)+w′(xi0)+NF (xi0). Combining (3.1.12)
and Lemma 3.1.6 yields ∂φi0(xi0) = ι∗ co({ĝm : m ∈Mi, m(xi0) = f̃ x

i0}), where ĝm ∈ Y ∗ is defined by
ι∗ĝm :=m′(0) for all m∈Mi. Whenever a subgradient g̃ is drawn at a point v 6= xi0 , Lemma 3.1.4 yields
for the corresponding downshifted tangent m = mỹ, f̃ ,v,g̃(·,xi0) that m(xi0) 6= f̃ x

i0 and this downshifted
tangent cannot contribute to the subdifferential ∂φi0(xi0). Therefore, only subgradients which are drawn
at the serious iterate contribute to ∂φi0(xi0), which results in ∂φi0(xi0)⊂ ι∗ co(G(ιxi0)) = ι∗G(ιxi0) and
0 ∈ w′(xi0)+NF (xi0)+ ι∗G(ιxi0).

Let us define the following sets:

DEFINITION 3.1.11. We define the set of serious iterates produced by the algorithm by

S := {xi : i ∈ N},

the set of all minimizers of the bundle subproblems by

T := {yi : i ∈ N},

the set of bundle information which is used by the algorithm by

Bu := ∪i∈NBi,

and the set of all subgradients used by the algorithm by

G̃ := {g̃ ∈ Y ∗ : ∃ỹ,v ∈ X , f̃ ∈ R,(ỹ, f̃,v, g̃) ∈Bu}.
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3. The bundle method

Some of the following lemmas and theorems use the assumption that the set of serious iterates, S , is
bounded. This assumption can be guaranteed to hold if further assumptions on the problem data are met.
For example, if the constraint set F is bounded, the set S ⊂F is automatically bounded. Furthermore,
a boundedness assumption on the level set yields boundedness of the set of serious iterates.

LEMMA 3.1.12. If the initial point x0 ∈F is such that F0 := {x ∈F : J(x)≤ J(x0)+2∆} is bounded
in X, then the set of serious iterates S is bounded in X.

Proof. Lemma 3.1.8 and the function value boundedness condition (3.1.6) imply

J(xi)−∆≤ J̃x
i ≤ J̃x

0 ≤ J(x0)+∆ for all i ∈ N

and thus S ⊂ F0. The boundedness assumption on the level set F0 implies that the set of serious
iterates S is bounded in X .

LEMMA 3.1.13. If the set of serious iterates S is bounded in X, then the sets of minimizers of the
bundle subproblems T is bounded in X and ι(T ) is bounded in Y .

Proof. Denote by φi the cutting plane model in iteration i and the exactness subgradient by g̃x
i ∈G(ιxi).

By Lemma 3.1.6 it holds mx
i (xi) = f̃ x

i = φi(xi). Consequently, the definition of the exactness plane mx
i

and Assumption 3.1.5 yield

〈ι∗g̃x
i ,y− xi〉X∗,X = mx

i (y)−mx
i (xi)≤ φi(y)−φi(xi) for all y ∈ X ,

which shows that ι∗g̃x
i ∈ ∂φi(xi). The fact xi ∈F implies 0 ∈ NF (xi). Hence ι∗g̃x

i +w′(xi) ∈ ∂Φi(xi)
for all i ∈ N. Since Φi is µ-strongly convex, we get

〈ι∗g̃x
i +w′(xi),y− xi〉X∗,X + µ

2 ‖y− xi‖2
X ≤Φi(y)−Φi(xi) for all y ∈ X . (3.1.21)

Choosing y = xi in (3.1.5) yields

‖ι(yi− xi)‖2
Qi+τiRY

+ µ

2 ‖yi− xi‖2
X ≤Φi(xi)−Φi(yi). (3.1.22)

Thus we get

‖ι(yi− xi)‖2
Qi+τiRY

+µ‖yi− xi‖2
X ≤ ‖ι∗g̃x

i +w′(xi)‖X∗‖yi− xi‖X . (3.1.23)

We immediately obtain

‖yi− xi‖X ≤ 1
µ
‖ι∗g̃x

i +w′(xi)‖X∗ . (3.1.24)

Young’s inequality for products gives

‖ι∗g̃x
i +w′(xi)‖X∗‖yi− xi‖X ≤ 1

4µ
‖ι∗g̃x

i +w′(xi)‖2
X∗+µ‖yi− xi‖2

X

which shows together with (3.1.23) that

‖ι(yi− xi)‖Qi+τiRY ≤ 1
2
√

µ
‖ι∗g̃x

i +w′(xi)‖X∗ . (3.1.25)
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3. The bundle method

From (3.1.18a) we get

‖ι(yi− xi)‖Y ≤ 1
2
√

µξ
‖ι∗g̃x

i +w′(xi)‖X∗ . (3.1.26)

Since the set of serious iterates S is bounded in X , Assumption 3.1.1 implies that the sequence of
exactness gradients (ι∗g̃x

i )i∈N ⊂ ι∗G(ιS ) is bounded and Lemma 2.2.8 yields the boundedness of
w′(S ). Hence, (3.1.24) shows that the set of minimizers of the bundle subproblem T is bounded in X
and (3.1.26) shows that ι∗(T ) is bounded in Y .

If the set of serious iterates and the set of subgradient base points are bounded, then the Lipschitz
continuity of w and the properties of G imply that the set of used bundle information Bu is bounded.
This can be ensured in the following way.

LEMMA 3.1.14. If the set of serious iterates S is bounded in X, then the set of trial iterates Ỹ := {ỹi :
i ∈N} is bounded in X. If additionally the set of all subgradient base points V used in the algorithm is
bounded, then the set of bundle information used by the algorithm, Bu, is bounded in X×R×X×Y ∗.

Proof. If S is bounded in X , then Lemma 3.1.13 implies that the set of minimizers of the bundle
subproblem T = {yi : i ∈ N} is bounded in X . Equation (3.1.8) yields yi− ỹi → 0 in X as i→ ∞

which shows that the set of trial iterates Ỹ := {ỹi : i ∈ N} is bounded in X . Now let additionally V
be bounded in X . This implies that ι(V ) is bounded in Y and Assumption 3.1.1 yields that the set of
subgradients G̃ ⊂G(ι(V )) is bounded in Y ∗. The function value boundedness condition (3.1.6) implies
the inclusion { f̃i : i ∈ N} ⊂ f (Ỹ )+ B̄(0,∆) holds. Since Ỹ is bounded and f is Lipschitz on bounded
sets, this shows that the set of function value approximations produced by the algorithm, { f̃i : i ∈ N},
is bounded. The boundedness of Bu follows from Bu ⊂ Ỹ ×{ f̃i : i ∈ N}×V × G̃ .

The next lemma shows that if the proximity parameter τi goes to infinity, then the distance of the mini-
mizer of the subproblem and the serious iterate goes to zero. This fact motivates the name “proximity
parameter”.

LEMMA 3.1.15. Assume that there exists a subsequence of iterates J ⊂N such that τi→ ∞ as J 3
i→ ∞. If S is bounded, then ι(yi− xi)→ 0 in Y as J 3 i→ ∞.

Proof. Since S is bounded, the sequence (‖ι∗g̃x
i +w′(xi)‖X∗)i∈J is bounded (cf. Lemma 3.1.13). For

all i ∈J sufficiently large such that τi > q̄, (3.1.25) and (3.1.18b) yield

‖ι(yi− xi)‖Y ≤
1

2
√

µ(τi− q̄)
‖ι∗g̃x

i +w′(xi)‖X∗ .

Due to τi→ ∞, this shows that ι(yi− xi)→ 0 in Y as J 3 i→ ∞.

3.2. The upper envelope function φ

Notation 3.2.1. Let (in)n∈N ⊂ N be a subsequence of bundle iterations. In the following, we often do
not distinguish between the set of indices of the subsequence J := {in : n ∈ N} and the subsequence
itself.
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3. The bundle method

DEFINITION 3.2.2. Let I be a subsequence of the sequence of indices produced by Algorithm 3.1
which fulfills xi ⇀ x̄ in X as I 3 i→ ∞ and that ( f̃ x

i )i∈I converges with f̄ := limI3i→∞ f̃ x
i < ∞.

Define the upper envelope function φ = φI : X → R by

φ(y) := sup{mỹ, f̃ ,v,g̃(y, x̄) : (ỹ, f̃,v, g̃) ∈Bu}.

LEMMA 3.2.3. Let φ = φI be the upper envelope function with corresponding subsequence I ac-
cording to Definition 3.2.2. If the set of used bundle information Bu is bounded (in X ×R×X ×Y ∗),
then the following holds:

1) φ(y)< ∞ for all y ∈ X.
2) φ(x̄) = f̄ .
3) The functions φ and φi are convex and Lipschitz continuous on X for all i ∈ N. There exists a

constant L≥ 0 such that for all i ∈ N it holds

|φi(y)−φi(z)| ≤ L‖ι(y− z)‖Y for all y,z ∈ X .

4) ∂φ(x̄)⊂ ι∗G(ι x̄).

Proof. 1) The definition of the downshifted tangent (3.1.9) yields for all (ỹ, f̃,v, g̃) ∈Bu and arbitrary
but fixed x̄,y ∈ X that

|mỹ, f̃ ,v,g̃(y, x̄)| ≤ | f̃|+‖g̃‖Y ∗‖ι(y− ỹ)‖Y + | f̃− f̄ |+‖g̃‖Y ∗‖ι(x̄− ỹ)‖Y + c‖ι(v− x̄)‖2
Y .

Since Bu is bounded, the set {mỹ, f̃ ,v,g̃(y, x̄) : (ỹ, f̃,v, g̃) ∈Bu} is bounded, too. This guarantees that
φ(y)< ∞ for all y ∈ X .

2) For i ∈I , denote by g̃x
i ∈ G(ιxi) the exactness subgradient at xi ∈S . Consider the scalars

m̄i := mxi, f̃ x
i ,xi,g̃x

i
(x̄, x̄) = f̃ x

i + 〈g̃x
i , ι(x̄− xi)〉Y ∗,Y − [ f̃ x

i + 〈g̃x
i , ι(x̄− xi)〉Y ∗,Y − f̄ ]+− c‖ι(xi− x̄)‖2

Y .

Since ι is compact and xi ⇀ x̄ as I 3 i→ ∞, the last term converges to zero as I 3 i→ ∞. Since
(xi, f̃ x

i ,xi, g̃x
i ) ∈Bu, the set {g̃x

i : i ∈ I } is bounded in Y ∗. This shows, together with ιxi → ι x̄ in Y ,
f̃ x
i → f̄ and the continuity of the function [·]+ that the right hand side converges to f̄ , i.e., m̄i→ f̄ as

I 3 i→∞. By Lemma 3.1.4, it holds f̄ ≥mỹ, f̃ ,v,g̃(x̄, x̄) for all (ỹ, f̃,v, g̃)∈Bu. Therefore we conclude

f̄ ≥ sup{mỹ, f̃ ,v,g̃(x̄, x̄) : (ỹ, f̃,v, g̃) ∈Bu}= φ(x̄)≥ lim
i→∞

m̄i = f̄ .

3) Since Bu is bounded, also the set of used subgradients, G̃ , is bounded which implies that the supre-
mum L := supg̃∈co(G̃ ) ‖g̃‖Y ∗ is finite. Fix i ∈ N and let m ∈Mi ⊂ co(Di) be an arbitrary cutting plane.
Then m : X → R has the form m(·) = 〈g, ι ·〉Y ∗,Y + b with g ∈ co(G̃ ) and b ∈ R. Because φ and φi

are pointwise suprema of convex and Lipschitz continuous functions on X with modulus ‖ι∗‖L(Y ∗,X∗)L,
they are convex and Lipschitz continuous (see, e.g., [19, Prop. 2.16.5 and Prop. 2.6.3]). Furthermore,
the function m̃ : Y → R defined by m(·) := 〈g, · 〉Y ∗,Y +b is Lipschitz continuous on Y with constant L.
Since m ∈Mi was arbitrary, this implies that φ̃i(·) := maxm∈Mi m̃(·) is Lipschitz on Y with constant L
and φi = φ̃i ◦ ι . Therefore, |φi(y)−φi(z)| ≤ L‖ι(y− z)‖Y for all y,z ∈ X .
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3. The bundle method

4) Fix a subgradient g∈ ∂φ(x̄)⊂X∗ and a direction w∈X . For n∈N, choose tn > 0 and (ỹn, f̃n,vn, g̃n)∈
Bu such that tn→ 0 and φ(x̄+ tnw) = mỹn, f̃n,vn,g̃n

(x̄+tnw, x̄)+αn with |αn| ≤ t2
n . We claim that ιvn→ ι x̄

in Y as n→ ∞. Lemma 3.1.4 gives

c‖ι(vn− x̄)‖2
Y ≤ f̄ −mỹn, f̃n,vn,g̃n

(x̄+ tnw, x̄)+ 〈g̃n, tnιw〉Y ∗,Y

which shows that

c‖ι(vn− x̄)‖2
Y ≤ φ(x̄)−φ(x̄+ tnw)+αn + tn‖g̃n‖Y ∗‖ιw‖Y .

By part 3), φ is continuous which implies φ(x̄+ tnw)→ φ(x̄) as n→∞. Since g̃n ∈ G̃ and G̃ is bounded
in Y ∗, the right hand side of the last inequality converges to zero as n→ ∞. This shows ιvn→ ι x̄ in Y
as n→ ∞. Further, for all n ∈ N, define the affine linear functions m̂n : R→ R by

m̂n(κ) := f̄ +κ〈g,w〉X∗,X −mỹn, f̃n,vn,g̃n
(x̄+κw, x̄).

We calculate the slope of m̂n. Lemma 3.1.4 yields mỹn, f̃n,vn,g̃n
(x̄, x̄)≤ f̄ or equivalently m̂n(0)≥ 0 for all

n ∈ N. Since φ is convex and g ∈ ∂φ(x̄) it holds

f̄ + 〈g,y− x̄〉X∗,X = φ(x̄)+ 〈g,y− x̄〉X∗,X ≤ φ(y) for all y ∈ X

which gives

m̂n(tn) = f̄ + tn〈g,w〉X∗,X −φ(x̄+ tnw)+αn ≤ αn for all n ∈ N.

This yields for the slope of m̂n

〈g− ι
∗g̃n,w〉X∗,X = m̂n

′(0) =
m̂n(tn)− m̂n(0)

tn
≤ αn

tn
≤ tn for all n ∈ N.

Since G̃ is bounded in Y ∗, there exists a subsequence (g̃n)i∈N (further denoted with the same indices)
and g̃ ∈ Y with g̃n ⇀ g̃ in Y ∗. This shows

〈g,w〉X∗,X ≤ lim
n→∞
〈ι∗g̃n,w〉X∗,X + tn = 〈ι∗g̃,w〉X∗,X .

Now we conclude the proof. By Assumption 3.1.1, the set G(ι x̄) is nonempty, convex, and weakly
sequentially compact in Y ∗. Consequently K := ι∗G(ι x̄) is a nonempty, convex, and closed subset of
X∗. Since g̃n ∈ G(ιvn), ιvn → ι x̄ in Y , g̃n ⇀ g̃ in Y ∗ and the multifunction G(·) has a weakly closed
graph, it holds that g̃ ∈ G(ι x̄). This shows ι∗g̃ ∈ K and

〈g,w〉X∗,X ≤ 〈ι∗g̃,w〉X∗,X ≤max{〈ĝ,w〉X∗,X : ĝ ∈ K} .

Since w ∈ X was arbitrary and K is nonempty, convex, and closed in X∗, this implies g ∈ K by the
Hahn-Banach theorem.

THEOREM 3.2.4. Let I ⊂ N be a subsequence of iterates such that xi ⇀ x̄ in X and ιyi → ι x̄ in Y
as I 3 i→ ∞, denote ei := ι∗(Qi + τiRY )ι(xi− yi) for i ∈I and let E ⊂ X∗ be the set of strong limit
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3. The bundle method

points of (ei)i∈I in X∗. If Bu is bounded, then E ⊂ ∂w′(x̄)+NF (x̄)+ ι∗G(ι x̄).

Proof. If E = /0, there is nothing to show. Otherwise, let ē∈ E be arbitrary and switch to a subsequence
(also denoted by I ) to get ei→ ē in X∗ as I 3 i→ ∞. Since the set of used bundle information Bu is
bounded, also the set of serious iterates S and the set of subgradient base points {v̂i : i ∈I } ⊂ X are
bounded. The Lipschitz continuity of the function f : X →R on the bounded set S implies that the set
of approximate function values, { f̃ x

i : xi ∈S } ⊂ f (S )+ B̄(0,∆), is bounded. Therefore, there exist
elements f̄ ∈ R and v̄ ∈ X and a further subsequence (again denoted by I ) such that f̃ x

i → f̄ , xi ⇀ x̄
in X , ιyi→ ι x̄ in Y , v̂i ⇀ v̄ in X and ei→ ē in X∗ as I 3 i→ ∞. Define the upper envelope function
φ = φI corresponding to I according to Definition 3.2.2. For all i ∈I , denote

Φi :=

{
φi +w on F

∞ else
and Φ :=

{
φ +w on F

∞ else
.

We divide the proof into three parts.

(i) limsupI3i→∞ Φi(y) ≤ Φ(y) for all y ∈ F . Fix y ∈ X . For all i ∈ I , denote by Mi the set of
cutting planes of the cutting plane model φi and by Di the set of downshifted tangents; cf. (3.1.10).
Furthermore, define Ei := {mỹ, f̃ ,v,g̃(·,xi) : (ỹ, f̃,v, g̃) ∈Bu}. We have Mi ⊂ co(Di) ⊂ co(Ei). For all
i ∈I , choose αi > 0 such that αi→ 0 as I 3 i→ ∞. Then there exist tuples (t̂i, f̂i, v̂i, ĝi) ∈Bu such
that

φi(y) = max
m∈Mi

mi(y)≤ sup
m∈co(Ei)

m(y) = sup
m∈Ei

m(y)≤ mt̂i, f̂i,v̂i,ĝi
(y,xi)+αi for all i ∈I .

Define m̂i := mt̂i, f̂i,v̂i,ĝi
for all i ∈I . By definition of the upper envelope function φ we get

φi(y)−φ(y)≤ m̂i(y,xi)+αi− m̂i(y, x̄). (3.2.1)

For all a,b ∈ R it holds: −[a]++[b]+ ≤ [b−a]+. Combining this with (3.1.9) shows

m̂i(y,xi)− m̂i(y, x̄)≤ [ f̃ x
i − f̄ + 〈ĝi, ι(x̄− xi)〉Y ∗,Y ]+− c‖ι(v̂i− xi)‖2

Y + c‖ι(v̂i− x̄)‖2
Y .

As f̃ x
i → f̄ , xi ⇀ x̄, Bu is bounded and [·]+ is continuous, the first term of the right hand side converges

to zero as I 3 i→ ∞. By construction, we have v̂i ⇀ v̄ in X , which yields

lim
I3i→∞

‖ι(v̂i− xi)‖2
Y = ‖ι(v̄− x̄)‖2

Y = lim
I3i→∞

‖ι(v̂i− x̄)‖2
Y .

Since αi→ 0 as I 3 i→ ∞, this shows that the right hand side of (3.2.1) converges to zero. Therefore
we obtain for all y ∈ X that limsupI3i→∞ φi(y) ≤ φ(y). For y ∈F , the value δF (y)+w(y) is finite.
This shows the desired result.

(ii) liminfI3i→∞ Φi(yi)≥Φ(x̄). Denote the exactness plane of iteration i by mx
i := mxi, f̃ x

i ,xi,g̃x
i
(·,xi) with

the exactness subgradient g̃x
i ∈ G(ιxi)⊂ G̃ . Since the set of used subgradients G̃ is bounded in Y ∗ and
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ι(xi− yi)→ 0 strongly in Y , the definition of the exactness plane mx
i gives

mx
i (yi) = f̃ x

i + 〈g̃x
i , ι(yi− xi)〉Y ∗,Y → f̄ as I 3 i→ ∞.

Denote by ĝ∗i ∈ Y ∗ the aggregate subgradient defined in (3.1.13) which fulfills ι∗ĝ∗i ∈ ∂φi(yi). In
virtue of (3.1.12) there holds ĝ∗i ∈ co(G̃ ). Thus we get 〈ĝ∗i , ι(xi− yi)〉Y ∗,Y → 0. Assumption 3.1.5, the
subgradient inequality for ι∗ĝ∗i ∈ ∂φi(yi) and φi(xi) = f̃ x

i , see Lemma 3.1.6, yield

mx
i (yi)≤ φi(yi)≤ φi(xi)−〈ĝ∗i , ι(xi− yi)〉Y ∗,Y → f̄ as I 3 i→ ∞.

Since both left and right hand side converge to f̄ , we deduce φi(yi)→ f̄ . Furthermore, since ι is
injective and ιyi→ ι x̄, Lemma 2.1.5 implies yi ⇀ x̄ as I 3 i→ ∞. The weak lower semicontinuity of
the function w in X and yi ⇀ x̄ in X imply that there holds liminfI3i→∞ w(yi) ≥ w(x̄). The constraint
set F is assumed to be closed and convex in X . This implies that F is weakly closed in X and x̄ ∈F .
As yi ∈F , it holds δF (yi) = δF (x̄) = 0 for all i ∈ I . The second part of Lemma 3.2.3 states that
f̄ = φ(x̄). Combining this, we obtain

liminf
I3i→∞

Φi(yi) = lim
I3i→∞

φi(yi)+ liminf
I3i→∞

w(yi)≥ f̄ +w(x̄)+δF (x̄) = Φ(x̄).

(iii) E ⊂ ∂w′(x̄)+ ι∗G(ι x̄)+NF (x̄). By construction, we have ei→ ē in X∗ as I 3 i→ ∞. Passing to
the limit superior I 3 i→ ∞ for the inequality (3.1.4) gives for all y ∈ X that

〈ē,y− x̄〉X∗,X = lim
I3i→∞

〈ei,y− yi〉X∗,X ≤ limsup
I3i→∞

Φi(y)− liminf
I3i→∞

Φi(yi)≤Φ(y)−Φ(x̄).

This shows that ē ∈ ∂Φ(x̄). Recall that w is defined on the open X-neighborhood FX of F . As
w is finite on FX , the interior of the effective domain of w is FX . By Lemma 3.2.3, int domφ =
X . Therefore domδF ∩ int domw ∩ int domφ = F 6= /0. Consequently the sum rule of the convex
subdifferential [12, Cor. 16.50] can be applied to Φ = φ +w+δF on FX and yields ∂Φ = ∂φ +w′+
NF . Lemma 3.2.3 gives

ē ∈ ∂Φ(x̄)⊂ w′(x̄)+NF (x̄)+ ι
∗G(ι x̄).

As ē ∈ E was arbitrary, we conclude E ⊂ ∂Φ(x̄)⊂ w′(x̄)+NF (x̄)+ ι∗G(ι x̄).

COROLLARY 3.2.5. Let I be a subsequence of iterates such that xi ⇀ x̄ in X and ιyi → ι x̄ in Y as
I 3 i→ ∞. If Bu is bounded, then x̄ is η-G-stationary with η = liminfi∈I ‖(Qi + τiRY )ι(xi− yi)‖Y ∗ .

Proof. We only consider the case where η < ∞ since otherwise there is nothing to show. Define
êi := (Qi + τiRY )ι(xi− yi) and switch to a subsequence such that ‖êi‖Y ∗ → η . Then the sequence
(êi)i∈N is bounded in Y ∗. By the Banach-Alaoglu theorem we can switch to a weakly convergent
subsequence (also denoted by (êi)i∈N) such that êi ⇀ ê with ‖ê‖Y ∗ ≤ η . Schauder’s Theorem (cf.,
e.g., [3, Thm. 12.6]) implies that the adjoint ι∗ ∈ L (Y ∗,X∗) of the compact operator ι is compact
which shows ι∗êi→ ι∗ê in X∗. Consequently, Theorem 3.2.4 can be applied which gives ι∗ê ∈ w′(x̄)+
NF (x̄)+ ι∗G(ι x̄). As ê ∈ B̄Y ∗(0,η), this shows that x̄ is η-G-stationary.

COROLLARY 3.2.6. Let I be a subsequence of iterates such that xi ⇀ x̄ in X and τi→ ∞. If Bu is
bounded, then x̄ is η-G-stationary with η = liminfi∈I ‖(Qi + τiRY )ι(xi− yi)‖Y ∗ .
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Proof. Lemma 3.1.15 implies that ι(yi− xi)→ 0 as I 3 i→ ∞. Therefore, Corollary 3.2.5 yields the
desired statement.

3.3. Proof of convergence of the algorithm

LEMMA 3.3.1. Suppose that from iteration i0 onward there are only model iterations. If Bu is bounded,
then ỹi→ xi0 in X and xi0 is G-stationary.

Proof. In the given situation, the serious iterate xi and the proximity parameter τi do not change any-
more, i.e., xi = xi0 and τi = τi0 for all i≥ i0. Denote x̄ := xi0 and Q̄ := Qi0 +τi0RY . We first prove yi→ x̄
in X . Recall from Section 3.1.6 that 〈Q̄ · , ·〉Y ∗,Y is a symmetric and positive definite bilinear form, which
implies that (Y,〈Q̄ · , ·〉Y ∗,Y ) is an inner product space. By the polarization identity

‖a−b‖2
Q̄ = ‖a‖2

Q̄ +‖b‖2
Q̄−2〈Q̄b,a〉Y ∗,Y for all a,b ∈ Y, (3.3.1)

setting a = ιyi+1− ιyi and b = ι x̄− ιyi we obtain the equation

‖ι(yi+1− x̄)‖2
Q̄ = ‖ι(yi+1− yi)‖2

Q̄ +‖ι(yi− x̄)‖2
Q̄−2〈ι∗Q̄ι(x̄− yi),yi+1− yi〉Y ∗,Y .

Denote by m∗i the aggregate cutting plane defined in (3.1.14) and set M∗i := m∗i +w+ δF . Equation
(3.1.15) implies for i≥ i0 that yi ∈F and

Ψi(yi) = φi(yi)+w(yi)+
1
2‖ι(yi− x̄)‖2

Q̄ = M∗i (yi)+
1
2‖ι(yi− x̄)‖2

Q̄.

By (3.1.3) it holds for all i≥ i0 that

ι
∗Q̄ι(x̄− yi) = g∗i +w′(yi)+n∗i ∈ ∂1m∗i (yi)+w′(yi)+NF (yi) = ∂M∗i (yi).

Since M∗i is µ-strongly convex on F , it follows that

M∗i (yi)+
µ

2 ‖yi+1− yi‖2
X ≤M∗i (yi+1)−〈ι∗Q̄ι(x̄− yi),yi+1− yi〉X∗,X .

By Assumption 3.1.5 we have M∗i (yi+1)≤Φi+1(yi+1). Combining all this yields

Ψi(yi)≤Ψi(yi)+
µ

2 ‖yi+1− yi‖2
X + 1

2‖ι(yi− yi+1)‖2
Q̄

= M∗i (yi)+
µ

2 ‖yi+1− yi‖2
X + 1

2‖ι(yi− yi+1)‖2
Q̄ + 1

2‖ι(yi− x̄)‖2
Q̄

≤M∗i (yi+1)+
1
2‖ι(yi+1− x̄)‖2

Q̄ ≤Ψi+1(yi+1)≤Ψi+1(x̄) = f̄ +w(x̄).

As the sequence (Ψi(yi))i∈N is monotonically increasing and bounded from above, it converges. The
last chain of estimates shows that

0≤ 1
2‖ι(yi+1− yi)‖2

Q̄ + µ

2 ‖yi+1− yi‖2
X ≤Ψi+1(yi+1)−Ψi(yi)→ 0 as i→ ∞,

implying that (‖ι(yi+1− yi)‖Q̄)i∈N and (‖yi+1− yi‖X)i∈N converge to zero. By Lemma 3.1.13, the
sequence (‖ι(yi− x̄)‖Q̄)i∈N is bounded. The Cauchy-Schwarz inequality on the inner product space
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(Y,〈Q̄ ·, ·〉Y ∗,Y ) yields∣∣∣‖ι(yi− x̄)‖2
Q̄−‖ι(yi+1− x̄)‖2

Q̄

∣∣∣= ∣∣〈Q̄ι(yi− yi+1), ι(yi + yi+1−2x̄)〉Y ∗,Y
∣∣

≤ ‖ι(yi− yi+1)‖Q̄
(
‖ι(yi− x̄)‖Q̄ +‖ι(yi+1− x̄)‖Q̄

)
→ 0.

Combining this with Φi(yi)=Ψi(yi)− 1
2‖ι(yi− x̄)‖2

Q̄, we obtain Φi+1(yi+1)−Φi(yi)→ 0. Lemma 3.1.13
states that the sequence minimizers of the bundle subproblem, (yi)i∈N, is bounded in X . Thus, by the
Lipschitz continuity of w on bounded sets,

|φi+1(yi+1)−φi(yi)| ≤ |Φi+1(yi+1)−Φi(yi)|+ |w(yi+1)−w(yi)| → 0.

By Lemma 3.2.3, there exists a constant L such that for all i ∈ N and for all x,y ∈ X the Lipschitz like
estimate |φi(x)− φi(y)| ≤ L‖ι(x− y)‖Y holds. From ‖ι(yi+1− yi)‖2

Y ≤ ξ−1‖ι(yi+1− yi)‖2
Q̄ → 0 (cf.

3.1.18a) and ‖ι(ỹi− yi)‖Y → 0 (cf. (3.1.8)) we infer

|Φi+1(ỹi)−Φi(ỹi)|= |φi+1(ỹi)−φi(ỹi)|
≤ |φi+1(ỹi)−φi+1(yi+1)|+ |φi+1(yi+1)−φi(yi)|+ |φi(yi)−φi(ỹi)|
≤ L‖ι(ỹi− yi+1)‖Y + |φi+1(yi+1)−φi(yi)|+L‖ι(yi− ỹi)‖Y → 0.

Next, we show that Φi(ỹi)→ J̄ := f̄ +w(x̄). Since there are only model iterations from iteration i0
onward, there holds γ̃ > ρ̃i for all i≥ i0. This gives

0 < 1− γ̃ < 1− ρ̃i = 1− J̄−Φi+1(ỹi)

J̄−Φi(ỹi)
=

Φi(ỹi)−Φi+1(ỹi)

J̄−Φi(ỹi)
.

Due to Φi(ỹi)−Φi+1(ỹi)→ 0 we find Φi(ỹi)→ J̄ as i→ ∞. As a next step we want to show that
Φi(yi)→ J̄. From ι(ỹi− yi)→ 0 we deduce

‖ι(yi− ỹi)‖2
Q̄ ≤ ‖Q̄‖L (Y,Y ∗)‖ι(yi− ỹi)‖2

Y → 0 as i→ ∞.

Using a = ι(yi− ỹi) and b = ι(x̄− ỹi) in the polarization identity (3.3.1) gives

‖ι(yi− x̄)‖2
Q̄−‖ι(ỹi− x̄)‖2

Q̄ = ‖ι(yi− ỹi)‖2
Q̄−2〈Q̄ι(x̄− ỹi), ι(yi− ỹi)〉Y ∗,Y → 0 as i→ ∞.

Thus, (3.1.7) and Φi(ỹi)→ J̄ as i→ ∞ imply

Φi(yi) = Ψi(yi)− 1
2‖ι(yi− x̄)‖2

Q̄−Ψi(ỹi)+Φi(ỹi)+
1
2‖ι(ỹi− x̄)‖2

Q̄→ J̄ as i→ ∞.

Now we complete the proof. Using (3.1.22) implies yi→ x̄ and ỹi→ x̄ in X by

0≤ µ

2 ‖yi− x̄‖2
X ≤ J̄−Φi(yi)→ 0 as i→ ∞. (3.3.2)

Consequently, as ei := ι∗Q̄ι(x̄− yi)→ 0 ∈ X∗ for i→ ∞, Theorem 3.2.4 yields the desired result 0 ∈
w′(x̄)+NF (x̄)+ ι∗G(ι x̄).

Recall that an iteration i ∈ N is called proximity iteration if ρi < γ and ρ̃i ≥ γ̃ , cf. Algorithm 3.1. To
proof convergence of the bundle method to η-G-stationary points, it is critical to consider the case

37



3. The bundle method

when there exists an infinite subsequence I of proximity iterations for which it holds that τi → ∞

and xi ⇀ x̄ as I 3 i→ ∞. In this case, Corollary 3.2.6 yields that x̄ is η-G-stationary with η =
liminfi ‖(Qi + τiRY )ι(xi − yi)‖Y ∗ . As this statement is valid for any sequence I which fulfills the
above properties and we are interested in the smallest possible stationarity radius η , we proceed as
follows. Denote êi := (Qi + τiRY )ι(xi− yi), let x̄ ∈ X be fixed and define the set

Ex̄ :=
{

ε̄ ∈ [0,∞] : there exists a subsequence of iterations I such that

ρi < γ, ρ̃i ≥ γ̃,τi→ ∞,xi ⇀ x̄,‖êi‖Y ∗ → ε̄ as I 3 i→ ∞
}
.

(3.3.3)

LEMMA 3.3.2. If Ex̄ 6= /0 and Bu is bounded, then x̄ is infEx̄-G-stationary.

Proof. Let (ηn)n∈N ⊂ Ex̄ be a sequence such that ηn → infEx̄. From Corollary 3.2.6, we infer that x̄
is ηn-G-stationary for all n ∈ N. Therefore there exist elements zn ∈ B̄Y ∗(0,ηn) with ι∗zn ∈ w′(x̄)+
NF (x̄)+ ι∗G(ι x̄). By the Banach-Alaoglu theorem we can switch to a weakly convergent subsequence
such that zn ⇀ z in Y ∗, where z ∈ Y ∗. As the norm ‖ · ‖Y ∗ is weakly lower semicontinuous, we get
‖z‖Y ∗ ≤ liminfn ‖zn‖Y ∗ = η . Since w′(x̄)+NF (x̄)+ ι∗G(ι x̄) is a closed set, also ι∗z∈w′(x̄)+NF (x̄)+
ι∗G(ι x̄), i.e., x̄ is η-G-stationary.

THEOREM 3.3.3 (Convergence of the bundle method). If the set Bu is bounded, then any weak limit
point x̄ of the sequence (xi)i∈N of serious iterates of Algorithm 3.1 is η-G-stationary, where η := infEx̄

if Ex̄ 6= /0 and η = 0 otherwise.

Proof. Since the set Bu is bounded, the Banach-Alaoglu theorem ensures the existence of a weak ac-
cumulation point of the sequence of serious iterates (xi)i∈N. Let x̄ be an arbitrary weak accumulation
point. If there are only subproblem iterations from iteration i0 onward, then Lemma 3.1.10 yields
that the serious iterate xi0 is G-stationary. Since xi = xi0 for all i ≥ i0, the claim follows as obviously
xi ⇀ x̄ = xi0 . Now assume that there exists a subsequence of iterations which are not subproblem
iterations. By renumbering, we can assume without loss of generality that every iteration is not a sub-
problem iteration. We divide the proof into two cases (1) and 2) ) and two subcases each ( 1a), 1b), 2a),
2b) ):

Case 1) First assume that from iteration i0 onward every iteration is not successful, i.e., ρi < γ for all
i≥ i0. Then xi = xi0 for all i≥ i0 and we set x̄ = xi0 . We again consider two cases:

Case 1a) We assume that from iteration î0 ≥ i0 onward, there are only model iterations, i.e., ρ̃i < γ̃ for
all i≥ î0. In this case, Ex̄ = /0, i.e., we have to prove that x̄ is G-stationary. This is exactly the statement
of Lemma 3.3.1.

Case 1b) Now assume that Case 1) holds true but Case 1a) does not hold. Then there exist infinitely
many proximity iterations. Denote by I ⊂ {î0, î0+1, . . .} a subsequence of proximity iterations. Since
every iteration from i0 onward is not successful, the proximity parameter τi is never decreased. In each
proximity iteration i ∈ I , the proximity parameter is doubled. Therefore, τi→ ∞ as I 3 i→ ∞ and
Ex̄ 6= /0. Thus, Corollary 3.2.6 implies that x̄ is η-G-stationary.

Case 2) We now assume that Case 1) does not hold, i.e., for every iteration i, there exists a successful
iteration j with j > i. Then there exists infinitely many successful iterations and we denote by in ∈ N
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the n-th successful iteration for n ∈ N. This means that ρin ≥ γ and that the trial iterate ỹin becomes the
new serious iterate xin+1. The serious iterates are changed only in successful iterations. Therefore, we
can choose a subsequence of successful iterations such that xin ⇀ x̄ as n→∞ (we keep the same index).
Since in is not a subproblem iteration (i.e., Ψin(ỹin)< Ψin(xin)), the definition of ρi and (3.1.18a) yield

J̃x
in− J̃in ≥ γ

(
Φin(xin)−Φin(ỹin)

)
≥ γ
(
Ψin(xin)−Ψin(ỹin)+‖ỹin− xin‖2

Qin+τin RY

)
> γξ

2 ‖ι(ỹin− xin)‖2
Y .

The Lipschitz continuity of the objective function J = f +w on the bounded set S implies that the set
{J̃x

i : xi ∈S } ⊂ J(S )+ B̄X(0,∆) is bounded. Since in is a successful iteration, it holds J̃x
in+1 = J̃in . As

in+1 ≥ in +1 for all n ∈ N, Lemma 3.1.8 yields that J̃x
i(n+1)
≤ J̃x

(in)+1 = J̃in . Consequently, for all N ∈ N,
we find

diam{J̃x
i : xi ∈S } ≥ J̃x

i0− J̃x
iN =

N−1

∑
n=0

J̃x
in− J̃x

i(n+1)
≥

N−1

∑
n=0

J̃x
in− J̃in >

γξ

2

N−1

∑
n=0
‖ι(ỹin− xin)‖2

Y ,

which shows that ‖ι(ỹin−xin)‖Y → 0 as n→∞. Since xi ⇀ x̄ in X as i→∞ and the operator ι ∈L (X ,Y )
is compact, we conclude xin ⇀ x̄, ιxin → ι x̄, ι ỹin → ι x̄ and (3.1.8) gives ιyin → ι x̄ in Y as n→ ∞. In the
following denote êin := (Qin + τinRY )ι(xin− yin) ∈ Y ∗ as usual.

Case 2a) In the case that liminfn ‖êin‖Y ∗ = 0, Corollary 3.2.5 yields that x̄ is 0-G-stationary. If Ex̄ 6= /0,
then η = infEx̄ ∈ [0,∞] and if Ex̄ = /0, then η = 0. Therefore, η ≥ 0. In particular, this shows that x̄ is
η-G-stationary.

Case 2b) We now assume that liminfn ‖êin‖Y ∗ > 0. We want to show that Ex̄ 6= /0. To do so, we
construct a subsequence of proximity iterates Jp such that x j ⇀ x̄ and τ j → ∞ as Jp 3 j→ ∞. As
liminfn ‖êin‖Y ∗ > 0, there exists a number ε > 0 and an index n0 ∈N such that ‖êin‖Y ∗ ≥ ε > 0 for every
n≥ n0. By (3.1.17) it holds for every n≥ n0 that

ε ≤ ‖êin‖Y ∗ ≤ ‖Qin + τinRY‖L (Y,Y ∗) ‖ι(yin− xin)‖Y ≤ (q̄+ τin)‖ι(yin− xin)‖Y .

As ι(yin− xin)→ 0 in Y , we find τin → ∞ as n→ ∞. Now we conclude the proof. Choose nT ∈ N such
that τin > T for all n ≥ nT . Denote by i∗n the last successful iteration before iteration in. Line 11 of
Algorithm 3.1 ensures that the first proximity parameter after a successful iteration is smaller or equal
to T , in particular τi∗n+1 ≤ T for all n ∈ N. During an unsuccessful iteration, the proximity parameter
is either doubled or remains the same. As τi∗n+1 ≤ T and τin > T , for all n ≥ nT , there exists an index
jn ∈ {i∗n+1, . . . , in} such that 2τ jn = τ jn+1 = τin . This implies ρ̃ jn ≥ γ̃ and ρ jn < γ for all n≥ nT , i.e., jn
is a proximity iteration. Furthermore we have τ jn =

1
2 τin → ∞ and x jn = xin ⇀ x̄ as n→ ∞. Therefore

Ex̄ 6= /0 and Corollary 3.2.6 implies that x̄ is η-G-stationary.

Remark 3.3.4. To obtain a meaningful stationarity statement from Theorem 3.3.3, we need to bound
the size of η = infEx̄. This issue is addressed in the next section.

Remark 3.3.5. In practice, it is difficult to select appropriate cutting planes for aggregation. In order to
fulfill Assumption 3.1.5, in particular the assumption φi+1≥m∗i for not successful iterations i, one needs
knowledge of the exact dual weights λm, m ∈Mi of the aggregate cutting plane m∗i . However, to obtain
these weights, the exact value of g∗i =−ι∗(Qi+τiRY )ι(xi−yi)−w′(yi)−n∗i has to be computed, which

39



3. The bundle method

basically requires to solve the bundle subproblem exactly. By checking the proof of Theorem 3.3.3,
we find that the assumption φi+1 ≥ m∗i is used only in Lemma 3.3.1. Careful inspection shows that this
condition can be weakened to φi+1(yi+1)≥ m∗i (yi+1). Note that the exact minimizer

yi+1 = argmin
y∈X

φi+1(y)+w(y)+δF (y)+ 1
2‖ι(y− xi)‖2

Qi+τiRY

depends on φi+1 which makes it difficult to select a model φi+1 that fulfills φi+1(yi+1) ≥ m∗i (yi+1). As
a heuristic, one still can compute an approximate aggregate cutting plane m̃∗i and exclude all cutting
planes m ∈Mi from the next model which fulfill m < m̃∗i . However, in this case one can not use the
convergence statement Theorem 3.3.3. To circumvent this difficulty, we always use the full model
which uses all computed bundle information by setting Mi = Di. Then Assumption 3.1.5 is always
true. In Chapter 4 we develop an algorithm which efficiently computes an approximation of the bundle
subproblem. This algorithm adaptively selects which cutting planes should be included into the model
and thus can be viewed as an automated aggregation strategy.

The case w≡ 0 and F bounded

If the function w is set to zero (w ≡ 0) and the feasible set F is bounded in X , similar convergence
statements hold true. In this case, we cannot use (3.1.5) anymore and we have to work with (3.1.4).
Therefore, Lemma 3.1.9 has to be changed to

LEMMA 3.3.6. For arbitrary z ∈ X, it holds 1
2‖ι(z− yi)‖2

Qi+τiRY
≤Ψi(z)−Ψi(yi).

Combining Lemma 3.3.6 with (3.1.18a) yields

ξ

2 ‖ι(z− yi)‖2
Y ≤ 1

2‖ι(z− yi)‖2
Qi+τiRY

≤Ψi(z)−Ψi(yi) for all z ∈ X . (3.3.4)

Lemma 3.1.10 still holds true, but we have to argue differently to show xi0 = yi0 . We deduce from
Ψi0(xi0) = Ψi0(yi0) and (3.3.4) that ιxi0 = ιyi0 and the injectivity of ι yields xi0 = yi0 . Since (3.1.5)
does not hold, (3.1.8) cannot be used to infer ỹi− xi → 0 strongly in X as i→ ∞. However, since
F is bounded in X , also the set of minimizers of the bundle subproblem T ⊂F and the set of trial
iterates {ỹi : i ∈ N} ⊂F are bounded which implies that both Lemmas 3.1.13 and 3.1.14 hold true.
The statement of Lemma 3.1.15 remains the same, but the proof has to be changed to

Proof. Since S is bounded, Assumption 3.1.1 implies that the sequence (‖g̃x
i ‖Y ∗)i∈J is bounded. For

all i ∈I sufficiently large such that τi > q̄, (3.1.18b), (3.1.22) and (3.1.21) yield

(τi− q̄)‖ι(yi− xi)‖2
Y ≤ ‖ι(yi− xi)‖2

Qi+τiRY
≤Φi(xi)−Φi(yi)≤ ‖g̃x

i ‖Y ∗‖ι(yi− xi)‖Y

Due to τi→ ∞, this shows that ι(yi− xi)→ 0 in Y as J 3 i→ ∞.

Furthermore, Lemma 3.3.1 has to be changed to

LEMMA 3.3.7. Suppose that from iteration i0 onward there are only model iterations. If Bu is bounded,
then ι ỹi→ ιxi0 in Y and xi0 is G-stationary.

The proof of Lemma 3.3.7 is the same as the proof of Lemma 3.3.1 except that we do not need to show
that w(yi+1)−w(yi)→ 0 and thus we do not need the µ-strong convexity of w to show ‖yi+1−yi‖X → 0
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as i→ ∞. Also (3.3.2) has to be changed to

0≤ ξ‖ι(yi− xi)‖2
Y ≤ ‖ι(yi− xi)‖2

Qi+τiRY
≤ J̄−Φi(yi)→ 0,

which follows from (3.1.22) and (3.1.18a). Combining (3.3.4) with (3.1.7) yields ι(ỹi−xi)→ 0 in Y as
i→ ∞. With these changes, the proof for Theorem 3.3.3 is still valid with w≡ 0 and F bounded in X .

3.4. Inexactness schemes

In this chapter, we turn on developing tangible estimates which imply η-G-stationarity of any weak
limit point of Algorithm 3.1. First we consider the situation of [50, Thm. 5.5]. There, the following
exactness conditions on the function value and the trial iterate are employed for all i ∈ N:

‖ι(ỹi− yi)‖Y ≤M‖ι(yi− xi)‖Y , M ≥ 0, (3.4.1)

θ(Φi(xi)−Φi(yi))≤Φi(xi)−Φi(ỹi), 0 < θ < 1, (3.4.2)

f̃i− f (ỹi)≤ f̃ x
i − f (xi)+ ε̊1,i‖ι(ỹi− xi)‖Y , ε̊1,i→ ε̊1, ε̊1 ≥ 0. (3.4.3)

In successful iterations the new set of cutting planes Mi+1 is chosen as the set containing only the exact-
ness plane, i.e., Mi+1 := {mxi+1, f̃ x

i+1,xi+1,g̃x
i+1
}. In unsuccessful iterations it is assumed that a subgradient

g̃i ∈ Y ∗ can be computed which fulfills

g̃i ∈ G(ι ỹi), G = ∂C p+ B̄Y ∗(0,∆2), ∆2 ≥ 0, (3.4.4)

dist(g̃i,∂C p(ι ỹi))≤ ε̊2,i, ε̊2,i→ ε̊2, ε̊2 ≥ 0, (3.4.5)

and the new set of cutting planes Mi+1 is chosen as Mi+1 := Mi∪{mỹi, f̃i,ỹi,g̃i
}, i.e., only the trial plane

is added to the set of cutting planes. The following lemma reproduces [50, Thm. 5.5] in a slightly more
general form.

LEMMA 3.4.1. Assume that the initial point x0 ∈F is such that the level set F0 := {x ∈F : J(x) ≤
J(x0)+ 2∆} is bounded in X. If p is approximately convex on ιF , ỹi fulfills (3.4.1) and (3.4.2), f̃i

fulfills (3.4.3), g̃i fulfills (3.4.4) and (3.4.5) and vi = ỹi for all i ∈ N, then every weak limit point of the
sequence of serious iterates is ( M+1

θ(γ̃−γ)(ε̊1 + ε̊2)+∆2)-∂C p-stationary.

Proof. First we show that the set of used bundle information, Bu, is bounded. Since the level set F0
is bounded in X , Lemma 3.1.12 implies that the set of serious iterates S is bounded in X . Since all
subgradient base points are trial iterates, Lemma 3.1.14 shows that the set of bundle information Bu

is bounded in X ×R×X ×Y ∗. Let x̄ be a weak limit point of the sequence of serious iterates. By
Theorem 3.3.3, x̄ is η-G-stationary, where η = infEx̄ if Ex̄ 6= /0 and η = 0 otherwise. By the definition
of η-G-stationarity, Definition 3.1.2, x̄ is η-G-stationary with G = ∂C p+ B̄Y ∗(0,∆2) if and only if x̄
is (η +∆2)-∂C p-stationary. So, if Ex̄ = /0, then η = 0 and we are done. Thus assume that Ex̄ 6= /0,
i.e., that there exists ε̄ ∈ Ex̄ and a subsequence of proximity iterates I ⊂ N such that τi→ ∞, xi→ x̄
and ‖êi‖Y ∗ → ε̄ as I 3 i→ ∞. We aim at bounding ε̄ . By definition of Qi, cf. (3.1.17), it holds
‖Qi‖L (Y,Y ∗) ≤ q̄ and thus ‖Qi + τiRY‖L (Y,Y ∗) ≤ τi + q̄. Combining this with (3.1.18b) yields

‖êi‖Y ∗ = ‖(Qi + τiRY )ι(xi− yi)‖Y ∗ ≤ (τi + q̄)‖ι(yi− xi)‖Y ≤
τi + q̄
τi− q̄

‖ι(yi− xi)‖2
Qi+τiRY

‖ι(yi− xi)‖Y
. (3.4.6)
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Furthermore, (3.1.4) and (3.4.2) give

‖ι(yi− xi)‖2
Qi+τiRY

≤Φi(xi)−Φi(yi)≤ θ
−1(Φi(xi)−Φi(ỹi)). (3.4.7)

For every proximity iteration i ∈I , lines 9 and 16 of Algorithm 3.1 yield

J̃i−Φi+1(ỹi)

Φi(xi)−Φi(ỹi)
= ρ̃i−ρi ≥ γ̃− γ,

i.e.,

Φi(xi)−Φi(ỹi)≤ 1
γ̃−γ

(
J̃i−Φi+1(ỹi)

)
= 1

γ̃−γ

(
f̃i−φi+1(ỹi)

)
. (3.4.8)

Since the trial plane

mi(·,xi) = f̃i + 〈g̃i, ι(·− ỹi)〉Y ∗,Y − [ f̃i + 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+− c‖ι(ỹi− xi)‖2

Y

is included into the model, i.e., φi+1 ≥ mi( · ,xi), we find

f̃i−φi+1(ỹi)≤ f̃i−mi(ỹi,xi) = [ f̃i + 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]++ c‖ι(ỹi− xi)‖2

Y . (3.4.9)

Next we estimate the linearization error elin := f̃i + 〈g̃i, ι(xi − ỹi)〉Y ∗,Y − f̃ x
i . Since Bu is bounded,

Lemma 3.1.15, ιxi→ ι x̄ and (3.4.1) imply ιyi→ ι x̄ and ι ỹi→ ι x̄ as I 3 i→∞. Let ε ′ > 0 be arbitrary.
Since p is approximately convex at ι x̄ ∈ ιF , [24, Thm. 2] implies that there exists a δ ′ > 0 such that
for all ẙ ∈ B̄Y (ι x̄,δ ′) and g̊ ∈ ∂C p(ẙ) it holds that

p(ẙ)+ 〈g̊, x̊− ẙ〉Y ∗,Y − p(x̊)≤ ε
′‖ẙ− x̊‖Y for all x̊ ∈ B̄Y (ẙ,δ ′)∩ B̄Y (ι x̄,δ ′).

