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Abstract

In order to move computation close to the data inside database systems, this thesis focuses
on the SQL integration of data analysis and machine learning algorithms as well as on native
support for dataset versioning.

For the integration of data analysis, we implement clustering, graph mining and asso-
ciation rule algorithms in SQL using recursive tables and scripting languages. Recursive
tables within HyPer and Umbra also allow to express gradient descent, a major building
block when training a model as used in machine learning. We generate code for automatic
differentiation in order to automate the derivation of loss functions as required for gradient
descent. Automatically deriving a loss function, expressed as SQL lambda function, accel-
erates computation linearly by the number of cached subexpressions. To further reduce the
time needed for training, automatic differentiation within a dedicated gradient descent op-
erator allows to off-load training to GPU.

Based on the presented extensions, we design a meta-language for machine learning to
be translated to either Python or SQL. But as most of its operations relied on array data, we
extend Umbra by an ArrayQL interface to treat relations as arrays.

For dataset versioning, we propose a layer on top of existing database systems using an
additional table for version management, and within code-generating database systems, a
data type and a table scan operator that incorporate versioning.
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Zusammenfassung

Um Anwendungslogik direkt auf den Daten im Datenbanksystem zu ermöglichen, konzen-
triert sich diese Arbeit auf die SQL-Integration von Algorithmen für die Datenanalyse und
maschinelles Lernen sowie auf die native Unterstützung der Versionierung von Datensät-
zen.

Für die Integration der Datenanalysealgorithmen implementieren wir Clustering-, Graph-
Mining- und Assoziationsregel-Algorithmen in SQL unter Verwendung rekursiver Tabellen
und Skriptsprachen. Rekursive Tabellen in HyPer und Umbra erlauben auch Gradientenab-
stieg in SQL auszudrücken, ein wichtiger Baustein im Bereich des maschinellen Lernens für
das Trainieren eines Modells. Um das Ableiten der Verlustfunktion, wie für den Gradienten-
abstieg benötigt, zu automatisieren, generieren wir Code für automatisches Differenzieren.
Das automatisierte Ableiten der Verlustfunktion, ausgedrückt als SQL-Lambda-Funktion,
beschleunigt die Laufzeit linear mit der Anzahl wiederverwendeter Teilausdrücke. Um das
Trainieren weiter zu beschleunigen, erlaubt ein dedizierter Operator für den Gradientenab-
stieg mit automatischer Differenzierung, das Training auf die GPU auszulagern.

Basierend auf den vorgestellten Erweiterungen entwerfen wir eine Metasprache für ma-
schinelles Lernen, die entweder zu Python oder zu SQL übersetzt werden kann. Da die
meisten Operationen Daten aggregiert zu Feldern erwarten, erweitern wir Umbra um ei-
ne ArrayQL-Schnittstelle, um Relationen nativ als Matrizen zu behandeln.

Für die Versionierung von Datensätzen schlagen wir eine Schicht über dem bestehen-
den Datenbanksystem vor, die eine zusätzliche Tabelle für die Versionsverwaltung verwen-
det, und innerhalb von codegenerierenden Datenbanksystemen einen Datentyp und einen
Tabellenscan-Operator, die Versionierung unterstützen.
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Chapter 1

Introduction

In a multitier architecture, the traditional wisdom is to use a database system as data stor-
age only. Within its responsibility, the database system guarantees the ACID properties out
of atomicity, consistency, isolation and durability for a transaction. For querying the data,
database systems offer the declarative language SQL, allowing the user to specify what to
do, rather than caring about the implementation nor its optimisation. Furthermore, SQL, as
a standardised language, ensures the exchangeability of database systems in theory.

In this thesis, we argue that modern hardware allows database systems to take over more
computation. To move computation to the data inside a database system, we destine SQL
for specifying user-defined algorithms, since SQL is already present and inherits the benefits
of a declarative language. In the remainder of this chapter, we present the motivation for
in-database computations, that is to reduce the transfer of data, define this thesis’ scope and
contribution to in-database machine learning and dataset versioning and close by an outline.

1.1 Motivation

Data warehouses form a common example, where relational database systems are used
for online transactional processing (OLTP) and online analytical processing (OLAP). OLTP
means an update-heavy workload, as occurs when customers are ordering items, whereas
OLAP mostly depends on read-only queries that analyse and aggregate large datasets such
as the number of sold items per day. In the past, transactional and analytical queries were
processed separately on for each use-case specialised system, requiring an extraction, trans-
form, load (ETL) process in-between the data and application layer. With modern hardware,
the size of main-memory increased and systems for hybrid transactional/analytical process-
ing (HTAP) such as HyPer [69] could be developed, which allow combining both use cases.
Nevertheless, the ETL process still is an issue. With the arising complexity of data analysis
and machine learning algorithms, the data gets extracted and then analysed externally [144].

1.2 Scope

The overall goal of this thesis is to broaden the usage of database systems for computational
tasks. This includes additional operators, data types and operations addressed within SQL
to facilitate moving computation to the data stored inside database systems, as well as man-
aging different versions of a database.

As many tasks require an array data type as part of SQL, this thesis introduces such a data
type for the code-generating database systems HyPer and Umbra together with operations
for linear algebra. This thesis then continues with data analysis algorithms described in the
SQL scripting language extensions, namely HyPerScript and PL/pgSQL, and compares their
performance to integrated database operators and recursive SQL tables.

We continue with recursive SQL used for gradient descent, on which modern machine
learning algorithms are based. This allows formulating a complete machine learning pipeline
within SQL including data preprocessing, continuous training and sampling batches for gra-
dient descent with manually derived loss functions. To eliminate the need for manually
deriving functions, we integrate automatic differentiation of SQL lambda functions into a
code-generating database system, i.e., Umbra. Based on automatic differentiation, we pro-
pose a dedicated operator for gradient descent to decrease the time needed to train a model,
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which we integrate into HyPer and Umbra. Such a materialising operator allows off-loading
to GPU, which accelerates vectorised computations as needed for gradient descent. We sug-
gest the implementation of fine-grained learners to exploit the maximal throughput on a
GPU.

On top of database systems, we propose a declarative meta-language for machine learn-
ing, whose compiler translates statements for either a Python or an SQL backend. For the
SQL backend, we make use of the proposed database extensions out of tensors, gradient
descent and procedural statements within a scripting language. However, most of the op-
erations are based on the tensor data type, which requires aggregation of tables into arrays
beforehand. To eliminate the need for such aggregations, we come up with ArrayQL, a lan-
guage extension for relational database systems that interprets tables as arrays and translates
array statements into operator plans.

Another aspect concerns version management of datasets. Relational database systems
also dominate within online encyclopaedias such as Wikipedia. We argue that native sup-
port within database systems for versioning will eliminate the need for an additional layer.
Besides, persisting a certain database state without extracting the data as a snapshot sup-
ports the reproducibility of experiments, since the same data leads to the same results.

1.3 Contributions

In particular, this thesis contributes to:

• data analysis by algorithms described in recursive SQL or a scripting language, and
moreover, an evaluation of their performance within modern database systems, namely
HyPer and Umbra, and a traditional one, i.e., PostgreSQL with PL/pgSQL and MADlib;

• in-database machine learning by gradient descent using a recursive table and machine
learning pipelines including preprocessing and continuous training expressed in SQL,
automatic differentiation as an operator within a code-generating database system to
facilitate gradient descent, the architectural blueprint for gradient descent as an op-
erator within SQL, customised GPU kernel implementations for model training, an
SQL array data type with operations for tensor algebra, and an intermediate machine
learning language that translates into SQL or Python scripts using common libraries;

• array database systems by a relational representation of arrays within a relational, code-
generating database system, i.e., Umbra, to substitute array database systems, an ex-
tension to support linear algebra and an evaluation that compares the relational repre-
sentation to common array database systems;

• dataset versioning by supporting versions over multiple tables using a tool on top of
relational database systems, an integration into code-generating database systems, an
SQL versioning data type supporting delta-compression, an SQL extension for database
versioning that considers referential integrity and an evaluation to compare different
storage approaches.

1.4 Outline

This thesis is structured as follows: Chapter 2 summarises related work on machine learning,
matrix algebra and dataset versioning in the context of relational database systems. Chap-
ter 3 extends an SQL array data type for tensor algebra. We use this data type in conjunction
with customised operators and recursive SQL tables for data analysis in Chapter 4. Based on
recursive SQL statements, Chapter 5 proposes a complete machine learning pipeline within
database systems including operators for automatic differentiation. A materialising operator
for gradient descent allows off-loading to GPU as discussed in Chapter 6. Based on these ex-
tensions, Chapter 7 describes the ML2SQL compiler to translate the meta-language MLearn
into SQL. In order to interpret tables as arrays directly, Chapter 8 describes the integration of
ArrayQL into Umbra. Chapter 9 presents dataset versioning on top of relational and inside
of code-generating database systems. Chapter 10 concludes this thesis by giving an outlook
on required SQL statements and possible extensions for traditional database systems.
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Chapter 2

Related Work

This chapter is a consolidation of related work sections in [117, 119, 122, 123, 124].

This chapter describes scripting languages similar to HyPerScript, state-of-the-art ma-
chine learning tools, the current status of in-database machine learning and data analytics,
array handling within database systems and dataset versioning.

2.1 Database Scripting Languages

The open-source application GNU R1, which is widely used for statistical analysis, offers
modules, which can be controlled via a separate command line. These modules are compa-
rable to the operators offered in HyPer [102] because both (the modules and the operators)
represent building blocks with hard-coded functionality. If one wants to add new mod-
ules or change the existing ones, new packages (GNU R) or new operators (HyPer) have to
be developed in C++. The alternative to a new development are functions definable in R
(see Listing 2.1). for which procedural language constructs such as loops and other con-
trol structures are available. The counterpart for defining functions in database systems are
stored procedures with HyPerScript or PL/pgSQL as presented in Chapter 4. Besides GNU R,
other tools, such as Julia2, exist, which, like our HyPerScript, generates LLVM (Low Level
Virtual Machine) code for high-performance data analysis.

1 insertuntil <- function(count) {
2 r <- c();
3 for(i in 1:count) { rand=sample(1:100,1); if(rand!=13) r<-c(r,rand); };
4 return (r);
5 };

LISTING 2.1: Example of a function in GNU R that returns a vector of up to count random numbers
between 0 and 100 without the number 13.

Crotty et al. [29] propose a comparable approach to functions compiled with HyPerScript.
Their approach compiles, combines and optimises arbitrary, user-defined functions (UDFs)
into LLVM code to use vector instructions and pipelining on datasets. A common feature is
the compilation of user-defined functions to LLVM code (although the suffix “Script” in Hy-
PerScript incorrectly leads to the assumption that functions get interpreted). To decrease
the runtime of queries in PostgreSQL, the approach in [23, 24] compiles SQL queries to
LLVM code. Another modification of PostgreSQL is the extension of PL/pgSQL by higher
order functions [49, 50]. The integration of algebraic data types into relational database sys-
tems [46] poses another challenge as described in Chapter 3.

SAP HANA with SQLScript [12] offers a programming language comparable to HyPer-
Script. SQLScript extends SQL by procedural and functional statements, supports MapReduce
on analytical queries and extends recursion for graph analysis. As an alternative to procedu-
ral extensions, FunSQL [13] extends SQL with functional constructs. The extension, similar
to this work, intends to shift application logic into database servers.

To move computation into database servers, a meta-language as presented in Chapter 7,
that translates to SQL, is helpful. Another example is Ferry [48, 111], a meta-language with
the constructs for, where, group by, order by and return. Ferry is first generated from common
scripting or programming languages and then translated into SQL.

1R http://www.r-project.org/
2Julia http://julialang.org/

http://www.r-project.org/
http://julialang.org/
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2.2 Dedicated Machine Learning Tools

Dedicated machine learning tools, such as Google’s TensorFlow [1] and Theano [5], sup-
port automatic differentiation to compute the gradient of loss functions as part of their core
functionality. They transform data in tensors until it is possible to apply a loss function. As
they are external to the database system, they require the extraction and transfer of data.
To integrate gradient descent, we only need the automatic differentiation component of the
tools. TensorFlow is based on tensors connected to graphs and their evaluation. Theano [5]
is a linear algebra compiler for Python. Its graph representation of mathematical expres-
sions allows symbolic differentiation for prototyping models to be optimised by gradient
descent. Designed specifically for neural networks on top of Theano and TensorFlow as a
user-friendly interface, Keras3 broadens the application area of machine learning tools.

To cover the life-cycle of machine learning pipelines, automatic machine learning (Au-
toML) tools such as Alpine Meadow [127], Lara [78] or ABC [59] assist in data preprocessing as
well as finding the best hyper-parameters within different configuration setups. Likewise,
POS [139] allows online learning on workflows with scientific data. When we integrate a
machine learning pipeline in SQL, we adapt the idea of continuous deployment of machine
learning pipelines [36]. The idea is based on an architecture that monitors the input stream
and avoids complete retraining by sampling batches.

2.3 Automatic Differentiation

Differentiation methods can be divided into symbolic, numeric (approximating the deriva-
tive) or automatic differentiation; that again can be split into forward and reverse mode [7]
depending on the direction in which the chain rule is applied. Examples for deep learn-
ing frameworks for neural networks who support automatic differentiation are Mxnet [26]
and Pytorch4. They also provide tensor computation and gradient descent as part of their
core features. As existing gradient differentiation tools do not allow for tensor derivatives,
Laue et al. [79] proposed a framework for automatically differentiating higher-order matri-
ces and tensors. This is based on the Ricci calculus and allows both forward and backward
mode. Within Umbra, we generate code for reverse mode automatic differentiation.

2.4 Database Systems and Machine Learning

The MADlib [54] analytics library extends existing database systems such as PostgreSQL to
perform data mining and statistical analysis. It provides a matrix data type and table func-
tions for linear and logistic regression, which we use as a baseline. EmptyHeaded [2] and
HyPer [102] integrate data mining algorithms into database systems as operators. Whereas
EmptyHeaded compiles algorithms and relational algebra together, HyPer provides data
mining operators as part of its relational algebra. This work extends its relational algebra for
machine learning. Another architecture for scalable analytics is XDB [14] that unifies transac-
tion guarantees from database systems, partitioning, and adaptive parallelisation strategies
for analytical workloads. Tupleware [30, 31] is built for distributed analytics and gener-
ates code for distributed execution. Vizdom [32] is an interface for Tupleware for visually
sketching machine learning workflows. Both approaches also intend to combine the benefits
of database and analytics systems.

Bridging the gap solutions try to combine the advantages of SQL-like declarative lan-
guages but defining their own syntax. BUDS [44] is a declarative language for statistical
analysis, which translates to SQL. The work claims the importance of array data types in
database systems, which perform better than table-based array structures. In Chapter 3, we
extend this work by the evaluation of array/tensor data types in main-memory database sys-
tems. Another declarative language comparable to the one shown in Chapter 7 is MLog [85],
which can be compiled to an executable program using the TensorFlow API to provide a
translation to SQL.

3https://keras.io/
4http://pytorch.org/

https://keras.io/
http://pytorch.org/


2.5. GPU Acceleration 5

For the vision of a declarative framework for machine learning, Kaoudi et al. [63] adapt
database systems’ optimisers for gradient descent computation. Using a cost function it
chooses a computation plan out of stochastic, batch, or mini-batch gradient descent. Another
notable automatic differentiation framework is Hogwild [105]. It presents an approximative
way of lock-free parallel stochastic gradient descent without synchronisation.

Independent machine learning systems that resemble database systems are Bismarck [42],
Rafiki [136] or SystemML [18] with its own declarative programming language and its suc-
cessor SystemDS [17]. Integration of machine learning pipelines inside of database systems
would allow end-to-end machine learning and would inherit benefits such as query optimi-
sation and recovery by design [77, 95]. As a layer above of database systems, LMFAO [108]
learns models on pre-aggregated data using SQL. Raven [64] supports machine learning
tasks in Microsoft SQL Server using a unified intermediate representation.

The work of Jankov et al. [62] states, that complete integration is possible by extending
SQL with additional recursive statements. As recursive tables perform better than procedu-
ral SQL extensions, Duta et al. [39, 40] and Hirn et al. [56, 58] transform PL/pgSQL state-
ments into recursive common table expressions (CTEs). In this thesis, we avoid procedural
constructs for machine learning by using recursive statements for data mining algorithms
(Chapter 4) and for gradient descent (Chapter 5) inside code-generating database systems.
Similarly to this approach, Blacher et al. [16] perform logistic regression in SQL using a re-
cursive table and matrix algebra to derive the gradient symbolically. As a novelty, they map
procedural constructs from Python to CTEs in SQL.

2.5 GPU Acceleration

Research on GPU support for database systems focused on hybrid operator plans [27] and
its performance with hybrid transactional and analytical workloads [64]. Crossbow [75] is a
machine learning framework, written in Java, that maintains and synchronises local models
for independent learners that call C++ functions to access NVIDIA’s deep neural network li-
brary cuDNN5. We rely on the study when adjusting batch sizes for GPUs and synchronising
multiple workers (Chapter 6).

The LLVM compiler framework, often used for code-generation within database en-
gines [57], also offers just-in-time compilation for NVIDIA’s Compute Unified Device Archi-
tecture (CUDA) [92]. So far, code-compilation for GPU accelerates genetic computations [35,
84], but also allows compiling for heterogeneous CPU-GPU clusters [86] as LLVM addresses
multiple target architectures. As modern database systems generate code, JIT-compiling to
LLVM allows seamless integration of GPU co-processing.

2.6 Array Extensions for Database Systems

MADlib [54] operates on tables in a relational representation, which they call a sparse matrix,
as well as on the array data type. Also implemented as a data type inside database systems,
Kernert et al. [72] enable native support for linear algebra on dense and sparse matrices.
However, enabling a separate data type has the downside of expensive transformations out
of tables.

Luo et al. [91] argue that database systems form an excellent platform for linear algebra
as this kind of computations can be expressed as a combination of operators within relational
algebra. Due to the complexity of writing linear algebra computations in SQL and the over-
head of the Volcano-style iterator model [47], they propose adding a vector and matrix data
type as database attributes and a small set of SQL language extensions for corresponding op-
erations. Umbra eliminates the overhead of one function call per operator introduced by the
Volcano-style iterator model as it generates LLVM code according to the producer-consumer
model [99]. This allows pipelined processing, reduces the cost per tuple significantly and
achieves nearly the performance of a hard-coded implementation. This thesis benchmarks
the performance increase for linear algebra within such a code-generating database system
in comparison to traditional (array) database systems. Although Umbra provides a data

5https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn
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type to store matrices as a part of relational tables, the motivation in Chapter 8 is to provide
an array view on tables.

To allow linear algebra directly on database tables, relational matrix algebra (RMA) [37]
extends MonetDB by operators for linear algebra. The linear operations can be addressed in
SQL as table functions. But in contrast to Chapter 8, RMA interprets tables as matrices (tab-
ular representation), limited to two-dimensional matrices, and requires a row-ordering as
contextual information among linear operations. In contrast, SPORES [137] uses a relational
representation for matrices only as an intermediate format to derive optimisations from re-
lational algebra to SystemML. When we base our matrices directly on tables and translate
all operations into relational algebra, we earn these optimisations [77] for free.

2.7 Array Database Systems

Introduced in 1997, RasDaMan [6] was the first array database system developed for geo-
spatial data. Even though it supports relational database systems as underlying storage en-
gines, it stores data as binary large objects (BLOBs) similar to a file system. Therefore, query-
ing happens within RasDaMan only, for which it offers the array query language RasQL,
including SQL-92 and embedded statements for multi-dimensional data. These statements
access arrays as regular expressions and have been incorporated in the SQL/MDA:2019 stan-
dard6 for multi-dimensional fields.

SciDB [34] is the first database system that uses arrays as a first-class data model. Its
declarative query language AQL is based on SQL and the array programming language
APL. Another array database system is SciQL [147], which uses MonetDB’s query engine
and storage layout. Binary association tables (BAT), normally used to store columns, hold
the array data. This allows one unified query interface to address either SQL tables or arrays.
Chapter 8 presents ArrayQL as an array query language with access to SQL tables.

2.8 Database Versioning

Whereas version control for software projects has a long tradition, studies on database sys-
tems have mainly focused on temporal databases. This section describes temporal databases
and research on full versioning of databases (mostly limited to single datasets) and Git as the
most popular version control system, which is later used as competitor.

2.8.1 Temporal Databases

Temporal databases bind the validity of tuples to time intervals by offering an additional
data type. Until 2011, several extensions of SQL such as TQuel [129] and TSQL2 [130] exam-
ined adding time travelling to fetch the database state from a certain date in the past. They
tried to be downward compatible with SQL-92 but were not considered for a new SQL stan-
dard. Instead, the SQL:2011 standard [76] marks the tuples of a temporal database with two
date columns indicating the period of the tuple’s validity. Nowadays, most of the commer-
cial database systems support time travelling. For example, Microsoft SQL Server (MSSQL)7,
IBM DB2 108 and MariaDB9 take a time range from two date columns. PostgreSQL (PSQL)10

offers the tstzrange type to indicate time instances and an additional history table for past
records. Based on the presence of data types for temporal databases, different optimising
techniques aim at integrating time travelling inside transaction handling [89] or at indexing
tuples for accessing time evolving data efficiently [107]. Beyond relational database systems,
studies focus on compressing time evolving data as XML archives [21] or on integrating time
travelling inside RDF databases to be addressed with SPARQL [132].

6https://www.iso.org/standard/69777.html
7www.mssqltips.com/sqlservertip/3680/introduction-to-sql-server-2016-temporal-tables/
8www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/
9https://mariadb.com/kb/en/library/system-versioned-tables/

10https://wiki.postgresql.org/wiki/SQL2011Temporal

https://www.iso.org/standard/69777.html
www.mssqltips.com/sqlservertip/3680/introduction-to-sql-server-2016-temporal-tables/
www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/
https://mariadb.com/kb/en/library/system-versioned-tables/
https://wiki.postgresql.org/wiki/SQL2011Temporal
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2.8.2 Version Control: Git

Git11 was initially developed for managing large software projects, but can be used for other
purposes as collaborative text editing. Internally, commits represent changes; one commit
may have multiple preceding ones, forming an acyclic graph. It works decentrally and al-
lows branching and merging for collaborative code development.

Actually, Git is a key-value store for storing any kind of data returning a unique hash
identifier, which allows the data to be retrieved. Internally, Git stores three types of objects,
blob, tree and commit. A blob object represents the content (binary large object) that Git has to
track, so every object corresponds to one file. Consequently, for every minor edit, a new blob
object is created. The tree objects correspond to the directories and store the identifiers of the
contained blob or sub-tree objects. Finally, the commit objects contain a parent one and the tree
objects.

This so-called Loose Object Format would be inefficient if no packing took place. But Git
uses delta encoding, a form of taking differences between objects. The optimal differences,
adjustable by one variable that sets the maximum length of a delta-chain and one for the
number of files to compare, are stored in packfiles. This information is useful for adapting
delta encoding and for understanding the benchmark results in Section 9.7.

TABLE 2.1: Overview of data versioning tools.

System Versioning Querying Data Model Branching Constraints
DataHub [9] VQL Thrift API Relational Numbers No
Decibel [93] VQuel SQL Relational Numbers No

ForkBase [88] REST API None Key-Value Names No
LiteTree Using Pragma SQL Relational Numbers No

MusaeusDB [119] Bash Script SQL Relational Numbers Yes
OrpheusDB [60] Python API SQL Relational Numbers No

RStore [11] Java API CQL Key-Value Numbers No
dolt SQL SQL Relational Names Yes

TardisDB SQL SQL Relational Names Yes

2.8.3 Versioning in DBMS

In contrast to temporal databases, which protocol the validity of each tuple, versioning
should log at a higher granularity to preserve the whole database’s state. Table 2.1 lists
tools for dataset versioning that are similar to database systems.

One example with its versioning language VQL is the DataHub [9] platform whose flex-
ible API allows applications such as an SQL interface to be built on top. The core part was
highlighted as Decibel [93] with the language VQuel [25] to manage versions. These sys-
tems have in common that they build the application layer above the data storage rather
than offering an extended relational algebra that supports versioning. It evaluates different
bitmap based storage techniques for creating and merging branches by using a self-created
versioning benchmark. The versioning scope is limited to single relations. We take the idea
of bitmaps indicating included tuples for each branch of a main-memory database system.

A version control on top of database systems is OrpheusDB [143, 60], called a "bolt-on"
technique as it works on existing datasets. First, the data to be versioned is loaded from
CSV files or from a database system into an extended database schema. Then, every tuple is
extended by a record identifier rid. A version consists of multiple rids, which are managed
in a separate table. The database system itself remains unmodified as OrpheusDB can run
on top of any arbitrary database system as long as it provides SQL-92 commands and an
array data type. Our SQL prototype in Section 9.1, MusaeusDB12 [74, 119], will extend this
work to manage multiple tables.

R-Store [11] is another key-value store based on Apache Cassandra, which also main-
tains bitmaps to indicate branches. It investigates the trade-off between storage costs, query
performance and online updates. It uses delta compression to compress textual documents.

11https://git-scm.com/
12Musaeus is a contemporary of Orpheus; in honour of OrpheusDB.

https://git-scm.com/
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For unstructured data, Forkbase [88] is a tamper-proof data storage system that allows
named branches similar to Git and compresses data using similarity graphs.

A key challenge for versioning datasets—postulated in 2015 [10]—is the trade-off be-
tween reducing the amount of storage with delta compression while restoring datasets fast
enough. To tackle the trade-off, array database systems, designed to host array-like datasets,
incorporate versioning techniques as forward or backward delta compression [131].

SciDB [126] decides on a minimum weight spanning tree either to materialise versions
for fast recreation or to store the differences for dense as well as sparse array-oriented data.
We will use delta compression for text-like data.

Presented in 2018, LiteTree13 is a modification of the file-oriented SQLite database system.
It allows access to and modification of any former database state using a version number
within pragma statements. It implicitly handles every SQL insert, delete or update state-
ment as another commit, which can be checked out when needed. We also integrate ver-
sioning into a relational database system, but with a code-generating engine as the target,
we adapt the table scan operator and multi-version concurrency control. We use LiteTree as
the competitor during our TardisBenchmark.

Based on MySQL, dolt14 is a database system with built-in versioning commands in SQL,
also introduced in 2018. To identify a branch, they add a keyword as of behind each speci-
fied table name followed by a commit description, which is the branch name or other type of
reference. Although dolt does not apply compression techniques, its SQL syntax resembles
the one introduced for TardisDB in Section 9.3 and it also supports reference key constraints.

13https://github.com/aergoio/litetree
14https://github.com/dolthub/dolt

https://github.com/aergoio/litetree
https://github.com/dolthub/dolt


9

Chapter 3

Tensor Data Type in SQL

Parts of this chapter have been published in [124] or are based on a translation of [122].

Dimensions Count dimensions[1].width() ... dimensions[Count].width() elements nullbits

FIGURE 3.1: Internal array representation.

We consider tensor operations necessary for the suitability of database systems for ma-
chine learning, for example, to solve linear regression numerically. Therefore HyPer and
Umbra extend their array data type by linear algebra, which allows arrays of integers or
floating-point numbers simulating a vector, a matrix or a tensor as an attribute within a
database schema. The array data type within HyPer/Umbra is based on the data type for
SQL strings whose size is evaluated at runtime. The number of dimensions, each dimen-
sion’s size, followed by the array elements and a bit vector—indicating each entry’s null
state—are stored in sequential order (see Figure 3.1). An array expression may be part of
any arithmetic expression inside of an SQL statement like a regular database attribute. The
array operations are applied to attributes as part of the projection in the SELECT clause of
an SQL query. This includes the following applications:

1. Algebra: This includes the tensor product, addition, subtraction and the scalar prod-
uct, inverting, transposing and exponentiating tensors.

2. Creation: Besides creating an array with ARRAY[<VALUES>] or {<VALUES>}, we
need the identity matrix array_id(<dimension>) and an array filled with a given
value: array_fill(<VALUES>,<dimensions>).

3. Access: array_access(<ARRAY>,<Indices>) or ARRAY[<Index>] accesses an
array element. The function to slice array_slice(<ARRAY>,<Indices>) allows
extracting a subset of an array to split data into a test and training set, for example.

4. Modification: After creating an array, modification of an individual element is possi-
ble using array_set(<ARRAY>,<VALUE>,<Indices>). The counterpart to slicing
mentioned above is the concatenation of arrays <ARRAY>||<ARRAY>.

5. Set Operations: To identify a subset of an array, a database system should provide set
operations like A ⊆ B as <ARRAY> <@ <ARRAY>. To find elements in a subset, a ∈ A
can be expressed as a ANY= A.

6. Normalising: unnest(<ARRAY>) as counterpart to array creation decomposes ele-
ments into individual tuples.

This chapter describes the implementations of slice, transpose, (scalar/Hadamard) product
and addition/subtraction on the array data type, and discusses and benchmarks their applica-
tion for linear regression and on sparse data using gram matrix computation.
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3.1 Slice

Slice as an array operation (see Listing 3.1) returns a new array of the same dimensions con-
taining elements of the specified range. We need slice to split data into training and test set
or for benchmarking purposes. The function slice of the corresponding implementation
(see Algorithm 1) expects a pointer to the old and the new memory location. The implemen-
tation uses a vector of size m (index) to calculate the offset within the old location, assigns
its content to the new location and increments its pointer iteratively:

T ∈ RI1×I2×...×Im ,

T′ = TI1a :I1b ,...,Ima :Imb ∈ RI1b−I1a×...×Imb−Ima ,

(T′)i1i2i3...im = t(i1−I1a)(i2−I2a)...(im−Ima).

1 create table tensors (a integer[2][3][4], b integer[4][2][1]);
2 insert into tensors values (′{{{1,2,3,4},{5,6,7,8},{9,10,11,12}},

{{1,2,3,4},{5,6,7,8},{9,10,11,12}}}′, ′{{{1},{2}},{{3},{4}},{{5},{6}},{{7},{8}}}′);
3 select a[2:2][2:3][2:3] from tensors; --[2:2][2:3][2:3]={{{6,7},{10,11}}}

LISTING 3.1: Slice.

Algorithm 1 Slice

1: function GETOFFSET(position[], size[], m)
2: o f f set← 0
3: widthproduct← 1
4: for i← m− 1; i ≥ 0; i← i− 1 do
5: o f f set← o f f set + position[i] · widthproduct
6: widthproduct← widthproduct · size[i]
7: return o f f set
8: function INCREMENT(position[], f rom[], to[], m)
9: for i← m− 1; true; i← i− 1 do

10: position[i]← position[i] + 1
11: if position[i] = to[i] then
12: position[i]← f rom[i]
13: if i = 0 then return f alse
14: elsereturn true
15: function SLICE(∗old, ∗new, m, size[], f rom[], to[])
16: index ← f rom;
17: while INCREMENT(index,from,to,m) do
18: ∗new← ∗(old + GETOFFSET(index, size, m))
19: new← new + 1;

3.2 Transpose

We define transpose as swapping the order of the first two dimensions, with further dimen-
sions being treated as one huge block element. Listing 3.2 produces the transposition TT of
the tensor T as follows:

T ∈ RI1×I2×...×Im ,

TT ∈ RI2×I1×...×Im ,

(TT)i1i2i3...im = ti2i1i3...im .

1 select tensor_transpose(a) from tensors;
2 --{{{1,2,3,4},{1,2,3,4}},{{5,6,7,8},{5,6,7,8}},{{9,10,11,12},{9,10,11,12}}}

LISTING 3.2: Tensor transpose.
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3.3 Addition, Subtraction, Scalar/Hadamard Product

We handle addition or subtraction elementwise (see Listing 3.3), so the tensors S and T must
have identical dimensions. As by definition, this is also the case for the Hadamard product
S ◦ T (elementwise matrix multiplication), which we expose as SQL operation **. Also the
scalar product acts elementwise for a given scalar r ∈ R:

T, S, T + S, T − S, r · T, T ◦ S ∈ RI1×...×Im ,
(T + S)i1...im = ti1...im + si1...im ,
(T − S)i1...im = ti1...im − si1...im ,
(T ◦ S)i1...im = ti1...im · si1...im ,
(r · T)i1...im = r · ti1...im .

1 select 2*a+a from tensors;
2 --{{{3,6,9,12},{15,18,21,24},{27,30,33,36}},{{3,6,9,12},{15,18,21,24},{27,30,33,36}}}
3 select a**a from tensors;
4 --{{{1,4,9,16},{25,36,49,64},{81,100,121,144}},{{1,4,9,16},{25,36,49,64},{81,100,121,144}}}

LISTING 3.3: Tensor addition and scalar/Hadamard product.

3.4 Inner Product

Matrices like A ∈ Rm×o, B ∈ Ro×n with equal inner dimensions can be multiplied to create
the product C ∈ Rm×n by summing up the product of m row elements with n column ele-
ments for each entry cij = ∑o

k=1 aikbkj. We can generalise this multiplication process to create
the inner product of tensors with equal inner dimensions where the new entries are sums of
corresponding products (see Listing 3.4):

T ∈ RI1×...×Im=o, U ∈ RJ1=o×...×Jn ,

S = TU ∈ RI1×...×Im−1×J2×...×Jn ,

si1i2...im−1 j2...jm =
o

∑
k=1

ti1i2...im−1k · ukj2...jm .

1 select a*b from tensors;
2 --{{{{50},{60},{114}},{{140},{178},{220}},{{50},{60},{114}},{{140},{178},{220}}}}

LISTING 3.4: Tensor product.

3.5 Sparse Tensors

Beside the representation of tensors as a dense data type, a relational representation A{[i, j, a]}
identifies each entry (aij) ∈ RI×J by its indices to avoid storing null values (see Listing 3.5).

1 create table matrixa (i integer, k integer, value float);
2 create table matrixb (k integer, j integer, value float);
3 select i,j, sum(a.value*b.value) from matrixa a, matrixb b where a.k=b.k group by i,j;

LISTING 3.5: Gram matrix computation using a relational matrix representation.

Between the two possiblities (tensor data type and relational representation) intermediate
formats exist like representing each column or row as a tuple, indexed by its column or row
identifier with a one-dimensional vector as value (see Listing 3.6).

1 create table matrixa (i integer, value float[]);
2 create table matrixb (i integer, value float[]);
3 select i,j, sum(a.value*b.value)
4 from (select i,row_number() over (partition by b.val) j, unnest(b.val) from matrixa) a,
5 (select i,row_number() over (partition by b.val) j, unnest(b.val) from matrixb) b
6 where a.k=b.k group by i,j;

LISTING 3.6: Gram matrix computation using an intermediate representation.
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For gram matrix computation, we can also combine column and row relational representa-
tion, as we transpose one matrix, for faster results (see Listing 3.7).

1 create table matrix (i integer, value float[]);
2 select a.i,a.i, a.val*array_transpose(b.val) from matrix a, matrix b;

LISTING 3.7: Gram matrix computation using a combined intermediate representation.

3.6 Matrix Usage for Linear Regression

Linear regression approximates (missing) labels for existing attributes using a linear func-
tion. Given pairs of attribute and label (x, y) ∈ X ⊆ R2, the optimal weights a, b ∈ R for
simple linear regression ax + b ≈ y can be computed using SQL. For multiple attributes
~x ∈ Rm, we rely on matrix operations to compute the optimal weights ~a ∈ Rm, b ∈ R for
multiple linear regression ~xT ·~a + b ≈ y. If we set the gradient equal to zero, we will solve
simple and multiple linear regression problems in terms of equation systems such as:

0 !
=

1
|X| ∑

(x,y)∈X
∇(ax + b− y)2 =

1
|X| ∑

(x,y)∈X

(
2(ax + b− y) · x
2(ax + b− y) · 1

)
.

Using helper variables for the means of attributes x̂ = ∑(x,y)∈X
x
|X| and labels ŷ = ∑(x,y)∈X

y
|Y| ,

we obtain the following equations [55] for simple linear regression, which can be expressed
in SQL (see Listing 3.8):

a =

∑
(x,y)∈X

(x− x̂)(y− ŷ)

∑
(x,y)∈X

(x− x̂)2 ,

b = ŷ− ax̂.

1 with means as (select avg(x) as mean_x, avg(y) as mean_y from data)
2 select a, mean_y - a * mean_x as b
3 from ( select sum((x - mean_x) * (y - mean_y)) / sum((x - mean_x)^2) as a
4 from data, means), means

LISTING 3.8: Simple linear regression in SQL.

To handle the increased number of attributes involved in multiple linear regression, we
can use matrix operations as introduced in SQL. First, we aggregate n tuples with m at-
tributes to a n × (m + 1) matrix (attributes and an added constant 1 to incorporate the
weight b). Then, we gain a linear function X · ~w ≈ ~y with weights ~w = (b‖~a). Assuming we
can invert the matrix

X′ =

1 x1,1 . . . x1,m
...

...
. . .

...
1 xn,1 . . . xn,m

 ∈ Rn×(m+1),

then we obtain the weights that minimise the loss function from the following equation [80],
which can be expressed in our extended SQL (see Listing 3.9):

~w = (X′TX′)−1X′T~y.

1 select (array_inverse(array_transpose(x)*x))*(array_transpose(x)*y)
2 from (select array_agg(x) x from (select array[1,x_1,x_2] as x from data) sx) tx,
3 (select array_agg(y) y from (select array[y] y from data) sy) ty;

LISTING 3.9: Multiple linear regression in SQL using matrix operations.
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3.7 Evaluation

This section evaluates gram matrix computation on different matrix representations within
HyPer and compares HyPer’s performance to other systems when computing the optimal
weights for linear regression. The experiments were run multi-threaded on a 20-core Ubuntu
17.04 machine (Intel Xeon E5-2660 v2 CPU) with hyper-threading, running at 2.20 GHz with
256 GB DDR4 RAM.

3.7.1 Gram Matrix Computation

To calculate the gram matrix, we vary the number of elements (by multiplying each dimen-
sion by a factor of 10 in turn) or the density (by setting elements to null, which are not
considered by the relational representation). We ran our benchmark by filling the tensor
with up to 106 of uniformly distributed random numbers (rand() from cstdlib).

