
 

 

TECHNISCHE UNIVERSITÄT MÜNCHEN 

Fakultät für Chemie 

 

 

In Silico Structure-based Approaches to  

Design Mdmx Inhibitors 
 

 

Zhonghua Xia 
 

 

 

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen 

Universität München zur Erlangung des akademischen Grades einer 

Doktorin der Naturwissenschaften (Dr. rer. Nat.) 

genehmigten Dissertation. 

 

Vorsitzende:                         Prof. Dr. Angela Casini 

Prüfer der Dissertation: 

1. Dr. Igor V. Tetko  

2. Prof. Dr. Michael Sattler 

Die Dissertation wurde am 27.01.2022 bei der Technischen Universität München eingereicht 

und durch die Fakultät für Chemie am 16.02.2022 angenommen. 



 Abstract  

I 

 

Abstract 
The rapid development of computer technologies has greatly increased their utility in drug re-

search. Computational approaches accelerate many aspects of drug discovery and enable the ex-

ploration of chemical space beyond the traditional knowledge of experienced chemists. These 

methods have also been actively explored to develop small molecule-based drugs to fight many 

human diseases with strong medical needs. Mdmx, a promising anticancer target, is a negative 

regulator of the p53 tumour suppressor. Despite the high interest and potential as anticancer tar-

gets and decades of research, the design of Mdmx inhibitors is still poorly advanced compared to 

its homologous protein Mdm2.  

This dissertation explored strategies to improve the design of small-molecule Mdmx inhibitors 

that target protein-protein interactions. The main goals were to (i) investigate the reasons for the 

difficulties in the design of Mdmx inhibitors, (ii) propose new putative inhibitors based on 

known active compounds and experimentally measured fragments, (iii) provide the possibility of 

de novo creation of new inhibitors by machine learning methods, and (iv) discover the features 

of ligands responsible for opening transient pockets to propose novel Mdmx inhibitors. 

The first part of the thesis is dedicated to the comparison of differences in protein primary struc-

tures between Mdmx and Mdm2 by in-depth analyses of their experimental crystal structures 

using computer simulations. The study revealed that a methionine side chain located at different 

positions in the main binding pocket (Met50 in Mdm2 and Met53 in Mdmx) correlates with dif-

ferent orientations of a tyrosine, corresponding to ‘open’ and ‘closed’ states of the binding pock-

et. The ‘open’ state yields an enlarged pocket and provides a transient sub-pocket. By inspecting 

the conformations from crystal structures and molecular dynamics (MD) simulations, an interac-

tion of the Met and Tyr residues with the ligand restricted the conformation of the tyrosine. 

Met50 interacts with Tyr100 in Mdm2 to adopt an open state, while the corresponding Met53 

and Tyr99 in Mdmx promote the closed state. However, it could not be completely excluded that 

Mdmx was also able to bind ligands in a transiently sampled ‘open’ state, and thus both states 

were considered for further analysis.  

In the second part, new Mdmx inhibitors were developed to mimic the binding mode of p53 from 

known active compounds using two structure-based strategies. One strategy was to optimise the 

structure of the known Mdmx inhibitor WK298; another approach was to rationally connect ac-

tive fragments to fully occupy the binding pocket. The binding modes of the inhibitors were ob-

tained and evaluated using MD simulations. Interestingly, the ligands show binding to both 

‘open’ and ‘closed’ states of Mdmx. Four molecules were synthesised and tested to be inactive 

toward Mdm2. The lesson drawn for the future would be that a 10-ns trajectory was not suffi-

cient to obtain a stable binding mode for an Mdmx-small molecule ligand system. 

In the third project, state-of-the-art machine learning methods were used to design Mdmx inhibi-

tors. The rapid progress of natural language processing (NLP) machine learning in chemistry has 

opened new avenues for designing compounds with desired properties. To contribute to these 

studies, an NLP model that generated de novo molecules was developed, referred to as the Gen-
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erator model. Combined with a QSAR model to predict the IC50 of Mdmx inhibitors as well as 

models to predict physicochemical properties, the Generator generated potential Mdmx inhibi-

tors with completely new chemical scaffolds but also re-discovered structures available in public 

databases. The most promising molecules had better predicted pIC50 than WK298 and constantly 

kept the ‘closed’ state of Mdmx. In contrast, WK298 induced Mdmx to present half ‘open’ and 

half ‘closed’ conformations. These findings highlight the importance of considering the presence 

of multiple conformations of the binding pocket for the discovery of inhibitors of Mdmx, but 

also for other drug targets in general. 