Now choose iε ′ ∈N sufficiently large to ensure ιxi ∈ B̄Y (ι x̄, δ ′

2 ) and ι ỹi ∈ B̄Y (ι x̄, δ ′

2 ) for all i≥ iε ′ . This
is possible since both sequences (ιxi)i∈N and (ι ỹi)i∈N converge to ι x̄ in Y . Denote by gi ∈ ∂C p(ι ỹi) an
exact subgradient such that ‖g̃i− gi‖Y ∗ ≤ ε̊2,i. Setting x̊ = ιxi, ẙ = ι ỹi and g̊ = g̃i and using f = p ◦ ι ,
we find for arbitrary i ∈I that

f (ỹi)+ 〈gi, ι(xi− ỹi)〉Y ∗,Y − f (xi) = p(ι ỹi)+ 〈gi, ιxi− ι ỹi〉Y ∗,Y − p(ιxi)≤ ε
′‖ι(ỹi− xi)‖Y .

Therefore, the linearization error elin can be bounded by

elin = f̃i + 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i

≤ f (ỹi)+ 〈gi, ι(xi− ỹi)〉Y ∗,Y − f (xi)+‖g̃i−gi‖Y ∗‖ι(ỹi− xi)‖Y + f̃i− f (ỹi)− f̃ x
i + f (xi)

≤ (ε ′+ ε̊1,i + ε̊2,i)‖ι(ỹi− xi)‖Y .

Because [·]+ is monotone, combining (3.4.1) and (3.4.9) with the last inequality gives

f̃i−φi+1(ỹi)≤ [elin]++ c‖ι(ỹi− xi)‖2
Y ≤ (ε ′+ ε̊1,i + ε̊2,i + c‖ι(ỹi− xi)‖Y )(M+1)‖ι(yi− xi)‖Y .
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Consequently, (3.4.6)–(3.4.8) give for all i ∈I

‖êi‖Y ∗ ≤
τi + q̄
τi− q̄

‖ι(yi− xi)‖2
Qi+τiRY

‖ι(yi− xi)‖Y

≤ τi + q̄
τi− q̄

1
θ(γ̃− γ)

f̃i−φi+1(ỹi)

‖ι(yi− xi)‖Y

≤ τi + q̄
τi− q̄

M+1
θ(γ̃− γ)

(ε ′+ ε̊1,i + ε̊2,i + c‖ι(ỹi− xi)‖Y ).

Therefore,

ε̄ = lim
i→∞
‖êi‖Y ∗ ≤ lim

i→∞

τi + q̄
τi− q̄

M+1
θ(γ̃− γ)

(ε ′+ ε̊1,i + ε̊2,i + c‖ι(ỹi− xi)‖Y ) =
M+1

θ(γ̃− γ)
(ε ′+ ε̊1 + ε̊2).

As ε ′ > 0 was arbitrary, we further deduce η = infEx̄ ≤ M+1
θ(γ̃−γ)(ε̊1 + ε̊2).

Remark 3.4.2. The approximate convexity of p is really only needed at the weak limit point x̄. But since
x̄ is obviously not known before running the algorithm, we assume that p is approximately convex on
the whole of ιF .

While the conditions (3.4.1)–(3.4.5) certainly lead to an implementable algorithm which guarantees
convergence to η-∂C p-stationary points, conditions (3.4.1) and (3.4.2) might be difficult to fulfill. In
both conditions the exact minimizer yi of the bundle subproblem appears. Since yi is not known exactly,
one needs to use the property that yi minimizes Ψi and use error estimates for this optimization problem
to guarantee that (3.4.1) and (3.4.2) are fulfilled. This was carried out in [50, Chap. 6]. However, in
our numerical experiments, this approach leads to premature refinement in order to fulfill (3.4.1) and
(3.4.2). To avoid this difficulty, we propose new inexactness schemes (Theorems 3.4.9 and 3.4.11)
which control the error Ψi(ỹi)−Ψi(yi) directly. First we need some additional lemmas.

LEMMA 3.4.3. For all i ∈ N it holds that ‖yi− xi‖Y ≤ ‖êi‖Y∗
τi−q̄ .

Proof. By (3.1.17) and (3.1.18b), the bilinear form 〈(Qi + τiRY ) · , · 〉Y ∗,Y is bounded and coercive with
parameter τi − q̄, since it fulfills 〈(Qi + τiRY )v,v〉Y ∗,Y = ‖v‖2

Qi+τiRY
≥ (τi − q̄)‖v‖2

Y . Consequently,
the Lax-Milgram theorem implies that the operator Qi + τiRY ∈ L (Y,Y ∗) is invertible and ‖(Qi +
τiRY )

−1‖L (Y ∗,Y ) ≤ 1/(τi− q̄). Therefore, we conclude

‖ι(ỹi− xi)‖Y = ‖(Qi + τiRY )
−1(Qi + τiRY )ι(ỹi− xi)‖Y

≤ ‖(Qi + τiRY )
−1‖L (Y ∗,Y )‖(Qi + τiRY )ι(yi− xi)‖Y ∗

≤ ‖êi‖Y ∗
τi− q̄

.

Assumption 3.4.4. For any subsequence of proximity iterations I ⊂N with τi→∞ as I 3 i→∞ there
exists a further subsequence I ′ ⊂ I and numbers a,b ≥ 0 and ai,bi,ci,di ∈ R, i ∈ I ′, with ai→ a,
bi→ b, ci→ 0 and di→ 0 as I ′ 3 i→ ∞ such that

Ψi(xi)−Ψi(yi)≤max
{

aiτi
−1, bi‖yi− xi‖Y

}
+ ciτi

−1 +di‖yi− xi‖Y for all i ∈I ′.
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LEMMA 3.4.5. If the set Bu is bounded and Assumption 3.4.4 holds true, then every weak limit point
of the sequence of serious iterates is max{

√
2a,2b}-G-stationary in the sense of Definition 3.1.2.

Proof. Let x̄ ∈ X be an arbitrary weak limit point of the sequence of serious iterates. As the set of
serious iterates is bounded, such a weak limit point exists. First consider the case that Ex̄ = /0, where Ex̄

is defined in (3.3.3), i.e.,

Ex̄ =
{

ε̄ ∈ [0,∞] : there exists a subsequence of iterations I such that

ρi < γ, ρ̃i ≥ γ̃,τi→ ∞,xi ⇀ x̄,‖êi‖Y ∗ → ε̄ as I 3 i→ ∞
}
.

Then Theorem 3.3.3 implies that x̄ is 0-G-stationarity which yields max{
√

2a,2b}-G-stationarity. Now
consider the case that Ex̄ 6= /0. Then Theorem 3.3.3 yields infEx̄-G-stationarity of x̄. In the rest of the
proof we show that infEx̄ ≤ max{

√
2a,2b}. To do so, let ε̄ ∈ Ex̄ be arbitrary and let I ⊂ N be a

subsequence of proximity iterates such that τi → ∞ and ‖ei‖Y ∗ → ε̄ as I 3 i→ ∞. By definition of
Qi, cf. (3.1.17), it holds ‖Qi‖L (Y,Y ∗) ≤ q̄ and thus ‖Qi + τiRY‖L (Y,Y ∗) ≤ τi + q̄. Combining this with
(3.1.18b) and Lemma 3.1.9 results in

‖êi‖2
Y ∗ ≤ (τi + q̄)2‖ι(yi− xi)‖2

Y ≤
(τi + q̄)2

τi− q̄
‖ι(yi− xi)‖2

Qi+τiRY
≤ 2

(τi + q̄)2

τi− q̄

(
Ψi(xi)−Ψi(yi)

)
.

Switching to a further subsequence I ′ for which Assumption 3.4.4 holds, yields

‖êi‖2
Y ∗ ≤ 2max

{
(τi + q̄)2

τi(τi− q̄)
ai,

(τi + q̄)2

τi− q̄
‖yi− xi‖Y bi

}
+2

(τi + q̄)2

τi(τi− q̄)
ci +2

(τi + q̄)2

τi− q̄
‖yi− xi‖Y di,

and Lemma 3.4.3 gives

‖êi‖2
Y ∗ ≤ 2max

{
(τi + q̄)2

τi(τi− q̄)
ai,

(τi + q̄)2

(τi− q̄)2 ‖êi‖Y ∗bi

}
+2

(τi + q̄)2

τi(τi− q̄)
ci +2

(τi + q̄)2

(τi− q̄)2 ‖êi‖Y ∗di.

Since τi→ ∞ as I ′ 3 i→ ∞, taking the limit to infinity leads to

ε̄
2 = lim

i→∞
i∈I ′
‖êi‖2

Y ∗ ≤ 2max

 lim
i→∞
i∈I ′

ai, lim
i→∞
i∈I ′
‖êi‖Y ∗ lim

i→∞,
i∈I ′

bi

+2 lim
i→∞,
i∈I ′

ci +2ε̄ lim
i→∞,
i∈I ′

di = 2max{a, ε̄b} .

In the case that a≥ ε̄b, we get ε̄2 ≤ 2max{a, ε̄b}= 2a, i.e., ε̄ ≤
√

2a. In the case that a < ε̄b, we get
ε̄2 ≤ 2max

{
a2, ε̄a

}
= 2ε̄b, i.e., ε̄ ≤ 2b. Therefore, infEx̄ ≤ ε̄ ≤max{

√
2a,2b}.

The last lemma shows that, if we can bound the quantity Ψi(xi)−Ψi(yi) according to Assumption 3.4.4,
then we immediately get a corresponding stationarity statement. If in each proximity iteration i∈N the
cutting plane mỹi, f̃i,v,g̃( · ,xi) with subgradient base point v ∈ X and subgradient g̃ ∈ Y ∗ is included into
the next model φi+1, then Ψi(xi)−Ψi(yi) can be bounded by the subproblem error Ψi(ỹi)−Ψi(yi), the
linearization error [ f̃i + 〈g̃, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]+ and the downshift error c‖ι(v− xi)‖2
Y .

LEMMA 3.4.6. Let v ∈ X and g̃ ∈ Y ∗ be arbitrary. For every proximity iteration with index i ∈ N with

44



3. The bundle method

φi+1(·)≥ mỹi, f̃i,v,g̃( · ,xi), it holds

Ψi(xi)−Ψi(yi)≤Ψi(ỹi)−Ψi(yi)+
1

γ̃−γ
[ f̃i + 〈g̃, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++ c
γ̃−γ
‖ι(v− xi)‖2

Y .

Proof. Let v ∈ X and g̃ ∈ Y ∗ be arbitrary and let i ∈ N be the index of a proximity iteration with
φi+1(·) ≥ mỹi, f̃i,v,g̃( · ,xi). Then it holds that ρi < γ and ρ̃i ≥ γ̃ , which gives γ̃ − γ < ρ̃i−ρi. Using the
definitions of ρi and ρ̃i in Algorithm 3.1 we obtain

J̃x
i −Φi(ỹi)<

1
γ̃−γ

(
J̃i−Φi+1(ỹi)

)
.

Together with Ψi(xi) = J̃x
i and Ψi(ỹi)≥Φi(ỹi), we get

Ψi(xi)−Ψi(yi)≤ J̃x
i −Φi(ỹi)+Ψi(ỹi)−Ψi(yi)≤ 1

γ̃−γ

(
J̃i−Φi+1(ỹi)

)
+Ψi(ỹi)−Ψi(yi).

By definition, the cutting plane m̂i := mỹi, f̃i,v,g̃( · ,xi) is given by

m̂i(·) = f̃i + 〈ĝi, ι(·− ỹi)〉Y ∗,Y − [ f̃i + 〈g̃, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+− c‖ι(v− xi)‖2

Y .

From Φi+1(ỹi) = φi+1(ỹi)+w(ỹi)≥ m̂i(ỹi)+w(ỹi), we deduce

J̃i−Φi+1(ỹi)≤ f̃i− m̂i(ỹi) = [ f̃i + 〈g̃, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]++ c‖ι(v− xi)‖2

Y .

Combining all this yields

Ψi(xi)−Ψi(yi)≤Ψi(ỹi)−Ψi(yi)+
1

γ̃−γ
[ f̃i + 〈g̃, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++ c
γ̃−γ
‖ι(v− xi)‖2

Y .

In order to estimate the downshift error c‖ι(v− xi)‖2
Y , we employ the following results.

LEMMA 3.4.7. Assume that there exists a subsequence of iterates J ⊂ N such that ι(yi− xi)→ 0 in
Y as J 3 i→ ∞. If S is bounded in X, then ‖ι(yi− xi)‖Qi+τiRY → 0 and ‖ι(ỹi− xi)‖Qi+τiRY → 0 as
I 3 i→ ∞.

Proof. Recall that the exactness plane mx
i is defined via

mx
i (·) := mxi, f̃ x

i ,xi,g̃x
i
(·,xi) = f̃ x

i + 〈g̃x
i , ι(·− xi)〉Y ∗,Y .

By Assumption 3.1.5, in any iteration i, the exactness plane is included into the model, i.e., mx
i ≤ φi.

Therefore,

J̃x
i −Φi(yi) = f̃ x

i −φi(yi)≤ f̃ x
i −mx

i (yi) = 〈g̃x
i , ι(xi− yi)〉Y ∗,Y .

As ι(yi− xi)→ 0 in Y and (g̃x
i )i∈N ⊂ G(ιS ) is bounded in Y ∗, we find 〈g̃x

i , ι(xi− yi)〉Y ∗,Y → 0. From
Φi(yi)+

1
2‖ι(yi− xi)‖2

Qi+τiRY
= Ψi(yi)≤Ψi(xi) = J̃x

i we get

1
2‖ι(yi− xi)‖2

Qi+τiRY
≤ J̃x

i −Φi(yi)≤ 〈g̃x
i , ι(xi− yi)〉Y ∗,Y → 0,
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3. The bundle method

i.e., ‖ι(yi− xi)‖Qi+τiRY → 0. From Lemma 3.1.9 and (3.1.7) we infer

1
2‖ι(ỹi− yi)‖2

Qi+τiRY
≤Ψi(ỹi)−Ψi(yi)→ 0,

which yields ‖ι(ỹi− xi)‖Qi+τiRY ≤ ‖ι(ỹi− yi)‖Qi+τiRY +‖ι(yi− xi)‖Qi+τiRY → 0.

COROLLARY 3.4.8. Assume that there exists a subsequence of iterates J ⊂ N such that τi → ∞ as
J 3 i→ ∞. If S is bounded in X, then τi‖ι(yi− xi)‖2

Y → 0 and τi‖ι(ỹi− xi)‖2
Y → 0 as I 3 i→ ∞.

Proof. By Lemma 3.1.15 it holds ι(yi− xi)→ 0 in Y as J 3 i→ ∞. Thus, Lemma 3.4.7 yields that
‖ι(yi− xi)‖Qi+τiRY → 0 and ‖ι(ỹi− xi)‖Qi+τiRY → 0 as I 3 i→ ∞. For all i ∈I sufficiently large, it
holds τi ≥ 2q̄. Consequently, (3.1.18b) gives

1
2 τi‖ι(yi− xi)‖2

Y ≤ (τi− q̄)‖ι(yi− xi)‖2
Y ≤ ‖ι(yi− xi)‖2

Qi+τiRY
→ 0 as I 3 i→ ∞,

1
2 τi‖ι(ỹi− xi)‖2

Y ≤ (τi− q̄)‖ι(ỹi− xi)‖2
Y ≤ ‖ι(ỹi− xi)‖2

Qi+τiRY
→ 0 as I 3 i→ ∞.

Now we are able to prove the convergence statement for general Lipschitz continuous functions.

THEOREM 3.4.9. Assume that the initial point x0 ∈F is such that the level set F0 := {x∈F : J(x)≤
J(x0)+2∆} is bounded in X. Let Mv ≥ 0, α ≥ 0 and β ≥ 0 be constants and let (αi)i∈N ⊂ [0,∞) and
(βi)i∈N ⊂ [0,∞) be forcing sequences with αi→ α and βi→ β as i→∞. Assume that in every iteration
of the bundle method a trial iterate can be computed which fulfills

Ψi(ỹi)−Ψi(yi)≤ αiτi
−1, (3.4.10)

and that in every unsuccessful iteration a tuple (ỹi, f̃i,vi, ĝi) ∈Ba of bundle information can be com-
puted which fulfills the conditions

‖ι(vi− ỹi)‖Y ≤Mv‖ι(ỹi− xi)‖Y , (3.4.11)

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ βiτi

−1. (3.4.12)

Assume that the cutting plane mỹi, f̃i,vi,ĝi
( · ,xi) is included into the new model φi+1 whenever iteration i

was not successful and assume that the set of subgradient base points V is bounded. Then every weak
limit point of the sequence of serious iterates is η-G-stationary in the sense of Definition 3.1.2 with
η :=

√
2
√

α +β/(γ̃− γ).

Proof. First we show that the set of used bundle information, Bu, is bounded. Since the level set
F0 is bounded in X , Lemma 3.1.12 implies that the set of serious iterates S is bounded in X . Thus,
Lemma 3.1.14 shows that the set of bundle information Bu is bounded in X ×R×X ×Y ∗. In order
to apply Lemma 3.4.5, we need to check if Assumption 3.4.4 is fulfilled. To do so, let I ⊂ N be
an arbitrary subsequence of proximity iterations with τi → ∞ as I 3 i→ ∞. Since the cutting plane
mỹi, f̃i,v̂i,ĝi

( · ,xi) is included into the new model φi+1, Lemma 3.4.6 implies that

Ψi(xi)−Ψi(yi)≤Ψi(ỹi)−Ψi(yi)+
1

γ̃−γ
[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++ c
γ̃−γ
‖ι(v̂i− xi)‖2

Y .

Using (3.4.11), we estimate

‖ι(v̂i− xi)‖Y ≤ ‖ι(v̂i− ỹi)‖Y +‖ι(ỹi− xi)‖Y ≤ (Mv +1)‖ι(ỹi− xi)‖Y .
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Combining this with (3.4.10) and (3.4.12) yields

Ψi(xi)−Ψi(yi)≤Ψi(ỹi)−Ψi(yi)+
1

γ̃− γ
[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++
c(Mv +1)2

γ̃− γ
‖ι(ỹi− xi)‖2

Y

≤
(

αi +
βi

γ̃− γ
+

c(Mv +1)2

γ̃− γ
τi‖ι(ỹi− xi)‖2

Y

)
τ
−1
i .

Consequently, Assumption 3.4.4 is fulfilled with

ai := αi +
βi

γ̃− γ
+

c(Mv +1)2

γ̃− γ
τi‖ι(ỹi− xi)‖2

Y , bi := 0, ci := 0 and di := 0.

Corollary 3.4.8 implies that τi‖ι(ỹi− xi)‖2
Y → 0 as I 3 i→ ∞. Therefore, the sequence (ai)i∈I con-

verges to a := α +β/(γ̃ − γ) as I 3 i→ ∞ and Lemma 3.4.5 implies that every weak limit point of
the sequence of serious iterates is

√
2a-G-stationary in the sense of Definition 3.1.2.

In the previous theorem it is assumed that in every unsuccessful iteration a tuple (ỹi, f̃i,vi, ĝi) ∈ Ba

of bundle information can be computed which fulfills (3.4.11) and (3.4.12). While it is easy to check
if each condition is satisfied, in general it is not clear how to find a subgradient ĝi which fulfills the
linearization condition (3.4.12). If the objective function p has additional regularity properties, we can
guarantee that any choice of ĝi ∈ G(ι ỹi) leads to convergence of the bundle method. We generalize the
concept of ε-convexity, cf. Section 2.2.3.

DEFINITION 3.4.10. A function p : Y → R∪∞ is called ε-G-convex at v̄ ∈ Y if there exists a δ > 0
such that for all v ∈ B̄Y (v̄,δ ) and s ∈ B̄Y (0,δ ) which fulfill v+ s ∈ B̄Y (v̄,δ ) it holds

p(v)+ 〈g,s〉Y ∗,Y − p(v+ s)≤ ε‖s‖Y ∀g ∈ G(v).

Note that every ε-convex function in the sense of Definition 2.2.9 is ε-∂C-convex (cf. Lemma 2.2.10).
Furthermore, by Theorem 2.2.12, a locally Lipschitz function f : Y → R∪∞ is approximately convex
at v̄ ∈ Y (cf. Definition 2.2.11) if and only if f is ε-∂C-convex at v̄ for all ε > 0.

THEOREM 3.4.11. Assume that the initial point x0 ∈F is such that the level set F0 := {x∈F : J(x)≤
J(x0)+ 2∆} is bounded in X. Let ε̊1 ≥ 0 be a constant and let (αi)i∈N ⊂ [0,∞) and (ε̊1,i)i∈N ⊂ [0,∞)
be forcing sequences with αi→ 0 and ε̊1,i→ ε̊1 as i→ ∞. Assume that in every iteration of the bundle
method a trial iterate can be computed which fulfills

Ψi(ỹi)−Ψi(yi)≤ αiτi
−1, (3.4.13)

and that in every unsuccessful iteration a tuple (ỹi, f̃i,vi, ĝi) ∈Ba of bundle information can be com-
puted which fulfills the condition

[ f̃i− f (ỹi)+ f (xi)− f̃ x
i ]+ ≤ ε̊1,i‖ι(ỹi− xi)‖Y . (3.4.14)

Assume that the cutting plane mỹi, f̃i,ỹi,ĝi
( · ,xi) with ĝi ∈ G(ι ỹi) is included into the new model φi+1

whenever iteration i is not successful and assume the set of all subgradient base points V is bounded.
If p is ε̊2-G-convex on ιF , ε̊2 ≥ 0, then every weak limit point of the sequence of serious iterates is
η-G-stationary in the sense of Definition 3.1.2 with η := 2

γ̃−γ
(ε̊1 + ε̊2).
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Proof. First we show that the set of used bundle information, Bu, is bounded. Since the level set F0
is bounded in X , Lemma 3.1.12 implies that the set of serious iterates S is bounded in X . Therefore,
Lemma 3.1.14 shows that the set of bundle information Bu is bounded in X×R×X×Y ∗.
In order to apply Lemma 3.4.5, we need to check if Assumption 3.4.4 is fulfilled. To do so, let I ⊂ N
be an arbitrary subsequence of proximity iterations with τi→ ∞ as I 3 i→ ∞. Let x̄ ∈ X be a weak
accumulation point of the bounded sequence (xi)i∈I and choose a subsequence I ′ ⊂ I such that
xi ⇀ x̄ as I ′ 3 i→ ∞. Since p is ε̊2-G-convex at ι x̄ ∈ ιF , there exists a δ > 0 such that for all
x, ỹ ∈ B̄Y (ι x̄,δ ) and all g ∈ G(ι ỹ) it holds

f (ỹ)+ 〈g, ι(x− ỹ)〉Y ∗,Y − f (x) = p(ι ỹ)+ 〈g, ιx− ι ỹ〉Y ∗,Y − p(ιx)≤ ε̊2‖ι(ỹ− x)‖Y .

By xi ⇀ x̄ as I ′ 3 i→ ∞ and since ι ∈ L (X ,Y ) is a compact operator, Lemma 3.1.15 implies that
ιxi→ ι x̄ and ι ỹi→ ι x̄ in Y as I ′ 3 i→∞. Choose a subsequence I ′′⊂I ′ such that ιxi, ι ỹi ∈ B̄Y (ι x̄,δ )
for all i ∈I ′′. From ĝi ∈ G(ι ỹi) and the ε̊2-G-convexity of p at ι x̄ ∈ ιF , we obtain

f (ỹi)+ 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f (xi)≤ ε̊2‖ι(ỹi− xi)‖Y for all i ∈I ′′.

Because [·]+ is monotone and [a+b]+ ≤ [a]++[b]+ for all a,b ∈ R, we infer using (3.4.14) that

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ [ f (ỹi)+ 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f (xi)]++[ f̃i− f (ỹi)+ f (xi)− f̃ x

i ]+

≤ (ε̊1,i + ε̊2)‖ι(ỹi− xi)‖Y .

By (3.1.18b) and Lemma 3.1.9 we get

1
2(τi− q̄)‖ỹi− yi‖2

Y ≤ 1
2‖ỹi− yi‖2

Qi+τiRY
≤Ψi(ỹi)−Ψi(yi)≤ αiτ

−1
i ,

and abbreviating c′i := (ε̊1,i + ε̊2)(2αiτi)
1/2(τi− q̄)−1/2 yields

(ε̊1,i + ε̊2)‖ι(ỹi− yi)‖Y ≤ (ε̊1,i + ε̊2)

√
2αi

τi(τi− q̄)
= (ε̊1,i + ε̊2)

√
2αiτi

τi− q̄
τ
−1
i = c′iτ

−1
i .

We note that c′i→ 0 as I ′′ 3 i→ ∞. Combing the above results gives

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ (ε̊1,i + ε̊2)(‖ι(yi− xi)‖Y +‖ι(ỹi− yi)‖Y )
≤ (ε̊1,i + ε̊2)‖ι(yi− xi)‖Y + c′iτ

−1
i .

Since the cutting plane mỹi, f̃i,ỹi,ĝi
( · ,xi) is included into the new model φi+1, Lemma 3.4.6 implies

Ψi(xi)−Ψi(yi)≤Ψi(ỹi)−Ψi(yi)+
1

γ̃−γ
[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++ c
γ̃−γ
‖ι(ỹi− xi)‖2

Y

for all i ∈I ′′. Combining this with (3.4.13) yields

Ψi(xi)−Ψi(yi)≤
ε̊1,i + ε̊2

γ̃− γ
‖ι(yi− xi)‖Y +

(
αi +

c′i
γ̃− γ

+
c

γ̃− γ
τi‖ι(ỹi− xi)‖2

Y

)
τ
−1
i .

Corollary 3.4.8 implies that τi‖ι(ỹi− xi)‖2
Y → 0 as I ′ 3 i→ ∞. Consequently, Assumption 3.4.4 is
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fulfilled with the subsequence I ′′,

ai := 0, bi :=
ε̊1,i + ε̊2

γ̃− γ
, ci := αi +

c′i
γ̃− γ

+
c

γ̃− γ
τi‖ι(ỹi− xi)‖2

Y and di := 0.

As the sequence (bi)i∈I ′′ converges to b := (ε̊1 + ε̊2)/(γ̃ − γ) as I ′′ 3 i→ ∞, Lemma 3.4.5 implies
that every weak limit point of the sequence of serious iterates is 2b-G-stationary in the sense of Defini-
tion 3.1.2.

Applying Theorem 3.4.11 to the setting of Lemma 3.4.1 yields the following result.

COROLLARY 3.4.12. Assume that the initial point x0 ∈F is such that the level set F0 := {x ∈F :
J(x) ≤ J(x0) + 2∆} is bounded in X. Let the multifunction G : Y ⇒ Y ∗ be defined via G := ∂C p+
B̄Y ∗(0,∆2), where ∆2 ≥ 0. Assume that in every iteration of the bundle method a trial iterate can be
computed which fulfills

Ψi(ỹi)−Ψi(yi)≤ αiτi
−1, αi→ 0 (3.4.15)

and that in every unsuccessful iteration a tuple (ỹi, f̃i,vi, ĝi) ∈Ba of bundle information can be com-
puted which fulfills the conditions

[ f̃i− f (ỹi)+ f (xi)− f̃ x
i ]+ ≤ ε̊1,i‖ι(ỹi− xi)‖Y , ε̊1,i→ ε̊1, ε̊1 ≥ 0, (3.4.16)

dist(ĝi,∂C p(ι ỹi))≤ ε̊2,i, ε̊2,i→ ε̊2, ε̊2 ≥ 0. (3.4.17)

Assume that the cutting plane mỹi, f̃i,ỹi,g̃i
( · ,xi) is included into the new model φi+1 whenever iteration i

is not successful and assume that the set of subgradient base points V is bounded. If p is approximately
convex on ιF , then every weak limit point of the sequence of serious iterates is η-∂C p-stationary in
the sense of Definition 3.1.2 with η := 2

γ̃−γ
(ε̊1 + ε̊2)+∆2.

Proof. Assume that p is approximately convex on ιF , let x̄ be any weak limit point of the sequence of
serious iterates and let ε > 0 be arbitrary. Then, p is ε-∂C-convex on ιF . Consequently, p is (ε +∆2)-
G-convex on ιF and Theorem 3.4.11 shows that x̄ is 2

γ̃−γ
(ε̊1 +∆2 + ε)-G-stationary. However, using

(3.4.17) and that p is ε-∂C-convex on ιF , a slight modification of Theorem 3.4.11 shows that x̄ is
2

γ̃−γ
(ε̊1 + ε̊2 + ε)-G-stationary, i.e.,

0 ∈ w′(x̄)+NF (x̄)+ ι
∗(G(ι x̄)+ B̄Y ∗(0, 2

γ̃−γ
(ε̊1 + ε̊2 + ε)))

=w′(x̄)+NF (x̄)+ ι
∗(∂C p(ι x̄)+ B̄Y ∗(0, 2

γ̃−γ
(ε̊1 + ε̊2 + ε)+∆2)).

Since this holds for all ε > 0, the norm ‖ · ‖Y ∗ is weakly lower semicontinuous, and w′(x̄)+NF (x̄)+
ι∗∂C p(ι x̄) is a closed set, we find that x̄ is η-∂C-stationary with η = 2

γ̃−γ
(ε̊1 + ε̊2)+∆2 (cf. the proof of

Lemma 3.3.2 for details).

Comparing Corollary 3.4.12 to Lemma 3.4.1 shows that the conditions (3.4.1) and (3.4.2) were replaced
by (3.4.15). Using error estimates for the solution of the obstacle problem (cf. Chapter 4), the condition
(3.4.15) can be enforced straightforwardly. In this sense, Corollary 3.4.12 is an improvement over
Lemma 3.4.1 and [50, Thm. 5.5].
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3.5. Practical implementation

The bundle method Algorithm 3.1 is quite abstract and thus provides a lot of flexibility, for example in
the choice of the cutting plane model, the function value approximation, the trial iterate and the prox-
imity parameter. In this section, we aim at developing a concrete version of the bundle method which
can directly be implemented. This version of the bundle method should work both for approximately
convex objective functions and, if a sufficiently steep subgradient-based linearization is provided, for
general locally Lipschitz objective functions. Therefore, we need to construct function value approx-
imations and subgradients which fulfill both the error bounds in Theorem 3.4.9 and Corollary 3.4.12.
In order to do so, we assume that there are three computable oracles available, namely a function value
oracle, a subgradient oracle and a trial iterate oracle.

3.5.1. The function value oracle

This section regards the question on how to choose the function value approximation f̃i which can
be used to find a tuple (ỹi, f̃i,vi, g̃i) ∈Ba of bundle information which fulfills (3.4.12) and (3.4.16).
Assume that we have access to a computable oracle O f : X× (0,1]→ R and a computable error bound
ε̂ f : X× (0,1]→ (0,∞) such that

| f (x)−O f (x,h)| ≤ ε̂ f (x,h) and ε̂ f (x,h)→ 0 as h→ 0. (3.5.1)

If one simply chooses f̃i := O f (ỹi,hi) for a given accuracy level hi, then one might run into trouble. It
might happen that f̃ x

i = O f (xi,h
x
i ) = f (xi)− ε̂ f (xi,h

x
i ) while f̃i = O f (ỹi,hi) = f (ỹi)+ ε̂ f (ỹi,hi). In this

case, the exactness condition (3.4.12),

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ βiτi

−1 (3.4.12)

might not be satisfiable, even if f (ỹi)< f (xi), ĝi = 0 and ε̂ f (ỹi,hi) = 0. Indeed, assume that f̃i = f (ỹi),
f̃ x
i = f (xi)− ε̂ f (xi,h

x
i ), ĝi = 0, ε̂ f (xi,h

x
i ) > βiτi

−1 and 0 ≤ f (xi)− f (ỹi) < ε̂ f (xi,h
x
i )−βiτi

−1. In this
case, it holds

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ = f (ỹi)− f (xi)+ ε̂ f (xi,h

x
i )> βiτi

−1.

To circumvent this issue, we aim at choosing f̃i such that f̃i ≥ f (ỹi) for all i ∈ N. To do so, we choose
an appropriate accuracy level hi ∈ (0,∞), a lift term li ≥ ε̂ f (ỹi,hi) and set

f̃i := O f (ỹi,hi)+ li.

This implies that f̃i is an upper approximation of the exact function value f (ỹi), i.e.,

f (ỹi)≤ | f (ỹi)−O f (ỹi,hi)|+O f (ỹi,hi)≤ O f (ỹi,hi)+ li = f̃i for all i ∈ N. (3.5.2)

In particular, this gives f (xi)≤ f̃ x
i for all i ∈ N and

f̃i− f (ỹi)− f̃ x
i + f (xi)≤ |O f (ỹi,hi)+ li− f (ỹi)| ≤ li + ε̂ f (ỹi,hi)≤ 2li for all i ∈ N. (3.5.3)
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Therefore, if the linearization error [ f (ỹi)+ 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f (xi)]+ and the lift term li are suffi-
ciently small, then the estimate

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ [ f (ỹi)+ 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f (xi)]++[ f̃i− f (ỹi)− f̃ x

i + f (xi)]+

shows that the exactness condition (3.4.12) is fulfilled. Also, if 2li ≤ ε̊1,i‖ι(ỹi− xi)‖Y , then (3.4.16) is
fulfilled. In many applications, the term ‖ι(ỹi− xi)‖Y cannot be computed exactly, e.g., if X = L2(Ω)
and Y = H−1(Ω), cf. Chapter 5. We thus assume that we have access to a computable oracle O‖·‖Y :
X \{0}× (0,1]→ (0,∞) and that there exists a (possibly unknown) constant C‖·‖Y > 0 such that for a
point x ∈ X \{0} and an accuracy level h it holds

0 <C‖·‖Y O‖·‖Y (x,h)≤ ‖ιx‖Y . (3.5.4)

Now, if we require that li ≤ ε̊1,iO‖·‖Y (ỹi− xi), then we can guarantee

[ f̃i− f (ỹi)− f̃ x
i + f (xi)]+ ≤ 2li ≤ 2ε̊1,iO‖·‖Y (ỹi− xi)≤ 2C−1

‖·‖Y ε̊1,i‖ιx‖Y for all i ∈ N.

Next, we address the question on how to choose the lift term li. Simply using li := ε̂ f (ỹi,hi) yields a
new issue. Assume that the error bound ε̂ f (x,h) depends on the point x, i.e., that the function ε̂ f (·,hi)
is not constant. Then the approximate function values f̃i = O f (ỹi,hi)+ li = O f (ỹi,hi)+ ε̂ f (ỹi,hi) can
be interpreted as approximations of the function value of the function f (·)+ ε̂ f (·,hi) at the point ỹi.
Furthermore, the subgradients g̃i ∈ G(ι ỹi) are an approximation of the subgradients of f . Thus, the
algorithm works with approximate function values of the function f (·)+ ε̂ f (·,hi) and with approxi-
mate subgradients of the function f . While the choice f̃i = O f (ỹi,hi) + ε̂ f (ỹi,hi) is covered by the
convergence theory, our numerical results suggest that this leads to a slow progress of the algorithm.
Instead of choosing li = ε̂ f (ỹi,hi), we use the same lift term li for all trial iterates with ε̂ f (ỹi,hi) ≤ li.
If a trial iterate ỹi is encountered with ε̂ f (ỹi,hi) > li, we decrease hi until ε̂ f (ỹi,hi) ≤ li is fulfilled.
Whenever a better approximation of the function value is needed, the lift term li is reduced (which
eventually leads to a decrease of hi to fulfill ε̂ f (ỹi,hi)≤ li). With this strategy, the approximate function
values f̃i are approximations of f (·)+ li with li constant. As the functions f (·)+ li and f (·) have the
same subgradients, the function value approximation f̃i = O f (ỹi,hi)+ li and the approximate subgra-
dients g̃i ∈ G(ι ·) fit together nicely. Our numerical experiments suggest that, while both approaches
f̃i := O f (ỹi,hi)+ ε̂ f (ỹi,hi) and f̃i := O f (ỹi,hi)+ li converge, the latter approach works better. In Algo-
rithm 3.2 we present the discussed strategy to compute f̃i := O f (ỹi,hi)+ li.

Algorithm 3.2: Function value approximation [( f̃, ĥ) :=FunctionValue(ỹ,h, l)]
Parameters : Function value oracle O f : X× (0,1]→ Y ∗ with error bound ε̂ f : X× (0,1]→ (0,∞)
Input : Trial iterate ỹ, current accuracy level h and desired lift term l.
Output : Function value approximation f̃ and new accuracy level ĥ.

1 while ε̂ f (ỹ,h)> l do
2 Set h := h/2.
3 end
4 Return f̃ := O f (ỹ,h)+ l and ĥ := h.
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3.5.2. The subgradient oracle

The goal of this section is to construct a way of computing a tuple (ỹi, f̃i,vi, g̃i)∈Ba of bundle informa-
tion which fulfills (3.4.12). In many practical applications, one only has access to a subgradient oracle
Og : X × (0,1]→ Y ∗ such that for any subgradient base point v ∈ X and accuracy level h a subgradient
g̃i = Og(v,h) can be computed which fulfills g̃i ∈ G(ιvi). However, for general locally Lipschitz func-
tions, it is not sufficient to find a tuple (ỹi, f̃i,vi, g̃i) ∈Ba which fulfills (3.4.12). Indeed, consider the
one dimensional case X =Y :=R with exact function value approximations f̃i := f (ỹi) and f̃ x

i := f (xi),
ỹi := 0, xi := 1, βiτi

−1 < 1 and p equals to the lightning function L : R→R ( see, e.g., [73, Ex. BE.0]).
The lightning function L is Lipschitz with constant 1, fulfills L(0) = L(1) = 0 and enjoys the property
∂CL(t) = [−1,1] for all t ∈ R. In this case, for any t ∈ R, the oracle might produce the subgradient
ĝi = 1 ∈ ∂CL(t) which leads to

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ = L(0)+ 〈1, ι(1−0)〉R∗,R−L(1) = 1 > βiτi

−1. (3.5.5)

This shows that condition (3.4.12) cannot be fulfilled for any choice of subgradient base point t ∈ R.
However, in this example, if the subgradient oracle returns a subgradient in the interval [−1,βiτi

−1],
then every subgradient base point t ∈ R can be used to find a tuple (ỹi, f̃i,vi, g̃i) ∈Ba which fulfills
(3.4.12). In the general case, we have the following statement.

LEMMA 3.5.1. For every ε > 0 there exists a set D⊂ [0,1] with positive Lebesgue measure such that
for all t ∈ D there exists a subgradient g̃i ∈ ∂ p(ι(txi +(1− t)ỹi)) which fulfills

f (ỹi)+ 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f (xi)≤ ε.

Proof. Let ε > 0 be arbitrary. Define the locally Lipschitz continuous function r : R→ R via r(t) :=
p(ι(tỹi +(1− t)xi)). By [93, Cor. 2.2], there exists a set D ⊂ [0,1] with positive Lebesgue measure
such that, for each t ∈ D, r′(t) exists and r(1)− r′(t)− r(0) ≤ ε . From [21, Prop. 2.2.2] and [21,
Thm. 2.3.10], we obtain for all t ∈ D̃

r′(t) ∈ ∂Cr(t)⊂ {〈g, ι(ỹi− xi)〉Y ∗,Y : g ∈ ∂C p(ι(tỹi +(1− t)xi))}.

This shows that there exists a subgradient g̃i ∈ ∂ p(ι(txi +(1− t)ỹi)) which fulfills

f (ỹi)+ 〈g̃i, ι(xi− ỹi)〉Y ∗,Y − f (xi) = r(1)− r′(t)− r(0)≤ ε.

In general, it is not clear how to find a subgradient which fulfills (3.4.12). Therefore, we use Algo-
rithm 3.3 as a heuristic to search for a suitable subgradient. Note that we cannot guarantee that Algo-
rithm 3.3 actually returns a subgradient which fulfills (3.4.12). However, we motivate Algorithm 3.3
by the fact that

[ f̃i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ [O f (ỹi,hi)− li + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x

i ]++2li,

i.e., we search for a new subgradient whenever the computed linearization error

ecomp := [O f (ỹi,hi)− li + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+
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is larger than the computed lifting error 2li. In the case that the computed linearization error should be
reduced, we choose a new subgradient base point within the interval [L,R]⊂ [xi, ỹi] which is constructed
in such a way that t 7→ f (xi + t(ỹi− xi)) can be expected to be flat in [L,R]. Note that, by (3.5.2), the
computed linearization error ecomp always fulfills

ecomp = [O f (ỹi,hi)− li + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ [ f (ỹi)+ 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f (xi)]+

and thus Lemma 3.5.1 is applicable.

Algorithm 3.3: Subgradient search [(g̃, v̂, ĝ, f̂ ,h, l) := Subgradient(e,h, l)]
Parameters : Subgradient oracle Og : X× (0,1]→ Y ∗, function value oracle O f : X× (0,1]→ R,

trial iterate ỹ, serious iterate x, approximation of the function value at the serious
iterate f̃ x, number of iterations nit ∈ N+

Input : Desired error tolerance e, current accuracy level h and lift term l.
Output : Subgradient g̃ at ỹi, subgradient base point v̂, subgradient ĝ, function value

approximation f̂ , new lift term l and new accuracy level ĥ.
Initialization: Set M := ỹ, L := x,R := ỹ, fL := f̃ x, fR := O f (ỹ,h). Compute ( f̂ ,h) :=

FunctionValue(ỹ, l,h) and ĝ = Og(ỹ,h). Set g̃ := ĝ.
1 for j = 1, . . . ,nit do
2 if [ f̂ + 〈ĝ, ι(x− ỹ)〉Y ∗,Y − f̃ x]+ ≤ e then
3 return g̃, v̂ := M, ĝ, f̂ , l and h.
4 end
5

6 if [O f (ỹ,h)− l + 〈ĝ, ι(x− ỹ)〉Y ∗,Y − f̃ x]+ < 2l then
7 Set l := l/2 and compute ( f̂ ,h) := FunctionValue(ỹ, l,h).
8 Continue to the next iteration.
9 else

10 Set M := (L+R)/2, compute fM := O f (M,h) and ĝ := Og(M).
11 if fL− fM < fM− fR then
12 Set R := M and fR := fM.
13 else
14 Set L := M and fL := fM.
15 end
16 end
17 end
18 return g̃, v̂ := M, ĝ, f̂ , l and h.

3.5.3. The trial iterate oracle

To execute the bundle method, we need to compute an approximate solution of the bundle subproblem,
i.e., a trial iterate. We postpone the task of developing a practical algorithm to compute such a trial
iterate to Chapter 4. For now, we assume that we have access to a computable oracle Oỹ : (0,∞)2 →
X × (0,∞) such that, for a desired accuracy ε > 0 and at a given accuracy level h, the oracle returns an
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approximate solution ỹ and a new accuracy level h̃≤ h via (ỹ, h̃) = Oỹ(ε,h), such that

Ψ(ỹ)< Ψ(x) and Ψ(ỹ)≤min
y∈X

Ψ(y)+Cỹε, (3.5.6)

where the constant Cỹ > 0 does not depend on Ψ, ỹ and h and does not have to be known. Note that
the oracle is allowed to increase the accuracy level. The additional flexibility gained by introducing the
unknown constant Cỹ will be useful later on. As an illustrative example, if the evaluation of Oỹ(ε,h)
involves solving a PDE, FEM error estimates can be employed. These FEM error estimates often have
the form ‖u−uh‖H1

0 (Ω) ≤Chα‖ f‖L2(Ω), where u ∈ H1
0 (Ω) is the solution to the PDE on the domain Ω

with right hand side f ∈ L2(Ω), uh is an approximation of u, α > 0 is a known constant and C > 0 is
a constant which only depends on problem data (such as Ω) and the construction of the approximation
uh but not on uh itself. Often, the constant C is not known and it is very difficult to compute a suitable
estimate of C. In this case, we can include C into Cỹ and we do not have to know C at all.

3.5.4. Practical algorithm

At the end of a successful iteration of Algorithm 3.1, one is allowed to choose the new proximity
parameter τi+1 arbitrarily in the interval [qi+1 + ξ ,T ]. Our numerical experiments suggest that if the
ratio ρi of computed reduction J̃x

i − J̃i to predicted reduction Φi(xi)−Φi(ỹi) is large, then it is beneficial
to decrease the value of the proximity parameter. We thus introduce a threshold Γ ∈ (γ,1) and use
τi+1 := P[qi+1+ξ ,T ](

1
2 τi) if ρi ≥ Γ and τi+1 := P[qi+1+ξ ,T ](τi) if ρi < Γ . Furthermore, let (νΨ

i )i∈N ⊂ (0,∞),
(ν lin

i )i∈N⊂ (0,∞) and (ν f
i )i∈N⊂ (0,∞) be forcing sequences with the property that for any subsequence

I ⊂ N with τi→ ∞ as I 3 i→ ∞ it holds

τiν
Ψ

i → 0, τiν
lin
i → 0 and ν

f
i → 0 as I 3 i→ ∞. (3.5.7)

Now we are able to present the practical algorithm, Algorithm 3.4. In order to present a conver-
gence theorem for Algorithm 3.4, we use the following nomenclature. Denote by (g̃, v̂, ĝ, f̂ ,h, l) :=
Subgradient(e,h, l) the output of Algorithm 3.3. We call the subgradient ĝ valid, if

[ f̂ + 〈ĝ, ι(x− ỹ)〉Y ∗,Y − f̃ x]+ ≤ e.

THEOREM 3.5.2. Let the initial point x0 ∈F be such that the level set {x ∈ X : J(x)≤ J(x0)+2∆} is
bounded in X and assume that one of the following holds true:

• Algorithm 3.3 always returns a valid subgradient.

• G := ∂C p+ B̄Y ∗(0,∆2), ∆2 ≥ 0, dist(g̃i,∂C p(ι ỹi))→ 0 and p is approximately convex.

Then every weak limit point of the sequence of serious iterates produced by Algorithm 3.4 is G-
stationary in the sense of Definition 3.1.2.

Proof. First note that every trial iterate ỹi fulfills Ψi(ỹi)−Ψi(yi) ≤ Ψ(ỹ) ≤ Cỹν
Ψ

i . Defining αi :=
Cỹν

Ψ

i τi, we find that (3.4.10) and (3.4.15) are fulfilled and it holds αi→ 0 =: α . From Algorithm 3.3,
one easily sees that vi is contained in the line segment [xi, ỹi]. Setting Mv = 1 shows that (3.4.11) is ful-
filled. In successful iterations, only the subgradient base point xi+1 is added. In unsuccessful iterations,
two subgradient base points, ỹi and vi ∈ [xi, ỹi], are added. Since S ⊂F is bounded, Lemma 3.1.14

54



3. The bundle method

Algorithm 3.4: Inexact bundle method for optimal control problems

Parameters : 0 < γ < γ̃ < 1, γ < Γ < 1, 0 < q̄ < q̄+ξ ≤ T . Forcing sequences (νΨ

i )i∈N, (ν lin
i )i∈N

and (ν f
i )i∈N fulfilling (3.5.7). Oracles O f , Og, Oỹ , O‖·‖Y .

Initialization: Choose a start iterate x0 ∈ T̃ ∩V , an initial lift term l0 and set h0 = 1. Compute
f̃ x
0 = O f (x0,h0) and g̃x

0 = Og(x0,h0). Set J̃x
0 = f̃ x

0 +w(x0) and choose a symmetric
operator Q0 ∈L (Y,Y ∗) and q0 ≤ q̄ satisfying (3.1.17). Choose τ0 ∈ [q0 +ξ ,T ] and set
B0 = {(x0, f̃ x

0 ,x0, g̃x
0)} and M0 = {mx

0}.
1 for i = 0,1, . . . do
2 Set Φi = max{m : m ∈Mi}+w+δF and Ψi = Φi +

1
2‖ι( · − xi)‖2

Qi+τiRY
.

3 Trial iterate generation. Compute a new trial iterate and accuracy level via (ỹi, h̃i) := Oỹ(ν
Ψ

i ,hi).

4 Function value refinement. Choose a new lift term l̂i ∈ (0,max{li,ν f
i O‖·‖Y (ỹi− xi)}], compute a

new function value and accuracy level via ( f̃i, ĥi) := FunctionValue(ỹ, h̃i, l̂i) and set
J̃i = f̃i +w(ỹi).

5 Acceptance test. Set
ρi =

J̃x
i − J̃i

Φi(xi)−Φi(ỹi)
.

6 if ρi ≥ γ then (successful iteration)
7 Set xi+1 := ỹi, f̃ x

i+1 := f̃i, J̃x
i+1 := J̃i, hi+1 := ĥi, li+1 := l̂i and compute an exactness subgradient

g̃x
i+1 = Og(xi+1,hi+1). Choose a symmetric operator Qi+1 ∈L (Y,Y ∗) with curvature bound

qi+1 ≤ q̄ satisfying (3.1.17). Set the proximity parameter to

τi+1 :=

{
P[qi+1+ξ ,T ](τi) ρi < Γ

P[qi+1+ξ ,T ](
1
2 τi) ρi ≥ Γ

and set the bundle information to Bi+1 = {(xi+1, f̃ x
i+1,xi+1, g̃x

i+1)}. Use
Mi+1 = {mỹ, f̃ ,v,g̃(·,xi) : (ỹ, f̃,v, g̃) ∈Bi+1} and continue to the next iteration.

8 else
9 Set xi+1 := xi, f̃ x

i+1 := f̃ x
i , g̃x

i+1 := g̃x
i , J̃x

i+1 := J̃x
i , Qi+1 := Qi, qi+1 := qi.

10 end
11 Update local model. Compute (g̃i,vi, ĝi, f̂i,h′i, l

′
i) := Subgradient(ν lin

i , ĥi, l̂i). Set the bundle
information to Bi+1 := Bi∪{(ỹi, f̃i, ỹi, g̃i),(ỹi, f̂i,vi, ĝi)}. Set hi+1 := h′i, li+1 := l′i ,
Mi+1 := {mỹ, f̃ ,v,g̃(·,xi) : (ỹ, f̃,v, g̃) ∈Bi+1}, and Φi+1 := max{m : m ∈Mi+1}+w+δF .

12 Update proximity parameter.

Set ρ̃i =
J̃x

i −Φi+1(ỹi)

Φi(xi)−Φi(ỹi)
and update τi+1 =

{
2τi if ρ̃i ≥ γ̃ (proximity iteration)
τi if ρ̃i < γ̃ (model iteration)

.

13 end

shows that the set of trial iterates Ỹ = {ỹi : i ∈ N} is bounded in X . Thus, the set of subgradient base
points V ⊂ co(S ∪ Ỹ ) is bounded and Lemma 3.1.14 yields the boundedness of the set of bundle
information Bu.

Now assume that Algorithm 3.3 always returns a valid subgradient, i.e., assume that in every unsuc-
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cessful iteration Algorithm 3.3 returns a tuple (g̃i,vi, ĝi, f̂i,h′i, l
′
i) such that

[ f̂i + 〈ĝi, ι(xi− ỹi)〉Y ∗,Y − f̃ x
i ]+ ≤ ν

lin
i .