In our tests, the implemented tensor data type outperformed both the relational repre-
sentation and the intermediate format, independently of its size (see Figure 3.2a). According
to [44], their results asserting the importance of a tensor data type within database systems
are also valid for main-memory database systems. However, the more elements a tensor
has, the more the runtime of the relational representation approximates the runtime of the
built-in tensor data type. As expected, the runtime of the intermediate format lies between
the runtimes of the other two implementations. In single-threaded execution, the runtime
of the relational tensor representation increases with density, while the runtime of the dense
tensor data type is constant (see Figure 3.2b). Nevertheless, dense tensor data types are bet-
ter suited for computations when dealing with tensors with a density of more than 50 %.
Only with multi-threading, the relational representation is faster due to the parallelism of
the underlying database system. The intermediate format also needs constant time but is
slower than the pure tensor data type. In summary, tensor data types are still needed in
modern database systems, but the data types must be adapted for use with sparse data if
they are to compete with the relational representation.
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FIGURE 3.2: Runtime for tensor computations: evaluation of the gram matrix computation when vary-
ing the number of elements or the density.

3.7.2 Linear Regression Using Equation Systems

The Chicago taxi rides dataset1 was used with simple linear regression to predict the fare
based on the trip distance and with multiple linear regression to also consider the ride time.
As a baseline, we considered two other database systems, namely MariaDB 10.1.30, Post-
greSQL 9.6.8 with the MADlib v1.13 extension, as well as two dedicated tools, namely Ten-
sorFlow 1.3.0 (with GPU support enabled and disabled) and R 3.4.2.

1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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FIGURE 3.3: Runtime for solving (a) simple or (b) multiple linear regression by equation systems.

Simple linear regression was solved using common SQL-92 queries in HyPer and the
competitor database systems. In TensorFlow, we used tensor algebra for solving equation
systems for linear regression. Heyenbrock [55] created the matrix operations needed to solve
multiple linear regression in PostgreSQL as PL/pgSQL function and in MariaDB as pro-
cedure2, while we implemented them in HyPer as C++ functions and R already supports
matrix algebra. The MADlib extension for PostgreSQL provides a predefined function for
solving equation systems for linear regression that we used.

As Figure 3.3 shows, our in-memory database was able to carry out both linear regression
tasks in less than 0.3 seconds, significantly outperforming all the baseline methods. For small
numbers of tuples, even the other classical database systems performed substantially better
than TensorFlow, which required at least three seconds for every task.

3.8 Conclusion

This chapter has presented algebraic operations on HyPer’s and Umbra’s array data type,
which is similar to the one in PostgreSQL. Linear algebra operations like addition, subtrac-
tion and (scalar/elementwise) multiplication allowed this data type to simulate matrices
and tensors. These extensions allowed us to solve linear regression numerically. Using gram
matrix computation, we demonstrated the suitability of different matrix representations for
linear algebra within a database system. For example, Chapter 8 uses a relational array rep-
resentation within the database system Umbra as the basis for an array query language. As
we will present in the following chapters, the extended array data type can be used for data
analysis (see Chapter 4), for example, to represent sets, and machine learning (see Chap-
ter 5, 7), i.e., to simulate a weight matrix for a neural network. As a regular data type, like
for a numerical one, its operations can be used within regular SQL expressions, including
SQL lambda functions.

2https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql

https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql
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Chapter 4

SQL for Data Analysis:
HyPerScript and Recursive Tables

This chapter is based on a translation of [122].

The performance increase of database servers through modern hardware allows database
systems to be used for more than pure data management tasks. In order for database servers
to take over more application logic, database users should be able to develop algorithms on
their own. But to extend database systems for arbitrary algorithms without implementing
an operator in each case, a domain-specific language is needed that provides procedural
constructs with embedded SQL. A procedural scripting language combined with the declar-
ative query language SQL enables user-defined functions (UDF) in a more compact repre-
sentation than purely imperative languages. The platform independence and reusability of
SQL increases the incentive to execute complex algorithms already in the database system.

A scripting language, which allows moving computation into the database system, re-
duces data transfer and can be integrated within the database system’s query optimiser. As
stored procedures, UDFs are part of the query plan and thus part of the holistic query op-
timisation. Based on SQL, such a procedural declarative language enables data analysts to
program independently of the surrounding system.

In order to identify the functional scope of such a scripting language, it is relevant how
algorithms can be abstracted and what kind of building blocks are essential.

This chapter identifies necessary building blocks by implementing selected data min-
ing algorithms (Apriori, DBSCAN, k-Means, PageRank) in HyPerScript, the scripting lan-
guage of the main-memory database system HyPer [70], PL/pgSQL, the one of the disk-based
database system PostgreSQL, and recursive tables. This chapter’s contributions are:

• The presentation of HyPerScript as an extension of a main-memory database system
allowing its users to formulate procedural statements in SQL.

• The description of a business application in the form of a TPC-C query in HyPerScript.
This is the primary use case of this scripting language.

• The presentation of necessary building blocks within a scripting language for database
systems to formulate arbitrary algorithms; demonstrated with the algorithms Page-
Rank, k-Means, DBSCAN and Apriori, which already exist as table operators in HyPer.

• An evaluation of HyPerScript functions compared to implemented operators, recursive
tables and PL/pgSQL.

The remainder of this chapter is structured as follows: After an introduction to HyPer-
Script, the implemented algorithms are presented. The evaluation compares the perfor-
mance of this scripting language to recursive tables, PL/pgSQL and the operators integrated
in HyPer.
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Statement = (( VarDeclaration | VarDefinition | TableDeclaration
| SelectStatement | EmbeddedSQL | ReturnStatement
| IfStatement | WhileStatement | ControlStatement | FunctionCall ) ";" )*;

VarDeclaration = "var" NAME Type "=" Expression ;
VarDefinition = NAME "=" Expression ;
TableDeclaration = "table" NAME "(" NAME Type ("," NAME Type)* ")";
SelectStatement = SQLSelect ("{" Statement "}") ("else" "{" Statement "}" ) ;
EmbeddedSQL = SQLInsert | SQLUpdate | SQLDelete | CSVCopy ;
ReturnStatement = "return" NAME | "rollback" ;
IfStatement = "if" "(" Expression ")" "{" Statement "}" "else" "{" Statement "}" ;
ControlStatement = "break" | "continue" ;
WhileStatement = "while" "(" Expression ")" "{" Statement "}" ;
FunctionCall = NAME "(" Expression ("," Expression )* ")";

LISTING 4.1: Language definition of HyPerScript: SQL{Select,Insert,Update,Delete}
correspond to SQL:2003 commands, Type to SQL data types, Expression to SQL expressions.
Besides expressions of procedural languages, EmbeddedSQL allows operating on individual tuples
of the surrounding SQL query.

1 create or replace function insert_until(anzahl int not null) as $$
2 select index as i from sequence(0,anzahl){
3 var rand = random(100); if (rand = 13) { continue }; insert into sample(rand));
4 }
5 $$ language ’hyperscript’ strict;

LISTING 4.2: Exemplary user-defined function with HyPerScript: number random numbers are
inserted into a relation called sample, randomised between 0 and 100, one number 13 should be
skipped.

4.1 HyPerScript

HyPerScript [70] is the procedural language in HyPer [69], analogous to PL/SQL in Oracle
[90], to PL/pgSQL1 in PostgreSQL or to SQLScript in SAP HANA [12]. Designed for transac-
tional applications in HyPer, HyPerScript allows executing TPC-C, TPC-E and TPC-H bench-
marks. This section also describes its usage for data analysis algorithms.

The procedures defined in HyPerScript are translated into LLVM code during compila-
tion. Listing 4.1 shows the language specification in extended Backus-Naur-Form (EBNF).
HyPerScript uses the language constructs specified in the SQL:2003 standard [41] includ-
ing window functions. SQL commands can be used within procedural constructs such as
conditions (if(<condition>){...}), loops (while<condition>{...}) and iterations
(select index from sequence(1,10){...}), together with the control commands
break and continue. In addition, temporary tables can be created, variables declared and
defined on the basis of the SQL data types (var foo int[]=’{}’). Both can be passed as
a parameter to a function call or returned afterwards.

Listing 4.2 demonstrates an exemplary application of HyPerScript. An interval is defined
using declarative SQL, which is used here as an iteration similar to a for loop. The individ-
ual result tuples can be accessed within the scope and used in nested SQL commands. In
this case, a relation called sample is filled with random values.

4.1.1 HyPerScript with Tensor Operations

The tensor operations introduced in Chapter 3 allow processing data aggregated to arrays.
As an example, Listing 4.3 shows the cross-validation on a dataset and Listing 4.4 shows
the binary exponentiation in HyPerScript. Binary exponentiation requires the identity matrix
and matrix multiplication. This corresponds to the C++ implementation of the operation
within the database system. The depicted simple cross-validation slices the dataset: one
tuple serves as the test set, the remaining data as the training set. Linear regression (as a
separate function) is applied to the training set to calculate the optimal weights. The optimal
weights are used to determine the loss on the test set.

1https://www.postgresql.org/docs/10/static/plpgsql.html

https://www.postgresql.org/docs/10/static/plpgsql.html
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1 create or replace function linearregression(x float[][], y float[][]) returns float[] as $$
2 return (array_transpose(x)*x)^-1*(array_transpose(x)*y);
3 $$ language ’hyperscript’ strict;
4 create or replace function cross_validate(x float[][], y float[][]) returns float as $$
5 var error=0; var n=array_length(x,2); var m=array_length(x,1);
6 select index i from sequence(2,n-1){
7 var weights_o=linearregression(array_slice(x,1,i-1,1,m)||array_slice(x,i+1,n,1,m),
8 array_slice(y,1,i-1,1,n)||array_slice(y,i+1,n,1,1));
9 error=error+((array_slice(x,i,i,1,m)*weights_o)[1][1]-y[i][1])^2;

10 }
11 error=error/(n-2); return error;
12 $$ language ’hyperscript’ strict;

LISTING 4.3: Simple cross-validation in HyPerScript: Using array_slice() and concatenation, every
iteration removes one row of the dataset for use as test data. array_slice() expects an array as first
argument and the start and end indices for each dimension.

1 create or replace function pow(a_in float[][], e_in int) returns float[] as $$
2 var a=a_in; var e=e_in; if( e<0 ) { e=e*-1; a=array_transpose(a); }
3 var mask = 1<<63; var result = array_identity(array_ndims(a));
4 while(mask>0){ result=result*result; if( e&mask>0 ){ result=result*a; } mask=mask>>1; }
5 return result;
6 $$ language ’hyperscript’ strict;

LISTING 4.4: Binary exponentiation pow() of tensors implemented in HyPerScript: a tensor and an
exponent are expected as input, a loop with multiplications calculates the exponentiation.

4.1.2 HyPerScript for Business Transactional Applications

HyPerScript allows business transactional applications to be executed via the SQL interface.
Examples are the TPC-C, TPC-E and TPC-H benchmarks of the Transaction Processing Per-
formance Council 2. For example, the TPC-C benchmark models a trading company with in-
coming orders (newOrderPosition) from customers and measures how many write trans-
actions a database system can process per time unit.

1 create type newOrderPosition as (line_number int not null,supware int not null,itemid int not
null, qty int not null);

2 create function newOrder (w_id int not null, d_id smallint not null, c_id int not null,
positions setof newOrderPosition not null, datetime timestamp not null) as $$

3 select w_tax from warehouse w where w.w_id=w_id;
4 select c_discount from customer c where c_w_id=w_id and c_d_id=d_id and c.c_id=c_id;
5 select d_next_o_id as o_id,d_tax from district d where d_w_id=w_id and d.d_id=d_id;
6 update district set d_next_o_id=o_id+1 where d_w_id=w_id and district.d_id=d_id;
7 select count(*) as cnt from positions;
8 select case when count(*)=0 then 1 else 0 end as all_local from positions where supware<>w_id;
9 insert into "order" values (o_id,d_id,w_id,c_id,datetime,null,cnt,all_local);

10 insert into neworder values (o_id,d_id,w_id);
11 update stock
12 set s_quantity=case when s_quantity>=qty+10 then s_quantity-qty else s_quantity+91-qty end,
13 s_remote_cnt=s_remote_cnt+case when supware<>w_id then 1 else 0 end,
14 s_order_cnt=s_order_cnt+1, s_ytd=s_ytd+qty
15 from positions where s_w_id=supware and s_i_id=itemid;
16 insert into orderline
17 select o_id,d_id,w_id,line_number,itemid,supware,null,qty,
18 qty*i_price*(1.0+w_tax+d_tax)*(1.0-c_discount),
19 case d_id when 1 then s_dist_01 when 2 then s_dist_02 when 3 then s_dist_03 when

4 then s_dist_04 when 5 then s_dist_05 when 6 then s_dist_06 when 7 then
s_dist_07 when 8 then s_dist_08 when 9 then s_dist_09 when 10 then
s_dist_10 end

20 from positions, item, stock
21 where itemid=i_id
22 and s_w_id=supware and s_i_id=itemid
23 returning count(*) as inserted;
24 if (inserted<cnt) rollback;
25 $$ language ’hyperscript’ strict;

LISTING 4.5: HyPerScript function newOrder() [68, 70] of the TPC-C benchmark: The function takes
a set of order items positions for a warehouse w_id of a district d_id from a customer c_id.

Listing 4.5 shows the corresponding procedure in HyPerScript taken from [68, 70]. The
procedure takes a new order with several items (setof) for a warehouse (w_id) from one
customer (c_id) in a district (d_id). First, this order is inserted into the database (line
9/10). Then the procedure updates the stock and inserts the order item together with the
calculated price in orderline (line 16-23).

2http://www.tpc.org

http://www.tpc.org
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HyPerScript allows storing the result of an SQL query temporarily for later reuse. For
example, the variables w_tax and c_discount (line 3/4) cache the warehouse’s tax rate
and the customer discount, which are reused when inserted into the relation orderline.

The example checks the atomicity and consistency for transactions, which is guaranteed
by the use of a database system. At the end (line 24), the procedure checks whether the
orders have been successfully inserted into orderline (the number of inserted orders is
valid) and resets the transaction otherwise (rollback). In addition, the example illustrates
the compact notation: The HyPerScript procedures needs less than 40 lines of code, while a
C++ program for the same function requires considerably more lines3.

4.2 SQL for Data Analysis

Like other scripting languages, HyPerScript allows running arbitrary algorithms within the
database system besides the intended use for performance analysis. Although SQL is al-
ready Turing-complete when supporting recursive tables4, a scripting language can provide
a compact and understandable way to formulate algorithms. This section presents a set
of data analysis algorithms written in recursive SQL, HyPerScript and PL/pgSQL: algorithms
for association rule analysis (Apriori), clustering (k-Means and DBSCAN) and graph metrics
(PageRank).

Each implementation of an algorithm in a scripting language follows a predefined struc-
ture: For each algorithm in a scripting language, a schema is defined as a separate name-
space. A call to <schema name>.run() runs the algorithm. Afterwards, the result has
been inserted into a relation of the same namespace. Using HyPerScript and PL/pgSQL, we
embed SQL-92 queries within procedural statements for iterations. We then transform each
iteration into a recursion using recursive tables. The selected algorithms are available as
parallelised operators within HyPer, which serve for comparison [102, 134].

4.2.1 PageRank

PageRank [20] is a graph mining algorithm designed to determine the importance of web
pages. Each web page is called a node n ∈ N; a link directing to another web page is
called an edge (s, d) ∈ N × N. Initially, each node receives the same PageRank value pr0
(Equation 4.1). In each iteration, each node s distributes its own value pri(s) equally to all
outgoing edges (s, d) ∈ E. The new PageRank value pri+1(n) of a node n is the sum of the
values of all incoming edges (s, n) ∈ E, possibly damped by a factor α (Equation 4.2):

pr0(n) :=
1
|N| , (4.1)

pri+1(n) := α · ∑
(s,n)∈E

pri(s)
|{d | (s, d) ∈ E}| +

1− α

|N| . (4.2)

1 create table prscript.edges (src int, dst int);
2 -- native operator:
3 select * from pagerank((table prscript.edges),0);
4 -- HyPerScript:
5 select prscript.run(0); select * from prscript.pagerank;

LISTING 4.6: Calling PageRank in HyPer: Either as an operator, which needs the edges and the
damping factor as input, or as a script function.

Both equations can be described in SQL with aggregations, whereas for the iteration we
need either loops of a scripting language like HyPerScript (see Listing 4.7) or a recursive
table (see Listing 4.8). We expect one relation containing the edges (see Listing 4.6). The base
case (line 2/3, Listing 4.8) computes the initial PageRank value pr0. The recursive step first
divides each node’s PageRank value by the number of outgoing edges (line 7) and assigns
this fraction to the destination node dst. It then sums up the fractions for each destination
node (line 5-11).

3https://github.com/evanj/tpccbench/blob/master/tpcctables.cc
4https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System

https://github.com/evanj/tpccbench/blob/master/tpcctables.cc
https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System
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1 create or replace function prscript.computePR(a float not null) returns int not null as $$
2 table pr_tmp(node int, edges int); -- new PageRank values
3 insert into pr_tmp (
4 select dst, (1-a)*(cast((select count(*) from prscript.pagerank) as float))+a*sum(b)
5 from (
6 select e.dst, p.Pagerank/(select count(*) from prscript.edges x where x.src=e.src) as b
7 from prscript.edges e, prscript.pagerank p where e.src=p.Node) i group by dst);
8 select count(*) as c_count from (select * from prscript.pagerank except select * from pr_tmp);
9 truncate prscript.pagerank; -- update PageRank values

10 insert into prscript.pagerank (select * from pr_tmp);
11 return c_count; -- return number of updated values
12 $$ language ’hyperscript’ strict;
13

14 create or replace function prscript.run(a float not null, maxIter int not null) as $$
15 select index as i from sequence(0,maxIter) {
16 select prscript.computePR(a) as c_count;
17 if(c_count = 0){ break; }
18 }
19 $$ language ’hyperscript’ strict;

LISTING 4.7: PageRank in HyPerScript: computePR calculates the PageRank values, a is the damping
factor, run manages the iterations.

1 with recursive pagerank (iter,node,pr) as (
2 select 0, e.dst, 1::float/(select count(distinct dst) from prscript.edges)
3 from prscript.edges e group by e.dst
4 union all
5 select iter+1,dst,0.1*((1::float/(select count(distinct dst) from prscript.edges)))+0.9*sum(b)
6 from (
7 select iter, e.dst, p.pr/(select count (*) from prscript.edges x where x.src=e.src) as b
8 from prscript.edges e, pagerank p
9 where e.src=p.Node and iter < 100

10 ) i
11 group by dst, iter
12 )
13 select * from pagerank where iter=100;

LISTING 4.8: PageRank in SQL with a recursive table pagerank and α = 0.9.

4.2.2 Clustering

Clustering is an important area of data analysis that groups similar tuples. We consider
k-Means and DBSCAN [112], as both algorithms are integrated into HyPer as operators.

1 create table kmeansscript.points (id varchar(8), x float, y float);
2 create table dbscanscript.points (id varchar(8), x float, y float);
3 -- native operator:
4 select * from kmeans((select x,y from kmeansscript.points),
5 (select x,y from kmeansscript.points LIMIT 5));
6 select * from dbscan((select x,y from dbscanscript.points),20,2);
7 -- HyPerScript:
8 select kmeansscript.run(5); select dbscanscript.run(20,2);

LISTING 4.9: Calling the clustering algorithms in HyPer: The k-Means operator takes the data points
and the initial centres (k = 5). The DBSCAN operator expects the data points, ε and the minimum
number of points per cluster as parameters. The HyPerScript functions require either the parameter k
(k-Means) or ε and the minimum number of points per cluster (DBSCAN).

k-Means assigns n-dimensional points x ∈ P ⊂ Rn to k clusters C with k points forming
the initial centres C0 ⊂ P, |C0| = k. A point belongs to the closest located cluster c ∈ C based
on a metric like Euclidean distance (||c− x||2, Equation 4.3 returns all points of a cluster). In
each iteration, the new centre is computed as the average of all points (Equation 4.4):

cluster(c) = {x|x ∈ P : 6 ∃d ∈ C : d 6= c ∧ ||d− x||2 < ||c− x||2}, (4.3)

ci+1 = ∑
x∈cluster(ci)

x
|cluster(ci)|

. (4.4)

The HyPerScript implementation for computing the centres of k-Means (see Listing 4.10)
is based on a window function [82] that calculates a ranking of the closest centres per point
(line 13/14). The mean values of the assigned points form the new centres (line 12-15).
Using a recursive table (see Listing 4.11), k tuples are initially selected as centres (line 2),
whose coordinates get updated in each iteration (line 4-8).
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1 create or replace function kmeansscript.run(k int not null) as $$
2 truncate kmeansscript.clusters;
3 insert into kmeansscript.clusters(select id,x,y,0 from (select *,rank() over (order by id)

from kmeansscript.points) where rank <= k);
4 while (true){
5 select kmeansscript.computeCenters() as c_count;
6 if(c_count = 0){ break; }
7 }
8 $$ language ’hyperscript’ strict;
9

10 create or replace function kmeansscript.computeCenters() returns int not null as $$
11 table clusters_tmp(cid int, x float, y float, count int);
12 insert into clusters_tmp (select cid, avg(px), avg(py), count(*) from (
13 select cid, p.x as px, p.y as py, rank() OVER ( partition by p.id
14 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc, (c.x*c.x+c.y*c.y) asc)
15 from kmeansscript.points p, kmeansscript.clusters c ) x where x.rank=1 group by cid);
16 select count(*) as c_count from (select * from kmeansscript.clusters except select * from

clusters_tmp);
17 truncate kmeansscript.clusters; -- delete old centres
18 insert into kmeansscript.clusters (select * from clusters_tmp);
19 return c_count; -- return number of updated centres
20 $$ language ’hyperscript’ strict;

LISTING 4.10: k-Means in HyPerScript: computeCenters() computes the centres on the two-
dimensional data of the relation points, which is called by run() until the centres are found.

1 with recursive clusters (iter, cid, x, y) as (
2 (select 0,id, x, y from kmeansscript.points limit 5)
3 union all
4 select iter+1,cid, avg(px), avg(py) from (
5 select iter, cid, p.x as px, p.y as py, rank() over (partition by p.id
6 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc, (c.x*c.x+c.y*c.y) asc)
7 from kmeansscript.points p, clusters c) x
8 where x.rank=1 and iter<100 group by cid, iter
9 )

10 select * from clusters where iter=100;

LISTING 4.11: k-Means in SQL with a recursive table clusters: k=5, 100 iterations.

DBSCAN clusters points depending on a parameter ε, that describes the maximal dis-
tance between two points, and the minimal number of points per cluster minPoints > 1,
declared as noise otherwise. For every point within a cluster x ∈ G ⊂ P ⊂ Rn, another point
y ∈ G exists, whose distance to x is less than ε:

∀x ∈ G : ∃y ∈ G : x 6= y ∧ ||x− y||2 < ε. (4.5)

The implementation of DBSCAN in HyPerScript (see Listing 4.12) creates a cluster around
each unclustered point iteratively: First, an unclustered point is taken (line 11) to form a
new cluster, then all surrounding points are added to the cluster (line 13-21).

1 create or replace function dbscanscript.run(eps float, minPoints int) as $$
2 select count(*) as maxiter from dbscanscript.points;
3 select index from sequence (1,maxiter){
4 select dbscanscript.insertCluster(index,eps,minPoints,maxiter) as cond;
5 if(cond=0){ break; }
6 }
7 $$ language ’hyperscript’ strict;
8

9 create or replace function dbscanscript.insertCluster(clusterid int not null, eps float not null
, minPoints int not null, maxiter int not null) returns int not null as $$

10 table pointstmp (id int, x float, y float);
11 insert into pointsTmp(select * from dbscanscript.points except (select id,x,y from dbscanscript

.pointsclustered) LIMIT 1);
12 select count(*) as ret from pointsTmp;
13 select index from sequence(1,maxiter){
14 select count(*) as newc from pointsTmp c, dbscanscript.points p
15 where (p.x-c.x)^2+(p.y-c.y)^2<eps^2 and c.id<>p.id;
16 insert into pointsTmp(
17 select * from (select * from dbscanscript.points except select * from pointsTmp) c
18 where exists (select * from pointsTmp p where (p.x-c.x)^2+(p.y-c.y)^2<eps^2 and c.id<>p.id));
19 if(newc=0){ break; }
20 ret=ret+newc;
21 }
22 if(ret < minPoints) { clusterid=NULL; }
23 insert into dbscanscript.pointsclustered(select *,clusterid, false from pointsTmp);
24 return ret;
25 $$ language ’hyperscript’ strict;

LISTING 4.12: DBSCAN in HyPerScript: insertCluster() creates a cluster around an unclustered
point and returns the cluster size.
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When the database system supports aggregate functions within recursive tables, the clus-
ters can be expanded recursively (see Listing 4.13): First, each point forms its own cluster
(line 2). Then, clusters that are less than ε away are merged (line 4-7).

1 with recursive dbscan(iter,id,x,y,clusterid,noise) as (
2 select 0,id,x,y,id,true from dbscanscript.points
3 union all
4 select iter+1,p.id,p.x,p.y, min(c.clusterid), count(*) < 3
5 from dbscanscript.points p, dbscan c
6 where iter<10 and (p.x-c.x)^2+(p.y-c.y)^2<1.5^2
7 group by iter,p.id,p.x,p.y
8 ) select * from dbscan where iter=10;

LISTING 4.13: DBSCAN in SQL with a recursive table dbscan: 10 iterations, ε = 1.5, minPoints = 3.

For comparison, we use the operators k-Means and DBSCAN implemented in HyPer. As a
special feature, both operators are written directly in LLVM code, are compiled directly into
the query and avoid expensive function calls. Both operators are pipeline breakers, but the
centre calculation for k-Means does not require materialisation of the data points as it copies
the underlying operator tree per iteration.

4.2.3 Association Rule Analysis

The Apriori algorithm [3], introduced in 1993, is the best-known representative in the field of
association rule analysis. It is based on shopping cart data stored as tuples out of transaction
number (tid) and item (sales: {[tid, item]}). First, it selects frequent item sets that occur with
a minimum relative frequency, support, of at least s0 in all shopping carts, which are used
to create association rules. In each iteration, the item sets grow by one element, starting
with the one-element set. Here, the number of iterations and item sets to be checked is
limited by the apriori principle. The principle states that an item set whose subsets do not
occur frequently cannot be a frequent item set. Listing 4.14 shows the call of the integrated
operator as well as of the script function with a minimum support of 10 %.

1 create table aprioriscript.sales (tid int, item int);
2 -- native operator:
3 select * from apriori((table aprioriscript.sales),0.1,1);
4 -- HyPerScript
5 select aprioriscript.findFI(10); select * from aprioriscript.frequentitemsets;

LISTING 4.14: Call of the Apriori algorithm as a database operator and as a stored procedure.

The implementation in HyPerScript (see Listing 4.15) is based on an array representation
for frequent item sets, which are iteratively extended with recursive SQL. Here, arrays are
used as sets and expanded by one element in each iteration. Then the support of each item
set is counted. For this purpose, each item set is compared with each shopping cart using
the set operator tuple <@ shopping cart (line 13).

1 create or replace function aprioriscript.findFrequentItemsets(minsupp int not null) as $$
2 with recursive transactions (tid, bucket) as ( -- create one array per shopping cart
3 select tid, array_agg(item) from aprioriscript.sales group by tid),
4 -- frequent item sets of size 1
5 sales_supp as (select item from aprioriscript.sales group by item having count(*)>= minsupp),
6 frequentitemsets as ( -- frequent item sets with support >= minsupp
7 (select distinct array[p.item]::int[] as items from sales_supp p) -- with one element
8 union all ( -- extend item sets recursively by one element
9 select distinct array_append(t.items,p.item::int)::int[]

10 from frequentitemsets t, sales_supp p
11 where minsupp <= ( -- count support
12 select count(*) from transactions t2
13 where array_append(t.items,p.item::int)::int[] <@ ( t2.bucket )
14 ) and t.items[(select count(*) from unnest(t.items))]<p.item
15 ))
16 insert into aprioriscript.frequentitemsets (select * from frequentitemsets);
17 $$ language ’hyperscript’ strict;

LISTING 4.15: Determining the frequent item sets for the Apriori algorithm: The function expects the
minimum support s0 as a parameter and calculates a recursively growing relation with frequent item
sets, starting with the one-element item sets (each item as an array with one element).

The operator implemented in HyPer is based on storing the elements in a prefix tree that
grows with each iteration. Special features of the implementation in HyPer are the paral-
lelism per iteration step and the handling of duplicates. Thus, the association rules consider
the support of identical elements within a shopping cart.
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4.3 Evaluation

The evaluation compares the performance of procedures created with HyPerScript to table
operators of HyPer and MADlib, recursive tables in HyPer, PostgreSQL and Umbra, and
PL/pgSQL procedures (PostgreSQL 12.6 with MADlib 1.17.0 extension). All experiments
were measured on a Ubuntu 20.04 LTS machine with six Intel Core i7-3930K CPUs running
at 3.20 GHz and 64 GB DDR4 RAM.

For the Apriori algorithm, 100 different items and 1000 shopping carts were synthetically
generated. The number of items per shopping cart varied between 0 and 10. For clustering,
we generated 106 points whose x- and as y-coordinates were equally distributed in the in-
terval [0, 106]. The PageRank value was computed for 105 nodes with the same number of
edges. All experiments were repeated three times and the median was taken for the mea-
surements.
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FIGURE 4.1: Runtime for association rule analysis with Apriori with twelve threads, depending on the
minimum support s0 as a parameter of Apriori: The larger s0, the lower the number of frequent item
sets and thus the lower the runtime.

For the Apriori algorithm, we varied the minimum support (the larger, the less frequent
item sets exist, see Figure 4.1). With increasing minimum support, the runtime decreases
as less frequent item sets exist. Although the HyPer operator performs the best, the imple-
mentation in HyPerScript is slower than its counterpart in PL/pgSQL. This is caused by an
implementation of the array set operator within HyPer that unnests the array internally.
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(A) k-Means: Input size.
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FIGURE 4.2: Runtime for k-means (five centres, 100 iterations): (a) Runtime depending on the input
size with constant twelve threads and (b) depending on the available threads for 105 points.



4.3. Evaluation 23

101 102 103

10−4

10−2

100

Number of Points

R
un

ti
m

e
in

s
(l

og
.s

ca
le

)
HyPerScript HyPer Operator Umbra recursive PL/pgSQL

FIGURE 4.3: Runtime for DBSCAN with ε = 20, minPts = 2 and 100 iterations: Runtime depending
on the input size with constant twelve threads.

The runtimes of the clustering algorithms grow linearly with the input size (see Fig-
ure 4.2a, 4.3). Although the integrated operators perform the best, the k-Means implemen-
tation within HyPerScript and using a recursive table (in HyPer, as Umbra’s support for
window functions was in development at that time) show comparable performance, both
outperform the computations in PostgreSQL. The recursive computation of DBSCAN in
Umbra (as the other database systems do not support min as aggregate function inside a
recursive table) was as fast as the implemented operator. The k-Means algorithm in HyPer-
Script computes 30 % faster with each additional core (see Figure 4.2b), as the underlying
database system executes the SQL queries in parallel, whereas the k-Means operator is ex-
plicitly parallelised. Neither DBSCAN as an operator nor as a stored procedure support
scaling. The SQL queries used in the HyPerScript procedure scale poorly because only one
tuple is initialised as a new cluster per (non-parallelised) iteration.
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FIGURE 4.4: Runtime for 100 iterations for calculating the PageRank value with (a) increasing number
of edges (twelve threads) or (b) threads (105 edges).

All implementations of PageRank in HyPer outperform their counterparts in PostgreSQL
(see Figure 4.4). The implementations within a scripting language perform slightly worse
than the corresponding query using a recursive table in PostgreSQL and HyPer respectively.
With few edges, the additional overhead of the integrated operator in HyPer becomes ap-
parent, since it creates a dictionary for the nodes and stores edges in a sparse matrix as
Compressed-Sparse-Row (CSR). With an increasing number of edges, the additional effort
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for the dictionary and the CSR data structure is amortised, so that the operator calculates the
PageRank value faster than the script function.

4.4 Conclusion

The aim of this chapter was to explore the potential of an SQL scripting language for data
analysis. We have shown that user-defined functions in a declarative language extended by
procedural expressions allow a compact notation, implicitly parallelise and are executable
within the database system. This eliminates expensive ETL costs and allows the database
system to exploit the performance of modern hardware adequately.

The evaluation showed the performance of algorithms written in a scripting language:
faster within an in-memory database system than within traditional database systems and
its extensions, but slower than HyPer’s highly tuned operators. The implemented proce-
dures allowed parallelism only if the underlying SQL queries scaled accordingly, as could
be seen with k-Means clustering. In summary, HyPerScript makes it possible to develop
prototypes without extending the relational algebra of the database system. When using
recursive tables, the support of aggregate and window functions is necessary to simplify the
development of data analysis algorithms.
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Chapter 5

In-Database Machine Learning

Parts of this chapter have been published in [121, 124].

Database System

Table Scan

σ

π

Gradient Descent

Optimal Weights GPU 1

GPU 2

FIGURE 5.1: Architecture for in-database machine learning: a gradient descent operator, embedded in
a query plan, expects training data and returns the optimal weights. Inside a dedicated operator, we
are later able to off-load to GPU.

Typically, steps of machine learning pipelines—that consist of data preprocessing, model
training/validation and finally its deployment on unlabelled data—are embedded in Python
scripts that call up specialised tools such as NumPy, TensorFlow, Theano or Pytorch. Hereby,
especially tensor operations and model training are co-processed on graphical processing
units (GPUs) or tensor processing units (TPUs) developed for this purpose.

Integrating machine learning pipelines into database systems is a promising approach for
data-driven applications. Even though specialised tools will outperform general-purpose
solutions, we argue that an integration in database systems will simplify data provenance
and its lineage, and allows complex queries as input. So far, machine learning pipelines in-
side of database queries are assembled from user-defined functions and operators of an ex-
tended relational algebra. This brings the model close to the data source with SQL as the only
query language. As modern HTAP main-memory database systems such as SAP HANA [96],
HyPer [69] and Umbra [100] are designed for transactional and analytical workload, this al-
lows the latest database state to be queried. But for continuous machine learning based on
the latest tuples, only stand-alone solutions exist [36] whose pipelines retrain weights for a
model partially when new input data is available.

We argue that SQL is sufficient to formulate a complete machine learning pipeline. The
database system Umbra is a computational database engine that offers—in addition to stan-
dardised SQL:2003 features—a matrix data type, a data sampling operator [15] and contin-
uous views [138]. A continuous view updates precomputed aggregates on incoming input.
This kind of view—combined with sampling—can be used as source to train and retrain a
model partially within a recursive table.

This chapter starts by expressing gradient descent as a recursive table as well as the
views needed for data preprocessing in SQL. Instead of manually deriving the gradient, we
propose an operator for automatic differentiation. Based on automatic differentiation, we
will proceed with a separate operator for gradient descent to later be able to off-load work
to GPUs (see Figure 5.1). This chapter’s contributions are
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• machine learning pipelines expressed in pure SQL,

• automatic differentiation as an operator in SQL that uses a lambda function to derive
the gradient and generates LLVM code,

• and the integration of gradient descent as a database operator.

In detail, we focus on data preprocessing for machine learning pipelines and recursive
computation of gradient descent within a code-generating database system (Section 5.1).
During code-generation, an operator for automatic differentiation compiles the gradient
from a lambda expression (Section 5.2). Section 5.3 presents its extension to deal with matrix
operations and its application on neural networks in SQL. Section 5.4 evaluates the per-
formance increase through automatic differentiation and compares the performance of an
operator for gradient descent to external tools.

5.1 In-Database Gradient Descent

This section first introduces mini-batch gradient descent, before describing a machine learn-
ing pipeline out of preprocessing and model training expressed in SQL.

5.1.1 Mini-Batch Gradient Descent

Given a set of tuples (~x, y) ∈ X ⊆ (Rm, R) with m features, a label and weights ~w ∈ Rm, then
optimisation methods such as gradient descent try to find the best parameters ~w∞ of a model
function m~w(~x), e.g., a linear function (Equation 5.1) that approximates the given label y. A
loss function l~x,y(~w) measures the deviation (residual) between an approximated value m~w(~x)
and the given label y, for example, mean squared error (Equation 5.2):

m~w(~x) =
m

∑
i=1

xi · wi = ~xT · ~w ≈ y, (5.1)

l~x,y(~w) = (m~w(~x)− y)2, (5.2)

lX(~w) =
1
|X| ∑

(~x,y)∈X
l~x,y(~w) =

1
|X| ∑

(~x,y)∈X
(m~w(~x)− y)2. (5.3)

To minimise lX(~w), gradient descent updates the weights per iteration by subtracting the
loss function’s gradient times the learning rate γ until the optimal weights ~w∞ are approxi-
mated (Equation 5.6). Stochastic gradient descent takes one tuple for each step (Equation 5.4),
whereas batch gradient descent considers all tuples per iteration and averages the loss (Equa-
tion 5.5):

~wt+1 = ~wt − γ · ∇l~x,y(~wt), (5.4)

~wt+1 = ~wt − γ · ∇lX(~wt) = ~wt − γ · 1
|X| ∑

(~x,y)∈X
∇l~x,y(~w), (5.5)

~w∞ ≈ lim
t→∞

~wt. (5.6)

Smaller batch sizes, mini-batches, are mandatory when the entire input does not fit into
memory and allows parallelism later on. Therefore, mini-batch gradient descent splits an input
dataset X into disjoint mini-batches X = X0 ] · · · ] Xo.