Finally, the chemical features of ligands that are relevant to the induction of cryptic pockets were 

investigated, which could be important to design Mdmx inhibitor binding in the ‘open’ confor-

mation. An automated program was developed to establish a holo-apo pair dataset, which accu-

rately matched apo proteins for each holo (bound with a small-molecule ligand) protein. The 

volume changes between apo and holo proteins were used to differentiate the chemical features 

between inducers and non-inducers. Based on the holo-apo pair dataset, classification models 

were built to determine the optimum threshold. The model analysis indicated that inducers were 

more hydrophobic and aromatic and showed over-representation of phosphorus and halogen at-

oms. Fragment analysis showed that small changes in the structure of molecules could strongly 

affect the potential to induce a cryptic pocket. Most of the Mdmx inhibitors available in the liter-

ature were classified as inducers, thus indicating that the classical paradigm to design these in-

hibitors was targeting the ‘open’ state. 

The thesis presented here provides new perspectives on structure-based approaches for designing 

Mdmx inhibitors, highlighting the importance of considering transient, alternative conformations 

and ‘closed’ states for drug design. New inhibitors have been proposed either directly optimised 

from known active compounds or de novo created by the Generator model, which will be prom-

ising for experimental validation of their inhibitory activities in the future. The proposed Inducer 

model provides novel opportunities to discover new inhibitors that could induce the opening of 

transient binding pockets. The Generator and Inducer models are not limited to Mdmx but are 

expected to provide useful tools for structure-based drug discovery in general. 
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Zussamenfassung 
Die rasche Entwicklung der Computertechnologien erhöht ihren Nutzen für die Arzneimit-

telforschung erheblich. Computergestützte Ansätze beschleunigen der Arzneimittelentdeckung in 

vielen Aspekten und ermöglichen die Erforschung des chemischen Raums über das traditionelle 

Wissen erfahrener Chemiker hinaus. Ebenso wird der Einsatz dieser Methoden zur aktiven Ent-

wicklung von auf kleinen Molekülen basierender Arzneimittel zur Bekämpfung vieler medizi-

nisch dringender menschlicher Krankheiten erkundet. Mdmx, ein vielversprechendes Zielmole-

kül gegen Krebs, ist ein negativer Regulator des Tumorsuppressors p53. Trotz des großen Inte-

resses und Potenzials als Anti-Krebs Zielobjekt und jahrzehntelanger Forschung ist die Entwick-

lung von Mdmx-Inhibitoren im Vergleich zum homologen Protein Mdm2 noch nicht weit fort-

geschritten.  

In dieser Dissertation wurden Strategien zur Verbesserung des Designs von niedermolekula-ren 

Mdmx-Inhibitoren für die Protein-Protein-Interaktionen untersucht. Die Hauptziele waren, (i) die 

Gründe für die Schwierigkeiten bei der Entwicklung von Mdmx-Inhibitoren zu untersuchen, (ii) 

neue mutmaßliche Inhibitoren auf der Grundlage bekannter aktiver Verbindungen und expe-

rimentell gemessener Fragmente vorzuschlagen, (iii) eine Möglichkeit zu schaffen, neue Inhibi-

toren mit Hilfe von Methoden des maschinellen Lernens de novo zu entwickeln und (iv) Ligan-

deneigenschaften, die für die Öffnung von transienten Taschen verantwortlich sind, zu finden um 

neue Mdmx-Inhibitoren vorzuschlagen. 

Der erste Teil der Arbeit widmet sich dem Vergleich der Unterschiede in den Proteinpri-

märstrukturen von Mdmx und Mdm2 durch eingehende Analysen ihrer experimentell ermittelten 

Kristallstrukturen mit Hilfe von Computersimulationen. Die Studie ergab, dass eine Methionin-

Seitenkette, die sich an verschiedenen Positionen in der Hauptbindungstasche befindet (Met50 in 

Mdm2 und Met53 in Mdmx), mit verschiedenen Ausrichtungen eines Tyrosins korreliert, die 

einem „offenen" und einem „geschlossenen" Zustand der Bindungstasche entsprechen. Der „of-

fene" Zustand führt zu einer vergrößerten Tasche und bietet eine transiente Subtasche. Die Un-

tersuchung der Konformationen aus Kristallstrukturen und Molekulardynamik (MD)-

Simulationen ergab, dass eine Wechselwirkung der Met- und Tyr-Reste mit dem Liganden die 