Defining βi := ν lin
i τi shows that βi fulfills (3.4.12) and it holds βi → 0 =: β . Since the cutting plane

mỹi, f̂i,vi,ĝi
( · ,xi) is included into the new model φi+1 whenever iteration i was not successful, Theo-

rem 3.4.9 shows that every weak limit point of the sequence of serious iterates produced by Algo-
rithm 3.4 is η-G-stationary with η = 0.

Finally assume that G := ∂C p + B̄Y ∗(0,∆2), ∆2 ≥ 0, dist(g̃i,∂C p(ι ỹi)) → 0 and p is approximately
convex. By (3.5.3), we find

[ f̃i− f (ỹi)− f̃ x
i + f (xi)]+ ≤ 2li ≤ ν

f
i O‖·‖Y (ỹi− xi)≤ ν

f
i C−1
‖·‖Y ‖ι(ỹi− xi)‖Y .

Since ε̊1,i := ν
f

i C−1
‖·‖Y → 0, (3.4.16) is fulfilled with ε̊1 := 0. Therefore, Corollary 3.4.12 shows that

every weak limit point of the sequence of serious iterates produced by Algorithm 3.4 is G-stationary.
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4. The bundle subproblem

The goal of this chapter is to provide an efficient procedure to compute an approximate solution ỹi

of the subroblem of iteration i of the bundle method and to develop corresponding error estimates.
In particular, we are interested in upper bounds on the quantity Ψi(ỹi)−miny∈X Ψi(y) to construct
an oracle which fulfills (3.5.6). In this chapter, the iteration number i is always the same. Thus, we
suppress the index i.

4.1. Automated aggregation

The bundle subproblem (3.1.2) has the form

min
y∈X

Ψ(y) := max{m(y) : m ∈M}+w(y)+δF (y)+ 1
2‖ι(y− xSI)‖2

Q+τRY
. (4.1.1)

Here, xSI ∈ X is the serious iterate, M = {m j,1≤ j≤ np}, np ∈N+, is a finite set of affine linear cutting
planes and the curvature approximation Q : Y →Y ∗ and the proximity parameter τ > 0 are chosen such
that the bilinear form 〈(Q + τRY ) ·, ·〉Y ∗,Y induces the norm ‖ · ‖2

Q+τRY
:= 〈(Q + τRY ) ·, ·〉Y ∗,Y on Y , cf.

Section 3.1.6. Two difficulties arise in solving (4.1.1). First, a large number of cutting planes np may
lead to high computational costs. Although aggregation of cutting planes can reduce the number np,
in practice it is difficult to develop a sound aggregation strategy, cf. Remark 3.3.5. Second, in many
practical applications, the curvature term 1

2‖ι(y− xSI)‖2
Q+τRY

may not be computable exactly. For
example, if X∗ = L2(Ω), Y ∗ = H1

0 (Ω) and Q = 0, it holds

‖ι(y− xSI)‖2
Q+τRY

= τ〈RY ι(y− xSI), ι(y− xSI)〉Y ∗,Y = τ‖ι(y− xSI)‖2
H−1(Ω).

To compute the H−1(Ω)-norm of y− xSI ∈ L2(Ω), one usually solves the Dirichlet problem −∆u =
y− xSI on Ω and u = 0 on ∂D. However, this PDE cannot be solved analytically and thus numerical
methods to approximate the solution have to be employed.

Our strategy to solve (4.1.1) up to a desired accuracy is as follows. We approximately solve the reduced
problem

min
y∈X

Ψ̂(y) := max{m(y) : m ∈ M̂ }+w(y)+δF (y)+ 1
2‖ι(y− xSI)‖2

Q+τRY
, (4.1.2)

where M̂ is an appropriate subset of M. If the approximate solution fulfills (3.5.6), we are done.
Otherwise, we either increase the accuracy of the solution to (4.1.2) or we enlarge the set M̂ ⊂M. In
Section 4.2 we discuss how to solve the reduced problem (4.1.2). For now, let us assume that we have
access to a subproblem oracle Os which, given a piecewise quadratic strongly convex function Ψ̂ : X→
R and an accuracy level h, returns an approximate solution ẑ = Os(Ψ̂,h) of the problem miny∈X Ψ̂(y).
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4. The bundle subproblem

Furthermore, we assume that there exists a corresponding computable error bound ε̂s = ε̂s(Ψ̂,h) such
that

|Ψ̂(ẑ)−min
y∈X

Ψ̂(y)| ≤C
Ψ̂

ε̂s(Ψ̂,h) and ε̂s(Ψ̂,h)→ 0 as h→ 0. (4.1.3)

Here, the constant C
Ψ̂
> 0 does not depend on Ψ̂, ẑ and h and does not have to be computable.

Furthermore, to be able to verify if a computed trial iterate ỹ fulfills Ψ(ỹ) < Ψ(xSI), we assume that
we have access to model value oracles which yield lower and upper bounds for the value of Ψ(ỹ) for a
given accuracy level h. The lower bound OΨ(h) and the upper bound OΨ(h) are supposed to fulfill

OΨ(h)≤Ψ(ỹ)≤ OΨ(h), and OΨ(h)−OΨ(h)→ 0 as h→ 0. (4.1.4)

In order to efficiently solve the bundle subproblem, the algorithm should balance the number of cut-
ting planes |M̂ | for the reduced model, the accuracy of solving the reduced problem, and the accuracy
of the model value oracle. Ideally, M̂ only contains cutting planes which are active at the exact so-
lution, i.e., cutting planes m ∈M such that m(y∗)+w(y)+ 1

2‖ι(y− xSI)‖2
Q+τRY

= Ψ(y∗) where y∗ is
the exact solution of (4.1.1). Since obviously y∗ is not known prior to solving (4.1.1), we develop
a strategy which successively builds up M̂ until |Ψ− Ψ̂| is sufficiently small in a neighborhood of
y∗. We start by consulting the subproblem oracle to obtain an approximate solution to (4.1.2), i.e.,
ẑ := Os(Ψ̂,h) and use this as a candidate for a trial iterate. If the error estimate ε̂s(Ψ̂,h) for the so-
lution of the aggregated bundle subproblem (4.1.2) is larger than the constant f 1 > 0, we increase
the accuracy level hnew = h/2 and recompute ẑnew = Os(Ψ̂,hnew). Otherwise, we compute the value
φ(ẑ) = maxm∈M m(ẑ) of the local model without aggregation. Let f 2 > 0 be a fixed constant. If
Ψ(ẑ)− Ψ̂(ẑ) = φ(ẑ)− φ̂(ẑ) > f 2, then we add the cutting plane m ∈M with largest value m(ẑ) to the
aggregate model φ̂ , i.e., the new aggregate model is φ̂new = max(φ̂(·),m(·)). We then update the re-
duced model Ψ̂new = φ̂new(y)+w(y)+δF (y)+ 1

2‖ι(y−xSI)‖2
Qi+τiRY

and recompute ẑnew =Os(Ψ̂new,h).
If both conditions ε̂s(Ψ,h)≤ f 1 and φ(ẑ)− φ̂(ẑ)≤ f 2 are fulfilled, we use ẑ as the trial iterate ỹ. This
procedure is presented in Algorithm 4.1.

If the serious iterate xSI minimizes the full model Ψ, then no trial iterate ỹ can be found which fulfills
Ψ(ỹ) < Ψ(xSI) = miny∈X Ψ(y). Unfortunately, since we work with inexact data, there is no way of
determining if xSI minimizes Ψ. In this case, Algorithm 4.1 keeps refining indefinitely. However, in the
case that the serious iterate xSI does not minimize the full model Ψ, we have the following convergence
statement.

THEOREM 4.1.1. If Ψ(xSI) > miny∈X Ψ(y), then Algorithm 4.1 terminates after finitely many steps
and the computed trial iterate ỹ fulfills Ψ(ỹ)≤miny∈X Ψ(y)+C

Ψ̂
f 1 + f 2 and Ψ(ỹ)< Ψ(xSI).

Proof. First observe that M̂ ⊂M in every step of the algorithm. Therefore,

max{m(y) : m ∈ M̂ } ≤max{m(y) : m ∈M} for all y ∈ X .

This shows that Ψ̂(y)≤Ψ(y) for all y∈ X and thus miny∈X Ψ̂(y)≤miny∈X Ψ(y). Consequently, (4.1.3)
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4. The bundle subproblem

Algorithm 4.1: Computing a trial iterate [(ỹ,h) := TrialIterate(h, f 1, f 2)]

Parameters : Subproblem oracle Os with error bound ε̂s, model value oracles OΨ and OΨ .
Input : Initial accuracy level h, desired error bounds f 1 > 0, f 2 > 0.
Output : Trial iterate ỹ and new accuracy level h.
Initialization: Choose a subset of cutting planes M̂ such that {mx} ⊂ M̂ ⊂M. Set the full model to

Ψ(·) = maxm∈M m(·)+w(·)+δF (·)+ 1
2‖ι(·− xSI)‖2

Q+τRY
.

1 Loop
2 Set the aggregate model to Ψ̂(·) = maxm∈M̂ m(·)+w(·)+δF (·)+ 1

2‖ι(·− xSI)‖2
Q+τRY

.
3 Compute approximate solution of aggregate bundle subproblem ẑ = Os(Ψ̂,h).
4 if ε̂s(Ψ̂,h)> f 1 then
5 Set h = h/2. Continue to the next iteration.
6 end
7 if Ψ(ẑ)− Ψ̂(ẑ)> f 2 then
8 Set M̂ := M̂ ∪ argmaxm∈M m(ẑ). Continue to the next iteration.
9 end

10 Set hc := h.
11 if OΨ(hc)< Ψ(xSI) then
12 return ỹ := ẑ and h.
13 end
14 if OΨ(hc)> Ψ(xSI) then
15 if ε̂s(Ψ̂,h)≥Ψ(ẑ)− Ψ̂(ẑ) then
16 Set h = h/2. Continue to the next iteration.
17 else
18 Set M̂ := M̂ ∪ argmaxm∈M m(ẑ). Continue to the next iteration.
19 end
20 end
21 if ε̂s(Ψ̂,h)> max{Ψ(ẑ)− Ψ̂(ẑ),OΨ(hc)−OΨ(hc)} then
22 Set h = h/2. Continue to the next iteration.
23 end
24 if Ψ(ẑ)− Ψ̂(ẑ)> OΨ(hc)−OΨ(hc) then
25 Set M̂ := M̂ ∪ argmaxm∈M m(ẑ). Continue to the next iteration.
26 end
27 Set hc := hc/2. Go to line 11.
28 end

yields

Ψ(ẑ)−min
y∈X

Ψ(y) = Ψ(ẑ)− Ψ̂(ẑ)+ Ψ̂(ẑ)−min
y∈X

Ψ̂(y)+min
y∈X

Ψ̂(y)−min
y∈X

Ψ(y)

≤Ψ(ẑ)− Ψ̂(ẑ)+C
Ψ̂

ε̂s(Ψ̂,h).
(4.1.5)

Whenever Algorithm 4.1 terminates, it holds ε̂s(Ψ̂,h) ≤ f 1, Ψ(ẑ)− Ψ̂(ẑ) ≤ f 2 and OΨ(hc) < Ψ(xSI).
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4. The bundle subproblem

Thus, whenever a trial iterate ỹ = ẑ is returned, it holds Ψ(ỹ)≤miny∈X Ψ(y)+C
Ψ̂

f 1 + f 2 and Ψ(ỹ)≤
OΨ(hc)< Ψ(xSI). This shows the second part of the theorem.

Now we show that Algorithm 4.1 terminates after finitely many steps. First consider the case that, after
finitely many steps, it holds ε̂s(Ψ̂,h) = 0 and Ψ(ẑ)− Ψ̂(ẑ) = 0. In this case, (4.1.3) yields Ψ̂(ẑ) =
miny∈X Ψ̂(y) and we obtain

min
y∈X

Ψ(y)≤Ψ(ẑ) = Ψ̂(ẑ) = min
y∈X

Ψ̂(y)≤min
y∈X

Ψ(y).

Thus, Ψ(ẑ) = miny∈X Ψ(y) and (4.1.4) implies OΨ(hc) ≤ Ψ(ẑ) = miny∈X Ψ(y) < Ψ(xSI). Therefore,
the if-clause in line 14 is not entered. Also the if-clauses in lines 4, 7, 21, and 24 are not entered. Thus,
h and M̂ are not changed anymore, but hc is halved whenever line 27 is executed. As OΨ(hc)→Ψ(ẑ)
for hc→ 0 and Ψ(ẑ) = miny∈X Ψ(y)< Ψ(xSI), after finitely many steps it holds that OΨ(hc)< Ψ(xSI).
Consequently line 11 ensures that Algorithm 4.1 stops.

From now on we consider the case that, throughout the algorithm, either ε̂s(Ψ̂,h) 6= 0 or Ψ(ẑ)−Ψ̂(ẑ) 6=
0, i.e., that max{ε̂s(Ψ̂,h),Ψ(ẑ)− Ψ̂(ẑ)}> 0. We continue by proofing that every iteration is completed
after a finite number of steps by showing that line 27 can only be executed a finite number of times
in each iteration. Note that h, M̂ and ẑ are not changed within any iteration. Thus, also ε̂s(Ψ̂,h) and
Ψ(ẑ)− Ψ̂(ẑ) are not changed within any iteration. Whenever line 27 is executed, hc is halved and
OΨ(hc)−OΨ(hc)→ 0 as hc→ 0. Since max{ε̂s(Ψ̂,h),Ψ(ẑ)− Ψ̂(ẑ)}> 0, after finitely many steps, it
holds that OΨ(hc)−OΨ(hc)< max{ε̂s(Ψ̂,h),Ψ(ẑ)− Ψ̂(ẑ)}. If OΨ(hc)−OΨ(hc)< Ψ(ẑ)− Ψ̂(ẑ), then
line 24 ensures that the current iteration is terminated. Otherwise, OΨ(hc)−OΨ(hc)≥Ψ(ỹ)− Ψ̂(ỹ),

Ψ(ẑ)− Ψ̂(ẑ)≤ OΨ(hc)−OΨ(hc)< max{ε̂s(Ψ̂,h),Ψ(ẑ)− Ψ̂(ẑ)}= ε̂s(Ψ̂,h)

and line 21 ensures that the current iteration is terminated. This shows that every iteration is terminated
after a finite number of steps.

Next, we show that Algorithm 4.1 terminates after a finite number of iterations. At the end of every
iteration, either h is decreased or M̂ is set to M̂ ∪argmaxm∈M m(ẑ). Whenever M̂ is updated, it holds
Ψ(ẑ)− Ψ̂(ẑ)> 0. As

Ψ(ẑ)− Ψ̂(ẑ) = max
m∈M

m(ẑ)− max
m∈M̂

m(ẑ)> 0,

the nonempty set argmaxm∈M m(ẑ) and the set M̂ are disjoint. Thus, whenever M̂ is updated, the num-
ber of elements in M̂ increases. As M is a finite set, this can happen only a finite number of times.
Therefore, after a finite number of iterations, M̂ does not change anymore. Consequently, Ψ̂ does not
change and h is halved in every subsequent iteration which yields ε̂s(Ψ̂,h)→ 0. Therefore, if Algo-
rithm 4.1 did not stop earlier, there is an iteration with ε̂s(Ψ̂,h)<min{ f 1,(Ψ(xSI)−miny∈X Ψ(y))/(2+
C

Ψ̂
)}. As argued before, this iteration has to be completed after finitely many steps. We now argue that

the algorithm has to stop at the end of this iteration. Since M̂ is not changed anymore, this iteration
can only end at lines 5, 12, 16 or 22. Since ε̂s(Ψ̂,h)< f 1, line 5 cannot be executed. Now assume that
line 16 is executed. This can only happen if OΨ(hc) > Ψ(xSI) and Ψ(ẑ)− Ψ̂(ẑ) ≤ ε̂s(Ψ̂,h) hold true.
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However, this can not be true, since (4.1.4) and (4.1.5) imply

OΨ(hc)≤Ψ(ẑ) =
(

Ψ(ẑ)−min
y∈X

Ψ(y)
)
+
(

min
y∈X

Ψ(y)−Ψ(xSI)
)
+Ψ(xSI)

≤Ψ(ẑ)− Ψ̂(ẑ)+C
Ψ̂

ε̂s(Ψ̂,h)− (2+C
Ψ̂
)ε̂s(Ψ̂,h)+Ψ(xSI)< Ψ(xSI).

Thus, line 16 is not executed. Finally, we assume that line 22 is executed. In this case, Ψ(ẑ)− Ψ̂(ẑ)<
ε̂s(Ψ̂,h) and OΨ(hc)−OΨ(hc) < ε̂s(Ψ̂,h). Combining this with (4.1.4) and (4.1.5) implies

OΨ(hc)≤
(

OΨ(hc)−OΨ(hc)
)
+
(

Ψ(ẑ)−min
y∈X

Ψ(y)
)
+
(

min
y∈X

Ψ(y)−Ψ(xSI)
)
+Ψ(xSI)

≤ ε̂s(Ψ̂,h)+
(

Ψ(ẑ)− Ψ̂(ẑ)
)
+C

Ψ̂
ε̂s(Ψ̂,h)− (2+C

Ψ̂
)ε̂s(Ψ̂,h)+Ψ(xSI)< Ψ(xSI).

But this shows that line 22 cannot be executed, because the if-statement in line 11 would lead to the
termination of Algorithm 4.1 in line 12. As lines 5, 16, and 22 cannot be executed, line 12 has to be
executed in this iteration, i.e., the algorithm stops. Because every iteration is executed in finitely many
steps, the algorithm terminates after finitely many steps.

Remark 4.1.2. Algorithm 4.1 can be executed if the term

Ψ(ẑ)− Ψ̂(ẑ) = max
m∈M

m(ẑ)− max
m∈M̂

m(ẑ)

can be computed exactly.

4.2. The dual of the bundle subproblem

In this section, we want to solve the reduced bundle problem (4.1.2) in order to a subproblem oracle
which fulfills (4.1.3). Our primary interest concerns the case where w : X → R is given as a Tikhonov
regularization term, i.e., w := α

2 ‖ · ‖
2
X , α > 0, and no control constraints are given, i.e., F = X . In

this case, the bundle subproblem (4.1.1) is an unconstrained, piecewise quadratic optimization problem
in the Hilbert space X . Whenever the dimension of X is large (or when X is infinite dimensional), it
is beneficial to solve the dual problem to (4.1.1) and compute the primal solution from the solution
of the dual problem. The dual problem is a low dimensional optimization problem and can be solved
efficiently via the method [68] which is tailored for problems with this structure. However, to set up
the dual problem, operator equations in the space X have to be solved which usually cannot be done
exactly. Thus, we include an error analysis to bound the error between the primal solution and the
solution to the perturbed dual problem.

In order to ease presentation, from now on we do not discriminate between Ψ̂ and Ψ. For the rest of
this section, the prime symbol ′ indicates that a variable is an element of a dual space, e.g., g′ ∈ X∗.
Now choose g′j ∈ X∗ and s j ∈ R such that the cutting plane m j ∈ M̂ can be represented via m j(·) =
〈g′j, ·〉X∗,X + s j, j ∈ I := {1, . . . ,np}. Then we can write the reduced bundle subproblem (4.1.2) in the
form

minimize
y∈X

Ψ(y) = max
j∈I

{
〈g′j,y〉X∗,X + s j

}
+ α

2 ‖y‖
2
X + 1

2‖ι(y− xSI)‖2
Q+τRY

. (4.2.1)

61



4. The bundle subproblem

Rearranging terms and substituting d := y− xSI ∈ X gives the equivalent problem

minimize
d∈X

Ψ(xSI +d) = 1
2〈Fd,d〉X∗,X +max

j∈I

{
〈p′j,d〉X∗,X +q j

}
, (4.2.2)

where F ∈L (X ,X∗) is defined by F := αRX + ι∗(Q + τRY )ι and p′j := g′j +αRX xSI ∈ X∗, q ∈ Rnp ,
q j := s j + 〈g′j,xSI〉X∗,X + α

2 ‖xSI‖2
X , j ∈ I.

LEMMA 4.2.1. If Q fulfills the assumptions of Section 3.1.6, then the operator F ∈L (X ,X∗) is in-
vertible.

Proof. Since 〈F ·, ·〉X∗,X : X×X→R is a bounded and coercive bilinear form, the Lax-Milgram theorem
(Theorem 2.3.2) implies that F is invertible.

Define Ψλ : Rnp → R by Ψλ (λ ) := Ψ(xSI−∑i∈I λiF−1 pi) and consider the dual problem

minimize
λ∈Rnp

Ψλ (λ ) =
1
2 λ
>Hλ +max

j∈I
(q−Hλ ) j

subject to λ ∈ Λ,
(4.2.3)

where we define Λ := {λ ∈ Rnp : λi ≥ 0, i ∈ I,∑i∈I λi = 1} and H ∈ Rnp×np by Hi, j := 〈p′i,F−1 p j〉X∗,X ,
i, j ∈ I. Note that the matrix H is positive semidefinite because 〈F ·, ·〉X∗,X is positive semidefinite and

λ
>Hλ = 〈F(∑

i∈I
λiF−1 p′i),∑

j∈I
λ jF−1 p′j〉X∗,X ≥ 0 for all λ ∈ Rnp . (4.2.4)

Problems (4.2.1) and (4.2.3) are equivalent in the following sense:

LEMMA 4.2.2. The problem (4.2.1) has a unique solution y∗ ∈ X and there exists a λ̂ ∈ Λ such that
y∗ = xSI−∑i∈I λ̂iF−1 p′i. Furthermore, λ ∗ ∈ Λ solves problem (4.2.3) if and only if xSI−∑i∈I λ ∗i F−1 p′i
solves problem (4.2.1).

Proof. Since α > 0, the objective function Ψ is strongly convex and (4.2.1) has a unique solution.
Denote this solution by y∗ ∈ X . Then d∗ := y∗− xSI is the solution of problem (4.2.2). The optimality
condition is given by 0 ∈ ∂Ψ(·+ xSI)(d∗). Since F is self-adjoint, the derivative of 1

2〈F ·, ·〉X∗,X at d∗

is Fd∗ and we find 0 ∈ Fd∗+∂ (max j∈I{〈p′j, ·〉X∗,X +q j})(d∗). Thus, there exists λ̂ ∈ Λ such that 0 =

Fd∗+∑i∈I λ̂i p′i. Since F ∈L (X ,X∗) is invertible it holds y∗ = d∗+ xSI = xSI−∑i∈I λ̂iF−1 p′i. Now let
λ ∗ ∈ argminλ∈Λ Ψλ (λ ). As just shown, the solution of (4.2.1) can be written as y∗= xSI−∑i∈I λ̂iF−1 p′i
with λ̂ ∈ Λ. The definition of Ψλ yields

Ψ(xSI−∑
i∈I

λ
∗
i F−1 p′i) = Ψλ (λ

∗)≤Ψλ (λ̂ ) = Ψ(y∗) = min
y∈X

Ψ(y),

i.e., xSI−∑i∈I λ ∗i F−1 p′i solves problem (4.2.1). Finally let xSI−∑i∈I λ ∗i F−1 p′i be the solution to (4.2.1).
Then

Ψλ (λ
∗) = Ψ(xSI−∑

i∈I
λ
∗
i F−1 p′i)≤Ψ(xSI−∑

i∈I
λiF−1 p′i) = Ψλ (λ ) for all λ ∈ Rnp ,

i.e., λ ∗ solves problem (4.2.3).
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4.2.1. Approximation of the dual problem

In many cases, the matrix H cannot be computed exactly since this involves evaluating the operator
F−1. Thus, we now study how to approximate the dual problem (4.2.3) in such a way, that the solution
to the approximated dual problem yields an approximation of the solution to the bundle subproblem
(4.2.1). Let pF−1

j ∈ X , j ∈ I, be arbitrary and define H̃ ∈ Rnp×np by H̃i, j := 〈p′i, pF−1

j 〉X∗,X , i, j ∈ I. Later

we use pF−1

j as an approximation of F−1 p′j such that the matrix H̃ can be computed exactly. For εH ≥ 0,
we formulate the approximated problem

minimize
λ∈Rnp

Ψ̃λ (λ ) := 1
2 λ
>H̃λ + εH

2 ‖λ‖
2
2 +max

j∈I
(q− H̃λ ) j

subject to λ ∈ Λ.
(4.2.5)

Although H is positive semidefinite (cf. (4.2.4)), H̃ may lack this property. To be able to solve (4.2.5)
efficiently, the term εH

2 ‖λ‖
2
2 is added. For εH ≥ 0 sufficiently large, the objective function Ψ̃λ is strongly

convex (cf. Lemma 4.2.6). Problem (4.2.5) can be reformulated into the equivalent linear-quadratic
optimization problem

minimize
(λ ,m)∈Rnp+1

1
2 λ
>Ĥλ +m

subject to (q− H̃λ ) j ≤ m, j ∈ I,

λ ∈ Λ,

(4.2.6)

where Ĥ := H̃∆ + εHInp with H̃∆ := 1
2(H̃+ H̃

>
) and Inp ∈ Rnp×np is the identity matrix. Let λmin(·)

denote the smallest eigenvalue of a symmetric matrix. If εH ≥max{0,−λmin(H̃∆)}, then the objective
function is convex and every local solution of this problem is also a global solution. This problem
can be solved using standard methods such as active-set and interior-point algorithms, see, e.g., [97,
Chap. 16]. If εH > max{0,−λmin(H̃∆)}, the matrix Ĥ is positive definite and one can apply the active
set method developed in [68] which is specially tailored for problems of this type.

To obtain an approximation ỹ∗ of the solution y∗ to problem (4.2.1), we choose pF−1

j ∈ X and εH ≥ 0,

solve problem (4.2.5) which yields the solution λ̃ ∗ and set ỹ∗ = xSI −∑i∈I λ̃ ∗i pF−1

i . The following
theorem gives an error bound on Ψ(ỹ∗)−Ψ(y∗).

LEMMA 4.2.3. Let pF−1

j ∈ X, j ∈ I, be arbitrary. Let y∗ be the solution of problem (4.2.1), let λ̃ ∗ be the

solution of problem (4.2.5) and define d̃∗ := ∑ j∈I λ̃ ∗j pF−1

j ∈ X, ỹ∗ := xSI− d̃∗ ∈ X and d̊′ := ∑i∈I λ̃ ∗i p′i ∈
X∗. Then it holds

Ψ(ỹ∗)−Ψ(y∗)≤ 1
2〈Fd̃∗− d̊′, d̃∗〉X∗,X + εH

2 (1−‖λ̃ ∗‖2
2)

+ 1
2 max

i, j∈I
〈p′i, pF−1

j −F−1 p′j〉X∗,X +max
i, j∈I
〈p′i,F−1 p′j− pF−1

j 〉X∗,X .

Proof. We split Ψ(ỹ∗)−Ψ(y∗) =
(
Ψ(ỹ∗)− Ψ̃λ (λ̃

∗)
)
+
(
Ψ̃λ (λ̃

∗)−Ψλ (λ
∗)
)

and estimate both differ-
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4. The bundle subproblem

ences. Denoting H̊ := H̃+ εHInp−H, we find

Ψ̃λ (λ̃
∗)−Ψλ (λ

∗)≤ Ψ̃λ (λ
∗)−Ψλ (λ

∗) = 1
2 λ
∗>H̊λ

∗+max
j∈I

(q− H̃λ
∗) j−max

j∈I
(q−Hλ

∗) j.

Since λ ∗ ∈ Λ it holds

λ
∗
mH̊m,nλ

∗
n ≤ λ

∗
mλ
∗
n max

i, j∈I
H̊i, j for all m,n ∈ I,

which shows that

λ
∗>H̊λ

∗ = ∑
m,n∈I

λ
∗
mH̊m,nλ

∗
n ≤max

i, j∈I
H̊i, j ∑

m∈I
λ
∗
m ∑

n∈I
λ
∗
n = max

i, j∈I
H̊i, j.

Furthermore,

max
j∈I

(q− H̃λ
∗) j = max

j∈I

(
((H− H̃)λ ∗) j +(q−Hλ

∗) j
)
≤max

j∈I
((H− H̃)λ ∗) j +max

j∈I
(q−Hλ

∗) j.

Combining this yields

Ψ̃λ (λ̃
∗)−Ψλ (λ

∗)≤ 1
2 max

i, j∈I
H̊i, j +max

j∈I
((H− H̃)λ ∗) j ≤ 1

2 max
i, j∈I

(H̃−H)i, j +
εH
2 +max

i, j∈I
(H− H̃)i, j,

and it holds (H− H̃)i, j = 〈p′i,F−1 p′j− pF−1

j 〉X∗,X for i, j ∈ I. Furthermore, the definitions of Ψ and Ψ̃λ

give

Ψ(ỹ∗) = Ψ(xSI−∑
j∈I

λ̃
∗
j pF−1

j ) = 1
2 ∑

i, j∈I
λ̃
∗
i 〈F pF−1

i , pF−1

j 〉X∗,X λ̃
∗
j +max

j∈I
(q− H̃λ̃

∗) j

and

Ψ̃λ (λ̃
∗) = 1

2 ∑
i, j∈I

λ̃
∗
i 〈p′i, pF−1

j 〉X∗,X λ̃
∗
j +

εH
2 ‖λ̃

∗‖2
2 +max

j∈I
(q− H̃λ̃

∗) j.

Therefore, we find

Ψ(ỹ∗)− Ψ̃λ (λ̃
∗) = 1

2 ∑
i, j∈I

λ̃
∗
i 〈F pF−1

i − p′i, pF−1

j 〉X∗,X λ̃
∗
j − εH

2 ‖λ̃
∗‖2

2

= 1
2〈Fd̃∗− d̊′, d̃∗〉X∗,X − εH

2 ‖λ̃
∗‖2

2.

To turn this theorem into a computable error bound, one has to choose pF−1

j ∈ X , j ∈ I, such that bounds

on the errors ‖F−1 p′j− pF−1

j ‖X and ‖Fd̃∗− d̊′‖X∗ can be computed.

Assumption 4.2.4. For the approximations pF−1

j ∈ X , j ∈ I, there exist corresponding error estimates
ei, j,F−1 ∈ R, i, j ∈ I, and eF ∈ R fulfilling

|〈p′i,F−1 p′j− pF−1

j 〉X∗,X | ≤ ei, j,F−1 and 〈Fd̃∗− d̊′, d̃∗〉X∗,X ≤ eF .
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4. The bundle subproblem

Remark 4.2.5. As d̃∗ = ∑ j∈I λ̃ ∗j pF−1

j ∈ X and d̊′ := ∑i∈I λ̃ ∗i p′i ∈ X∗, we find

〈Fd̃∗− d̊′, d̃∗〉X∗,X ≤ ‖Fd̃∗− d̊′‖X∗‖d̃∗‖X ≤ ‖d̃∗‖X ∑
j∈I

λ̃
∗
j ‖F pF−1

j − p′j‖X∗ .

Thus, if pF−1

j is a sufficiently accurate approximation of F−1 p′j, then the values of eF and ei, j,F−1 can
simultaneously be chosen small.

In the following, a convex optimization problem with a µ-strongly convex objective function, µ > 0, is
called a µ-strongly convex optimization problem.

LEMMA 4.2.6. Choose a safeguarding parameter εs > 0. Then the approximated bundle subproblem
(4.2.6) with εH := max{0,εs− λmin(H̃∆)} is εs-strongly convex. Let Assumption 4.2.4 hold true and
define

eλ :=

{
0 if λmin(H̃∆)≥ εs,
1
2

(
εs +

1
2 maxi∈I ∑ j∈I(ei, j,F−1 + e j,i,F−1)

)
(1−‖λ̃ ∗‖2

2) else.
(4.2.7)

Then it holds Ψ(ỹ∗)−miny∈X Ψ(y)≤ 1
2 eF + 3

2 maxi, j∈I ei, j,F−1 + eλ .

Proof. Since Ĥ is defined by Ĥ= H̃∆+εHInp , where Inp ∈Rnp×np is the identity matrix, it is easy to see
that the given choice of εH implies that Ĥ has smallest eigenvalue εs. Therefore, the problem (4.2.6) is
εs-strongly convex. In the case that εH = 0, Lemma 4.2.3 shows

Ψ(ỹ∗)−Ψ(y∗)≤ 1
2 eF + 3

2 max
i, j∈I

ei, j,F−1 ≤ 1
2 eF + 3

2 max
i, j∈I

ei, j,F−1 + eλ .

In the case that εH > 0, i.e., εH = εs − λmin(H̃∆), we proceed as follows. Since the matrix H =
(〈p′i,F−1 p′j〉X∗,X)i, j is positive semidefinite (cf. (4.2.4)), we find both

λmin(H̃∆−H) = min
‖λ‖2=1

λ
>(H̃∆−H)λ ≤ min

‖λ‖2=1
λ
>H̃∆λ = λmin(H̃∆)

and

εH = εs−λmin(H̃∆)≤ εs−λmin(H̃∆−H). (4.2.8)

By the Gershgorin circle theorem [37, Thm. 2], for any symmetric matrix A ∈ Rnp×np it holds that

−λmin(A) = λmax(−A) ∈
⋃
i∈I

[
−Ai,i− ∑

j∈I, j 6=i
|Ai, j|,−Ai,i + ∑

j∈I, j 6=i
|Ai, j|

]
,

which shows −λmin(A)≤maxi∈I ∑ j∈I |Ai, j|. Consequently, by Assumption 4.2.4,

−λmin(H̃∆−H)≤max
i∈I

∑
j∈I

1
2 |〈p

′
i,F
−1 p′j− pF−1

j 〉X∗,X + 〈p′j,F−1 p′i− pF−1

i 〉X∗,X |

≤ 1
2 max

i∈I
∑
j∈I

ei, j,F−1 + e j,i,F−1 .
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Combining this with Lemma 4.2.3 and (4.2.8) shows

Ψ(ỹ∗)−Ψ(y∗)≤ 1
2 eF + 3

2 max
i, j∈I

ei, j,F−1 + 1
2(εs +

1
2 max

i∈I
∑
j∈I

ei, j,F−1 + e j,i,F−1)(1−‖λ̃ ∗‖2
2).

In order to construct an executable algorithm, we need the following assumption.

Assumption 4.2.7. Define the set P := {p′i, i ∈ I} ⊂ X∗. We assume that there is a computable oracle
OF−1 : P× (0,1]→ X , which, given p′i ∈ P and an accuracy level h ∈ (0,1], returns an approximation
pF−1

i := OF−1(p′i,h) of F−1 p′i for all i ∈ I. We assume that there exist corresponding computable error
bounds ε̂F−1 : P×P× (0,1]→ (0,∞) and ε̂F : co({pF−1

i , i ∈ I})×co(P)× (0,1]→ (0,∞) and that there
exist constants CF > 0 and CF−1 > 0 such that for all pi, p j ∈ P it holds

|〈p′i,F−1 p′j− pF−1

j 〉X∗,X | ≤CF−1 ε̂F−1(p′i, p′j,h), ε̂F−1(p′i, p′j,h)→ 0 as h→ 0

and for arbitrary λ ∈ Λ := {λ ∈ [0,∞)np : ∑
np
j=1 λ j = 1} with d̃∗ := ∑ j λ j pF−1

j , d̊′ := ∑ j λ j p′j it holds

〈Fd̃∗− d̊′, d̃∗〉X∗,X ≤CF ε̂F(d̃∗, d̊′,h), ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0.

We further assume that the constants CF and CF−1 do not depend on F , p′i, pF−1

i , i ∈ I, and h.

Now, Lemma 4.2.6 motivates Algorithm 4.2.

THEOREM 4.2.8. Assume that the oracle OF−1 and the error estimates ε̂F and ε̂F−1 fulfill Assump-
tion 4.2.7. Further suppose that the terms 〈p′i, pF−1

j 〉X∗,X , i, j ∈ I in line 3 of Algorithm 4.2 can be com-
puted exactly. Then Algorithm 4.2 can be executed. Denote by ỹ∗h and eh

y the output of Algorithm 4.2
for accuracy h ∈ (0,1] and safeguarding parameter εh

s . Then it holds

Ψ(ỹ∗h)−min
y∈X

Ψ(y)≤max{CF ,CF−1 ,1}eh
y .

If the safeguarding parameters (εh
s )h ⊂ (0,∞) are chosen such that εh

s → 0 as h→ 0, then eh
y → 0 as

h→ 0. In particular, Os(Ψ̂,h) := ỹ∗h, ε̂s(Ψ̂,h) := eh
y and C

Ψ̂
:= max{CF ,CF−1 ,1} fulfill (4.1.3) and

thus can be used as a subproblem oracle with corresponding error estimates.

Proof. By Lemma 4.2.6, we find

Ψ(ỹ∗h)−min
y∈X

Ψ(y)≤ 1
2 eF + 3

2 max
i, j∈I

ei, j,F−1 + eλ = 1
2CF ε̂F(d̃∗, d̊′,h)+ 3

2CF−1 max
i, j∈I

ε̂F−1(p′i, p′j,h)+ ẽλ ,

where

ẽλ =

{
0 if λmin(H̃∆)≥ εh

s ,
1
2

(
εh

s +CF−1
1
2 maxi∈I ∑ j∈I(ε̂F−1(p′i, p′j,h)+ ε̂F−1(p′j, p′i,h))

)
(1−‖λ̃ ∗‖2

2) else.

This readily shows Ψ(ỹ∗h)−miny∈X Ψ(y)≤max{CF ,CF−1 ,1}eh
y .
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Algorithm 4.2: Solving the reduced bundle subproblem [(ỹ∗h,eh
y) := SolveSubproblem(h,εh

s )]

Parameters: Oracle OF−1 and error estimates ε̂F and ε̂F−1 which fulfill Assumption 4.2.7. Serious
iterate xSI ∈ X , subgradients g′j ∈ X∗, j ∈ I = {1, . . . ,np}, np ∈ N+.

Input : Accuracy parameter h. Safeguarding parameter εh
s > 0

Output : Approximate solution of the reduced bundle subproblem ỹ∗h with error estimate eh
y .

1 Set p′j := g′j +αRX xSI ∈ X∗, j ∈ I.

2 Compute pF−1

j := OF−1(p′j,h) and ei, j,F−1 := ε̂F−1(p′i, p′j,h) for i, j ∈ I.

3 Set H̃i, j := 〈p′i, pF−1

j 〉X∗,X , i, j ∈ I, H̃∆ := 1
2(H̃+ H̃

>
), εH := max{0,εh

s −λmin(H̃∆)} and
Ĥ := H̃∆ + εHInp .

4 Compute (λ̃ ∗,m∗) via

(λ̃ ∗,m∗) := argmin
λ ,m

1
2 λ
>Ĥλ +m

subject to (q− H̃λ ) j ≤ m, j ∈ I

λ ∈ Λ,m ∈ R.

5 Set d̃∗ := ∑ j∈I λ̃ ∗j pF−1

j and d̊′ := ∑i∈I λ̃ ∗i p′i ∈ X∗ and compute eF := ε̂F(d̃∗, d̊′,h).
6 if λmin(H̃∆)≥ εh

s then
7 Set eλ := 0.
8 else
9 Set eλ := 1

2

(
εh

s +
1
2 maxi∈I ∑ j∈I(ei, j,F−1 + e j,i,F−1)

)
(1−‖λ̃ ∗‖2

2).
10 end
11 Set ỹ∗h := xSI− d̃∗ and eh

y := 1
2 eF + 3

2 maxi, j∈I ei, j,F−1 + eλ .

4.3. Discretization

In the case that X and Y are infinite dimensional Hilbert spaces, we cannot work with arbitrary elements
x ∈ X because this would need an infinite amount of storage. In this section we employ a discretiza-
tion which facilitates the development of computable oracles OF−1 and error estimates ε̂F , ε̂F−1 which
fulfill Assumption 4.2.7. To do so, let Y ∗h ⊂ Y ∗, h > 0, be a finite dimensional linear subspace of
Y ∗ equipped with the same inner product as Y ∗. Then by [129, Cor. 5.25.10], Y ∗h is a Hilbert space.
Since Y ∗h is closed, the projection operator PY ∗h ∈L (Y ∗) (cf. Section 2.1.2) is well-defined. Further,
we define the finite dimensional Hilbert spaces X∗h := (ι∗Y ∗h,(·, ·)X∗), Xh := (R−1

X ι∗Y ∗h,(·, ·)X) and
Y h := (ιR−1

X ι∗Y ∗h,(·, ·)Y ). We work under the following assumption:

Assumption 4.3.1. The quantities (xh,yh)Y ∗ and (ι∗xh, ι∗yh)X∗ can be computed exactly for all xh,yh ∈
Y ∗h.

Remark 4.3.2. In the case that Y ∗ = H1
0 (Ω) and X∗ = L2(Ω), one can choose Y ∗h as a space of finite

element functions, cf. Section 5.3. Then, the quantities (xh,yh)Y ∗ = (xh,yh)H1
0 (Ω) and (ι∗xh, ι∗yh)X∗ =

(ι∗xh, ι∗yh)L2(Ω) can be computed exactly for arbitrary finite element functions xh,yh ∈ Y ∗h.
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Remark 4.3.3. Note that the space X∗h := (ι∗Y ∗h,(·, ·)X∗) might not be a natural discretization of the
space X∗. For example, in the case Y ∗ = H1

0 (Ω) and X∗ = L2(Ω), every function in Y ∗ = H1
0 (Ω) is

equals to zero on the boundary of Ω (in the sense of traces). Therefore, X∗h only contains functions
which are zero on the boundary, whereas X∗ = L2(Ω) contains functions which are not equals to zero
on the boundary of Ω. However, for our purposes it suffices to calculate an approximation of F and
F−1. This can be done with the given discretization because it holds Fxh ∈ X∗h and F−1R−1

X xh ∈ Xh

for all xh ∈ Xh, cf. (4.3.3) and (4.3.4).

Remark 4.3.4. The choice of the subspace Y ∗h plays a vital role in the quality of the approximation. In
Sections 5.4 and 5.5 we discuss different strategies for choosing Y ∗h.

4.3.1. No curvature information Q = 0

In this subsection we develop suitable approximations and error estimates to fulfill Assumption 4.2.4
for the case of no curvature Q = Q0 = 0. As Q0 = 0 fulfills the assumptions of Section 3.1.6 (cf. Re-
mark 3.1.7), Lemma 4.2.1 implies that the operator F0 := αRX + ι∗(Q0 + τRY )ι = αRX + τι∗RY ι is
invertible. We define the operators Ẽ, D̃τ ∈L (Y ∗) by Ẽ := RY ιR−1

X ι∗ and D̃τ := α IdY ∗+τẼ, respec-
tively. Here and in the following, the tilde symbol over an operator indicates that the operator is an
element of L (Y ∗). Using the identities of Section 2.1, we find for all x′,y′ ∈ Y ∗ that

(Ẽx′,y′)Y ∗ = (RY ιR−1
X ι
∗x′,y′)Y ∗ = 〈y′, ιR−1

X ι
∗x′〉Y ∗,Y = 〈ι∗y′,R−1

X ι
∗x′〉X∗,X = (ι∗y′, ι∗x′)X∗ (4.3.1)

and

(D̃τx′,y′)Y ∗ = α(x′,y′)Y ∗+ τ(Ẽx′,y′)Y ∗ = α(x′,y′)Y ∗+ τ(ι∗x′, ι∗y′)X∗ . (4.3.2)

In particular, this shows that Ẽ and D̃τ are Hilbert space self-adjoint operators according to Defini-
tion 2.1.2. Furthermore,

F0R−1
X ι
∗ = αι

∗+ τι
∗RY ιR−1

X ι
∗ = ι

∗(α IdY ∗+τRY ιR−1
X ι
∗) = ι

∗D̃τ . (4.3.3)

The definition of D̃τ and (4.3.1) yield (D̃τx′,x′)Y ∗ = α‖x′‖2
Y ∗ + τ‖ι∗x′‖2

X∗ ≥ α‖x′‖2
Y ∗ for all x′ ∈ Y ∗.

Therefore, the bilinear form (D̃τ ·, ·)Y ∗ is coercive and Corollary 2.3.3 yields that D̃τ ∈L (Y ∗) is invert-
ible. Thus, we find

F−1
0 ι

∗ = F−1
0 ι

∗D̃τD̃−1
τ = R−1

X ι
∗D̃−1

τ . (4.3.4)

For arbitrary y′ ∈ Y ∗, z′ := D̃−1
τ y′ ∈ Y ∗ is characterized by the variational equation

Find z′ ∈ Y ∗ : α(z′,w′)Y ∗+ τ(ι∗z′, ι∗w′)X∗ = (y′,w′)Y ∗ for all w′ ∈ Y ∗. (4.3.5)

Consequently, for v,w ∈ Xh, i.e., v = R−1
X ι∗vh, w = R−1

X ι∗wh with vh,wh ∈ Y ∗h, we compute

(ιv, ιw)Q+τRY = (ιv, ιw)τRY = τ〈RY ιR−1
X ι
∗vh, ιR−1

X ι
∗wh〉Y ∗,Y = τ(ι∗Ẽvh, ι∗wh)X∗ ,

〈F0v,w〉X∗,X = (F0R−1
X ι
∗vh, ι∗wh)X∗ = (ι∗D̃τ vh, ι∗wh)X∗ ,
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and for v′ := ι∗vh ∈ X∗h, w′ := ι∗wh ∈ X∗h we get

〈v′,F−1
0 w′〉X∗,X = 〈ι∗vh,F−1

0 ι
∗wh〉X∗,X = (ι∗vh, ι∗D̃−1

τ wh)X∗ .

In the following we study how to approximate the operators Ẽ and D̃−1
τ ∈L (Y ∗).

The operator Ẽh

We approximate Ẽ by Ẽh :=PY ∗hẼ|Y ∗h ∈L (Y ∗h), where PY ∗h ∈L (Y ∗) is the orthogonal projection onto
the closed linear subspace Y ∗h, cf. Section 2.1.2. By Lemma 2.1.7 and (4.3.1), for arbitrary zh ∈ Y ∗h,
Ẽhzh ∈ Y ∗h is characterized via the variational equation

(Ẽhzh,wh)Y ∗ = (PY ∗hẼzh,wh)Y ∗ = (Ẽzh,wh)Y ∗ = (ι∗zh, ι∗wh)X∗ for all wh ∈ Y ∗h. (4.3.6)

By Assumption 4.3.1, we can compute (·, ·)Y ∗ and (ι∗·, ι∗·)X∗ exactly for arguments from Y ∗h. Thus,
we can evaluate the operator Ẽh exactly by solving a finite dimensional system of linear equations.

The operator D̃h
τ

We approximate D̃τ by D̃h
τ := α IdY ∗h +τẼh ∈ L (Y ∗h). Contrary to Ẽ, we cannot approximate D̃−1

τ

via PY ∗hD̃−1
τ since PY ∗hD̃−1

τ cannot be evaluated in the same manner as PY ∗hẼ. Instead, we proceed as
follows: From the fact (D̃h

τ xh,xh)Y ∗ = α‖xh‖2
Y ∗ + τ‖ι∗xh‖2

X∗ ≥ α‖xh‖2
Y ∗ for all xh ∈ Y ∗, we infer that

the bilinear form (D̃h
τ ·, ·)Y ∗ : Y ∗h×Y ∗h → R is coercive (in Y ∗h). Thus, Corollary 2.3.3 implies that

D̃h
τ ∈L (Y ∗h) is invertible. We approximate D̃−1

τ via D̃−h
τ := (D̃h

τ)
−1. Note that for arbitrary yh ∈ Y ∗h,

zh := D̃−h
τ yh ∈ Y ∗h is characterized by the finite dimensional variational equation

Find zh ∈ Y ∗h : α(zh,wh)Y ∗+ τ(ι∗zh, ι∗wh)X∗ = (yh,wh)Y ∗ for all wh ∈ Y ∗h (4.3.7)

and, under Assumption 4.3.1, we can compute D̃−h
τ yh exactly.

Error estimates for Q = 0

In the following, we work under the assumptions:

Assumption 4.3.5. The serious iterate xSI is an element of Xh and the subgradients g′j are elements of
X∗h for all j ∈ I.

Assumption 4.3.6. For arbitrary xh,yh ∈ Y ∗h, there exists an error estimate eE
xh,yh ≥ 0 fulfilling

(ι∗(Ẽ− Ẽh)xh, ι∗yh)X∗ ≤ eE
xh,yh .

Assumption 4.3.7. For arbitrary xh,yh ∈ Y ∗h, there exists an error estimate eD−1

xh,yh ≥ 0 fulfilling

|(ι∗xh, ι∗(D̃−1
τ − D̃−h

τ )yh)X∗ | ≤ eD−1

xh,yh . (4.3.8)

Remark 4.3.8. Since both Ẽ and D̃−1
τ can be characterized by variational equations, several techniques

for error estimates which fulfill the previous assumption are available, for example a priori or a poste-
riori error estimates (cf. Theorems 4.6.7 and 5.5.3).
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LEMMA 4.3.9. Let Assumption 4.3.5 hold such that xSI = R−1
X ι∗xh

SI, g′j = ι∗gh
j with xh

SI,g
h
j ∈ Y ∗h and

set ph
j := gh

j + αxh
SI ∈ Y ∗h, j ∈ I. Further let Assumptions 4.3.6 and 4.3.7 hold and define d̃∗h :=

∑ j∈I λ̃ ∗j D̃−h
τ ph

j ∈ Y ∗h. Then the approximation pF−1

j := R−1
X ι∗D̃−h

τ ph
j and the error estimates ei, j,F−1 :=

eD−1

ph
i ,p

h
j

and eF := τeE
d̃∗h,d̃∗h , i, j ∈ I, fulfill Assumption 4.2.4.

Proof. First note that p′j = g′j +αRX xSI = ι∗ph
j , j ∈ I. From (4.3.4), we deduce

|〈p′i,F−1
0 p′j− pF−1

j 〉X∗,X |= |(ι∗ph
i , ι
∗(D̃−1

τ − D̃−h
τ )ph

j)X∗ | ≤ eD−1

ph
i ,p

h
j
= ei, j,F−1 .

Furthermore, the definition of d̃∗ (cf. Lemma 4.2.3) and (4.3.3) yield d̃∗ = R−1
X ι∗d̃∗h ∈ Xh and

F0d̃∗ = F0R−1
X ι
∗d̃∗h = ι

∗D̃τ d̃∗h.

The definition of d̊′ ∈ X∗ and D̃−h
τ = (D̃h

τ)
−1 give

d̊′ = ∑
j∈I

λ̃
∗
j ι
∗D̃h

τD̃−h
τ ph

j = ι
∗D̃h

τ d̃∗h.

Therefore, we estimate

〈F0d̃∗− d̊′, d̃∗〉X∗,X = (ι∗(D̃τ − D̃h
τ)d̃
∗h, ι∗d̃∗h)X∗ = τ(ι∗(Ẽ− Ẽh)d̃∗h, ι∗d̃∗h)X∗ ≤ τeE

d̃∗h,d̃∗h = eF .

4.4. L-BFGS curvature in Hilbert space

In smooth optimization, the BFGS formula is among the most successful ways to approximate the
Hessian of a given function using only first-order derivative information. Also for nonsmooth opti-
mization, it was successfully implemented, cf. [79]. For large-scale optimization problems however, it
is not feasible to store the full BFGS curvature in memory. Instead, one can use the limited memory
BFGS (L-BFGS) formula which was introduced in the finite dimensional setting in [96]. In this section
we present a curvature operator QBFGS based on the L-BFGS formula in Hilbert space and develop
error estimates for the corresponding operator FBFGS := α IdX +R−1

X ι∗(QBFGS + τRY )ι which fulfill
Assumption 4.2.4.