Using a recursive table, gradient descent can be expressed in SQL. Listing 5.1 shows five
iterations based on an exemplary loss function with two weights (Equation 5.7): First, the
weights get initialised (line 2), then each iteration updates the weights (Equation 5.5, line 3)
based on manually derived gradients (Equation 5.8) and γ = 0.05:

lx,y(a, b) = (a · x + b− y)2 (5.7)

∇lx,y(a, b) =
(

∂l/∂a
∂l/∂b

)
=

(
2(ax + b− y) · x

2(ax + b− y)

)
. (5.8)
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1 create table data (x float, y float); insert into data ...
2 with recursive gd (id, a, b) as (select 0,1::float,1::float UNION ALL
3 select id+1, a-0.05*avg(2*x*(a*x+b-y)), b-0.05*avg(2*(a*x+b-y))
4 from gd, data where id<5 group by id,a,b)
5 select * from gd order by id;

LISTING 5.1: Gradient descent using a recursive table (manually derived).

To avoid overfitting, one mini-batch or an explicitly given input will serve as the valida-
tion dataset for accuracy measurements. The remaining mini-batches will be used as input
for every iteration of parallel and distributed mini-batch gradient descent.

To avoid underestimation of the predicted values, Derakhshan et al. [36] propose root
mean squared logarithmic error (RMSLE) on the validation dataset:

~wt+1 = ~wt − γ ·

√√√√ 1
|X| ∑

(~x,y)∈X
(log((m~w(~x) + 1)− log(y + 1))2 (5.9)
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FIGURE 5.2: Components of a machine learning pipeline: chunked input will be processed indepen-
dently (potentially off-loaded to GPUs). After every iteration, the weights (blue) are synchronised.

5.1.2 Machine Learning Pipeline in SQL

We argue that SQL offers all components needed for data preprocessing, and recursive tables
allow gradient descent to be performed. Thus, we reimplemented the components of a ma-
chine learning pipeline (see Figure 5.2) proposed by Derakhshan et al. [36] in SQL (see Fig-
ure 5.3):

• The Input Parser parses input CSV files and stores the data in chunks using row-major
format to allow batched processing of mini-batch gradient descent. In SQL, this corre-
sponds to a simple table scan. In Umbra, we can also use a foreign table as input for
continuous views (table taxidata).

• The Feature Extractor extracts features from data chunks, which is a simple projection
in SQL. For example, day and hour are extracted from timestamps, distance metrics
from given coordinates (view processed).

• The Anomaly Detector deletes tuples of a chunk on anomalies. An anomaly occurs
when at least one attribute in a tuple passes over or under a predefined threshold. For
anomalies, we filter for user-defined limits in a selection (view normalised).



28 Chapter 5. In-Database Machine Learning

• The Standard Scaler scales all attributes in the range [0, 1] to equal each attribute’s
impact on the model, this corresponds again to a projection and nested subqueries to
extract the attribute’s extrema (view normalised).

• The Scheduler manages gradient descent iterations until the weights converge. This
can be either done using recursive tables or using an operator that off-loads work to
GPU.

Listing 5.2 shows the resulting SQL queries using a taxi dataset as exemplary input and
a linear function to predict a trip’s duration based on its day, hour, distance and bearing.
In this example, we perform 50 iterations of mini-batch gradient descent based on a sample
size of ten tuples (tablesample reservoir (10)) and a learning rate of 0.001. In every
iteration, we subtract the average gradient from the weights (line 7-14), which we finally
use to compute the loss (line 15/16). As computing each partial derivative manually can
be bothersome and error-prone for complex loss functions, we proceed with an operator for
automatic differentiation in the next section.

W{[i, v]}

Gradient Descent

π d
max(d) , h

max(h) , hav
max(hav) , bear

max(bear)

σd<dlimit∧h<hlimit∧hav<havlimit∧bear<bearlimit

×

γmax(d),max(h),max(hav),max(bear)

πd,h,hav(xlat ,xlong ,ylat ,ylong ),bear(xlat ,xlong ,ylat ,ylong )

R{[d, h, xlat , xlong , ylat , ylong , t]}

πd,h,hav(xlat ,xlong ,ylat ,ylong ),bear(xlat ,xlong ,ylat ,ylong )

R{[d, h, xlat , xlong ,ylat , ylong , t]}

Table Scan

Feature Extractor

Anomaly Detector

Standard Scaler

Optimal Weights

Nested Subquery

FIGURE 5.3: Operator plan inside of a database system with linear regression on the New York taxi
dataset in relational algebra: a projection extracts the features as haversine (hav) distance or bearing
(bear), anomalies are deleted using predefined thresholds (denoted as limit).

1 create foreign table taxidata(id int, pickup_datetime date, dropoff_datetime date, passengers
float, pickup_longitude float, pickup_latitude float, dropoff_longitude float,
dropoff_latitude float, duration float) server stream;

2 copy taxidata from ’./taxidata.csv’ delimiter ’,’;
3 create view processed as (select hour,day,duration,ACOS(SIN(plat)*SIN(dlat)+COS(plat)*COS(dlat)*

COS(dlong-plong))*6371000 distance, ATAN2(SIN(dlong-plong)*COS(dlat),COS(plat)*SIN(dlat)-
SIN(plat)*COS(dlat)*COS(dlong-plong))*180/PI() bearing from (select avg(hour) as hour, avg(
day) as day, avg(duration) as duration, avg(plat) as plat, avg(plong) as plong, avg(dlat)
as dlat, avg(dlong) as dlong from (select cast(extractHour(dropoff_datetime) as float) as
hour,cast(extractDay(dropoff_datetime) as day,duration, pickup_latitude/180*pi() plat,
pickup_longitude/180*pi() plong, dropoff_latitude/180*pi() dlat, dropoff_longitude/180*pi()
as dlong from taxidata) group by hour, day, duration, plat, plong, dlat, dlong));

4 create view normalised(hour, day, distance, bearing, duration) as (select cast(hour as float)/(
select max(hour)+1 from processed), cast(day as float)/(select max(day) from processed),
distance/(select max(distance) from processed where distance < 1000), (bearing+360)
%360/360.0, duration/(select max(duration) from processed) from processed where distance <
1000);

5 with recursive gd (id, a1, a2, a3, a4, b) as (
6 select 1, 1::float, 1::float, 1::float, 1::float, 1::float UNION ALL
7 select id+1,
8 a1-0.001*avg(2*hour*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
9 a2-0.001*avg(2*day*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),

10 a3-0.001*avg(2*distance*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
11 a4-0.001*avg(2*bearing*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)),
12 b -0.001*avg(2*(a1*hour+a2*day+a3*distance+a4*bearing+b-duration))
13 from gd, (select * from normalised tablesample reservoir (10))
14 where id<=50 group by id,a1,a2,a3,a4, b)
15 select id, avg(a1*hour+a2*day+a3*distance+a4*bearing+b-duration)^2
16 from gd,normalised where id=51;

LISTING 5.2: Machine learning pipeline in SQL.
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5.2 Database Operators for Machine Learning

This section describes the operators in Umbra and HyPer, which we created to facilitate
machine learning in SQL. Modern database systems generate code for processing chunks
of tuples in parallel pipelines, so we first explain code-generation before we present the
operators for automatic differentiation and gradient descent.

5.2.1 Code Generation

In database systems, operators can be combined to form an operator tree with table scans as
leaves. With Umbra and HyPer as the integration platform, an operator follows the concept
of a code-generating database system. It achieves parallelism by starting as many pipelines
as threads are available and expects each operator in a query plan to generate code for pro-
cessing chunks of tuples.

Each operator of Umbra/HyPer [99] provides two functions, produce() and consume()
to generate code. On the topmost operator of an operator tree, produce() is called, which
recursively calls the same method on its child operators. Arriving at a leaf operator, it regis-
ters pipelines for parallel execution and calls consume() on the parent node. Within these
pipelines, the generated code processes data inside registers without overhead. Unary op-
erators can process tuples within a pipeline, whereas binary operators have to materialise at
least the result of one incoming child node first before pipelined processing begins. Oper-
ators can be classified as pipeline friendly or into pipeline breakers and full pipeline breakers by
their behaviour of passing elements through directly, consuming all elements, or consuming
and materialising all elements before producing output. An operator for gradient descent
is a (full) pipeline breaker, as it accesses batches of tuples multiple times until the weights
converge, whereas an operator for automatic differentiation is part of a pipeline as it just
adds the partial derivatives per tuple.

5.2.2 Automatic Differentiation

Reverse mode automatic differentiation first evaluates an expression, then it propagates back
the partial derivative in reverse order by applying the chain rule (see Figure 5.4). Each
partial derivative is the product of the parent one (or 1 for the topmost node) and the derived
function with its original arguments as input (see Figure 5.5). This allows computing each
expression’s derivative in one pass by reusing each subexpression (see Algorithm 2).

As Umbra compiles arithmetic expressions to machine code as well, it is perfectly suited
for automatic differentiation. Similar to how an arithmetic SQL expression is compiled dur-
ing code generation, we created a function that can be used to generate the expression’s
partial derivatives: Once a partial derivative has been compiled, its subexpressions will be
cached inside an LLVM register that can be reused to generate the remaining partial deriva-
tives. This accelerates the runtime during execution.

f (g(l, r))

g(l, r)

l r

∂ f
∂g

∂ f
∂r = ∂ f

∂g ·
∂g
∂r

∂ f
∂l = ∂ f

∂g ·
∂g
∂l

FIGURE 5.4: Reverse mode automatic differentiation: First, the function f (g(l, r)) gets evaluated, then
each partial derivative is computed in reverse order. Each arrow represents one cached computation.

To specify the expression, we integrated lambda functions as introduced in HyPer into
Umbra. Lambda functions are used to inject user-defined SQL expressions into table opera-
tors. Originally developed to parametrise distance metrics in clustering algorithms or edges
for the PageRank algorithm, lambda functions are expressed inside SQL queries and allow
"variation points" [102] in otherwise inflexible operators. In this way, lambda expressions
broaden the application of the default algorithms without the need to modify the database
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FIGURE 5.5: Automatic differentiation for f (x, y, z) = (x + y) · z on x = 2, y = 3, z = 6.

Algorithm 2 Automatic Differentiation

1: function DERIVE(z, z′)
2: if isBinary(z) then
3: if z = x + y then DERIVE(x,z′) DERIVE(y,z′)
4: else if z = x− y then DERIVE(x,z′) DERIVE(y,−z′)
5: else if z = x · y then DERIVE(x,z′ · y) DERIVE(y,z′ · x)
6: else if z = X ·Y then DERIVE(X,z′ ·YT) DERIVE(Y,z′T · X)
7: else if z = x

y then DERIVE(x, z′
y ) DERIVE(y,−z′ ·x

y2 )

8: else if z = xy then DERIVE(x,z′ · y · xy−1) DERIVE(y,z′ · xyln(x))
9: else if z = logy(x) then DERIVE(x, z′

x·ln(y) ) DERIVE(y,−z′ ·ln(x)
y·ln2(y) )

10: else if isUnary(z) then
11: if z =

√
x then DERIVE(x, z′

2·
√

x )

12: else if z = |x| then DERIVE(x, z′ ·x
|x| )

13: else if z = sin(x) then DERIVE(x,z′ · cos(x))
14: else if z = cos(x) then DERIVE(x,−z′ · sin(x))
15: else if z = ex then DERIVE(x,z′ · ex)
16: else if isVariable(z) then
17: ∂

∂z ←
∂
∂z + z′

system’s core. Furthermore, SQL with lambda functions substitutes any new query lan-
guage, offers the flexibility and variety of algorithms needed by data scientists, and ensures
usability for non-expert database users. In addition, lambda functions allow user-friendly
function specification, as the database system automatically deduces the lambda expres-
sions’ input and output data types from the previously defined table’s attributes. Lambda
functions consist of arguments to define names for the tuples (but whose scope is operator
specific) and the expression itself. All provided operations on SQL types, even on arrays, are
allowed:

λ(< name1 >,< name2 >, ...)(< SQL expression >).

1 select * from umbra.derivation(TABLE(select 2::float x,3::float y,6::float z),lambda(x)((x.x+x.y
)*x.z));

2 -- x y z d_x d_y d_z
3 -- 2 3 6 6 6 5
4 select * from umbra.derivation(TABLE(select 2::float x, 3::float y, 10::float a, 10::float b),

lambda (x)((x.a * x.x + x.b - x.y)^2));
5 -- x y a b d_x d_y d_a d_b
6 -- 2 3 10 10 540 -54 108 54

LISTING 5.3: Automatic differentiation within SQL.

We expose automatic differentiation as a unary table operator called derivation that de-
rives an SQL expression with respect to every affected column reference and adds its value
as a further column to the tuple (see Listing 5.3). We can use the operator within a recursive
table to perform gradient descent (see Listing 5.4, 5.5). This eliminates the need to derive
complex functions manually and accelerates the computation with a rising number of at-
tributes, as each subexpression is evaluated only once.
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1 with recursive gd (id, a, b) as (select 1,1::float,1::float UNION ALL
2 select id+1, a-0.05*avg(d_a), b-0.05*avg(d_b)
3 from umbra.derivation(TABLE (select id,a,b,x,y from gd,data where id<5),
4 lambda (x) ((x.a * x.x + x.b - x.y)^2)) group by id,a,b)
5 select * from gd order by id;

LISTING 5.4: Gradient descent using a recursive table (automatically derived).

1 with recursive gd (id, a1, a2, a3, a4, b) as (
2 select 1, 1::float, 1::float, 1::float, 1::float, 1::float
3 UNION ALL
4 select id+1,a1-0.001*avg(d_a1),a2-0.001*avg(d_a2),a3-0.001*avg(d_a3),a4-0.001*avg(d_a4),
5 b-0.001*avg(d_b)
6 from umbra.derivation(TABLE (
7 select * from gd, (select * from normalised tablesample reservoir (10)) where id < 51),
8 lambda (x)((x.a1*x.hour + x.a2*x.day + x.a3*x.distance + x.a4*x.bearing + x.b-x.duration)^2))
9 group by id, a1, a2, a3, a4, b)

10 select id, avg(a1*hour + a2*day + a3*distance + a4*bearing + b-duration)^2
11 from gd, normalised where id = 51;

LISTING 5.5: Using automatic differentiation for gradient descent on the taxi dataset.

5.2.3 Gradient Descent Operator

Our operator for gradient descent materialises incoming tuples, performs gradient descent
and produces the optimal weights for labelling unlabelled data. The proposed operator
is considered a pipeline breaker as it needs to materialise all input tuples beforehand to
perform multiple training iterations. This section focuses on the operator characteristics, the
design with its input queries and the actual implementation, with linear regression as an
example.

Operator Design

We design an operator for gradient descent, which requires one input for the training, one
for the initial weights and optionally one for the validation set, and returns the optimal
weights. If no input is given as a validation set, a fraction of the training set will be used
for validation. The user can set the parameters for the batch size, the number of iterations
and the learning rate as arguments inside the operator call (see Listing 5.6). Figure 5.6 shows
gradient descent inside of an operator tree: it expects the training dataset as parallel input
pipelines and returns the optimal weights. These might serve as input for a query that la-
bels a test dataset. In addition, SQL lambda functions, which allow users to inject arbitrary
code into operators, specify the loss function to be used for gradient descent. Gradient de-
scent benefits from generated code as it allows user-defined model functions to be derived
at compile time to compute its gradient without impairing query runtime. Given two rela-
tions, X{[a, b]} (containing the initial weights) and Y{[x, y]} (containing the data), the loss
function can be specified, for example, as the following linear combination:

λ(X, Y)(X.a ·Y.x + X.b−Y.y)2.

1 select * from umbra.gd(TABLE (select * from data), TABLE (select 10::float a, 10::float b),
lambda (x,y) ((y.a * x.x + y.b - x.y)^2), 1, 0.05, 10);

LISTING 5.6: Gradient descent as an operator: one tuple per batch, γ = 0.05, 10 iterations.

This implies three parts for the integration of gradient descent: consuming all input tu-
ples in parallel pipelines, performing gradient descent and producing the weights in a new
pipeline. This first separation is necessary, as we need to know the number of tuples in ad-
vance to determine when one training epoch ends. Specific to Umbra, we cannot assume
the same number of available threads for training as for the parallel pipelines; we have to
merge all materialised tuples before we start new parallel threads for the training iterations
afterwards.
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FIGURE 5.6: Operator plan inside of a database system with one operator for training and a query for
predicting labels. Dashed lines illustrate code generation, solid lines compiled code. The gradient
descent operator materialises input from parallel pipelines within local threads, performs iterations
and returns the optimal weights.

Implementation

The generated code runs gradient descent iterations in parallel. Devoted to batched process-
ing on GPUs, we deduce a parallel mini-batch gradient descent operator. First, it materialises
the input tuples thread-locally (generated by consume()) and merges them globally. After-
wards, each thread picks one mini-batch and maintains a local copy of the global weights.

Algorithm 3 depicts the training procedure without GPU support. For simplicity, the
validation phase with the corresponding validation input is omitted. Inside of the two loops
(lines 5-9), one is unrolled during compile time in order to dispatch tasks to parallel threads,
and one executed at runtime to manage gradient descent iterations, we can later off-load
work to GPUs. Inside such a code fragment, we start as many CPU threads as GPU units are
available with whom one CPU thread is associated.

Algorithm 3 Operator for mini-batch gradient descent.

1: function PRODUCE
2: COMPUTEGRADIENT(expression)
3: PRODUCE(inputPipeline)
4: GENERATE(mergeTuples)
5: GENERATE(while !converged)
6: for l ∈localthreads do
7: GENERATE(l.updateWeights)
8: GENERATE(~w← ∑l∈localthreads

l.~w
|localthreads| )

9: GENERATE(whileEnd)
10: CONSUME(parent,~w)
11: function UPDATEWEIGHTS
12: GENERATE(~w← ~w− 1

|X| ∑(~x,y)∈X∇l~x,y(~w))

13: function CONSUME
14: GENERATE(localthread.store(~x, y))

Pipelining and Parallelism

We now investigate the architecture for integrating a gradient descent operator into a data-
base system in more detail. This section does not aim for comparing the performance of
stochastic and batch gradient descent but for making them fit into a database system. There-
fore, we discuss different strategies regarding the methods’ needs inside a database system.
Batch gradient descent requires all tuples per iteration, whereas stochastic gradient descent
expects one tuple at a time. The first method optimises the weights by taking the average
deviation as the loss function, so all tuples need to be materialised before. When expecting
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(D) Combined approach.

FIGURE 5.7: Architecture for fitting gradient descent into database systems’ pipelines: (a) shows the
basic query plan of the gradient descent operator: a binary operator with training data, initial weights
as parameters, and the lambda expression for the loss function, it returns the optimised weights, that
can be passed over for labelling; (b) shows the parallelised variant, where the tuples are collected
in sub-threads, unified in the main thread, where training happens in a parallel loop; (c) shows the
sub-threads computing local weights without materialisation, there are as many input pipelines as
iterations exist; (d) shows the combined approach, where local weights are computed initially.

only one tuple at a time, the tuples can be consumed separately or even in parallel when
a synchronisation mechanism exists. Both methods work well when all tuples have been
materialised before.

The intuitive way is to design gradient descent as a full pipeline breaker to consume all in-
coming tuples before producing the calculated weights. The tuples have to be materialised
before, so the design allows any optimisation method to be called afterwards. For batch
as well as for stochastic gradient descent, the operator’s main thread performs multiple it-
erations until the weights converge to the loss function’s minimum. Parallel loops grant
distributed execution either by evaluating the gradient for each tuple independently (batch)
or by updating weights as atomic global variables (stochastic). The weight synchronisation
for stochastic gradient descent is based on previous work on parallelisation of optimisa-
tion problems [142, 148], which means taking the average weights after the computation is
complete (and is not the focus of this section). Figure 5.7b shows the parallelism of the ma-
terialising gradient descent operator. It consists of one main thread and one sub-thread per
incoming pipeline. The sub-threads consume and materialise the incoming tuples, while the
main thread collects them, consumes the input weights, and minimises the loss function in
parallel.

Specialised for database system’s pipelines, we devise a non-materialising operator suited
for stochastic gradient descent only. While it still is a pipeline breaker, it computes stochastic
gradient descent in each pipeline on partitioned sets of data without materialisation. Multi-
ple iterations are implemented by copying the underlying operator tree condoning the dis-
advantages of recompiling the whole subtree and the fixed number of iterations. Figure 5.7c
shows the gradient descent implementation with a separate input pipeline for each itera-
tion. For each pipeline, multiple sub-threads compute local weights. The main thread is
responsible for computing the global weights after each iteration is complete.

Finally, the combined approach combines the benefits of parallel pipelines with the advan-
tages of compiling the subtree only once and being able to terminate when the process has
converged. First, it precomputes the weights in separate pipelines, each handling a subset
of the whole data, and then performs the remaining iterations for gradient descent on the
materialised tuples until convergence. Figure 5.7d shows the sub-threads computing the lo-
cal weights only once for each input pipeline and materialising the tuples. The main thread
computes the global weights of the first iteration, then performs the remaining iterations in
parallel on the materialised tuples using either batch or stochastic gradient descent.
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5.3 Neural Network

Mini-batch gradient descent can be used to train a neural network with an adjusted model
function. We assume every input with m attributes serialised as one input vector x ∈ R1×m

together with a categorical label y ∈ L. This corresponds to a database tuple as we later store
one image as one tuple with one attribute per pixel and colour.

We consider a fully connected neural network with one hidden layer of size h, con-
sequently we gain two weight matrices wxh ∈ Rm×h and who ∈ Rh×|L|. With sigmoid
(Equation 5.10) as activation function (applied elementwise) we obtain a model function
mwxh ,who (x) ∈ R1×|L|, that produces an output vector of probabilities, also known as forward
pass. The output vector is compared to the one-hot-encoded categorical label (yones). The
index of the entry being one should be equal to the index of the highest probability.

sig(x) = (1 + e−x)−1 (5.10)

mwxh ,who (x) = sig(

axh︷ ︸︸ ︷
sig(x · wxh) ·who)︸ ︷︷ ︸

aho

. (5.11)

Although neural networks can be specified in SQL-92, the corresponding query will con-
sist of nested subqueries, that are not intuitive to create. As we have created an array data
type in Chapter 3, nested subqueries can be avoided by using this data type extended by
matrix algebra.

5.3.1 Neural Network in SQL-92

Expressing neural networks in SQL-92 is possible having one relation for the weights and
one for the input tuples (Listing 5.7). The weights relation will contain the values in normal
form as a coordinate list. If one relation contains all weight matrices, it will also contain one
attribute (id) to identify the matrix.

We implement the forward pass in SQL as a query on the validation dataset that returns
the probabilities for each category. It uses nested queries to extract the weights by an in-
dex and arithmetic expressions for the activation function. Listing 5.7 shows the forward
pass with one single layer and two attributes (m = 2) as input. For simplicity, we use SQL
functions for nested subqueries and for the sigmoid function.

1 create table data (a float, b float); insert into data ...
2 create table w(id int, i int, j int, val float); insert into w ...
3 -- helper functions
4 create function w_ij(id int, i int, j int) returns float language ’sql’ strict as $$
5 select val from w where w.i=i and w.j=j and w.id=id $$;
6 create function sig(i float) returns float language ’sql’ as $$ select 1.0/(1.0+exp(-i)); $$;
7 -- forward pass
8 select sig(i.a*w_ij(0,1,1)+i.b*w_ij(0,2,1)),sig(i.a*w_ij(0,1,2)+i.b*w_ij(0,2,2)) from data i;

LISTING 5.7: Forward pass for one layer within a neural network in SQL-92.

5.3.2 Neural Network with an Array Data Type

Expressing matrix operations in SQL-92 has the downside of manually specifying each ele-
mentwise multiplication. For this reason, Umbra and HyPer provide an array data type that
is similar to the one in PostgreSQL and allows algebraic expressions as matrix operations.

1 create table wm(id int, val float[][]);
2 insert into wm select id, array_agg(name) from (select id, i, array_agg(val) as name from w

group by id,i) j group by id;
3 -- helper function
4 create function sig (x float[]) returns float[] language ’sql’ as $$
5 select array_agg(s) from (select sig(unnest) as s from unnest(x)) tmp; $$;
6 -- forward pass
7 select sig(array[[a,b]]*wm.val) from data, wm where wm.id=0;

LISTING 5.8: Forward pass for one layer within a neural network with an array data type.
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Algorithm 4 Automatic Differentiation (Matrices)

1: function DERIVE(Z, Z′)
2: if Z = X + Y then DERIVE(X,Z′) DERIVE(Y,Z′)
3: else if Z = X ◦Y then DERIVE(X,Z′ ◦Y) DERIVE(Y,Z′ ◦ X)
4: else if Z = X ·Y then DERIVE(X,Z′ ·YT) DERIVE(Y,Z′T · X)
5: else if Z = f (X) then DERIVE(X,Z′ ◦ f ′(X))
6: else ∂

∂Z ←
∂

∂Z + Z′

TABLE 5.1: Implemented activation functions and their derivatives.

Name Abbreviation f (x) f ′(x)
hyperbolic tangent tanh ex−e−x

ex+e−x 1− f (x)2

Rectified Linear Unit relu

{
x if x > 0
0 if x ≥ 0

{
1 if x > 0
0 if x ≥ 0

logistic sigmoid sig 1
1+e−x f (x)(1− f (x))

In Listing 5.8, we first construct the weight matrices from its relational representation and
apply the sigmoid function on arrays as a user-defined function. Hence, the forward-pass
for a single layer consists of the matrix multiplication and the sigmoid function on arrays.

An array data type allows transforming a categorical data type L into a one-hot-encoded
vector even if the number of categories |L| is not known at compile time. In Listing 5.9, we
first create a dictionary to assign a consistent number to each category (line 3). Afterwards,
we can create an array that corresponds to a one-hot-encoded vector, whose entry is one at
the corresponding index with leading and subsequent zeros (line 4).

1 create table categories(a text); insert into categories values (’Apple’),(’Egg’),(’Apple’);
2 with dict as (
3 select a, cast(rank() over (order by a) as int) from (select distinct a from categories) sub)
4 select categories.a, rank, array_fill(0,array[rank-1]) || 1 || array_fill(0,array[(select cast(

count(distinct a) as int) from categories) - rank])
5 from categories, dict where categories.a=dict.a;

LISTING 5.9: One-hot-encoding using the SQL array data type.

5.3.3 Training a Neural Network

Automatic differentiation allows training a neural network when the derivatives of ma-
trix multiplication [98] (see Algorithm 4) and activation functions (see Table 5.1) are im-
plemented. To integrate the derivatives of matrix multiplication in our existing implemen-
tation, we need to extend the derivation rule for multiplications (Z′ ·YT instead of z′ · y and
Z′T · X instead of z′ · x) and overload the transpose operator internally, so that transpose,
when called on a scalar such as real numbers like floating-point values, will be ignored. Fur-
thermore, we need the Hadamard product X ◦Y (elementwise matrix multiplication) for the
derivatives of the activation functions and the Hadamard power function X◦Y (elementwise
exponentiation) for mean squared error.

These adaptations allow our operator for automatic differentiation to train the weights
for a neural network (m = 4, h = 20, |L| = 3) within a recursive table (see Listing 5.10): We
first initialise the weight matrices with random values (line 2) and then update the weights
in each iterative step (line 4) using mean squared error (mwxh ,who (x)− yones)◦2 (line 7).

1 with recursive gd (id,w_xh,w_ho) as (
2 select 0, (select array_agg(array_agg) from generate_series(1,4),(select array_agg(random())

from generate_series(1,20))), (select array_agg(array_agg) from generate_series(1,20),(
select array_agg(random()) from generate_series(1,3)))

3 union all
4 select id+1, w_xh - 0.2 * avg(d_w_xh), w_ho - 0.2 * avg(d_w_ho)
5 from umbra.derivation(
6 TABLE(select * from (select * from data tablesample reservoir(50)),gd where id < 2000),
7 lambda(x)( (sig(sig(x.img**x.w_xh)*x.w_ho)-one_hot)^2 ))
8 group by id, w_ho, w_xh
9 ) select * from gd where id = 2000:

LISTING 5.10: Training a neural network using automatic differentiation within a recursive table.
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Instead of relying on an operator for automatic differentiation, we can train a neural net-
work by hand when applying the rules for automatic differentiation. With mean squared
error, the loss is equal to the difference of labels and predicted probabilities (Equation 5.12).
The factor 2 can be omitted when the learning rate γ is doubled. To train the neural net-
work for a given input vector, we have to backpropagate the loss and update the weights as
follows:

lho = 2 · (mwxh ,who (x)− yones), (5.12)

δho = lho ◦ sig′(aho) = lho ◦ aho ◦ (1− aho), (5.13)

lxh = lho · wT
ho, (5.14)

δxh = lxh ◦ sig′(axh) = lxh ◦ axh ◦ (1− axh), (5.15)

w′ho = who − γ · aT
xh · δho, (5.16)

w′xh = wxh − γ · xT · δxh. (5.17)

(sig(sig(x · wxh) · who)− yones)◦2

�◦�

− 2

sig yones

·
whosig

·
wxhx

aho

axh

lho

lho

δho
aT

xhδholxh

δxh
xT · δxh

FIGURE 5.8: Automatic differentiation for (mwxh ,who (x)− yones)◦2.

Figure 5.8 shows the corresponding computational graph and Listing 5.11 the corre-
sponding code in SQL when the Hadamard product (◦) is exposed as SQL operation (**).

1 with recursive gd (id,w_xh,w_ho) as (
2 select 0, (select array_agg(array_agg) from generate_series(1,4),(select array_agg(random())

from generate_series(1,20))), (select array_agg(array_agg) from generate_series(1,20),(
select array_agg(random()) from generate_series(1,3)))

3 union all
4 select id+1, w_xh - 0.2 * avg(transpose(img)*d_xh), w_ho - 0.2 * avg(transpose(a_xh)*d_ho)
5 from ( select l_xh ** (a_xh ** (1- a_xh)) as d_xh, *
6 from ( select d_ho*transpose(w_ho) as l_xh, *
7 from (
8 select l_ho ** (a_ho ** (1- a_ho)) as d_ho, *
9 from ( select 2*(a_ho-one_hot) as l_ho, *

10 from (
11 select sig(a_xh*w_ho) as a_ho, *
12 from ( select sig(img*w_xh) as a_xh, *
13 from (select *
14 from data tablesample reservoir(50)),gd
15 where id < 2000))))))
16 group by id, w_ho, w_xh
17 ) select * from gd where id = 2000:

LISTING 5.11: Backpropagation for a neural network using a recursive table.

To process a batch of input tuples instead of a single one, the multiplications are applied
on matrices instead of vectors. The multiplication during the last steps, the weight updates
(Equation 5.16, 5.17), then sums up the delta for every tuple, so a simple division by the num-
ber of tuples is needed to construct the average gradient. This is helpful when vectorising
mini-batch gradient descent in Section 6.1.2.
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5.4 Evaluation

This section presents the evaluation of the operators in Umbra and HyPer, in detail the
performance increase through automatic differentiation in Umbra, a comparison of gradi-
ent descent in HyPer to external tools and between the different architectures. All experi-
ments were run multi-threaded on a 20-core Ubuntu 17.04 (Section 5.4.2, 5.4.3)/20.04.01 (Sec-
tion 5.4.1) machine (Intel Xeon E5-2660 v2 CPU) with hyper-threading, running at 2.20 GHz
with 256 GB DDR4 RAM.

5.4.1 Automatic Differentiation in Umbra

Using synthetic data, we first compare three CPU-only approaches to compute batch gradi-
ent descent (the batch size corresponds to the number of tuples) on a linear model within
SQL: Recursive tables with either manually or automatically derived gradients, and a de-
dicated (single-threaded) operator. Figure 5.9 shows the compilation and execution time
depending on the number of involved attributes. As we see, automatically deriving the par-
tial derivatives speeds up compilation time, as fewer expressions have to be compiled, as
well as execution time, as subexpressions are cached in registers for reuse. This performance
benefit is also visible when the batch size, the number of iterations or the number of threads
is varied (see Figure 5.10, 5.11). Furthermore, we observe the approach using recursive ta-
bles computes aggregations in parallel, which accelerates computation on many input tuples
with each additional thread.
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FIGURE 5.9: Linear regression: Compilation and execution time with increasing number of attributes
(100 iterations, 10, 000/100, 000 tuples).

0

10

20

30

1e+01 1e+02 1e+03 1e+04 1e+05

Tuples

E
xe

c
u
tio

n
 T

im
e
 [
s]

Automatically Manually Operator

0

100

200

300

10 100 1000

Iterations

E
xe

c
u
tio

n
 T

im
e
 [
s]

Automatically Manually Operator

3

10

30

2 4 6 8

Threads

E
xe

c
u
tio

n
 T

im
e
 [
s]

Automatically Manually Operator

FIGURE 5.10: Linear regression: Execution time (64 attributes) with increasing number of tuples (100
iterations, 8 threads), iterations (100, 000 tuples, 8 threads) or threads (100 iterations, 100, 000 tuples).

The implemented derivation rules for automatic differentiation also allow deriving the
gradient for arbitrary loss functions. Therefore, we also tested two different loss functions
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FIGURE 5.11: Iterations per second for linear regression.

for linear regression, namely mean squared error (MSE, Equation 5.2) and mean squared log-
arithmic error (RMSLE, Equation 5.9). Figure 5.12 shows that the choose of the loss function
does not influence the runtime significantly.
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FIGURE 5.12: Different loss functions for linear regression (mean squared error MSE, mean squared
logarithmic error RMSLE): with increasing number of attributes (100 iterations, 1000/10, 000 tuples).

1 with recursive gd (id, a1, a2, b) as (
2 select 1,1::float,1::float,1::float
3 UNION ALL
4 select id+1,
5 a1-0.5*avg(2*x1*(sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b)))),
6 a2-0.5*avg(2*x2*(sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b)))),
7 b -0.5*avg(2* (sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b))))
8 from gd, data where id < 50 group by id,a1,a2,b)
9 select * from gd order by id;

10

11 with recursive gd (id, a1, a2, b) as (
12 select 1,1::float,1::float,1::float
13 UNION ALL
14 select id+1,
15 a1-0.5*avg(d_a1), a2-0.5*avg(d_a2), b-0.5*avg(d_b)
16 from umbra.derivation(TABLE (
17 select * from gd, (select * from data) where id < 50),
18 lambda (x) ((sig(b+x.a1 * x.x1 + x.a2 * x.x2 ) - x.y2)^2))
19 group by id,a1,a2,b)
20 select * from gd order by id;
21

22 select * from umbra.gd(TABLE (select * from data), TABLE (select 1::float a1, 1::float a2, 1::
float b), lambda (x,y) ((sig(y.b + y.a1 * x.x1 + y.a2 * x.x2) - x.y2)^2), 50, 0.5, 0);

LISTING 5.12: Logistic regression in SQL.

Using a recursive table, we can also solve logistic regression in SQL (see Listing 5.12). Using
the sigmoid function (Equation 5.18), we know its derivative (see Table 5.1), which we can
use for numeric differentiation:

m~w(~x) = sig(~xT · ~w) =
1

1 + e−~xT ·~w . (5.18)
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The evaluation in Figure 5.13 shows similar results as for linear regression, although function
calls for the sigmoid function slowed down the runtime especially when derived manually.
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FIGURE 5.13: Logistic regression: Performance with increasing number of attributes (100 iterations,
10, 000/100, 000 tuples), increasing number of tuples (64 attributes, 100 iterations, 8 threads), iterations
(64 attributes, 100, 000 tuples, 8 threads) or threads (64 attributes, 100 iterations, 100, 000 tuples).

To benchmark training a neural network, we are using the Fisher’s Iris flower dataset [43]
and a fully connected, two-layered neural network. In this experiment, we rather focus on
the performance characteristics of the operator for automatic differentiation embedded in
relational algebra than on the quality of different models. Figure 5.14 shows the compilation
and execution time when training the neural network depending on the size of the hidden
layer. As the size of the hidden layer depends on the weight matrices created at runtime, it
does not affect the compile time. Whereas the runtime directly depends on the number of op-
erations involved in matrix multiplications and thus increases with the size of the matrices.
When we compare automatic differentiation to manually derived gradients, we applied the
backpropagation rules by hand. So fewer operations were executed when using automatic
differentiation, which currently computes the derivative for every variable involved. Hence,
both approaches show similar performance when varying the size of the hidden layer, the
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batch size, the number of iterations and threads (see Figure 5.15). Nevertheless, automatic
differentiation eliminates the need for manually derived gradients and nested subqueries.

Figure 5.16 displays further experiments such as varying the number of hidden layers
and the training time depending on the batch size for one epoch, so when all tuples have
been processed once, using the MNIST dataset. As expected, the runtime increases with
additional layers and the training time for one epoch decreases with a higher batch size. We
discuss the influence of the batch size on the statistical efficiency in Section 6.3.
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FIGURE 5.14: Neural network: Compilation and execution time with increasing size of the hidden
layer (2000 iterations, batch size 10/100/1000 tuples).
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FIGURE 5.15: Neural network: Execution time (hidden layer h = 200) with increasing batch size (2000
iterations, 8 threads), iterations (batch size 100 tuples, 8 threads) or threads (2000 iterations, batch size
100 tuples).

5.4.2 Gradient Descent Operator in HyPer

The benchmarks for gradient descent in HyPer are based on the Chicago taxi rides dataset1.
For each ride, this included the duration (in seconds), distance (in miles), fare, and payment
type used. We used simple linear regression to predict the fare based on the trip distance,
and used multiple linear regression to also consider the ride time. Finally, we used logistic
regression to infer the payment type (i.e., whether or not the fare was paid by credit card)
from the fare cost.

In HyPer, we ran all tests using a table operator with a call to the gradient descent library
function of Simonis [128]. As a baseline, we considered two other database systems, namely
MariaDB 10.1.30, PostgreSQL 9.6.8 with the MADlib v1.13 extension, as well as two dedi-
cated tools, namely TensorFlow 1.3.0 (with GPU support enabled and disabled) and R 3.4.2.
An NVIDIA GeForce GTX 1050 Ti was installed to enable TensorFlow computations on a

1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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FIGURE 5.16: Neural network: Execution time depending on the number of hidden layers (each with
a size of 20, batch size 2 tuples, 100 iterations) and training time for one epoch on the MNIST dataset
depending on the batch size (hidden layer h = 20/200).