Konformation des Tyrosins einschränkt. Met50 interagierte mit Tyr100 in Mdm2, um einen of-

fenen Zustand einzunehmen, während das entsprechende Met53 und Tyr100 in Mdmx den ge-

schlossenen Zustand fördern. Es konnte nicht völlig ausgeschlossen werden, dass Mdmx auch in 

der Lage ist, Liganden in einem vorübergehend abgetasteten „offenen" Zustand zu binden, und 

so wurden beide Zustände für die weitere Analyse berücksichtigt.  

Im zweiten Teil wurden neue Mdmx-Inhibitoren entwickelt, um den Bindungsmodus von p53 

aus bekannten aktiven Verbindungen durch zwei strukturbasierte Strategien nachzuahmen. Ein-

Ansatz bestand darin, die Struktur des bekannten Mdmx-Inhibitors WK298 zu optimieren; ein 

Anderer aktive Fragmente rational zu verbinden, um die Bindungstasche vollständig zu be-

setzen. Die Bindungsmodi der Inhibitoren wurden anhand von MD-Simulationen ermittelt und 

bewertet. Interessanterweise binden die Liganden sowohl an den „offenen" als auch an den „ge-

schlossenen" Zustand von Mdmx. Mithilfe von vier synthetisierten Molekülen wurde in Tests 
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ge-zeigt, dass sie gegenüber Mdm2 inaktiv sind. Daraus ergibt sich für zukünftige Forschung, 

dass eine 10-ns-Trajektorie nicht ausreicht, um den stabilen Bindungsmodus für ein Mdmx-

Ligandensystem mit kleinen Molekülen zu erhalten. 

In einem dritten Projekt wurden modernste Methoden des maschinellen Lernens eingesetzt, um 

Mdmx-Inhibitoren zu entwickeln. Die rasanten Fortschritte im Bereich des maschinellen Lernens 

mit linguistischer Datenverarbeitung – natural language processing (NLP) – in der Chemie er-

öffnen neue Perspektiven für das Design von Verbindungen mit gewünschten Eigen-schaften. 

Mit dieser Doktorarbeit wurde dazu beigetragen, indem ein NLP-Modell entwickelt wurde wel-

ches de novo-Moleküle generiert, das so genannte Generator-Modell. In Kombinati-on mit einem 

QSAR-Modell zur Vorhersage der IC50 von Mdmx-Inhibitoren sowie mit Model-len zur Vorher-

sage physikalisch-chemischer Eigenschaften generierte der Generator potenzielle Mdmx-

Inhibitoren mit völlig neuen chemischen   als auch neu entdeckten Strukturen, aus öffent-lich 

verfügbaren Datenbanken. Die vielversprechendsten Moleküle hatten einen besseren vor-

hergesagten pIC50 als WK298 und hielten den „geschlossenen" Zustand von Mdmx konstant. 

WK298 veranlasste Mdmx im Gegensatz dazu, halb „offene“ und halb „geschlossene“ Konfor-

mationen zu zeigen. Diese Ergebnisse zeigen, wie wichtig es ist das Vorhandensein mehrerer 

Konformationen der Bindungstasche bei der Entdeckung von Hemmstoffen für Mdmx aber auch 

für andere Wirkstofftargets im Allgemeinen zu berücksichtigen. 

Schließlich wurde untersucht welche chemischen Merkmale von Liganden für die induzie-

renden kryptischen Taschen relevant sind, da diese für die Entwicklung von Mdmx-Inhibitoren, 

die in der „offenen" Umgebung binden, wichtig sein könnten. Es wurde ein automatisiertes Pro-

gramm entwickelt, um einen Holo-Apo-Paar-Datensatz zu erstellen, der jedem Holo-Protein (das 

an einen niedermolekularen Liganden gebunden ist) genau passende Apo-Proteine zuordnete. 