Let Y be a Hilbert space, let H0 ∈L (Y,Y ∗) be an operator and let L ∈ N+ be a given number. Denote
by Lit ∈ N+ the number of previous calculated trial iterates and set L̃ := min{L,Lit}. Further denote
by yl ∈ Y the (L̃− l)th previous trial iterate and by g′l ∈ Y ∗ the corresponding subgradient, where
0 ≤ l ≤ L̃. We define dl := yl+1− yl ∈ Y and r′l := g′l+1− g′l ∈ Y ∗. The BFGS update formula to
determine Hl+1 ∈L (Y,Y ∗), 0≤ l < L̃, is given by

Hl+1 := Hl +
〈r′l, ·〉Y ∗,Y
〈r′l,dl〉Y ∗,Y

r′l−
〈Hldl, ·〉Y ∗,Y
〈Hldl,dl〉Y ∗,Y

Hldl. (4.4.1)

This gives rise to the L-BFGS curvature operator, which is given by HL̃. Using this formula yields
curvature operators with positive curvature:
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4. The bundle subproblem

LEMMA 4.4.1. If 〈H0 ·, ·〉Y ∗,Y is a symmetric and positive bilinear form on Y and 〈r′l,dl〉Y ∗,Y > 0 for all
l ∈ N, then 〈Hl ·, ·〉Y ∗,Y is a symmetric and positive definite bilinear form for all l ∈ N.

Proof. The proof of this classical result follows the lines of [125, Thm. 13.4]. Proof by induction.
The start for l = 0 is already given. Now assume this holds for l ∈N. Then the symmetric and positive
definite bilinear form 〈Hl ·, ·〉Y ∗,Y defines the inner product (·, ·)Hl on Y . For arbitrary y∈Y , the Cauchy-
Schwarz inequality yields

(dl,y)2
Hl

(dl,dl)Hl

≤
‖dl‖2

Hl
‖y‖2

Hl

‖dl‖2
Hl

= ‖y‖2
Hl
,

and this inequality is strict if dl and y are linearly independent. In this case we see

〈Hl+1y,y〉Y ∗,Y = (y,y)Hl +
〈r′l,y〉2Y ∗,Y
〈r′l,dl〉Y ∗,Y

−
(dl,y)2

Hl

(dl,dl)Hl

>
〈r′l,y〉2Y ∗,Y
〈r′l,dl〉Y ∗,Y

≥ 0.

If dl and y are not linearly independent and y 6= 0 there exists t ∈ R\{0} such that y = tdl and we get

〈Hl+1y,y〉Y ∗,Y =
〈r′l, tdl〉2Y ∗,Y
〈r′l,dl〉Y ∗,Y

= t2〈r′l,dl〉Y ∗,Y > 0.

Since Hl+1 is obviously symmetric, this shows that Hl+1 is a symmetric and positive definite bilinear
form.

4.4.1. Approximate L-BFGS curvature

From now on we work under the assumption that the (L̃− l)th previous trial iterate yl is an element
of Y h = ιR−1

X ι∗Y ∗h and that the corresponding subgradient gh
l is an element of Y ∗h for 0 ≤ l ≤ L̃ (cf.

Section 4.3 for the definition of Y h and Y ∗h). Therefore, there exist elements dh
l ∈ Y ∗h and rh

l ∈ Y ∗h

such that dl = yl+1− yl = ιR−1
X ι∗dh

l and rh
l = gh

l+1− gh
l . Naturally, we choose H0 := µRY , µ > 0. If

we use the exact L-BFGS formula (4.4.1) to assemble the curvature operator, then the evaluation of
HL̃ requires the exact computation of, e.g., 〈H0d0,d0〉Y ∗,Y = µ〈RY d0,d0〉Y ∗,Y = µ‖d0‖2

Y . However, this
might not be possible; under Assumption 4.3.1 only the approximation µ(Ẽhdh

0 ,d
h
0)Y ∗ can be computed

exactly. Since the term 〈H0d0,d0〉Y ∗,Y appears in the denominator in the L-BFGS formula (4.4.1), error
estimation may lead to a large error estimator even if the true error is small. Instead, we construct a
curvature operator QBFGS : Y → Y ∗ such that we can compute numbers qBFGS and q̄BFGS which bound
the curvature of QBFGS according to (3.1.17), the operator FBFGS := α IdX +R−1

X ι∗(QBFGS + τRY )ι is
invertible with inverse F−1

BFGS and both (FBFGS x,y)X and (x,F−1
BFGS y)X can be approximated efficiently

for all x,y ∈ Xh. To do so, we define Hh
0 := µẼh ∈L (Y ∗h) and Hh

l+1 ∈L (Y ∗h), 0≤ l < L̃, by

Hh
l+1 = Hh

l +
(ι∗rh

l , ι
∗·)X∗

(ι∗rh
l , ι
∗dh

l )X∗
rh

l −
(ι∗Hh

l dh
l , ι
∗·)X∗

(ι∗Hh
l dh

l , ι
∗dh

l )X∗
Hh

l dh
l . (4.4.2)

In the case that (ι∗rh
l , ι
∗dh

l )X∗ = 0 or (ι∗Hh
l dh

l , ι
∗dh

l )X∗ = 0, we exclude rh
l and dh

l from the L-BFGS
formula. Inspired by Lemma 4.4.1, if (ι∗rh

l , ι
∗dh

l )X∗ < 0 we also exclude rh
l and dh

l from the L-BFGS
formula. Define uh

l ,v
h
l ∈ Y ∗h, 1≤ l ≤ 2L̃, via
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4. The bundle subproblem

uh
2l+1 := rh

l , vh
2l+1 :=

rh
l

(ι∗rh
l , ι
∗dh

l )X∗
, for 0≤ l < L̃,

uh
2l+2 := Hh

l dh
l , vh

2l+2 :=−
Hh

l dl

(ι∗Hh
l dh

l , ι
∗dh

l )X∗
for 0≤ l < L̃.

(4.4.3)

Note that (under Assumption 4.3.1) we can compute uh
l and vh

l exactly. Further define

V h : Y → R2L̃, (V hy)l := 〈vh
l ,y〉Y ∗,Y and Uh : R2L̃→ Y ∗, Uh

β :=
2L̃

∑
l=1

uh
l βl. (4.4.4)

Then the approximate L-BFGS operator is given by

QBFGS := µRY +
2L̃

∑
l=1

uh
l 〈vh

l , ·〉Y ∗,Y = H0 +UhV h. (4.4.5)

The sole difference between the approximate L-BFGS operator QBFGS and the exact L-BFGS operator
HL̃ is that HlιR−1

X ι∗dh
l and 〈HlιR−1

X ι∗dh
l , ιR−1

X ι∗dh
l 〉Y ∗,Y are replaced by Hh

l dh
l and (ι∗Hh

l dh
l , ι
∗dh

l )X∗ ,
0≤ l < L̃, respectively.

4.4.2. The spectrum of QBFGS

To be able to use QBFGS as a curvature operator for the bundle method, we need to compute numbers
0≤ qBFGS ≤ q̄BFGS such that (3.1.17) is fulfilled, i.e.,

〈QBFGS v,v〉Y ∗,Y ≥−qBFGS‖v‖2
Y for all v ∈ Y and ‖QBFGS ‖L (Y,Y ∗) ≤ q̄BFGS.

Sharp estimates for qBFGS and q̄BFGS can be obtained by computing the spectrum of R−1
Y UhV h ∈L (Y ).

As R−1
Y UhV h is an operator with low rank, it is more efficient to compute the spectrum of the operator

V hR−1
Y Uh ∈L (R2L̃,R2L̃). Define the two numbers

qBFGS :=−min{0,µ +minσ(A)}, q̄BFGS := µ +max |σ(A)|, (4.4.6)

where A ∈ R2L̃×2L̃ is defined by Ak,l := (uh
k ,v

h
l )Y ∗ and σ(A) defines the set of eigenvalues of A. Note

that we can compute A and thus also qBFGS and q̄BFGS exactly.

THEOREM 4.4.2. The L-BFGS operator QBFGS ∈L (Y,Y ∗) is symmetric and the numbers qBFGS and
q̄BFGS fulfill (3.1.17).
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Proof. For all x,y ∈ Y it holds

〈QBFGS x,y〉Y ∗,Y = µ〈RY x,y〉Y ∗,Y +
2L̃

∑
l=1
〈uh

l ,y〉Y ∗,Y 〈vh
l ,x〉Y ∗,Y

= µ(x,y)Y +
2L̃

∑
l=1

〈rh
l ,y〉Y ∗,Y 〈rh

l ,x〉Y ∗,Y
(ι∗rh

l , ι
∗dh

l )X∗
−

2L̃

∑
l=1

〈Hh
l dh

l ,y〉Y ∗,Y 〈Hh
l dh

l ,x〉Y ∗,Y
(ι∗Hh

l dh
l , ι
∗dh

l )X∗

= 〈QBFGS y,x〉Y ∗,Y ,

i.e., QBFGS is symmetric and R−1
Y QBFGS ∈ L (Y ) is self-adjoint (cf. Lemma 2.1.3). Consequently,

Theorem A.3 implies

〈QBFGS v,v〉Y ∗,Y = (R−1
Y QBFGS v,v)Y ≥

(
µ +minσ(V hR−1

Y Uh)∪{0}
)
‖v‖2

Y for all v ∈ Y (4.4.7)

and

‖QBFGS ‖L (Y,Y ∗) = ‖R−1
Y QBFGS ‖L (Y ) ≤ µ +max |σ(V hR−1

Y Uh)|. (4.4.8)

Since for arbitrary α,β ∈ R2L̃ it holds

(V hR−1
Y Uh

α,β )R2L̃ =
2L̃

∑
l=1
〈vh

l ,R
−1
Y Uh

α〉Y ∗,Y βl =
2L̃

∑
l=1

2L̃

∑
k=1

αk(vh
l ,u

h
k)Y ∗βl = α

>Ab,

we deduce σ(V hR−1
Y Uh) = σ(A). Discriminating the three cases minσ(A)≤−µ,−µ < minσ(A)≤ 0

and minσ(A)> 0, one finds that

µ +min
{

σ(V hR−1
Y Uh)∪{0}

}
≥min

{
0,µ +minσ(A)∪{0}

}
= min

{
0,µ +minσ(A)

}
. (4.4.9)

Combining (4.4.7) and (4.4.9) yields 〈QBFGS v,v〉Y ∗,Y ≥−qBFGS‖v‖2
Y for all v∈Y and combining (4.4.8)

with σ(V hR−1
Y Uh) = σ(A) yields ‖QBFGS ‖L (Y,Y ∗) ≤ q̄BFGS.

For a given L-BFGS operator QBFGS , Theorem 4.4.2 enables us to find numbers 0 ≤ qBFGS ≤ q̄BFGS
which fulfill (3.1.17). To fulfill all requirements of Section 3.1.6, we need to make sure that q̄BFGS ≤ q̄,
where q̄∈ (0,∞) is a given constant. To ensure this, we change the L-BFGS formula whenever q̄BFGS >
q̄, possibly by using QBFGS := Hh

L̃−1 or by excluding rh
0 and dh

0 from the L-BFGS formula.

4.4.3. The operator FBFGS and its inverse

Similar to F0 in Section 4.3.1, in this section we define the operator F =FBFGS for the case of BFGS cur-
vature Q = QBFGS . Recall that in Section 4.3.1 the operator D̃τ = α IdY ∗+τẼ = α IdY ∗+τRY ιR−1

X ι∗ ∈
L (Y ∗) is introduced. We now define the operator

Dτ+µ := αRX +(τ +µ)ι∗RY ι ∈L (X ,X∗).
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If τ +µ ≥ 0, it can be shown (cf. Section 4.3.1) that Dτ+µ is invertible and it holds

Dτ+µR−1
X ι
∗ = ι

∗D̃τ+µ ,

D−1
τ+µ ι

∗ = R−1
X ι
∗D̃−1

τ+µ .

Also recall that the BFGS curvature is defined as QBFGS = µRY +UhV h ∈L (Y,Y ∗). We define

FBFGS := αRX + ι
∗(QBFGS + τRY )ι = Dτ+µ + ι

∗UhV h
ι ∈L (X ,X∗)

for τ ≥ qBFGS, where qBFGS is defined in (4.4.6). By Theorem 4.4.2, it holds for all x ∈ X that

〈FBFGS x,x〉X∗,X = α‖x‖2
X + 〈(Q+ τRY )ιx, ιx〉Y ∗,Y ≥ α‖x‖2

X +(τ−qBFGS)‖ιx‖2
Y ≥ α‖x‖2

X ,

i.e., the bilinear form 〈FBFGS ·, ·〉X∗,X : X ×X → R is coercive. Therefore, Corollary 2.3.3 shows that
FBFGS ∈L (X ,X∗) is invertible. The inverse of FBFGS can be calculated using the following theorem:

THEOREM 4.4.3 (Sherman-Morrison-Woodbury formula). Let X ,Y be Hilbert spaces. Let D∈L (X)
and Z ∈L (Y ) both be invertible and let U ∈L (Y,X) and V ∈L (X ,Y ). Then D+UZV is invertible
if and only if Z−1 +V D−1U is invertible and in this case it holds:

(D+UZV )−1 = D−1−D−1U(Z−1 +V D−1U)−1V D−1.

Proof. Simple calculation, see also [28].

COROLLARY 4.4.4. Let X ,Y be Hilbert spaces. Let D ∈L (X ,X∗) and Z ∈L (Y ) both be invertible
and let U ∈L (Y,X∗) and V ∈L (X ,Y ). Then D+UZV is invertible if and only if Z−1 +V D−1U is
invertible and in this case it holds:

(D+UZV )−1 = D−1−D−1U(Z−1 +V D−1U)−1V D−1.

Proof. Apply Theorem 4.4.3 to R−1
X D+(R−1

X U)ZV .

Corollary 4.4.4 yields that the inverse of FBFGS = Dτ+µ + ι∗UhV hι ∈L (X ,X∗) is given by

F−1
BFGS = D−1

τ+µ −D−1
τ+µ ι

∗Uh(IdR2L̃ +V h
ιD−1

τ+µ ι
∗Uh)−1V h

ιD−1
τ+µ (4.4.10)

and that the operator IdR2L̃ +V hιD−1
τ+µ ι∗Uh ∈L (R2L̃) is invertible for all τ ≥ qBFGS.

4.4.4. Approximation of the inverse of FBFGS

Note that we cannot compute D−1
τ+µ exactly. Consequently, F−1

BFGS p′j cannot be evaluated exactly via
(4.4.10) for arbitrary p′j ∈ X∗. The goal of this section is to provide a computable approximation

pF−1
BFGS

j ∈ X of F−1
BFGS p′j which can be used in Assumption 4.2.4. Recall that p′j = g′j +αRX xSI ∈ X∗, j ∈

I, where g′j ∈ X∗ are the approximated subgradients, and xSI ∈ X is the serious iterate (cf. Section 4.2).
In the following, let Assumption 4.3.5 be fulfilled, i.e., there exist ph

i ∈ Y ∗h such that p′i = ι∗ph
i for all

i ∈ I. Further, define the operator

F̃BFGS := α IdY ∗+(QBFGS + τRY )ιR−1
X ι
∗ = D̃τ+µ +UhV h

ιR−1
X ι
∗ ∈L (Y ∗). (4.4.11)
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Note that although FBFGS is symmetric, the operator F̃BFGS might not be self-adjoint. Since the matrix
IdR2L̃ +V hιD−1

τ+µ ι∗Uh is invertible (cf. (4.4.10)), also

IdR2L̃ +V h
ιR−1

X ι
∗D̃−1

τ+µUh = IdR2L̃ +V h
ιD−1

τ+µ ι
∗Uh

is invertible. Therefore, the Sherman Morrison Woodbury formula (Theorem 4.4.3) implies that F̃BFGS
is invertible and the inverse is given by

F̃−1
BFGS = D̃−1

τ+µ − D̃−1
τ+µUh(IdR2L̃ +V h

ιR−1
X ι
∗D̃−1

τ+µUh)−1V h
ιR−1

X ι
∗D̃−1

τ+µ . (4.4.12)

It is easy to see (cf. Section 4.3.1) that FBFGS R−1
X ι∗ = ι∗F̃BFGS and that F−1

BFGS ι∗ = R−1
X ι∗F̃−1

BFGS .
Therefore, it holds that FBFGS R−1

X p′j = FBFGS R−1
X ι∗ph

j = ι∗F̃BFGS ph
j and

F−1
BFGS p′j = F−1

BFGS ι
∗ph

j = R−1
X ι
∗F̃−1

BFGS ph
j for all j ∈ I. (4.4.13)

Consequently, approximating F̃BFGS ph
j and F̃−1

BFGS ph
j readily yields approximations for FBFGS R−1

X p′j and
F−1

BFGS p′j. For xh ∈Y ∗h, we can evaluate UhV hιR−1
X ι∗xh exactly, but not D̃τ+µxh. Thus, we approximate

F̃BFGS = D̃τ+µ +UhV hιR−1
X ι∗ via

F̃h
BFGS := PY ∗hF̃BFGS |Y ∗h ∈L (Y ∗h).

Equation (4.4.4) yields for arbitrary xh,yh ∈ Y ∗h that

(F̃h
BFGS xh,yh)Y ∗ = (PY ∗hF̃BFGS xh,yh)Y ∗ = (F̃BFGS xh,yh)Y ∗

= α(xh,yh)Y ∗+(τ +µ)(ι∗xh, ι∗yh)X∗+
2L̃

∑
l=1

(uh
l ,y

h)Y ∗(ι
∗vh

l , ι
∗xh)X∗ .

(4.4.14)

Thus, under Assumption 4.3.1, (F̃h
BFGS xh,yh)Y ∗ can be computed exactly. Since uh

l ∈ Y ∗h, 1 ≤ l ≤ 2L̃,
the operator Uh maps to Y ∗h and we find

F̃h
BFGS = PY ∗hF̃BFGS |Y ∗h = D̃h

τ+µ +UhV h
ιR−1

X ι
∗|Y ∗h .

Because D̃h
τ+µ ∈L (Y ∗h), the Sherman Morrison Woodbury formula (Theorem 4.4.3) implies that the

operator F̃h
BFGS ∈L (Y ∗h) is invertible if and only if IdR2L̃ +V hιR−1

X ι∗D̃−h
τ+µUh is invertible and in this

case it holds

F̃−h
BFGS = D̃−h

τ+µ − D̃−h
τ+µUh(IdR2L̃ +V h

ιR−1
X ι
∗D̃−h

τ+µUh)−1V h
ιR−1

X ι
∗D̃−h

τ+µ . (4.4.15)

Define the matrix Ãh ∈ R2L̃×2L̃ by

Ãh
k,l := (ι∗D̃−h

τ+µuh
k , ι
∗vh

l )X∗ . (4.4.16)
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For arbitrary α,β ∈ R2L̃ it holds that

(V h
ιR−1

X ι
∗D̃−h

τ+µUh
α,β )R2L̃ =

2L̃

∑
k=1

αk(V h
ιR−1

X ι
∗D̃−h

τ+µuh
k ,β )R2L̃ =

2L̃

∑
k,l=1

αk〈vh
l , ιR−1

X ι
∗D̃−h

τ+µuh
k〉Y ∗,Y βl

=
2L̃

∑
k,l=1

αk(ι
∗vh

l , ι
∗D̃−h

τ+µuh
k)X∗βl = α

>Ãh
β ,

i.e., the operator IdR2L̃ +V hιR−1
X ι∗D̃−h

τ+µUh ∈ L (R2L̃) is induced by the matrix I2L̃ + Ãh ∈ R2L̃×2L̃.
Therefore, the operator F̃h

BFGS ∈ L (Y ∗h) is invertible if and only if the matrix I2L̃ + Ãh is invertible.
Note that we can compute Ãh exactly. Therefore, we can check for a given discretization space Y ∗h

if the operator F̃h
BFGS is invertible. The next lemma answers the question if F̃h

BFGS is invertible for a
sufficiently accurate discretization space Y ∗h.

LEMMA 4.4.5. There exists a constant δ > 0 such that the condition

|(ι∗(D̃−1
τ+µ − D̃−h

τ+µ)u
h
k , ι
∗vh

l )X∗ | ≤ δ for all 1≤ k, l ≤ 2L̃

implies that F̃h
BFGS is invertible.

Proof. Similar to Ãh, define the matrix Ã ∈ R2L̃×2L̃ by

Ãk,l := (ι∗D̃−1
τ+µuh

k , ι
∗vh

l )X∗ . (4.4.17)

This yields

(V h
ιR−1

X ι
∗D̃−1

τ+µUh
α,β )R2L̃ = α

>Ãβ for all α,β ∈ R2L̃,

i.e., the operator IdR2L̃ +V hιR−1
X ι∗D̃−1

τ+µUh ∈L (R2L̃) is induced by the matrix I2L̃+ Ã ∈R2L̃×2L̃. Since
F̃BFGS is invertible, IdR2L̃ +V hιR−1

X ι∗D̃−1
τ+µUh and I2L̃ + Ã are invertible. From

1 = ‖I2L̃‖op = ‖(I2L̃ + Ã)(I2L̃ + Ã)−1‖op ≤ ‖I2L̃ + Ã‖op‖(I2L̃ + Ã)−1‖op

we infer that ‖(I2L̃ + Ã)−1‖op ≥ ‖I2L̃ + Ã‖−1
op > 0 and

δ := ‖(I2L̃ + Ã)−1‖−1
op > 0.

If |(ι∗(D̃−1
τ+µ − D̃−h

τ+µ)u
h
k , ι
∗vh

l )X∗ | ≤ δ for all 1≤ k, l ≤ 2L̃, then

‖Ã− Ãh‖op = sup
‖α‖R2L̃=1,‖β‖R2L̃=1

∑
1≤k,l≤2L̃

|αk(ι
∗(D̃−1

τ+µ − D̃−h
τ+µ)u

h
k , ι
∗vh

l )X∗βl| ≤ δ = ‖(I2L̃ + Ã)−1‖−1
op .

Under the given conditions, [129, Prop. 3.3.9] implies that I2L̃ + Ãh is invertible. By Theorem 4.4.3,
this yields the invertibility of F̃h

BFGS .

To find an approximation pF−1
BFGS

j ∈ X of F−1
BFGS p′j = R−1

X ι∗F̃−1
BFGS ph

j , we start with a given discretization
space Y ∗h and check if the matrix Ãh is invertible. If this is the case, F̃h

BFGS ∈ L (Y ∗h) is invertible
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4. The bundle subproblem

and we set pF−1
BFGS

j := R−1
X ι∗F̃−h

BFGS ph
j . Otherwise, we refine the approximation space Y ∗h such that the

error max1≤k,l≤2L̃ |(ι∗(D̃−1
τ+µ − D̃−h

τ+µ)u
h
k , ι
∗vh

l )X∗ | is reduced. Lemma 4.4.5 implies that this leads to an
operator F̃h

BFGS which is invertible. In the following, we always assume that Y ∗h is chosen such that
F̃h

BFGS is invertible and we denote the inverse of F̃h
BFGS by F̃−h

BFGS := (F̃h
BFGS )

−1 ∈L (Y ∗h). There are
two ways to compute the value zh := F̃−h

BFGS yh ∈ Y ∗h. Either via (4.4.15) or via the finite dimensional
linear system

Find zh ∈ Y ∗h : (F̃h
BFGS zh,wh)Y ∗ = (yh,wh)Y ∗ for all wh ∈ Y ∗h. (4.4.18)

Since the operator F̃h
BFGS is not self-adjoint, (4.4.18) cannot be solved via the conjugate gradient

method, see, e.g., [51, 42]. Instead, other Krylov subspace methods such as CGS [122] or BiCGSTAB
[127] have to be used. However, in every iteration of the Krylov subspace method one needs to evaluate
F̃h

BFGS = D̃τ+µ +UhV hιR−1
X ι∗. If the evaluation of D̃τ+µ is costly (for example if D̃τ+µ is evaluated by

solving the linear system (4.3.6)), it is advantageous to use the formula (4.4.15). Evaluation of F̃−h
BFGS yh

with this formula requires the evaluation of D̃−h
τ+µuh

l , 1≤ l ≤ 2L̃ and D̃−h
τ+µyh, i.e., 2L̃+1 solves of the

linear system (4.3.7). If the values D̃−h
τ+µuh

l ∈Y ∗h, 1≤ l ≤ 2L̃, are stored, this reduces to one evaluation
of D̃−h

τ+µ ỹh for each consecutive evaluation of F̃−h
BFGS ỹh with a different ỹh ∈ Y ∗h.

4.4.5. A first error estimate for F̃BFGS

Given the approximation pF−1
BFGS

j = R−1
X ι∗F̃−h

BFGS ph
j developed in the previous section, the goal of this

section is to develop error estimates ei, j,F−1
BFGS
∈R, i, j∈ I, and eFBFGS ∈R which fulfill Assumption 4.2.4,

i.e.,

|〈p′i,F−1
BFGS p′j− pF−1

BFGS
j 〉X∗,X | ≤ ei, j,F−1

BFGS
and 〈FBFGS d̃∗− d̊′, d̃∗〉X∗,X ≤ eFBFGS .

In Theorems 4.4.8, 4.6.17, 5.5.8, and 5.5.14 we develop several distinct error estimates for the term
|(ι∗xh, ι∗(F̃−1

BFGS − F̃−h
BFGS )y

h)X∗ | with arbitrary xh,yh ∈ Y ∗h. For now, let us introduce the following
assumption.

Assumption 4.4.6. For arbitrary xh,yh ∈ Y ∗h there exists an error estimate eF−1
BFGS

xh,yh ≥ 0 fulfilling

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ | ≤ eF−1

BFGS
xh,yh .

LEMMA 4.4.7. Let Assumption 4.3.5 hold such that p′j = R−1
X ι∗ph

j with ph
j ∈ Y ∗h for all j ∈ I. Under

Assumptions 4.3.6 and 4.4.6, the approximation and the error estimates

pF−1
BFGS

j := R−1
X ι
∗F̃−h

BFGS ph
j , ei, j,F−1

BFGS
:= eF−1

BFGS
ph

i ,p
h
j
, eFBFGS := (τ +µ)eE

d̃∗h,d̃∗h ,

with d̃∗h := ∑ j∈I λ̃ ∗j F̃−h
BFGS ph

j , fulfill Assumption 4.2.4.
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4. The bundle subproblem

Proof. First we calculate

|〈p′i,F−1
BFGS p′j− pF−1

j 〉X∗,X |= |〈ι∗ph
i ,F

−1
BFGS ι

∗ph
j −R−1

X ι
∗F̃−h

BFGS ph
j〉X∗,X |

= |(ι∗ph
i , ι
∗(F̃−1

BFGS − F̃−h
BFGS )ph

j)X∗ | ≤ eF−1
BFGS

ph
i ,p

h
j
.

The definition of d̊′ (cf. Lemma 4.2.3) and F̃−h
BFGS = (F̃h

BFGS )
−1 yield

d̊′ =−∑
j∈I

λ̃
∗
j ι
∗F̃h

BFGS F̃−h
BFGS ph

j = ι
∗F̃h

BFGS d̃∗h

and d̃∗ = R−1
X ι∗d̃∗h ∈ Xh yields

FBFGS d̃∗ = FBFGS R−1
X ι
∗d̃∗h = ι

∗F̃BFGS d̃∗h.

Therefore we estimate

〈FBFGS d̃∗− d̊′, d̃∗〉X∗,X = (ι∗(F̃BFGS − F̃h
BFGS )d̃

∗h, ι∗d̃∗h)X∗

= (τ +µ)(ι∗(Ẽ− Ẽh)d̃∗h, ι∗d̃∗h)X∗

≤ (τ +µ)eE
d̃∗h,d̃∗h .

In the following, let Assumption 4.3.7 be fulfilled, i.e., for all xh,yh ∈Y ∗h there exists an error estimate
eD−1

xh,yh ∈ R such that |(ι∗xh, ι∗(D̃−1
τ − D̃−h

τ )yh)X∗ | ≤ eD−1

xh,yh . Then (4.4.12) and (4.4.15) directly yield an

error bound eF−1
BFGS

xh
i ,y

h
j

for Assumption 4.4.6. To shorten the notation, we set

eD−1

xh,uh
·
∈ R2L̃, (eD−1

xh,uh
·
)k := eD−1

xh,uh
k
,

eD−1

vh
· ,yh ∈ R2L̃, (eD−1

vh
· ,yh)l := eD−1

vh
l ,y

h ,

eD−1

uh
· ,vh
·
∈ R2L̃×2L̃, (eD−1

uh
· ,vh
·
)k,l := eD−1

uh
k ,v

h
l
.

We also use the notation |m| ∈ Rn, |M| ∈ Rn×n for the elementwise absolute value of a vector m ∈ Rn

and a matrix M ∈ Rn×n, n ∈ N+, cf. the section “Notation”.

THEOREM 4.4.8. Let xh,yh ∈ Y ∗h are arbitrary and suppose that Assumption 4.3.7 is fulfilled and
define Ãh according to (4.4.16). If ‖|(I2L̃ + Ãh)−1|eD−1

uh
· ,vh
·
‖op < 1, then it holds

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ | ≤ eD−1

xh,yh +(‖bh‖R2L̃ + eb)‖eD−1

xh,uh
·
‖R2L̃ +‖ch‖R2L̃eb,

where bh,ch ∈ R2L̃, and eb ∈ R, are defined by

bh := (I2L̃ + Ãh)−1V h
ιR−1

X ι
∗D̃−h

τ+µyh, ch
l := (ι∗xh, ι∗D̃−h

τ+µuh
l )X∗ , 1≤ l ≤ 2L̃,
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and

eb :=
‖|(I2L̃ + Ãh)−1|(eD−1

uh
· ,vh
·
|bh|+ eD−1

vh
· ,yh)‖R2L̃

1−‖|(I2L̃ + Ãh)−1|eD−1

uh
· ,vh
·
‖op

.

Proof. Equation (4.4.15) yields

(ι∗xh, ι∗F̃−h
BFGS yh)X∗ = (ι∗xh, ι∗D̃−h

τ+µyh)X∗− (ι∗xh, ι∗D̃−h
τ+µUh(I2L̃ + Ãh)−1V h

ιR−1
X ι
∗D̃−h

τ+µyh)X∗

= (ι∗xh, ι∗D̃−h
τ+µyh)X∗− (ι∗xh, ι∗D̃−h

τ+µUhbh)X∗

= (ι∗xh, ι∗D̃−h
τ+µyh)X∗−bh>ch.

Similarly, Equation (4.4.12) yields

(ι∗xh, ι∗F̃−1
BFGS yh)X∗ = (ι∗xh, ι∗D̃−1

τ+µyh)X∗−b>c,

where we define Ã as in (4.4.17),

b := (I2L̃ + Ã)−1V h
ιR−1

X ι
∗D̃−1

τ+µyh, cl := (ι∗xh, ι∗D̃−1
τ+µuh

l )X∗ , 1≤ l ≤ 2L̃.

Applying the triangle inequality leads to

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ |

≤ |(ι∗xh, ι∗(D̃−1
τ+µ − D̃−h

τ+µ)y
h)X∗ |+ |b>c−bh>ch|

≤ eD−1

xh,yh + |b>(c− ch)|+ |(b−bh)>ch|

≤ eD−1

xh,yh +(‖bh‖R2L̃ +‖b−bh‖R2L̃)‖c− ch‖R2L̃ +‖b−bh‖R2L̃‖ch‖R2L̃ .

From |cl− ch
l | ≤ eD−1

xh,uh
l

we deduce ‖c− ch‖R2L̃ ≤ ‖eD−1

xh,uh
·
‖R2L̃ . Furthermore, b and bh are the solutions to

the linear equations

(I2L̃ + Ã) b =V h
ιR−1

X ι
∗D̃−1

τ+µyh,

(I2L̃ + Ãh)bh =V h
ιR−1

X ι
∗D̃−h

τ+µyh,

respectively. Note that

|(I2L̃ + Ã)− (I2L̃ + Ãh)|= |Ã− Ãh| ≤ eD−1

uh
· ,vh
·
,

where “≤” is to be understood in the componentwise sense. Furthermore,

|V h
ιR−1

X ι
∗D̃−1

τ+µyh−V h
ιR−1

X ι
∗D̃−h

τ+µyh|l = |(ι∗vh
l , ι
∗(D̃−1

τ+µ − D̃−h
τ+µ)y

h)X∗ | ≤ eD−1

vh
l ,y

h for all 1≤ l ≤ 2L̃.

If ‖|(I2L̃ + Ãh)−1|eD−1

uh
· ,vh
·
‖op < 1, then [52, Thm. 7.4] yields the estimate
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‖b−bh‖R2L̃ ≤
‖|(I2L̃ + Ãh)−1|(eD−1

uh
· ,vh
·
|bh|+ eD−1

vh
· ,yh)‖R2L̃

1−‖|(I2L̃ + Ãh)−1|eD−1

uh
· ,vh
·
‖op

= eb.

Although the error bound of Theorem 4.4.8 fulfills Assumption 4.4.6, this bound might be very large if
I2L̃ + Ãh is close to singular. Then one might use a bound which is derived from the fact that F̃h

BFGS yh

is the solution of the linear system (4.4.18), cf. Theorems 4.6.17, 5.5.8, and 5.5.14. However, in many
situations the operator D̃−h

τ+µ and an error estimate eD−1

xh,yh can be evaluated using preexisting methods
or with external program code, whereas it requires extra work to compute the error estimates of Theo-
rems 4.6.17, 5.5.8, and 5.5.14.

4.5. Error estimates for the objective function of the bundle method

In this section, we address the issue of finding computable lower and upper bounds for the objective
function of the bundle method which fulfill (4.1.4). Recall that the objective function Ψ(ỹ) at the trial
iterate ỹ ∈ X is given (cf. (4.2.1)) via

Ψ(y) = max
j∈I

{
〈g′j,y〉X∗,X + s j

}
+ α

2 ‖y‖
2
X + 1

2‖ι(y− xSI)‖2
Q+τRY

,

where g′j ∈ X∗, s j ∈ R, j ∈ I := {1, . . . ,np}, α > 0 and xSI ∈ X . We now assume that xSI ∈ Xh and
g′j ∈ X∗h, j ∈ I, i.e., there exist xh

SI ∈ Y ∗h and gh
j ∈ Y ∗h such that xSI = R−1

X ι∗xh
SI and g′j = ι∗gh

j , cf.
Assumption 4.3.5. Whenever ỹ ∈ Xh, i.e., whenever there exists a yh ∈Y ∗h such that ỹ = R−1

X ι∗yh, then
we find

Ψ(ỹ) = max
j∈I

{
(ι∗gh

j , ι
∗yh)X∗+ s j

}
+ α

2 ‖ι
∗yh‖2

X∗+
1
2‖ιR−1

X ι
∗(yh− xh

SI)‖2
Qi+τiRY

, (4.5.1)

Under Assumption 4.3.1, the quantities (xh,yh)Y ∗ and (ι∗xh, ι∗yh)X∗ can be computed exactly for all
xh,yh ∈Y ∗h. Thus, the first two terms of Ψ(ỹ) can be computed exactly. However, the last term is not of
the form ( ·, ·)Y ∗ or (ι∗·, ι∗·)X∗ . Consequently, lower and upper approximations of ‖ι f‖Q+τRY for f ∈Xh

are needed. We start by providing lower and upper bounds for the term ‖ι f‖RY = 〈RY ι f , ι f 〉Y ∗,Y =
‖ι f‖Y .

LEMMA 4.5.1. For f h ∈ Y ∗h and f := R−1
X ι∗ f h ∈ Xh it holds

‖ι f‖2
Y = ‖Ẽ f h‖2

Y ∗ = ‖Ẽh f h‖2
Y ∗+‖(Ẽ− Ẽh) f h‖2

Y ∗ .

Proof. By definition, Ẽ = RY ιR−1
X ι∗ ∈ L (Y ∗) and Ẽh = PY ∗hẼ|Y ∗h ∈ Y ∗h. The Riesz representation

theorem (cf. [3, Thm. 6.1]) yields

‖ι f‖Y = ‖ιR−1
X ι
∗ f h‖Y = ‖RY ιR−1

X ι
∗ f h‖Y ∗ = ‖Ẽ f h‖Y ∗ .

Since Ẽh f h = PY ∗hẼ f h and (Ẽ− Ẽh) f h = (IdY ∗−PY ∗)Ẽ f h are orthogonal in Y ∗ (cf. Section 2.1.2), we
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obtain

‖(Ẽ− Ẽh) f h‖2
Y ∗ = ((Ẽ− Ẽh) f h,(Ẽ− Ẽh) f h)Y ∗

= ((Ẽ− Ẽh) f h,(Ẽ + Ẽh) f h)Y ∗ = ‖Ẽ f h‖2
Y ∗−‖Ẽh f h‖2

Y ∗ .

THEOREM 4.5.2. Assume that Q = 0 and that there exists a computable error estimator eẼ(h) ≥ 0
such that ‖(Ẽ− Ẽh)(yh− xh

SI)‖Y ∗ ≤ eẼ(h) and eẼ(h)→ 0 as h→ 0. Then the error estimators

OΨ(h) := max
j∈I

{
(ι∗gh

j , ι
∗yh)X∗+ s j

}
+ α

2 ‖ι
∗yh‖2

X∗+
τ

2‖Ẽ
h(yh− xh

SI)‖2
Y ∗ ,

OΨ(h) := max
j∈I

{
(ι∗gh

j , ι
∗yh)X∗+ s j

}
+ α

2 ‖ι
∗yh‖2

X∗+
τ

2‖Ẽ
h(yh− xh

SI)‖2
Y ∗+

τ

2 e2
Ẽ(h)

fulfill (4.1.4), i.e., it holds

OΨ(h)≤Ψ(ỹ)≤ OΨ(h), and OΨ(h)−OΨ(h)→ 0 as h→ 0.

Proof. Let xh ∈ Y ∗h be arbitrary and set x = R−1
X ι∗xh. Since Q = 0 and Ẽ = RY ιR−1

X ι∗, there holds

‖ιx‖2
Q+τRY

= 〈(0+ τRY )ιR−1
X ι
∗xh, ιR−1

X ι
∗xh〉Y ∗,Y = τ〈Ẽxh, ιR−1

X ι
∗xh〉Y ∗,Y = τ‖Ẽxh‖2

Y ∗ .

Choosing xh = yh + xh
SI, (4.5.1) and Lemma 4.5.1 yield the desired result.

THEOREM 4.5.3. Assume that Q = QBFGS is given as the L-BFGS curvature operator (4.4.5) and
that there exists a computable error estimator eẼ(h) ≥ 0 such that ‖(Ẽ − Ẽh)(yh− xh

SI)‖Y ∗ ≤ eẼ and
eẼ(h)→ 0 as h→ 0. Then the error estimators

OΨ(h) := max
j∈I

{
(ι∗gh

j , ι
∗yh)X∗+ s j

}
+ α

2 ‖ι
∗yh‖2

X∗

+
2L̃

∑
l=1

(ι∗vh
l , ι
∗xh)X∗(ι

∗uh
l , ι
∗xh)X∗+

τ+µ

2 ‖Ẽ
h(yh− xh

SI)‖2
Y ∗ ,

OΨ(h) := OΨ(h)+ τ+µ

2 e2
Ẽ(h),

fulfill (4.1.4), i.e., it holds OΨ(h)≤Ψ(ỹ)≤ OΨ(h), and OΨ(h)−OΨ(h)→ 0 as h→ 0.

Proof. Let xh ∈ Y ∗h be arbitrary and set x = R−1
X ι∗xh. Since QBFGS = µRY +∑

2L̃
l=1 uh

l 〈vh
l , ·〉Y ∗,Y and

Ẽ = RY ιR−1
X ι∗, it holds

‖x‖2
Q+τRY

= 〈(QBFGS + τRY )ιR−1
X ι
∗xh, ιR−1

X ι
∗xh〉Y ∗,Y

= 〈(τ +µ)RY ιR−1
X ι
∗xh +

2L̃

∑
l=1

uh
l 〈vh

l , ιR−1
X ι
∗xh〉Y ∗,Y , ιR−1

X ι
∗xh〉Y ∗,Y

= (τ +µ)‖Ẽxh‖2
Y ∗+

2L̃

∑
l=1

(ι∗vh
l , ι
∗xh)X∗(ι

∗uh
l , ι
∗xh)X∗ .

Choosing xh = yh + xh
SI, (4.5.1) and Lemma 4.5.1 yield the desired result.
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4.6. A priori error estimates

In order to fulfill Assumptions 4.3.6, 4.3.7, and 4.4.6, we need error bounds for the quantities (ι∗(Ẽ−
Ẽh)xh, ι∗yh)X∗ , |(ι∗xh, ι∗(D̃−1

τ − D̃−h
τ )yh)X∗ | and |(ι∗xh, ι∗(F̃−1

BFGS − F̃−h
BFGS )y

h)X∗ | for xh,yh ∈ Y ∗h. As
z′ := D̃−1

τ yh and z′BFGS := F̃−1
BFGS yh are defined via the variational equations

Find z′ ∈ Y ∗ : (D̃τz′,w′)Y ∗ = (yh,w′)Y ∗ , for all w′ ∈ Y ∗

and

Find z′BFGS ∈ Y ∗ : (F̃BFGS z′BFGS,w
′)Y ∗ = (yh,w′)Y ∗ , for all w′ ∈ Y ∗,

respectively, we consider the following abstract setting:

Let a :Y ∗×Y ∗→R be a bounded bilinear form. For x′ ∈X∗ and y′ ∈Y ∗, define the variational equations

Find z′ ∈ Y ∗ : a(z′,w′) = (y′,w′)Y ∗ , for all w′ ∈ Y ∗, (4.6.1)

Find zh ∈ Y ∗h : a(zh,wh) = (y′,wh)Y ∗ , for all wh ∈ Y ∗h, (4.6.2)

and the adjoint problem

Find Φ
′
x ∈ Y ∗ : a(w′,Φ′x) = (x′, ι∗w′)X∗ , for all w′ ∈ Y ∗. (4.6.3)

Note that, at this point, we do not assume that the bilinear form a is coercive and thus the Lax-Milgram
theorem cannot be used to infer unique solvability of the VEs (4.6.1)–(4.6.3). Instead, assume that
(4.6.1)–(4.6.3) have unique solutions. If we are interested in estimating the quantity |(x′, ι∗(z′−zh))X∗ |,
then the following abstract result, which is often called the Aubin-Nietsche trick (cf. [20, Thm. 3.2.4]),
helps to utilize that we only need error estimates in the weaker space X∗.

THEOREM 4.6.1 (Aubin-Nietsche trick). Let a :Y ∗×Y ∗→R be a bounded (with constant M) bilinear
form and x′ ∈ X∗, y′ ∈ Y ∗. Let (4.6.1)–(4.6.3) be uniquely solvable and denote by z′ ∈ Y ∗, zh ∈ Y ∗h and
Φ′x ∈ Y ∗ the respective solutions. Let Φh

x ∈ Y ∗h be arbitrary. Then it holds that

|(x′, ι∗(z′− zh))X∗ | ≤M‖z′− zh‖Y ∗‖Φ′x−Φ
h
x‖Y ∗ .

Proof. Abbreviate the error e′ := z′− zh ∈ Y ∗. First, note that Galerkin orthogonality holds, i.e.,

a(e′,wh) = a(z′− zh,wh) = (yh,wh)Y ∗−a(zh,wh) = 0 for all wh ∈ Y ∗h. (4.6.4)

The definition of Φ′x yields for arbitrary Φh
x ∈ Y ∗h that

(x′, ι∗e′)X∗ = a(e′,Φ′x) = a(e′,Φ′x−Φ
h
x).

Since the bilinear form a is bounded with constant M, we find

|(x′, ι∗e′)X∗ |= |a(z′− zh,Φ′x−Φ
h
x)| ≤M‖z′− zh‖Y ∗‖Φ′x−Φ

h
x‖Y ∗ .

In the case that the bilinear form a : Y ∗×Y ∗→ R is coercive, the error ‖z− zh‖Y ∗ can be bounded via

82



4. The bundle subproblem

the following lemma.

LEMMA 4.6.2. Let a : Y ∗×Y ∗ → R be a bounded coercive symmetric bilinear form with coecivity
constant m and denote by z′ ∈ Y ∗ and zh ∈ Y ∗h the solution to (4.6.1) and (4.6.2), respectively. Then

‖z′− zh‖Y ∗ ≤
1
m
‖y′‖Y ∗ .

Proof. By the Lax-Milgram theorem (Theorem 2.3.2), (4.6.1) and (4.6.2) have unique solutions. Using
the coercivity of a and the Galerkin orthogonality (4.6.4) results in

m‖z′− zh‖2
Y ∗ ≤ a(z′− zh,z′− zh) = a(z′− zh,z′) = a(z′,z′− zh) = (y′,z′− zh)Y ∗ ≤ ‖z′− zh‖Y ∗‖y′‖Y ∗ .

Next we want to find a suitable Φh
x ∈ Y ∗h such that the term ‖Φ′x−Φh

x‖Y ∗ becomes small. If a is a
coercive symmetric bilinear form with coercivity constant m and Φh

x is chosen to be the solution of the
discretized adjoint problem

Find Φ
h
x ∈ Y ∗h : a(wh,Φh

x) = (x′, ι∗wh)X∗ , for all wh ∈ Y ∗h,

then Lemma 4.6.2 implies ‖Φ′x−Φh
x‖Y ∗ ≤m−1‖RY ιR−1

X x′‖Y ∗ . However, this estimate can be improved
if it is known a priori that the solution of the adjoint problem (4.6.3) has additional regularity.

DEFINITION 4.6.3. Let (Y ∗h)h∈(0,1] be a family of discretization spaces, i.e. let Y ∗h be a finite dimen-
sional linear subspace of Y ∗ for all h ∈ (0,1]. Denote by Φ′x ∈ Y ∗ the solution to (4.6.3). The adjoint
problem (4.6.3) is called γ̊-regular relative to (Y ∗h)h if there exists a number γ̊ ≥ 0 and a constant
Creg ≥ 0 such that for all 0 < h≤ 1 and all xh ∈ Y ∗h there exists an element Φh

x ∈ Y ∗h which fulfills

‖Φ′x−Φ
h
x‖Y ∗ ≤Creghγ̊‖ι∗xh‖X∗ .

THEOREM 4.6.4. If a : Y ∗×Y ∗→ R is a coercive (with constant m) and bounded (with constant M)
symmetric bilinear form and the adjoint problem (4.6.3) is γ̊-regular relative to (Y ∗h)h (with constant
Creg), then there holds

|(ι∗xh, ι∗(z′− zh))X∗ | ≤
CregM

m
hγ̊ ‖ι∗xh‖X∗‖y′‖Y ∗ for all xh ∈ Y ∗h,y′ ∈ Y ∗,

where z′ ∈ Y ∗ and zh ∈ Y ∗h are the solutions to (4.6.1) and (4.6.1), respectively.

Proof. Let xh ∈Y ∗h, y′ ∈Y ∗ be arbitrary and denote by Φh
x ∈Y ∗h the element from Definition 4.6.3. By

the Aubin-Nietsche trick (Theorem 4.6.1) we find

|(ι∗xh, ι∗(z′− zh))X∗ | ≤M‖z′− zh‖Y ∗‖Φ′x−Φ
h
x‖Y ∗ .

Lemma 4.6.2 yields ‖z′− zh‖Y ∗ ≤ m−1‖y′‖Y ∗ As the adjoint problem (4.6.3) is γ̊-regular, we conclude

|(ι∗xh, ι∗(z′− zh))X∗ | ≤
CregM

m
hγ̊‖ι∗xh‖X∗‖y′‖Y ∗ .

Using the same tools as in the proof of Theorem 4.6.4, we now develop an upper bound for the quantity
(ι∗(Ẽ− Ẽh) f h, ι∗ f h)X∗ .
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LEMMA 4.6.5. For arbitrary xh,yh ∈ Y ∗h, it holds

|(ι∗xh, ι∗(Ẽ− Ẽh)yh)X∗ | ≤ ‖(Ẽ− Ẽh)xh‖Y ∗‖(Ẽ− Ẽh)yh‖Y ∗ .

Proof. Let xh,yh ∈Y ∗h be arbitrary. Then z′ := Ẽyh ∈Y ∗ and zh := Ẽhyh ∈Y ∗h are characterized via the
variational equations

Find z′ ∈ Y ∗ : (z′,w′)Y ∗ = (Ẽyh,w′)Y ∗ for all w′ ∈ Y ∗

and

Find zh ∈ Y ∗h : (zh,wh)Y ∗ = (Ẽyh,wh)Y ∗ for all wh ∈ Y ∗h,

i.e., z′ and zh are the solutions to (4.6.1) and (4.6.2) with a(·, ·) := (·, ·)Y ∗ and right hand side Ẽyh. Since
a( ·, ·) := ( ·, ·)Y ∗ is a bounded bilinear form with continuity constant M = 1, the Aubin-Nietsche trick
(Theorem 4.6.1) yields for arbitrary Φh

x ∈ Y ∗h that

|(ι∗xh, ι∗(z′− zh))X∗ | ≤ ‖z′− zh‖Y ∗‖Φ′x−Φ
h
x‖Y ∗ , (4.6.5)

where Φ′x ∈ Y ∗ is the solution to the adjoint equation

Find Φ
′
x ∈ Y ∗ : a(w′,Φ′x) = (ι∗xh, ι∗w′)X∗ , for all w′ ∈ Y ∗.

Note that the definition of Ẽ ∈L (Y ∗), Ẽ = RY ιR−1
X ι∗, yields (Ẽyh,w′)Y ∗ = (ι∗yh, ι∗w′)X∗ for all w′ ∈

Y ∗. Therefore, Φ′x = Ẽxh and we can choose Φh
x := Ẽhxh in (4.6.5).

COROLLARY 4.6.6 (A priori estimate for Ẽ). Let vh ∈ Y ∗h be arbitrary. If the problem

Find z′ ∈ Y ∗ : (z′,w′)Y ∗ = (ι∗vh, ι∗w′)X∗ for all w′ ∈ Y ∗ (4.6.6)

is γ̊-regular with respect to Y ∗h (with constant Creg), then it holds

|(ι∗xh, ι∗(Ẽ− Ẽh)yh)X∗ | ≤C2
regh2γ̊‖ι∗xh‖X∗‖ι∗yh‖X∗ for all xh,yh ∈ Y ∗h.

In particular, eE
xh,yh :=C2

reg h2γ̊ ‖ι∗xh‖X∗‖ι∗yh‖X∗ fulfills Assumption 4.3.6.

Proof. Let xh,yh ∈ Y ∗h be arbitrary. By Lemma 4.6.5, it holds

|(ι∗xh, ι∗(Ẽ− Ẽh)yh)X∗ | ≤ ‖(Ẽ− Ẽh)xh‖Y ∗‖(Ẽ− Ẽh)yh‖Y ∗ .