GPU. We provide the test scripts, implemented by Heyenbrock [55], for reproducibility with
a data generator online2.

All tests were carried out five times and the average runtimes recorded. A Python script
managed the program calls and measured the total user time spent on each one. The run-
times include the time taken to load the data into TensorFlow and into R, and also the Ten-
sorFlow session creation time. To assume the database system as the data storage tier, the
data there was considered to have already been loaded.
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(B) Multiple linear regression.

FIGURE 5.17: Runtime for (a) simple and (b) multiple linear regression using gradient descent.

For the gradient descent benchmark, we evaluated linear regression, multiple linear re-
gression, and logistic regression models, minimising the mean squared error. Each gradient
descent run consisted of 5, 000 iterations, with a learning rate of 7.1 · 10−9.

For TensorFlow and R, we used gradient descent library functions to perform linear re-
gression and logistic regression. For the baseline database systems, Heyenbrock [55] imple-
mented gradient descent for both models using PL/pgSQL in PostgreSQL and procedures
in MariaDB. Additionally, we benchmarked the MADlib’s logistic regression function for
PostgreSQL.

The results for linear regression (see Figure 5.17a, 5.17b) show that both the TensorFlow’s
and R’s library functions run in constant time for a small number of input tuples and perform
better than the hardcoded gradient descent functions in MariaDB and PostgreSQL, which
scaled linearly.

2https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql

https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql
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FIGURE 5.18: Runtime for logistic regression using gradient descent.

For logistic regression (see Figure 5.18), also dedicated tools’ library functions, still faster
than the classical database systems, scaled linearly in the input size but were slower than
our approach running in HyPer.

We further investigate on the time needed for data loading and for the actual computa-
tion. In Figure 5.19, we see the runtime split up into CSV data loading, computation time,
and TensorFlow’s session creation. The time needed for data loading represents the time to
be saved by moving computation into the database system. Also we observed that creating
a session in TensorFlow takes longer when working on the GPU whereas the computation
itself can be faster. This explains the better results using TensorFlow without GPU support
on smaller datasets.
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FIGURE 5.19: Runtime split up into the different operations (declarations of variables, CSV data load-
ing, TensorFlow’s session creation, actual computation) using (a) 105 and (b) 106 tuples for simple and
logistic regression by gradient descent: the time needed for data loading could be saved by doing more
computations inside database systems.

In summary, much time is spent on data loading when performing computations using
dedicated tools. This time can be saved without any drawbacks by shifting computation
into the core of database systems. So it is worth to perform gradient descent inside database
systems when suitable operators exist.
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5.4.3 Pipelining within HyPer

Finally, we evaluated different approaches for integrating gradient descent into the database
systems’ pipelines. For this reason, we measured the performance of three different gradient
descent implementations with a linear model: materialising, non-materialising (pipelined),
and the combined approach. We varied the number of available threads (from one to ten, see
Figure 5.20a), the training set size (from ten to 106 tuples, see Figure 5.20b), and iterations
(from one to 100, see Figure 5.20c). The other parameters remained constant, defaulting to
ten iterations, 106 tuples and one thread. Parallelism is enabled for the scale tests only to
avoid the overhead of preparing multiple pipelines during the other tests.

2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

Number of Threads

R
un

ti
m

e
in

s

materialising pipelined combined

(A) Scale Tests.

101 102 103 104 105 106
10−5

10−4

10−3

10−2

10−1

100

Number of Tuples

R
un

ti
m

e
in

s

materialising pipelined combined

(B) Varying the input size.

100 101 102 103

10−2

10−1

100

101

Number of Iterations

R
un

ti
m

e
in

s

materialising pipelined combined

(C) Varying the number of iterations.

FIGURE 5.20: Benchmarks for the different architectures of gradient descent in the database system’s
pipelines by varying the number of (a) available threads, (b) the input size and (c) iterations.

In all tests, the non-materialising implementation was the fastest when the methods
could not terminate earlier, since all iterations are precompiled as input pipelines. The ma-
terialising and the combined implementations performed very similarly but more slowly,
but had the advantage of stopping when the weights converged or reaching a predefined
threshold. All three implementations behaved similarly, the runtime depends linearly on
both the size of the training set and the number of iterations.

All implementations scaled linearly with the number of threads: the performance in-
creased by about 20 % percent with each additional core. The parallelisation of the non-
materialising version scaled best. When enabling parallelism but providing only one thread
for execution, the non-materialising implementation performed worse than the others as the
overhead of preparing sub-threads for multiple input pipelines did not pay off.

The combination of both strategies performed slightly but not significantly better in all
tests. As the tuples still have to be materialised and the weights have to be computed in par-
allel loops, only one iteration could be saved by precomputing the weights in front. In our
scenario, ten iterations, up to 10 % could be saved. But with increasing number of iterations
the performance gain would be negligible. Note that one iteration per tuple corresponds to
one epoch, so when all tuples of a dataset have been processed once.

To conclude, the non-materialising version appears to be the fastest when all iterations
must be completed or when it is not possible to allocate enough memory for materialising the
tuples. If gradient descent converges soon, a materialising approach is the most suitable, due
to its ability to terminate earlier. The combination of both methods is only suited when few
iterations are needed as of little performance gains otherwise. Also the non-materialising
architecture can be used with stochastic gradient descent only, whereas the materialising
one works with batch gradient descent as well.
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5.5 Conclusion

This chapter has presented an in-database machine learning pipeline expressed in pure SQL
based on sampling, continuous views and recursive tables. To facilitate gradient descent,
we proposed an operator for automatic differentiation and one for gradient descent. We
extended recently introduced lambda functions to act as loss functions for automatic differ-
entiation. In comparison to handwritten derivatives, automatic differentiation as a database
operator accelerated both the compile time and the execution time by the number of cached
expressions. We also developed three strategies for integrating gradient descent into the
pipelining concept of today’s modern in-memory database systems.

A direct comparison to other relational database systems (both classical disk-based and
modern in-memory systems) showed that integrating gradient descent as an operator en-
abled linear regression tasks to be computed more rapidly. Moreover, pure approximation
tasks like logistic regression can be solved as quickly by an extended main-memory database
system as by dedicated tools like TensorFlow and R, our strongest competitors.

This chapter aimed at shifting more computation into database servers. Given that mod-
ern machine learning has come to rely on tensor data and loss functions, it was important
to present an architectural blueprint for combining gradient descent with tensor algebra in
a modern main-memory database system. Here, we reused SQL with lambda functions as a
language for specifying loss functions in a database system but, independently of the accep-
tance of SQL by data scientists, gradient descent will form one of the fundamental building
blocks when database systems begin to take over more computational tasks, which modern
hardware certainly allows.
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Chapter 6

Multi-GPU Gradient Descent

Parts of this chapter have been published in [121].

In the last decade, research on database systems has focused on GPU co-processing to ac-
celerate query engines. GPUs, initially intended for image processing and parallel computa-
tions of vectorised data, also allow general-purpose computations (GPGPU). In the context
of machine learning, matrix operations [91, 37] and gradient descent [45] profit from vec-
torised processing available on GPUs [75]. Vectorised instructions accelerate model training
and matrix computations—as the same instructions are applied elementwise, for example,
in Apache Spark [53]. When a linear model is trained, vectorised instructions allow the loss
as well as the gradient to be computed for multiple tuples in parallel.

This chapter explains our CUDA kernels for linear regression and neural networks, which
one CPU worker thread starts once per GPU. We describe blocking and non-blocking algo-
rithms to not hinder faster GPUs from continuing their computation while waiting for the
slower ones to finish. To synchronise multiple workers, we either average the gradient after
each iteration or maintain local models as proposed by Crossbow [64]. We adapt this syn-
chronisation technique to maximise the throughput of a single GPU as well. As a novelty,
we implement learners at hardware level—each associated to one CUDA block—to max-
imise the throughput on a single GPU. This chapter’s contributions are

• fine-tuned GPU kernels that maximise the GPU specific throughput even for small and
medium batch sizes,

• a performant scheduler for accelerating gradient descent iterations on multiple GPUs
in parallel,

• and an evaluation of strategies for synchronising gradient descent on processing units
with different throughput.

Based on automatic differentiation and on a dedicated operator for gradient descent
(Chapter 5), we want to generate code directly for GPUs. The code processes mini batches
on GPUs and synchronises multiple learners on a single GPU (Section 6.1) as well as parallel
workers on multiple devices (Section 6.2). We will evaluate CPU- and GPU-only approaches
in terms of performance and accuracy using a NUMA-server cluster with multiple GPUs
(Section 6.3).

6.1 Kernel Implementations

Developing code for NVIDIA GPUs requires another programming paradigm, as computa-
tion is vectorised to parallel threads that perform the same instructions simultaneously. Each
GPU device owns one global memory (device memory) and an L2 cache. Core components
are streaming multiprocessors with an attached shared memory (see Figure 6.1) to execute
specialised programs for CUDA devices (kernels). In these kernels, every thread receives a
unique identifier, which is used to determine the data to process. 32 threads in a bundle
are called a warp, multiple warps form a block and threads inside a block can communicate
through shared memory and interfere with each other. To interfere with other threads, shuf-
fling can be used to share or broadcast values with one or more threads within a warp.
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FIGURE 6.1: Simplified GPU architecture for NVIDIA GeForce GTX 1080 Ti (orange), RTX 2080 Ti
(blue) and Tesla V100 (green): Each GPU transfers data via PCIe x16 from main-memory to its glob-
al/device memory. Multiple CUDA cores sharing the L1 cache (shared memory) are grouped to one
streaming multiprocessor, its number is GPU specific. In-between lies the L2 cache.

To off-load gradient descent iterations to NVIDIA GPUs, we generate specialised kernels.
In detail, we have to map batches to blocks; we can vary the number of threads per block
and explicitly cache values in shared memory. In the following sections, we describe our
kernel implementations for gradient descent with linear regression and a fully-connected
neural network, and we will introduce independent learners at block-size granularity.

6.1.1 Linear Regression

As linear regression is not a compute-bound but a memory-intensive application, we ini-
tially transfer as much training data into device memory as possible. If data exceeds the
memory and more GPUs are available for training, we will partition the data proportionally
to multiple devices. Otherwise, we reload the mini-batches on demand.

Each thread handles one input tuple and stores the resulting gradient after each iteration
in shared memory. Each iteration utilises all available GPU threads, wherefore the size of
a mini-batch must be greater or equal to the number of threads per block, to ensure that
compute resources are not wasted. When the batch size is larger than a block, each thread
processes multiple tuples and maintains a thread-local intermediate result, which does not
require any synchronisation with other threads. After a mini-batch is processed, shuffling
operations summarise the gradient to compute the average for updating the weights (tree
reduction).

6.1.2 Neural Network

Our initial approach was to adapt the gradient descent kernel for linear regression to train
a neural network and to spread each tuple of a batch to one thread. As training neural
networks is based on matrix operations, we rely on libraries for basic linear algebra subpro-
grams for CUDA devices (cuBLAS1), which provide highly optimised implementations. Our
implementation uses the cuBLAS API for all operations on matrices or vectors. For example,
the forward pass in a neural network uses matrix-vector multiplications (cublasDger())
for a single input tuple and, when a mini-batch is processed, matrix-matrix multiplications
respectively (cublasDgemm()). To apply and derive the activation function, handwritten
kernels are used that vectorise over the number of attributes. These kernels plus the library
calls plus handwritten code build the foundation for parallelising to multiple GPUs.

1https://docs.nvidia.com/cuda/cublas

https://docs.nvidia.com/cuda/cublas
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FIGURE 6.2: Multiple learners per GPU: Each block corresponds to one learner, each learner maintains
local weights ~wlocal and the difference~clocal to the global weights ~w. Each input tuple is stored in device
memory and is scheduled to one GPU thread.

6.1.3 Multiple Learners per GPU

To utilise all GPU threads even with small batch sizes, we implement multiple workers on a
single GPU. These are called learners [64] and ensure a higher throughput. Crossbow offers a
coarse-grained approach as every learner launches multiple kernels, which limits its overall
number. By contrast, our light-weight approach launches only one instance of a fine-grained
kernel for one entire GPU. This enables full utilisation of the GPU as the number of learners
could be much higher.

In our implementation (see Figure 6.2), each learner corresponds to one GPU block. We
can set the block size adaptively, by which the number of learners results. Consequently,
one learner works on batch sizes of at least one warp, that is the minimum block size with
32 threads, or multiple warps. Hence, the most learners that are allowed is the number of
warps that can be processed per GPU.

After each learner has finished its assigned batches, the first block synchronises with the
other ones to update the global weights. But for multi GPU processing as well as for multiple
learners per GPU, we need to synchronise each unit.

6.2 Synchronisation Methods

As we intend to run gradient descent in parallel on heterogeneous hardware, we have to
synchronise parallel gradient descent iterations. Based on a single-threaded naive gradi-
ent descent implementation, we propose novel synchronisation methods to compare their
performance to existing ones and benchmark different hardware.

The naive implementation uses a constant fraction of its input data for validation and the
rest for training. The training dataset is split into fixed-sized mini-batches. After a specified
number of mini-batches but no later than after one epoch when the whole training set has
been processed once, the loss function is evaluated on the validation set and the current
weights. The minimal loss is updated and the next epoch starts. We terminate when the loss
falls below a threshold lstop or a maximum number of processed batches ctrmax. Also, we
terminate if the loss has not changed within the last 10 iterations.

Based on the naive implementation, this section presents three parallelisation techniques,
a blocking but synchronised one and two using worker threads with multiple local models
or only one global one.

6.2.1 Synchronised Iterations

At the beginning of each synchronised iteration, we propagate the same weights with an in-
dividual mini-batch to the processing unit. After running gradient descent, the main worker
collects the calculated gradients and takes their average to update the weights.

Algorithm 5 shows this gradient descent function, taking as input the labelled dataset X,
a learning rate γ, the batch size n and the parameter ctrmax that limits the number of itera-
tions. In each iteration, multiple parallel workers pick a mini-batch and return the locally



48 Chapter 6. Multi-GPU Gradient Descent

computed gradient. Afterwards, the weights are updated. For simplicity, the validation pass
is not displayed: When the calculated loss has improved, the minimal weights together with
the minimal loss are set and terminate the computation when a minimal loss lmin has been
reached.
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FIGURE 6.3: Scheduling mini-batches on four different workers: (a) shows worker threads whose
weights are synchronised globally after each iteration and whose averaged gradient is used to update
the global weights w; workers are idle when others have still not finished. (b) shows worker threads
that update weights globally without any synchronisation; each worker is responsible for fetching the
next batch on its own. To overcome race conditions, the worker threads in (c) maintain their local
model that is synchronised lazily when every worker is done with at least one iteration.

Algorithm 5 Synchronised.

1: function GD(X,γ, ctrmax, n)
2: ~w← (0, ..., 0)
3: ctr ← 0
4: while ctr < ctrmax do
5: for t ∈ [#workers] do
6: batch← ATOMIC_FETCH_ADD(ctr,1)
7: X′ ← GETBATCH(batch,X,n)
8: ~gt ← γ∇lX′(~w)



in
pa

ra
lle

l

9: for t ∈ [#workers] do
10: ~w← ~w− γ~gt

When synchronising a global model after each iteration, workers who may have finished
their mini-batches earlier, are idle and waiting for input (see Figure 6.3a). To maximise the
throughput, independent workers have to fetch their mini-batches on their own. These inde-
pendent workers either require local weights to be synchronised frequently (see Figure 6.3c)
or update global weights centrally (see Figure 6.3b).

6.2.2 Worker Threads with Global Updates (Bulk Synchronous Parallel)

In Algorithm 6, we see worker threads that fetch the next batch independently and up-
date a global model. Each worker increments a global atomic counter as a batch identifier
and selects the corresponding batch consisting of the attributes and the labels. The current
weights are used to compute the gradient; afterwards, the weights are updated globally. Be-
sides, the first thread is responsible for managing the minimal weights. Assuming a low
learning rate, we suppose the weights are changing marginally and we omit locks similar
to HogWild [105]. Otherwise, the critical section (line 5)—gradient calculation and weights
update—has to be locked, which would result in a single-threaded process as in Algorithm 5.

6.2.3 Worker Threads with Local Models (Model Average)

To overcome race conditions when updating the weights, we adapt local models known
from Crossbow [64] to work with worker threads. Crossbow adjusts the number of parallel
so-called learners adaptively to fully utilise the throughput on different GPUs. Each learner
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Algorithm 6 Worker threads (global updates).

1: function RUN(X, ~w, ctr, ctrmax, γ)
2: while ctr < ctrmax do
3: batch← ATOMIC_FETCH_ADD(ctr,1)
4: X′ ← GETBATCH(batch,X,n)
5: ~w← ~w− γ∇lX′(~w)

}
critical section

6: function GD(X,γ, ctrmax, n)
7: ~w← (0, ..., 0)
8: ctr ← 0
9: for t ∈ [#workers] do

10: RUN(X, ~w, ctr, ctrmax, γ)
}

in parallel

maintains its local weights and the difference from the global weights. A global vector vari-
able for every learner t called corrections ~ct stores this difference, divided by the number
of all learners. In each iteration, the weights are updated locally and these corrections are
subtracted. After each iteration, the corrections of all learners are summed up to form the
global weights.

Algorithm 7 shows its adaption for worker threads. The main thread manages the update
of the global model (line 11) that is the summation of all corrections. The critical section
now consists of the computation of the corrections (lines 7-9) only, so the gradient can be
computed on multiple units in parallel.

Algorithm 7 Worker threads (local models).

1: function RUN(X, ~w, ctr, ctrmax, γ)
2: ~wlocal ← ~w
3: while ctr < ctrmax do
4: batch← ATOMIC_FETCH_ADD(ctr,1)
5: X′ ← GETBATCH(batch,X,n)
6: ~g← γ∇lX′(~wlocal)

7: ~cthreadid ← ~wlocal−~w
t

8: ~wlocal ← ~wlocal − γ~g−~cthreadid

9: ~cthreadid ← ~wlocal−~w
t

10: if threadid = 0 then
11: ~w← ~w + ∑t∈[#workers]~ct


critical section

12: function GD(X,γ, ctrmax, n)
13: ~w← (0, ..., 0)
14: ctr ← 0
15: for t ∈ [#workers] do
16: RUN(X, ~w, ctr, ctrmax, γ)

}
in parallel
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6.3 Evaluation

We tested on servers with four Intel Xeon Gold 5120 processors, each with 14 CPUs (2.20 GHz)
running Ubuntu 20.04.01 LTS with 256 GiB RAM. Each server is connected to either four
GPUs (NVIDIA GeForce GTX 1080 Ti/RTX 2080 Ti) or one NVIDIA Tesla V100-PCIE-32GB.
We benchmark linear regression with synthetic data and the New York taxi dataset, and a
feed-forward neural network with a single hidden layer for image recognition (see Table 6.1).
We take 2.65 GiB of the New York taxi dataset2 (January 2015), on which we perform linear
regression to forecast the taxi trip duration from the trip’s distance and bearing, the day and
the hour of the ride’s beginning (four attributes).

6.3.1 Linear Regression

We measure the performance and the quality of the different parallelisation models on the
CPU as well as the GPU according to the following metrics:

1. Throughput measures the size of processed tuples per time. It includes tuples used for
training as well as for validation.

2. Time-to-loss, similarly to time-to-accuracy [28] for classification problems, measures the
minimal loss on the validation dataset depending on the computation time.

3. Tuples-to-loss describes how many tuples are needed to reach a certain minimal loss. In
comparison to time-to-loss, it is agnostic to the hardware throughput and measures the
quality of parallelisation and synchronisation methods.

TABLE 6.1: Datasets used with linear regression and a neural network respectively.

#attr. #training #validation
New York Taxi 4 + 1 61,664,460 15,416,115

Synthetic 99 + 1 10 10
MNIST 784 + 1 60,000 10,000

Fashion-MNIST 784 + 1 60,000 10,000

We perform gradient descent with a constant learning rate of 0.5 to gain the optimal
weights. After a predefined validation frequency, every 3,000 batches, the current loss is
computed on a constant validation set of 20 % the size of the original one. We vary the
hyper-parameters of our implementation, i.e., the batch size and the number of workers. A
thread records the current state every second to gather loss metrics.

Throughput vs. Statistical Efficiency

To measure the throughput for linear regression on different hardware, we consider batch
sizes of up to 100 MiB. We compare the performance of our kernels to that when stochastic
gradient descent of the TensorFlow (version 1.15.0) library is called (see Figure 6.4).

The higher the batch size, the better the throughput when running gradient descent on
GPUs as all concurrent threads can be utilised. Hardware-dependent, the maximal through-
put converges to either 150 GiB/s (GeForce GTX 1080 Ti), 250 GiB/s (GeForce RTX 2080 Ti)
or more than 300 GiB/s (Tesla V100). As developed for batched processing, our dedicated
kernels (see Figure 6.4a) can exploit available hardware more effectively than the Python
implementation (see Figure 6.4b). As the latter calls stochastic gradient descent, this excels
on better hardware only when a larger model has to be trained.

Nevertheless, training with large batch sizes does not imply statistical efficiency in terms
of the volume of processed data that is needed for convergence (see Figure 6.5a) and the low-
est reachable minimal loss (see Figure 6.5b). For that reason, to allow the highest throughput
even for small batch sizes, we implement multiple learners per GPU.

2https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2015-01.csv

https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2015-01.csv
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FIGURE 6.4: Throughput of (a) the dedicated kernels and (b) using the TensorFlow library.
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FIGURE 6.5: Statistical efficiency for linear regression: (a) volume of processed data needed to converge
and (b) minimal reachable loss depending on the batch size.

Multiple Learners per GPU

As the GPU is only fully utilised when the number of concurrently processed tuples is
greater or equal to the number of parallel GPU threads, we benchmark multiple learners per
GPU. As each learner corresponds to one GPU block consisting of a multiple of 32 threads,
our implementation allows the highest throughput for every batch size, as a multiple of the
block size. Therefore, we vary the number of threads per block (equal to a learner) between
32 and 1,024 and measure the throughput dependent on the batch size in multiples of 32
threads.
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(B) Number of attr. (64 tuples per batch), synthetic data.

FIGURE 6.6: Throughput with multiple learners per GPU: A smaller number of threads per learner
allows the maximum throughput even for small batch sizes when small batches are processed in par-
allel.

The observation in Figure 6.6 corresponds to the expectation that a small number of
threads per learner allows a higher throughput for small batch sizes. When the batch size
is equal to a multiple of the chosen number of threads, the throughput reaches a local max-
imum. Otherwise, the GPU is underutilised. These local maxima are visible as spikes in all
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curves except for 32 threads per block, as we increase the batch size by 32 tuples. Neverthe-
less, on all devices, the throughput soon converges at the possible maximum, which shows
the efficiency of learners in the granularity of GPU warps.

Scalability

When running gradient descent in parallel, we benchmark the four implementations for
synchronising weights: no synchronisation with global updates (global updates), maintaining
local models either with locking of the critical section (local models (locks)) or without locking
(local models (dirty)), or synchronised updates that block until every worker has finished
(synchronised (blocking)). We ran the experiments on the CPU as well as the GPU.

When parallelising on the CPU, each additional thread allows a linear speed-up when
no synchronisation takes place (see Figure 6.7a). Maintaining local models costs additional
computation time, which results in a lower throughput. Obviously, locks slow down the
speed up, and blocking threads cause underutilisation.
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FIGURE 6.7: Scale-up for linear regression on (a) multiple CPUs, (b) multiple NVIDIA GeForce GTX
1080 Ti or (c) multiple NVIDIA GeForce GTX 2080 Ti.

Whereas parallelising for GPUs behaves differently (see Figure 6.7b/c): the larger the
batch size, the higher the scale-up. This is obvious, as less synchronisation is necessary for
larger batch sizes and the parallel workers can compute the gradients independently. Also
on GPUs, the implementation without any synchronisation and global updates scales best,
even though not as linearly as on CPUs. In all implementations, one additional GPU allows a
noticeably higher throughput. Maintaining local models requires inter-GPU communication
of the local corrections to form the global weights, which decreases the performance signif-
icantly with the third additional device. To minimise this effect, the weight computation
could be split up hierarchically.

6.3.2 Neural Network

To benchmark the feed-forward neural network, we perform image classification using the
MNIST and Fashion-MNIST [141] dataset. We train the neural network with one hidden
layer of size 200 to recognise a written digit (Fashion-MNIST: a piece of clothing) given as a
single tuple representing an image with 784 pixels. We take 0.025 as learning rate, perform
a validation pass every epoch and measure the throughput and the time to reach a certain
accuracy (with the loss defined as the number of incorrectly classified tuples).
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Throughput vs. Statistical Efficiency

Even though stochastic gradient descent using Keras (version 2.2.4) with TensorFlow allows
a higher bandwidth than for linear regression due to more attributes per tuple (see Fig-
ure 6.8b), our implementations, which call the cuBLAS library, process tuples batch-wise,
which results in a higher bandwidth. As training a neural network is compute-bound in-
volving multiple matrix multiplications, the throughput is significantly lower than for linear
regression (see Figure 6.8a), but allows a higher throughput, the larger the batch size.
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FIGURE 6.8: Throughput of the implementation (a) using cuBLAS and (b) using Keras when training
a neural network with the MNIST dataset.
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FIGURE 6.9: Statistical efficiency for the neural network: (a) volume of processed data needed to con-
verge and (b) minimal reachable loss depending on the batch size.

As is the case for linear regression, training models with small batch sizes results in a
higher accuracy (see Figure 6.9b). This once again makes the case for multiple learners per
single GPU. Nevertheless, the larger the chosen batch size is, the faster training iterations
converge (see Figure 6.9a).
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FIGURE 6.10: Scale-up for training a neural network (with the MNIST dataset).
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(B) Time-to-loss: Fashion-MNIST dataset
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FIGURE 6.11: Time-to-loss when training the neural network for the (a) MNIST and (b) Fashion-MNIST
dataset with a batch size of 5 tuples (NVIDIA GeForce GTX 2080 Ti). For Fashion-MNIST, also tuples-
to-time (c) is provided.
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Scalability

The scalability of parallel workers computing backpropagation resembles the scalability for
training linear regression on GPUs: one additional worker increases the throughput, for any
further workers, the inter-GPU communication decreases the runtime (see Figure 6.10). For
small batch sizes, training on two GPU devices has the best results, while for larger batch
sizes, every additional device allows a higher throughput.

Time/Tuples-to-loss

Regarding the time to reach a certain accuracy (see Figure 6.11), all implementations perform
similarly when running on a single worker. As the MNIST dataset converges fast, adding a
GPU device for computation has no significant impact. Whereas the Fashion-MNIST dataset
converges slower, the higher throughput when training with an additional worker results in
the minimal loss being reached faster. We train with a small batch size as it allows faster
convergence. Hereby, a scale-up is only measurable when training with up to two devices.

6.3.3 End-to-End Analysis

Figure 6.12 compares the time needed to train one epoch (New York taxi data: 13 · 106 tuples,
MNIST: 6 · 104 tuples) within a complete machine learning pipeline in Python using Keras
to a corresponding operator tree within the database system Umbra, either using a recursive
table with a manually or automatically derived gradient or using an operator that off-loads
to GPU. The pipeline consists of data loading from CSV, feature extraction (only for the New
York taxi data) and normalisation either with NumPy or SQL-92 queries, and training. Note
that the measurements using the MNIST dataset were performed on a Ubuntu 20.04 LTS
machine with four cores of Intel i7-7700HQ CPU, running at 2.80 GHz clock frequency each,
16 GiB RAM and equipped with an NVIDIA GeForce GTX 1050.

We observe that much time is spent on data loading and preprocessing. These tasks are
either no longer required if the data is already stored inside the database system, or can eas-
ily be processed in parallel pipelines. Furthermore, gradient descent using recursive tables
showed comparable performance to library functions used, which is still outperformed by
our operator that off-loads training to GPU.

6.4 Conclusion

This chapter proposed accelerating in-database gradient descent by off-loading training to
GPU units. Therefore, we have implemented training algorithms as GPU kernels and fine-
tuned learners at hardware level to increase the learning throughput. These kernels were
integrated inside the code-generating beyond main-memory database system Umbra. Our
evaluation benchmarked GPU kernels on different hardware, as well as parallelisation tech-
niques with multiple GPUs. The evaluation has shown that GPUs traditionally excel the big-
ger the chosen batch sizes, which was only worthwhile when a slow-converging model was
being trained. In addition, larger batch sizes interfered with statistical efficiency. For that
reason, our fine-tuned learners at hardware level allowed the highest possible throughput
for small batch sizes equal to a multiple of a GPU warp, so at least 32 threads. Our synchro-
nisation techniques scaled up learning with every additional worker, even though this was
not as linear for multiple GPU devices as for parallel CPU threads. Finally, our end-to-end
machine learning pipeline in SQL showed comparable performance to traditional machine
learning frameworks.
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FIGURE 6.12: End-to-end analysis of a machine learning pipeline: (a) linear regression (New York taxi,
64 tuples per batch and (b) a neural network (MNIST, stochastic gradient descent).
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Chapter 7

ML2SQL: Compiling a Declarative
Meta-Language for ML to SQL

Parts of this chapter have been published in [114, 115].

Database systems provide with SQL a declarative language that allows data manipula-
tion and data retrieving without caring about optimisation details. With increasing hard-
ware performance, database systems will not fully exploit the servers’ hardware potentials
as long as they are used for data retrieval only. To shift computation to the data stored in
database systems, algorithms can be specified in SQL—as it has been Turing-complete since
providing recursive tables—or as user-defined functions. The latter allows injecting code as
stored procedures to be executed inside the database system and make an additional data
manipulation layer on top obsolete. Even though the runtime would decrease, user-defined
functions are not fully established as they form a mixture of declarative and procedural lan-
guages and are inconvenient to express for data scientists.

MLearn

ML2SQL {Python, Postgres, HyPer}

Python, PL/pgSQL, HyPerScript1 create table taxiData(...);

readcsv {
name:taxiData
...
}

FIGURE 7.1: The conception of MLearn: as a meta-language, ML2SQL compiles code for a target
(Python, PostgreSQL, HyPer), also including CSV file preprocessing.

When dealing with data and minimisation problems, dedicated tools as TensorFlow [1] or
Pytorch form the status quo for performing machine learning tasks with tensors and gradi-
ent descent. Another approach of formulating machine learning tasks is using a declarative
language as MLog [85], that compiles to code using TensorFlow, but, so far, it lacks support
for use together with database systems. For computations inside database systems, the sup-
port of linear algebra together with matrices or tensors is essential. Different studies focus
on the integration of linear algebra [91] and matrices inside database systems [71]. Going
one step further, so-called array database systems replace relations by arrays as the native
way of storing attributes. To support machine learning, TensorDB [73] aims at providing
tensor calculus on top of array database systems. One study even provide its own declar-
ative language (BUDS) [44] on top of a prototyped database system that supports matrix
data types. Comparable domain-specific languages are Weld1 for data driven workloads
and IBM SystemML2 [18] for creating flexible algorithms, but both cannot be used inside
database systems. The intermediate language Ferry [48] allows translating from various
code (i.e. Ruby or Haskell) into SQL but is not designed for use with array data types.

However, while linear algebra in database systems has been integrated and declarative
language concepts have been proposed, there is no successful study on bringing a declara-
tive language, tensor calculus and gradient descent in database systems together. Therefore,

1https://github.com/weld-project/weld
2https://systemml.apache.org

https://github.com/weld-project/weld
https://systemml.apache.org
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we develop a declarative machine learning language aimed at optimising models for su-
pervised machine learning and data analysis. Our MLearn language allows specifying tasks
independently of the target language, changing the underlying engine and making it easy
to compare runtimes and results of different underlying frameworks (see Figure 7.1). This
demonstration presents the ML2SQL compiler in particular, which compiles code written in
MLearn to SQL (for PostgreSQL or HyPer [69]) or to Python using the frameworks NumPy
and TensorFlow (see Figure 7.2).

MLearn input

C preprocessor

ML preprocessor

Lexer Parser Visitor

PSQL/HyPer/Python Codegenerator

Output: .py/.sql

FIGURE 7.2: The compilation process: the MLearn language first gets preprocessed twice for handling
includes, then the language gets tokenised and parsed. For each target platform, a generator allows
translating the abstract syntax tree into the target language.

This chapter first introduces the MLearn language specifications and the details of the
corresponding compiler. We evaluate the runtime of the generated code on the target plat-
forms using the Chicago taxi dataset as input data and linear regression as optimisation
model (optimised by gradient descent or as a closed-form solution). At the end, we intro-
duce the demonstration concept including our web interface for online testing and conclude
by improvements that might increase database systems’ computation performance.

7.1 MLearn and the ML2SQL Compiler

The MLearn language is designed to define machine learning tasks in a declarative manner
to be compiled to SQL or Python. It is intended as a meta-language to facilitate the use of
database scripting languages for Python users. The ML2SQL compiler3, implemented by
Bungeroth [22], produces Python or SQL code runnable in PostgreSQL or HyPer. The com-
piler is written in ANTLR [101] and allows import and include statements. As the other
computations rely on the initial data loading, the modular language design will allow the
inclusion of C preprocessor statements (internally, it uses the gcc -E command). We allow
two kinds of import statements, include and import. The first command allows basic
text insertions known from the gcc preprocessor to load self-defined modules. The sec-
ond command imports predefined libraries for time measurements, distributions and other
convenient functions.

This section begins by introducing the language specification. We precede by listing the
prerequisites of the target platforms in order to run the introduced tasks. Finally, we will
give examples of how to use the MLearn language.

7.1.1 Language Specification

All operations work on integers, floating-point numbers, Boolean values or strings as basic
types, which can be composed to tensors. On these types, MLearn provides the following
features (see Listing 7.1):

• Reading CSV files as the fundamental operation to store the data in variables or rela-
tions of the database system.

• Mathematical expressions as provided by NumPy or SQL (as part of the projection
operator).

• Tensors form the main part in our computations. Beside mathematical operations, we
support accessing, slicing, concatenation and transposition.

3https://gitlab.db.in.tum.de/ml2sql/ml2sql

https://gitlab.db.in.tum.de/ml2sql/ml2sql
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• Functions allow structuring the code and reducing code duplication. Also, external
functions imported from other files or of a target language are allowed.

• Control blocks. In addition to our declarative statements, we allow conditional ex-
pressions and loops.

• Distributions are used for data sampling when initialising tensors with random val-
ues.

• Preprocessor statements as known from C can be used to include files and to allow the
abstraction of different functions to different files.

• k-fold cross-validation as a predefined building block splits up a dataset into training
and test sets to find the best—so-called—hyper-parameters.

• Gradient descent as a separate building block optimises the weights for a given loss
function on input data.

expression = INJECT | ’print’ mathexplist | ’if’ ’(’ mathexp ’)’ ’{’ explist ’}’ [’else’ ’{’ explist ’}’] | (’continue’ | ’break’)
| ’while’ ’(’ mathexp ’)’ ’{’ explist ’}’ | ’for’ VARNAME (’from’ mathexp ’to’ mathexp | ’in’ interval) ’{’ explist ’}’ | functions
| ’create’ ’tensor’ VARNAME ’from’ VARNAME ’(’ varlist ’)’
| ’save’ ’tensor’ VARNAME ’to’ (VARNAME|STRING) [’:’ STRING] ’(’ varlist ’)’
| VARNAME ’[’ accessor (’,’ accessor)* ’]’ (’=’ | ’:’) mathexp | VARNAME (’,’ VARNAME)* ’=’ VARNAME ’(’ [mathexp (’,’ mathexp)*] ’)’
| VARNAME ’[’ accessor (’,’ accessor)* ’]’ ’~’ VARNAME ’(’ [mathexp (’,’ mathexp)*] ’)’ | ’import’ VARNAME
| VARNAME ’=’ (mathexp | ’distribution’ ’(’ VARNAME ’,’ VARNAME ’)’) | VARNAME ’~’ VARNAME ’(’ [mathexp (’,’ mathexp)*] ’)’
| returnType* ’function’ VARNAME ’(’ [VARNAME (’,’ VARNAME)*] ’)’ ’{’ explist ’}’ | ’return’ mathexp (’,’ mathexp)*
| (’readcsv’|’writecsv’) ’{’ ((’name:’ VARNAME) | (’file:’ STRING) | (’columns:’ varlist) | (’replace empty entries:’ mathexp)

|(’delimiter:’ STRING) | (’replace:’ ’{’ (STRING ’:’ STRING)+ ’}’) | (’delete empty entries’))+ ’}’
| ’gradientdescent’ ’{’ ((’function:’ STRING) | (’data:’ varlist) | (’optimize:’ [nameshape (’,’ nameshape)*])

| (’learningrate:’ mathexp) | (’maxsteps:’ mathexp) | (’batchsize:’ mathexp) | (’threshold:’ mathexp))+ ’}’
| ’plot’’{’((’xData:’mathexp) | (’yData:’mathexp) | (’xLabel:’STRING) | (’yLabel:’STRING) | (’type:’STRING) |(’filename:’STRING))+’}’
| ’crossvalidate’ ’{’ ((’minfun’ ’:’ VARNAME ’=’ fun) | (’kernel’ ’:’ VARNAME ’:’ VARNAME ’:’ mathexp)

| (’data’ ’:’ VARNAME (’,’ VARNAME)*) | (’n’ ’:’ mathexp) | (’lossfun’ ’:’ fun)
| (’folds’ ’:’ mathexp) | (’test’ ’{’ (VARNAME ’=’ interval)+ ’}’))+ ’}’ ;

LISTING 7.1: Grammar of the MLearn language: Predefined building blocks for gradient descent,
cross-validation, CSV file handling as well as procedural control blocks, function calls and the
declaration of variables are allowed as expressions.

TABLE 7.1: Required matrix operations by MLearn.