Die Volumenänderungen zwischen Apo- und Holo-Protein wurden zur Unterscheidung chemi-

scher Merkmale bei Induktoren und Nicht-Induktoren verwendet. Auf der Grundlage des Holo-

Apo-Paar-Datensatzes wurden Klassifizierungsmodelle erstellt, um einen optimalen Schwellen-

wert zu bestimmen. Die Modellanalyse ergab, dass Induktoren hydrophober und aromatischer 

sind und Phosphor- und Halogenatome überrepräsentiert sind. Die Fragmentanalyse zeigte, dass 

kleine Änderungen in der Struktur von Molekülen das Potenzial zur Induktion einer kryptischen 

Tasche stark beeinflussen können. Die meisten in der Literatur verfügbaren Mdmx-Inhibitoren 

wurden als Induktoren klassifiziert, was darauf hindeutet, dass das klassische Paradigma zur 

Entwicklung dieser Inhibitoren auf den „offenen" Zustand abzielte. 

Die hier vorgestellte Arbeit bietet neue Perspektiven für strukturbasierte Ansätze zur Ent-

wicklung von Mdmx-Inhibitoren und unterstreicht, wie wichtig es ist vorübergehende alternative 

Konformationen und „geschlossene" Zustände bei der Entwicklung von Medikamenten zu be-

rücksichtigen. Es werden neue Inhibitoren vorgeschlagen, die entweder direkt aus bekannten 

aktiven Verbindungen optimiert oder de novo durch das Generator-Modell erzeugt werden, was 

für die experimentelle Validierung ihrer inhibitorischen Aktivitäten in der Zukunft vielverspre-

chend sein wird. Das vorgestellte Inducer-Modell bietet neue Möglichkeiten zur Entdeckung 

neuer Inhibitoren, welche die Öffnung von vorübergehenden Bindungstaschen induzieren könn-

ten. Die Generator- und Inducer-Modelle sind nicht auf Mdmx beschränkt, sondern werden vo-
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raussichtlich nützliche Werkzeuge für die strukturbasierte Arzneimittelforschung im Allgemei-

nen liefern. 
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R&D research and development 

Mdmx mouse double minute x (also known as Mdm4) 

Mdm2 mouse double minute 2 

p53 an important tumour-suppressor protein1 

WK298 The first small-molecule inhibitor crystallised with Mdmx2 

IC50 the half-maximal inhibitory concentration, which is a measure of the po-

tency of a ligand in inhibiting 50% of a biological target 

RMSD root-mean-square deviation 

PPI protein-protein interaction 

CADD computer-aided drug design 

MD molecular dynamics 

OCHEM Online Chemical Modeling Environment 

QSAR quantitative structure-activity relationship 

MM/PB(GB)SA Molecular Mechanics/ Poisson Boltzmann (or Generalised Born) Surface 

Area 

YH300 a known and special Mdm2 inhibitor, which was proved to capture a tran-

sient state of Mdm2 via binding with the extension of Leu26 sub-pocket3 

χ1 angle of Tyr99 

(Tyr100 in Mdm2) 

the chi1 angle of tyrosine, which is an indicator to designate the ‘open’ 

and ‘closed’ state of Mdmx and Mdm23–7 

NT series com-

pounds 

putative Mdmx inhibitors optimised from WK298 

LG series frag-

ments 

eight active fragments binding to Mdmx identified by NMR screening 

NC series com-

pounds 

putative Mdmx inhibitors optimised from LG series fragments 

GAFF2 general Amber force field, version 2 

TIP3P Transferable intermolecular potential 3-site water model8 

FF14SB one of the SB family force fields9 

LEaP an acronym constructed from the names of the older AMBER software 

modules it replaces: link, edit, and parm. It is the primary program to pre-

pare input for Amber 

AM1-BCC Austin Model 110 – Bond charge correction11,12 
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1 Introduction 

1.1 Background 

Protein-protein interactions (PPIs) are critical therapeutic targets for drug discovery. The chal-

lenge is to develop small molecules that target the large and flat interfaces with high affinity. To 

date, the application of artificial intelligence and incremental computational power has lent new 

vitality into drug discovery. These advances enable efficient and innovative molecule design, as 

well as the study of protein dynamics. Thus, computational methods can be used as an approach 

to rationally design PPI modulators. 