By the definition of Ẽ ∈L (Y ∗), Ẽ = RY ιR−1
X ι∗, both Ẽxh and Ẽyh solve (4.6.6) with the right hand

sides vh = xh and vh = yh, respectively. As (4.6.6) is γ̊-regular, there exists a constant Creg ≥ 0 and
elements Φh

x ,Φ
h
y ∈ Y ∗h with

‖Ẽxh−Φ
h
x‖Y ∗ ≤Creghγ̊‖ι∗xh‖X∗ and ‖Ẽyh−Φ

h
y‖Y ∗ ≤Creghγ̊‖ι∗yh‖X∗ .

By definition, Ẽhxh is the metric projection of Ẽxh onto the closed subspace Y ∗h. The definition of the
metric projection (cf. Section 2.1.2) yields ‖Ẽxh− Ẽhxh‖Y ∗ = ‖Ẽxh−PY ∗hẼxh‖Y ∗ = minvh∈Y ∗h ‖Ẽxh−
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vh‖Y ∗h ≤ ‖Ẽxh−Φh
x‖Y ∗ . Since this also holds for yh, we conclude

|(ι∗xh, ι∗(Ẽyh− Ẽhyh))X∗ | ≤ ‖(Ẽ− Ẽh)xh‖Y ∗‖(Ẽ− Ẽh)yh‖Y ∗ ≤C2
regh2γ̊‖ι∗xh‖X∗‖ι∗yh‖X∗ .

4.6.1. A priori error estimates for Q = 0

Let xh ∈ Y ∗h. We consider the adjoint problem

Find Φ
′
x ∈ Y ∗ : (D̃τ+µ w′,Φ′x)Y ∗ = (ι∗xh, ι∗w′)X∗ for all w′ ∈ Y ∗. (4.6.7)

THEOREM 4.6.7 (A priori estimate for D̃−1
τ ). Let the adjoint problem (4.6.7) (with µ = 0) be γ̊-regular

(with constant Creg) and define C := (1+ τ

α
‖ι∗‖2

L (Y ∗,X∗))Creg. Then it holds

|(ι∗xh, ι∗(D̃−1
τ − D̃−h

τ )yh)X∗ | ≤Chγ̊‖ι∗xh‖X∗‖yh‖Y ∗ for all xh,yh ∈ Y ∗h.

In particular, eD−1

xh,yh :=Chγ̊‖ι∗xh‖X∗‖yh‖Y ∗ fulfills Assumption 4.3.7.

Proof. Note that a( ·, ·) := (D̃τ ·, ·)Y ∗ is a coercive symmetric bounded bilinear form because

(D̃τv′,w′)Y ∗ ≤ α‖v′‖Y ∗‖w′‖Y ∗+ τ|(ι∗v′, ι∗w′)X∗ | ≤M‖v′‖Y ∗‖w′‖Y ∗ for all v′,w′ ∈ Y ∗

with M := α + τ‖ι∗‖2
L (Y ∗,X∗). Furthermore, Ẽ = RY ιR−1

X ι∗ shows

(D̃τv′,v′)Y ∗ = α‖v′‖2
Y ∗+ τ(Ẽv′,v′)Y ∗ = α‖v′‖2

Y ∗+ τ‖ι∗v′‖2
X∗ ≥ α‖v′‖2

Y ∗ for all v′ ∈ Y ∗.

Since (D̃h
τvh,wh)Y ∗ = (D̃τvh,wh)Y ∗ for all vh,wh ∈ Y ∗h, we find that zh = D̃−h

τ yh and z′ = D̃−1
τ yh, where

z′ ∈ Y ∗, zh ∈ Y ∗h are the solutions to (4.6.1) and (4.6.2), respectively. Therefore, Theorem 4.6.4 yields
for arbitrary xh,yh ∈ Y ∗h that

|(ι∗xh, ι∗(D̃−1
τ − D̃−h

τ )yh)X∗ |= |(ι∗xh, ι∗(z′− zh))X∗ |
≤Creg(1+ τ

α
‖ι∗‖2

L (Y ∗,X∗))h
γ̊‖ι∗xh‖X∗‖yh‖Y ∗ .

4.6.2. A priori error estimates for the L-BFGS operator

Now we are interested in error estimates for the inverse of the L-BFGS operator F̃BFGS . In contrast
to (D̃τ ·, ·)Y ∗ , the bilinear form (F̃BFGS ·, ·)Y ∗ is not necessarily coercive. Therefore, we cannot use the
Lax-Milgram theorem and Lemma 4.6.2. Since we already know that F̃BFGS ∈L (Y ∗) is invertible, we
do not need the Lax Milgram theorem to show that (4.6.1) is uniquely solvable. However, we need to
replace Lemma 4.6.2 with a similar statement. To apply a result of [6], we need the following definition.

DEFINITION 4.6.8 ([6, Def. 4.2]). A continuous bilinear form a : Y ∗×Y ∗ → R is called essentially
coercive if, for each sequence (un)n∈N ⊂ Y ∗ which fulfills un ⇀ 0 and limn→∞ a(un,un) = 0, one has
limn→∞ ‖un‖Y ∗ = 0.

For our purposes we need a slight generalization of [6, Thm. 5.2].
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THEOREM 4.6.9. Let V be a separable, infinite-dimensional Hilbert space and let W ⊂ V be a dense
subset. Let Vn, n ∈ N, be a finite-dimensional subspaces of V such that for all u ∈W

dist(u,Vn) = ‖u−PVnu‖V → 0 as n→ ∞.

Further, let a : V ×V →R be a continuous, essentially coercive bilinear form which fulfills uniqueness,
i.e., for all u ∈ V it holds

a(u,v) = 0 (∀v ∈ V ) ⇒ u = 0.

Then, for a given L ∈ V ∗ and for all n ∈ N, the variational equations

Find u ∈ V : a(u,v) = 〈L,v〉V ∗,V for all v ∈ V

Find un ∈ Vn : a(un,v) = 〈L,v〉V ∗,V for all vn ∈ V

have unique solutions (denoted by u and un, respectively). Furthermore, there exists n0 ∈ N and C > 0
such that for each L ∈ V ∗ and each n≥ n0 it holds

‖u−un‖V ≤C‖u−PVnu‖V for all n≥ n0.

Proof. By adopting [6, Thm. 5.2 (i)⇒(ii)] and [6, Prop. 2.5] using a density argument.

Remark 4.6.10. The case W := V is covered in [6, Thm. 5.2].

LEMMA 4.6.11. The continuous bilinear form a : Y ∗×Y ∗→ R, a(·, ·) := (F̃BFGS ·, ·)Y ∗ is essentially
coercive.

Proof. The definition of F̃BFGS yields for arbitrary u′ ∈ Y ∗ that

|a(u′,u′)|= |(F̃BFGS u′,u′)Y ∗ |
= |α(u′,u′)Y ∗+((QBFGS + τRY )ιR−1

X ι
∗u′,u′)Y ∗ |

≥ |α(u′,u′)Y ∗ |− |((QBFGS + τRY )ιR−1
X ι
∗u′,u′)Y ∗ |

= α‖u′‖2
Y ∗−|〈K u′,u′〉Y ∗∗,Y ∗ |,

where the operator K := RY ∗(QBFGS + τRY )ιR−1
X ι∗ ∈ L (Y ∗,Y ∗∗) is compact. Thus, [6, Thm. 4.3]

shows that a is essentially coercive.

In the rest of this section, we work under the assumption that every element of Y ∗ can be approximated
arbitrarily well by elements from Y ∗h for h→ 0.

Assumption 4.6.12. Let Y ∗ be a separable and infinite dimensional Hilbert space and let Y ∗h be a finite
dimensional subspace of Y ∗ for 0 < h ≤ 1. We assume that there exists a dense subset W ⊂ Y ∗ such
that that dist(v′,Y ∗h)→ 0 as h→ 0 for all v′ ∈W , where dist(v′,Y ∗h) := inf{‖v′− vh‖Y ∗h : vh ∈ Y ∗h}=
‖v′−PY ∗hv′‖Y ∗ .
Remark 4.6.13. By [87, Cor. 1.12.12], the reflexive space Y ∗ is separable if and only if Y is separable.
Furthermore, by [3, Lem. 9.1], an infinite-dimensional normed space H is separable, if and only if
there exist finite-dimensional subspaces Hn, n ∈ N, such that Hn ⊂ Hn+1 for all n ∈ N and ∪n∈NHn is
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dense in H. Therefore, the assumption that Y ∗ is separable is crucial for the existence of a sequence of
subspaces (Y ∗h)h∈H such that dist(v′,Y ∗h)→ 0 as h→ 0 for all v′ ∈ Y ∗.

THEOREM 4.6.14. Under Assumption 4.6.12, there exists a h̊ > 0 and a constant m > 0 such that, for
all h ∈ (0, h̊], the operator F̃h

BFGS ∈L (Y ∗h) is invertible and it holds

‖(F̃−h
BFGS − F̃−1

BFGS )y
h‖Y ∗ ≤ m‖yh‖Y ∗ for all yh ∈ Y ∗h.

Proof. Since F̃BFGS is invertible, the bilinear form a fulfills uniqueness, i.e., for all u′ ∈ Y ∗ it holds

a(u′,v′) = 0 (∀v′ ∈ Y ∗) ⇒ F̃BFGS u′ = 0 ⇒ u′ = 0.

Furthermore, by Lemma 4.6.11, a : Y ∗×Y ∗→ R is essentially coercive and Assumption 4.6.12 holds.
Therefore, Theorem 4.6.9 implies that there exists a h̊ > 0 and a constant m′ > 0 such that for all
L′′ ∈ Y ∗∗ and all h ∈ (0, h̊] the variational equation

Find zh ∈ Y ∗h : (F̃BFGS zh,wh)Y ∗ = 〈L′′,wh〉Y ∗∗,Y ∗ for all wh ∈ Y ∗h

has a unique solution zh ∈ Y ∗h and it holds

‖zh− z′‖Y ∗ ≤ m′‖z′−PY ∗hz′‖Y ∗

where z′ ∈ Y ∗h is the unique solution to

Find z′ ∈ Y ∗ : (F̃BFGS z′,w′)Y ∗ = 〈L′′,w′〉Y ∗∗,Y ∗ for all w′ ∈ Y ∗.

Let h ∈ (0, h̊] and yh ∈ Y ∗h be arbitrary. Choosing L′′ = RY ∗yh yields

(F̃h
BFGS zh,wh)Y ∗ = (F̃BFGS zh,wh)Y ∗ = 〈L′′,wh〉Y ∗∗,Y ∗ = (yh,wh)Y ∗ for all wh ∈ Y ∗h.

Since yh ∈ Y ∗h was arbitrary, F̃h
BFGS ∈ L (Y ∗h) is invertible and zh = F̃−h

BFGS yh. Analogously, z′ =
F̃−1

BFGS yh and Lemma 2.1.7 yields for all yh ∈ Y ∗h that

‖(F̃−h
BFGS − F̃−1

BFGS )y
h‖Y ∗ = ‖zh− z′‖Y ∗ ≤ m′‖z′−PY ∗hz′‖Y ∗ ≤ m′‖z′‖Y ∗ ≤ m′‖F̃−1

BFGS ‖L (Y ∗h)‖yh‖Y ∗ .

Remark 4.6.15. Since the existence of the constant m′ in Theorem 4.6.9 is derived via a proof by
contradiction, we cannot say anything about the dependence of τ on the constant m′.

Now, let us show the following regularity result:

LEMMA 4.6.16. If the adjoint problem (4.6.7) is γ̊-regular relative to (Y ∗h)h, then the problem

Find Φ
′
x ∈ Y ∗ : (Φ′x, F̃BFGS w′)Y ∗ = (ι∗xh, ι∗w′)X∗ for all w′ ∈ Y ∗ (4.6.8)

is γ̊-regular relative to (Y ∗h)h.

Proof. Assume that (4.6.7) is γ̊-regular and that Φ′x solves (4.6.8). The γ̊-regularity of (4.6.7) implies
there exists a constant Creg ≥ 0 such that for all 0 < h≤ 1 and xh ∈Y ∗h there exists an element Ψh

x ∈Y ∗h
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which fulfills

‖Ψ′x−Ψ
h
x‖Y ∗ ≤Creghγ̊‖ι∗xh‖X∗ ,

where Ψ′x solves (4.6.7) with right hand side xh. Now let 0 < h≤ 1 and xh ∈ Y ∗h be arbitrary but fixed.
By (4.4.11), the operator F̃BFGS has the form F̃BFGS = D̃τ+µ +UhV hιR−1

X ι∗. As the operator D̃τ+µ is
Hilbert space self-adjoint and Φ′x solves the adjoint problem (4.6.8), we find for all w′ ∈ Y ∗ that

(D̃τ+µΦ
′
x,w
′)Y ∗ = (Φ′x, D̃τ+µw′)Y ∗

= (Φ′x, F̃BFGS w′)Y ∗− (Φ′x,U
hV h

ιR−1
X ι
∗w′)Y ∗

= (ι∗xh, ι∗w′)X∗−
2L̃

∑
l=1

(uh
l ,Φ

′
x)Y ∗(ι

∗vh
l , ι
∗w′)X∗

= (ι∗xh, ι∗w′)X∗−
2L̃

∑
l=1

(ι∗F̃−1
BFGS uh

l , ι
∗xh)X∗(ι

∗vh
l , ι
∗w′)X∗

= (ι∗ch, ι∗w′)X∗ ,

where ch := xh−∑
2L̃
l=1(ι

∗F̃−1
BFGS uh

l , ι
∗xh)X∗vh

l ∈Y ∗h. This shows that Φ′x solves the problem (4.6.7) with
right hand side ch. Therefore, the γ̊-regularity of (4.6.7) implies that there exists an element Ψh

c ∈ Y ∗h

with fulfills

‖Φ′x−Ψ
h
c‖Y ∗ ≤Creghγ̊‖ι∗ch‖X∗ .

Consequently, we conclude

‖Φ′x−Ψ
h
c‖Y ∗ ≤Creghγ̊

∥∥∥∥∥ι
∗xh−

2L̃

∑
l=1

(ι∗F̃−1
BFGS uh

l , ι
∗xh)X∗ι

∗vh
l

∥∥∥∥∥
X∗

≤Creg

(
1+

2L̃

∑
l=1
‖ι∗F̃−1

BFGS uh
l ‖X∗‖ι∗vh

l ‖X∗

)
hγ̊ ‖ι∗xh‖X∗ .

THEOREM 4.6.17 (A priori estimate for F̃−1
BFGS ). If Assumption 4.6.12 holds and the adjoint problem

(4.6.7) is γ̊-regular, then there exists a h̊ ∈ (0,1] and a constant C ≥ 0 such that for all h ∈ (0, h̊] the
operator F̃h

BFGS is invertible and it holds

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ | ≤Chγ̊‖ι∗xh‖X∗‖yh‖Y ∗ for all xh,yh ∈ Y ∗h.

In particular, eF−1
BFGS

xh,yh :=Chγ̊‖ι∗xh‖X∗‖yh‖Y ∗ fulfills Assumption 4.4.6 for all h ∈ (0, h̊].

Proof. Let xh,yh ∈ Y ∗h be fixed. By Theorem 4.6.14, there exists a h̊ > 0 and a constant m > 0 such
that, for all h≤ h̊, the operator F̃h

BFGS ∈L (Y ∗h) is invertible and it holds

‖z′− zh‖Y ∗ = ‖(F̃−h
BFGS − F̃−1

BFGS )y
h‖Y ∗ ≤ m‖yh‖Y ∗ ,

where z′ := F̃−1
BFGS yh ∈ Y ∗ and zh := F̃−h

BFGS yh ∈ Y ∗h. Observe that a : Y ∗ ×Y ∗ → R, a(v′,w′) :=
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4. The bundle subproblem

(F̃BFGS v′,w′)Y ∗ is a bounded bilinear form which is bounded by the constant M := ‖F̃BFGS ‖L (Y ∗) and
z′ ∈Y ∗, zh ∈Y ∗h are the solutions to (4.6.1) and (4.6.2), respectively. Let Φ′x ∈Y ∗ be the solution to the
adjoint equation

(w′, F̃BFGS Φ
′
x)Y ∗ = (ι∗xh, ι∗w′)X∗ for all w′ ∈ Y ∗.

By Lemma 4.6.16, the adjoint equation is γ̊-regular, i.e., there exists a constant Creg ≥ 0 such that for
all 0 < h≤ 1 and xh ∈ Y ∗h there exists an element Φh

x ∈ Y ∗h such that

‖Φ′x−Φ
h
x‖Y ∗ ≤Creghγ̊‖ι∗xh‖X∗ .

Combining this with the Aubin-Nietsche trick (Theorem 4.6.1) yields for all h ∈ (0, h̊], that

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−1

BFGS )y
h)X∗ |= |(ι∗xh, ι∗(z′− zh))X∗ |

= |(z′− zh, F̃BFGS Φ
′
x)Y ∗ |

≤ ‖F̃BFGS ‖L (Y ∗)‖z′− zh‖Y ∗‖Φ′x−Φ
h
x‖Y ∗

≤ mCreg‖F̃BFGS ‖L (Y ∗) hγ̊ ‖ι∗xh‖X∗‖yh‖Y ∗ .
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5. Optimal control of the obstacle problem

5.1. The obstacle problem

Let Ω ⊂ R2 be open and bounded. Let ψ : Ω→ R be a quasi-upper-semicontinuous obstacle (cf.
Section 2.8) which defines the set

K := {y ∈ H1
0 (Ω) : y≥ ψ a.e. on Ω}. (5.1.1)

We assume that ψ is such that K 6= /0. The set K is a closed and convex subset of the Hilbert space
H1

0 (Ω). The obstacle problem is given by the variational inequality

Find y ∈ K : 〈Ay−b,v− y〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀v ∈ K, (5.1.2)

where A ∈L (H1
0 (Ω),H−1(Ω)) is assumed to be coercive and b ∈H−1(Ω). By Theorem 2.4.2, this VI

has a unique solution and the solution operator S : H−1(Ω)→ H1
0 (Ω), b 7→ y, is Lipschitz continuous.

Under a regularity assumption on the obstacle, H2(Ω)-regularity of the solution of the obstacle problem
can be inferred.

LEMMA 5.1.1 ([67, Chap. IV, Thm. 2.3]). If u ∈ L2(Ω) and the obstacle ψ ∈ H1(Ω) is such that
max{−∆ψ−u,0} ∈ L2(Ω), then it holds that S(ιu) ∈ H2(Ω), where ι is the embedding from L2(Ω) to
H−1(Ω).

If one wishes to consider an upper obstacle ψ̃ and search for functions ỹ ∈ H1
0 (Ω) with ỹ ≤ ψ̃ instead

of the lower obstacle (5.1.1), a simple transform will do the trick.

LEMMA 5.1.2. If y ∈H1
0 (Ω) is a solution to (5.1.2), then ỹ :=−ȳ is a solution to the obstacle problem

Find ỹ ∈ K̃ : 〈Aỹ− b̃, ṽ− ỹ〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ṽ ∈ K̃,

where b̃ :=−b, ψ̃ :=−ψ and K̃ := {ỹ ∈ H1
0 (Ω) : ỹ≤ ψ̃ a.e. on Ω}.

Proof. Can be easily verified by observing that K̃ =−K.

LEMMA 5.1.3 ([115, Chap. 4 Prop. 5.6]). The obstacle problem (5.1.2) is equivalent to the comple-
mentary system

Find (y,ξ ) ∈ H1
0 (Ω)×H−1(Ω) : ξ = Ay−b, y≥ ψ, ξ ≥ 0, 〈ξ ,y−ψ〉H−1(Ω),H1

0 (Ω) = 0,

where the inequality ξ ≥ 0 is to be understood in the dual space, i.e.,

〈ξ ,v+〉H−1(Ω),H1
0 (Ω) ≥ 0 for all v+ ∈ H1

0 (Ω)+ := {v ∈ H1
0 (Ω) : v≥ 0 a.e. on Ω}.
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5. Optimal control of the obstacle problem

5.2. The optimal control problem

We want to apply the bundle method to optimal control of the obstacle problem, i.e., the problem

minimize
(y,u)∈H1

0 (Ω)×L2(Ω)
J(y)+ α

2 ‖u‖
2
L2(Ω)

subject to y = S(F̊(ιu))
(5.2.1)

where J : H1
0 (Ω)→ R is the Fréchet-differentiable objective function (corresponding to the state), the

parameter α > 0 defines the Tikhonov regularization term α

2 ‖ · ‖
2
L2(Ω)

, ι ∈ L (L2(Ω),H−1(Ω)) is a

compact embedding from L2(Ω) to H−1(Ω), F̊ : H−1(Ω)→H−1(Ω) maps the control to the force term
and S : H−1(Ω)→H1

0 (Ω) is the solution operator of the obstacle problem (5.1.2). Further requirements
on the objective function J and on F̊ are stated below as needed. Plugging the solution operator into
the objective function yields the reduced problem

minimize
u∈L2(Ω)

J(S(F̊(ιu)))+ α

2 ‖u‖
2
L2(Ω). (5.2.2)

Obviously, Problem (5.2.1) and Problem (5.2.2) are equivalent.

THEOREM 5.2.1. If F̊ is given as F̊(w) := w+ f̊ with arbitrary f̊ ∈ H−1(Ω) and J : H1
0 (Ω)→ R is

bounded below and lower semicontinuous, then Problem (5.2.1) has a solution.

Proof. The joint objective functional j : H1
0 (Ω)×L2(Ω)→ R, j(y,u) := J(y)+ α

2 ‖u‖
2
L2(Ω)

is bounded
below. As the Tikhonov regularization term α

2 ‖ · ‖
2
L2(Ω)

is convex and continuous, it is weakly lower
semicontinuous. Thus, j is strong×weak sequentially lower semicontinuous. As α

2 ‖ · ‖
2
L2(Ω)

is coercive,

Remark 2.5.2 implies that the reduced objective function J : u 7→ j(S(ιu+ f̊ ),u) is coercive. Therefore,
Theorem 2.5.1 yields the existence of a solution to Problem (5.2.1).

Example 5.2.2 (Tracking type objective function). By choosing the tracking type objective function
J : H1

0 (Ω)→ R, J(w) := 1
2‖Ow− yd‖2

H , where the observation operator O ∈ L (H1
0 (Ω),H) and the

desired state yd ∈H are defined on Hilbert space H, we obtain the tracking type optimal control problem

minimize
u∈L2(Ω)

1
2‖OS(ιu+ f̊ )− yd‖2

H + α

2 ‖u‖
2
L2(Ω). (5.2.3)

Here, we chose F̊ : H−1(Ω)→H−1(Ω) to be F̊(w) :=w+ f̊ , where f̊ ∈H−1(Ω) is an arbitrary external
force. As J is obviously bounded below and continuous, Theorem 5.2.1 implies that the optimal control
problem governed by the obstacle problem with tracking type objective function has a solution.

For the subsequent analysis, we define the active set A (w)⊂Ω at a point w ∈ H−1(Ω) to be the set at
which the solution to the obstacle problem coincides with the obstacle, i.e.,

A = A (w) := {ω ∈Ω : S(F̊(w))(ω) = ψ(ω)}. (5.2.4)

Further, we define the inactive set I ⊂Ω to be the complement of the active set, i.e.,

I = I (w) := {ω ∈Ω : S(F̊(w))(ω)> ψ(ω)}. (5.2.5)
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5. Optimal control of the obstacle problem

As ψ is assumed to be quasi-upper-semicontinuous and S(F̊(w))∈H1
0 (Ω), ψ−S(F̊(w)) is quasi-upper-

semicontinuous and Lemma 2.8.4 implies that I (w) is a quasi-open set.

In [131], strong stationarity conditions are derived which do not require any regularity of Ω. As [131]
uses the setting of a lower obstacle, we transfer the result [131, Thm. 5.2, Prop. 2.5] to the given upper
obstacle setting.

THEOREM 5.2.3. Let (ȳ, ū)∈H1
0 (Ω)×L2(Ω) be a local solution to Problem (5.2.1) with F̊ ∈L (H−1(Ω))

defined via F̊(w) :=w+ f̊ , f̊ ∈H−1(Ω). If ū∈H1
0 (Ω), then there exist multipliers (ξ̄ , p̄, µ̄)∈H−1(Ω)×

H1
0 (Ω)×H−1(Ω) which satisfy the strong optimality conditions

Aȳ = ū+ f̊ + ξ̄ in H−1(Ω), (5.2.6a)

A∗ p̄ = J′(ȳ)− µ̄ in H−1(Ω), (5.2.6b)

α ū+ p̄ = 0 in L2(Ω), (5.2.6c)

p̄ ∈K (ū, ξ̄ ), (5.2.6d)

〈µ̄,v〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀v ∈K (ū, ξ̄ ), (5.2.6e)

where the critical cone K (ū, ξ̄ )⊂ H1
0 (Ω) is defined via

K (ū, ξ̄ ) := {v ∈ H1
0 (Ω) : v≥ 0 q.e. in A (ū),〈ξ̄ ,v〉H−1(Ω),H1

0 (Ω) = 0}. (5.2.7)

Proof. Let (ȳ, ū)∈H1
0 (Ω)×L2(Ω) be a local solution to Problem (5.2.1) with F̊ ∈L (H−1(Ω)) defined

via F̊(w) = w+ f̊ , f̊ ∈ H−1(Ω). By Lemma 5.1.3, the multiplier ξ̄ := Aȳ− ū− f̊ ∈ H−1(Ω) fulfills
ξ̄ ≥ 0 and 〈ξ̄ , ȳ−ψ〉H−1(Ω),H1

0 (Ω) = 0. Thus, [131, Prop. 2.5] implies ξ̄ ∈ TK̃(−ȳ)◦ where TK̃(−ȳ)◦ is
the polar of the tangent cone (cf. Section 2.4) of the set K̃ := {ỹ ∈ H1

0 (Ω) : ỹ ≤ −ψ a.e. on Ω} at the
point −ȳ. As −ȳ ∈ K̃, the tuple (−ȳ,−ū, ξ̄ ) is feasible for the optimization problem

minimize j̃(ỹ)+ α

2 ‖ũ‖
2
L2(Ω)

subject to (ỹ, ũ, ξ̃ ) ∈ H1
0 (Ω)×L2(Ω)×H−1(Ω),

Aỹ = ũ− ξ̃ − f̊ ,

ỹ ∈ K̃, ξ̃ ∈ TK̃(ỹ)
◦,

(5.2.8)

where j̃ : H1
0 (Ω)→ R is defined via j̃(ỹ) := J(−ỹ). Furthermore, whenever (ỹ, ũ, ξ̃ ) is feasible for

Problem (5.2.8), Lemma 5.1.2 shows that (−ỹ,−ũ) is feasible for Problem (5.2.1). Consequently, as
(ȳ, ū) is a local solution to Problem (5.2.1) and J(ȳ) = j̃(−ȳ), the tuple (−ȳ,−ū, ξ̄ ) is a local solution to
Problem (5.2.8). As Problem (5.2.8) has the form of problem (P) in [131], [131, Thm. 5.2, Prop. 2.5]
yields the existence of multipliers (p̄, µ̄) ∈ H1

0 (Ω)×H−1(Ω) such that

A∗ p̄+ j̃′(−ȳ)+ µ̄ = 0 in H−1(Ω),

α(−ū)− p̄ = 0 in L2(Ω),

−p̄ ∈ TK̃(−ȳ)∩ ξ̄
⊥,

µ̄ ∈ (TK̃(−ȳ)∩ ξ̄
⊥)◦.
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5. Optimal control of the obstacle problem

Note that j̃′(−ȳ) =−J(ȳ). We conclude the proof by observing that [131, Prop. 2.5] implies

TK̃(−ȳ)∩ ξ̄
⊥ = {z ∈ H1

0 (Ω) : z≤ q.e. on − ȳ =−ψ,〈ξ̄ ,z〉H−1(Ω),H1
0 (Ω) = 0}

=−{z ∈ H1
0 (Ω) : z≥ q.e. on A (ū),〈ξ̄ ,z〉H−1(Ω),H1

0 (Ω) = 0}

=−K (ū, ξ̄ ).

The critical cone K (ū, ξ̄ ) can be characterized in the following way. By [109, Thm. 3.9] there exists a
quasi-closed set As(ū)⊂A (ū) which is unique up to capacity zero such that

K (ū, ξ̄ ) = {v ∈ H1
0 (Ω) : v≥ 0 q.e. in A (ū),〈ξ ,v〉H−1(Ω),H1

0 (Ω) = 0}

= {v ∈ H1
0 (Ω) : v≥ 0 q.e. on A (ū),v = 0 q.e. on As(ū)}.

(5.2.10)

The set As(ū) is called the strictly active set and plays an important role in the computation of a sub-
gradient, cf. Lemma 5.2.6 and Section 5.3.4 below.

We apply the bundle method to solve Problem (5.2.2); the problem is of the form (3.1.1) with X∗ =
X := L2(Ω), Y := H−1(Ω), Y ∗ = H1

0 (Ω), p : Y →R, p := J(S(F̊(·))), f : U→R, f = p◦ ι , w : X→R,
w := α

2 ‖·‖
2
L2(Ω)

and F := L2(Ω). To execute the bundle method, we need to compute an approximation

of a subgradient of p = J(S(F̊(·))). In the following we study how to obtain an exact subgradient.
Recall that (·)+ : H1

0 (Ω)→ H1
0 (Ω) denotes the pointwise maximum, i.e., (v)+(ω) := max(0,v(ω)).

DEFINITION 5.2.4 ([115, Chap. 4.5]). An operator A : H−1(Ω)→H1
0 (Ω) is called strictly T -monotone

if A satisfies

〈Av,(v)+〉H−1(Ω),H1
0 (Ω) > 0 for all v ∈ H1

0 (Ω) with (v)+ 6= 0.

Example 5.2.5. The operator A =−∆ induced by the negative Laplace operator via

〈Ay,v〉H−1(Ω),H1
0 (Ω) :=

∫
Ω

∇y>∇v dλ for all y,v ∈ H1
0 (Ω)

is strictly T -monotone and coercive.

LEMMA 5.2.6. Let J : H1
0 (Ω)→ R be a continuously differentiable function and let F̊ : H−1(Ω)→

H−1(Ω) be a Lipschitz continuous, continuously differentiable, monotone function. Furthermore, let
A ∈L (H1

0 (Ω),H−1(Ω)) be a coercive and strictly T -monotone operator and let w ∈H−1(Ω) be arbi-
trary. Denote by q ∈ H1

0 (Ω) the unique solution of the variational equation

Find q ∈ H1
0 (D) : 〈A∗q,v〉H−1(Ω),H1

0 (Ω) = 〈J
′(S(F̊(w))),v)〉H−1(Ω),H1

0 (Ω), ∀v ∈ H1
0 (D), (5.2.11)

where D = I (w) (cf. (5.2.5)) or D = Ω\As (cf. (5.2.10)). Then it holds that F̊ ′(w)∗q ∈ ∂C p(w).

Proof. This is an application of [109, Thm. 4.21].
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5.3. Discretization

In the rest of this chapter, we consider the optimal control problem with tracking type objective

minimize
(y,u)∈H1

0 (Ω)×L2(Ω)

1
2‖y− yd‖2

L2(Ω)+
α

2 ‖u‖
2
L2(Ω)

subject to y ∈ K,
∫

Ω

∇yT
∇(v− y)dλ ≥

∫
D
(u+ f̊ )(v− y)dλ ∀v ∈ K,

(5.3.1)

where K := {y ∈ H1
0 (Ω) : y ≥ ψ a.e. on Ω}, ψ ∈ H1(Ω)∩C0(cl(Ω)), f̊ ∈ L2(Ω) and yd ∈ L2(Ω).

This problem is of the form Problem (5.2.1) with J := 1
2‖ι
∗(·)− yd‖L2(Ω) and F̊(w) := w+ ι f̊ for

all w ∈ H−1(Ω), cf. Examples 5.2.2 and 5.2.5. We set Y := H−1(Ω), Y ∗ = H1
0 (Ω), X∗ := L2(Ω) and

X := L2(Ω)∗. In the following, we identify L2(Ω)∗ with L2(Ω) and the Riesz map RX : L2(Ω)→ L2(Ω),
RX(x) = x, is explicitly written only if the connection to previous results is to be pointed out. Further-
more, the embedding ι∗ : H1

0 (Ω)→ L2(Ω), ι∗(x)(ω) := x(ω), is explicitly written only if it is necessary
to do so.

In order to apply the bundle method (Algorithm 3.4) to this problem, we need approximations of the
function value, a subgradient, and the minimizing iterate. To do so, we employ the finite element
method, cf. Section 2.7. We start at an initial triangulation T h0 of Ω with initial mesh width h0 ∈ (0,1].
We use the corresponding finite element space V h0 ⊂ H1

0 (Ω) to discretize Y ∗ = H1
0 (Ω). Using this

discretization, function values, subgradients and minimizing iterates with corresponding error estimates
are constructed as described below. Whenever a computed error estimate exceeds the bounds needed
for Algorithm 3.4, we refine the triangulation of Ω in such a way that this error estimate is reduced.
Each refinement is done in such a way that the constructed sequence of triangulations (T h)h is regular
(cf. Section 2.7). This leads to a sequence of finite element spaces (V h)h which are nested, i.e.,

V h ⊂V h̃ for all h̃≤ h. (5.3.2)

5.3.1. Discretization of the obstacle problem

To obtain an approximation of the objective function f = J(S(F̊(ι(·)))), we first approximate the so-
lution operator S of the obstacle problem. Any triangulation T h yields a corresponding finite element
space V h ⊂ H1

0 (Ω). Define

Kh := {vh ∈V h : vh ≥ Ih
ψ a.e. on Ω},

where Ih : C0(cl(Ω))→ V h denotes the Lagrange interpolation operator. We discretize the obstacle
problem (5.1.2) by

Find yh ∈ Kh : 〈Ayh−b,vh− yh〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀vh ∈ Kh. (5.3.3)

As (5.3.3) is a variational inequality, Theorem 2.4.2 shows the following.

LEMMA 5.3.1. For all b ∈ H−1(Ω) the variational inequality (5.3.3) has a unique solution yh ∈ Kh.
The solution operator Sh : H−1(Ω)→ V h is globally Lipschitz continuous and the Lipschitz modulus
does not depend on the space V h.
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Denote by y,v,Ψ ∈ RnV the coordinates of yh,vh, Ihψ ∈V h and define the set

Kψ := {v ∈ RnV : v ≥ Ψ componentwise }.

As A is induced by the negative Laplace operator, it holds

〈Ayh,vh− yh〉H−1(Ω),H1
0 (Ω) = (yh,vh− yh)H1

0 (Ω) = y>K(v−y),

where K is the stiffness matrix introduced in Section 2.7. We define the vector b̂ ∈ RnV by b̂i :=
〈b,φi〉H1

0 (Ω)
∗
,H1

0 (Ω). This gives

〈b,vh− yh〉H−1(Ω),H1
0 (Ω) = b̂>(v−y).

If b ∈ H−1(Ω) has the form b = (bh, ·)L2(Ω) with bh ∈Uh and coordinates b ∈ RnU , then

b̂>v = 〈b,vh〉H−1(Ω),H1
0 (Ω) = (bh,vh)L2(Ω) = b>MIv for all vh ∈V h with coordinates v ∈ RnV ,

i.e., b̂= I>Mb, where the mass matrix M∈RnU×nU and the prolongation matrix I∈RnU×nV were defined
in Section 2.7. For arbitrary bh ∈ L2(Ω), i.e., if b ∈ H−1(Ω) has the form b = (bh, ·)L2(Ω), we obtain

b̂i = 〈b,φi〉H1
0 (Ω)

∗
,H1

0 (Ω) = (bh,φi)L2(Ω) =
∫

Ω

bh
φi dλ (5.3.4)

and numerical integration techniques (cf. Section 6.1) can be used to compute the vector b̂∈RnV . With
these definitions, (5.3.3) is equivalent to

Find y ∈ Kψ : (Ky− b̂)>(v−y)≥ 0 ∀v ∈ Kψ . (5.3.5)

By Lemma 2.4.3, this finite dimensional VI is equivalent to finding y ∈ Kψ such that

y = PKψ
(y− γ(Ky− b̂)). (5.3.6)

In contrast to PKh : V h → V h ⊂ H1
0 (Ω), the finite dimensional projection PKψ

: RnV → RnV can be
efficiently computed via

PKψ
(v) = max{v,Ψ} for all v ∈ RnV ,

where the max operator is to be understood coordinatewise. As PKψ
: RnV → RnV is piecewise linear in

every coordinate, it is semismooth (cf. [124, Def. 2.5, Prop. 2.26]). Thus, (5.3.6) can be solved via a
semismooth Newton method (cf. [124, Alg. 2.11]) which inhibits a locally q-superlinear convergence
behavior (cf. [124, Prop. 2.12]). However, since this algorithm is based on the finite dimensional re-
formulation (5.3.6), it might not be mesh independent.

Another approach to compute a solution of the obstacle problem (5.1.2) is to use the semismooth
Newton method in Hilbert space proposed in [124, Chap. 9.2]. There, a regularized dual problem is
solved. However, this regularization leads to additional error terms. We thus use a hybrid algorithm.
The last trial iterate of the bundle method is used as a starting iterate y0. Whenever the norm of the
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residual y0−PKψ
(y0− γ(Ky0− b̂)) is larger than a prescribed bound, we use the semismooth Newton

method in Hilbert space with a large regularization parameter to obtain an approximation of the solution
ỹ0. We then use the semismooth Newton method in finite dimensions with the starting point ỹ0 to gain
an accurate solution of (5.3.6).

5.3.2. Computation of function value approximations

We now construct a computable function value oracle O f : V h × (0,1] → R which can be used in
Algorithms 3.2 and 3.3 to compute a function value approximation and a subgradient, respectively. A
computable error bound ε̂ f : V h× (0,1]→ (0,∞) which fulfills (3.5.1) is constructed in Section 5.4.1
for the case of uniform mesh refinement and in Section 5.5.1 for the case of adaptive mesh refinement.
Recall that f (u) = 1

2‖S(u+ f̊ )−yd‖2
L2(Ω)

. We approximate S(uh+ f̊ ) via Sh(uh+ f̊ ) (cf. Section 5.3.1).
This yields the function value oracle

O f (uh,h) := 1
2‖S

h(uh + f̊ )− yd‖2
L2(Ω)

= 1
2‖S

h(uh + f̊ )‖2
L2(Ω)− (Sh(uh + f̊ ),yd)L2(Ω)+

1
2‖yd‖2

L2(Ω).
(5.3.7)

Since Sh(uh + f̊ ) ∈ V h, the term 1
2‖S

h(uh + f̊ )‖2
L2(Ω)

can be computed exactly. Furthermore, the term
1
2‖yd‖2

L2(Ω)
can be computed analytically prior to execution of the algorithm. In order to evaluate the

term (Sh(uh + f̊ ),yd)L2(Ω), we use numerical integration (cf. Section 6.1) to compute

yd ∈ RnU , (yd)i :=
∫

Ω

φi yd dλ , (5.3.8)

where φi is the nodal basis function corresponding to node ni, 1≤ i≤ nU . If y ∈RnU denotes the nodal
values of yh := Sh(uh + f̊ ) ∈V h, then we obtain

(Sh(uh + f̊ ),yd)L2(Ω) = ∑
i
(yiφi,yd)L2(Ω) = y>yd,

i.e., the term (Sh(uh + f̊ ),yd)L2(Ω) can be evaluated exactly. Therefore, the function value oracle
O f (uh,h) is computable. The integrals in (5.3.8) are to be computed numerically in such a way that the
integration error is negligible, cf. Section 6.1.

Computation of an error estimate for the function value approximation

In Sections 5.4.1 and 5.5.1, we develop a priori and a posterior error estimates for the H1
0 (Ω)-error of

the state, i.e., for ‖S(u+ f̊ )− Sh(u+ f̊ )‖H1
0 (Ω). Here, we show how this leads to an error estimate for

the function value.

LEMMA 5.3.2. For any eS(u) ∈ R which fulfills ‖S(u+ f̊ )−Sh(u+ f̊ )‖H1
0 (Ω) ≤ eS(u), it holds

|O f (u,h)− f (uh)| ≤ ε̂ f (u,h) :=CF,Ω‖Sh(u+ f̊ )− yd‖L2(Ω)eS(u)+ 1
2C2

F,ΩeS(u)2.
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Proof. Using the abbreviations a := S(u+ f̊ )− yd ∈ H1
0 (Ω) and ah := Sh(u+ f̊ )− yd ∈ H1

0 (Ω) we get

|Ouf
f (u,h)− f (uh)|= 1

2 |(a+ah,a−ah)L2(Ω)| ≤ ‖ah‖L2(Ω)‖a−ah‖L2(Ω)+
1
2‖a−ah‖2

L2(Ω).

Recall that the Friedrichs constant fulfills CF,Ω = ‖ι∗‖L (H1
0 (Ω),L2(Ω)), cf. Section 2.6. Therefore,

‖a−ah‖L2(Ω) ≤ ‖ι∗‖L (H1
0 (Ω),L2(Ω))‖S(u+ f̊ )−Sh(u+ f̊ )‖H1

0 (Ω) ≤CF,ΩeS(u).

Note that we can compute ‖Sh(u+ f̊ )− yd‖L2(Ω) exactly via

‖Sh(u+ f̊ )− yd‖2
L2(Ω) = ‖S

h(u+ f̊ )‖2
L2(Ω)−2(Sh(u+ f̊ ),yd)L2(Ω)+‖yd‖2

L2(Ω)

= y>My−2y>yd+‖yd‖2
L2(Ω),

cf. (5.3.8). Therefore, we can compute ε̂ f (u,h) exactly if eS(u) can be computed exactly. Furthermore,
Lemma 5.3.2 implies that O f and ε̂ f fulfill (3.5.1) and thus they can be used in Algorithms 3.2 and 3.3
to compute a function value approximation and a subgradient, respectively.

Computation of a lower bound for the H−1(Ω)-norm

In order to control the size of the lift term of the function value approximation, we need an oracle O‖·‖Y
for a lower bound of the H−1(Ω)-norm of an element x ∈ H−1(Ω), cf. Section 3.5.1. For x = R−1

X ι∗xh

with xh ∈ V h, we define O‖·‖Y (x,h) := ‖Ẽhxh‖Y ∗ . The oracle O‖·‖Y (x,h) can be computed exactly by
computing the coordinates z ∈ RnV of zh := Ẽhxh = PY ∗hẼxh via the linear system

z>Kw = (zh,wh)Y ∗ = (ι∗xh, ι∗wh)X∗ = x>Mw for all w ∈ RnV , (5.3.9)

cf. (4.3.6). By Lemma 4.5.1, we find O‖·‖Y (x,h)≤ ‖ιx‖H−1(Ω). Further, for x = R−1
X ι∗xh 6= 0, the Lax-

Milgram theorem, Theorem 2.3.2, shows that Ẽhxh 6= 0 which implies O‖·‖Y (x,h) > 0. Consequently,
O‖·‖Y and C‖·‖Y := 1 fulfill (3.5.4) and thus can be used in Algorithm 3.4 as an oracle for the lower
bound of the Y -norm.

5.3.3. Constant free error estimates for the Dirichlet problem

In the following sections, we need an error estimate for the solution of the Dirichlet problem. Most
error bounds for finite element discretizations involve an unknown constant. Since we need a concrete
upper bound for the error, we use the following error bound developed in [112, 95, 111].

THEOREM 5.3.3 ([112, Cor. 3.1]). Let D ⊂ R2 be a bounded domain with Lipschitz continuous
boundary ∂D and let f ∈ L2(D) be arbitrary. Denote by u ∈ H1

0 (D) the solution to the Dirichlet
problem

−∆u = f in D,

u = 0 on ∂D.
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For arbitrary v ∈ H1
0 (D) there holds

‖u− v‖H1
0 (D) ≤ ‖∇v−w‖L2(D)2 +CF,D‖divw+ f‖L2(D) for all w ∈ H(D,div).

Here, CF,D := supw∈H1
0 (D) ‖w‖L2(D)/‖w‖H1

0 (D) is the Friedrich constant on the domain D.

Known values of CF,D for several domains D can be found in Section 2.6. For a given domain D⊂ R2,
we define the majorant MD via

MD : H1
0 (D)×H(D,div)→ R, MD(v,w) := ‖∇v−w‖L2(D)2 +CF,D‖divw+ f‖L2(D). (5.3.10)

As pointed out in [112], there are several ways to find a suitable w ∈ H(Ω,div) such that MD(v,w) is
small. For w = ∇u, it holds MD(v,w) = ‖∇(v−u)‖L2(D)2 = ‖u− v‖H1

0 (D), i.e., the majorant MD(v,∇u)
recovers the error exactly. Since we cannot compute ∇u exactly, one strategy is to construct a wh ∈
H(Ω,div) based on ∇PV hu ∈ L2(Ω,R2) such that M(v,wh) can be computed exactly.

A simple approach is given by local post-processing, cf. [111, Chap. 2.6.3]. Let Oi ⊂ R2 be the patch
around interior node ni, 1 ≤ i ≤ nV , i.e., Oi := ∪ j=1,...,miTi j , where Ti j , j = 1, . . . ,mi, are the triangles
adjacent to interior node ni. Define the gradient averaging operator Gh : V h→V h×V h by

Ghvh(xi) :=
mi

∑
j=1

|Ti j |
|Oi|

(∇vh)i j for all vh ∈V h,

where (∇vh)i j ∈ R2 denotes the value of ∇vh on the triangle Ti j . This leads to the error estimate

‖u− vh‖H1
0 (D) ≤MD(vh,Ghvh) = ‖∇vh−Ghvh‖L2(D)2 +CF,D‖divGhvh + f‖L2(D). (5.3.11)

Another strategy to compute a suitable w ∈ H(Ω,div) is to solve the problem

wh̃
β

:= argmin
wh̃∈W h̃

(1+β )‖∇vh−wh̃‖2
L2(Ω,R2)+(1+ 1

β
)C2

F,Ω‖divwh̃ + f‖2
L2(Ω) (5.3.12)

with an appropriate finite dimensional subspace W h̃ ⊂ H(Ω,div) and β > 0 fixed. Since (5.3.12) is a
quadratic finite dimensional problem, it can be solved efficiently. If (V h̃i)i∈N is a sequence of linear
finite element spaces generated by quasi-uniform meshes with mesh diameter h̃i with h̃i→ 0 as i→ 0,
then W h̃i := (V h̃i ×V h̃i)i∈N is limit dense in H(Ω,div) in the sense that for any ε > 0 and any w ∈
H(Ω,div) there exists an i ∈ N such that

inf
wh̃ j∈V h̃ j×V h̃ j

‖w−wh̃ j‖H(Ω,div) ≤ ε ∀ j ≥ i.

This follows from the density of the set of vector valued polynomials in H(Ω,div) and the interpolation
estimate Corollary 2.7.2. Let uhi be the finite element approximation of u and ε > 0 be arbitrary.
Combining the limit density of W h̃i with [112, Thm. 3.1] and [112, Eq.(3.17)] shows that there exist
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numbers β̂ > 0 and ĥ > 0 such that

‖u−uhi‖H1
0 (Ω) ≤MD(uhi ,w

h̃i
β
)≤ ‖u−uhi‖H1

0 (Ω)+ ε for all β ∈ (0, β̂ ), h̃i ∈ (0, ĥ). (5.3.13)

This means that MD(uhi ,w
h̃i
β
) approximates ‖u−uhi‖H1

0 (Ω) arbitrarily well for sufficiently small values
of β and h̃i.

5.3.4. Computation of a subgradient approximation

We now consider the issue of constructing a subgradient oracle which can be used in Algorithm 3.3 to
find an appropriate subgradient, cf. Section 3.5.2. Let either D = I or D = Ω\As, where I and As

are the inactive set and the strictly active set defined in (5.2.5) and (5.2.10), respectively. Recall that
F̊(w) = w+ ι f̊ for all w∈H−1(Ω). Therefore, F̊ ′(w) = IdH−1(Ω) for all w∈H−1(Ω). By Lemma 5.2.6,
g := F̊ ′(w)∗q = q is a Clarke subgradient of p(·) = J(S(F̊(·))) at w ∈H−1(Ω), where q ∈H1

0 (Ω) is the
solution to the variational equation

Find q ∈ H1
0 (D) : 〈−∆q,v〉H−1(Ω),H1

0 (Ω) = 〈J
′(S(F̊(w))),v〉H−1(Ω),H1

0 (Ω) ∀v ∈ H1
0 (D).

Since the objective function J : H1
0 (Ω)→ R is given by J(y) := 1

2‖ι
∗y− yd‖2

L2(Ω)
, we find

〈J′(y),v〉H−1(Ω),H1
0 (Ω) = (y− yd ,v)L2(Ω) for all y,v ∈ H1

0 (Ω), (5.3.14)

which leads to the variational equation

Find q ∈ H1
0 (D) : 〈−∆q,v〉H−1(Ω),H1

0 (Ω) = (S(F̊(w))− yd ,v)L2(Ω) ∀v ∈ H1
0 (D). (5.3.15)

Note that the inactive set I and the strictly active set As depend on the exact solution y of the obstacle
problem. Therefore, we cannot compute D exactly. Thus, we present two strategies to approximate the
subgradient g = q. For the first strategy, we compute an approximation of the state yh via (5.3.3). Then
we compute qh ∈V h∩H1

0 (D
h) via the variational equation

Find qh ∈V h∩H1
0 (D

h) : 〈−∆qh,vh〉H−1(Ω),H1
0 (Ω) = (yh− yd ,vh)L2(Ω) ∀vh ∈V h∩H1

0 (D
h).

Here, the Dh is given as the discrete inactive set Dh := {ω ∈ Ω : yh(ω) > Ihψ(ω)}. This leads to the
subgradient oracle

O1
g : Xh× (0,1]→ X∗h, O1

g(y
h,h) := ι

∗qh, (5.3.16)

where the linear subspaces X∗h = Xh ⊂ X∗ correspond to the finite element space V h ⊂ L2(Ω). Note
that we cannot guarantee that O1

g(y
h,h) is actually a Clarke subgradient or even that it is close to a

Clarke subgradient. Consequently, it is not clear if Assumption 3.1.1 is fulfilled for any meaningful
subdifferential G. However, in our numerical tests, O1

g performed very well, cf. Section 6.2.

In order to compute subgradients which fulfill Assumption 3.1.1 with G := ∂C p+ B̄H1
0 (Ω)(0,εG), εG > 0,

we proceed as suggested in [109]. There, the solution to (5.3.15) is approximated by the solutions qn
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of

Find qn ∈ H1
0 (Dn) : 〈−∆qn,v〉H−1(Ω),H1

0 (Ω) = (yn− yd ,v)L2(Ω) ∀v ∈ H1
0 (Dn). (5.3.17)

For each n ∈ N, Dn is assumed to be a quasi-open subset of D and the approximation yn ∈ H1
0 (Ω) of

S(F̊(w)) is to be chosen later. By [109, Lem. 7.1], the following a posteriori error estimate holds true:

‖q−qn‖H1
0 (Ω) ≤ ‖−∆qn− J′(yn)‖H−1(D)+‖J′(yn)− J′(S(F̊(w)))‖H−1(Ω).