Operation Symbol Arguments Result
scalar mul. a ∗ b a ∈ R, b ∈ Rn×m Rn×m

tensor mul. a ∗ b a ∈ Rn×o, b ∈ Ro×m Rn×m

tensor add. a + b a, b ∈ Rn×m Rn×m

tensor sub. a− b a, b ∈ Rn×m Rn×m

tensor power ab a ∈ Rn×n, b ∈ Z Rn×n

transpose at a ∈ Rn×m Rm×n

identity id(n) n ∈N Bn×n

array fill f ill(r, n, m) r ∈ R, n, m ∈N Rn×m

7.1.2 Target Language

We designed our machine learning language to compile to Python code with the libraries
that data scientists would use. To work with SQL we picked out the disk-based database
system PostgreSQL and its main-memory counterpart, HyPer. We assume for both systems
an underlying scripting language, PL/pgSQL in PostgreSQL and HyPerScript in HyPer, that
combines declarative SQL statements with procedural control blocks (see Chapter 4). The
tensor operations in Python are performed using NumPy library calls. HyPer has already
implemented all basic tensor operations including addition, (scalar) multiplication, power
(including inverse for matrices on negative exponents), transposition, initialising an identity
matrix and filling a matrix by a predefined value (see Chapter 3). As those operations do not
exist in PostgreSQL (see Table 7.1), Bungeroth [22] has implemented these operations as C
library function calls to the OpenBLAS library4, also supporting parallelism. Furthermore,

4https://www.openblas.net/

https://www.openblas.net/
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we make use of predefined array operations as slicing and concatenation to divide the input
dataset into training and testing one. Also, we wrap a PostgreSQL library extension around
a gradient descent [124] library to allow in-database gradient descent in PostgreSQL.

7.1.3 Example

As an example, we specify linear regression as closed-form solution in MLearn:

~w = (X′TX′)−1X′T~y.

The example code (see Listing 7.2) splits a tensor (A) into features (X, the first three attributes,
line 2) and labels (y, line 3). Then a tensor out of the value 1 as bias is prepended in front
of the features (line 4/5). Afterwards, the optimal weights (w) are computed out of tensor
algebra (line 7). The compiled code to Python can be seen in Listing 7.3, the one for Post-
greSQL in Listing 7.5 and the one for HyPer in Listing 7.4. We can see that the code written
in our declarative language is much more compressed.

1 A = [[1.1,0.98,87.3,3],[0.1,3.15,42.05,3.3],[100.5,26.8,10.1,225.1],[1097.5,23000,10.1,24850.1]]
2 X = A[: , 0:2]
3 y = A[: , 3]
4 bias[1,len(X,0)] : 1
5 X = (bias::X.T).T
6 Xt = X.T
7 w = (Xt*X)^(-1) * Xt * y
8 print ’%’ , w

LISTING 7.2: The specification in MLearn.

1 import numpy as np
2 def main():
3 A = np.array([np.array([1.1,0.98,87.3,3]),np.array([0.1,3.15,42.05,3.3]),np.array

([100.5,26.8,10.1,225.1]),np.array([1097.5,23000,10.1,24850.1])])
4 X = DATA[ :,0:2 +1]
5 y = DATA[ :,3:3 +1]
6 bias = np.full( ( 1,np.size(X ,0 )), 1)
7 X = (np.append(bias,X.T, axis=0)).T
8 Xt = X.T
9 w = np.dot( np.dot( np.linalg.matrix_power(( np.dot(Xt, X)), (-1)), Xt), y)

10 print( ’{}’.format( w))
11 if __name__ == "__main__": main()

LISTING 7.3: The translated code for Python using NumPy.

1 CREATE OR REPLACE FUNCTION ML_main() AS $$
2 var A = array[array[1.1::float,0.98::float,87.3::float,3],array[ 0.1::float,3.15::float

,42.05::float,3.3::float],array[100.5::float,26.8::float,10.1::float,225.1::float],array
[1097.5::float,23000,10.1::float,24850.1::float]];

3 var X = array_resetlower(array_slice(A,1,array_length(A,1),(0+1)::int,(2+1)::int));
4 var y = array_resetlower(array_slice(A,1,array_length(A,1),(3+1)::int,(3+1)::int));
5 var bias = array_fill(1::float, 1,array_length(X,0+1));
6 X = array_transpose((array_cat(bias,array_transpose(X))));
7 var Xt = array_transpose(X);
8 var w = power((Xt*X), (-1)::int)*Xt*y; debug_print( ’%’,w);
9 $$ LANGUAGE ’hyperscript’ strict;

10 select ML_main(); DROP FUNCTION ML_main();

LISTING 7.4: As HyPerScript code for HyPer.

1 DO $$ declare
2 A float[][]; X float[][]; Xt float[][]; bias float[][]; w float[][]; y float[][];
3 begin
4 A := array[array[1.1::float,0.98::float,87.3::float,3],array[0.1::float,3.15::float,42.05::

float,3.3::float],array[100.5::float,26.8::float,10.1::float,225.1::float],array[1097.5::
float,23000,10.1::float,24850.1::float]]

5 X := A[:][0+1:2+1]; y := A[:][3+1:3+1];
6 bias := array_fill(1::float, ARRAY[1,array_length(X,0+1)]);
7 X := matrix_transpose((array_cat(bias,matrix_transpose(X))));
8 Xt := matrix_transpose(X);
9 w := matrix_power((Xt * X), (-1)::int ) * Xt * y;

10 RAISE NOTICE ’%’,w;
11 END$$;

LISTING 7.5: For PostgreSQL as PL/pgSQL procedure.
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7.2 Evaluation

For evaluation (see Figure 7.3), we specify linear regression as closed-form or using gradi-
ent descent in our machine learning language and let the tasks run on the following target
platforms: PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and TensorFlow 1.3.0
and the current HyPer system. We used an Ubuntu 18.04.01 LTS server with two sockets and
twenty cores of Intel Xeon E5-2660 v2 processors in total (supporting hyper-threading). The
server has 256 GiB of main-memory and uses 1 TiB of SSD as background storage. As test
data served 85 mio. tuples of the Chicago taxi rides dataset5.
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FIGURE 7.3: Runtime of (a) data loading from CSV, (b) solving linear regression using equation systems
or (c) by gradient descent: For data loading and closed-form linear regression, we varied the input size;
for gradient descent we varied the number of iterations. PostgreSQL did not support the needed array
operations for more than 107 tuples.

We tested the runtime of loading data from CSV (see Figure 7.3a), the runtime of linear
regression in closed-form (see Figure 7.3b) and by using gradient descent (see Figure 7.3c).
For gradient descent, we used a learning rate of 5 · 10−7 and varied the number of iterations
from 1 to 104, but we used a constant input size (the whole dataset). The time measurements
consider only the runtime needed for the specific operations, the time for data loading and
array creation is measured separately.

The results show that data loading took in all three systems about the same time, no
system seems to dominate one another. For the matrix operations used for closed-form lin-
ear regression, Python using NumPy still dominates the other systems (even PostgreSQL
does not support two-dimensional array creation for more than 107 tuples). Hence, the in-
tegration of matrix calculus in database systems still has to be improved. Whereas using
gradient descent, both database systems show competitive performance. Even some perfor-
mance benefits originate from the used gradient descent optimiser, the results underline the
possibility of analysing data inside the database system where it is stored.

In summary, the evaluation underlines the claim that the ML2SQL compiler makes it easy
to compare different systems and that database systems show competitive performance on
certain tasks.

7.3 Demonstration

For demonstration purposes, we have created an interactive web interface6 (see Figure 7.4)
that allows formulating tasks in MLearn, compiling to the choosable target language and
executing the tasks. Switching between the different target platforms (Python, HyPer, Post-
greSQL) makes it possible to compare the results and the runtimes of each target language.
Behind the web interface, we run a PostgreSQL and a HyPer database server fed with an
excerpt of the Chicago taxi dataset. The web interface allows everyone to try out the intro-
duced types of tensor algebra as well as minimising arbitrary loss functions as, for example,
linear or logistic regression.

5https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew/data
6http://ml2sql.db.in.tum.de

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew/data
http://ml2sql.db.in.tum.de
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FIGURE 7.4: Web interface for an interactive exploration of the MLearn language: Above left, the text
editor allows specifying tasks, which are translated into the selected target language (above right). The
code will be executed in the terminal.

7.4 Conclusion

This chapter presented the first declarative machine learning language MLearn, which al-
lows describing machine learning tasks independently of the target engine and whose com-
piler allows running the code in the core of database systems. This chapter first introduced
comparable approaches before it presented the language specifications for performing lin-
ear regression and gradient descent using any possible loss function. Then, we evaluated the
runtime of the tasks on the different target platforms PostgreSQL, HyPer and Python using
NumPy and TensorFlow. The results showed, that it was indeed feasible to run the tasks as
stored procedures inside database systems showing comparable runtime, especially during
matrix creation.

Overall we have shown the potential of a declarative machine learning language of ex-
pressing tasks compactly and being independent of the underlying engine.

To sum up, we have discovered out that array processing represents the major building
block for tasks related to machine learning. These tasks would strongly benefit from SQL
especially for data preprocessing. As future work—to boost the capabilities of database sys-
tems for array data—remains the development of efficient array data types and the standard-
ised integration of optimisation methods such as gradient descent inside database systems.

In addition, when integrating the advantages of array databases into hybrid OLTP and
OLAP database systems, no domain-specific systems would be required. We shall there-
fore work on applying matrix algebra to tables using stored procedures that are written in
ArrayQL.



63

Chapter 8

ArrayQL

Parts of this chapter have been published in [116, 117].


a1,1 · · · a1,n
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. . . . . . . . .
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m 1 am,1
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1 a1,1 . . . a1,n

. . . . . . . . . . . .
m am,1 . . . am,n

Relational
Representation

Tabular
Representation

FIGURE 8.1: Storing arrays as database tables: either using a tabular representation (left) with the
attributes as columns and an additional one defining the row order or using a relational representation
(right) with the array as coordinate list.

Array database systems are developed for geo-temporal data and therefore specialised
for multidimensional discrete data (MDD) [6]. Such data occurs within time-series of scien-
tific experiments or real-world scenarios when processing images or indexing geographic or
astronomical data. These examples have in common, that the tuples can be addressed us-
ing a multi-dimensional index out of coordinates and time. In contrast to relational database
systems, array database systems are designed for index-based array access and excel in com-
puting aggregations on numerical data. Popular array database systems are RasDaMan [6],
MonetDB SciQL [147] and SciDB [38, 34]. As each one is shipped with its own query lan-
guage, ArrayQL [87] is an attempt to standardise them that has been presented at XLDB
2012. Although the corresponding algebra [94] has been published, it is not fully covered by
the corresponding draft of a grammar specification [87], which is needed in order to imple-
ment ArrayQL.

Even though array database systems are often based on relational ones, an interface for
querying both does not exist. For example, RasDaMan supports relational database systems
such as PostgreSQL as an underlying key-value store but archives the data as binary large
objects (BLOB) only. SciQL is implemented within MonetDB and stores arrays along with
tables in the same memory layout but does not enable cross-querying. But to allow access
from SQL and an array query language, a uniform representation is needed. Arrays have to
be either stored as coordinate list (relational representation) or tables have to carry an addi-
tional attribute that defines the row order (tabular representation, see Figure 8.1). A relational
representation saves memory on sparse arrays as no entry is needed for values equal to zero.
Also primitive data types as attributes are sufficient even for more than two dimensions. A
tabular representation would require an array data type to represent the third dimension.

Another use case for array-oriented data processing arises by the need of matrix opera-
tions for data mining and machine learning [146, 145, 133]. The corresponding data is often
stored and collected inside of relational database systems, but its analysis depends on lin-
ear algebra, which database systems do not provide natively. Thus, the data gets extracted
into separate tools such as R and Python, so analysis happens on past data, ignoring incom-
ing tuples. We argue that array database systems are ideally suited for machine learning
algorithms, which essentially depend on data stored in tensors and their transformations,
making ArrayQL a worthwhile extension.
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We claim that relational database systems will highly benefit from ArrayQL as a further
query language, either embedded in SQL as user-defined functions or as a separate query
interface.

We integrate ArrayQL within our code-generating database system Umbra. We decide
in favour of a relational array representation, which allows a direct mapping onto relational
algebra at compile time. This requires an extension of the semantic analysis only, rather than
a change to the underlying query engine. The extension accepts ArrayQL statements as part
of SQL as user-defined functions or via a separate interface. As an advantage, ArrayQL can
work on SQL tables and SQL has access to ArrayQL arrays without modification and the
extension does neither affect runtime nor the compile time of SQL queries. This chapter
provides a translation of the so far known ArrayQL operators into relational algebra and a
corresponding grammar. This chapter’s specific contributions are:

• an extended grammar definition that supports the full ArrayQL algebra,

• a relational array representation including bounding boxes and validity maps for Ar-
rayQL within database systems

• the translation of corresponding operators into relational algebra,

• the integration of ArrayQL into a code-generating database system with Umbra as
target,

• and an experimental evaluation using micro-benchmarks for linear algebra and real-
world data for array operations.

This chapter comprises the following sections: Section 8.1 presents the architecture when
integrating ArrayQL within the beyond main-memory database system Umbra as the target.
Section 8.2 introduces the ArrayQL algebra and operator translation to relational algebra.
Section 8.3 provides a complete ArrayQL grammar to address the presented ArrayQL op-
erators. Section 8.4 demonstrates the application of ArrayQL in conjunction with SQL and
for linear algebra. Section 8.5 evaluates the proposed extension using micro-benchmarks for
basic matrix algebra, queries on real-world data and the SS-DB benchmark.

ArrayQL Grammar UDF SQL Grammar

ArrayQL
Interface

SQL
Interface

Abstract Syntax Tree

ArrayQL Analysis SQL Analysis
Semantic
Analysis

Code Generation

LLVM IR

FIGURE 8.2: ArrayQL extension in Umbra: ArrayQL statements are parsed via a separate interface or
as part of user-defined functions (UDF) in SQL; a separate file contains the ArrayQL grammar. An
abstract syntax tree is generated, whereof the ArrayQL statements are analysed separately.

8.1 In-Database Integration

This section illustrates the changes made to the database system Umbra either in order
to accept ArrayQL as user-defined functions or to offer a separate query interface. After-
wards, we explain design decisions made to suit the relational concept of a code-generating
database system and to enable cross-querying without overhead.
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8.1.1 Architecture

Umbra is a code-generating database system following the producer-consumer concept.
First, it transforms the parsed SQL query into an abstract syntax tree, which is passed to
the semantic analysis to create the operator plan. The operator plan gets optimised using
estimated cardinalities as only the schema is known during compile time. Afterwards, a
translator class for each operator generates the LLVM code, for which the traditional tuple-
flow is inversed. So instead of pushing tuples upwards a target operator, operators demand
their sources to produce code. Each source then demands the parent operator, the consumer,
to generate code for processing each tuple further.

Umbra supports user-defined functions, that are handled separately during semantic
analysis. For each language, a separate grammar file together with one for its semantic anal-
ysis exists. This is shown in Figure 8.2: when adding ArrayQL to Umbra, either a separate
interface accepts ArrayQL statements or they are parsed as part of a user-defined function
in SQL. Afterwards, a common abstract syntax tree is generated, which is then analysed
separately. Within the semantic analysis, we mostly rely on standard relational algebra op-
erators, but we are also able to call customised operators. Because of this, we benefit from
query optimisation such as operator reordering or predicate push-down.

8.1.2 Array Representation

Only the schema is known during compile time, whereas the tuples can only be accessed
during runtime. This interferes with a tabular array representation, as only the columns
are part of the schema, and leads us to the relational representation. We store every n-
dimensional array with m values per cell as a table with n + m attributes. Stored as a coor-
dinate list, the attributes for the indices are unique and form the primary key. This allows
their indexing and fast retrieval later on.

ArrayQL differentiates between attributes and dimensions, which becomes obsolete in
a relational representation as dimensions are mapped to attributes internally. This leads to
more flexibility, since arbitrary attributes can be used as dimensions.

According to the ArrayQL algebra, an array consists of a bounding box, a validity map and
the content. The bounding box defines the bounds for each dimension, whereas the validity
map defines the visible cells within the bounds and the attributes per cell define the content.
To define the bounding box, we simply insert a tuple for the lower as well as the upper
bound upon array creation (see Figure 8.3). Within the bounding box, we consider an entry
as valid if it exists and at least one attribute is not declared as NULL.

1 CREATE ARRAY m (
2 i INTEGER DIMENSION [1:2],
3 j INTEGER DIMENSION [3:4],
4 v INTEGER);

x y v
1 3 NULL
2 4 NULL

FIGURE 8.3: When an array is created with ArrayQL and the dimensions are specified, a corresponding
relation is created with two initial tuples defining the bounding box.

8.1.3 Interaction with SQL

Depending on its signature, ArrayQL expressions, when used as part of a user-defined func-
tion, return either a table, e.g., TABLE (x INT, y INT, v INT), or a single array at-
tribute, e.g., INT[][] (see Listing 8.1). As a table function, it returns the relational array
representation, that can be further processed in SQL. Otherwise, when the function is de-
clared to return a single attribute, the result is cast to Umbra’s array data type.

1 CREATE FUNCTION exampletable() RETURNS TABLE (x INT, y INT, v INT) LANGUAGE ’arrayql’ AS ’SELECT
[x], [y], v FROM m’;

2 CREATE FUNCTION exampleattribute() RETURNS INT[][] LANGUAGE ’arrayql’ AS ’SELECT [x], [y], v
FROM m’;

LISTING 8.1: ArrayQL as part of a user-defined function returns either an SQL table or an SQL array.
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TABLE 8.1: Operators of the ArrayQL algebra: the first column names the operator, the second column
specifies the input arguments, the third column the output array, the fourth column defines the set
of valid indices and the latter one the translation of ArrayQL operators into relational algebra. i1...n
represents the attribute for the dimension in relational form, |i1...n| denotes the size of a dimension. We
assume arrays having a single attribute v ∈ R only.

Operator Input Output Validity Map Relational Algebra

apply a ∈ R
|i1 |×···×|in | , f ∈ (R→ R) R

|i1 |×···×|in | da = dout ⊆ |i1 | × · · · × |in | πi1,...in , f (v) (a)

combine a,b ∈ R
|i1 |×···×|in | R

|i1 |×···×|in | da ] db = dout ⊆ |i1 | × · · · × |in | ad|><|da.i1=b.i1∧···∧a.in=b.in (b)

i. d. join a,b ∈ R
|i1 |×···×|in | (R, R)|i1 |×···×|in | da ∩ db = dout ⊆ |i1 | × · · · × |in | a ./a.i1=b.i1∧···∧a.in=b.in (b)

fill a ∈ R
|i1 |×···×|in | R

|i1 |×···×|in | da ⊆ dout = |i1 | × · · · × |in | . . . 0|a.i1 |,...,|a.in | . . .

filter a ∈ R
|i1 |×···×|in | , p ∈ (R→ B) R

|i1 |×···×|in | dout ⊆ da ⊆ |i1 | × · · · × |in | σp(v) (a)

rebox a ∈ R
|i1 |×···×|in | , il1, iu1 , . . . , iln , iun ∈ I R

iu1−il1×···×iun−iln da ⊆ |i1 | × · · · × |in |, dout ⊆ iu1 − il1 × · · · × iun − iln σ
il1≤i1≤iu1∧···∧iln≤in≤iun

(a)

reduce a ∈ R
|i1 |×···×|in | , f ∈ (R|in | → R) R

|i1 |×···×|in−1 | da ⊆ |i1 | × · · · × |in |, dout ⊆ |i1 | × · · · × |in−1 | γi1,...,in , f (v) (a)

rename a ∈ R
|i1 |×···×|in | R

|i1 |×···×|in | da = dout ⊆ |i1 | × · · · × |in | ρ(a)

shift a ∈ R
|i1 |×···×|in | , i′1, . . . , i′n ∈ I R

|i1 |×···×|in | da = dout ⊆ |i1 | × · · · × |in | πi1+i′m ,...,in+i′n ,v (a)

8.2 ArrayQL Algebra

ArrayQL offers an algebra [94] that is similar to relational algebra and allows a mapping
to SQL operators considering the underlying schema. The algebra offers nine operators
(see Table 8.1), for which it defines content, validity maps and bounding box. In our rela-
tional form, one relation a ⊆ In×Rm with schema sch(a) = {i1, . . . , in, r1, . . . , rm} represents
one n-dimensional array a ∈ (Rm)|i1|×...×|in | with m attributes of domain R as content. Its
coordinates (i1, . . . , in) ⊆ In form the primary key and delimit the bounding box. We for-
mulate the validity map of an array a as set of indices da ⊆ In of valid entries. Transferred
to SQL, all entries are valid, for which a tuple exists with not-null attributes. This section
introduces the ArrayQL operators, the corresponding syntax and the translation into SQL
operators.

8.2.1 Rename

The rename operator assigns a new name to either a dimension, attribute or a whole array.
Similar to the rename operator ρ in SQL, it is introduced by a keyword (AS) behind expres-
sions or tables.

1 SELECT [i] AS s, [j] AS t, v AS c FROM m[s,t];

LISTING 8.2: Rename operator.

8.2.2 Function Application

The apply operator applies a function f ∈ Rm → Ro on certain attributes of each valid entry.
This is translated to an arithmetic expression as part of an SQL projection πi1,...,in , f (r1,...,rm)(a).
As function application does not affect the validity map, no further adjustments are needed.

1 SELECT [i], [j], v+2 FROM m;

LISTING 8.3: Function application: addition.

8.2.3 Filter

The filter operator invalidates cells for which a condition does not hold. This is called implic-
itly when accessing an array via indices or explicitly when checking the cell’s value as part
of the WHERE-clause. Both ways are translated into selections of relational algebra σp(v)(a),
as both dimensions and attributes are represented in SQL as attributes.

1 SELECT [i], [j], v FROM m WHERE v = 0.0;
2 SELECT [i] as i, [j] as j, * FROM m[i/2, j];

LISTING 8.4: Explicit and implicit filter operator.
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8.2.4 Index Manipulation: Shift and Rebox

Shift moves the indices, whereas rebox redefines the bounding boxes by enlarging or shrink-
ing the array size. In our relational schema, shift is translated into an arithmetic expression
as part of a projection, as it modifies each index by adding or subtracting the difference
i′1, . . . , i′n ∈ I:

πi1+i′1,...,in+i′n ,r1,...,rm
(a).

1 SELECT [i] as i, [j] as j, b FROM m[i+1,j-1];

LISTING 8.5: Shift operator.

For rebox, if the array size is shrunk, a conditional statement (selection) filters out each index,
which is outside the new bounding box given as lower and upper bounds il

1, iu
1 , . . . , il

n, iu
n ∈ I:

σil1≤i1≤iu1∧···∧iln≤in≤iun
(a).

In any case, new array bounds have to be added afterwards (with a union operator).

1 SELECT [1:5] as i, [1:5] as j, * FROM m[i,j];

LISTING 8.6: Rebox operator.

8.2.5 Fill

The fill operator creates an entry with the default value (0 for numerics) for the attributes
of every invalid cell within the bounding box. This is useful for linear algebra with arrays
as input matrices and has to be called by a keyword. Internally, it is translated to a call
to generate_series, an outer join and a projection, only when enabled by the keyword
filled in ArrayQL and needed before applying specific operations (see Section 8.4.2):

πCOALESCE(a.r1,0),...(ad|><|da.i1=b.i1∧···∧a.in=b.in(ρb(0|a.i1|,...,|a.in |))).

1 SELECT FILLED [i], [j], * FROM m;

LISTING 8.7: The keyword FILLED enables the fill operator.

8.2.6 Combining and Joining

ArrayQL defines three operators for joining arrays, namely combine, the inner dimension
join and—its generalisation to attributes—the inner extended join.

Combine

Combine merges two arrays of the same dimensionality but distinct valid cells, so it con-
catenates arrays. All cells are valid that are at least valid in one input: da ] db = dout ⊆
|i1| × · · · × |in|. NULL is assumed for the attributes of a missing join partner. Combine acts
like a full outer join, to which it is translated in relational algebra:

ad|><|da.i1=b.i1∧···∧a.in=b.in(b).

1 CREATE ARRAY m2(x INTEGER DIMENSION [3:4], y INTEGER DIMENSION [1:2], v2 INTEGER);
2 SELECT [i] as i, [j] as j, v, v2 FROM m[i,j], m2[i,j];

LISTING 8.8: Combine operator.
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Inner Join

The inner dimension/extended join corresponds to the inner join:

a ./a.i1=b.i1∧···∧a.in=b.in (b).

All cells are valid, that are valid in both join partners: da ∩ db = dout ⊆ |i1| × · · · × |in|. They
differ, as the inner dimension join only allows dimensions as indices, whereas the inner
extended join generalises the join predicate, so that attributes can be used to determine the
index as well. As the usage of either combine or join is data-dependent and not known
during compile time, we add the keyword JOIN to explicitly perform an inner join. This
differs from the original ArrayQL proposal where it shares the syntax with combine (which
is called when an inner join cannot be applied).

1 SELECT [i] as i, [j] as j, v, v2 FROM m[i+2,j+2] JOIN m2[i-2,j-2];

LISTING 8.9: Inner dimension Join.

8.2.7 Reduce for Aggregations

Reduce performs an aggregation over at least one dimension as needed by roll-up queries
of analytical workloads. Reduce is introduced by the keywords GROUP BY, as known from
SQL, followed by the preserved dimensions after reduction. Similarly, one aggregation func-
tion f ∈ ((Rm)|in | → Rm) must be applied to all remaining attributes. These similarities
allow a direct mapping to aggregations in relational algebra:

γi1,...,in−1, f (v)(a).

1 SELECT [i], sum(v) FROM m GROUP BY i;

LISTING 8.10: Reduce operator for aggregation: summation

8.3 ArrayQL Grammar

The syntax draft of 2012 [87] proposed ArrayQL as a data definition and data query language
on arrays as the principle data model. Common elements with SQL are the keywords and the
syntax to create and access attributes, but in contrast, the statements are extended to specify
dimensions. Beside arithmetic operations and basic array transformations, ArrayQL allows
aggregations and joins. We add support for temporal tables, extend the join functionality
and propose the syntax for an extension to a data modification language. In this section, we
introduce the ArrayQL statements and give a syntax definition in extended Backus-Naur-
Form (see Listing 8.11).

8.3.1 Data Definition Language

As a data definition language, ArrayQL allows the creation of arrays similar to SQL ta-
bles (see Listing 8.12). A create statement starts with the keyword CREATE ARRAY fol-
lowed by the array name. As arguments inside parentheses, ArrayQL expects the keyword
DIMENSION together with the array bounds and, as in SQL, the attributes per cell.

1 CREATE ARRAY m (i INTEGER DIMENSION [1:2], j INTEGER DIMENSION [1:2], v INTEGER);

LISTING 8.12: Array creation statement.

As an alternative, creation is possible out of an existing array (see Listing 8.13).

1 CREATE ARRAY n FROM SELECT [i], [j], v FROM m;

LISTING 8.13: Array creation out of existing array.
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Statement = ( ( CreateStmt | SelectStmt | UpdateStmt ) ";" )*;

CreateStmt = "create" "array" NAME ( ("from" SelectStmt) | ArrayDef) ;
ArrayDef = "(" Dimension ("," Dimension)* "," Attribute ("," Attribute)* ")";
Dimension = NAME Type "[" INT (":" INT)* "]";
Attribute = NAME Type ("default" EXPR)?;
Type = "integer" | "float" | "text";

SelectStmt = "with array" NAME "as" (("from" SelectStmt) | ArrayDef)
(","NAME "as" (("from" SelectStmt) | ArrayDef))

"select" SelectExpr ("," SelectExpr)* "from" SubArray ( ( "," | "join" SubArray)*
("where" BOOL)? ("group by" NAME ("," NAME)* )?;

SubArray = NAME ("[" EXPR ("," EXPR )* "]")? NAME? | NAME "*" NAME ;
SelectExpr = EXPR ("as" NAME)? | "[" NAME "]" ( "as" NAME )? | "[" INT ":" INT "]" "as" NAME

| ("min" | "max" | "avg" | "sum" | "count") "(" NAME ")";

UpdateStmt = "update" (NAME "[" EXPR "]" | "[" INT ":" INT "]")* "(" UpExpr ")";
UpExpr = SelectStmt | "values" "(" EXPR ( "," EXPR )* ")" ( "," "(" EXPR ( "," EXPR )* ")");

LISTING 8.11: Grammar of ArrayQL. NAME, EXPR, BOOL, INT denote a text string, arithmetic, Boolean
or integer expression.

We suggest ArrayQL in conjunction with SQL insert statements to allow mixed queries. In
conjunction with SQL, the ArrayQL create statement allows to create new tables or prepare
existing ones for array-based processing (initialising the bounds and adding an index on
the dimension attributes). When a new array has been created, SQL can access the corre-
sponding table to insert elements like bulk-loading from CSV. Afterwards, ArrayQL as a
data query language can process the filled array.

8.3.2 Data Query Language

ArrayQL is intended as a data query language to access and aggregate along the array’s
dimensions. Similar to SQL, an ArrayQL statement is composed out of a SELECT- and a
FROM-clause and, optionally, one for WHERE and one for GROUP BY (see Listing 8.14). The
SELECT-clause expects the indices for the dimensions (in brackets) as well as arithmetic
expressions as attributes that form the result. The FROM-clause specifies the source array.
As its arguments, arrays or compound statements, such as joins, table-functions or entire
subqueries are allowed. The WHERE-clause filters each entry by a predicate. The GROUP BY-
clause addresses the dimensions preserved after an aggregation.

1 SELECT [i], SUM(v)+1 FROM m WHERE v>0 GROUP BY i

LISTING 8.14: Exemplary ArrayQL select statement.

Optionally, the indices can be rearranged, which is indicated by the dimension names inside
brackets behind the source array. The keyword AS allows renaming of expressions as well
as of input arrays. Filtering and grouping happen similar to SQL: filter expects a condition
inside a WHERE-clause, grouping expects the dimensions considered for aggregation as part
of the GROUP BY-clause.

In addition to the ArrayQL draft, we propose support of temporary arrays, explicit inner
joins and various table functions. Temporary arrays are introduced by the keyword WITH
(see Listing 8.15), similar to temporary tables in SQL.

1 WITH ARRAY tmp AS (SELECT [i] as j, SUM(v+1) FROM m[j] WHERE v>0 GROUP BY j) SELECT * FROM tmp;

LISTING 8.15: Temporary table in ArrayQL.

Inner joins are part of the ArrayQL algebra in Section 8.2. Table functions are needed to
apply linear algebra on arrays, and therefore, discussed in Section 8.4.

8.3.3 Data Modification Language

Beside manipulating existing arrays using SQL, we add basic support for ArrayQL up-
date statements (see Listing 8.16). An ArrayQL update statement is introduced by UPDATE
ARRAY and expects the array name and the dimensions whose values should be modified.
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An ArrayQL select statement or an explicit VALUES-clause containing the attributes specify
the new values. Inside a VALUES-clause all attributes of one cell are enclosed by brackets.

1 UPDATE ARRAY m [1][1] (select [2][1],v FROM m);
2 UPDATE ARRAY m [1][1:2] (values (1),(2));

LISTING 8.16: ArrayQL update statements.

8.4 Application of ArrayQL

Array query languages have two major application areas: the common one is for use with
geo-temporal data, the second one is applying linear algebra on data in relational form
for statistical analysis. One important difference between the two domains concerns the
handling of invalid values. Array database systems assume NULL for non-existing values,
whereas these are interpreted as 0 within sparse matrices. To conform to the ArrayQL spec-
ification, we assume the geo-temporal use-case as default. To distinguish the other one, the
keyword filled indicates matrix operations. This section explains both use-cases includ-
ing table-function extensions.

8.4.1 Geo-Temporal Data

The intended purpose of ArrayQL is to allow index-based access to geo-temporal data. With
our ArrayQL integration into a relational database system, mixed query types become pos-
sible. A table created in SQL (see Listing 8.17) can be accessed within ArrayQL (see List-
ing 8.18) and vice versa. ArrayQL interprets the attributes that form the table’s primary key
as indices. Accordingly, SQL has access to all array’s dimensions as attributes.

1 CREATE TABLE taxidata(id TEXT, pickup_longitude INT, pickup_latitude INT, pickup_datetime DATE,
dropoff_datetime DATE, trip_duration FLOAT, PRIMARY KEY(id, pickup_longitude,
pickup_latitude));

2 INSERT INTO mytaxidata [..];

LISTING 8.17: Table creation and data insertion using SQL.

1 SELECT [pickup_longitude],[pickup_latitude], SUM(trip_duration)
2 FROM mytaxidata GROUP BY pickup_longitude, pickup_latitude;

LISTING 8.18: ArrayQL queries on an SQL table: the attributes that form the primary key serve as
indices.

8.4.2 Linear Algebra with ArrayQL

The ArrayQL operators allow expressing basic mathematical expressions. Complex func-
tions are realised by dedicated operators or user-defined functions. They are called as part
of the from-clause where arbitrary table functions are accepted as input.

When creating an array, the bounding box defines the size of a matrix, the attributes
determine the field of which each entry is a member. Operations on matrices obey the fol-
lowing pattern: scalar operations are part of the select-clause, matrix operations belong to
the from-clause (see Figure 8.4).

CREATE ARRAY A (
i INTEGER DIMENSION [1 : 2],
j INTEGER DIMENSION [1 : 3],
a FLOAT)

(aij) = A ∈ R2×3

SELECT [i],[j], A.a FROM A(aij) = A

FIGURE 8.4: Correlation of ArrayQL with matrices.
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TABLE 8.2: Matrix algebra with ArrayQL.

Function ArrayQL operator
addition apply

scalar multiplication apply
matrix multiplication i.d.join, reduce

slice rebox
subtraction apply
transpose rename

When performing linear algebra on arrays, the main difference to geo-temporal applica-
tions concerns the meaning of invalid entries. As arrays are interpreted as sparse matrices,
values of non-existing entries are assumed to be zero. The fill operator has to be put implic-
itly in front of respective operations to consider operations that alter zero values. To enable
this feature, we propose the keyword filled behind select. Having enabled this feature,
the fill operator presented in Section 8.2.5 is called when necessary: this includes all arith-
metic unary and binary functions but not joins. This functionality is enabled for all trigono-
metric, arithmetic and aggregate functions (see Listing 8.19). During semantic analysis, the
fill operator is added to the operator tree before the function call is generated. The operator
creates an array of the same dimensions containing zeros proceeded by an outer join with
the original table on the indices. A COALESCE statement then replaces non-existing (NULL)
values, thus within the array-bounds only.

1 SELECT FILLED [i], [j], v+2 FROM m;
2 SELECT FILLED [i], max(v) FROM m GROUP BY i;

LISTING 8.19: The fill operator is called before a function call, for example, of an arithmetic binary
function or a unary aggregate function like a row-wise maximum function.

The ArrayQL algebra allows expressing basic mathematical expressions as scalar opera-
tions or compound statements (see Table 8.2). For operations not covered by the algebra, we
add additional table functions. We demonstrate matrix operations expressed in ArrayQL,
short-cuts to simplify their usage and their application for linear regression and training a
neural network.

Scalar Operations

Scalar operations are part of the select-clause as arithmetic expressions (see Listing 8.20).
They correspond to the apply operator, since scalar multiplication, addition or subtraction
are each applied elementwise.

1 SELECT [i],[j],m.v*n.v FROM m,n; -- multiplication
2 SELECT [i],[j],m.v+n.v FROM m,n; -- addition
3 SELECT [i],[j],m.v-n.v FROM m,n; -- subtraction

LISTING 8.20: Scalar operations in ArrayQL.

Transpose and Slice

To transpose or slice an array, we can rely on basic index manipulations. Slicing an array
corresponds to the rebox operator (see Listing 8.6), as it defines a sub-range for each index.
For transposition AT = (aij)

T = (aji), ArrayQL does not perform an operation but renames
the indices (see Listing 8.21) as the matrices are stored in a relational representation as a
coordinate list.

1 SELECT [j] AS s, [i] AS t, * FROM m[s, t]

LISTING 8.21: Transpose.
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TABLE 8.3: Short-cuts for matrix operations (from-clause).

Function Short-cut Input Output
addition �+� M× N, M× N M× N
inversion �−1 M× N M× N

multiplication � ∗� M× K, K× N M× N
power �� M×M M×M

subtraction �−� M× N, M× N M× N
transposition �T M× N N ×M

Matrix Multiplication

The text-book implementation of a matrix multiplication (ai,k) · (bk,j) = ∑n
k=1 aikbkj can be

expressed in ArrayQL. In relational algebra, with two tables m{[i, k, v]}, n{[k, j, v]} each rep-
resenting a matrix, the multiplication corresponds to an operator tree out of join, apply (for
elementwise multiplication) and reduce (for final summation):

γm.i,n.j,sum(m.v·n.v)(πm.v·n.v(m ./m.k=n.k n)).

ArrayQL allows to join over the dimension k implicitly (see Listing 8.22). Nevertheless, this
query highly resembles its SQL counterpart (see Listing 8.23). In addition, it is not practical
as the product and the summation have to be stated manually.

1 SELECT [i], [j], SUM(product) AS a FROM (
2 SELECT [*:*] AS i, [*:*] AS j, [*:*] AS k, a.v * b.v AS product
3 FROM m[i,k] a JOIN n[k,j] b) as ab GROUP BY i,j;

LISTING 8.22: Text-book matrix multiplication in ArrayQL.

1 SELECT m.j AS i,n.j,SUM(m.v*n.v)
2 FROM a AS m INNER JOIN a AS n ON m.i=n.i
3 GROUP BY m.j, n.j;

LISTING 8.23: Corresponding matrix multiplication in SQL.

Implemented Table Functions and Short-Cuts

To express linear algebra with ArrayQL, we introduce abbreviations for matrix operations.
Matrix operations, either expressible in ArrayQL (like matrix multiplication or addition),
or requiring a table function (such as for inversion) should belong to the from-clause. We
implemented short-cuts to offer similar notations that resemble mathematical expressions
and avoid writing prefix function calls (like f()). These short-cuts exist for operations not
covered so far by the ArrayQL algebra as well as for compound operations to simplify their
application (see Listing 8.24, Table 8.3). Furthermore, this allows the from-clause to com-
prise larger statements out of matrices later needed for linear regression.