The p53-Mdmx interacting surface is a widely studied PPI, where p53 is a tumour suppressor 

protein and Mdmx is its negative regulator13. The TP53 gene mutates in about half of human 

cancers14; in the remainder, wild-type p53 is inactivated by its negative regulators, Mdm2 and 

Mdmx proteins15,16. The former is experimentally identified as the first major endogenous inhibi-

tor of p5317, and the latter, which is highly homologous with Mdm2, influences p53 transcrip-

tional activity13 and is a vital independent regulator of p5318. Until now, however, studies on 

small-molecule Mdmx inhibitors have made slow progress. There are seven Mdm2 inhibitors in 

ongoing clinical trials19, but none are available for Mdmx. Development of SJ-172550, the first 

reported inhibitor of Mdmx20, was put on hold because of stability problems21, and other alterna-

tives, like XI-01122, and NSC20789523 met with difficulties in preclinical trials. Even though 

Mdm2 and Mdmx are structurally closely related, their slight differences lead to Mdm2 inhibi-

tors or even the p53 transactivation domain being inferior in terms of binding affinity to Mdmx24. 

In some cases, the use of Mdm2 inhibitors is significantly limited because of their toxicity to 

normal cells25. Recently, it was reported that the loss of Mdmx induces p53 activation but has 

much less destructive effects in vivo than Mdm2 inhibition26. Therefore, Mdmx remains an inter-

esting and unexplored target of great potential for cancer treatment. 

1.2 Aims 

Protein-protein interfaces are generally considered as ‘undruggable’ target, since the large and 

flat hydrophobic groove is difficult to adapt to small-molecule ligands with sufficient affinities. 

Although peptidomimetic ligands may provide similar interactions to the endogenous peptide, 

they used as drugs have disadvantages such as poor stability, easy aggregation, short half-life, 

high plasma clearance, and inconvenience in drug delivery. Hence, the goal of this doctoral re-

search project was to develop small-molecule Mdmx inhibitors using advanced computational 

methods.  

Chapter 2 introduced the common methods used in this work.  
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The aim of the first phase of this project (Chapter 3) was to address the difficulties in the R&D 

of Mdmx inhibitors, starting from an in-depth analysis of the receptor structure. The initial em-

phasis was placed on the variant residues between the Mdm2 and Mdmx pockets. The differ-

ences in the primary structures resulted in different interactions between the residues and the 

ligand, further affecting the conformational changes in the protein pocket. By using molecular 

dynamics simulations, this study should provide a comprehensive understanding of the structures 

and dynamic changes of Mdmx/ Mdm2, and improve the strategies for designing Mdmx inhibi-

tors.  

The aim of the second phase (Chapter 4) was to obtain new compounds based on the known 

inhibitor WK298 and experimentally identified active fragments. One strategy was to optimise 

the structure of WK298 to mimic the three key residues (Phe19, Trp23, and Leu26) as well as 

Leu22 of p53, and the other was to connect active fragments with linkers to fully occupy the 

main functional pocket of Mdmx. The most promising compounds were tested for their inhibito-

ry activities against Mdmx. 

The aim of the third part of this dissertation (Chapter 5) was to adopt modern machine-learning 

methods to efficiently generate new Mdmx inhibitors. Wide-ranging successes in the field of 

natural language processing (NLP) prompted us to establish a language model that enabled de 

novo and automated creation of new molecules with predefined properties. A QSAR model to 

predict the IC50 of Mdmx inhibitors was used to direct the output to converge on a certain drug 

target. Further models to predict physicochemical properties were used to tune the model to pro-

duce molecules with good pharmacological properties. The model would inherently explore and 

exploit the specific chemical space, proposing putative Mdmx inhibitors with new and rational 

structures. 

Intrigued with the new insights gained during this study, the aim of the final part (Chapter 6) 

was to assess whether it was possible to identify features in molecules that could induce the 

opening of cryptic pockets, which could be important in designing Mdmx inhibitor binding to 

transient conformations of the protein-protein complex. To establish a holo-apo pair dataset, an 

automated program was developed that accurately matched apo proteins for each holo (bound 

with a small-molecule ligand) protein. We sought to determine a metric to quantify the changes 

between apo and holo protein conformations to differentiate the chemical features between in-

ducers and non-inducers. Based on the holo-apo pair dataset, classification models were built to 

determine the optimum threshold of the metric. The explanation of the model suggests some 

characteristics of inducers/non-inducers. This analysis and Inducer model could be useful for 

designing new inhibitors targeting the ‘open’ or ‘closed’ state of Mdmx. 
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2 Methods 