If yn→ S(F̊(w)) in H1
0 (Ω) and H1

0 (Dn)→H1
0 (D) in the sense of Mosco as n→∞, then [109, Lem. 7.1]

implies that qn→ q in H1
0 (Ω), i.e., the subgradient g = q can be approximated arbitrarily well by the

elements gn := F̊ ′(w)∗qn = qn, n ∈ N. However, as the exact set D is unknown, the H−1(D)-norm of
−∆qn−J′(yn) cannot be evaluated exactly. Therefore, the quasi-open sets D̃n, n ∈N, with D⊂ D̃n ⊂Ω

are introduced. Note that H1
0 (D)⊂ H1

0 (D̃n) shows

‖w‖H−1(D) = sup
v∈H1

0 (D),‖v‖H1
0 (D)
≤1
|〈w,v〉H−1(Ω),H1

0 (Ω)|

≤ sup
v∈H1

0 (D̃n),‖v‖H1
0 (D̃n)

≤1
|〈w,v〉H−1(Ω),H1

0 (Ω)|= ‖w‖H−1(D̃n)

for all w ∈ H−1(D̃n). This results in

‖q−qn‖H1
0 (Ω) ≤ ‖−∆qn− J′(yn)‖H−1(D̃n)

+‖J′(yn)− J′(S(F̊(w)))‖H−1(Ω). (5.3.18)

Inspecting the proof of [109, Cor. 7.3] shows that if yn → S(F̊(w)) in H1
0 (Ω), H1

0 (Dn)→ H1
0 (D) and

H1
0 (D̃n)→ H1

0 (D) in the sense of Mosco as n→ ∞, then it holds

‖−∆qn− J′(yn)‖H−1(D̃n)
+‖J′(yn)− J′(S(F̊(w)))‖H−1(Ω)→ 0 as n→ ∞,

i.e., (5.3.18) is a reliable error estimate. The important issue to compute appropriate sets Dn and D̃n is
addressed at the end of this section.

While the approximations gn = qn defined in (5.3.17) solve the main difficulties in approximating a
subgradient, we still cannot compute them exactly. Now we turn to developing a computable approx-
imate subgradient ghn ∈ V h and computable error bounds for ‖ghn − g‖H1

0 (Ω), where g ∈ ∂C p(w) with
w ∈ H−1(Ω). First, note that the element qn, as defined in (5.3.17), is the solution to the Dirichlet
problem

−∆qn = yn− yd in Dn

qn = 0 on ∂Dn.

We therefore approximate the element qn by a finite element approximation qhn . Denote

V n
D :=V hn ∩H1

0 (Dn) and V n
D̃ :=V hn ∩H1

0 (D̃n).
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Choose yn := Shn(w+ f̊ ) and define qhn ∈V n
D ⊂V hn as the solution to the variational equation

Find qhn ∈V n
D : 〈−∆qhn ,vhn〉H−1(Ω),H1

0 (Ω) = (yn− yd ,vhn)L2(Ω) ∀vhn ∈V n
D.

Note that if w is in V hn , then yn ∈V hn can be computed exactly and (5.3.8) yields

(yn− yd ,vhn)L2(Ω) = (yn
>M−yd

>)vhn for all vhn ∈V hn . (5.3.19)

This shows that qhn ∈ V n
D can be computed exactly. We now develop a computable heuristic for the

error ‖qhn−q‖H1
0 (Ω). Using (5.3.14) and (5.3.18), we find

‖qhn−q‖H1
0 (Ω) ≤ ‖q

hn−qn‖H1
0 (Ω)+‖−∆qn− J′(yn)‖H−1(D̃n)

+‖yn−S(F̊(w))‖H−1(Ω). (5.3.20)

In order to approximate the term ‖−∆qn− J′(yn)‖H−1(D̃n)
, we approximately compute the inverse of

the inverse Riesz representative of −∆qn− J′(yn) in the Hilbert space H1
0 (D̃n), cf. Section 2.1. Since

qn ∈ H1
0 (Dn) ⊂ H1

0 (D̃n), the Riesz representative on H1
0 (D̃n) of −∆qn is given by qn. Denoting rn :=

R−1
H1

0 (D̃n)
J′(yn) yields

‖−∆qn− J′(yn)‖H−1(D̃n)
= ‖qn−R−1

H1
0 (D̃n)

J′(yn)‖H1
0 (D̃n)

≤ ‖qn−qhn‖H1
0 (Ω)+‖q

hn− rn‖H1
0 (D̃n)

.

(5.3.21)

The inverse Riesz representative rn = R−1
H1

0 (D̃n)
J′(yn) is characterized via

(rn,v)H1
0 (D̃n)

= 〈J′(yn),v〉H−1(D̃n),H1
0 (D̃n)

= (yn− yd ,v)L2(Ω) for all v ∈ H1
0 (D̃n).

Therefore, rn is given as the solution to the Dirichlet problem

−∆rn = yn− yd in D̃n

rn = 0 on ∂ D̃n.

Thus, we approximate rn by the finite element approximation rhn ∈V n
D̃ which is defined as the solution

to

Find rhn ∈V n
D̃ : 〈−∆rhn ,vhn〉H−1(Ω),H1

0 (Ω) = (yn− yd ,vhn)L2(Ω) ∀vhn ∈V n
D̃.

Note that by (5.3.19), the right hand side can be evaluated exactly and thus rhn ∈ V n
D̃ can be computed

exactly. Combining (5.3.20) and (5.3.21), we arrive at the estimate

‖qhn−q‖H1
0 (Ω) ≤ 2‖qn−qhn‖H1

0 (Ω)+‖q
hn− rhn‖H1

0 (D̃n)
+‖rhn− rn‖H1

0 (D̃n)
+‖yn−S(w+ f̊ )‖H−1(Ω).

Since qhn ∈V n
D and rhn ∈V n

D̃, we can compute ‖qhn−rhn‖H1
0 (D̃n)

= ‖qhn−rhn‖H1
0 (Ω) exactly, but the other

three terms on the right hand side need to be estimated. The errors ‖qn−qhn‖H1
0 (Ω) = ‖qn−qhn‖H1

0 (Dn)

and ‖rn − rhn‖H1
0 (D̃n)

have to be treated with care. Applying a widely used residual error estimate
for a quasi-uniform triangulation yields an estimate of the form ‖qn− qhn‖H1

0 (Ω) ≤Chα
n ‖yn− yd‖L2(Ω)

with constants C > 0 and α > 0 independent of hn. However, the constant C usually depends on
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the domain Dn and is usually difficult to compute or even estimate. Thus, it is not possible to use a
residual error estimate here. Instead, we use the majorant MD, defined in (5.3.10), to estimate the errors
‖qn−qhn‖H1

0 (Dn)
and ‖rn− rhn‖H1

0 (D̃n)
via local gradient averaging, cf. (5.3.11). This yields

‖qn−qhn‖H1
0 (Dn)

≤MDn(q
hn ,Ghnqhn) and ‖rn− rhn‖H1

0 (D̃n)
≤MD̃n

(rhn ,Ghnrhn)

which leads to

‖qhn−q‖H1
0 (Ω) ≤ 2MDn(q

hn ,Ghnqhn)+‖qhn− rhn‖H1
0 (D̃n)

+MD̃n
(rhn ,Ghnrhn)+‖yn−S(F̊(w))‖H−1(Ω).

Finally, the term ‖yn−S(F̊(w))‖H−1(Ω) needs to be estimated by computable quantities. Recall that the
Poincare-Friedrichs constant fulfills CF,Ω = ‖ι∗‖L (H1

0 (Ω),L2(Ω)) = ‖ι‖L (H−1(Ω),L2(Ω)), cf. Section 2.6.
We therefore estimate

‖yn−S(F̊(w))‖H−1(Ω) ≤CF,Ω‖yn−S(F̊(w))‖L2(Ω) ≤C2
F,Ω‖yn−S(F̊(w))‖H1

0 (Ω) ≤C2
F,ΩeS(w),

where eS(w) is a computable error estimate of the H1
0 (Ω)-error of the solution operator of the obstacle

problem, i.e., ‖yn−S(F̊(w))‖H1
0 (Ω)≤ eS(w). In Sections 5.4.1 and 5.5.1, we use a priori and a posteriori

techniques to construct such an error estimate eS. This results in the computable subgradient error
estimate

‖qhn−q‖H1
0 (Ω) ≤ 2MDn(q

hn ,Ghnqhn)+‖qhn− rhn‖H1
0 (D̃n)

+MD̃n
(rhn ,Ghnrhn)+C2

F,ΩeS(w). (5.3.22)

The task to compute sets Dn and D̃n which fulfill Dn ⊂D⊂ D̃n ⊂Ω, H1
0 (Dn)→H1

0 (D) and H1
0 (D̃n)→

H1
0 (D) in the sense of Mosco is the main difficulty of this approach. Several possibilities are explored

in [109]. Each of them relies on the convergence ‖yn− S(F̊(w))‖L∞(Ω)→ 0 as n→ ∞ (which can be
ensured if sufficient regularity assumptions on the data of the obstacle problem are made) and on further
regularity assumptions on the active set A , cf. [109, Thm. 7.31]. In particular, it is assumed that there
exists a neighborhood U of A and a positive number η such that

〈−∆ψ− F̊(w),v〉H−1(Ω),H1
0 (Ω) ≥ η

∫
U

vdλ for all v ∈ H1
0 (U)+ (NDη )

holds. This nondegeneracy condition (NDη ) is vital for the approach of [109] to compute sets Dn and
D̃n since the parameter η is used to construct D̃n. However, the condition (NDη ) is not fulfilled in
many of our numerical examples. Therefore, we take another approach. For the rest of this section, we
assume that yn→ S(F̊(w)) and ψn := Ihnψ → ψ in L∞(Ω) as n→ ∞. We use D = I , choose a forcing
sequence (εn)n∈N ⊂ [0,∞) which fulfills εn→ 0 as n→ ∞ and

εn ≥ ‖yn− y‖L∞(Ω)+‖(ψ−ψn)+‖L∞({yn≤ψn+‖yn−y‖L∞(Ω)+‖(ψ−ψn)+‖L∞(Ω)}) for all n ∈ N,

and define

Dn := {yn > ψn + εn}. (5.3.23)

By [109, Lem. 7.8 and Chap. 7.7], it holds Dn ⊂I for all n ∈ N and [109, Thm. 7.10 and Chap. 7.7]
implies H1

0 (Dn)→ H1
0 (I ) in the sense of Mosco. As stated above, if yn → S(F̊(w)) in H1

0 (Ω), then
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this yields that gn = qn → q = g in H1
0 (Ω), i.e., the subgradient g can be approximated arbitrarily

well by the elements gn, n ∈ N. However, it is very difficult to construct a sequence of sets D̃n ⊃ I
which converge to I in the sense of Mosco as n → ∞, cf. [109, Chap. 7.6]. We use the choice
D̂n := {yn > ψn} ≈ D̃n instead of a superset D̃n ⊃ D = I as a heuristic to compute an approximate
error bound for the subgradient. In particular, we compute rhn in the space V n

D̂
:=V hn ∩H1

0 (D̂n) and use

eg
n := 2MDn(q

hn ,Ghnqhn)+‖qhn− rhn‖H1
0 (D̂n)

+MD̂n
(rhn ,Ghnrhn)+C2

F,ΩeS(w) (5.3.24)

as an approximate error bound for the subgradient. Note that we cannot guarantee that D̂n ⊃ D = I
and therefore, we cannot guaranteed that ‖qhn −q‖H1

0 (Ω) ≤ eg
n. However, this heuristic for the error of

the subgradient approximation is not used in the bundle algorithm. It is only computed to be displayed
in the numerical results of Chapter 6.

We now choose

O2
g : Xhn× (0,1]→ X∗hn , O2

g(y
hn ,hn) := ι

∗qhn (5.3.25)

as a subgradient oracle according to Section 3.5.2. This corresponds to the subdifferential approxima-
tion G := ∂C p+ B̄H1

0 (Ω)(0,εG), where εG > 0 is the largest error term eg
n encountered in the algorithm.

Although we cannot guarantee that εG is bounded, our numerical experiments suggest this, cf. Fig-
ure 6.6(d). In this case, G fulfills Assumption 3.1.1 and thus can be used as a subdifferential. However,
since eg

n is not an upper bound on the error, we cannot compute εG. In the numerical results in Chapter 6,
we plot eg

n for all used gradients such that one can get an impression of the size of εG.

5.3.5. Computation of a trial iterate

We now apply the theory of Chapter 4 in order to compute a trial iterate. Before we go into detail,
we give a short overview of this section. First we define the oracle OF−1 needed in Assumption 4.2.7
which gives an approximation of F−1 p′ for p′ ∈ P. Corresponding error estimates ε̂F and ε̂F−1 which
fulfill Assumption 4.2.7 are developed in Sections 5.4.2 and 5.5.2 using a priori and a posteriori tech-
niques, respectively. Then Theorem 4.2.8 implies that the output of Algorithm 4.2 can be used as a
subproblem oracle Os and subproblem error bound ε̂s which is needed in Algorithm 4.1 to compute a
trial iterate. Next we define model value oracles OΨ(h) and OΨ(h) which fulfill (4.1.4). Using these
oracles and error bounds, Algorithm 4.1 terminates in finitely many steps if the current serious iterate is
not G-stationary and Theorem 4.1.1 implies that the computed element can be used for the trial iterate
oracle Oỹ in Algorithm 3.4.

We start by defining the oracle OF−1 : P× (0,1]→ L2(Ω) where P := {p′i, i ∈ I} ⊂ L2(Ω). Here,
p′j = g′j +αRX xi ∈ L2(Ω) is constructed from the subgradients of the current model and the serious
iterate, cf. (4.2.2). We first prove that P⊂V h.

LEMMA 5.3.4. Denote by ỹ the trial iterate and by h̃ the accuracy level computed by Algorithm 4.1
with initial accuracy level h ∈ (0,1]. If the serious iterate x ∈ L2(Ω) is an element of V h, all subgradi-
ents g′j ∈ L2(Ω) (used in the current model) are elements of V h and OF−1(p′, h̃) ∈ X h̃ for all p′ ∈ V h̃,

then ỹ ∈V h̃.
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Proof. First notice that h̃≤ h and ỹ = Os(Ψ̂, h̃) for a suitable reduced model Ψ̂. Since the oracle Os is
computed via Algorithm 4.2, we find

ỹ = Os(Ψ̂, h̃) = x− d̃∗ = x−∑
j∈I

λ̃
∗
j OF−1(p′j, h̃) = x−∑

j∈I
λ̃
∗
j OF−1(g′j +αRX x, h̃).

Since h̃ ≤ h it holds V h ⊂ V h̃, cf. (5.3.2). Therefore, x ∈ V h̃, g′j ∈ V h̃, OF−1(g′j +αRX x, h̃) ∈ V h̃ and

ỹ ∈V h̃.

LEMMA 5.3.5. If x0 ∈V h0 and OF−1(p′,h) ∈V h for all p′ ∈V h and h ∈ (0,1], then

gi+1 ∈V hi+1 , g̃i ∈V hi+1 , ỹi ∈V h̃i , xi ∈V hi for all i ∈ N.

Proof. First notice, that gi+1 is always computed at accuracy level ĥi = hi+1. Thus, (5.3.25) implies
that gi+1 ∈ V hi+1 for all i ∈ N. Similarly, g̃i is always computed at accuracy level h′i = hi+1 which
implies g̃i ∈V hi+1 for all i ∈N. We show by induction that ỹi ∈V h̃i and xi ∈V hi for all i ∈N. For i = 0,
the serious iterate x0 is an element of V h0 . Furthermore, only the exactness gradient g̃x

0 ∈ V h0 ⊂ V h̃0

is included into the model Ψ0 and x0 ∈ V h0 ⊂ V h̃0 . Thus Lemma 5.3.4 shows that ỹ0 ∈ V h̃0 which
concludes the case i = 0. Now assume that ỹi ∈ V h̃i and xi ∈ V hi for a given i ∈ N. In the case of
a successful iteration, it holds that xi+1 = ỹi ∈ V h̃i ⊂ V hi+1 because hi+1 = ĥi ≤ h̃i. In the case of a
unsuccessful iteration, it holds xi+1 = xi ∈V hi ⊂V hi+1 because hi+1 ≤ hi. Therefore, xi+1 ∈V hi+1 . Now
notice that all computed subgradients up to iteration i+1 are elements of V hi+1 and xi+1 ∈V hi+1 . Thus,
Lemma 5.3.4 shows that ỹi+1 ∈V h̃i+1 .

Lemma 5.3.5 implies that P⊂V h. Now recall that the operator F ∈L (X ,X∗) is defined by F = αRX +
ι∗(Q+τRY )ι , cf. (4.2.2). For the case of no curvature information, i.e., Q = 0, it holds (cf. (4.3.4)) for
all p′ = ι∗ph ∈ P that F−1 p′ = F−1ι∗ph = R−1

X ι∗D̃−1
τ ph where D̃τ = α IdY ∗+τRY ιR−1

X ι∗. Therefore,
we approximate F−1 p′ via R−1

X ι∗D̃−h
τ ph. By (4.3.7), the coordinates z ∈ RnV of zh := D̃−h

τ ph ∈V h can
be computed by solving the linear system

z>(αK+ τM)w = α(zh,wh)H1
0 (Ω)+ τ(ι∗zh, ι∗wh)L2(Ω) = (ph,wh)Y ∗ = y>Kw ∀w ∈ RnV . (5.3.26)

Here, M and K are the mass and stiffness matrices introduced in Section 2.7, respectively. There-
fore, OF−1(p′,h) := R−1

X ι∗D̃−h
τ ph is a computable oracle of F−1 p′ for Q = 0. In the case of BFGS

curvature, (4.4.13) yields for all p′ = ι∗ph ∈ P that F−1
BFGS p′ = R−1

X ι∗F̃−1
BFGS ph, where F̃−1

BFGS ph can be
approximated via F̃−h

BFGS ph ∈V h, cf. Section 4.4.4. We thus use

OF−1(p′,h) := R−1
X ι
∗D̃−h

τ+µ ph−R−1
X ι
∗D̃−h

τ+µUh(IdR2L̃ +V h
ιR−1

X ι
∗D̃−h

τ+µUh)−1V h
ιR−1

X ι
∗D̃−h

τ+µ ph

as a computable oracle of F−1 p′, cf. (4.4.15). The corresponding error estimates ε̂F and ε̂F−1 which
fulfill Assumption 4.2.7 are developed in Sections 5.4.2 and 5.5.2 using a priori and a posteriori tech-
niques, respectively.

In order to compute a subproblem oracle, we run Algorithm 4.2 with the safeguarding parameter
εh

s := min{100 · εmλmax(H̃∆),h}, where εm is the machine precision. For h ≈ 1, this ensures that εh
s

is reasonably small such that the solution of the approximated problem (4.2.5) is close to the solution
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of the original problem (4.2.3) while it is sufficiently large to facilitate an efficient solution of (4.2.5).
Now, since pF−1

j = OF−1(p′j,h) ∈ Xh and p′i ∈ X∗h, the terms 〈p′i, pF−1

j 〉X∗,X , i, j ∈ I can be computed
exactly. Therefore, Theorem 4.2.8 is applicable which implies that Algorithm 4.2 can be executed.
Denote by ỹ∗h and eh

y the output of Algorithm 4.2 for accuracy h ∈ (0,1]. Since εh
s = h→ 0 as h→ 0,

Os(Ψ̂,h) := ỹ∗h, ε̂s(Ψ̂,h) := eh
y and C

Ψ̂
:= max{CF ,CF−1 ,1} fulfill (4.1.3) and thus can be used as a

subproblem oracle with corresponding error estimates.

For the model value oracles OΨ(h) and OΨ(h), we choose the oracles defined in Theorems 4.5.2
and 4.5.3. For this, we need a computable error estimator eẼ(h)≥ 0 such that

‖(Ẽ− Ẽh)(yh− xh)‖H1
0 (Ω) ≤ eẼ(h) and eẼ(h)→ 0 as h→ 0. (5.3.27)

Note that z := Ẽ(yh− xh) = RY ιR−1
X ι∗(yh− xh) is the solution of the variational equation (z,w)H1

0 (Ω) =

(ι∗(yh− xh), ι∗w)L2(Ω) for all w ∈ H1
0 (Ω). Since this is the weak form of the PDE

−∆z = ι
∗(yh− xh) in Ω,

u = 0 on ∂Ω,

Ẽh(yh− xh) can be computed exactly via (5.3.9). Therefore, Theorem 5.3.3 implies that for all w ∈
H(Ω,div) there holds

‖(Ẽ− Ẽh)(yh− xh)‖H1
0 (Ω) ≤MΩ(Ẽh(yh− xh),w) = ‖∇Ẽh(yh− xh)−w‖L2(Ω)2 +CF,Ω‖divw+ f‖L2(Ω).

Using w := wh
β
∈ H(Ω,div) as in (5.3.12), we define the computable error estimator eẼ via eẼ(h) :=

MΩ(Ẽh(yh− xh),wh
β
). In order to guarantee eẼ(h)→ 0 as h→ 0, we introduce the forcing sequence

vẼ : (0,1]→ (0,∞) with the property that vẼ(h)→ 0 as h→ 0. Now, whenever eẼ(h) > vẼ(h), we
uniformly refine the mesh and reduce the parameter β . By (5.3.13), repeating this procedure eventually
leads to eẼ(h) ≤ vẼ(h). This guarantees that the conditions (5.3.27) are fulfilled and the model value
oracles defined in Theorems 4.5.2 and 4.5.3 fulfill (4.1.4).

In order to define a trial iterate oracle Oỹ : (0,∞)2 → L2(Ω)× (0,∞) which fulfills (3.5.6), let ε > 0
be a desired accuracy. We run Algorithm 4.1 with the oracles Os, OΨ and OΨ defined above and
the error bounds f 1 := ε and f 2 := ε . Now we distinguish the cases Ψ(x) = miny∈X Ψ(y) and Ψ(x)>
miny∈X Ψ(y). If the serious iterate minimizes the model Ψ, i.e., if Ψ(x) =miny∈X Ψ(y), then the serious
iterate is already G-stationary (cf. proof of Lemma 3.1.10). However, since we cannot compute the
minimizer of Ψ exactly, we cannot detect this case and Algorithm 4.1 refines indefinitely. If Ψ(x) >
miny∈X Ψ(y), then Theorem 4.1.1 shows that Algorithm 4.1 terminates in finitely many steps and the
output (ỹ, h̃) fulfills Ψ(ỹ) ≤ miny∈X Ψ(y)+ (C

Ψ̂
+ 1)ε and Ψ(ỹ) < Ψ(x), i.e., Oỹ(ε,h) := (ỹ, h̃) and

Cỹ :=C
Ψ̂
+1 fulfill (3.5.6) and thus can be used as a trial iterate in Algorithm 3.4.

5.4. A priori error estimates

In this section we develop a priori error estimates for quasi-uniform meshes with mesh width h.
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5.4.1. A priori error estimates for the solution operator

For convex domains Ω, we use the classical a priori error estimate of [33] for the solution operator of
the obstacle problem:

THEOREM 5.4.1 ([33, Thm. 2]). If Ω is convex, ψ ∈ H2(Ω) and f̊ ∈ L2(Ω), then there exists a
constant CΩ, depending only on Ω but not on h, f̊ and ψ , such that

‖S(u+ f̊ )−Sh(u+ f̊ )‖H1
0 (Ω) ≤CΩh

(
‖u+ f̊‖L2(Ω)+‖ψ‖H2(Ω)

)
for all u ∈ L2(Ω).

We therefore use eS(u) := CΩh
(
‖u‖L2(Ω)+ ‖ f̊‖L2(Ω)+ ‖ψ‖H2(Ω)

)
as an error estimate for the H1

0 (Ω)-
error of the state. For a given domain Ω, we compute a suitable constant CΩ as described in Sec-
tion 6.1. The terms ‖ f̊‖L2(Ω) and ‖ψ‖H2(Ω) can be computed analytically prior to execution of the
algorithm. Therefore, the error estimate eS can be computed exactly and can be used in Section 5.3.2
and Lemma 5.3.2.

We are not aware of the existence of any a priori error estimates for the solution operator of the obstacle
problem for nonconvex domains. Therefore, we use the a posteriori error estimate from Section 5.5.1
for nonconvex domains. Note that we still use only uniform mesh refinements but we estimate the error
via the a posteriori error estimate from Section 5.5.1.

5.4.2. A priori error estimates for the trial iterate

In Section 5.3.5, we describe how a trial iterate is computed and define the oracle OF−1 . The aim of this
section is to provide explicit and computable a priori error estimates ε̂F and ε̂F−1 for the oracle OF−1

which fulfill Assumption 4.2.7. We start off with the case Q = 0 and a convex domain Ω. First we
show that problem (4.6.7) is regular in the sense of Definition 4.6.3. Using this regularity result, Corol-
lary 4.6.6 and Theorem 4.6.7 provide error estimates eE

xh,yh and eD−1

xh,yh which fulfill Assumptions 4.3.6
and 4.3.7, respectively. We then use Lemma 4.3.9 to provide error estimates ε̂F and ε̂F−1 which fulfill
Assumption 4.2.7.

Throughout this section we work in the setting that Y ∗ = H1
0 (Ω), X∗ = L2(Ω), that Y ∗h =V h is a space

of finite element functions generated by quasi-uniform meshes with mesh width h and that the initial
serious iterate x0 is an element of V h0 . Thus, Lemma 5.3.5 shows that Assumption 4.3.5 holds true
and all relevant quantities are discretized as elements of X∗h. In particular, we have x = R−1

X ι∗xh and
g′j = ι∗gh

j with xh,gh
j ∈ Y ∗h. We set ph

j := gh
j +αxh ∈ Y ∗h, j ∈ I and d̃∗h := −∑ j∈I λ̃ ∗j D̃−h

τ ph
j ∈ Y ∗h

where λ̃ ∗ is the solution to the approximated dual problem (4.2.5). The quasi-uniformity parameters of
the meshes are denoted by c1 and c2.

A priori error estimates for convex, polygonal domains

First note, that (4.3.2) implies that for xh ∈ Y ∗h the adjoint problem (4.6.7),

Find Φ
′
x ∈ Y ∗ : (D̃τ+µ w′,Φ′x)Y ∗ = (ι∗xh, ι∗w′)X∗ for all w′ ∈ Y ∗, (4.6.7)

106



5. Optimal control of the obstacle problem

is equivalent to the PDE

α(Φ′x,w
′)H1

0 (Ω)+(τ +µ)(Φ′x,w
′)L2(Ω) = (xh,w′)L2(Ω) for all w′ ∈ H1

0 (Ω). (5.4.1)

LEMMA 5.4.2. If Ω⊂R2 is a bounded convex open domain with polygonal boundary, then the varia-
tional equation

Find z ∈ H1
0 (Ω) : (z,w)H1

0 (Ω)+β (z,w)L2(Ω) = (y,w)L2(Ω) for all w ∈ H1
0 (Ω) (5.4.2)

with β ≥ 0 and y ∈ L2(Ω) has a unique solution z with regularity z ∈ H2(Ω)∩H1
0 (Ω) and it holds

‖z‖H2(Ω) ≤
(

1+C2
F,Ω +

2β

C−2
F,Ω +β

+
1+β 2

(C−2
F,Ω +β )2

)1/2
‖y‖L2(Ω) ≤

√
4+C2

F,Ω +C4
F,Ω ‖y‖L2(Ω),

where CF,Ω = supw∈H1
0 (Ω) ‖w‖L2(Ω)/‖w‖H1

0 (Ω) is the Friedrich constant (which depends only on Ω).

Proof. By the Lax-Milgram theorem, for all β ≥ 0, (5.4.2) has a unique weak solution z ∈ H1
0 (Ω).

Since Ω is convex, [41, Thm. 3.2.1.2 and Thm. 3.2.1.3] imply that z ∈ H2(Ω). Using integration by
parts (cf. [31, Thm. 4.6]), one can see that the solution z ∈ H2(Ω) to (5.4.2) also fulfills

−∆z+β z = y in Ω

z = 0 on ∂Ω.

Since Ω has a polygonal boundary, [41, Eq. (4,3,1,11) and Lem. 4.3.1.3] yield that

‖w‖2
H2(Ω) ≤ ‖∆w‖2

L2(Ω)+‖w‖
2
H1(Ω) for all w ∈ H2(Ω)∩H1

0 (Ω).

Therefore, we infer

‖z‖2
H2(Ω) ≤ ‖∆z‖2

L2(Ω)+‖z‖
2
H1(Ω) = ‖y−β z‖2

L2(Ω)+‖z‖
2
H1(Ω)

≤ ‖y‖2
L2(Ω)+2β‖y‖L2(Ω)‖z‖L2(Ω)+β

2‖z‖2
L2(Ω)+‖z‖

2
H1

0 (Ω)+‖z‖
2
L2(Ω).

(5.4.3)

By the Poincaré-Friedrich inequality (2.6.1), there exists a constant CF,Ω > 0 which depends only on Ω

such that

‖w‖L2(Ω) ≤CF,Ω‖∇w‖L2(Ω)2 =CF,Ω‖w‖H1
0 (Ω) for all w ∈ H1

0 (Ω).

Therefore, as z ∈ H1
0 (Ω) solves (5.4.2), we find both

(C−2
F,Ω +β )‖z‖2

L2(Ω) ≤ ‖z‖
2
H1

0 (Ω)+β‖z‖2
L2(Ω) = (y,z)L2(Ω) ≤ ‖y‖L2(Ω)‖z‖L2(Ω)

and

‖z‖2
H1

0 (Ω) ≤ ‖z‖
2
H1

0 (Ω)+β‖z‖2
L2(Ω) = (y,z)L2(Ω) ≤CF,Ω‖y‖L2(Ω)‖z‖H1

0 (Ω).
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This gives

‖z‖L2(Ω) ≤ (C−2
F,Ω +β )−1‖y‖L2(Ω) and ‖z‖H1

0 (Ω) ≤CF,Ω‖y‖L2(Ω).

Combining this with (5.4.3) shows the first estimate of the lemma via

‖z‖2
H2(Ω) ≤ (1+

2β

C−2
F,Ω +β

+
β 2

(C−2
F,Ω +β )2

+C2
F,Ω +

1
(C−2

F,Ω +β )2
)‖y‖2

L2(Ω).

For β = 0, the second estimate of the lemma holds true. Now let β be greater than zero. Then
β−1C−2

F,Ω > 0 and

β

C−2
F,Ω +β

=
1

β−1C−2
F,Ω +1

< 1 and
1

(C−2
F,Ω +β )2

=
1

C−4
F,Ω +2βC−2

F,Ω +β 2
<C4

F,Ω.

This shows that

‖z‖2
H2(Ω) ≤

(
1+C2

F,Ω +
2β

C−2
F,Ω +β

+
1+β 2

(C−2
F,Ω +β )2

)
‖y‖2

L2(Ω) ≤ (4+C2
F,Ω +C4

F,Ω)‖y‖2
L2(Ω).

Known values of CF,Ω for several domains Ω can be found in Section 2.6.

LEMMA 5.4.3. Assume that Ω⊂R2 is a convex, bounded and open domain with polygonal boundary.
Then the adjoint problem (4.6.7) is 1-regular and the constant Creg depends only on Ω, the quasi-
uniformity parameters c1, c2 of the triangulations and α .

Proof. Let xh ∈ Y ∗h be arbitrary. Dividing both sides of (5.4.1) by α > 0, Lemma 5.4.2 shows that the
solution Φ′x of (5.4.1) is an element of H2(Ω)∩H1

0 (Ω) and there exists a constant CΩ > 0, only de-
pending on Ω, such that ‖Φ′x‖H2(Ω) ≤CΩ‖α−1ι∗xh‖L2(Ω) =CΩ/α‖ι∗xh‖L2(Ω). Furthermore, by Corol-
lary 2.7.2 there exists a constant Cc1,c2 > 0 (depending only on the quasi-uniformity parameters c1,c2
of the triangulations) such that

‖Φ′x−PY ∗hΦ
′
x‖H1

0 (Ω) ≤ ‖Φ
′
x− Ih

Φ
′
x‖H1

0 (Ω) ≤Cc1,c2h|Φ′x|H2(Ω) ≤Cc1,c2CΩα
−1h‖ι∗xh‖L2(Ω).

As (5.4.1) and (4.6.7) are equivalent, this shows that the adjoint problem (4.6.7) is 1-regular according
to Definition 4.6.3.

THEOREM 5.4.4. Assume that Ω⊂ R2 is a convex, bounded and open domain with polygonal bound-
ary. If Q = 0, then there exists a constant C ≥ 0, depending only on Ω, c1, c2 and α , such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=C, CF−1 :=C,

ε̂F−1(p′i, p′j,h) := (1+ τ)h‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := τh2 ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. First note that D̃−h
τ xh, ‖xh‖L2(Ω) and ‖xh‖H1

0 (Ω) can be computed exactly for any xh ∈V h, cf. Sec-

tion 2.7. Thus, OF−1(p′j,h), ε̂F−1(p′i, p′j,h) and ε̂F(d̃∗, d̊′,h) can be computed. Also, ε̂F−1(p′i, p′j,h)→ 0
and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0. By Lemma 5.4.3, the adjoint problem (4.6.7) for a convex, bounded
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and open domain Ω⊂R2 with polygonal boundary is 1-regular and the constant Creg ≥ 0 depends only
on Ω, c1, c2 and α . Therefore, Corollary 4.6.6 implies that

eE
xh,yh :=C2

reg h2 ‖xh‖L2(Ω)‖yh‖L2(Ω) for all xh,yh ∈ Y ∗h

fulfills Assumption 4.3.6. Furthermore, Theorem 4.6.7 implies that

eD−1

xh,yh := (1+ τ

α
‖ι∗‖2

L (H1
0 (Ω),L2(Ω)))Cregh‖xh‖L2(Ω)‖yh‖H1

0 (Ω) for all xh,yh ∈ Y ∗h

fulfills Assumption 4.3.7. As Assumptions 4.3.6 and 4.3.7 are fulfilled, Lemma 4.3.9 shows that the
approximation pF−1

j := R−1
X ι∗D̃−h

τ ph
j , j ∈ I, and the error estimates eF := τC2

reg h2 ‖d̃∗h‖2
L2(Ω)

and

ei, j,F−1 := (1+ τ

α
‖ι∗‖2

L (H1
0 (Ω),L2(Ω)))Cregh‖ph

i ‖L2(Ω)‖ph
j‖H1

0 (Ω) for all i, j ∈ I

fulfill Assumption 4.2.4. Consequently, OF−1 , CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assump-
tion 4.2.7.

Now we consider the case that the curvature operator is given via the BFGS formula.

LEMMA 5.4.5. If Ω⊂ R2 is a domain with Lipschitz boundary, Y ∗ = H1
0 (Ω) and (Y ∗h)h is a family of

finite element spaces generated by quasi-uniform meshes with mesh width h, then Assumption 4.6.12 is
fulfilled.

Proof. The space Y ∗=H1
0 (Ω) is a separable and infinite dimensional Hilbert space. By [20, Chap. 1.2],

the set W :=C∞
c (Ω) is dense in H1

0 (Ω). Since Y ∗h is a finite element space generated by a quasi-uniform
mesh with mesh width h, by Corollary 2.7.2, there exists a constant C > 0 (independent of h) such that

‖v′− Ihv′‖H1
0 (Ω) ≤Ch|v′|H2(D) for all v′ ∈ H2(Ω),

where Ih is the Lagrange interpolation operator. Consequently, dist(v′,Y ∗h) ≤ ‖v′− Ihv′‖H1
0 (Ω)→ 0 as

h→ 0 for all v′ ∈W =C∞
c (Ω)⊂ H2(D) and Assumption 4.6.12 holds true.

THEOREM 5.4.6. Assume that Ω⊂ R2 is a convex, bounded and open domain with polygonal bound-
ary. If Q is given as the BFGS curvature operator (cf. Section 4.4), then there exists constants C, Creg

and h̊ ∈ (0,1] such that for all h ∈ (0, h̊], the quantities

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=C2

reg, CF−1 :=C,

ε̂F−1(pi, p j,h) := h‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := (τ +µ)h2 ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. By Lemma 5.4.5, Assumption 4.6.12 is fulfilled and by Lemma 5.4.3, the adjoint problem
(4.6.7) is 1-regular. Therefore, Theorem 4.6.17 implies that there exists a h̊ ∈ (0,1] and a constant C
(possibly depending on τ) such that

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ | ≤ eF−1

BFGS
xh,yh :=Ch‖ι∗xh‖X∗‖yh‖Y ∗ for all xh,yh ∈ Y ∗h,
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i.e., eF−1
BFGS

xh,yh fulfills Assumption 4.4.6 for all h∈ (0, h̊]. Furthermore, Corollary 4.6.6 implies that eE
xh,yh :=

C2
reg h2 ‖ι∗xh‖X∗‖ι∗yh‖X∗ for xh,yh ∈Y ∗h fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.4.6 are

fulfilled, Lemma 4.4.7 implies that

pF−1
BFGS

j := F̃−h
BFGS ph

j , ei, j,F−1
BFGS

:= eF−1
BFGS

ph
i ,p

h
j
, eFBFGS := (τ +µ)eE

d̃∗h,d̃∗h ,

fulfill Assumption 4.2.4 for all h ∈ (0, h̊]. Since F̃−h
BFGS xh, ‖xh‖L2(Ω) and ‖xh‖H1

0 (Ω) can be computed

exactly for any xh ∈V h, cf. Section 2.7, OF−1(p′j,h), ε̂F−1(pi, p j,h) and ε̂F(d̃∗, d̊′,h) can be computed
exactly. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 , CF , CF−1 , ε̂F−1

and ε̂F , as defined above, fulfill Assumption 4.2.7.

Remark 5.4.7. Note that the constant C in Theorem 5.4.6 might depend on τ. Unfortunately, we were
not able to determine in which way C might depend on τ, cf. Remark 4.6.15. In the case that τ→ ∞

during execution of the algorithm, this may cause problems. However, in all our numerical experiments,
τ did not tend to infinity.

A priori error estimates for polygonal domains with one reentrant corner

Typically, the solution of the Dirichlet problem (5.4.1) on the nonconvex domain Ω is not an element
of H2(Ω). Therefore, we need to replace Lemmas 5.4.2 and 5.4.3 with similar statements.

LEMMA 5.4.8. Suppose that Ω⊂ R2 is a bounded, open polygonal domain with one reentrant corner
of angle ω ∈ (π,2π), let β ≥ 0 and x ∈ L2(Ω) be arbitrary and denote by z ∈H1

0 (Ω) the solution to the
variational equation

Find z ∈ H1
0 (Ω) : (z,w)H1

0 (Ω)+β (z,w)L2(Ω) = (x,w)L2(Ω) for all w ∈ H1
0 (Ω).

Then, for all p ∈ (1,2/(2− π

ω
)), the solution z ∈ H1

0 (Ω) is an element of W 2,p(Ω) and there exists a
constant Cβ ,p,Ω (depending only on β , p and Ω) such that ‖z‖W 2,p(Ω) ≤Cβ ,p,Ω‖x‖Lp(Ω).

Proof. Combine [4, Lem. 1] and [30, Cor. 3.2].

LEMMA 5.4.9. Assume that Ω⊂ R2 is a bounded, open, polygonal domain with one reentrant corner
of interior angle ω ∈ (π,2π), Y ∗ = H1

0 (Ω). Then the adjoint problem (4.6.7) is (2−2/p)-regular for
all p ∈ (1,2/(2− π

ω
)).

Proof. Let p ∈ (1,2/(2− π

ω
)) be arbitrary. By Lemma 5.4.8, the solution Φ′x ∈ H1

0 (Ω) to (4.6.7) is an
element of W 2,p(Ω) and there exists a constant C ≥ 0 (depending only on p, α , τ +µ and Ω) such that

‖Φ′x‖W 2,p(Ω) ≤C‖xh‖Lp(Ω) for all xh ∈ L2(Ω).

Therefore, by Corollary 2.7.2, there exists a constant Cp,c1,c2 > 0 (depending only on p and the quasi-
uniformity constants c1,c2) such that

‖Φ′− Ih
Φ
′‖H1

0 (Ω) ≤Cp,c1,c2 h2−2/p|Φ′x|W 2,p(Ω).
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Since Ω is bounded and 1≤ p≤ 2, [1, Thm. 2.14] implies ‖xh‖Lp(Ω)≤ (
∫

Ω
1dλ )1/p−1/2‖xh‖L2(Ω) which

yields

‖Φ′− Ih
Φ
′‖H1

0 (Ω) ≤Cp,c1,c2C
(∫

Ω

1dλ

)1/p−1/2

h2−2/p‖xh‖L2(Ω).

This regularity result yields a priori error estimates for both the case of no curvature and the case of
BFGS curvature.

THEOREM 5.4.10. Assume that Ω⊂R2 is a bounded, open, polygonal domain domain with one reen-
trant corner of interior angle ω ∈ (π,2π). If Q = 0 and ε > 0 is small, then there exists a constant
C > 0, (independent of h), such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=C, CF−1 :=C,

ε̂F−1(pi, p j,h) := hπ/ω−ε‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := τh2π/ω−ε ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. By Lemma 5.4.9, the adjoint problem (4.6.7) for a bounded, open, polygonal domain with one
reentrant corner of interior angle ω ∈ (π,2π) is 2− 2/p-regular for all p ∈ (1,2/(2−π/ω)). In par-
ticular, for small ε > 0, the adjoint problem (4.6.7) is (π/ω− ε)-regular. Therefore, by Theorem 4.6.7
there exists a constant C > 0 (independent of h) such that

eD−1

xh,yh :=Chπ/ω−ε‖xh‖L2(Ω)‖yh‖H1
0 (Ω) for all xh,yh ∈ Y ∗h

fulfills Assumption 4.3.7. Furthermore, by Corollary 4.6.6 there exists a constant C̃ > 0 (independent
of h) such that

eE
xh,yh := C̃ h2π/ω−ε ‖xh‖L2(Ω)‖yh‖L2(Ω) for all xh,yh ∈ Y ∗h

fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.3.7 are fulfilled, Lemma 4.3.9 shows that the
approximation pF−1

j := R−1
X ι∗D̃−h

τ ph
j , j ∈ I, and the error estimates

ei, j,F−1 :=Chπ/ω−ε‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω) i, j ∈ I and eF := τC̃ h2π/ω−ε ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.4. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 ,
CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

Remark 5.4.11. Note that the constant C in Theorem 5.4.10 might depend on τ which might cause
problems if τ → ∞ during execution of the algorithm. Unfortunately, the existence of the constant
Cβ ,p,Ω in Lemma 5.4.8 is derived via proof by contradiction and thus we were not able to determine in
which way C might depend on τ. However, in all our numerical experiments, τ did not tend to infinity.

Example 5.4.12. Suppose that Ω = (−a,a)2 \ [0,a)2, a > 0, is a L-shaped domain, Q = 0 and ε > 0 is
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small. Then there exists a constant C > 0, (independent of h), such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=C, CF−1 :=C,

ε̂F−1(pi, p j,h) := h2/3−ε‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := τh4/3−ε ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

THEOREM 5.4.13. Assume that Ω ⊂ R2 is a bounded, open, polygonal domain with one reentrant
corner of interior angle ω ∈ (π,2π). If Q is given as the BFGS curvature operator (cf. Section 4.4)
and ε > 0 is small, then there exist constants C, Creg and h̊ ∈ (0,1] (independent of h) such that for all
h ∈ (0, h̊], the quantities

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=C2

reg, CF−1 :=C,

ε̂F−1(pi, p j,h) := hπ/ω−ε‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := (τ +µ)h2π/ω−ε ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. By Lemma 5.4.9, the adjoint problem (4.6.7) is (2− 2/p)-regular for all p ∈ (1,2/(2− π

ω
)).

In particular, for small ε > 0, the adjoint problem (4.6.7) is (π/ω − ε)-regular. Furthermore, by
Lemma 5.4.5, Assumption 4.6.12 is fulfilled. Therefore, Theorem 4.6.17 implies that there exists a
h̊ ∈ (0,1] and a constant C (possibly depending on τ) such that

|(ι∗xh, ι∗(F̃−1
BFGS − F̃−h

BFGS )y
h)X∗ | ≤Chπ/ω−ε‖ι∗xh‖X∗‖yh‖Y ∗ =: eF−1

BFGS
xh,yh for all xh,yh ∈ Y ∗h,

i.e., eF−1
BFGS

xh,yh fulfills Assumption 4.4.6 for all h∈ (0, h̊]. Furthermore, Corollary 4.6.6 implies that eE
xh,yh :=

C2
reg h2π/ω−ε ‖ι∗xh‖X∗‖ι∗yh‖X∗ for xh,yh ∈Y ∗h fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.4.6

are fulfilled, Lemma 4.4.7 implies that

pF−1
BFGS

j := R−1
X ι
∗F̃−h

BFGS ph
j , ei, j,F−1

BFGS
:= eF−1

BFGS
ph

i ,p
h
j
, eFBFGS := (τ +µ)eE

d̃∗h,d̃∗h ,

fulfill Assumption 4.2.4 for all h ∈ (0, h̊]. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we
infer that OF−1 , CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

Remark 5.4.14. Similar to Theorems 5.4.6 and 5.4.10, we cannot track the dependence of the con-
stant C in Theorem 5.4.13 on τ. However, in our numerical tests this did not cause any problems, cf.
Remarks 5.4.7 and 5.4.11.

Example 5.4.15. Suppose that Ω = (−a,a)2 \ [0,a)2, a > 0 is a L-shaped domain, ε > 0 is small and
let Q be given as the BFGS curvature operator. Then there exists constants C, Creg and h̊ ∈ (0,1]
(independent of h) such that for all h ∈ (0, h̊], the quantities

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=C2

reg, CF−1 :=C,

ε̂F−1(pi, p j,h) := h2/3−ε‖ph
i ‖L2(Ω)‖ph

j‖H1
0 (Ω), ε̂F(d̃∗, d̊′,h) := (τ +µ)h4/3−ε ‖d̃∗h‖2

L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.
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5.5. A posteriori error estimates

In this section we develop a posteriori error estimates in order to quantify the function value error and
the trial iterate error. The classical adaptive scheme (cf., e.g., [54])

solve → estimate → mark → refine

starts by solving the given variational inequality or PDE. From this solution a local error estimate is
derived which then is used to mark triangles with large error contribution. Marked triangles are refined
in such a way that the resulting family of triangulations is regular, cf. Section 2.7. This process is
repeated until a desired accuracy is reached. A posteriori error estimates for the function value error
are available in the literature and we use the approach of [13]. For the trial iterates, a posteriori error
estimates for the oracle OF−1 have to be developed since, to the best of the author’s knowledge, error
estimates in this form are not available in the literature.

5.5.1. A posteriori error estimates for the solution operator

We use [13] to compute an a posteriori error estimate of the distance from the computed state to the
actual state. Alternatively, one could use the error estimators of [54, 35]. The approach of [13] encom-
passes an error reduction property which leads to linear convergence up to consistency errors. However,
it is necessary to refine marked triangles in such a way that the new triangulation has at least one new
vertex in the interior of every marked triangle and at least one new vertex in the interior of each side
of each marked triangle. To ensure this, the following refinement strategy is used. We divide every
marked triangle into four congruent triangles using the midpoints of each side. Then we divide both tri-
angles intersected by the line from the midpoint of the longest side to the vertex opposed to the longest
side, cf. [94, Chap. 5.1]. This procedure divides the marked triangle into six new triangles. Possible
hanging nodes, i.e., nodes which are on the interior of a side of a triangle, are avoided by bisecting the
adjacent triangles, i.e., adding the midpoint of the longest side as a new vertex and dividing the triangle
into the two resulting triangles. If the hanging node is not on the longest side of each adjacent triangle,
this may introduce new hanging nodes. The procedure is repeated until no hanging nodes exist. This
refinement procedure and the evaluation of the local error estimates is implemented in MATLAB. To
increase performance, the code is fully vectorized.

5.5.2. A posteriori error estimates for the trial iterate

In Section 5.3.5, we describe how a trial iterate is computed and define the oracle OF−1 . The goal of
this section is to compute a posteriori error estimates ε̂F and ε̂F−1 which fulfill Assumption 4.2.7 in the
case of X∗ = L2(Ω) and Y ∗ = H1

0 (Ω), where Ω ⊂ R2 is a general polygonal (not necessarily convex),
bounded polygonal domain with Lipschitz boundary. In Section 5.3.5 we already observed that Ẽxh as
well as D̃τxh can be characterized as a solutions to a PDE. Thus, classical a posteriori error estimates
such as [2, Thm. 2.7], [9, Ex. 3.2] or [130] can be applied to develop estimators eE

xh,yh and eD−1

xh,yh which
fulfill Assumptions 4.3.6 and 4.3.7, respectively. However, for such an error estimate, typically convex-
ity of Ω is assumed. In contrast to this, in [133] error estimates for nonconvex domains are developed,
but only weighted L2-estimates are obtained. We therefore generalize the approach of [2, Thm. 2.7] to
nonconvex domains. Using Lemma 4.3.9, the obtained estimators eE

xh,yh and eD−1

xh,yh then provide error
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estimates ε̂F and ε̂F−1 which fulfill Assumption 4.2.7.

Throughout this section we work in the setting that Y ∗h = V h is a space of finite element functions
generated by the mesh T h, 0 < h ≤ 1. The family of meshes (T h)h, 0 < h ≤ 1, is assumed to be
regular with regularity parameter σ , cf. Section 2.7. Furthermore, we assume that the initial serious
iterate x0 is an element of V h0 . Thus, Lemma 5.3.5 shows that Assumption 4.3.5 holds true and all
relevant quantities are discretized as elements of X∗h. In particular, we have x = R−1

X ι∗xh and g′j = ι∗gh
j

with xh,gh
j ∈ Y ∗h. We set ph

j := gh
j +αxh ∈ Y ∗h, j ∈ I and d̃∗h := −∑ j∈I λ̃ ∗j D̃−h

τ ph
j ∈ Y ∗h where λ̃ ∗ is

the solution to the approximated dual problem (4.2.5).

A posteriori error estimates for an elliptic boundary value problem

We start by Let V h ⊂ H1
0 (Ω) be a finite element subspace corresponding to the triangulation T h.

Suppose α > 0, β ≥ 0, L ∈ N, y̌h, ŷh,uh
l ,v

h
l ∈V h, 1≤ l ≤ L. We consider the variational equation

Find z ∈ H1
0 (Ω) : α(z,w)H1

0 (Ω)+β (z,w)L2(Ω)+
L

∑
l=1

(uh
l ,w)H1

0 (Ω)(v
h
l ,z)L2(Ω)

= (y̌h,w)L2(Ω)+(ŷh,w)H1
0 (Ω) for all w ∈ H1

0 (Ω).