1 SELECT [i],[j],* FROM m+n; -- addition
2 SELECT [i],[j],* FROM m^-1; -- inversion
3 SELECT [i],[j],* FROM m*n; -- multiplication
4 SELECT [i],[j],* FROM m^2; -- power
5 SELECT [i],[j],* FROM m-n; -- subtraction
6 SELECT [i],[j],* FROM m^T; -- transposition

LISTING 8.24: Short-cuts in ArrayQL.

Application

The presented operations allow solving numerical tasks based on matrix manipulations like
solving linear regression numerically or training a neural network.

Linear regression can be expressed out of an input array X ∈ Ri×j, containing i tuples
with j attributes, and a weight vector ~w ∈ Rj to predict the labels ~y ∈ Ri as X · ~w = ~y. Given
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a training dataset with corresponding labels~y, a closed-form expression out of transposition,
matrix multiplication and inversion computes the optimal weight matrix:

~w = (X′TX′)−1X′T~y.

As multiplication and transposition are expressible in ArrayQL, the corresponding short-
cuts together with one for matrix inversion allow ArrayQL to process the closed-form ex-
pression. The query computes the weight matrix (see Listing 8.25) without writing nested
subqueries as in SQL (see Listing 8.26).

1 SELECT [i],[j],* FROM ((m^T * m)^-1*m^T)*y

LISTING 8.25: Linear regression in ArrayQL.

1 SELECT tmp.i, SUM(tmp.sum*y.val) FROM (
2 SELECT inv.i, m.i as j, sum(m.val*inv.sum)
3 FROM matrixinversion(TABLE (
4 SELECT a1.j AS i,a2.j,SUM(a1.val*a2.val)
5 FROM m AS a1 INNER JOIN m AS a2 ON a1.i=a2.i
6 GROUP BY a1.j, a2.j)
7 ) AS inv INNER JOIN x ON inv.j=a.j GROUP BY inv.i, m.i
8 ) AS tmp INNER JOIN y ON tmp.j=y.i GROUP BY tmp.i;

LISTING 8.26: Corresponding query in SQL.

Supporting transposition and multiplication on arrays, ArrayQL is capable of expressing
the forward pass of a fully connected neural network. A fully connected neural network with
one hidden layer of size h requires two weight matrices whx ∈ Rh×|~x| and woh ∈ R|L|×h and
expects a feature vector as input. For the forward pass, matrix multiplications together with
an activation function form a model function mwhx ,woh(~x) ∈ R|L| that produces an output
vector of probabilities:

sig(x) = (1 + e−x)−1,

mwhx ,woh(~x) = sig(woh ·

ahx︷ ︸︸ ︷
sig(whx ·~x))︸ ︷︷ ︸
aoh

.

For preparation, we create the necessary tables for weights as well as the input matrix in
SQL and define the sigmoid as an SQL function (see Listing 8.27). Afterwards, the forward
pass is computed using an ArrayQL statement (see Listing 8.28).

1 CREATE TABLE input(i INT PRIMARY KEY, v FLOAT);
2 CREATE TABLE w_hx(i INT, j INT, v FLOAT, PRIMARY KEY (i,j));
3 CREATE TABLE w_oh(i INT, j INT, v FLOAT, PRIMARY KEY (i,j));
4 INSERT INTO ...
5 -- helper function
6 CREATE FUNCTION sig(i FLOAT) RETURNS FLOAT AS $$ SELECT 1.0/(1.0+exp(-i));$$ LANGUAGE ’sql’;

LISTING 8.27: Preparation for the neural network in SQL-92.

1 SELECT [i],[j], sig(v) as v FROM w_oh * (SELECT [i],[j], sig(v) as v FROM w_hx * input);

LISTING 8.28: Forward pass in ArrayQL.

8.4.3 Logical Optimisations

Implemented within a relational database system, ArrayQL benefits from query optimisa-
tion by design. The operators undergo logical optimisations, inherited from the nature of
the relational operators, including cost-based query plan reordering based on heuristics on
the table sizes. This does not include mathematical optimisations that make use of, e.g., the
symmetry property of matrices. We discuss the logical optimisations theoretically and show
query plan reordering using multiplication of three matrices as an example.
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Optimisation Steps

Database systems optimise queries logically by breaking up conjunctive predicates and push-
ing them down together with projections and changing the join order. We outline these
optimisation steps with regard to ArrayQL operators.

• Conjunctive predicate break-up and predicate push-down: affects the filter and the rebox
operator, as both are translated into selections. Filtering is similar to a selection. The
rebox operator allows us to ignore all tuples outside the specified range.

• Projection push-down: concerns the apply and shift operator, that are both translated
into projections. This is only beneficial for unbound attributes or when the query opti-
miser covers mathematical transformations.

• Join ordering: applicable to the combine operator and the inner dimension/extended
join that are translated into joins.

• Other: Beside projections, also aggregations should consider mathematical transforma-
tions and be pushed down if possible, as required by reduce. The rename operator is
only relevant for the data flow.

Cost-Based Query Plan Reordering

We demonstrate cost-based query plan reordering by an example of a three-way matrix mul-
tiplication. Given three matrices A ∈ Rm×n, B ∈ Rn×o, C ∈ Ro×p, associativity allows com-
puting their product ABC ∈ Rm×p either as (AB)C with AB ∈ Rm×o or as A(BC) with
BC ∈ Rn×p. This results in two different operator plans (see Figure 8.5) with the two joins
as common elements but with a different order concerning the aggregations. Although logi-
cal optimisation might push down the matrix subproduct out of projection and aggregation
above the first join, the query optimiser must be aware of distributive properties. This allows
the optimiser to transform the statement ∑

j
j′=1 aij′ ∑

k
k′=1 bj′k′ck′ l over ∑

j
j′=1 ∑k

k′=1 aij′bj′k′ck′ l to

∑k
k′=1 ck′ l ∑

j
j′=1 aij′bj′k′ , when needed.

γi,l,sum(sum(a.v·b.v)·c.v)

πi,k,l,sum(a.v·b.v)·c.v

γi,k,l,sum(a.v·b.v),c.v

πa.i,a.j,b.k,c.l,a.v·b.v,c.v

./b.k=c.k

./a.j=b.j

a : {[i, j, v]} b : {[j, k, v]}

c : {[k, l, v]}

∑k
k′=1 ck′ l ∑

j
j′=1 aij′ bj′k′

∑
j
j′=1 ai′ jbj′k

(a ./a.j=b.j b) ./b.k=c.k c

γi,l,sum(a.v·sum(b.v·c.v))

πi,j,l,a.v·sum(b.v·c.v)

γi,j,l,a.v,sum(b.v·c.v)

πa.i,a.j,b.k,c.l,a.v,b.v·c.v

./a.j=b.j

./b.k=c.ka : {[i, j, v]}

b : {[j, k, v]} c : {[k, l, v]}

∑
j
j′=1 aij′ ∑k

k′=1 bj′k′ ck′ l

∑k
k′=1 bj′k′ ck′ l

a ./a.j=b.j (b ./b.k=c.k c)

FIGURE 8.5: Unoptimised operator plan for three-way matrix multiplication of (AB)C (left) and A(BC)
(right): the join on three relations might be reordered depending on the cardinalities. The projection
and aggregation for the matrix subproduct can be pushed down above the first join.

HyPer and Umbra are using index-based heuristics for join order optimisation [83]. As
index-based heuristics exploit index structures to calculate join selectivities, they estimate
join cardinalities more precisely. This is ideally suited to a relational matrix representation
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with an index on the dimensions used for joining. Given the densities dsa, dsb, dsab ∈ [0, 1],
the selectivity of a join is given as sel(A ./ B) = |A./B|

|A||B| =
sab ·m·o

dsa ·m·n·dsb ·n·o = dsab
n2·dsa ·dsb

with dsab

as the single unknown parameter.

8.5 Evaluation

For evaluation we measure the performance of ArrayQL under geo-temporal and linear al-
gebra workloads. For the first use-case, we consider linear algebra extensions for database
systems. For the latter, we compare the performance of ArrayQL in Umbra to those of popu-
lar array database systems. This section first discusses the performance of matrix operations
before we proceed with the ArrayQL algebra on geo-temporal datasets.

System: All measurements have been conducted on a machine running Ubuntu 20.04 LTS,
equipped with six Intel Core i7-3930K CPUs running at 3.20 GHz, and offering 64 GB of
main-memory.

Data: We benchmark with the New York taxi dataset1, the science benchmark SS-DB [33]
and randomly generated data.

Competitors: The chosen competitors within popular array database systems are Ras-
DaMan (version 10.0.0), MonetDB SciQL and SciDB (version 19.11) to benchmark geo-tem-
poral applications. To benchmark linear algebra, we pick RMA as MonetDB’s extension for
linear algebra and MADlib (1.17.0 release) as an extension on top of PostgreSQL version 12.2.

8.5.1 Linear Algebra

This section discusses the performance of basic matrix operations as well as compound oper-
ations, either expressed in ArrayQL within Umbra or in SQL within its competitors, MADlib
and RMA. MADlib provides two different representations as it distinguishes between arrays
and matrices: for arrays, linear algebra operations are applied to the PostgreSQL array type,
for matrices, operations expect a table in relational representation. Thus, MADlib’s sparse
relational representation corresponds to the underlying one for ArrayQL. In contrast, RMA
uses a tabular representation. This section justifies the applicability of a relational represen-
tation for linear algebra without losing performance.

Matrix Algebra

This subsection presents the performance of micro-benchmarks (matrix addition and gram
matrix computation) for the three matrix types (MADlib arrays, MADlib sparse matrices,
RMA) against ArrayQL.

RMA’s tabular representation depends on the database schema (the first dimension cor-
responds to the attributes, the second to the number of tuples). For benchmarking purposes,
RMA provides a Python script, that creates the schema, inserts as many tuples as the speci-
fied size for the second dimension and creates SQL statements for matrix addition and gram
matrix computation. For comparison, we add support to create statements for MADlib and
ArrayQL and fill the relations with the same data.

We disable autocommit to measure execution time only, as it would slow down RMA
dramatically. In the following, we measure the impact of the size and sparsity of a matrix on
the runtime when performing matrix addition and gram matrix multiplication.

Figure 8.6 shows the runtime needed for matrix addition (X + X), when varying the
sparsity, and on dense arrays, when varying the input size. With increasing size, ArrayQL
computes the matrix sum faster than RMA. RMA’s compute time consists of optimisation
and runtime, both increase with the size of a matrix. When varying the sparsity, MADlib
matrices and Umbra benefit from sparse matrices, since zero values simply do not exist.
RMA needs constant runtime with increasing sparsity as sparse and dense matrices consume
the same space in a tabular representation.

Matrix addition on MADlib matrices performs the worst, whereas the same operation
on MADlib arrays performs the best. This is reasonable, as the aggregation time needed to
create arrays out of its relational form is not considered.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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FIGURE 8.6: Evaluation of matrix addition: varying the number of elements in a dense array or the
sparsity of an array with 106 elements.
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FIGURE 8.7: Evaluation of gram matrix computation: varying the number of elements in a dense array
and the sparsity of a resulting matrix with 90000 entries.

Gram matrix computation (X · XT , see Figure 8.7) yields similar results: the higher the
sparsity, the lower the runtime when handling MADlib matrices as well as within ArrayQL
in Umbra. MADlib does not allow to transpose arrays, so gram matrix computation is not
possible. Again, RMA needs constant compute time and, as the transposition is more expen-
sive in a tabular representation, it is slower than Umbra.

When varying the input size, multiplication on MADlib matrices takes the most time.
Multiplication in ArrayQL results in the shortest execution time as it is based on Umbra’s
relational algebra.

In summary, ArrayQL in Umbra benefits from sparse matrices as well as the performance
of an in-memory database system. Therefore, our relational representation shows compara-
ble performance to existing database extensions for linear algebra.

Linear Regression

We solved linear regression to benchmark composed matrix operations on a synthetic dataset.
This section compares Umbra’s performance with ArrayQL when using linear algebra only
to the one of MADlib, which provides a dedicated table function to compute the optimal
weights. Figure 8.8 shows the runtime of both systems when either varying the number of
input tuples or the number of attributes. Our solution for ArrayQL—relational algebra with
a table function for matrix inversion—outperforms MADlib’s table function for linear re-
gression only for a small number of input tuples or attributes. To further investigate the per-
formance in Umbra, Figure 8.9 breaks down the runtime into the individual sub-operations.
With increasing number of input tuples, the impact of the materialising inverse function on
the runtime decreases as the inverted matrix (X′TX′)−1 becomes relatively small. Most time
is spent on the aggregation part of each matrix product (summation). Instead of using matrix
algebra, a dedicated equation solve function can compute linear regression more efficiently.
But calling an optimised equation solve function has the downside of materialising the input
first. Nevertheless, this experiment has shown the ability to solve numerical problems when
suitable table functions are available. The conception of a non-materialising table function
for the matrix inversion [140] and a non-materialising equation solve function is for future
work. The hash table used for summation can be further optimised: when the number of
keys (indices) is known beforehand, the memory can be preallocated and the tuples prepar-
titioned for efficient access.
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FIGURE 8.8: Runtime for solving linear regression when varying the number of tuples (50 attributes)
or when varying the number of attributes (105 input tuples).
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FIGURE 8.9: Runtime within Umbra broken down by operation for solving linear regression when
varying the number of tuples (50 attributes) or when varying the number of attributes (105 input tu-
ples).

8.5.2 Array Operations

This section compares the performance of ArrayQL in Umbra to the one of popular array
database systems. RasDaMan2 and MonetDB SciQL-2-NetCDF3 ran natively on the system,
a Docker container running Ubuntu 16.04 was used for SciDB4. Goetz [51, 52] tested basic
operations on the New York Taxi dataset, array operations with the SS-DB benchmark and
with synthetic data, which are referenced for completeness.

New York Taxi Data

Using the New York taxi data5 (624 MB), we benchmarked real-world queries (see Table 8.4)
on one-, two- and ten-dimensional arrays.

Queries Q1, Q3 and Q7 benchmark projections, whereas queries Q2, Q4, Q5, Q6 and Q8
benchmark aggregation functions like summation, average and count, and queries Q9/Q10
modify the array bounds. In detail, Q1 requests one attribute (vendorID). Q2 sums up
the total distance driven. Q3 computes the distance ratio of one ride to the total distance
driven. Q4 returns the maximum duration of a trip. Q5 returns the average total amount
(payment), whereas Q6 calculates the average payment per customer excluding trips with
no passengers. Q7 returns all attributes of trips with four or more customers. Q8 retrieves
the frequency of a specific payment method. Q9 reboxes the array indices (slice and shift).
Q10 slices the array to return a subarray.

Figure 8.10 shows the runtime of the presented queries on the New York taxi dataset
stored as a one- or two-dimensional grid. To be comparable to the array database systems,
which store the data as a dense grid, we added a synthetic key to the data in Umbra. Ar-
rayQL within Umbra performs well on computing aggregates (Q2, Q4, Q5, Q6 and Q8) and
slicing the array (Q10). The runtime includes the time for printing to /dev/null, which
influenced the runtime for queries returning multiple array entries (Q1, Q3, Q7, Q9) as the
index was attached to every value. The compilation time of ArrayQL queries was negligible

2https://doc.rasdaman.org/index.html
3https://dev.monetdb.org/hg/MonetDB/shortlog/SciQL-2-NetCDF
4https://github.com/rvernica/docker-library
5https://nyc-tlc.s3.amazonaws.com/trip+data/yellow_tripdata_2019-12.csv

https://doc.rasdaman.org/index.html
https://dev.monetdb.org/hg/MonetDB/shortlog/SciQL-2-NetCDF
https://github.com/rvernica/docker-library
https://nyc-tlc.s3.amazonaws.com/trip+data/yellow_tripdata_2019-12.csv
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TABLE 8.4: ArrayQL queries on the New York taxi dataset [51].

Q1 SELECT VendorID FROM taxiData;

Q2 SELECT SUM(trip_distance) FROM taxiData;

Q3 SELECT 100.0*trip_distance/tmp.total_distance FROM taxiData,
(SELECT SUM(trip_distance) as total_distance FROM taxiData) as tmp;

Q4 SELECT MAX((tpep_dropoff_datetime - tpep_pickup_datetime)
+ (end_time - start_time)) FROM taxiData;

Q5 SELECT AVG(total_amount) FROM taxiData;

Q6 SELECT AVG(total_amount/passenger_count)
FROM taxiData WHERE passenger_count <> 0;

Q7 SELECT * FROM taxiData WHERE passenger_count>=4;

Q8 SELECT COUNT(*) FROM taxiData WHERE payment_type=1;

Q9 SELECT [0:1048574] as i, * FROM taxiData[i+1];

Q10 SELECT [42:42000] as i, * FROM taxiData[i];
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FIGURE 8.10: New York taxi dataset with (a) one- and (b) two-dimensional indices [51].
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FIGURE 8.11: Compilation time vs. runtime of selected ArrayQL queries in Umbra [51].
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(see Figure 8.11). In comparison, RasDaMan performed well when changing the dimensions
and retrieving data without further computations (Q7). SciDB performed better than Ras-
DaMan (Q1, Q2, Q4, Q5) as long as the query did not alter the dimensions, as its reshape
slows down the runtime (Q9, Q10). In summary our ArrayQL extension performed well on
aggregations and on accessing an subarray due to an index on the dimensions.

TABLE 8.5: Multi-dimensional queries (New York taxi data) [51].

SpeedDev

SELECT MAX(3600.0*(tmp3.v3-tmp1.v)) as speed
FROM (SELECT pickup_day, AVG(trip_distance/total_duration) as v
FROM taxiData WHERE total_duration<>0 GROUP BY pickup_day)
as tmp1, (SELECT AVG(trip_distance/total_duration) as v3
FROM taxiData WHERE total_duration <> 0) as tmp3;

MultiShift SELECT [pickup_day] as a, ..., * FROM taxiData[a+1, ...]

1 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

1.
39
·1

0−
3

1.
76
·1

0−
3

1.
78
·1

0−
3

2.
94
·1

0−
3

4.
54
·1

0−
3

1.
15
·1

0−
2

9.
29
·1

0−
2

9.
43
·1

0−
2

0.
10 0.

29

0.
62

2.
52

5.
45
·1

0−
3

5.
37
·1

0−
3

1.
32
·1

0−
2

2.
07
·1

0−
2

2.
53
·1

0−
2

5.
48
·1

0−
2

Dimensions

R
un

ti
m

e
in

s

(a) SpeedDev

Umbra SciDB SciQL

1 2 4 6 8 10
0

1

2

3

4

5

2.
62
·1

0−
4

2.
32
·1

0−
3

5.
26
·1

0−
3

3.
38
·1

0−
2

5
·1

0−
2

0.
12

5.
12
·1

0−
2

5.
51
·1

0−
2

6.
95
·1

0−
2

0.
54

1.
25

4.
38

2.
65
·1

0−
3

4.
95
·1

0−
3

0.
29

0.
13 0.
29

1.
10

Dimensions

(b) MultiShift

FIGURE 8.12: Impact of dimensionality on the runtime [51].

To measure the impact of involved dimensions on aggregations (see Table 8.5), we also
stored the taxi data as a ten-dimensional array. Query SpeedDev calculates "the maximum
deviation of the average speed per day" [51] compared to the average speed of the whole
dataset. Query MultiShift shifts all array’s dimensions. Figure 8.12 shows the runtime in
dependency on the number of dimensions. For both queries, the runtime on all tested sys-
tems scaled linearly with the number of dimensions. Umbra and MonetDB showed similar
performance for the query SpeedDev, both outperforming SciDB.

The query MultiShift showed that also MonetDB SciQL performed well on multi-dimen-
sional arrays. Umbra outperforms both competitors in compute time (the time for printing
the indices not considered). SciDB was slower independent of the number of dimensions.

Random Data

Figure 8.13 shows the runtime and throughput on two-dimensional arrays with synthetic
data and an increasing number of elements. For both tests, summation and shifting the in-
dices, the runtime scales linearly with the number of elements. Umbra is the fastest system
when performing aggregates. The upper constant lines in the lower diagrams display the
maximum throughput of 4.5 · 109 elements per second (based on a measured6 memory band-
width of 36 GB/s divided through 8 B, the size of a double precision floating-point number).
This shows that ArrayQL in Umbra best approaches the maximum possible performance,
with only a factor of ten in between.

6https://software.intel.com/content/www/us/en/develop/articles/
intelr-memory-latency-checker.html

https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
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FIGURE 8.13: Runtime and Throughput of an aggregation (summation) or shifting the indices of a
two-dimensional matrix depending on the number of elements [51].

SS-DB Data

SS-DB is a benchmark for scientific workloads that simulates astronomical data for array-
oriented processing. A data generator7 synthesises three-dimensional data—one dimension
identifies the tile, two dimensions determine a cell—with eleven attributes each.

The queries SSDBQ1/2/3 (see Table 8.6), adapted from a paper that compares SciQL and
SciDB [103], compute the average of one attribute for 20 tiles. SSDBQ2 and SSDBQ3 do the
same but consider fewer cells (50 % and 25 % of the original size). All queries were tested
on an image of size tiny (58 MB), small (844 MB) and normal (3.4 GB).

Figure 8.14 presents the measured runtimes. For the first query, Umbra outperformed the
competitor systems as it benefitted from an index on the dimensions. The other two queries
combined aggregations and predicates with shifting the indices, which could be processed
the fastest by Umbra and SciQL (the latter also performs well on aggregations). Adjusting
the indices is expensive within SciDB, which slowed down its performance.
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FIGURE 8.14: SS-DB: one image of size (a) tiny, 58 MB, (b) small, 844 MB, and (c) normal, 3.4 GB [51].

7https://www.xldb.org/science-benchmark/

https://www.xldb.org/science-benchmark/
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TABLE 8.6: Performed queries on the SS-DB dataset [51].

SSDBQ1

ArrayQL: SELECT AVG(a) FROM ssDB[0:19]
AQL: SELECT AVG(a) FROM subarray(very_small,0,0,0,19,1599,1599)
SciQL: SELECT AVG(a) FROM ssDB[0:19]
RasQL: SELECT AVG_CELLS(r.a * (r.z<=19)) FROM ssDB as r

SSDBQ2

ArrayQL:
SELECT AVG(a)
FROM ( SELECT [z], [x] as s, [y] as t, * FROM ssDB[0:19, s+4, t+4]
WHERE s%2 = 0 AND t%2 = 0) as tmp GROUP BY z

AQL:

SELECT AVG(a) FROM reshape( subarray(ssDB, 0,0,0,19,999,999),
<a:int32, b:int32, c:int32, d:int32, e:int32,
f:int32,g:int32,h:int32,i:int32,j:int32, k:int32>
[z=0:19,1000000,0,x=4:1003,1000000,0,y=4:1003,1000000,0])
WHERE x%2=0 and y%2=0 GROUP BY z

SciQL:
SELECT AVG(a) FROM ( SELECT [z], [x+4] as s, [y+4] as t, *
FROM ssDB[0:19] WHERE x%2 = 0 AND y%2 = 0) as tmp GROUP BY z

RasQL:
SELECT ADD_CELLS(shift(r.a * (r.z<=19 and mod(r.x, 2) = 0
and mod(r.y, 2) = 0), [4,4])) / COUNT_CELLS(shift((r.z<=19 and
mod(r.x,2) = 0 and mod(r.y,2) = 0) , [4,4])) FROM ssDB as r

SSDBQ3

ArrayQL:
SELECT AVG(a) FROM ( SELECT [z], [x] as s, [y] as t, *
FROM ssDB[0:19, s+4, t+4]
WHERE s%4 = 0 AND t%4 = 0) as tmp GROUP BY z

AQL:

SELECT AVG(a) FROM reshape( subarray(ssDB, 0,0,0,19,999,999),
<a:int32, b:int32, c:int32, d:int32, e:int32,
f:int32,g:int32,h:int32, i:int32,j:int32, k:int32>
[z=0:19,1000000,0 ,x=4:1003,1000000,0, y=4:1003,1000000,0])
WHERE x%4=0 and y%4=0 GROUP BY z

SciQL:
SELECT AVG(a) FROM ( SELECT [z], [x+4] as s, [y+4] as t, *
FROM ssDB[0:19] WHERE x%4 = 0 AND y%4 = 0) as tmp GROUP BY z

RasQL:
SELECT ADD_CELLS(shift(r.a * (r.z<=19 and mod(r.x, 4) = 0
and mod(r.y, 4) = 0), [4,4])) / COUNT_CELLS(shift((r.z<=19 and
mod(r.x,4) = 0 and mod(r.y,4) = 0) , [4,4])) FROM ssDB as r

8.6 Conclusion

In this chapter, we have integrated ArrayQL into a code-generating database system as an-
other query interface and addressable inside SQL as user-defined functions. As this stand-
ardised array query language has not yet been integrated into a productive system, we com-
pleted its grammar specification and extended Umbra’s query engine to accept ArrayQL
statements. For that reason, we defined a relational array model and translated ArrayQL op-
erators to relational algebra. We demonstrated the suitability of an array query language for
geo-temporal data by the SS-DB benchmark and by the New York taxi data as a real-world
example. Moreover this language can be used for linear algebra to compute machine learn-
ing tasks. For basic matrix operations, ArrayQL statements performed better than state-of-
the-art linear algebra extensions for database systems, whereas materialising table-functions
as needed for inversion slowed down the runtime. For geo-temporal tasks, ArrayQL outper-
formed traditional array database systems, when performing aggregations or filtering data
by a predicate.
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Chapter 9

Versioning in Main-Memory
Database Systems

Parts of this chapter have been published in [67, 119, 123].

On the one hand, software engineering relies on version control systems such as CVS,
SCCS [106], RCS [135], SVN and Git to allow distributed code development and to document
the project’s progress in commits and version tags. On the other hand, database systems
are essential for efficiently handling huge amounts of data in index structures such as B*-
[8] or Adaptive-Radix-Trees [81]. To unify both use cases, approaches such as temporal
databases or dataset versioning aim to bind the validity of tuples to time instances or to
allow collaborative dataset editing.

Online encyclopaedias such as Wikipedia rely on database systems to store the article’s
content but require dataset versioning to track the article’s history. For this reason, Media-
Wiki, the software behind Wikipedia, implements its own version control to restore older
versions on demand: one database table manages the pages’ meta-information, another one
contains their content with one entry per version and page. Besides the increased complexity
when querying the data, this approach wastes space by storing redundant information as
each revision changes an article only marginally.

So far, research has focused on versioning single datasets. But to fulfil the requirements
for versioning a wiki system, a version control for database systems should be able to include
multiple relations per single commit and respect referential integrity. When versioning one
namespace of the Wikipedia encyclopedia, we expect a compression rate of up to 70 % when
storing the differences only. Our estimation is based on the Simple English Wikipedia edition
for which we computed the file and the edit differences for all page revisions (see Table 9.1).

TABLE 9.1: Estimation of saved storage when using compression techniques based on the Simple Eng-
lish Wikipedia page edit history dump of October 1, 2018.

Size Compression
Full Page Edit History 35.0 GiB -
Current Version Only 1.1 GiB -
History as File Diffs 14.0 GiB 59.77 %
History as Edit Diffs 9.4 GiB 72.71 %

Another use-case for dataset versioning arises from the reproducibility needed to vali-
date scientific experiments: To reproduce the same results, the dataset used should remain
unchanged. However, a production database system must allow updates and insertions.
Therefore, for reproduction, any published experiment must provide the corresponding data
as a separate snapshot when the underlying data store does not support dataset versioning.

In summary, a dataset versioning tool should serve the purpose of a simple data storage
system with version-based access as well as the needs for transactional data processing on
multiple relations. So it has to fulfil reference key constraints across multiple tables within
each version.

Applying versioning and compression techniques to database systems eliminates the
need for purpose-specific solutions, reduces the storage needed and allows comparable re-
trieval times (see Figure 9.1). But a complete integration into a database system includes the
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FIGURE 9.1: Sketch of the trade-off between storage savings (compression rate) and retrieval time:
storing only one version snapshot and computing the others out of the changed differences (diffs) will
reduce the amount of storage needed but will increase the retrieval time.

extension of SQL. An extension of this declarative language would not only increase the ac-
ceptance of database systems for dataset versioning but also facilitate software engineering
projects: When the data layer takes care of dataset versioning, other layers are not concerned
in the actual implementation.

We claim that database systems with full incorporated version control commands fill the
gap caused by distributed data and knowledge management, and facilitate the versioning
of wiki entries.

Starting at extending single tables—known from OrpheusDB [60]—to multiple relations
per version, we present MusaeusDB as a stand-alone tool along the database system. It im-
plicitly sends SQL commands, manages the versions in meta tables and benefits from the
database systems’ user rights management, as tables are checked out in the user’s names-
pace.

We make use of the gathered knowledge for TardisDB, an in-memory database system
with incorporated SQL commands for database versioning that deeply integrates version-
ing based on additional bitmaps for each tuple. It is an open-source project1 for a code-
generating in-memory database system that produces LLVM code according to the producer-
consumer model [99]. Its table scan operator has been modified to produce only tuples for a
selected branch. Therefore, each branch maintains a bitmap for every table, which denotes
each tuple’s visibility. Also, multi-version concurrency control is used to track each tuple’s
history. TardisDB is the first project that combines multi-version concurrency control with
bitmaps for branching.

In our TardisBenchmark, we evaluate TardisDB and the different storage approaches devel-
oped for database systems, and compare their runtime to those of the version control system
Git.

The main contributions of this chapter are:

• Extending version control on top of database systems to include multiple tables instead
of single datasets per version.

• The architectural blueprint for integrating versioning inside a main-memory database
system.

• The SQL extension for versioning, including an additional SQL statement for branch
creation and an optional keyword as part of the from-clause to determine the branch.

• Named branches that can be created using existing SQL keywords and fit seamlessly
into declarative statements.

• A versioning data type that compresses multiple versions within a single attribute.

• A benchmark, which covers dependencies between relations and evaluates different
storage techniques in respect for the querying performance.

1https://github.com/tum-db/TardisDB

https://github.com/tum-db/TardisDB
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The chapter is structured as follows: Section 9.1 introduces MusaeusDB, our SQL-based pro-
totype, and its architecture comprising the schema, syntax for the user input and storage
conventions. Section 9.2 proceeds with the architecture of TardisDB, for which we adapt the
table scan operator and the multi-version concurrency control of a main-memory database
system to allow branches and to store multiple states of the database. In Section 9.3, we
propose an extended SQL grammar, that is downward compatible with SQL-92, but allows
branch creation and retrieving tables by version. Afterwards in Section 9.4, we explain a
demonstration setup, with an interactive web interface that allows users to create branches,
examine lineages, query and modify the data. To benchmark the prototypes, we will explain
how we extract Wikipedia’s page edit history to create a version control benchmark in Sec-
tion 9.5. The benchmark introduces delta compression, which we integrate into the Umbra
database system in Section 9.6. The evaluation section uses the benchmark for measuring
time performance impacts of different versioning techniques on classical relational as well
as modern main-memory database systems compared to storage savings (Section 9.7). Sec-
tion 9.8 concludes by the performance and the achieved compression ratios and proposes to
combine the different approaches.

9.1 MusaeusDB: Versioning using SQL

The SQL prototype—called MusaeusDB [74]—rely on the extended schema of OrpheusDB
to combine changes over multiple relations as one version. It was originally developed by
Kleiner [74] for PostgreSQL, then extended for use with HyPer and benchmarked as part
of this thesis. The key idea is to keep the initial data tables unchanged but with an added
record identifier (rid) and to store the information about versions in separate tables. As
multiple tuples across different versions may share the same primary key, the rid is needed
as the new primary key for all tuples.

The version table manages the corresponding rids for each version and each table (we
adopt the rlist as array-like structure but the table can be easily normalised using unnest).
For each commit, the meta table contains information such as the commit message or the
parent version. In comparison to OrpheusDB, we extended the version table by one attribute
referencing the table in question. Instead of only one tuple, it contains as many tuples per
version as tables involved. During query processing, we need an additional join predicate to
retrieve the tuples of a certain version. Figure 9.2 shows the tables responsible for managing

vid tableid rlist
v1 tasks {1}
v1 users {1,2}
v2 users {3,4}
v2 tasks {1,2,3}

Version table

vid parent message
v1 initial commit
v2 v1 wedding

Meta table

rid user_id user_name
1 1 Carla Cat
2 2 Carl Tomcat
3 1 Carla Cats
4 2 Carl Cats

User table

rid user_id task_name
1 1 singing
2 1 wedding
3 2 wedding

Task table

FIGURE 9.2: Schema: Version table and meta table for managing the commits on the left; tables con-
taining the data on the right; the record id serves as a key for every tuple.

the commits and the tables containing the data. In this example, the meta table hosts two
commits, one initial and one descending; the tuples concerned are stored in the version table.
For example, the name of the users has changed after they got married, so the user table’s
attribute name has been updated and "wedding" was added to the task table. The data tables
now have a unique artificial key (rid) as the original keys will not suffice as primary keys,
but are restored on a table checkout. Indexing rid as primary key allows fast join processing
even for a huge number of entries.

MusaeusDB stores datasets in public repositories and allows users to clone them. It benefits
from the conception of database systems as they provide multiple databases per server (at
least one for each user) with named schemas per database. In fact, a public repository is a
separate namespace (a named schema) of a public database. Each user is allowed to check
out a certain version in a private namespace of his/her database and may modify the tuples
locally. Afterwards, the changes get propagated by a commit to the origin repository.

In Figure 9.3, we see the distinction between public and user databases with separate
namespaces for the repositories. Each namespace represents one repository. The default
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Versiontable: {[vid,tablename,rlist]}
Metatable: {[vid,parent,message]}
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<user>
Dataset: {[tablename,tableid]}

Checkouts: {[tablename,dataset,versionid]}

<checkoutname> <tablename>: {[...]}

FIGURE 9.3: Distinction between global and local (user) space in MusaeusDB: The global space main-
tains a separate namespace for each repository, relations can be checked out for modifications in the
user’s namespace.

namespace of the public database hosts all versions and their meta information. On a check-
out, all tuples belonging to the dedicated version are checked out into tables that are created
for that purpose in the specified namespace. To keep track of all tables currently checked out,
all checkouts are documented in the default namespace of the user’s database. MusaeusDB
is based on database systems implementing the PostgreSQL interface and works as a sep-
arate tool. For commits and checkouts it uses the pqxx library2 to connect to the database
server. The source code has been made publicly available3. In the following sections, we
will introduce the SQL commands behind init, checkout and commit.

9.1.1 init

The init command prepares the tables of an existing namespace for versioning comparable
to git init. The command expects the name of the destined global repository and the
name of a schema with its tables to be prepared for versioning and collaborative working
(see Listing 9.1). MusaeusDB generates the SQL commands to endue each tuple with an rid
as its new primary key and to create a global table in the designated global namespace to
which each of the source’s relations can be copied.

1 $ ./musaeus init <public>.<reponame> <user>.<localreponame>

LISTING 9.1: MusaeusDB: init command: this takes the local database schema as source argument to
copy it to a public database schema, which allows versioning.

9.1.2 checkout

The checkout command works contrary to the init one: this takes the name of the global
namespace and copies the tables to newly created ones in a designated private namespace
(see Listing 9.2). The global rid is hereby omitted and the original primary keys are restored.

1 $ ./musaeus checkout <public>.<reponame> <user>.<localreponame>

LISTING 9.2: MusaeusDB: checkout command: it takes the public database schema name as source
argument to copy the tables to the schema given as second argument.

9.1.3 commit

The commit command updates the global repository with changed, inserted or deleted tu-
ples. It takes the name of the source’s namespace and a commit message (see Listing 9.3). It
treats all changes as one whole commit and pushes the updates to the origin. The rlist for
the new version is copied from the ancestor one except the rids of the changed or deleted
tuples. For every changed or inserted tuple, a new rid is created and added to the rlist.
As the command is translated into one atomic transaction, the tool ensures that commits
are processed atomically, and respects referential integrity as local tables inherit the parent’s
database schema. This is useful as MediaWiki stores the page title separately from the con-
tent, but using references.

2http://pqxx.org/development/libpqxx/
3https://gitlab.db.in.tum.de/tardisDB/musaeusDB

http://pqxx.org/development/libpqxx/
https://gitlab.db.in.tum.de/tardisDB/musaeusDB
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1 $ ./musaeus commit <user>.<localreponame> <commitmessage>

LISTING 9.3: MusaeusDB: commit command: the changes made in the given schema name are
updated in the remote repository.
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FIGURE 9.4: Left: Bitmaps for each branch (y-axis) mark contained tuples per table, whereas version
chains track their history (x-axis), tuples of the master branch are stored in a column-oriented manner.
Middle: Descendance tree. Right: Corresponding insert, update, delete and branching history.

9.2 Versioning in Code-Generating Database Systems

TardisDB follows the concept of a code-generating main-memory database system: It pro-
duces LLVM code according to the producer-consumer concept [99] where every operator
demands the underlying ones recursively to generate code. Versioning now affects the table
scan operator at the bottom of each operator tree: During compile time, code for checking
the bitmap as well as retrieving the correct tuple out of a version chain has to be generated.
For every table and every branch, we maintain a bitmap, where a bit indicates the tuple’s
affiliation to a branch. On a table scan, a tuple will be produced only if the corresponding bit
is set. When a branch is created, the parent bitmap is simply copied for every table. On an
insert statement, all bitmaps are enlarged but the new bit is set for the affected branch only.
On a delete statement, the corresponding bit is reset.

The bitmap indicates included tuples only but to track different versions of a tuple, we
maintain version chains as used for multi-version concurrency control. This is the first time
that multi-version concurrency is combined with branching to not only track a tuple’s mod-
ification history but to provide access to a set of tuples that form one version. This approach
tends to densely populated bitmaps even on update-heavy workloads, which increases the
total scan performance.