2.1 Molecular docking 

Molecular docking is one of the most important means of molecular modelling that is widely and 

frequently used in drug design27. The docking process simulates ligand and receptor mutual 

recognition via geometric and energetic matching. When an enzyme interacts with an activa-

tor/inhibitor or a pharmaceutical molecule exerts certain pharmacological functions, the ligand 

binds to the drug target in a manner that ought to represent a plausible approximation of the same 

interaction in the real world. The molecules tend to adopt appropriate orientations to integrate at 

a specific part with the necessary interactions. A stable ligand-receptor complex is formed when 

the ligand and receptor bind to their preferred orientations and conformations near the energy 

minimum. The rationale is to place the ligand near the active site of the receptor; then, based on 

geometric and energetic complements, the program searches for the optimum binding pose via 

real-time evaluation of the interaction between the ligand and receptor (Figure 2-1). 

 

Figure 2-1 The grid box of the active site in the receptor (e.g. Mdmx) was created with the 

ligand (e.g. p53) as the centre (PDB ID: 3dab). Putative ligands were put into the box one by 

one to search for the optimum binding pose.  

 

Molecular docking originated from the ‘lock-key’ model introduced by Emil Fisher28. However, 

the identification between a ligand and a receptor is complicated, in addition to spatial shape 

matching. The conformation of molecules dynamically changes constantly, and it is also neces-

sary to meet the energy matching required by the induced fit mechanism. The docking score is 
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usually generated by a function with empirical parameters that fit the experimental data.27 Never-

theless, it is important to note that the scoring may not have physical significance, or may at least 

be different from the practical situation due in part to poor representation of complicated solvent 

and entropic effects.  

Docking large numbers of molecules into a protein target is commonly used in virtual screening 

of receptor-based drug discovery, which allows the prioritisation of compounds for experimental 

screening and speeds up drug discovery. Comparing the binding poses of hit compounds with 

that of the known active compounds helps the user to modify them in order to increase the affini-

ty of the hits. Such in silico analysis saves a great deal of time and effort for repetitive experi-

ments and decreases the amounts of physical waste.  

AutoDock Vina29 was used in this project to dock a small-molecule ligand into the binding pock-

et of the drug target. This program is fast and enables the user to batch dock a large number of 

molecules using a command-line interface. It also ensures that the prediction accuracy is suffi-

cient to provide an initial structure for further analysis and calculations, such as molecular dy-

namics simulations, particularly when the experimental holo structures are unavailable. 

2.2 Conventional molecular dynamics (MD) simulation 

MD simulation is a method for numerically solving Newton’s equations of motion for a system 

of atoms and molecules in order to obtain insights into the conformational dynamics of the sys-

tem at nano- to millisecond time scales at atomic resolution. The object given an initial position 

and velocity will move following the laws of mechanics in a fixed period of time; ideally, the 

system reaches a dynamic equilibrium governed by molecular mechanics force fields. By analys-

ing the trajectories of atoms and molecules, one will know more about the interactions in a 

multibody system and the conformational change of each component. While the computation of 

an MD simulation is more complex than docking, this is offset by the chance that the results 

could be more accurate as conformational dynamics is considered. Virtual screening, which im-

plements docking followed by MD simulations, brings more reliable hit compounds and assump-

tions of the binding mode between ligand and receptor so as to be more likely to be in good 

agreement with subsequent experimental validation. 

General procedures for system setup  

(1) Creating topology and coordinate files for ligands  

The reduce module of Amber suites30 affords the addition of hydrogen to the ligands. The ante-

chamber module was used with the general Amber force field (GAFF, version 2)31. This force 

field is specifically designed to cover most organic chemical spaces consisting of C, N, O, S, P, 

H, and halogens. The AM1-BCC charge model11 can be used to calculate the atomic point charg-

es. The parmchk2 module checks if there are missing force-field parameters. Provided sufficient 

parameters, the LEaP program of Amber suites generates an Amber topology file and coordinate 

file for the ligand.  

(2) Creating topology and coordinate files for Mdmx-ligand complexes 
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The LEaP program can mix the AMBER FF14SB force field9 which is a protein force field with 

the GAFF force field to treat a complex. The pdb4amber program can add hydrogen and remove 

water molecules to preprocess the PDB files for use in LEaP.  