(5.5.1)

Equation (5.5.1) can be used to evaluate F̃−1
BFGS and Ẽ. Indeed, recall that H1

0 (Ω) is equipped with
the inner product (u,v)H1

0 (Ω) :=
∫

Ω
∇u>∇vdλ . Therefore, for arbitrary ŷh ∈ H1

0 (Ω), z := F̃−1
BFGS ŷh is

characterized by (5.5.1) with β := τ+µ , uh
l and vh

l chosen via (4.4.3), L := 2L̃ and y̌h := 0. Furthermore,
for arbitrary y̌h ∈ V h, z := Ẽy̌h is characterized by (5.5.1) with α = 1, β := 0, L := 0 and ŷh := 0, cf.
(4.3.6). We further consider the discretized version of (5.5.1):

Find zh ∈V h : α(zh,wh)H1
0 (Ω)+β (zh,wh)L2(Ω)+

L

∑
l=1

(uh
l ,w

h)H1
0 (Ω)(v

h
l ,z

h)L2(Ω)

= (y̌h,wh)L2(Ω)+(ŷh,wh)H1
0 (Ω) for all wh ∈V h.

(5.5.2)

Similar to the continuous case, the discrete operators F̃−h
BFGS ŷh and Ẽhy̌h can be characterized as solu-

tions to (5.5.2). We proceed by providing error estimates for the discretization error e := z−zh ∈H1
0 (Ω).

The subsequent analysis adopts the proof of [2, Thm. 2.7] to the given setting. In particular, here the
domain is allowed to be nonconvex and the right hand side (y̌h, ·)L2(Ω) + (ŷh, ·)H1

0 (Ω) ∈ H−1(Ω) is
considered. Let the bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R be defined by

a(z,w) := α(z,w)H1
0 (Ω)+β (z,w)L2(Ω)+

L

∑
l=1

(uh
l ,w)H1

0 (Ω)(v
h
l ,z)L2(Ω) for all z,w ∈ H1

0 (Ω).
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As z ∈ H1
0 (Ω) solves a(z,w) = (y̌h,w)L2(Ω)+(ŷh,w)H1

0 (Ω) for all w ∈ H1
0 (Ω), we find

a(e,w) = (y̌h,w)L2(Ω)+(ŷh,w)H1
0 (Ω)−a(zh,w)

= (ŷh−αzh,w)H1
0 (Ω)+(y̌h−β zh,w)L2(Ω)+

L

∑
l=1

(uh
l ,w)H1

0 (Ω)(v
h
l ,z

h)L2(Ω)

= (ŷh−αzh−
L

∑
l=1

(vh
l ,z

h)L2(Ω)u
h
l ,w)H1

0 (Ω)+(y̌h−β zh,w)L2(Ω)

= ∑
T∈T h

(∇sh,∇w)L2(T )2 +(rh,w)L2(T ),

where sh,rh ∈V h are defined by

sh := ŷh−αzh−
L

∑
l=1

(vh
l ,z

h)L2(Ω)u
h
l and rh := y̌h−β zh. (5.5.3)

In the following, we need to define the edge jump of the function sh ∈ V h. Since sh is affine linear on
each triangle T ∈T h, div(∇sh|T ) = 0 and integration by parts (cf. [31, Thm. 4.6]) yields

(∇sh,∇w)L2(T )2 =
∫

T
∇sh>

∇wdλ =
∫

∂T
∇sh>nT trT wdS for all w ∈ H1

0 (Ω),

where nT : ∂T → R2 is the outer unit normal to ∂T . As w ∈ H1
0 (Ω), it holds trT w|Υ = 0 for each

boundary edge Υ ∈ ∂T ∩∂Ω, which implies
∫
Υ

∂ sh

∂nT
trT wdS = 0. For all other edges, i.e., Υ ∈ ∂T \∂Ω,

denote by T and T ′ the triangles adjacent to Υ and define the edge jump along edge Υ by[
∂ sh

∂n

]
Υ

:= n>T (∇sh)T +n>T ′(∇sh)T ′ ∈ R, (5.5.4)

Here, (∇sh)T denotes the gradient of sh on the triangle T . Note that ∇sh ∈ R2 is constant on each
triangle as sh is affine linear on each triangle. Furthermore, as nT ′ =−nT , (5.5.4) is actually a difference
and the value of [ ∂ sh

∂n ]Υ does not depend on the permutation of T and T ′. This leads to

DEFINITION 5.5.1 (Boundary residual). The mapping [[·]] : V h→ L2(∪T∈T h∂T ),

[[sh]] (ω) :=

{
1
2

[
∂ sh

∂n

]
Υ

if ω ∈ Υ⊂ ∂T \∂Ω

0 if ω ∈ Υ⊂ ∂T ∩∂Ω

is called the boundary residual.

This enables us to write (∇sh,∇w)L2(T )2 =
∫

∂T [[s
h]] trT wdS for all T ∈T h, w ∈ H1

0 (Ω) and we get

a(e,w) = ∑
T∈T h

{∫
T

rhwdλ +
∫

∂T
[[sh]] trT wdS

}
∀w ∈ H1

0 (Ω). (5.5.5)

This decomposition of the bilinear form into contributions from each triangle leads to an a posteriori
error estimate. In order to use the Aubin-Nietsche trick, let x ∈ L2(Ω) be arbitrary, and consider the
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adjoint problem

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+β (w,Φ′x)L2(Ω)+

L

∑
l=1

(uh
l ,Φ

′
x)H1

0 (Ω)(v
h
l ,w)L2(Ω)

= (x,w)L2(Ω) for all w ∈ H1
0 (Ω).

(5.5.6)

Assumption 5.5.2. There exists constants p ∈ (1,2] and Čreg > 0 such that for all x ∈ Lp(Ω), the corre-
sponding adjoint solution Φ′x ∈ H1

0 (Ω) of (5.5.6) has the regularity Φ′x ∈W 2,p(Ω), and

‖Φ′x‖W 2,p(Ω) ≤ Čreg‖x‖Lp(Ω).

Combining (5.5.5) with Assumption 5.5.2 leads to the following error estimate.

THEOREM 5.5.3. Let Ω be an open, bounded polygonal domain with Lipschitz boundary and let
(T h)h, 0 < h ≤ 1, be a regular family of triangulations of Ω. Let x ∈ L2(Ω) be arbitrary and de-
note by z ∈ H1

0 (Ω) and zh ∈V h the solutions of (5.5.1) and (5.5.2), respectively. If the constants p and
Čreg fulfill Assumption 5.5.2, then there exists a constant Cp,σ ,Ω > 0, depending only on p, the regularity
parameter σ of the triangulations and the domain Ω, such that

|(x,z− zh)L2(Ω)| ≤ ČregCp,σ ,Ω

(
∑

T∈T h

η
q
T

)1/q

‖x‖L2(Ω).

Here, q := p/(p−1), the local error indicators ηT are defined via

ηT := h3−2/p
T ‖rh‖L2(T )+h5/2−2/p

T ‖R‖L2(∂T ) for all T ∈T h,

and the interior and boundary residuals rh ∈V h and R ∈ L2(∪T∈T h∂T ) are defined via

rh := y̌h−β zh and R := [[ŷh−αzh−
L

∑
l=1

(vh
l ,z

h)L2(Ω)u
h
l ]] .

Proof. Denote by Φ′x ∈ H1
0 (Ω) the solution of the adjoint problem (5.5.6), i.e., Φ′x fulfills a(w,Φ′x) =

(x,w)L2(Ω) for all w ∈ H1
0 (Ω). By Assumption 5.5.2 it holds Φ′x ∈W 2,p(Ω), 1 < p ≤ 2, and thus

the Lagrange interpolation operator Ih : W 2,p(Ω) ⊂ C0(Ω)→ V h is well-defined. By (5.5.5) and the
orthogonality condition for the error in the Galerkin projection, i.e., a(e,wh) = 0 for all wh ∈ V h, we
find

(x,e)L2(Ω) = a(e,Φ′x) = a(e,Φ′x− Ih
Φ
′
x)

= ∑
T∈T h

{∫
T

rh(Φ′x− Ih
Φ
′
x)dλ +

∫
∂T

R trT (Φ
′
x− Ih

Φ
′
x)dS

}
.

(5.5.7)

We now estimate the errors Φ′x−Φh
x and trT (Φ

′
x−Φh

x). By Theorem 2.7.1 there exists a constant Cp,σ

(depending only on p and the regularity parameter σ of the triangulation) such that it holds

‖v− Ihv‖L2(T )+hT |v− Ihv|H1(T ) ≤Cp,σ h3−2/p
T |v|W 2,p(T ) for all v ∈W 2,p(T ),T ∈T h,0 < h≤ 1.
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This gives∣∣∣∣∫T
rh(Φ′x−Φ

h
x)dλ

∣∣∣∣≤ ‖rh‖L2(T )‖Φ′x−Φ
h
x‖L2(T ) ≤Cp,σ h3−2/p

T ‖rh‖L2(T )|Φ′x|W 2,p(T ). (5.5.8)

Furthermore, by Lemma 2.7.3 there exists a constant Cσ > 0 depending only on the regularity parameter
σ of the triangulations such that

‖ trT (Φ
′
x−Φ

h
x)‖2

L2(T ) ≤Cσ h−1
T ‖Φ

′
x−Φ

h
x‖2

L2(T )+Cσ hT |Φ′x−Φ
h
x |2H1(T ) ≤ 2CσC2

p,σ h5−4/p
T |Φ′x|2W 2,p(T ).

Therefore, ∣∣∣∣∫
∂T

R trT (Φ
′
x−PY ∗hΦ

′
x)dS

∣∣∣∣≤ ‖R‖L2(∂T )‖ trT (Φ
′
x−PY ∗hΦ

′
x)‖L2(∂T )

≤Cp,σ
√

2Cσ h5/2−2/p
T ‖R‖L2(∂T )|Φ′x|W 2,p(T ).

(5.5.9)

Combining (5.5.7)–(5.5.9) and setting C̃p,σ :=Cp,σ max
{

1,
√

2Cσ

}
results in

|(x,e)L2(Ω)| ≤ ∑
T∈T h

Cp,σ h3−2/p
T ‖rh‖L2(T )|Φ′x|W 2,p(T )+Cp,σ

√
2Cσ h5/2−2/p

T ‖R‖L2(∂T )|Φ′x|W 2,p(T )

≤ C̃p,σ ∑
T∈T h

(h3−2/p
T ‖rh‖L2(T )+h5/2−2/p

T ‖R‖L2(∂T ))|Φ′x|W 2,p(T )

= C̃p,σ ∑
T∈T h

ηT |Φ′x|W 2,p(T ).

For q := p/(p−1), Hölder’s inequality (cf. [1, Chap. 2.27]) yields

|(x,e)L2(Ω)| ≤ C̃p,σ

(
∑

T∈T h

η
q
T

)1/q(
∑

T∈T h

|Φ′x|
p
W 2,p(T )

)1/p

= C̃p,σ

(
∑

T∈T h

η
q
T

)1/q

|Φ′x|W 2,p(Ω).

Now, by Assumption 5.5.2 there exists a constant Čreg > 0 (independent of x and h) such that ‖Φ′x‖W 2,p(Ω)≤
Čreg‖x‖Lp(Ω). By [1, Thm. 2.14], there exists a constant Cp,Ω, depending only on p and the domain Ω

such that ‖x‖Lp(Ω) ≤Cp,Ω‖x‖L2(Ω). This yields the desired estimate

|(x,z− zh)L2(Ω)|= |(x,e)L2(Ω)| ≤ C̃p,σČregCp,Ω

(
∑

T∈T h

η
q
T

)1/q

‖x‖L2(Ω).

Remark 5.5.4. Choosing x = z− zh in Theorem 5.5.3 yields the L2(Ω)-error estimate

‖z− zh‖L2(Ω) ≤ ČregCp,σ ,Ω

(
∑

T∈T h

η
q
T

)1/q

.

Remark 5.5.5. Theorem 5.5.3 is a generalization of [2, Thm. 2.7]. In fact, since p ≤ 2, it holds q =
p/(p− 1) ≥ 2 and x 7→ xq is convex. Therefore, Jensen’s inequality (cf. [12, Prop. 9.24]) yields
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(1
2(a+b))q ≤ 1

2(a
q +bq) for all a,b ∈ R. This leads to

η
q
T ≤ 2q−1

(
h(3−2/p)q

T ‖rh‖q
L2(T )+h(5/2−2/p)q

T ‖R‖q
L2(∂T )

)
for all T ∈T h

and thus Theorem 5.5.3 and Remark 5.5.4 yield

‖z− zh‖L2(Ω) ≤ ČregCp,σ ,Ω21−1/q

(
∑

T∈T h

h(3−2/p)q
T ‖rh‖q

L2(T )+h(5/2−2/p)q
T ‖R‖q

L2(∂T )

)1/q

.

In particular, if α = 1, L = 0, ŷh = 0 and Ω is convex, Lemma 5.4.2 shows that Assumption 5.5.2 is
fulfilled with p = 2 and Čreg > 0 depends only on Ω. Consequently, the estimate

‖z− zh‖L2(Ω) ≤Cσ ,Ω

(
∑

T∈T h

h4
T‖rh‖2

L2(T )+h3
T‖R‖2

L2(∂T )

)1/2

from [2, Thm. 2.7] is recovered.

A posteriori error estimates for polygonal, convex domains

Using Theorem 5.5.3, we develop a posteriori error estimates ε̂F and ε̂F−1 which fulfill Assump-
tion 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

COROLLARY 5.5.6 (A posteriori error estimate for Ẽ). Let Ω be a convex, bounded domain with
polygonal boundary and let (T h)h, 0< h≤ 1, be a regular family of triangulations of Ω with regularity
parameter σ . For xh ∈V h, define the local error indicator ηT via

ηT := h2
T‖xh‖L2(T )+h3/2

T ‖ [[Ẽ
hxh]] ‖L2(∂T ) for all T ∈T h.

Then there exists a constant CΩ,σ > 0 (depending only on Ω and σ ) such that

|((Ẽ− Ẽh)xh,yh)L2(Ω)| ≤CΩ,σ

(
∑

T∈T h

η
2
T

)1/2

‖yh‖L2(Ω) for all xh,yh ∈V h,

i.e., eE
xh,yh :=CΩ,σ

(
∑T∈T h η2

T
)1/2 ‖yh‖L2(Ω) for xh,yh ∈ Y ∗h fulfills Assumption 4.3.6.

Proof. By setting α = 1, β = 0, L = 0, y̌h = xh and ŷh = 0 in (5.5.1) and (5.5.2), we find z = Ẽxh and
zh = Ẽhxh (cf. (4.3.1) and (4.3.6)). This leads to the adjoint problem

Find Φ
′
y ∈ H1

0 (Ω) : (w,Φ′y)H1
0 (Ω) = (y,w)L2(Ω) for all w ∈ H1

0 (Ω),

where y ∈ L2(Ω) is arbitrary. By Lemma 5.4.2, the solution Φ′y ∈ H1
0 (Ω) to this adjoint problem is an

element of H2(Ω) and there exists a constant CΩ > 0, only depending on Ω, such that ‖Φ′y‖H2(Ω) ≤
CΩ‖y‖L2(Ω). Thus, Assumption 5.5.2 is fulfilled with constants p = 2 and Čreg := CΩ. Consequently,
by Theorem 5.5.3, there exists a constant Cσ ,Ω > 0 (depending only on the regularity parameter σ of
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the triangulations and the domain Ω) such that

|((Ẽ− Ẽh)xh,yh)L2(Ω)|= |(yh,z− zh)L2(Ω)| ≤Cσ ,ΩCΩ

(
∑

T∈T h

η
2
T

)1/2

‖yh‖L2(Ω) for all xh,yh ∈V h,

where the local error indicator ηT is defined via

ηT := h2
T‖xh‖L2(T )+h3/2

T ‖ [[Ẽ
hxh]] ‖L2(∂T ) for all T ∈T h.

THEOREM 5.5.7. Assume that Ω⊂ R2 is a convex, bounded and open domain with polygonal bound-
ary. If Q = 0, then there exist constants CΩ,σ ,CΩ,σ ,α > 0 such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=CΩ,σ , CF−1 :=CΩ,σ ,α ,

ε̂F(d̃∗, d̊′,h) := τ

(
∑

T∈T h

(
h2

T‖d̃∗h‖L2(T )+h3/2
T ‖ [[Ẽ

hd̃∗h]] ‖L2(∂T )

)2
)1/2

‖d̃∗h‖L2(Ω),

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
τh2

T‖D̃−h
τ ph

j‖L2(T )+h3/2
T ‖ [[p

h
j −αD̃−h

τ ph
j ]] ‖L2(∂T )

)2
)1/2

‖ph
i ‖L2(Ω)

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. By setting β = τ , L = 0, y̌h = 0 and ŷh = yh in (5.5.1) and (5.5.2), we find z = D̃−1
τ yh and

zh = D̃−h
τ yh (cf. (4.3.5) and (4.3.7)). This leads to the adjoint problem

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+ τ(w,Φ′x)L2(Ω) = (x,w)L2(Ω) for all w ∈ H1

0 (Ω),

where x ∈ L2(Ω) is arbitrary. By Lemma 5.4.2, the solution Φ′x ∈ H1
0 (Ω) to this adjoint problem is an

element of H2(Ω) and there exists a constant CΩ > 0, only depending on Ω, such that ‖Φ′x‖H2(Ω) ≤
CΩ/α‖x‖L2(Ω). Thus, Assumption 5.5.2 is fulfilled with constants p = 2 and Čreg := CΩ/α . Conse-
quently, by Theorem 5.5.3, there exists a constant Cσ ,Ω > 0 (depending only on the regularity parameter
σ of the triangulations and the domain Ω) such that

|(xh,(D̃−1
τ − D̃−h

τ )yh)L2(Ω)| ≤
Cσ ,ΩCΩ

α

(
∑

T∈T h

η
2
T

)1/2

‖xh‖L2(Ω) for all xh,yh ∈ Y ∗h,

where the local error indicator ηT is defined via

ηT := τh2
T‖D̃−h

τ yh‖L2(T )+h3/2
T ‖ [[y

h−αD̃−h
τ yh]] ‖L2(∂T ) for all T ∈T h.

Therefore, the error estimate

eD−1

xh,yh :=
Cσ ,ΩCΩ

α

(
∑

T∈T h

(
τh2

T‖D̃−h
τ yh‖L2(T )+h3/2

T ‖ [[y
h−αD̃−h

τ yh]] ‖L2(∂T )

)2
)1/2

‖xh‖L2(Ω)

fulfills Assumption 4.3.7. Furthermore, by Corollary 5.5.6, there exists a constant CΩ,σ > 0 such that
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for xh,yh ∈ Y ∗h the error estimate

eE
xh,yh :=CΩ,σ

(
∑

T∈T h

(
h2

T‖xh‖L2(T )+h3/2
T ‖ [[Ẽ

hxh]] ‖L2(∂T )

)2
)1/2

‖yh‖L2(Ω)

fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.3.7 are fulfilled, Lemma 4.3.9 implies that the
approximation pF−1

j := R−1
X ι∗D̃−h

τ ph
j and the error estimates ei, j,F−1 := eD−1

ph
i ,p

h
j
and eF := τeE

d̃∗h,d̃∗h , i, j ∈ I,

fulfill Assumption 4.2.4. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 ,
CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

THEOREM 5.5.8. Assume that Ω⊂ R2 is a convex, bounded and open domain with polygonal bound-
ary. If Q is given as the BFGS curvature operator (cf. Section 4.4), then there exist constants
C,Cσ ,Ω > 0, independent of h, such that

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=Cσ ,Ω, CF−1 :=C,

ε̂F(d̃∗, d̊′,h) := (τ +µ)

(
∑

T∈T h

(
h2

T‖d̃∗h‖L2(T )+h3/2
T ‖ [[Ẽ

hd̃∗h]] ‖L2(∂T )

)2
)1/2

‖d̃∗h‖L2(Ω),

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
(τ +µ)h2

T‖rh‖L2(T )+h3/2
T ‖R‖L2(∂T )

)2
)1/2

‖ph
i ‖L2(Ω)

with rh := F̃−h
BFGS yh and R := [[ph

j −αF̃−h
BFGS ph

j −
2L̃

∑
l=1

(vh
l , F̃

−h
BFGS ph

j)L2(Ω)u
h
l ]]

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. In order to apply Lemma 4.4.7, we need an error estimate eF−1
BFGS

xh,yh ≥ 0 which fulfills Assump-
tion 4.4.6, i.e.,

|(xh,(F̃−1
BFGS − F̃−h

BFGS )y
h)L2(Ω)| ≤ eF−1

BFGS
xh,yh for all xh,yh ∈V h.

We use Theorem 5.5.3 to construct such an error estimate. Indeed, in (5.5.1) and (5.5.2) set β = τ +µ ,
L = 2L̃, y̌h = 0, ŷh = yh and uh

l ,v
h
l , 1 ≤ l ≤ 2L̃, as the BFGS vectors from Section 4.4.1. Then z =

F̃−1
BFGS yh and zh = F̃−h

BFGS yh (cf. (4.4.11) and (4.4.14)). This leads to the adjoint problem

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+(τ +µ)(w,Φ′x)L2(Ω)+

2L̃

∑
l=1

(uh
l ,Φ

′
x)H1

0 (Ω)(v
h
l ,w)L2(Ω)

= (x,w)L2(Ω) for all w ∈ H1
0 (Ω),

where x ∈ L2(Ω) is arbitrary. Using the definition of F̃BFGS shows that this is equivalent to

Find Φ
′
x ∈ H1

0 (Ω) : (F̃BFGS w,Φ′x)H1
0 (Ω) = (x,w)L2(Ω) for all w ∈ H1

0 (Ω).

Choosing w = F̃−1
BFGS uh

l yields (uh
l ,Φ

′
x)H1

0 (Ω) = (x, F̃−1
BFGS uh

l )L2(Ω) for 1≤ l ≤ 2L̃. Therefore, the adjoint
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solution Φ′x also solves

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+(τ +µ)(w,Φ′x)L2(Ω) = (c,w)L2(Ω) for all w ∈ H1

0 (Ω),

where c := x−∑
2L̃
l=1(x, F̃

−1
BFGS uh

l )L2(Ω)vh
l . Therefore, Lemma 5.4.2 can be applied which shows that Φ′x

has the regularity Φ′x ∈ H2(Ω) and there exists a constant CΩ,α such that

‖Φ′x‖H2(Ω) ≤CΩ,α‖c‖L2(Ω) ≤CΩ,α(1+
2L̃

∑
l=1
‖F̃−1

BFGS uh
l ‖L2(Ω)‖vh

l ‖L2(Ω))‖x‖L2(Ω).

Consequently, p = 2 and Čreg :=CΩ,α(1+∑
2L̃
l=1 ‖F̃−1

BFGS uh
l ‖L2(Ω)) fulfill Assumption 5.5.2. Thus, The-

orem 5.5.3 is applicable and there exists a constant Cσ ,Ω such that for arbitrary xh,yh ∈V h

|(xh,(F̃−1
BFGS − F̃−h

BFGS )y
h)L2(Ω)| ≤ ČregCσ ,Ω

(
∑

T∈T h

η
2
T

)1/2

‖xh‖L2(Ω) =: eF−1
BFGS

xh,yh .

Here, for all T ∈T h, the local error indicators ηT are defined via

ηT := (τ +µ)h2
T‖F̃−h

BFGS yh‖L2(T )+h3/2
T ‖ [[y

h−αF̃−h
BFGS yh−

2L̃

∑
l=1

(vh
l , F̃

−h
BFGS yh)L2(Ω)u

h
l ]] ‖L2(∂T ).

In particular, eF−1
BFGS

xh,yh fulfills Assumption 4.4.6. Furthermore, by Corollary 5.5.6 there exists a constant

Cσ ,Ω > 0 such that for xh,yh ∈ Y ∗h the error estimate

eE
xh,yh :=Cσ ,Ω

(
∑

T∈T h

(
h2

T‖xh‖L2(T )+h3/2
T ‖ [[Ẽ

hxh]] ‖L2(∂T )

)2
)1/2

‖yh‖L2(Ω)

fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.4.6 are fulfilled, Lemma 4.4.7 implies that

pF−1
BFGS

j := R−1
X ι
∗F̃−h

BFGS ph
j , ei, j,F−1

BFGS
:= eF−1

BFGS
ph

i ,p
h
j
, eFBFGS := (τ +µ)eE

d̃∗h,d̃∗h ,

fulfill Assumption 4.2.4. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 ,
CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

A posteriori error estimates for polygonal domains with one reentrant corner

In the last section a posteriori error estimates for convex domains are developed. For nonconvex do-
mains however, the regularity result Lemma 5.4.2 is not valid. Thus, in order to develop a posteriori er-
ror estimates for nonconvex domains, we adopt the proofs of the last section by replacing Lemma 5.4.2
with Lemma 5.4.8. We need the following preliminary lemma.
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LEMMA 5.5.9 ([1, Chap. 2.27]). Let 0 < p≤ q < ∞ and (ai)i∈N ⊂ R with ∑i∈N |ai|p < ∞. Then(
∑
i∈N
|ai|q

)1/q

≤

(
∑
i∈N
|ai|p

)1/p

.

THEOREM 5.5.10 (A posteriori error estimate for Ẽ). Assume that Ω⊂R2 is a bounded, open polyg-
onal domain with one reentrant corner of angle ω ∈ (π,2π), and let (T h)h, 0 < h ≤ 1, be a regular
family of triangulations of Ω with corresponding finite element space V h. Let ε ∈ (0, π

ω
) and xh,yh ∈V h

be arbitrary. Define the local error indicator ηT via

ηT := h1+π/ω−ε

T ‖xh‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhxh]] ‖L2(∂T ) for all T ∈T h.

Then there exists a constant Cε,σ ,Ω > 0 (depending only on ε , σ and Ω) such that

|((Ẽ− Ẽh)xh,yh)L2(Ω)| ≤Cε,σ ,Ω

(
∑

T∈T h

η
2ω/π

T

)π/(2ω)

‖yh‖L2(Ω) for all xh,yh ∈V h,

i.e., eE
xh,yh :=Cε,σ ,Ω

(
∑T∈T h η

2ω/π

T

)π/(2ω)
‖yh‖L2(Ω) for xh,yh ∈ Y ∗h :=V h fulfills Assumption 4.3.6.

Proof. By setting α = 1, β = 0, L = 0, y̌h = xh and ŷh = 0 in (5.5.1) and (5.5.2), we find z = Ẽxh and
zh = Ẽhxh (cf. (4.3.1) and (4.3.6)). This leads to the adjoint problem

Find Φ
′
y ∈ H1

0 (Ω) : (w,Φ′y)H1
0 (Ω) = (y,w)L2(Ω) for all w ∈ H1

0 (Ω),

where y ∈ L2(Ω) is arbitrary. Let ε ∈ (0, π

ω
) be arbitrary and define p ∈ R via 2−2/p = π

ω
− ε . Since

ε ∈ (0, π

ω
) and ω ∈ (π,2π), it holds 1 < p < 2/(2− π

ω
) < 2. Thus, Lemma 5.4.8 implies that the

solution Φ′y ∈ H1
0 (Ω) is an element of W 2,p(Ω) and there exists a constant Cε,Ω (depending only on ε

and Ω) such that ‖Φ′y‖W 2,p(Ω) ≤Cε,Ω‖y‖Lp(Ω). Therefore, Assumption 5.5.2 is fulfilled with constants p
and Čreg :=Cε,Ω. Consequently, by Theorem 5.5.3, there exists a constant Cε,σ ,Ω > 0 (depending only
on ε , the regularity parameter σ of the triangulations and the domain Ω) such that

|((Ẽ− Ẽh)xh,yh)L2(Ω)|= |(yh,z− zh)L2(Ω)| ≤Cε,σ ,ΩCε,Ω

(
∑

T∈T h

η
q
T

)1/q

‖yh‖L2(Ω) for all xh,yh ∈V h,

where q := p/(p−1) and the local error indicator ηT is defined via

ηT := h1+π/ω−ε

T ‖xh‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhxh]] ‖L2(∂T ) for all T ∈T h.

Since p < 2/(2− π

ω
), it holds q = 1+1/(p−1)> 2ω/π . Thus, Lemma 5.5.9 yields

|((Ẽ− Ẽh)xh,yh)L2(Ω)| ≤Cε,σ ,ΩCε,Ω

(
∑

T∈T h

η
2ω/π

T

)π/(2ω)

‖yh‖L2(Ω) for all xh,yh ∈V h.

Remark 5.5.11. Theorem 5.5.10 is most useful for 0 < ε � π

ω
.
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THEOREM 5.5.12. Assume that Ω ⊂ R2 is a bounded, open, polygonal domain with one reentrant
corner of angle ω ∈ (π,2π) and let (T h)h, 0 < h≤ 1, be a regular family of triangulations of Ω with
corresponding finite element space V h. Let ε ∈ (0, π

ω
) and xh,yh ∈V h be arbitrary. If Q = 0, then there

exist constants Cε,σ ,Ω,Cε,α,τ,σ ,Ω > 0 such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=Cε,σ ,Ω, CF−1 :=Cε,α,τ,σ ,Ω,

ε̂F(d̃∗, d̊′,h) := τ

(
∑

T∈T h

(
h1+π/ω−ε

T ‖d̃∗h‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhd̃∗h]] ‖L2(∂T )

)2ω/π

)π/(2ω)

‖d̃∗h‖L2(Ω),

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
τh1+π/ω−ε

T ‖rh‖L2(T )+h1/2+π/ω−ε

T ‖R‖L2(∂T )

)2ω/π

)π/(2ω)

‖ph
i ‖L2(Ω)

with rh := D̃−h
τ ph

j and R := [[ph
j −αD̃−h

τ ph
j ]]

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. By setting β = τ , L = 0, y̌h = 0 and ŷh = yh in (5.5.1) and (5.5.2), we find z = D̃−1
τ yh and

zh = D̃−h
τ yh (cf. (4.3.5) and (4.3.7)). This leads to the adjoint problem

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+ τ(ι∗w, ι∗Φ′x)L2(Ω) = (x,w)L2(Ω) for all w ∈ H1

0 (Ω),

where x ∈ L2(Ω) is arbitrary. Let ε ∈ (0, π

ω
) be arbitrary and define p ∈ R via 2−2/p = π

ω
− ε . Since

ε ∈ (0, π

ω
) and ω ∈ (π,2π), it holds 1 < p < 2/(2− π

ω
) < 2. Thus, Lemma 5.4.8 implies that the

solution Φ′x ∈ H1
0 (Ω) is an element of W 2,p(Ω) and there exists a constant Cε,α,τ,Ω (depending only on

ε , α , τ and Ω) such that ‖Φ′x‖W 2,p(Ω) ≤Cε,α,τ,Ω‖x‖Lp(Ω). Therefore, Assumption 5.5.2 is fulfilled with
constants p and Čreg := Cε,α,τ,Ω. Consequently, by Theorem 5.5.3, there exists a constant Cε,σ ,Ω > 0
(depending only on ε , the regularity parameter σ of the triangulations and the domain Ω) such that

|(xh,(D̃−1
τ − D̃−h

τ )yh)L2(Ω)| ≤Cε,σ ,ΩCε,α,τ,Ω

(
∑

T∈T h

η
q
T

)1/q

‖xh‖L2(Ω) for all xh,yh ∈V h,

where q := p/(p−1) and the local error indicator ηT is defined via

ηT := τh1+π/ω−ε

T ‖D̃−h
τ yh‖L2(T )+h1/2+π/ω−ε

T ‖ [[yh−αD̃−h
τ yh]] ‖L2(∂T ) for all T ∈T h.

Since p < 2/(2− π

ω
), it holds q = 1+1/(p−1)> 2ω/π . Thus, for all xh,yh ∈V h, Lemma 5.5.9 yields

|(xh,(D̃−1
τ − D̃−h

τ )yh)L2(Ω)| ≤Cε,σ ,ΩCε,α,τ,Ω

(
∑

T∈T h

η
2ω/π

T

)π/(2ω)

‖xh‖L2(Ω) =: eD−1

xh,yh ,

i.e., eD−1

xh,yh fulfills Assumption 4.3.7. Furthermore, by Theorem 5.5.10, there exists a constant Cε,Ω,σ > 0

123



5. Optimal control of the obstacle problem

such that for xh,yh ∈ Y ∗h the error estimate

eE
xh,yh :=Cε,σ ,Ω

(
∑

T∈T h

(
h1+π/ω−ε

T ‖xh‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhxh]] ‖L2(∂T )

)2ω/π

)π/(2ω)

‖yh‖L2(Ω)

fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.3.7 are fulfilled, Lemma 4.3.9 implies that the
approximation pF−1

j := R−1
X ι∗D̃−h

τ ph
j and the error estimates ei, j,F−1 := eD−1

ph
i ,p

h
j
and eF := τeE

d̃∗h,d̃∗h , i, j ∈ I,

fulfill Assumption 4.2.4. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 ,
CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

Example 5.5.13. Suppose that Ω = (−a,a)2 \ [0,a)2, a > 0 is a L-shaped domain and let (T h)h, 0 <
h ≤ 1, be a regular family of triangulations of Ω with corresponding finite element space V h. Then Ω

is a polygonal domain with one reentrant corner of angle ω = 3/2π . Let ε ∈ (0, 2
3) and xh,yh ∈V h be

arbitrary and suppose Q = 0. Then there exist constants Cε,σ ,Ω,Cε,α,τ,σ ,Ω > 0 such that

OF−1(p′j,h) := R−1
X ι
∗D̃−h

τ ph
j , CF :=Cε,σ ,Ω, CF−1 :=Cε,α,τ,σ ,Ω,

ε̂F(d̃∗, d̊′,h) := τ

(
∑

T∈T h

(
h5/3−ε

T ‖d̃∗h‖L2(T )+h7/6−ε

T ‖ [[Ẽhd̃∗h]] ‖L2(∂T )

)3
)1/3

‖d̃∗h‖L2(Ω),

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
τh5/3−ε

T ‖rh‖L2(T )+h7/6−ε

T ‖R‖L2(∂T )

)3
)1/3

‖ph
i ‖L2(Ω)

with rh := D̃−h
τ ph

j and R := [[ph
j −αD̃−h

τ ph
j ]]

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

THEOREM 5.5.14. Assume that Ω ⊂ R2 is a bounded, open, polygonal domain with one reentrant
corner of angle ω ∈ (π,2π). If Q is given as the BFGS curvature operator (cf. Section 4.4), then there
exist constants C,Cε,σ ,Ω > 0, independent of h, such that

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=Cε,σ ,Ω, CF−1 :=C,

ε̂F(d̃∗, d̊′,h) := (τ +µ)

(
∑

T∈T h

η
2ω/π

T

)π/(2ω)

‖d̃∗h‖L2(Ω)

with ηT := h1+π/ω−ε

T ‖d̃∗h‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhd̃∗h]] ‖L2(∂T ) for all T ∈T h,

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
(τ +µ)h1+π/ω−ε

T ‖rh‖L2(T )+h1/2+π/ω−ε

T ‖R‖L2(∂T )

)2ω/π

)π/(2ω)

‖ph
i ‖L2(Ω)

with rh := F̃−h
BFGS yh and R := [[ph

j −αF̃−h
BFGS ph

j −
2L̃

∑
l=1

(vh
l , F̃

−h
BFGS ph

j)L2(Ω)u
h
l ]]

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.

Proof. In order to apply Lemma 4.4.7, we need an error estimate eF−1
BFGS

xh,yh ≥ 0 which fulfills Assump-
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5. Optimal control of the obstacle problem

tion 4.4.6, i.e.,
|(xh,(F̃−1

BFGS − F̃−h
BFGS )y

h)L2(Ω)| ≤ eF−1
BFGS

xh,yh for all xh,yh ∈V h.

We use Theorem 5.5.3 to construct such an error estimate. Indeed, in (5.5.1) and (5.5.2) set β = τ +µ ,
L = 2L̃, y̌h = 0, ŷh = yh and uh

l ,v
h
l , 1 ≤ l ≤ 2L̃, as the BFGS vectors from Section 4.4.1. Then z =

F̃−1
BFGS yh and zh = F̃−h

BFGS yh (cf. (4.4.11) and (4.4.14)). This leads to the adjoint problem

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+(τ +µ)(w,Φ′x)L2(Ω)+

2L̃

∑
l=1

(uh
l ,Φ

′
x)H1

0 (Ω)(v
h
l ,w)L2(Ω)

= (x,w)L2(Ω) for all w ∈ H1
0 (Ω)

where x ∈ L2(Ω) is arbitrary. Using the definition of F̃BFGS , we find that this is equivalent to

Find Φ
′
x ∈ H1

0 (Ω) : (F̃BFGS w,Φ′x)H1
0 (Ω) = (x,w)L2(Ω) for all w ∈ H1

0 (Ω).

Choosing w = F̃−1
BFGS uh

l yields (uh
l ,Φ

′
x)H1

0 (Ω) = (x, F̃−1
BFGS uh

l )L2(Ω) for 1≤ l ≤ 2L̃. Therefore, the adjoint
solution Φ′x also solves

Find Φ
′
x ∈ H1

0 (Ω) : α(w,Φ′x)H1
0 (Ω)+(τ +µ)(w,Φ′x)L2(Ω) = (c,w)L2(Ω) for all w ∈ H1

0 (Ω)

where c := x−∑
2L̃
l=1(x, F̃

−1
BFGS uh

l )L2(Ω)vh
l . Let ε ∈ (0, π

ω
) be arbitrary and define p ∈ R via 2− 2/p =

π

ω
− ε . Since ε ∈ (0, π

ω
) and ω ∈ (π,2π), it holds 1 < p < 2/(2− π

ω
) < 2. Thus, Lemma 5.4.8 im-

plies that the solution Φ′x ∈ H1
0 (Ω) is an element of W 2,p(Ω) and there exists a constant Cε,α,τ+µ,Ω

(depending only on ε , α , τ + µ and Ω) such that ‖Φ′x‖W 2,p(Ω) ≤ Cε,α,τ+µ,Ω‖c‖Lp(Ω). Since p < 2 it
holds that q := 1+1/(p−1)> 2 > p and thus the Sobolev embedding [1, 4.12] implies that W 1,2(Ω)
is continuously embedded into Lq(Ω). Therefore, F̃−1

BFGS uh
l ∈ H1

0 (Ω)⊂ Lq(Ω) and Hölder’s inequality
yields |(x, F̃−1

BFGS uh
l )L2(Ω)| ≤ ‖F̃−1

BFGS uh
l ‖Lq(Ω)‖x‖Lp(Ω). This results in

‖Φ′x‖W 2,p(Ω) ≤Cε,α,τ+µ,Ω‖c‖Lp(Ω) ≤Cε,α,τ+µ,Ω(1+
2L̃

∑
l=1
‖F̃−1

BFGS uh
l ‖Lq(Ω)‖vh

l ‖Lp(Ω))‖x‖Lp(Ω).

Therefore, Assumption 5.5.2 is fulfilled with constants p and

Čreg :=Cε,α,τ+µ,Ω(1+
2L̃

∑
l=1
‖F̃−1

BFGS uh
l ‖Lq(Ω)‖vh

l ‖Lp(Ω)).

Thus, Theorem 5.5.3 is applicable and there exists a constant Cσ ,Ω such that, for arbitrary xh,yh ∈V h,

|(xh,(F̃−1
BFGS − F̃−h

BFGS )y
h)L2(Ω)| ≤ ČregCσ ,Ω

(
∑

T∈T h

η
q
T

)1/q

‖xh‖L2(Ω).
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5. Optimal control of the obstacle problem

Here, for all T ∈T h, the local error indicators ηT are defined via

ηT := (τ +µ)h1+π/ω−ε

T ‖F̃−h
BFGS yh‖L2(T )

+h1/2+π/ω−ε

T ‖ [[yh−αF̃−h
BFGS yh−

2L̃

∑
l=1

(vh
l , F̃

−h
BFGS yh)L2(Ω)u

h
l ]] ‖L2(∂T ).

Since p < 2/(2− π

ω
), it holds q = 1+1/(p−1)> 2ω/π . Thus, for all xh,yh ∈V h, Lemma 5.5.9 yields

|(xh,(F̃−1
BFGS − F̃−h

BFGS )y
h)L2(Ω)| ≤ ČregCσ ,Ω

(
∑

T∈T h

η
2ω/π

T

)π/(2ω)

‖xh‖L2(Ω) =: eF−1
BFGS

xh,yh ,

i.e., eF−1
BFGS

xh,yh fulfills Assumption 4.4.6. Furthermore, by Theorem 5.5.10, there exists a constant Cε,Ω,σ > 0

such that for xh,yh ∈ Y ∗h the error estimate

eE
xh,yh :=Cε,σ ,Ω

(
∑

T∈T h

(
h1+π/ω−ε

T ‖xh‖L2(T )+h1/2+π/ω−ε

T ‖ [[Ẽhxh]] ‖L2(∂T )

)2ω/π

)π/(2ω)

‖yh‖L2(Ω)

fulfills Assumption 4.3.6. As Assumptions 4.3.6 and 4.4.6 are fulfilled, Lemma 4.4.7 implies that

pF−1
BFGS

j := F̃−h
BFGS ph

j , ei, j,F−1
BFGS

:= eF−1
BFGS

ph
i ,p

h
j
, eFBFGS := (τ +µ)eE

d̃∗h,d̃∗h ,

fulfill Assumption 4.2.4. From ε̂F−1(pi, p j,h)→ 0 and ε̂F(d̃∗, d̊′,h)→ 0 as h→ 0, we infer that OF−1 ,
CF , CF−1 , ε̂F−1 and ε̂F , as defined above, fulfill Assumption 4.2.7.

Example 5.5.15. Suppose that Ω = (−a,a)2 \ [0,a)2, a > 0 is a L-shaped domain and let (T h)h, 0 <
h ≤ 1, be a regular family of triangulations of Ω with corresponding finite element space V h. Then Ω

is a polygonal domain with one reentrant corner of angle ω = 3/2π . Let ε ∈ (0, 2
3) and xh,yh ∈ V h

be arbitrary and suppose that Q is given as the BFGS curvature operator (cf. Section 4.4). Then there
exists a constant C > 0, independent of h, such that

OF−1(p′j,h) := R−1
X ι
∗F̃−h

BFGS ph
j , CF :=C, CF−1 :=C,

ε̂F(d̃∗, d̊′,h) := (τ +µ)

(
∑

T∈T h

η
3
T

)1/3

‖d̃∗h‖L2(Ω)

with ηT := h5/3−ε

T ‖d̃∗h‖L2(T )+h7/6−ε

T ‖ [[Ẽhd̃∗h]] ‖L2(∂T ) for all T ∈T h

ε̂F−1(pi, p j,h) :=

(
∑

T∈T h

(
(τ +µ)h5/3−ε

T ‖rh‖L2(T )+h7/6−ε

T ‖R‖L2(∂T )

)3
)1/3

‖ph
i ‖L2(Ω)

with rh := F̃−h
BFGS yh and R := [[ph

j −αF̃−h
BFGS ph

j −
2L̃

∑
l=1

(vh
l , F̃

−h
BFGS ph

j)L2(Ω)u
h
l ]]

fulfill Assumption 4.2.7 and thus can be used in Algorithm 4.2 to compute a trial iterate.
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6. Numerical Results

6.1. Implementation

We implement Algorithm 3.4 to search for an approximately stationary point of problem (5.3.1). The
programming language MATLAB is used for all implementations.

Solution strategies

We use four distinct strategies to solve the problem (5.3.1).

• Strategy A: Uniform refinement, no BFGS This strategy uses a family of triangulations (T h)h
obtained by uniformly refining the triangulation in each step. In particular, starting from the
initial mesh T h0 , whenever an error estimate needs to be refined, the next mesh is obtained by
bisection of every triangle. The oracles defined in Section 5.3 and the a priori error estimates of
Section 5.4 are used for the computation. Furthermore, no additional curvature information is
used to construct the curvature operator Q, cf. Section 4.3.1.

• Strategy B: Uniform refinement, with BFGS This strategy also uses uniform triangulation, but
here, the L-BFGS curvature strategy (cf. Section 4.4) is used to construct the curvature operator.
In order to include only useful points and subgradients into the BFGS curvature operator, we start
with Q = 0 and do not add any points and subgradients until the first mesh refinement occurs.
From then on, we use the trial iterates with corresponding subgradients for the BFGS curvature
operator, cf. (4.4.2). The maximum number of points and subgradients is chosen to be L = 10.

• Strategy C: Adaptive refinement, no BFGS Strategy C uses the adaptive refinements described
in Section 5.5 to construct the next triangulation. The oracles defined in Section 5.3 and the a
posteriori error estimates of Section 5.5 are used for the computation.

• Strategy D: Adaptive refinement, with BFGS This strategy combines the adaptive mesh refine-
ment of strategy C with the L-BFGS curvature strategy of Strategy B to construct the curvature
operator.

Due to constraints on the available memory, the mesh cannot be refined to reach arbitrary small mesh
widths. Therefore, a limit of 60,000 mesh nodes is imposed. Whenever the refined mesh exceeds
the maximal number of mesh nodes, no further refinement is allowed. We then set all error estimates
used in the computation to zero. This can be seen as solving the discretized version of problem (5.3.1)
where the discretization is given via the final mesh. From another point of view, one could argue that
the computation has two phases. First, we search for an appropriate discretization of problem (5.3.1)
and compute good initial values and starting points. In the second phase the discretized problem is
solved.
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6. Numerical Results

Parameters of the algorithms

In Algorithm 3.3, we use a maximal number of nit = 3 iterations to compute a sufficiently steep sub-
gradient based linearization. In Algorithm 3.4, we used the constants γ = 0.1, γ̃ = 0.7, Γ = 0.7,
q̄ = 1000, ξ = 1 · 10−6, T = 1000 and the forcing sequences (νΨ

i )i∈N := (ν lin
i )i∈N := 100τ

−1.1
i , and

(ν f
i )i∈N := 1000τ

−0.1
i which fulfill (3.5.7). The downshift parameter from Section 3.1.4 is set to

c = 10−4. The start iterate x0 is chosen as x0 = 0 and the initial proximity parameter τ0 is set to 1.
The initial lift term l0 differs for each example. Therefore, we report this value for each example.

Additional function value refinement

In the step “Function value refinement” in Algorithm 3.4, one has to choose a new lift term l̂i ∈
(0,max{li,ν f

i O‖·‖Y (ỹi− xi)}]. We aim at refining the discretization whenever progress of the com-
puted function values seems to stagnate. Therefore, we reduce the lift term if O f (ỹi, ĥi) < O f (xi, ĥi)
and the relative reduction of the function value (O f (xi, ĥi)−O f (ỹi, ĥi))/O f (ỹi, ĥi) is smaller than the
threshold 1 · 10−4. Furthermore, we reduce the lift term if the L2(Ω)-norm of the gradient of the re-
duced objective function is below the threshold 1 · 10−4, i.e., ‖g̃i +w′(ỹi)‖L2(Ω) < 1 · 10−4. If the lift
term is to be reduced, then we use l̂i := max{li/2,ν f

i O‖·‖Y (ỹi− xi)}, otherwise we reuse l̂i := li.

Numerical integration

To evaluate the integrals in (5.3.4) and (5.3.8), we use numerical integration as described below. In
our numerical examples, any functions f ∈ L1(Ω) which needs to be integrated is piecewise smooth
with possibly jumps between pieces. Given a triangulation T h of the domain Ω, we first construct a
new triangulation T h′ by refining along any jump of the function f ∈ L1(Ω). We now approximate the
integral of f via ∫

Ω

f dλ = ∑
T∈T h ′

f dλ ≈ ∑
T∈T h ′

∑
p∈Q(T )

wp f (p)

where Q(T ) ⊂ R2 is a discrete set of points with corresponding weights wp. We use the quadrature
formula Q5 of degree 5 from [29]. There, 7 barycentric coordinates αi,βi,γi ∈ R with corresponding
weights wi, 1 ≤ i ≤ 7, are given such that Q5(T ) = {αiP1 + βiP2 + γiP3,1 ≤ i ≤ 7}, where P1,P2,P3
are the vertices of triangle T . As yh ∈ V h is linear on each triangle, yh(pi) = yh(αiP1 +βiP2 + γiP3) =
αiyh(P1)+βiyh(P2)+ γiyh(P3) can be computed efficiently for any pi ∈ Q5(T ). This choice of quadra-
ture points yields the exact value of the integral for any polynomial up to order 5. In our numerical
tests, the error introduced by numerical integration is negligible. If this is not the case, other algorithms
have to be employed to compute the integral, e.g., the adaptive algorithm presented in [123].

Constants of the error estimates

In order to execute Algorithms 3.4 and 4.2, the oracles O f and OF−1 with corresponding error estimates
are needed. The error estimates for OF−1 developed in Sections 5.4 and 5.5 involve the constants CF and
CF−1 . However, due to the convergence theory of Theorem 4.2.8, we do not need to compute a concrete
value for these constants. In contrast to this, for the function value oracle O f an explicit constant
for the error estimate has to be determined, both for a priori (cf. Theorem 5.4.1) and a posteriori
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(cf. Section 5.5.1) error estimates. However, due to the lifting strategy employed in Section 3.5.1, the
algorithm is very insensitive to small changes of the constant of the error estimate. Therefore, it suffices
to determine an approximate value of this constant. For the a priori error estimate, Theorem 5.4.1, we
use

CΩ := 10max
‖S(u+ f̊ )−Sh(u+ f̊ )‖H1

0 (Ω)

h
(
‖u+ f̊‖L2(Ω)+‖ψ‖H2(Ω)

) ,
where the maximum is taken over several common values of u ∈ L2(Ω). For the constants in the a
posteriori error estimate in Section 5.5.1, we use a similar procedure.

Stopping

In inexact optimization, it is inherently difficult to determine when to stop the algorithm. In order
to compare the performance of strategies A-D, we stopped after a prescribed time limit or whenever
the algorithm demands a more accurate solution of the bundle subproblem but the refinement of the
mesh would lead to a mesh with more than a prescribed number of nodes. To find practical stopping
conditions, one can proceed as proposed in [99, Chap. 26.8].

Problem setting

We implemented several examples. All examples have the structure of problem (5.3.1), i.e.,

minimize
(y,u)∈H1

0 (Ω)×L2(Ω)

1
2‖y− yd‖2

L2(Ω)+
α

2 ‖u‖
2
L2(Ω)

subject to y ∈ K,
∫

Ω

∇yT
∇(v− y)dλ ≥

∫
D
(u+ f̊ )(v− y)dλ ∀v ∈ K.

(5.3.1)

Therefore, the data Ω, α , ψ , yd and f̊ fully determine the problem. All computations were done on an
Intel Core i5-7200U laptop with 2 cores and 8 GB of RAM. The color scheme used to plot the figures
originates from [113].

6.2. Example 1

This example was first presented in [50]. The main difference between the solution methods presented
here compared to the solution methods of [50] is the lifting strategy for the function value approxima-
tions, cf. Section 5.3.2. The domain is given by Ω := (−1,1)2, the force f̊ is set to zero and α := 10−4.
The desired state

yd(x1,x2) := (1− x2
1)(x2 +5)(1−11x4

2 +10x2
2)

and the obstacle

ψ(x1,x2) := 8(x1−1)(x1 +1)3(x2−1)(x2 +1)
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(a) Desired state yd (b) Obstacle ψ

(c) Optimal control u∗ (d) Optimal state y∗

Figure 6.1.: Problem data for example 1.

are depicted in Figures 6.1(a) and 6.1(b), respectively. We start by comparing solution strategies A and
B using the subgradient oracle O1

g. We use an initial triangulation with maximal triangle side length of
h0 =

√
2/8 and 289 nodes. The initial lift term is set to l0 := 25 and the constant for the a priori error

estimate for the function value (cf. Section 6.1) is set to CΩ = 0.025. The final mesh has a maximal tri-
angle side length of h4 =

√
2/128 and 66049 nodes. We stop the algorithm after a time of 400 seconds

has passed.