We define one prioritised branch, the master branch, whose tuples are stored in a regular
column store and updated in-place. Each tuple is given two pointers to form a double-linked
list of version entries and a timestamp, which is inherited from the branch that created the
version.

Each branch, in turn, is given a timestamp at its creation, which is also used to retrieve
the correct entry in the version chain: Formally, we define a predicate active(t, b) for each
entry t and branch b to indicate visible entries:

active(t, b)⇔ created(b, t) ∨
∨

p∈parent(b)

active(t, p) ∧ ts(t) < ts(b).

An entry is visible for a branch when either the branch itself (created(b, t)) or a parent branch
(parent(b)) before furcation (ts(t) < ts(b)) has created the entry. The first active entry in the
chain is the latest visible one and is returned.
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Figure 9.4 visualises the history for five tuples on one master and two descending bran-
ches: Initially, four tuples were inserted before Branch 1 is created with timestamp 5. The tu-
ples for the master branch are stored column-wise (dashed line) and each contains a pointer
to previous (left) and newer (right) versions. An update on the master branch changes the
value in-place (A|6) and creates an entry for the previous version (A|1), an update on a
descending branch just creates an entry on the right (B|7). When Branch 1 requests tuple A,
it receives A|1 as A|6 is only active within Master and Branch 2. Whereas two versions for
tuple B are active within Branch 1, which is why it accesses the newer one (B|7). Instead of
deleting a tuple, the corresponding bit is reset (D on Branch 1).

9.3 SQL Extension

We now extend SQL (see Listing 9.4) to address the extended table scan operator. This re-
quires a statement to create branches as well as an extension to specify the version for each
table that is part of select, update, insert or delete statements. By default, regular SQL-92
queries without any adaptations are applied to the master branch to ensure downward com-
patibility.

1 CREATE TABLE users (id INT PRIMARY KEY, name TEXT);
2 CREATE TABLE things (id INT PRIMARY KEY, name TEXT, user INT REFERENCES users(id));
3 INSERT INTO users VALUES (1, ’Alice’);
4 INSERT INTO things VALUES (21, ’printer’, 1);

LISTING 9.4: Example of tables created and filled with SQL.

To create a new branch, we add a statement to fork branches from existing ones (see List-
ing 9.5). This statement only expects the name of the parent branch and the created one.
It does not require any further information as branches affect all tables to fulfil foreign key
constraints. Creating a new branch is necessary to maintain access to a certain database state
whenever this version should be preserved.

1 CREATE BRANCH mybranch FROM master;

LISTING 9.5: Statement to create the branch mybranch from the parent master.

To query tables on the created branch, we propose the keyword VERSION behind each
table that is part of an insert, select, update or delete query (see Listing 9.6).

1 INSERT INTO users VERSION mybranch VALUES (2, ’Bob’);
2 UPDATE things VERSION mybranch SET user=2 WHERE id=21;
3 SELECT * FROM users VERSION mybranch;

LISTING 9.6: Insert, update and select statements on tables of a certain branch using the VERSION
keyword.

Although branches affect all tables, explicitly specifying the branch enables access to
tables across different branches in one statement. This allows merging tables of different
branches using ordinary SQL statements. For example, a full outer join allows conflicting
tuples sharing the same primary key to be identified (see Listing 9.7).

1 SELECT a.id, COALESCE(a.name, b.name)
2 FROM users VERSION master as a FULL OUTER JOIN
3 users VERSION mybranch as b ON a.id=b.id

LISTING 9.7: Merging tables.

Finally, after changes in a branch have been merged or become outdated, we propose
a delete statement to free the allocated resources (see Listing 9.8). We propose a garbage
collection [19] to remove versions that are not contained within a branch anymore.

1 DELETE BRANCH mybranch;

LISTING 9.8: Branch deletion statement.
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FIGURE 9.5: TardisDB web interface: An interface allows SQL queries including branch creation to be
formulated. The chart in the middle displays the lineage of all available branches; the result table is
shown at the bottom.

9.4 Demonstration Setup

We have created an interactive web interface4 to demonstrate extended SQL on TardisDB
(see Figure 9.5). Within the web interface, we allow users to create tables, insert data and
create branches. The lineage of created branches is visualised graphically. Of course, the
SQL interface allows querying the data including joins over different branches. The result to-
gether with the query time is displayed afterwards. For demonstration purposes, we started
a TardisDB instance on a remote server that creates a new database instance for each client.
This allows everyone to try out the extended SQL on their own device. We provide exam-
ples together with a selected CSV file as input data to demonstrate the performance of the
available operators.

XML

TardisBenchmark {insert, latest, first}

Insert RetrieveLatest RetrieveFirst

1 <page>
2 <title>No More Heroes</title>
3 <ns>0</ns>
4 <id>29222308</id>
5 <revision>
6 <id>148225419</id>

1 SELECT old_text
2 FROM mediawiki.pagecontent
3 WHERE old_id = 148225419

FIGURE 9.6: Conception of the TardisBenchmark: it allows running retrieval or insertion queries, the
latter requires an XML file out of the page edit history.

9.5 TardisBenchmark

This section presents the TardisBenchmark based on the Wikipedia page edit history. We have
chosen the MediaWiki schema as it is the most common example of a versioned database
with reference key constraints, which we will introduce in the following. Afterwards, we
will explain the different aspects and operations that we consider for our benchmark and

4http://tardis.db.in.tum.de

http://tardis.db.in.tum.de
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what storage approaches we tested with the operations. The TardisBenchmark has been
implemented by Karnowski [65] and is published as open-source5.

9.5.1 MediaWiki Schema and Wikipedia Data

Wikipedia is the 13th most important web site in the world with 1,414,644 sites linking in [4].
Being a collaborative online encyclopedia to which everyone is allowed to contribute, Wiki-
pedia relies on version control mechanisms that allow previous versions to be restored if the
free edit rights are misused. Together with the fact that data and the architecture are freely
available, Wikipedia is the ideal candidate for deriving a benchmark out of it.

The core of MediaWiki, the software behind Wikipedia, is a database schema (see List-
ing 9.9) out of the three relations page (the meta data of the articles), pagecontent (the actual
content) and revision (references to former versions of an article). A current article can be
retrieved by finding the page by title first (see Listing 9.10), then a foreign key points to
the current page content (see Listing 9.11). We feed our benchmarking program with the
database dumps in XML format. The dumps may consist of all latest versions or also of the
complete edit history. In this manner, the benchmark can have a flexible workload up to
13 TiB, the size of the full English Wikipedia (1 August, 2018).

1 CREATE TABLE page (page_id INT PRIMARY KEY, page_title TEXT, page_latest INT);
2 CREATE TABLE revision (rev_id INT PRIMARY KEY, rev_page INT REFERENCES page (page_id),

rev_text_id INT, rev_parent_id INT, rev_timestamp TIMESTAMP);
3 CREATE TABLE pagecontent (old_id INT PRIMARY KEY, old_text TEXT);

LISTING 9.9: Simplified MediaWiki schema [65]: page (all meta information), pagecontent (actual page
content) and revision (history of former versions).

1 SELECT page_id, page_title, page_latest FROM mediawiki.page WHERE page_title = $1$ LIMIT 1

LISTING 9.10: Retrieve page by given title ($1$) [113].

1 SELECT old_text FROM mediawiki.pagecontent WHERE old_id = $1$ LIMIT 1

LISTING 9.11: Retrieve page content by identifier $1$ [113].

1 CREATE TABLE page (page_id INT PRIMARY KEY, page_title TEXT, page_latest INT, page_len INT,
page_text TEXT);

2 CREATE TABLE revision (rev_id INT PRIMARY KEY, rev_page INT, rev_parent_id INT, rev_timestamp
TIMESTAMP, rev_text_id INT, rev_order INT);

3 CREATE TABLE pagecontent (old_id INT PRIMARY KEY, old_text TEXT);

LISTING 9.12: Modified schema (Diff ) [65]: page contains the current content, revision manages the
differences stored in pagecontent.

9.5.2 Operations

Our benchmark covers the most common use cases, which are the insertion of articles or
retrieval of the latest or first version of an article. Figure 9.6 shows the conception of the
benchmark with the XML file as input and the three different queries. The motivation for
picking this set of benchmark operations is as follows [65]:

• Insertion (insert). When a page is initially created or updated, the page content will be
inserted as a new tuple to the database system. So inserting articles is the fundamental
operation on which any project relies on. We take the Wikipedia dumps with full page
edit history as real world examples.

• Retrieving the latest version (retLatest). The common case an online encyclopedia is
used or collaborative work is performed is the retrieval of the latest version of an article
or the software. When using Wikipedia, users are always redirected to the current
version. Former versions can be viewed on demand afterwards. So retrieving the
latest version will form the majority of the work load.

5https://gitlab.db.in.tum.de/tardisDB/TardisBenchmark

https://gitlab.db.in.tum.de/tardisDB/TardisBenchmark
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• Retrieving the first version (retFirst). Retrieving the first (oldest) version of an arti-
cle covers the retrieval of any prior version. This is important when storing former
versions as differences to the latest article, as all deltas between the versions have to
be applied. As another benefit, when we support the operations for retrieving both
the first and the latest version of an article, we obtain the runtime of backward and
forward delta-based versioning techniques, but we need to compute the differences in
one direction only.

9.5.3 Storage and Compression

Within database systems, we consider storing the data as a snapshot or as differences, con-
sisting of the changes between two versions only. In addition, we compare storing Wikipedia
articles within Git and LiteTree.

The snapshot-based approach forms the classical way of storing every article as a new
tuple in the manner of MediaWiki. We therefore rebuild the database schema out of page-
content, revision and page to benchmark the performance. The operations are listed in further
detail here:

• insert. The new content is always (on update or insert) added to pagecontent. When
the page is initially created, a new tuple is added in revision and page. Otherwise on a
page edit, we just update the references.

• retLatest. Retrieving the latest version means a join on page (stores the latest pageid)
and pagecontent.

• retFirst. We retrieve the first version of an article by selecting the minimal timestamp
of a revision in the table of that name.

The difference-based versioning reduces the amount of wasted storage by storing the
latest version as a whole and the previous ones as text differences (see Listing 9.12). We
adapt the MediaWiki schema to make it suitable for storing text differences, as we save the
latest page content as an additional attribute of the page table and store the text differences
in pagecontent. As the latest version is stored as a whole in page, this ensures that the page
demanded most frequently can be retrieved quickly, with no need for joins. For an arbitrary
version, we apply all differences starting from the latest, also called backward deltas.

• insert. On a page edit, the content in page will be updated and the difference from
the previous one will be inserted in pagecontent. Initially, when an article is created, an
empty tuple is inserted in page.

• retLatest. Retrieving the latest article works in less time as no join must be performed
anymore. The content attribute of page can be read directly.

• retFirst. The downside when retrieving the first article is that it has to be computed out
of all differences in pagecontent, starting from the latest version of page. This operation
has linear complexity with the number of edits.

As we use the version control software Git as our competitor, we store all pages on the
file system with one file per page and one commit per version. Traversing the predecessors
of a commit works efficiently in Git. We store every article on a separate branch to avoid
long chains when retrieving an earlier version.

• insert. For every new page, we create a new branch with the same name as the article
descending from an empty commit. Every commit of a branch represents a page edit.

• retLatest. Retrieving the latest version is identical to a look up to the latest commit of
the corresponding branch.

• retFirst. We retrieve the first version by traversing all commits to the origin. The time
complexity is linear with the number of commits.

LiteTree allows branches to be created for each new version of a page. It stores every
version uncompressed, which allows any arbitrary article to be retrieved efficiently. We rely
on the internal versioning mechanisms and use only one relation page for the content.
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• insert. A page edit is translated to an SQL update statement and a page creation to an
SQL insert statement.

• retLatest/retFirst. As the commits are enumerated for every branch, we can access and
retrieve any commit.

9.6 Versioning Data Type in SQL

To support text versioning within the Umbra database system, this section introduces a ver-
sioning data type that can be used as an SQL attribute to store multiple versions of a text in a
tuple (see Listing 9.13). This data type is designed for maximum throughput, as it stores the
most recent string as a whole and calculates previous versions using the differences to the
latest version (backward deltas). This section first explains the concept and the storage layout
for the versioning data type in Umbra as implemented by Karnowski [66] before introducing
the operations exposed in SQL to insert, to update and to retrieve a certain version.

1 CREATE TABLE wikidiff (title text, content difftext);
2 INSERT INTO wikidiff (SELECT ’example’, BUILD(’one’, ’one new version’, ’one old version’));
3 SELECT GET_CURRENT_VERSION(difftext) FROM wikidiff;

LISTING 9.13: Proposed data type DiffText for text versioning.

9.6.1 Umbra Integration

The goal is to store the latest version as a snapshot followed by backward deltas to restore
older versions. Each delta consists of the actual patch, a text string, and the range where
to insert the patch. For example, when updating the text string "one new version" to "one old
version", we store the latest version as a whole and, to retrieve the previous one, the patch
"new" to insert at [4, 8) (we start counting by 0).

Umbra provides a flexible-size string data type, called RuntimeString, from which all
SQL attribute types with a size of more than 128 Bit are derived. Our versioning data type
is based on this data type for variable length data as it uses the allocated memory for an
internal representation as a struct in C (see Listing 9.14). The internal representation stores
the offset and length of the current version stored as a snapshot to avoid look-ups for this
particular and most common use-case (line 2/3). The internal representation consists further
of an array of deltas, each of which contains the offset relative to the previous patch, the start
and end positions of the characters to be patched, and a tag indicating whether the string
contains a full snapshot instead of a patch.

1 struct DiffTextRepresentation {
2 uint32_t currentOffset; // Offset of current version in data section
3 uint32_t currentLength; // Length of current version
4 uint32_t arraySize; // The size of the version pointer’s array
5 uint16_t diffsToFullCount; // Counter of diffs until next full version
6 struct { // Array of pairs, pointing into the data section
7 uint32_t offset; // Offset of version in data section
8 bool full; // Is this a full version?
9 uint32_t patchStart; // Start of patch

10 uint32_t patchEnd; // End of patch
11 } versionPointers[];
12 // Data section follows this struct immediately
13 };

LISTING 9.14: Data layout for the versioning data type [66].

In addition to the most recent version, we store snapshots of versions in-between the
patches for linear retrieval time complexity. Figure 9.7 shows an example of five versions,
where a snapshot is stored for every third version. So the third and currently the fifth version
are stored as a snapshot (T3, T5) and the first, second and fourth version have to be restored
from patches (DT2→T1 , DT3→T2 , DT5→T4 ).

DT2→T1 DT3→T2 T3 DT5→T4 T5

FIGURE 9.7: Five versions with every third version stored as a complete snapshot (bold) [66].
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9.6.2 SQL Integration

To query the versioning data type within an SQL query, we offer three operations to create
or to add a version and two operations plus one table operator to retrieve one or multiple
versions.

• BUILD(T1, . . . , TN) creates a new object given N versions.

• APPEND(D, T1, . . . , TN) appends N versions to an existing object D.

• SET_CURRENT_VERSION(D, T) adds a new version T to an existing object D, equal
to APPEND(D, T).

• GET_VERSION_BY_ID(D, N) extracts version number N from object D.

• GET_CURRENT_VERSION(D) returns the latest version of object D. When N is the
total number of versions, this call is equal to GET_VERSION_BY_ID(D, N).

• EXPAND(D, M, N) is a unary database table operator that extracts the versions M to N.

Figure 9.8 shows the internal storage representation after three versions of a text string
have been inserted (see Listing 9.15). First, the object is created using the text string "one", so
no delta exists (arraySize=0) and the offset points to the beginning (currentOffset=0)
of the data. Afterwards, " new version" is added to the string. The delta now contains
the information on how to restore the previous version, so the offset for the patch (0 as
no text needs to be added) and the range [3, 15) to omit. Finally, we change the string to
"one old version", which becomes the current version stored as a snapshot. So the added
delta to retrieve the previous version contains the range [4, 7) to be replaced and the patch
"new" given by its end position 3, its start position is implicitly given by the end of the
previous one (0).

1 CREATE TABLE example (value DiffText);
2 INSERT INTO example (SELECT BUILD(’one’));
3 UPDATE example SET value=SET_CURRENT_VERSION(value,’one new version’);
4 UPDATE example SET value=SET_CURRENT_VERSION(value,’one old version’);

LISTING 9.15: Exemplary insert history.

currentOffset 0
currentLength 3

arraySize 0
diffsToFullCount 0

Data one

(A) Only one version: “one”

currentOffset 0
currentLength 15

arraySize 1
diffsToFullCount 1

offset 0
full f alse

patchStart 3
patchEnd 15

Data one new Version

(B) Modification to “one new version”.

currentOffset 3
currentLength 15
arraySize 2

diffsToFullCount 2
offset 0
full f alse

patchStart 3
patchEnd 15
offset 3
full f alse

patchStart 4
patchEnd 7
Data newone old version

(C) Modification to “one old version”.

FIGURE 9.8: Internal representation [66] of the versioning data type after inserting: (a) “one”, (b) “one
new version” and (c) “one old version”.

9.7 Evaluation

The evaluation section discusses the benefits and obstacles arising from the different storage
approaches with respect to the different benchmark operations. Therefore, we evaluate the
results of MusaeusDB, the TardisBenchmark and the performance of the versioning data type.

9.7.1 MusaeusDB

To evaluate MusaeusDB, we have chosen two settings: In order to measure the impact of
extending versioning to support multiple tables, we have reimplemented versioning on sin-
gle datasets as described for OrpheusDB, but using C++ instead of Python to be compiled
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instead of interpreted. 106 tuples of fictional users and corresponding tasks served as test
data. We first initialised the schema by adding the rid and a version table, then we per-
formed a checkout, updated every tuple and committed the changes. For the second setup,
we compared the speed up gained from the main-memory database system HyPer [69] in
contrast to PostgreSQL as the underlying database system. We performed the test on a De-
bian 9 machine with four cores of Intel i7-7700HQ CPU, running at 2.80 GHz clock frequency
each, and 16 GiB RAM. As we see in Figure 9.9, MusaeusDB needed twice as much the time
as OrpheusDB, as it has to keep track of two tables for each version. When HyPer was used
as the underlying database system instead of PostgreSQL, we only needed less than half the
amount of time, in average.

0 2 4 6 8 10 12 14 16 18

init

checkout

commit

3.22

3.49

8.71

6.3

7.85

14.34

1.32

3.78

4.01

Runtime in seconds

OrpheusDB (PSQL)
MusaeusDB (PSQL)
MusaeusDB (HyPer)

FIGURE 9.9: Runtime of MusaeusDB in contrast to OrpheusDB and in dependency of the underlying
database system, PostgreSQL (PSQL) or HyPer.

9.7.2 TardisBenchmark

This section discusses the runtime of the four storage approaches broken down into the
different benchmark operations. The TardisBenchmark was run on an Ubuntu 18.04 server
with an Intel Xeon CPU E5-2660 v2 with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM. We
used 2 TB of SSD storage to get the best performance out of the disk-based database systems
SQLite and PostgreSQL. The benchmark was run single-threaded. We refer to the execution
times measured by Schmeißer [110] (for TardisDB) and Karnowski [65].

Insert

We inserted the Wikipedia dumps with full page edit history6 from 1 August, 2018 for
pages 10 up to 2,087 using the four storage approaches presented. The pages were stored as
snapshots or as differences in the database systems PostgreSQL version 10.5 (classical disk-
oriented) and HyPer (in main-memory). The uncompressed XML dump file takes up to
76.8 GB of space. As the dump consists mostly of text, nearly the same amount of text
was inserted into the database. To measure the performance of the operations for smaller
datasets, we also ran our benchmark with only 3.7 GB of data (pages 30,227 to 30,303).

As we see in Figure 9.10, storing snapshots is always faster than computing the differ-
ences beforehand. That is valid for both PostgreSQL and HyPer, where the latter outperforms
the disk-based database system, as no tuples have to be written to disk. LiteTree (see Fig-
ure 9.10a) shows the worst insert performance. When performing on the larger dataset
(see Figure 9.10b), Git shows better runtime than PostgreSQL, but worse than HyPer, whereas
SQLite is not capable of managing more than 1,024 branches at all. TardisDB—as optimised
to this setting—was the fastest system.
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(A) insert: small (3.7 GB) dataset [65, 110].

0 5,000 10,000

Postgres-Snapshot

Postgres-Diff

Git

HyPer-Snapshot

HyPer-Diff

TardisDB-Snapshot

8,526.53

10,154.08

7,267.78

5,223.53

6,214.98

2,986.26

Insert duration in seconds

(B) insert: larger (76.8 GB) dataset [65, 110].

FIGURE 9.10: Benchmark results for the insert operation: The left side shows the insertion of the
small dataset, the right that of the larger. LiteTree was not capable of handling enough branches for
the larger dataset.
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(A) retFirst: small (3.7 GB) dataset [65, 110].
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(B) retFirst: larger (76.8 GB) dataset [65, 110].

FIGURE 9.11: Benchmark results for the retFirst operation: small (left) and larger (right) dataset.
When pages are stored as snapshots, any version can be accessed immediately. When the differences
between versions are stored instead, the first version has to be patched out of all deltas, which results
in runtimes up to 50 times slower.
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(A) retLatest: small (3.7 GB) dataset [65, 110].
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(B) retLatest: larger (76.8 GB) dataset [65, 110].

FIGURE 9.12: Benchmark results for retLatest operation with small (left) and larger (right) dataset.
All storage approaches show about the same page retrieval time, as the latest version is always stored
as a whole. The difference-based storage layout shows slightly better performance as no joins are
performed.
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FIGURE 9.13: Relative space consumption to the original size (numbers taken from [65, 110]).

Space Consumption

After inserting the pages, we analysed the space consumption in comparison to the original
size of the two datasets (see Figure 9.13). The most space-consuming approaches—as no
compression took place and the whole snapshots were copied—are LiteTree, HyPer-Snapshot
and TardisDB-Snapshot.

LiteTree stores each page as a new database entry on each commit and creates no index
structures. As it just copies the pages, its insertion time was one of the lowest ones, but also
space consuming with more than the initial 3.7 GB. HyPer does not compress text-based data,
so it needed the same amount of storage but in main-memory when storing each snapshot.
One improvement would be to compress the articles manually before insertion, with the
drawback of a higher runtime. Unexpectedly, PostgreSQL needed about 38 GB for the large
dataset in both approaches (snapshot and diff ), as it did not delete tuples immediately. After
a cleanup, the database size for the Postgres-Diff had been shrunk to 2.8 GB for the large and
1.62 GB for the small dataset.

Git initially needed about 38 GB—the same amount of memory as PostgreSQL. The bench-
mark used libGit for insertion [65], so the pages were stored uncompressed. After we
manually ran the garbage collector git gc, the storage size shrank to 1.3 GB for the large
dataset and 130 MB for the small one, so 1.7 % (3.51 % respectively) of the size of the un-
compressed XML file. Here, as in all difference-based approaches, the bigger the dataset, the
higher the compression rate. The size was reduced due to packing, the process of compress-
ing the Git repository, implicitly called by the garbage collector. Packing the Git repository
results in the lowest database size in our setup.

Retrieve First

Retrieving the first version works faster when the page content can be accessed as snap-
shots directly. This can be seen using either a main-memory or a classical database system
as data storage for small (see Figure 9.11a) or large workloads (see Figure 9.11b). Git was
always faster than the difference-based storage layout using its own delta compression.
The performance of PostgreSQL decreased with the number of inserted elements: while
it performed the fastest after LiteTree for the small load, the runtime decreased when the
larger dataset was handled. LiteTree showed a good performance as every commit in a
branch has an incrementally-growing number. To fetch the first version, we just specify
it by article-branch.1 [65]. Also in this setting, the architecture of TardisDB allowed the
greatest number of retrieving operations per second, but this number decreases with higher
workload, as a longer version chain has to be traversed.

6https://dumps.wikimedia.org/enwiki/20180801/

https://dumps.wikimedia.org/enwiki/20180801/
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Retrieve Latest

As we see in Figure 9.12, our difference-based storage layout always showed the best per-
formance except for the small workload (see Figure 9.12a), where LiteTree performed the
fastest. The reason that this outperformed the snapshot-based storage layout was that the
joins were eliminated. For the larger workload (see Figure 9.12b), we see that the database
systems outperformed Git by 20 % of its runtime. As TardisDB was tuned for fast scans on
the latest tuples, it allowed the most read transactions independent of the workload size.

9.7.3 Versioning Data Type

This section presents the evaluation of the versioning data type in Umbra. The Wikipedia
dumps of 1 September, 2019 (pages 971896 to 972009), which contain the full page edit his-
tory, serve as data. The size of the corresponding XML file is about 120 MB. We benchmark
on an Ubuntu 18.04 LTS server with an Intel Xeon CPU E5-2660 v2 with 2.20 GHz (20 cores)
and 256 GiB DDR4 RAM.

We first measure the size required when varying the frequency X of how often to save
a complete snapshot and not just the patch (see Figure 9.14). Saving every version as a
snapshot (X = 1) requires about 62 MB, this is the bare text size of all contained articles. We
can reduce the memory consumption to 12 % of the original size when storing every 10, 000th
version as a snapshot and the remaining versions as patches in-between. So a compression
rate of about 88 % is achieved for this data dump by just storing the patches. It can be
observed that a good compression is already achieved when storing every 20th version as a
snapshot while limiting the maximum number of patches to 20.
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FIGURE 9.14: Memory consumption depending on the frequency of stored snapshots [66].

We now consider a frequency of saving every 50th article (X = 50) as a snapshot to
evaluate the data type’s performance. We compare the runtime and memory consumption
of storing an article’s history in one tuple using the versioning data type (diff, see Listing 9.16)
to one tuple per version based on a text data type (snapshot, see Listing 9.17). Figure 9.15a
shows the ratio for the memory consumption of the three parts of the underlying struct
(patches, snapshots, and the headers including the array for the pointers to the data): At
a frequency of X = 50, less than a third of the memory is used for the snapshots, while
most of the memory is consumed by the patches. So most of the memory is used for patches
containing only the differences, and thus, avoiding redundancy.
1 INSERT INTO t (text)
2 VALUES (BUILD(T1, ..., TN));
3 SELECT EXPAND(text, 1, N) from t;

LISTING 9.16: Diff [66].

1 INSERT INTO t (rev_id, text)
2 VALUES (1, T1), ..., (N, TN);
3 SELECT text from t;

LISTING 9.17: Snapshot [66]

Figure 9.15b shows the runtime for the two approaches consisting of the insertion and
retrieval time, broken down into compile and execution time. First, the time for inserting
all versions of all articles in the considered Wikipedia dump is measured, then the time for
retrieving all articles. In both approaches, the compile time for insertion dominates, since
the parsing time for text input is included. Our versioning data type is faster at insertion
and retrieval because fewer operations are required. To summarise, the versioning data type
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consumes less memory as it stores mostly patches, while having good retrieval times, since
fewer operations are required.
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FIGURE 9.15: (a) Memory ratio of the individual parts of the underlying struct and (b) runtime com-
parison to naive approach of storing every version as a tuple [66].

9.8 Conclusion

This chapter showed how to adapt versioning for database systems including an SQL ex-
tension and evaluated the performance and space consumption of storing the differences
between pages in contrast to storing the whole snapshots. We first developed a database
schema, which was capable of managing versions over multiple relations, and described
MusaeusDB as a tool to deal with the schema.

To include versioning inside modern main-memory database systems, we adapted multi-
version concurrency control for our prototype TardisDB that generated low-level machine
code. It was equipped with a modified table scan operator with bitmaps to indicate the
affiliation of tuples to branches and a version chain to track their modification history. As
tuples and branches came with a timestamp each, the table scan operator could verify in a
version bitmap for each tuple whether that tuple is contained in the current branch. The
corresponding SQL extension supported named branches over multiple tables, which com-
prises a statement for branch creation and an auxiliary keyword after each table to determine
the branch.

TardisDB performed best at retrieving the latest tuples, the setup for which it was de-
signed. The extension did not slow down the read throughput on the master branch and
retrieved other versions faster than comparable systems. Our TardisBenchmark evaluated
storing deltas against storing snapshots of pages based on the schema and data of Media-
Wiki. Our benchmark showed that it was indeed possible to shrink the amount of storage
used by a factor of ten, while still offering comparable time when the pages are demanded.
Using delta compression inside of the Umbra database system, we implemented a data type
that compresses multiple versions of a text string. Using this data type for Wikipedia arti-
cles, we achieved a compression rate of up to 11.9 % and outperformed the traditional text
data type, when storing each version as one tuple individually, by an order of magnitude.

Overall, we showed versioning techniques that fit for database systems and proved the
capability, with Wikipedia as a real world use case. With the developed web interface, we
aimed to demonstrate the simplicity of extending SQL for versioning, which should also
increase the acceptance of SQL for further tasks such as version control. To support further
research on database versioning besides our proposed storage techniques, we provide our
TardisBenchmark, which is capable of handling a flexible-sized workload.
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Chapter 10

Conclusion and Future Work

This chapter sums up the findings of dataset versioning, in-database machine learning and
analytics, and concludes by providing an outlook on standardisations required to run the
presented algorithms within other database systems or to allow their extension for further
operators.

10.1 Conclusion

This thesis has extended SQL within modern database systems to support data analysis, gra-
dient descent for machine learning and dataset versioning. To express data analysis in SQL,
we presented algorithms within a scripting language and recursive tables that require ag-
gregate or window functions. We showed that their performance within a modern database
system such as HyPer or Umbra was comparable to the runtime within an extended tradi-
tional database system, i.e., PostgreSQL with MADlib and PL/pgSQL. Recursive tables with
support for aggregate functions are also capable of expressing gradient descent, which al-
lowed the elimination of the extensive ETL process for model training. To further facilitate
the computation of gradient descent, we integrated automatic differentiation as an opera-
tor in SQL, which accelerated the runtime by the number of cached expressions. Automatic
differentiation was based on an SQL lambda function. This allowed arbitrary expressions
on SQL data types including arrays interpreted as matrices to serve as a loss function for
gradient descent. For further acceleration, we included automatic differentiation within a
dedicated operator for gradient descent, which allowed off-loading training to GPU. For
training on GPUs, we developed fine-grained learners, which allowed the highest possible
throughput even for small batch sizes. When using these extensions for a translation of
a meta-language for machine learning to SQL, we figured out that most operations trans-
formed the data into arrays before processing. Therefore, we extended the code-generating
database system Umbra by an interface for arrays turning it into an array database system
with in-memory performance.

Dataset versioning on top of database systems was extended to support multiple tables
per version and benefitted from the performance increase of an in-memory database sys-
tem, i.e., HyPer. To fully incorporate dataset versioning inside of a main-memory engine,
we developed TardisDB, a database system whose table scan operator supported versioning
based on branch bitmaps and on multi-version concurrency control for tracking each tuple’s
history. We proposed a downward compatible SQL extension to query and to address dif-
ferent branches. Based on Wikipedia as a use case, the evaluation showed that TardisDB
performed the best for retrieving the latest version of an article, whereas the memory con-
sumption would be reduced further if text compression was used.
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10.2 Future Work

When benchmarking dataset versioning, delta text compression minimised the memory con-
sumption of Wikipedia articles significantly. Text compression could be combined with
multi-version concurrency control, as used in TardisDB, to further reduce the space con-
sumption of a database system with incorporated dataset versioning. Besides, TardisDB
supports only one client per database instance. However, in a production setup, a database
server should handle multiple clients. So the interplay of versioning and multi-version con-
currency control will be of interest and should be enabled.

Support for the SQL standard varied from system to system, making it difficult to com-
pare database systems for data analysis. To enable the interchangeability of database sys-
tems, we consider a homogeneous implementation of the SQL standard to be essential.
For example, aggregate and window functions within recursive tables should be supported
within common database systems. Moreover, HyPer’s data mining operators expect tables
as input arguments. These so-called polymorphic table functions are part of the SQL:2016
standard [97]. This standard should be implemented in other database systems [118] in or-
der to enable automatic differentiation and gradient descent as an operator. Furthermore, an
array data type, such as that provided by PostgreSQL, was used as the basis for matrix op-
erations. Such a data type would be helpful also within other database systems and should
be included in a future SQL standard.

As an alternative to an array data type, this thesis has shown that database tables can be
interpreted as arrays using a separate interface. Instead of providing an ArrayQL interface,
applications can translate array expressions into relational algebra directly. As an example,
the presented declarative meta-language MLearn can be extended to perform linear algebra
on SQL tables instead of on the array data type. Another approach would concern the tuples
in their materialised form. Instead of using relational algebra, an array interface could access
the persisted data. This is needed when a tabular representation for array data should be
chosen instead of a relational one.

The presented in-database GPU support was limited to gradient descent within a dedi-
cated operator only. Instead of a dedicated operator, GPU support can accelerate operations
on specific data types or operators of the relational algebra. To reduce the amount of trans-
ferred data, entire operator plans of a code-generating database system should be compiled
together and off-loaded to GPU. For matrix algebra on the array data type, successive oper-
ations can be merged to transfer the data only once.
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Appendix A

SQL for Data Analysis: Queries

A.1 HyPer

1 -- k-means algorithm as hyperscript
2 create schema if not exists kmeansscript;
3 create table kmeansscript.points (id varchar(8), x float, y float);
4 create table kmeansscript.clusters (cid integer, x float, y float, points integer);
5 create table kmeansscript.pointsclusters (cid integer, pid varchar(8));
6
7 -- some sample data
8 create or replace function kmeansscript.insertSampleIntoPoints() as $$
9 debug_print(’insert sample points’);

10 insert into kmeansscript.points(VALUES (’A’,2,12),(’B’,3,11),(’C’,3,8),(’D’,5,4),(’E’,7,5),(’F’,7,3),(’G’,10,8),(’H’,13,8));
11 $$ language ’hyperscript’ strict;
12
13 -- create random points
14 create or replace function kmeansscript.random(count integer not null, maxx integer not null, maxy integer not null) returns integer

not null as $$
15 debug_print(’insert random points:’,count);
16 delete from kmeansscript.points where true;
17 select index as i from sequence(0,count){
18 insert into kmeansscript.points(values(i, random(maxx), random(maxy)));
19 }
20 return 0;
21 $$ language ’hyperscript’ strict;
22
23 -- the iterate function, returns 0 on fixpoint or number of chnaged rows
24 create or replace function kmeansscript.iterate() returns integer not null as $$
25 debug_print(’iterate’);
26 table clusters_tmp (cid integer, x float, y float, points integer);
27 insert into clusters_tmp (
28 select cid, avg(px), avg(py), count(*) from (
29 select cid, p.x as px, p.y as py, rank() OVER (
30 partition by p.id
31 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc,
32 (c.x*c.x+c.y*c.y) asc)
33 from kmeansscript.points p, kmeansscript.clusters c
34 ) x
35 where x.rank=1
36 group by cid
37 );
38 select count(*) as c_count from (select * from kmeansscript.clusters except select * from clusters_tmp);
39 delete from kmeansscript.clusters where true; -- move tmp to main cluster table
40 insert into kmeansscript.clusters (select * from clusters_tmp);
41 return c_count; -- return number of different rows
42 $$ language ’hyperscript’ strict;
43
44 -- finally, combine points to clusters
45 create or replace function kmeansscript.pointsToClusters() as $$
46 insert into kmeansscript.pointsclusters(
47 select cid,pid from (
48 select cid, p.id as pid, rank() OVER (
49 partition by p.id
50 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc,
51 (c.x*c.x+c.y*c.y) asc)
52 from kmeansscript.points p, kmeansscript.clusters c
53 ) x
54 where x.rank=1
55 );
56 $$ language ’hyperscript’ strict;
57
58 -- main method to manage iteration
59 create or replace function kmeansscript.run(centers integer not null) as $$
60 debug_print(’run kmeansscript; centers:’, centers);
61 delete from kmeansscript.clusters where true;
62 insert into kmeansscript.clusters(
63 select id,x,y,0 from (select *,rank() over (order by id) from kmeansscript.points) where rank <= centers
64 );
65 select index as i from sequence(0,100) {
66 select kmeansscript.iterate() as c_count;
67 if(c_count = 0){
68 break;
69 }
70 }
71 select kmeansscript.pointsToClusters();
72 $$ language ’hyperscript’ strict;
73
74 create or replace function kmeansscript.benchmark() as $$
75 debug_print(’benchmark’);
76 select kmeansscript.random(1000, 1000, 1000);
77 select kmeansscript.run(5);
78 $$ language ’hyperscript’ strict;

LISTING A.1: k-Means.
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1 -- dbscan algorithm as hyperscript
2 create schema if not exists dbscanscript;
3 create table dbscanscript.points (id varchar(8), x float, y float);
4 create table dbscanscript.pointsclustered (id varchar(8), x float, y float, clusterid integer, noise boolean);
5
6 -- some sample data
7 create or replace function dbscanscript.insertSampleIntoPoints()
8 as $$
9 debug_print(’insert sample points’);

10 insert into dbscanscript.points(VALUES(’A’,2,12),(’B’,3,11),(’C’,3,8),(’D’,5,4),(’E’,7,5),(’F’,7,3),(’G’,10,8),(’H’,13,8));
11 $$ language ’hyperscript’ strict;
12
13 -- create random points
14 create or replace function dbscanscript.random(count integer not null, maxx integer not null, maxy integer not null) returns integer

not null as $$
15 debug_print(’insert random points:’,count);
16 delete from dbscanscript.points where true;
17 select index as i from sequence(0,count){
18 insert into dbscanscript.points(values(i, random(maxx), random(maxy)));
19 }
20 return 0;
21 $$ language ’hyperscript’ strict;
22
23 create or replace function dbscanscript.insertCluster(clusterid integer not null, eps float not null, max integer not null) returns

integer not null as $$
24 table pointsTmp (id varchar(8), x float, y float);
25 insert into pointsTmp(
26 (select * from dbscanscript.points except (select id,x,y from dbscanscript.pointsclustered) LIMIT 1)
27 );
28 select count(*) as ret from pointsTmp;
29 select index from sequence(1,max){
30 select count(*) as newc from pointsTmp c, dbscanscript.points p
31 where pow(p.x-c.x,2)+pow(p.y-c.y,2)<pow(eps,2) and c.id<>p.id;
32 insert into pointsTmp(
33 select * from (select * from dbscanscript.points except select * from pointsTmp) c
34 where exists (select * from pointsTmp p where pow(p.x-c.x,2)+pow(p.y-c.y,2)<pow(eps,2) and c.id<>p.id)
35 );
36 if(newc=0){
37 break;
38 }
39 ret=ret+newc;
40 }
41 insert into dbscanscript.pointsclustered(select *,clusterid, false from pointsTmp);
42 return ret;
43 $$ language ’hyperscript’ strict;
44
45 -- main method to manage iteration
46 create or replace function dbscanscript.run(eps float not null, minPoints integer not null, maxiter integer not null) as $$
47 delete from dbscanscript.pointsClustered where true;
48 insert into dbscanscript.pointsClustered(
49 select *,null,true from dbscanscript.points np where minPoints>(
50 select count(*) from dbscanscript.points p where pow(p.x-np.x,2)+pow(p.y-np.y,2)<pow(eps,2)
51 )
52 );
53 select index from sequence (1,maxiter){
54 select dbscanscript.insertCluster(index,eps,maxiter) as cond;
55 if(cond=0){
56 break;
57 }
58 }
59 $$ language ’hyperscript’ strict;
60
61 create or replace function dbscanscript.benchmark() as $$
62 debug_print(’benchmark’);
63 select dbscanscript.random(10,10,10);
64 select dbscanscript.run(3,2,10);
65 $$ language ’hyperscript’ strict;

LISTING A.2: DBSCAN.
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1 -- pagerank algorithm as hyperscript
2 create schema if not exists prscript;
3 create table prscript.edges (src Integer, dst Integer);
4 create table prscript.pagerank (Node Integer, Pagerank Float);
5 create table prscript.pagerank_tmp (Node Integer, Pagerank Float);
6
7 -- some sample data
8 create or replace function prscript.insertSampleIntoEdges() as $$
9 insert into prscript.edges(VALUES (1,2),(1,3),(2,3),(3,4),(4,1));

10 $$ language ’hyperscript’ strict;
11
12 -- create random points
13 create or replace function prscript.random(nodes integer not null, edges integer not null) returns integer not null as $$
14 debug_print(’insert random edges; edges:’, edges, ’; nodes:’, nodes);
15 delete from prscript.edges where true;
16 select index as i from sequence(0,edges){
17 insert into prscript.edges(values(random(nodes), random(nodes)));
18 }
19 return edges;
20 $$ language ’hyperscript’ strict;
21
22 -- the iterate function, returns 0 on fixpoint or number of chnaged rows
23 create or replace function prscript.iterate(alpha float not null) returns integer not null as $$
24 table pagerank_tmp(Node Integer, Pagerank Float);
25 insert into pagerank_tmp (
26 select dst, alpha*(CAST ((select count(*) from prscript.pagerank) AS FLOAT))+ (1-alpha)*sum(Beitrag)
27 from (
28 select e.dst, p.Pagerank /(select count (*) from prscript.edges x where x.src=e.src) as Beitrag
29 from prscript.edges e , prscript.pagerank p
30 where e.src=p.Node
31 ) i
32 group by dst
33 );
34 select count(*) as c_count from (select * from prscript.pagerank except select * from pagerank_tmp);
35 delete from prscript.pagerank where true; -- move tmp to main cluster table
36 insert into prscript.pagerank (select * from pagerank_tmp);
37 return c_count; -- return number of different rows
38 $$ language ’hyperscript’ strict;
39
40 -- main method to manage iteration
41 create or replace function prscript.run(alpha float not null) as $$
42 delete from prscript.pagerank where true;
43 insert into prscript.pagerank(
44 select distinct e.src, 1/(CAST ((select count(distinct src) from prscript.edges) AS FLOAT))
45 FROM prscript.edges e
46 );
47 select index as i from sequence(0,100) {
48 select prscript.iterate(alpha) as c_count;
49 if(c_count = 0){
50 break;
51 }
52 }
53 $$ language ’hyperscript’ strict;

LISTING A.3: PageRank.

1 create schema if not exists aprioriscript;
2 create table aprioriscript.sales (tid integer, item integer);
3 create table aprioriscript.fis (item integer[]);
4
5 -- create random points
6 create or replace function aprioriscript.random(items integer not null, buckets integer not null, maxbucketsize integer not null)

returns integer not null as $$
7 debug_print(’create randombuckets; items:’, items, ’; buckets:’, buckets, ’maxBucketSize:’, maxbucketsize);
8 select index as bucket from sequence(0,buckets){
9 -- take a random bucket size between 0 and maxbucketsize

10 select index as size from sequence(0,random(maxbucketsize)){
11 insert into aprioriscript.sales values (bucket,random(random(random(random(random(items))))));
12 }
13 }
14 select count(*) as ret from aprioriscript.sales;
15 return ret;
16 $$ language ’hyperscript’ strict;
17
18 create or replace function aprioriscript.findFI(minsupp integer not null) as $$
19 debug_print(’find frequent itemsets; minsupp (abs):’, minsupp);
20 with recursive
21 transactions (tid, bucket) as(
22 select tid, array_agg(item) from aprioriscript.sales group by tid
23 ),
24 sales_supp as (
25 select item
26 from aprioriscript.sales
27 group by item
28 having count(*) >= minsupp
29 ), --items with minSupp >= 2
30 frequentitemsets as (
31 (select distinct array[p.item]::integer[] as items from sales_supp p)
32 union all (
33 -- apriori-gen()
34 select distinct array_append(t.items,p.item::integer)::integer[]
35 from frequentitemsets t, sales_supp p
36 where (
37 select count(*)
38 from transactions t2
39 where array_append(t.items,p.item::integer)::integer[] <@ ( t2.bucket )
40 ) >= minsupp and
41 t.items[(select count(*) from unnest(t.items))]<p.item
42 )
43 )
44 insert into aprioriscript.fis (select * from frequentitemsets);
45 $$ language ’hyperscript’ strict;
46
47 create or replace function aprioriscript.benchmark() returns integer not null as $$
48 debug_print(’run benchmark’);
49 select aprioriscript.random(1000,100000,80);
50 select aprioriscript.findFI(10000);
51 select count(*) as cs from aprioriscript.fis;
52 return cs;
53 $$ language ’hyperscript’ strict;

LISTING A.4: Apriori.
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A.2 PostgreSQL

1 create schema if not exists kmeansscript;
2 create table kmeansscript.points (id integer, x float, y float);
3 create table kmeansscript.clusters (cid integer, x float, y float, points integer);
4 create table kmeansscript.clusters_tmp (cid integer, x float, y float, points integer);
5 create table kmeansscript.pointsclusters (cid integer, pid integer);
6
7 create or replace function kmeansscript.random(count integer, maxx integer, maxy integer) returns integer as $$ BEGIN
8 delete from kmeansscript.points where true;
9 FOR i IN 1..count LOOP

10 insert into kmeansscript.points(values(i, random()*maxx, random()*maxy));
11 END LOOP;
12 return 0;
13 END $$ LANGUAGE plpgsql;
14
15 -- the iterate function, returns 0 on fixpoint or number of chnaged rows
16 create or replace function kmeansscript.iterate() returns integer as $$ BEGIN
17 delete from kmeansscript.clusters_tmp where true;
18 insert into kmeansscript.clusters_tmp (
19 select cid, avg(px), avg(py), count(*) from (
20 select cid, p.x as px, p.y as py, rank() OVER (
21 partition by p.id
22 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc,
23 (c.x*c.x+c.y*c.y) asc)
24 from kmeansscript.points p, kmeansscript.clusters c
25 ) x
26 where x.rank=1
27 group by cid
28 );
29 perform count(*) as c_count from (select * from kmeansscript.clusters except select * from kmeansscript.clusters_tmp) tmp;
30 delete from kmeansscript.clusters where true; -- move tmp to main cluster table
31 insert into kmeansscript.clusters (select * from kmeansscript.clusters_tmp);
32 return 1;
33 END $$ LANGUAGE plpgsql;
34
35 -- finally, combine points to clusters
36 create or replace function kmeansscript.pointsToClusters() returns integer as $$ BEGIN
37 insert into kmeansscript.pointsclusters(
38 select cid,pid from (
39 select cid, p.id as pid, rank() OVER (
40 partition by p.id
41 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc,
42 (c.x*c.x+c.y*c.y) asc)
43 from kmeansscript.points p, kmeansscript.clusters c
44 ) x
45 where x.rank=1
46 );
47 return 1;
48 END $$ LANGUAGE plpgsql;
49
50 -- main method to manage iteration
51 create or replace function kmeansscript.run(centers integer) returns integer as $$ BEGIN
52 delete from kmeansscript.clusters where true;
53 insert into kmeansscript.clusters(
54 select id,x,y,0 from (select *,rank() over (order by id) from kmeansscript.points) ranks where rank <= centers
55 );
56 FOR i IN 0..100 LOOP
57 perform kmeansscript.iterate() as c_count;
58 END LOOP;
59 return kmeansscript.pointsToClusters();
60 END $$ LANGUAGE plpgsql;
61
62 create or replace function kmeansscript.benchmark() returns integer as $$ BEGIN
63 perform kmeansscript.random(1000, 1000, 1000);
64 perform kmeansscript.run(5);
65 return 1;
66 END $$ LANGUAGE plpgsql;

LISTING A.5: k-Means.
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1 create schema if not exists dbscanscript;
2 create table dbscanscript.points (id varchar(8), x float, y float);
3 create table dbscanscript.pointsclustered (id varchar(8), x float, y float, clusterid integer, noise boolean);
4 create table dbscanscript.pointsTmp (id varchar(8), x float, y float);
5
6 -- some sample data
7 create or replace function dbscanscript.insertSampleIntoPoints() returns integer as $$ BEGIN
8 insert into dbscanscript.points(VALUES(’A’,2,12),(’B’,3,11),(’C’,3,8),(’D’,5,4),(’E’,7,5),(’F’,7,3),(’G’,10,8),(’H’,13,8));
9 return 0;

10 END $$ language plpgsql;
11
12 -- create random points
13 create or replace function dbscanscript.random(count integer, maxx integer, maxy integer) returns integer as $$ BEGIN
14 delete from dbscanscript.points where true;
15 FOR i IN 1..count LOOP
16 insert into dbscanscript.points(values(i, random()*maxx, random()*maxy));
17 END LOOP;
18 return 0;
19 END $$ language plpgsql;
20
21 create or replace function dbscanscript.insertCluster(clusterid integer, eps float, max integer) returns integer as $$
22 DECLARE
23 ret int;
24 newc int;
25 BEGIN
26 delete from dbscanscript.pointstmp where true;
27 insert into dbscanscript.pointsTmp(
28 (select * from dbscanscript.points except (select id,x,y from dbscanscript.pointsclustered) LIMIT 1)
29 );
30 select count(*) from dbscanscript.pointstmp into ret;
31 ret=0;
32 FOR i IN 1..max LOOP
33 select count(*) from dbscanscript.pointsTmp c, dbscanscript.points p
34 where pow(p.x-c.x,2)+pow(p.y-c.y,2)<pow(eps,2) and c.id<>p.id into newc;
35 insert into dbscanscript.pointsTmp(
36 select * from (select * from dbscanscript.points except select * from dbscanscript.pointsTmp) c
37 where exists (select * from dbscanscript.pointsTmp p where pow(p.x-c.x,2)+pow(p.y-c.y,2)<pow(eps,2) and c.id<>p.id)
38 );
39 ret=ret+newc;
40 END LOOP;
41 insert into dbscanscript.pointsclustered(select *,clusterid, false from dbscanscript.pointstmp);
42 return ret;
43 END $$ language plpgsql;
44
45 -- main method to manage iteration
46 create or replace function dbscanscript.run(eps float, minPoints integer, maxiter integer) returns integer as $$
47 DECLARE
48 cond integer;
49 BEGIN
50 delete from dbscanscript.pointsClustered where true;
51 insert into dbscanscript.pointsClustered(
52 select *,null,true from dbscanscript.points np where minPoints>(
53 select count(*) from dbscanscript.points p where pow(p.x-np.x,2)+pow(p.y-np.y,2)<pow(eps,2)
54 )
55 );
56 FOR index IN 1..maxiter LOOP
57 select dbscanscript.insertCluster(index,eps,maxiter) into cond;
58 END LOOP;
59 return 1;
60 END $$ language plpgsql;
61
62 create or replace function dbscanscript.benchmark() returns integer as $$ BEGIN
63 perform dbscanscript.random(10,10,10);
64 perform dbscanscript.run(3,2,10);
65 return 0;
66 END $$ language plpgsql;

LISTING A.6: DBSCAN.
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1 create schema if not exists prscript;
2 create table prscript.edges (VFrom Integer, VTo Integer);
3 create table prscript.pagerank (Node Integer, Pagerank Float);
4 create table prscript.pagerank_tmp (Node Integer, Pagerank Float);
5
6 -- some sample data
7 create or replace function prscript.insertSampleIntoEdges() returns integer as $$ BEGIN
8 insert into prscript.edges(VALUES (1,2),(1,3),(2,3),(3,4),(4,1));
9 return 1;

10 END $$ LANGUAGE plpgsql;
11
12 -- create random points
13 create or replace function prscript.random(nodes integer, edges integer) returns integer as $$ BEGIN
14 delete from prscript.edges where true;
15 FOR i IN 1..edges LOOP
16 insert into prscript.edges(values(random()*nodes, random()*nodes));
17 END LOOP;
18 return edges;
19 END $$ language plpgsql;
20
21 -- the iterate function, returns 0 on fixpoint or number of chnaged rows
22 create or replace function prscript.iterate(alpha float) returns integer as $$ BEGIN
23 delete from prscript.pagerank_tmp where true;
24 insert into prscript.pagerank_tmp (
25 select VTo, alpha*(CAST ((select count(*) from prscript.pagerank) AS FLOAT))+ (1-alpha)*sum(Beitrag)
26 from (
27 select e.VTo, p.Pagerank /(select count (*) from prscript.edges x where x.VFrom=e.VFrom) as Beitrag
28 from prscript.edges e , prscript.pagerank p
29 where e.VFrom=p.Node
30 ) i
31 group by VTo
32 );
33 perform count(*) as c_count from (select * from prscript.pagerank except select * from prscript.pagerank_tmp) a;
34 delete from prscript.pagerank where true; -- move tmp to main cluster table
35 insert into prscript.pagerank (select * from prscript.pagerank_tmp);
36 return 1;
37 END $$ language plpgsql;
38
39 -- main method to manage iteration
40 create or replace function prscript.run(alpha float) returns integer as $$ BEGIN
41 delete from prscript.pagerank where true;
42 insert into prscript.pagerank(
43 select distinct e.VFROM, 1/(CAST ((select count(distinct VFrom) from prscript.edges) AS FLOAT))
44 FROM prscript.edges e
45 );
46 FOR i IN 1..100 LOOP
47 perform prscript.iterate(alpha) as c_count;
48 END LOOP;
49 return 1;
50 END $$ language plpgsql;

LISTING A.7: PageRank.

1 create schema if not exists aprioriscript;
2
3 -- tables for shopping cart items
4 create table aprioriscript.sales (tid integer, item integer);
5 create table aprioriscript.fis (item integer[]);
6
7 -- create random points
8 create or replace function aprioriscript.random(items integer, buckets integer, maxbucketsize integer) returns integer as $$ BEGIN
9 FOR bucket IN 0..buckets LOOP

10 -- take a random bucket size between 0 and maxbucketsize
11 FOR i IN 0..random()*maxbucketsize LOOP
12 insert into aprioriscript.sales values (bucket,random()*random()*random()*random()*random()*items);
13 END LOOP;
14 END LOOP;
15 return 1;
16 END $$ language plpgsql;
17
18 create or replace function aprioriscript.findFI(minsupp integer) returns integer as $$ BEGIN
19 with recursive
20 transactions (tid, bucket) as(
21 select tid, array_agg(item) from aprioriscript.sales group by tid
22 ),
23 -- frequent items
24 sales_supp as (
25 select item
26 from aprioriscript.sales
27 group by item
28 having count(*) >= minsupp
29 ), --items with minSupp >= 2
30 frequentitemsets as (
31 (select distinct array[p.item]::integer[] as items from sales_supp p)
32 union all (
33 -- apriori-gen()
34 select distinct array_append(t.items,p.item::integer)::integer[]
35 from frequentitemsets t, sales_supp p
36 where (
37 -- count support
38 select count(*)
39 from transactions t2
40 where array_append(t.items,p.item::integer)::integer[] <@ ( t2.bucket )
41 ) >= minsupp and
42 t.items[(select count(*) from unnest(t.items))]<p.item
43 )
44 )
45 insert into aprioriscript.fis (select * from frequentitemsets);
46 return 1;
47 END $$ language plpgsql;
48
49 create or replace function aprioriscript.benchmark() returns integer as $$ BEGIN
50 perform aprioriscript.random(100,100,8);
51 perform aprioriscript.findFI(100);
52 perform count(*) as cs from aprioriscript.fis;
53 return 1;
54 END $$ language plpgsql;

LISTING A.8: Apriori.
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In-Database Machine Learning:
Scripts

1 create table if not exists data (x1 float, x2 float, x3 float, x4 float, x5 float, x6 float, y1 float, y2 float, y3 float, y4 float,
y5 float, y6 float);

2 insert into data (select *, 0.5+0.4*x1,
3 0.5+0.4*x1+0.25*x2,
4 0.5+0.4*x1+0.25*x2+0.1*x3,
5 0.5+0.4*x1+0.25*x2+0.1*x3+0.2*x4,
6 0.5+0.4*x1+0.25*x2+0.1*x3+0.2*x4+0.6*x5,
7 0.5+0.4*x1+0.25*x2+0.1*x3+0.2*x4+0.6*x5+0.7*x6
8 from (select random() x1, random() x2, random() x3, random() x4, random() x5, random() x6 from generate_series(1,100000)));
9

10 \record gd.csv Manually,6,100000,0.1,50
11 with recursive gd (id, a1, a2, a3, a4, a5, a6, b) as (
12 select 0,1::float,1::float,1::float,1::float,1::float,1::float,1::float
13 UNION ALL
14 select id+1,
15 a1-0.1*avg(2*x1*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
16 a2-0.1*avg(2*x2*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
17 a3-0.1*avg(2*x3*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
18 a4-0.1*avg(2*x4*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
19 a5-0.1*avg(2*x5*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
20 a6-0.1*avg(2*x6*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6)),
21 b -0.1*avg(2*(a1*x1+a2*x2+a3*x3+a4*x4+a5*x5+a6*x6+b-y6))
22 from gd, (select * from data) where id < 50 group by id,a1,a2,a3,a4,a5,a6,b)
23 select * from gd where id = 50 order by id;
24
25 \record gd.csv Automatically,6,100000,0.1,50
26 with recursive gd (id, a1, a2, a3, a4, a5, a6, b) as (
27 select 0,1::float,1::float,1::float,1::float,1::float,1::float,1::float
28 UNION ALL
29 select id+1,
30 a1-0.1*avg(d_a1), a2-0.1*avg(d_a2), a3-0.1*avg(d_a3), a4-0.1*avg(d_a4), a5-0.1*avg(d_a5), a6-0.1*avg(d_a6), b-0.1*avg(d_b)
31 from umbra.derivation(TABLE (
32 select * from gd, (select * from data) where id < 50),
33 lambda (x) ((x.a1 * x.x1 + x.a2 * x.x2 + x.a3 * x.x3 + x.a4 * x.x4 + x.a5 * x.x5 + x.a6 * x.x6 + x.b - x.y6)^2))
34 group by id,a1,a2,a3,a4,a5,a6,b)
35 select * from gd where id = 50 order by id;
36
37 \record gd.csv Operator,6,100000,0.1,50
38 select * from umbra.gd(TABLE (select * from data), TABLE (select 1::float a1, 1::float a2, 1::float a3, 1::float a4, 1::float a5, 1::

float a6, 1::float b), lambda (x,y) ((y.a1 * x.x1 + y.a2 * x.x2 + y.a3 * x.x3 + y.a4 * x.x4 + y.a5 * x.x5 + y.a6 * x.x6 + y.b -
x.y6)^2), 50, 0.1, 0);

LISTING B.1: Gradient descent for linear regression.

1 create table if not exists data (x1 float, x2 float, y float);
2 insert into data (select *, round(1.0/(1+exp(-(-0.25+0.4*x1+0.2*x2))),0) from (select random() x1, random() x2 from generate_series

(1,10)));
3
4 \record gd.csv Manually,2,10,0.5,150
5 with recursive gd (id, a1, a2, b) as (
6 select 0,1::float,1::float,1::float
7 UNION ALL
8 select id+1,
9 a1-0.5*avg(2*x1*(sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b)))),

10 a2-0.5*avg(2*x2*(sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b)))),
11 b -0.5*avg(2* (sig(a1*x1+a2*x2+b)-y2)*(sig(a1*x1+a2*x2+b)*(1-sig(a1*x1+a2*x2+b))))
12 from gd, data where id < 150 group by id,a1,a2,b
13 ),test as (select id, correct, count(*) from (select id, round(1.0/(1+exp(-a1*x1-a2*x2-b)),0)=y1 as correct from gd,data) group by id,

correct)
14 select id, count*1.0/(select sum(count) from test t2 where t1.id=t2.id ) from test t1 where correct=true order by id;
15
16 \record gd.csv Automatically,2,10,0.5,150
17 with recursive gd (id, a1, a2, b) as (
18 select 0,1::float,1::float,1::float
19 UNION ALL
20 select id+1,
21 a1-0.5*avg(d_a1), a2-0.5*avg(d_a2), b-0.5*avg(d_b)
22 from umbra.derivation(TABLE (
23 select * from gd, (select * from data) where id < 150),
24 lambda (x) ((1.0/(1+exp(-(x.a1 * x.x1 +x.a2 * x.x2 + x.b))) - x.y)^2))
25 group by id,a1,a2,b
26 ),test as (select id, correct, count(*) from (select id, round(1.0/(1+exp(-a1*x1-a2*x2-b)),0)=y1 as correct from gd,data) group by id,

correct)
27 select id, count*1.0/(select sum(count) from test t2 where t1.id=t2.id ) from test t1 where correct=true order by id;
28
29 \record gd.csv Operator,2,10,0.5,150
30 with gd as (
31 select * from umbra.gd(TABLE (select * from data), TABLE (select 1::float a1, 1::float a2, 1::float b), lambda (x,y) ((1.0/(1+exp(-y

.b - y.a1 * x.x1 - y.a2 * x.x2)) - x.y2)^2), 150, 0.5, 0)
32 ),test as (select correct, count(*) from (select round(1.0/(1+exp(-a1*x1-a2*x2-b)),0)=y1 as correct from gd,data) group by correct)
33 select count*1.0/(select sum(count) from test t2) from test t1 where correct=true;

LISTING B.2: Gradient descent for logistic regression.
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1 #!/bin/bash
2
3 # parameters
4 parallel=${PARALLEL:-"8"}
5 lr=0.001 # learningrate
6 maxatts=64
7 maxlimit=10000
8 attss="2 4 8 16 32 $maxatts"
9 iters="10 100 1000"

10 limits="10 100 1000 $maxlimit"
11 repeat=5
12
13 # create table for data
14 echo -n "create table if not exists data ("
15 for att in ‘seq 1 $maxatts‘; do echo -n "x$att float, "; done
16 for att in ‘seq 1 $maxatts‘; do echo -n "y$att float, "; done
17 echo "mynull float);"
18
19 # insert data
20 echo -n "insert into data (select *"
21 summe="0.5"
22 for att in ‘seq 1 $maxatts‘; do summe="$summe+0.8*x${att}"; echo -n ",$summe"; done
23 echo -n " from (select "
24 for att in ‘seq 1 $maxatts‘; do echo -n "random() x$att, "; done
25 echo -e "0 from generate_series(1,$maxlimit)));"
26
27 # benchmark loop
28 for limit in $limits; do
29 for iter in $iters; do
30 for atts in $attss; do
31
32 # build lambda
33 summe=""
34 for att in ‘seq 1 $atts‘; do summe="$summe a${att}*x${att} +"; done
35 summe="$summe b-y$atts"
36 lambda=""
37 for att in ‘seq 1 $atts‘; do lambda="$lambda x.a${att}*x.x${att} +"; done
38 lambda="$lambda x.b-x.y$atts"
39 lambda2=""
40 for att in ‘seq 1 $atts‘; do lambda2="$lambda2 y.a${att}*x.x${att} +"; done
41 lambda2="$lambda2 y.b-x.y$atts"
42
43 # benchmark setting
44 echo \\set repeat $repeat
45 echo \\record gd.csv Manually,$atts,$limit,$lr,$iter,$parallel
46 # recursive table
47 echo -n "with recursive gd (id"
48 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
49 echo -n ", b) as (
50 select 1, 1::float"
51 for att in ‘seq 1 $atts‘; do echo -n ", 1::float"; done
52 # recursion step
53 echo "
54 UNION ALL
55 select id+1,"
56 for att in ‘seq 1 $atts‘; do echo " a$att-$lr*avg(2*x$att*($summe)),"; done
57 echo -n " b -$lr*avg(2*($summe))
58 from gd, (select * from data limit $limit) where id < $iter group by id"
59 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
60 echo -n ", b)
61 select * from gd where id = $iter;
62 "
63
64 echo \\record gd.csv Automatically,$atts,$limit,$lr,$iter,$parallel
65 # recursive table
66 echo -n "with recursive gd (id"
67 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
68 echo -n ", b) as (
69 select 1, 1::float"
70 for att in ‘seq 1 $atts‘; do echo -n ", 1::float"; done
71 # recursion step
72 echo -n "
73 UNION ALL
74 select id+1,"
75 for att in ‘seq 1 $atts‘; do echo -n "a$att-$lr*avg(d_a$att),"; done
76 echo -n " b-$lr*avg(d_b)
77 from umbra.derivation(TABLE (
78 select * from gd, (select * from data limit $limit) where id < $iter),
79 lambda (x) (($lambda)^2))
80 group by id"
81 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
82 echo -n ", b)
83 select * from gd where id = $iter;
84 "
85
86 echo \\record gd.csv Operator,$atts,$limit,$lr,$iter,$parallel
87 echo -n "select * from umbra.labelling(TABLE (select * from data limit $limit), TABLE (select "
88 for att in ‘seq 1 $atts‘; do echo -n "1::float a$att, "; done
89 echo "1::float b), lambda (x,y) (($lambda2)^2), $(($iter-1)), $lr, 0);"
90
91 done
92 done
93 done

LISTING B.3: Benchmarking linear regression (number of attributes).
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1 #!/bin/bash
2
3 # parameters
4 parallel=${PARALLEL:-"8"}
5 lr=0.001 # learningrate
6 maxatts=64
7 maxlimit=10000
8 attss="2 4 8 16 32 $maxatts"
9 iters="10 100 1000"

10 limits="10 100 1000 $maxlimit"
11 repeat=5
12
13 # create table for data
14 echo -n "create table if not exists data ("
15 for att in ‘seq 1 $maxatts‘; do echo -n "x$att float, "; done
16 for att in ‘seq 1 $maxatts‘; do echo -n "y$att float, "; done
17 echo "mynull float);"
18
19 # insert data
20 echo -n "insert into data (select *"
21 summe="0.0"
22 for att in ‘seq 1 $maxatts‘; do summe="$summe+x${att}"; echo -n ",round(($summe)/$att,0)"; done
23 echo -n " from (select "
24 for att in ‘seq 1 $maxatts‘; do echo -n "random() x$att, "; done
25 echo -e "0 from generate_series(1,$maxlimit)));"
26
27 # benchmark loop
28 for limit in $limits; do
29 for iter in $iters; do
30 for atts in $attss; do
31
32 # build lambda
33 summe=""
34 for att in ‘seq 1 $atts‘; do summe="$summe a${att}*x${att} +"; done
35 summe="2*(sig($summe b)-y$atts)*sig($summe b)*(1-sig($summe b))"
36 lambda=""
37 for att in ‘seq 1 $atts‘; do lambda="$lambda x.a${att}*x.x${att} +"; done
38 lambda="sig($lambda x.b)-x.y$atts"
39 lambda2=""
40 for att in ‘seq 1 $atts‘; do lambda2="$lambda2 y.a${att}*x.x${att} +"; done
41 lambda2="sig($lambda2 y.b)-x.y$atts"
42
43 # benchmark setting
44 echo \\set repeat $repeat
45 echo \\record gd_sigmoid.csv Manually,$atts,$limit,$lr,$iter,$parallel
46 # recursive table
47 echo -n "with recursive gd (id"
48 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
49 echo -n ", b) as (
50 select 1, 1::float"
51 for att in ‘seq 1 $atts‘; do echo -n ", 1::float"; done
52 # recursion step
53 echo "
54 UNION ALL
55 select id+1,"
56 for att in ‘seq 1 $atts‘; do echo " a$att-$lr*avg(2*x$att*($summe)),"; done
57 echo -n " b -$lr*avg(2*($summe))
58 from gd, (select * from data limit $limit) where id < $iter group by id"
59 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
60 echo -n ", b)
61 select * from gd where id = $iter;
62 "
63
64 echo \\record gd_sigmoid.csv Automatically,$atts,$limit,$lr,$iter,$parallel
65 # recursive table
66 echo -n "with recursive gd (id"
67 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
68 echo -n ", b) as (
69 select 1, 1::float"
70 for att in ‘seq 1 $atts‘; do echo -n ", 1::float"; done
71 # recursion step
72 echo -n "
73 UNION ALL
74 select id+1,"
75 for att in ‘seq 1 $atts‘; do echo -n "a$att-$lr*avg(d_a$att),"; done
76 echo -n " b-$lr*avg(d_b)
77 from umbra.derivation(TABLE (
78 select * from gd, (select * from data limit $limit) where id < $iter),
79 lambda (x) (($lambda)^2))
80 group by id"
81 for att in ‘seq 1 $atts‘; do echo -n ", a$att"; done
82 echo -n ", b)
83 select * from gd where id = $iter;
84 "
85
86 echo \\record gd_sigmoid.csv Operator,$atts,$limit,$lr,$iter,$parallel
87 echo -n "select * from umbra.labelling(TABLE (select * from data limit $limit), TABLE (select "
88 for att in ‘seq 1 $atts‘; do echo -n "1::float a$att, "; done
89 echo "1::float b), lambda (x,y) (($lambda2)^2), $(($iter-1)), $lr, 0);"
90
91 done
92 done
93 done

LISTING B.4: Benchmarking logistic regression (number of attributes).
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1 create table taxidata(id text, pickup_datetime date, dropoff_datetime text, passenger_count float, notdefined1 float, pickup_longitude
float, pickup_latitude float, notdefined2 float, notdefined3 text, dropoff_longitude float, dropoff_latitude float, notdefined4
float, notdefined5 float, notdefined6 float, notdefined7 float, notdefined8 float, store_and_fwd_flag float, trip_duration

float);
2 \record taxibench.csv Load
3 copy taxidata from ’./taxidata.csv’ delimiter ’,’;
4 \record taxibench.csv Extract
5 create view taxiprocessed as (select hour,day,trip_duration,ACOS(SIN(plat)*SIN(dlat)+COS(plat)*COS(dlat)*COS(dlong-plong))*6371000

distance, ATAN2(SIN(dlong-plong)*COS(dlat),COS(plat)*SIN(dlat)-SIN(plat)*COS(dlat)*COS(dlong-plong))*180/PI() bearing from (
select cast(substring(dropoff_datetime from 12 for 2) as float) as hour,cast(substring(dropoff_datetime from 9 for 2) as float)
as day,trip_duration, pickup_latitude/180*pi() plat, pickup_longitude/180*pi() plong, dropoff_latitude/180*pi() dlat,

dropoff_longitude/180*pi() as dlong from taxidata));
6 \record taxibench.csv Normalise
7 create view taxinormalised(hour, day, distance, bearing, duration) as (
8 select
9 cast(hour as float)/(select max(hour)+1 from taxiprocessed),

10 cast(day as float)/(select max(day) from taxiprocessed),
11 distance/(select max(distance) from taxiprocessed where distance < 1000),
12 (bearing+360)%360/360.0,
13 trip_duration/(select max(trip_duration) from taxiprocessed)
14 from taxiprocessed where distance < 1000
15 );
16 \record taxibench.csv Materialise
17 create table taxinormalised2( hour float, day float, distance float, bearing float, duration float);
18 insert into taxinormalised2 (select * from taxinormalised);
19
20 \record taxibench.csv Manually
21 with recursive gd (id, a1, a2, a3, a4, b) as (
22 select 1, 1::float, 1::float, 1::float, 1::float, 1::float
23 UNION ALL
24 select id+1,
25 a1-0.001*avg(2*hour*( a1*hour + a2*day + a3*distance + a4*bearing + b-duration)),
26 a2-0.001*avg(2*day*( a1*hour + a2*day + a3*distance + a4*bearing + b-duration)),
27 a3-0.001*avg(2*distance*( a1*hour + a2*day + a3*distance + a4*bearing + b-duration)),
28 a4-0.001*avg(2*bearing*( a1*hour + a2*day + a3*distance + a4*bearing + b-duration)),
29 b -0.001*avg(2*( a1*hour + a2*day + a3*distance + a4*bearing + b-duration))
30 from gd, (select * from taxinormalised2 tablesample reservoir (64)) where id < 37865 group by id, a1, a2, a3, a4, b)
31 select id, avg(a1*hour + a2*day + a3*distance + a4*bearing + b-duration)^2 from gd,taxinormalised2 where id = 37865 group by id order

by id;
32
33 \record taxibench.csv Automatically
34 with recursive gd (id, a1, a2, a3, a4, b) as (
35 select 1, 1::float, 1::float, 1::float, 1::float, 1::float
36 UNION ALL
37 select id+1,a1-0.001*avg(d_a1),a2-0.001*avg(d_a2),a3-0.001*avg(d_a3),a4-0.001*avg(d_a4), b-0.001*avg(d_b)
38 from umbra.derivation(TABLE (
39 select * from gd, (select * from taxinormalised2 tablesample reservoir (64)) where id < 37865),
40 lambda (x) (( x.a1*x.hour + x.a2*x.day + x.a3*x.distance + x.a4*x.bearing + x.b-x.duration)^2))
41 group by id, a1, a2, a3, a4, b)
42 select id, avg(a1*hour + a2*day + a3*distance + a4*bearing + b-duration)^2 from gd,taxinormalised2 where id = 37865 group by id order

by id;
43
44 \record taxibench.csv Operator
45 select avg(a1*hour + a2*day + a3*distance + a4*bearing + b-duration)^2
46 from taxinormalised2, umbra.gd(TABLE (select * from taxinormalised2), TABLE (select 1::float a1, 1::float a2, 1::float a3, 1::float a4

, 1::float b), lambda (x,y) (( y.a1*x.hour + y.a2*x.day + y.a3*x.distance + y.a4*x.bearing + y.b-x.duration)^2), 37865, 0.001,
64);

LISTING B.5: Linear regression on the New York taxi data.

1 create table if not exists iris (sepal_length float,sepal_width float,petal_length float,petal_width float,species int);
2 create table if not exists data (img float[], one_hot float[]);
3 copy iris from ’./iris.csv’ delimiter ’,’ HEADER;
4 insert into data (select array[[sepal_length/10,sepal_width/10,petal_length/10,petal_width/10]] as img, array[(array_fill(0::float,

array[species]) || 1::float ) || array_fill(0::float,array[2-species])] as one_hot from iris);
5
6 with recursive gd (id,w_xh,w_ho) as (
7 select 0,(select array_agg(array_agg) from generate_series(1,4),(select array_agg(random()) from generate_series(1,20))),
8 (select array_agg(array_agg) from generate_series(1,20),(select array_agg(random()) from generate_series(1,3)))
9 union all

10 select id+1, w_xh - 0.2 * avg(transpose(img)*d_xh), w_ho - 0.2 * avg(transpose(a_xh)*d_ho)
11 from ( select l_xh ** ( 1 - (a_xh ** a_xh)) as d_xh, *
12 from ( select d_ho*transpose(w_ho) as l_xh, *
13 from ( select l_ho ** (1 - (a_ho ** a_ho)) as d_ho, *
14 from ( select 2 * (a_ho - one_hot) as l_ho, *
15 from ( select softmax(a_xh*w_ho) as a_ho, *
16 from ( select tanh(img*w_xh) as a_xh, *
17 from ( select * from data tablesample reservoir(50)),gd where id < 200))))))
18 group by id, w_ho, w_xh
19 ), test as (select id, correct, count(*) from (select id, highestposition(softmax(tanh(img*w_xh)*w_ho))=highestposition(one_hot) as

correct from data,gd) group by id, correct)
20 select id, count*1.0/(select sum(count) from test t2 where t1.id=t2.id ) from test t1 where correct=true order by id;
21
22 with recursive gd (id,w_xh,w_ho) as (
23 select 0,
24 (select array_agg(array_agg) from generate_series(1,4),(select array_agg(random()) from generate_series(1,20))),
25 (select array_agg(array_agg) from generate_series(1,20),(select array_agg(random()) from generate_series(1,3)))
26 union all
27 select id+1, w_xh - 0.2 * avg(d_w_xh), w_ho - 0.2 * avg(d_w_ho)
28 from umbra.derivation(TABLE(select * from (select * from data tablesample reservoir(50)),gd where id < 200),lambda(x)(( softmax(

tanh(x.img*x.w_xh)*x.w_ho) - one_hot)^2 ))
29 group by id, w_ho, w_xh
30 ), test as (select id, correct, count(*) from (select id, highestposition(softmax(tanh(img*w_xh)*w_ho))=highestposition(one_hot) as

correct from data,gd) group by id, correct)
31 select id, count*1.0/(select sum(count) from test t2 where t1.id=t2.id ) from test t1 where correct=true order by id;

LISTING B.6: Neural network on Fisher’s Iris flower data.
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