There is no analytical solution available. In order to be able to asses the performance of strategies A
and B, we compute a numerical solution on a high fidelity grid and use this as the optimal solution.
In particular, we run the uniform strategy with BFGS for 800 seconds where the maximum number
of nodes is restricted such that the final mesh has 263169 nodes with a maximal triangle side length
of h =

√
2/256. The resulting optimal control u∗ and optimal state y∗ are shown in Figures 6.1(c)

and 6.1(d), respectively. The active set coincides with the region where the control is zero. On the
inactive set, the pointwise distance between the optimal state and the desired state is small.

Figure 6.2 gives an overview over the process of the bundle algorithm. The left column, i.e., figures
(a), (c), (e) and (g) correspondent to strategy A and the right column, i.e., figures (b), (d), (f) and (g)
correspondent to strategy B. Iterates marked with a red, empty box are serious iterates and the black,
filled boxes at the x-axes indicate mesh refinement. Figure 6.2(a) and Figure 6.2(b) depict the error
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Figure 6.2.: Convergence statistics of Algorithm 3.4 using uniform mesh refinement. No curvature strategy
(a),(c),(e),(f). BFGS curvature (b), (d), (f), (h).
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between the computed function value Jhi
i at trial iterate ui and the computed optimal function value Jh∗ ,

i.e.,

Jhi
i := 1

2‖S
ĥi(ui + f̊ )− yd‖2

L2(Ω)+
α

2 ‖ui‖2
L2(Ω), Jh∗ := 1

2‖S
h∗(u∗+ f̊ )− yd‖2

L2(Ω)+
α

2 ‖u
∗‖2

L2(Ω).

Note that the computed function values Jhi
i are the function values which were used by the algorithm

and thus incorporate the increasing accuracy of the solution operator Sĥi as the discretization is refined.
The computed optimal value Jh∗ is evaluated by computing the state yh∗ := Sh∗(u∗+ f̊ ) on the same
(high fidelity) mesh as the optimal control u∗. Figure 6.2(c) and Figure 6.2(d) show the L2(Ω)-norm
of the subgradient g̃i +w′(ui) and in Figure 6.2(e) and Figure 6.2(f) the proximity parameter τi is de-
picted. Figure 6.2(g) and Figure 6.2(h) display the H1

0 (Ω)-norm of the derivative of the proximity term
êi = (Qi + τiRY )(xi− yi). The proximity parameter τi and the term ‖êi‖H1

0 (Ω) play an important role in
the convergence result Theorem 3.3.3, cf. (3.3.3).

We observe that for the first 66 iterations, both strategies yield the same results. This is due to the fact
that strategy B starts to include points and subgradients into the BFGS curvature operator only after the
first mesh refinement occurs. However, since the initial computations are carried out on a very coarse
grid it takes only 4.0 seconds to execute the first 66 iterations. From this point on, both strategies differ
considerably. In particular, the error of the function value for strategy A is jagged. As one can see,
after every serious iterate the error of the function value of the trial iterate is large at first and then it
is reduced until a new serious iterate is selected. This might be due to the fact that after every serious
iterate, Algorithm 3.4 with no curvature strategy discards all cutting planes from the old model and
needs to build a completely new model. Compared to strategy A, the graph of the function value error
for strategy B is smoother. This shows a stabilizing influence of the BFGS curvature operator, which
reuses old subgradient information. From iteration 110 onward, the proximity parameter of the strategy
with BFGS curvature has the lowest possible value τi = ξ = 1 ·10−6. This shows that the model Ψi ex-
cellently captures the behavior of the objective function f +w. Figure 6.2(c) and Figure 6.2(d) indicate
that the L2(Ω)-norm of the subgradient at the computed solution is of the order of 10−4. Figure 6.2(g)
and Figure 6.2(h) indicate that ‖êi‖H1

0 (Ω) goes to ε̄ with ε̄ < 1 · 10−5 for the curvature strategy with
Q = 0 and ε̄ < 1 ·10−3 for the BFGS curvature strategy. Thus, Theorem 3.3.3 suggests that the bundle
method converges to a ε̄-G-stationary point. However, Figure 6.2(e) and Figure 6.2(f) indicate that the
proximity parameter does not go to infinity. This suggests that the hard case, i.e., Ex̄ 6= /0, does not
occur. In this case, Theorem 3.3.3 implies that the limit point is G-stationary.

In order to compare the performance of strategies A and B, we present three distinct benchmarks.
Because the objective is to minimize the function value, we aim at comparing the true function value
f (ui)+w(ui) at the trial iterate ui to the true optimal function value. Since computing f (ui) =

1
2‖S(ui+

f̊ )− yd‖2
L2(Ω)

involves the evaluation of the solution operator S of the variational inequality, we cannot
do this. Instead, we compute a high fidelity approximation of the state via

yh∗
i := Sh∗(ui + f̊ ). (6.2.1)
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Figure 6.3.: Difference of the function values to the computed optimal value over time.
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Figure 6.4.: Distances of the control and the state to the computed optimal control and state over time.

Similarly, we use the high fidelity approximation of the function value f (ui)+w(ui) for control ui

Jh∗
i := 1

2‖S
h∗(ui + f̊ )− yd‖2

L2(Ω)+
α

2 ‖ui‖2
L2(Ω), (6.2.2)

i.e., the state corresponding to each trial iterate is computed on the same mesh as the optimal state. The
results are depicted in Figure 6.3. Furthermore, the L2(Ω)-error of the control, ‖ui−u∗‖L2(Ω), and the
computed H1

0 (Ω)-error of the state,

‖yh∗
i − yh∗‖H1

0 (Ω) = ‖S
h∗(ui + f̊ )−Sh∗(u∗+ f̊ )‖H1

0 (Ω),
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are depicted in Figure 6.4. In contrast to the function value and the error of the state, the error of the
control can be computed exactly.

We observe that both methods converge to the solution on the final mesh. However, the method with
BFGS curvature rapidly converges within 80 seconds whereas the strategy without curvature informa-
tion only makes slow progress.

The subgradient oracle O2
g

We now use the subgradient oracle O2
g defined in (5.3.25). The advantage of O2

g over O1
g is that, un-

der reasonable assumptions, it can be guaranteed that for given xh ∈ Xh the approximate subgradients
O2

g(x
h,hn) converge in H1

0 (Ω) to a true subgradient of the reduced objective function as n→ ∞, cf.
Section 5.3.4. Recall that the sole difference in the computation of O1

g and O2
g is the choice of the dis-

crete inactive set. For O1
g, the discrete inactive set is given via Dh := {yh > Ihψ} whereas the discrete

inactive set for O2
g is given via Dn := {yn > ψn + εn} where εn > 0 is determined via the L∞(Ω)-errors

of the state and the obstacle discretization, cf. (5.3.23). We now want to determine how this additional
term εn in the choice of the discrete inactive set influences the performance of the bundle method.

We perform exactly the same numerical test as in the beginning of this chapter with the sole difference
that the subgradient oracle O1

g is replaced with the subgradient oracle O2
g. In Figure 6.5, the same data as

in Figure 6.2 is plotted. Since the computation of the L∞(Ω)-error estimators takes up additional time,
only 200 and 100 iterations can be executed within the 400 seconds computation period for strategies
A and B, respectively. When comparing the strategy without additional curvature information to the
strategy with BFGS curvature, we observe the same behavior as with the first subgradient oracle O1

g.
However, whereas the error of the function value with the first subgradient oracle is of order 10−4, here,
strategies A and B produce an errors of order 10−2 and 10−3, respectively. Figures 6.6(a) and 6.6(b)
depict the control and state error analogous to Figure 6.4. Figure 6.6(c) shows the function value error
as in Figure 6.3. Figure 6.6(d) shows the subgradient error oracle eg

n defined in (5.3.24). Again, the
smoothing behavior of the BFGS curvature strategy can be observed. Since the subgradient oracle O1

g

appears to show better overall performance compared to the oracle O2
g, all further numerical tests are

performed using O1
g.
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Figure 6.5.: Convergence statistics of Algorithm 3.4 using uniform mesh refinement. No curvature strategy
(a),(c),(e),(f). BFGS curvature (b), (d), (f), (h).
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(a) Control error
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(b) State error
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(c) Function value error
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(d) Subgradient error estimate

Figure 6.6.: Performance of the bundle method using the subgradient oracle O2
g over time.

6.3. Example 2

This example was first presented in the paper [55, Ex. 6.1] of M. Hintermüller and I. Kopacka. It is
constructed in such a way that the optimal solution is known and that strict complementarity is violated.
Here, Ω = (0,1)2, ψ ≡ 0 and α = 1. Further data is given via

f̊ :=−∆y∗−u∗−ξ
∗,

yd := y∗+ξ
∗−αu∗,

where u∗ := y∗,

y∗ : R2→ R, y∗(ω) := z1(ω1)z2(ω2)δ(0,0.5)×(0,0.8)(ω),

ξ
∗ : R2→ R, ξ

∗(ω) := 2max(0,−|ω1−0.8|− |(ω2−0.2)x1−0.3|+0.35),
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6. Numerical Results

(a) Optimal control/Optimal state (b) Desired state

Figure 6.7.: Problem data of example 2.

and

z1 : R→ R, z1(ω1) :=−4096ω
6
1 +6144ω

5
1 −3072ω

4
1 +512ω

3
1 , (6.3.1)

z1 : R→ R, z2(ω2) :=−244.140625ω
6
2 +585.9375ω

5
2 −468.75ω

4
2 +125ω

3
2 . (6.3.2)

The optimal control u∗ and the optimal state y∗ = u∗ are depicted in Figure 6.7(a). The desired state yd
is depicted in Figure 6.7(b). We run the bundle method using strategies A and B and the subgradient
oracle O1

g. We use an initial triangulation with maximal triangle side length of h0 =
√

2/8 and 81 nodes.
The initial lift term is set to l0 := 2 and the constant for the a priori error estimate for the function value
(cf. Section 6.1) is set to CΩ = 0.06. The maximal time is set to 50 seconds and the final mesh has a
maximal triangle side length of h4 =

√
2/256 and 66049 nodes.

Figure 6.8 compares strategies A and B and depicts the same data as in Figure 6.2. Now the course
of the bundle method with the no curvature strategy (strategy A) is described. In iteration 0, no re-
finement of the mesh is necessary. In iterations 1 to 5, the criterion ‖g̃1 +w′(ui[1])‖L2(Ω) < 1 ·10−4 is
active and consequently the lift term is halved in each iteration cf. Section 6.1. This leads to a uniform
refinement of the mesh in each iteration 1-5. In iteration 5, the mesh cannot be refined anymore and
all error estimators return zero error. In iteration 6, Algorithm 4.1 cannot find a new trial iterate with
lower model value as the current trial iterate and thus the computation terminates. Strategy B agrees
with strategy A for iterations 0 and 1. In iteration 2, the norm of the subgradient is slightly above the
threshold of 1 · 10−4 and therefore the lift term is not reduced and the mesh is not refined. However,
this leads to little progress of the algorithm and the distance of the new trial iterate to the serious iterate
is small. Therefore, the forcing sequence for the lift term (line 4 in Algorithm 3.4) enforces two mesh
refinements in iteration 3. The remaining iterations occur as in strategy A.

Similar to Figures 6.3 and 6.4 we want to compare the performance of strategy A and B for example
2. As before, we cannot exactly compute the state for a given control. Therefore, we compute the
states on a fine mesh with 263169 nodes and a mesh width of h =

√
2/512. For this mesh, the L2(Ω)-

distance of the computed optimal state yh∗ := Sh∗(u∗+ f̊ ) to the true optimal state y∗ is 2.52 · 10−5.
The distance of the computed optimal function value Jh∗ = 1

2‖S
h∗(u∗+ f̊ )− yd‖2

L2(Ω)
+ α

2 ‖u
∗‖2

L2(Ω)
to

the true optimal function value amounts to 5.16 · 10−4. In Figure 6.9, the distance of the control ui to
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Figure 6.8.: Convergence statistics of Algorithm 3.4 using uniform mesh refinement. No curvature strategy
(a),(c),(e),(f). BFGS curvature (b), (d), (f), (h).
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Figure 6.9.: Difference of the controls and states to the optimal values over time.
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Figure 6.10.: Function value error over time.

the optimal control u∗ and the distance of the state yh∗
i to the computed optimal state yh∗ is plotted over

time. In Figure 6.10, the distance of the function value Jh∗
i to the computed optimal function value Jh∗

is presented. Both strategies A and B find a good approximation of the solution on each mesh within
one iteration. Therefore, strategy A and B produce very similar results.

6.4. Example 3

This example is taken from the paper [88, Ex. 7.1] of C. Meyer and O. Thoma and was also published
in the OPTPDE problem set [101, Prb. mpccdist1]. There, the problem structure

minimize
(y,ū)∈H1

0 (Ω)×L2(Ω)

1
2‖y− yd‖2

L2(Ω)+
α

2 ‖ū−ud‖2
L2(Ω)

subject to y ∈ Kψ ,
∫

Ω

∇yT
∇(v− y)dλ ≥

∫
Ω

ū(v− y)dλ ∀v ∈ Kψ

(6.4.1)
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is used. To fit (6.4.1) in the setting of Problem (5.2.1), we use the transformation u = ū−ud and thus
set the data term to f̊ := ud . Alternatively, one could use w(u) := α

2 ‖ū−ud‖2
L2(Ω)

in the bundle method.

However, if ud ∈ L2(Ω) is not contained in any of the approximation spaces V h, the term ‖ū−ud‖L2(Ω)

cannot be computed exactly which is required for the setting of the bundle method in Section 4.2. If
desired, Section 4.2 can be modified to avoid the transformation u = ū−ud .

The data of example 3 is given as follows. The domain is Ω := (0,1)2 and three (pairwise disjoint)
subdomains Ω1,Ω2,Ω3 are specified via

Ω1 := (0.8,0.9)>+0.05 ·Q
(
(−1,1)2) ,

Ω2 := (0,0.5)× (0,0.8),

Ω3 := (0.5,1)× (0,0.8),

where Q ∈ R2×2 is the rotation matrix

Q :=
(

cos π

6 −sin π

6
sin π

6 cos π

6

)
.

The desired state and the data term are given by

yd(x) :=


∆p1(Q>x), x ∈Ω1

z1(x1)z2(x2), x ∈Ω2

0 else

and

f̊ (x) = ud(x) :=


p1(Q>x), x ∈Ω1

−z′′1(x1)z2(x2)− z1(x1)z′′2(x2), x ∈Ω2

−z1(x1−0.5)z2(x2), x ∈Ω3

0 else

,

where z1 and z2 are defined via (6.3.1) and

q1(y1) :=−200(y1−0.8)2 +0.5,

q2(y2) :=−200(y2−0.9)2 +0.5,

p1(y1,y2) := q1(y1)q2(y2).

A local minimum is attained at the control u∗ and the state y∗ is defined via

u∗(x) :=

{
−p1(Q>x) x ∈Ω1

0 else
and y∗(x) :=

{
z1(x1)z2(x2), x ∈Ω2

0 else.

The analytic solutions u∗ and y∗ are plotted in Figure 6.11.
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(a) Optimal control (b) Optimal state

Figure 6.11.: Analytic solutions of Example 3.

We run the bundle method using strategies A and B with the subgradient oracle O1
g. The start mesh

contained 1089 nodes and has a mesh width of h =
√

2/32. The initial lift term is set to l0 := 25 and
the constant for the a priori error estimate for the function value (cf. Section 6.1) is set to CΩ = 0.012.
We stop the algorithm after a time of 400 seconds. The final mesh has a maximal triangle side length
of h3 =

√
2/256 and 66049 nodes.

Figure 6.12 depicts the same data as Figure 6.2. There are three mesh refinements each. The last
mesh refinement happens at iteration 77 after 15.4 seconds for strategy A and at iteration 78 after
12.0 seconds for strategy B. The rest of the computation time of 400 seconds is spent on the fi-
nal mesh with 66049 nodes and mesh width

√
2/256. As one can see, this problem is much more

challenging than examples 1 and 2. It can be observed that the process of finding the optimum on
the final mesh is tedious. However, at the last iteration, strategy A yields a relative control error of
‖ui−u∗‖L2(Ω)/‖u∗‖L2(Ω) = 2.58 ·10−2 which can be compared to the relative control error of 2.98 ·10−2

for a uniform mesh of mesh width
√

2/250 in [88, Tab.7.1].

In order to compare the performance of strategy A and B, we compute the high fidelity approximation
of the state on a uniform mesh with mesh width h =

√
2/512 and 263169 nodes. The resulting solution

operator Sh∗ yields an error for the computation of the optimal state of ‖yh∗ − y∗‖L2(Ω) = 2.17 · 10−5.
The error for computation of the function value of the optimal control is |Jh∗ − J∗| = 1.03 ·10−7. The
course of control and state error over time is depicted in Figure 6.13. It can be observed that the
control error is reduced during the whole computation time. In contrast to this, after approximately 10
seconds, the state error remains constant at the error level of the computation of the optimal state. For
this example we do not observe a stabilizing behavior of the BFGS curvature scheme. The computed
function value error |Jh∗

i − Jh∗ | is displayed in Figure 6.14. The control ui and the state yi enter the
objective function via 1

2‖ui‖2
L2(Ω)

and 1
2‖yi− yd‖2

L2(Ω)
, respectively. This squared relation explains the

behavior of the computed function value error. Since the control error is already of order 10−5, it does
not influence the computed function value error, which is of order 10−7. Squaring the order of the
control error yields the order of the computed function value error.
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Figure 6.12.: Convergence statistics of Algorithm 3.4 using uniform mesh refinement. No curvature strategy
(a),(c),(e),(f). BFGS curvature (b), (d), (f), (h).
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Figure 6.13.: Example 3. Relative difference of the controls and states to the optimal values over time.
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Figure 6.14.: Example 3. Computed difference of the function values to the optimal function value over time.

6.5. Example 4

This example was taken from [35, Ex. 6.1]. We consider the L-shaped domain Ω = (−2,2)2 \ ([0,2]×
[−2,0]) with ψ ≡ 0 and α = 1. Further data is given via f̊ :=−∆y∗−y∗−ξ ∗, yd := y∗+ξ ∗−∆y∗ and
u∗ := y∗ where, in polar coordinates,

y∗ : R× [0,2π)→ R, y∗(r,ϕ) :=−(16r3−12r2 +1)r2/3
δ[0,0.5](r)sin(2/3ϕ),

ξ
∗ : R× [0,2π)→ R, ξ

∗(r,ϕ) := δ[0.5,∞](r).

It can be shown that the triple (y∗,ξ ,u∗) is a strong-stationary point of (5.3.1), cf. [35, Chap. 2.4].
The control u∗ and the state y∗ are depicted in Figure 6.15(a) and the desired state yd is depicted in
Figure 6.15(b).
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(a) Optimal control/optimal state (b) Desired state

Figure 6.15.: Data for example 4.

Figure 6.16.: Final mesh and zoom into the vicinity of the origin for example 4 using the adaptive strategy C.

In order to compare adaptive to uniform refinement, we solve problem 4 with strategies A and C with
the subgradient oracle O1

g, i.e., we compare the adaptive refinement strategy C with no curvature oper-
ator to the uniform refinement strategy A with no curvature operator. The start mesh has a mesh width
of h =

√
2/4 and consists of 225 nodes. We run the algorithm for a maximal time of 100 seconds and

allow for a maximum number of 300000 nodes. In both strategy A and C, the initial lift term is set
to l0 := 25. The constant for the a priori error estimate for the function value (cf. Section 6.1) is set
to CΩ = 0.07 (strategy A). The constant for the a posteriori error estimate for the function value is set
to C = 0.07 (strategy C). After 9 iterations, the uniform refinement strategy A encounters the need for
a better solution of the bundle subproblem but cannot refine the discretization anymore and therefore
stops. The final uniform mesh has a mesh width of

√
2/128 with 197633 nodes. The adaptive refine-

ment strategy C stops after 10 iterations due to the same reason. The adaptively refined mesh after
stopping consists of 268882 nodes and is depicted in Figure 6.16. As expected, the mesh is refined in
the circle around the origin with radius 0.5 and most refinement occurs at the origin.

In Figure 6.17, the same data as in Figure 6.2 is depicted. Since strategy A and C use the same start
mesh, the results agree for both strategies until the first mesh refinement occurs in iteration 3. The
mesh refinements occur every or every second iteration. This indicates that on every given mesh, the
algorithm finds a close approximation of the solution within one step. Whereas the uniform refinement
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Figure 6.17.: Convergence statistics of Algorithm 3.4 using no curvature strategy. Uniform refinement
(a),(c),(e),(f). Adaptive refinement (b), (d), (f), (h).
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Figure 6.18.: Example 4. Difference of the controls, states and function values to the optimal values over time.

strategy reaches a computed function value error in the order of 10−3, the adaptive strategy reduces
the error to 10−5. Both strategies find a subgradient with norm below 10−9. For both strategies, the
proximity parameter τi does not tend to infinity and the norm of the derivative of the proximity term at
the last iteration ‖êend‖H1

0 (Ω) is below 10−10 which suggest that the hard case Ex̄ 6= /0 in Theorem 3.3.3
does not occur. Similar to example 2, our numerical experiments showed no significant differences
between the no curvature strategy and the BFGS curvature strategy, i.e., between strategy A and B and
strategy C and D. Thus, we do not depict any results for strategies B and D.

In order to compare the true function value J(ui) at each iterate to the optimal function value J∗, we
again compute the state S(ui) on a fine mesh and approximate J(ui) and J(u∗) via

Jh∗
i := 1

2‖S
h∗(ui + f̊ )− yd‖2

L2(Ω)+
α

2 ‖ui‖2
L2(Ω), Jh∗ := 1

2‖S
h∗(u∗+ f̊ )− yd‖2

L2(Ω)+
α

2 ‖u
∗‖2

L2(Ω),

respectively. The fine mesh which induces the high fidelity solution operator Sh∗ is constructed as
follows. We start with a uniform mesh with mesh width

√
2/4 and 225 nodes. This mesh is refined

adaptively (such that the optimal state can be computed most efficiently) as described in Section 5.5.1.
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This refinement is repeated until a mesh with 268882 nodes is reached. Now we create a uniform
mesh with mesh width h =

√
2/128 and 197633 nodes. Finally, we merge both meshes such that the

resulting mesh consists of the vertices of both meshes and triangles created by the MATLAB function
DELAUNAYTRIANGULATION. The resulting high fidelity solution operator Sh∗ yields an error for the
computation of the optimal state of ‖yh∗ − y∗‖L2(Ω) = 3.60 · 10−6. The error for computation of the
function value of the optimal control is |Jh∗−J∗|= 1.60 ·10−5. The resulting control, state and function
value errors are depicted in Figure 6.18. We observe that the adaptive mesh refinement results in a
control error of order 10−6 whereas the control error for uniform refinement is of order 10−4. Since the
high fidelity mesh can only resolve a state error of 3.60 ·10−6, we cannot observe significant differences
of the state error. The adaptive mesh refinement strategy performs better with regards to the computed
function value error.
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7. Optimal control of the stochastic obstacle
problem

In this section, we consider a stochastic version of Problem (5.2.1). In real world applications, often
it is desirable to know not the optimal solution to Problem (5.2.1) but rather a robust solution, i.e., a
solution which performs well also for minor changes in the problem data. This chapter is mainly based
on the paper

[49] L. HERTLEIN, A.-T. RAULS, M. ULBRICH, AND S. ULBRICH, An inexact bundle method and
subgradient computations for optimal control of deterministic and stochastic obstacle problems.
Priprint, accepted for publication in SPP1962 Special Issue, Birkhäuser, 2019.

7.1. The stochastic obstacle problem

Let (Ξ,A ,P) be a complete σ -finite measure space and abbreviate Z :=H1
0 (Ω). For ξ ∈Ξ, we consider

a variational inequality of type (5.1.2). In particular, let Aξ ∈L (Z,Z∗) be an operator, let bξ ∈ Z∗ be a
force, let ψξ ∈ H̄ := H1(Ω) be an obstacle, define the set

Kξ := {yξ ∈ H1
0 (Ω) : yξ ≥ ψξ}

and define the (parametric) obstacle problem

Find yξ ∈ Kξ , 〈Aξ yξ −bξ ,vξ − yξ 〉Z∗,Z ≥ 0 ∀vξ ∈ Kξ . (VIξ )

The stochastic obstacle problem is given by

Find y ∈K, 〈Ay−b,v−y〉H∗,H ≥ 0 for all v ∈K. (VI)

Here, H := L2(Ξ,H1
0 (Ω)) is the Bochner space of square integrable functions with values in H1

0 (Ω) (cf.
[62, Def. 1.2.15]), A ∈L (H,H∗), b ∈H∗, ψψψ ∈ H̄ := L2(Ξ,H1(Ω)) and

K := {y ∈H : y(ξ ) ∈ Kξ for P-a.a. ξ ∈ Ξ}. (7.1.1)

We want to relate the solutions to (VIξ ) and (VI), see [44, 45] for related results. Using standard tech-
niques, one can show that the projection onto the set K, defined in (7.1.1), agrees pointwise P-a.e. with
the projection onto Kξ :

LEMMA 7.1.1. If ψψψ ∈ H̄ such that Kξ 6= /0 for P-a.a. ξ ∈Ξ then K is a nonempty closed convex subset
of H and PK(v)(ξ ) = PKξ

(v(ξ )) for P-a.a. ξ ∈ Ξ and for all v ∈ H̄.
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Proof. Let v ∈ H̄ be arbitrary and denote by pξ = PKξ
(v(ξ )) the projection of v(ξ ) onto the nonempty

closed convex set Kξ , i.e.,

pξ ∈ Kξ , (v− pξ , pξ −w)Z ≥ 0, ∀w ∈ Kξ .

By [8, Thm. 8.2.9], the multifunction ξ 7→ Kξ is measurable (cf. Section 2.9 for the definition of
measurable set valued functions). Thus, [45, Thm. 2.3] implies that ξ 7→ pξ is measurable. As P is a
σ -finite measure and H1

0 (Ω) is separable, Theorem 2.9.1 shows that ξ 7→ pξ is strongly P-measurable.
Since the projection PKξ

is non-expansive, we find ξ 7→ PKξ
(v(ξ )) ∈ H for all v ∈ H̄. Consequently,

ξ 7→ PKξ
(ψψψ(ξ )) ∈H and K is nonempty. Denote by

H1
0 (Ω)+ := {v ∈ H1

0 (Ω) : v≥ 0 a.e. on Ω}

the positive cone in Z = H1
0 (Ω). By [44, Lem. 3.1], the set

K−ψψψ = {v ∈H : v(ξ ) ∈ H1
0 (Ω)+ for P-a.a. ξ ∈ Ξ}

is closed, and so is K. It is easy to see that K is convex. Therefore, K is a nonempty closed and convex
subset of the space H. Because Z is a Hilbert space, [18, Thm. 3.1] implies that H = L2(Ξ,Z) also is a
Hilbert space. Therefore, the projection PK : H̄→K is well-defined and fulfills

p = PK(v) ⇔ p ∈K, (v−p,p−w)H̄ ≥ 0, ∀w ∈K.

Since ξ 7→ PKξ
(v(ξ )) fulfills this, we find PK(v)(ξ ) = PKξ

(v(ξ )) for P-a.a. ξ ∈ Ξ and for all v ∈ H̄.

Using this result, we can show that the solution operator of (VI) agrees pointwise P-a.e. with the
solution operator of (VIξ ). We need the following definition.

DEFINITION 7.1.2. A family of operators (Aξ )ξ∈Ξ ⊂L (Z,Z∗) is called uniformly coercive, if there
exists a parameter CL > 0 such that 〈Aξ x,x〉Z∗,Z ≥CL‖x‖2

Z for all x ∈ Z and P-a.a. ξ ∈ Ξ.

THEOREM 7.1.3. Assume that ξ 7→Aξ y is strongly P-measurable for every y∈Z, that ξ 7→ ‖Aξ‖L (Z,Z∗)
is in L∞(Ξ), b : ξ 7→ bξ is in H∗, ψψψ : ξ 7→ψξ is in H̄. Then, for every y∈H, the map Ay : ξ 7→ Aξ (y(ξ ))
is in H∗ and A : y 7→ Ay is in L (H,H∗). Moreover, suppose that (Aξ )ξ∈Ξ is uniformly coercive and
that Kξ 6= /0 for P-a.a. ξ ∈ Ξ. Then, for P-a.a. ξ ∈ Ξ, (VIξ ) has a unique solution yξ and the so-
lution operator Sξ : Z∗ → Z, Sξ (bξ ) = yξ , is Lipschitz with modulus 1/CL. Furthermore, (VI) has a
unique solution, the solution operator S : H∗→ H is Lipschitz with modulus 1/CL, and (S(b))(ξ ) =
Sξ (bξ ) for P-a.a. ξ ∈ Ξ.

Proof. Let y∈H be arbitrary. Since ξ 7→Aξ and ξ 7→ y(ξ ) are strongly P-measurable, [62, Prop. 1.1.28]
implies that Ay is strongly P-measurable. Using [62, Prop. 1.2.2], the estimate

‖Ay‖2
H∗ =

∫
Ξ

‖Aξ (y(ξ ))‖2
Z∗ dP(ξ )≤

∫
Ξ

‖Aξ‖2
L (Z,Z∗)‖y(ξ )‖

2
Z dP(ξ )< ∞

shows that Ay ∈H∗ and that the linear mapping A : y 7→ Ay is continuous. Now, suppose that (Aξ )ξ∈Ξ
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is uniformly coercive with constant CL and that Kξ 6= /0 for P-a.a. ξ ∈ Ξ. From

〈Ay,y〉H∗,H =
∫

Ξ

〈Aξ (y(ξ )),y(ξ )〉Z∗,Z dP(ξ )≥
∫

Ξ

CL‖y(ξ )‖2
Z dP(ξ ) =CL‖y‖2

H ∀y ∈H

we deduce that A is coercive. By Lemma 7.1.1, K is a nonempty closed and convex subset of a
Hilbert space. Thus, the Lions-Stpampacchia theorem, cf. [67, Thm. 2.1], implies that (VI) and (VIξ )
are uniquely solvable for P-a.a. ξ ∈ Ξ. Furthermore, by [8, Thm. 8.2.9] the multifunction ξ 7→ Kξ is
measurable and contains the element p ∈ H. Thus, [45, Thm. 2.7] implies ξ 7→ Sξ (bξ ) ∈ H. Since
y ∈ H, defined by y(ξ ) := Sξ (bξ ) ∈ Kξ , fulfills (VI) and the solution of (VI) is unique, we deduce
y = S(b).

7.2. Optimal control of the stochastic obstacle problem

We are interested in the following class of optimal control problems governed by the stochastic obstacle
problem

min
u∈Uad

J(S(F̊(ιu))+ α

2 ‖u‖
2
U . (P)

Here ι ∈L (U,Z∗) = L (L2(Ω),H−1(Ω)) is a compact embedding, F̊ : Z∗→H∗ is a continuous func-
tion which maps the control to the force term, S : H∗ → H is the solution operator of the stochastic
variational inequality (VI), J : H→ R is the stochastic objective function and Uad ⊂U is a nonempty,
closed and convex set.

LEMMA 7.2.1. If J : H→ R is lower continuous and bounded below, then the problem (P) has a
solution.

Proof. We verify the assumptions of Theorem 2.5.1. Since J and α

2 ‖ · ‖
2
U are bounded below, the

function j : H×U , j(y,u) := J(y) + α

2 ‖u‖
2
U is bounded below. Further, S : Z∗ → H, S := S ◦ F̊, is

continuous. As J is bounded below, the coercivity of α

2 ‖u‖
2
U yields that the reduced function J : U →

R, J(u) := J(S(F̊(ιu)) + α

2 ‖u‖
2
U , is coercive. As J is (strongly) lower semicontinuous, j : H×U

is strong×weak sequentially lower semicontinuous. Therefore, Theorem 2.5.1 is applicable which
implies that (P) has a solution.

7.3. Approximate subgradients for the stochastic obstacle problem

If J and F̊ are Lipschitz on bounded sets, then (P) corresponds to the setting of the bundle method via
X := U = L2(Ω), F := Uad, Y := Z∗ = H−1(Ω), p := J ◦S ◦ F̊, w := α

2 ‖ · ‖
2
U . To execute the bundle

method, we need to be able to compute a candidate for a trial iterate, a function value approximation
and an element of an approximate subdifferential. A trial iterate can be computed using the theory de-
veloped in Chapter 4. As J is a function which maps L2(Ξ,H1

0 (Ω)) to R, one usually needs to evaluate
an integral to obtain a function value (cf. below). In this case, to obtain approximate function values,
numerical integration [108, 61, 23] or Monte Carlo methods [10] can be used. In the rest of this section
we focus on how to determine an appropriate approximate subdifferential G such that we can compute
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an element thereof.

In the following, we work under the assumptions of Theorem 7.1.3 such that the solution operators of
(VI) and (VIξ ) are connected via (S(b))(ξ ) = Sξ (bξ ) for P-a.a. ξ ∈ Ξ. We concretize the stochastic
objective function J : H→ R via J(y) := E

[
Jξ (y(ξ ))

]
. Here, for P-a.a. ξ ∈ Ξ, Jξ : Z → R is an

objective function such that ξ 7→ Jξ (y(ξ )) is integrable for all y ∈ H and E denotes the expectation
with respect to ξ , i.e., E[z] :=

∫
Ξ

z(ξ )dP(ξ ). Further, define F̊ξ : Z∗→ Z∗ via F̊ξ (w) := F̊(w)(ξ ). Then
(P) takes the form

min
u∈Uad

E
[
Jξ (Sξ (F̊ξ (ιu)))

]
+ α

2 ‖u‖
2
U . (P’)

We would like to compute an element g ∈ Z of Clarke’s subdifferential of the reduced stochastic objec-
tive function p : Z∗→ R, p := E

[
Jξ (Sξ (F̊ξ (·)))

]
, i.e.,

g ∈ ∂C p(w) = ∂wJ(S(F̊(w))) = ∂wE
[
Jξ (Sξ (F̊ξ (w)))

]
.

However, the available calculus rules for the Clarke subdifferential, which often take the form of inclu-
sions, make it difficult to calculate the subdifferential ∂wE

[
Jξ (Sξ (F̊ξ (w)))

]
. As Lemma 5.2.6 shows

how to compute a subgradient of the function Jξ (Sξ (F̊ξ ( ·))), we aim at computing elements of

E
[
∂wJξ (Sξ (F̊ξ (w)))

]
:= {E [g(w,ξ )] : ξ 7→ g(w,ξ ) ∈ L1(Ξ,H−1(Ω)),

g(w,ξ ) ∈ ∂wJξ (Sξ (F̊ξ (w))) P-a.e. }.
(7.3.1)

Provided that G(w) := E
[
∂wJξ (Sξ (F̊ξ (w)))

]
fulfills Assumption 3.1.1, this choice of approximate sub-

differential for the bundle method yields convergence to weak stationary points (cf. [136]), i.e., points
ū ∈U which fulfill

0 ∈ ι
∗E
[
∂wJξ (Sξ (F̊ξ (ι ū)))

]
+α ū+NUad(ū)+ ι

∗B̄Z(0,η).

Under suitable assumptions, [21, Thm. 2.7.2 and Thm. 2.3.10] imply

∂uE
[
Jξ (Sξ (F̊ξ (ιu)))

]
⊂ E

[
∂uJξ (Sξ (F̊ξ (ιu)))

]
⊂ ι
∗E
[
∂wJξ (Sξ (F̊ξ (ιu)))

]
with equality if, for each ξ , the function Jξ (Sξ (F̊ξ ( ·))) is regular in the sense of Clarke. However,
this is not necessarily the case for all points of the considered optimal control problem. Under strong
assumptions (such as a deterministic obstacle), in [49, Thm. 7.11] a formula for an exact subgradient
g ∈ ∂wE

[
Jξ (Sξ (F̊ξ (w))))

]
is given. Here, we avoid these assumptions but this comes at the cost that

we can only guarantee convergence of the bundle method to weak stationary points.

Now we show that the weak subgradients (7.3.1) can be used in the bundle method since they fulfill
Assumption 3.1.1. We work in the following setting:

Assumption 7.3.1. Let FB be an open subset of a separable reflexive Banach space B. Suppose that for
all ξ ∈ Ξ the functions pξ : FB→ R satisfy the following conditions:

1. For all w ∈FB, the map ξ 7→ pξ (w) is measurable.
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2. There exists a w ∈FB such that
∫

Ξ
|pξ (w)|dP(ξ )< ∞.

3. For all bounded sets D⊂ B there exists a function LD ∈ L1(Ξ) such that

|pξ (w1)− pξ (w2)| ≤ LD(ξ )‖w1−w2‖B for all w1,w2 ∈ D∩FB and for P-a.a. ξ ∈ Ξ.

Let F̄ be a closed subset of FB and consider the map G : F̄ ⇒ B∗ defined by

G(w) :=
{∫

Ξ

g(ξ )dP(ξ ) : g ∈ L1(Ξ,B∗),g(ξ ) ∈ ∂C pξ (w) P-a.e.
}
. (7.3.2)

THEOREM 7.3.2. Under Assumption 7.3.1, the multifunction G : F̄ ⇒ B∗, defined in (7.3.2), fulfills
Assumption 3.1.1 and it holds ∂C p(w)⊂ G(w) for all w ∈ F̄ , where p : F̄ → R is defined by p(w) :=∫

Ξ
pξ (w)dP(ξ ).

Proof. First we show ∂C p(w)⊂G(w). Let w ∈ F̄ be arbitrary. By [21, Thm. 2.7.2], p is well-defined,
locally Lipschitz and for every g ∈ ∂C p(w) there is a corresponding mapping ξ 7→ gξ from Ξ to B∗

with gξ ∈ ∂C pξ (w) P-a.e. and such that for every v ∈ B, the function ξ 7→ 〈gξ ,v〉B∗,B belongs to L1(Ξ)
and one has 〈g,v〉B∗,B =

∫
Ξ
〈gξ ,v〉B∗,B dP(ξ ). Consequently, by [62, Cor. 1.1.2], the map ξ 7→ gξ is

measurable. Denote by LD ∈ L1(Ξ) the function according to property 3 of Assumption 7.3.1 for
D := B̄X(w,1). From

∫
Ξ
‖gξ‖X∗ dP(ξ ) ≤

∫
Ξ

LD(ξ )dP(ξ ) < ∞ we deduce that ξ 7→ gξ is in L1(Ξ,B∗)
which shows ∂C p(w)⊂ G(w).
1. For arbitrary w ∈ F̄ , it holds /0 6= ∂C p(w)⊂ G(w). Therefore, G(w) is nonempty. Since ∂C pξ (w) is
convex P-a.e. , the set G(w) is convex.
2. Let D⊂ B be a bounded set and denote

Ĝ := {ĝ ∈ L1(Ξ,B∗) : w ∈ D∩ F̄ , ĝ(ξ ) ∈ ∂C pξ (w) P-a.e. }. (7.3.3)

Choose a neighborhood D̂⊂ B of B∩F̄ and denote by LD̂ ∈ L1(Ξ) the function which fulfills property
2 of Assumption 7.3.1. By [21, Prop. 2.1.2], there holds ∂C pξ (w)⊂ B̄B∗(0,LD̂(ξ )) for all w ∈ D∩ F̄ .
Consequently, Ĝ is bounded in L1(Ξ,B∗) by the constant

∫
Ξ

LD̂(ξ )dP(ξ )< ∞ and we find for arbitrary
g ∈ G(D∩ F̄ ) that there exists a ĝ ∈ Ĝ such that g =

∫
Ξ

ĝ(ξ )dP(ξ ) and it holds

‖g‖B∗ = ‖
∫

Ξ

ĝ(ξ )dP(ξ )‖B∗ ≤
∫

Ξ

‖ĝ(ξ )‖B∗ dP(ξ )≤
∫

Ξ

LD̂(ξ )dP(ξ ).

3. We verify the assumptions of [105, Thm. 4.2]. Since F̄ is a closed subset of a complete metric space,
(F̄ ,‖ · ‖B) is a complete metric space. By [21, Prop. 2.1.2], the map (ξ ,v) 7→ ∂C pξ (v) is nonempty,
closed and convex valued. Using [21, Lem. 2.7.2], [8, Thm. 8.2.11 and Thm. 8.2.9], one sees that the
multifunction ξ 7→ ∂C pξ (w) is measurable for all w ∈FB. By [21, Prop. 2.1.5], for all ξ ∈ Ξ, ∂C pξ

has a weakly closed graph. Now let D ⊂ B be a compact set and denote by LD̂ ∈ L1(Ξ) a function
which fulfills property 3 of Assumption 7.3.1 for a neighborhood D̂ of D. Define by GD : Ξ⇒ B∗ the
multifunction GD(ξ ) := w-clco(∂C pξ (D)). First note that, since D is bounded, [21, Prop. 2.1.2] im-
plies that ∂C pξ (D) is bounded by LD̂(ξ ) P-almost everywhere. This shows that the multifunction GD is
integrably bounded and, for fixed ξ ∈ Ξ, the set GD(ξ ) is bounded. Consequently, by Alaoglu’s theo-
rem, GD(ξ ) is weakly compact, and obviously nonempty and convex. As ∂C pξ (w)⊂GD(ξ ) P-a.e. and
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for all w ∈ D, [105, Thm. 4.2] yields that w 7→ G̃(w) is weakly upper semicontinuous, i.e., for every
weakly closed set C ⊂ Y the set G−(C) := {x ∈F : G(r)∩C 6= /0} is closed in F . By [104, Cor. 3.1],
the multifunction G̃ is weakly closed valued. Therefore, [60, Thm. 2.5] implies that G : F̄ ⇒ B∗ has a
weakly closed graph.

Example 7.3.3 (Tracking type objective function). For all ξ ∈ Ξ, let Jξ : Z→ R be given via Jξ (·) :=
1
2‖Oξ (·)− yd

ξ
‖2

H , where Oξ ∈L (Z,H) is the stochastic observation operator, yd
ξ
∈ H is the stochas-

tic desired state and H is a Hilbert space. Let the assumptions of Theorem 7.1.3 hold and let ξ 7→
‖Oξ‖L (Z,H) be in L∞(Ξ) and ξ 7→ yd

ξ
be in H∗. Further, let f̊ ∈H∗ be a stochastic external force, define

ι̂ιι ∈L (Z∗,H∗) via (ι̂ιιw)(ξ ) := w and set F̊ := ι̂ιι(·)+ f̊.

COROLLARY 7.3.4. In the situation of Example 7.3.3, the multifunction

G : H−1(Ω)⇒ H1
0 (Ω), G(w) := E

[
∂wJξ (Sξ (F̊ξ (w)))

]
(7.3.4)

fulfills Assumption 3.1.1 and thus can be used in the bundle method as a subdifferential.

Proof. Denote by CL > 0 the constant of uniform coercivity of (Aξ )ξ∈Ξ. By Theorem 7.1.3, the solution
operators Sξ : Z∗→ Z are Lipschitz with modulus 1/CL and ξ 7→ Sξ (F̊ξ (w)) is in H for all w ∈ Z∗. We
verify Assumption 7.3.1 with B := H1

0 (Ω) = Z, FB = B and pξ (w) := Jξ (Sξ (F̊ξ (w))).
1. Let w∈FB =H1

0 (Ω) be fixed. Since (ξ ,x) 7→ Jξ (x) is a Cathathéodory mapping and ξ 7→ Sξ (F̊ξ (w))
is measurable, [8, Lem. 8.2.3] implies that ξ 7→ Jξ (Sξ (F̊ξ (w))) is measurable.
2. First note that S( f̊ ) ∈H = L2(Ξ,Z), i.e., ξ 7→ ‖Sξ ( f̊ )‖Z is in L2(Ξ). Therefore,√

2
∫

Ξ

|pξ (0)|dP(ξ ) =
√

2
∫

Ξ

|Jξ (Sξ ( f̊ ))|dP(ξ )

= ‖ξ 7→ ‖Oξ Sξ ( f̊ )− yd
ξ
‖H‖L2(Ξ)

≤ ‖ξ 7→ ‖Oξ‖L (Z,H)‖L∞(Ξ)‖ξ 7→ ‖Sξ ( f̊ )‖Z‖L2(Ξ)+‖ξ 7→ ‖yd
ξ
‖H‖L2(Ξ) < ∞.

3. For each bounded set D⊂ Z∗ there exists a function L̂D ∈ L2(Ξ) such that for all w∈D and P-a.a. ξ ∈
Ξ it holds

‖Sξ (F̊ξ (w))‖Z ≤ ‖Sξ (w+ f̊ )−Sξ ( f̊ )‖Z +‖Sξ ( f̊ )‖Z ≤ 1
CL
‖w‖Z∗+‖Sξ ( f̊ )‖Z ≤ L̂D(ξ ).

For arbitrary w1,w2 ∈ D and all ξ ∈ Ξ we get the estimate

2|pξ (w1)− pξ (w2)| ≤ ‖Oξ ((Sξ (w1 + f̊ )+Sξ (w2 + f̊ ))−2yd
ξ
‖H‖Oξ (Sξ (w1 + f̊ )−Sξ (w2 + f̊ ))‖H

≤ 2(‖Oξ‖L (Z,H)CD(ξ )+‖yd
ξ
‖H)‖Oξ‖L (Z,H)‖Sξ (w1 + f̊ )−Sξ (w2 + f̊ )‖Z

≤ LD(ξ )‖w1−w2‖Z∗ ,

where LD ∈ L2(Ξ) is defined as LD(ξ ) := 2
CL
(‖Oξ‖L (Z,H)L̂D(ξ )+‖yd

ξ
‖H)‖Oξ‖L (Z,H).
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A. Complexification of a real Hilbert space

Let H be a real Hilbert space. A linear space H×H over the field C with the rule of external multi-
plication by complex numbers (α + iβ )(x,y) := (αx−βy,αx+βy), α,β ∈R, (x,y) ∈H×H is called
complexification of the real Hilbert space H and is denoted by HC, cf. [102, 129]. It is convenient to
write the elements in HC as x+ iy, where x,y ∈ H and i is the imaginary unit. The vector space HC is
a complex Hilbert space with respect to the scalar product

(x1 + ix2,y1 + iy2)HC := (x1,y1)H +(x2,y2)H + i(x2,y1)H − i(x1,y2)H

and ‖x+ iy‖2
HC = ‖x‖2

H + ‖y‖2
H , ‖x+ i0‖HC = ‖x‖H for all x,y ∈ H. We identify H with the subspace

H×{0} of HC. Let H1,H2 be two real Hilbert spaces. We define the complexification of an operator
A ∈L (H1,H2) to be AC : HC

1 → HC
2 , AC(x+ iy) := Ax+ iAy. Note that AC is C-linear and bounded,

i.e., AC ∈L (HC
1 ,H

C
2 ).

DEFINITION A.1 (e.g., [129, Def. 4.1.1]). Let H be a Hilbert space over the field F ∈ {C,R}. The
spectrum and the point spectrum of an operator A ∈L (H) are defined to be the sets

σ(A) := {λ ∈ F : λ IdH−A is not invertible in L (H)},
σp(A) := {λ ∈ F : λ IdH−A is not injective }.

LEMMA A.2. Let H be a real Hilbert space and A ∈L (H) be a (Hilbert space) self-adjoint operator.
Then σp(A) = σp(AC).

Proof. Let λ ∈ σp(AC). As A is self-adjoint, so is AC. [129, Thm. 4.4.2] thus implies λ ∈ R. Further,
λ IdHC−AC is not injective, i.e., there is a nonzero vector x ∈ HC such that ACx = λx and x = x1 + ix2,
x1,x1 ∈ H. Therefore, Ax1 + iAx2 = ACx = λx1 + iλx2. This shows that Ax1 = λx1, i.e., λ ∈ σp(A).
Now let λ ∈σp(A). Then there is a nonzero vector x∈H such that Ax= λx. Consequently, AC(x+ i0)=
Ax = λ (x+ i0) and λ ∈ σp(AC).

THEOREM A.3. Let H be a real Hilbert space. If Q ∈L (H) is given by Q = µ IdH +UV with µ ≥ 0,
U ∈L (Rn,H) and V ∈L (H,Rn), n ∈ N+, such that Q is (Hilbert space) self-adjoint, then

(Qv,v)H ≥
(

µ +minσ(VU)∪{0}
)
‖v‖2

H for all v ∈ H

and ‖Q‖L (H) ≤ µ +max |σ(VU)|.

Proof. Denote by HC and QC the complexifications of H and Q. It holds QC(x1 + ix2) = µx1 + iµx2 +
UV x1 + iUV x2 = (µ IdHC +UCVC)(x1 + ix2) for arbitrary x1,x2 ∈ H. As Q ∈L (H) is self-adjoint, so
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A. Complexification of a real Hilbert space

is QC ∈L (HC). It holds

(Qv,v)H

‖v‖2
H

=
(QCv,v)HC

‖v‖2
HC

≥ inf
x 6=0

(QCx,x)HC

‖x‖2
HC

= inf
‖x‖HC=1

(QCx,x)HC for all v ∈ H \{0}. (A.1)

Since the operator QC ∈L (HC) is (Hilbert space) self-adjoint, [129, Thm. 4.4.4] and [129, Thm. 4.4.6]
can be applied which yield that σ(QC)⊂ R and

inf
‖x‖HC=1

(QCx,x)HC = minσ(QC). (A.2)

Using [129, Thm. 4.3.1], we calculate

σ(QC) = σ(µ IdHC +UCVC) = µ +σ(UCVC). (A.3)

Now, [11, Thm. 3] yields

σ(UCVC)\{0}= σ(VCUC)\{0}. (A.4)

Consequently,

σ(UCVC)⊂ σ(UCVC)∪{0}= σ(VCUC)∪{0}. (A.5)

Since VCUC=(VU)C ∈L ((Rn)C) and (Rn)C is finite dimensional, [129, Rem. 4.1.4 (ii)] and Lemma A.2
yields that

σ(VCUC) = σ((VU)C) = σp((VU)C) = σp(VU) = σ(VU). (A.6)

Combing (A.1)–(A.3), (A.5), and (A.6) we find for arbitrary v ∈ H that

(QCv,v)HC ≥
(

µ +minσ(UCVC)
)
‖v‖2

HC ≥
(

µ +minσ(VU)∪{0}
)
‖v‖2

HC .

In order to verify the second result, we argue as follows. [129, Thm. 4.4.5] and (A.3) yield

‖Q‖L (H) ≤ ‖QC‖L (HC) = max |σ(QC)| ≤ µ +max |σ(UCVC)|

and (A.4) gives

max |σ(UCVC)| ≤max |(σ(UCVC)\{0})∪{0}|= max |(σ(VCUC)\{0})∪{0}|.

By [129, Thm. 4.4.3], σ(VCUC) 6= /0. Together with (A.6), this yields

max |(σ(VCUC)\{0})∪{0}|= max |σ(VCUC)|= max |σ(VU)|.
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