(3) Adding explicit solvent and counterions 

The solute is an Mdmx-ligand complex. The solvent was a pre-equilibrated box of TIP3P8,32 wa-

ter, which was created with a buffer of 10 Å to immerse all atoms throughout the simulation. 

Counterions (e.g. sodium or chloride ions) are placed at the points of lowest or highest electro-

static potential to neutralise the entire system. 

Post-analyses on the trajectory 

The side chain torsion angle (χ1) of tyrosine is an indicator to designate the ‘open’ and ‘closed’ 

state of Tyr99 in Mdmx (Tyr100 in Mdm2).3,33 The open state corresponds to χ1 around 180°, 

and the closed state has χ1 around 300°. The atoms involve N, Calpha, Cbeta and Cgamma, as indicat-

ed in Figure 2-2. 

 

Figure 2-2 The diagram of the side chain torsion angle (χ1) of Tyr99 in Mdmx (Tyr100 in Mdm2) 

2.3 Binding free energies 

MD simulations enable access to binding free energies with respect to every component of the 

system. Molecular Mechanics/Poisson Boltzmann (or Generalised Born) Surface Area calcula-

tions can be easily carried out using a Python script (MMPBSA.py)34. This is a post-processing 

end-state method in which snapshots selected from a trajectory of interest are used to calculate 

the free energy change between the bound and unbound states of the system (ΔG). Entropy con-

tributions to the total binding free energy can be complemented as a further refinement, support-

ed by sufficient computational power. The calculation follows the following equations: 

∆𝐺 =  𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑 

       =  ∆𝐻 −  𝑇∆𝑆 =  ∆𝐸𝑀𝑀 +  ∆𝐺𝑠𝑜𝑙 − 𝑇∆𝑆 

∆𝐸𝑀𝑀 =  ∆𝐸𝑣𝑑𝑤 +  ∆𝐸𝑒𝑙𝑒 +  ∆𝐸𝑖𝑛𝑡𝑒𝑟 

∆𝐺𝑠𝑜𝑙 =  ∆𝐺𝑃𝐵/𝐺𝐵 +  ∆𝐺𝑆𝐴 
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where EMM is the gas phase interaction energy constituted by van der Waals energy (Evdw), elec-

trostatic energy (Eele), and internal energy (Einter) which is neglected with an assumption in the 

single trajectory protocol that the intramolecular energies of the ligand and receptor are un-

changed upon binding35, Gsol is the sum of the electrostatic solvation free energy calculated by 

PB or GB equations (GPB/GB) and the nonpolar solvation free energy estimated by the solvent-

accessible surface area (GSA); and S is the entropy contribution. 

2.4 OCHEM 

The online chemical modelling environment (OCHEM) is a web-based platform that aims to 

automate and simplify the typical steps required for QSAR modelling36. Along with the devel-

opment of machine learning methods and the enhancement of computing power in the past dec-

ade, the OCHEM has introduced more state-of-the-art modelling methods37 and is able to make 

models faster. The platform also includes an ever growing list of newer types of descriptors. The 

OCHEM is available online at http://www.ochem.eu and is convenient for users to carry out the 

work of either classification or regression models. Moreover, it is easy to apply well-trained 

models to predict unknown molecules with the help of the OCHEM. 

2.5 Schrodinger 

The Schrodinger suite of software provides a well-integrated environment for small-molecule 

drug discovery, including a variety of applications such as visualising (PyMOL38), editing 

(Maestro39), and analysis of molecules. The Schrodinger Python API allows users to flexibly 

deploy various functions available in the Schrodinger as requested and establish a pipeline to 

batch processing molecules via a custom Python script. 
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3 Mdmx pocket dynamics 

3.1 Introduction 

Popowicz et al.7,33 dissected the differences in the details between Mdm2 and Mdmx, explaining 

why Mdm2 ligands do not have equivalent inhibition against Mdmx and emphasising the neces-

sity of finding compounds specific to Mdmx. As shown in Figure 3-1, the binding pocket of 

Mdmx is smaller than that of Mdm2 because Met53 (Leu54 in Mdm2) and Tyr 99 (Tyr100 in 

Mdm2) protrude into the pocket as well as the larger size of methionine compared to leucine. 

The authors addressed the open and closed conformations of Tyr100 in Mdm2, measured by χ1 

(Tyr99 in Mdmx). The open conformation of Tyr100 corresponds to χ1 around 180°, and the 

closed conformation has χ1 around 300°. They believed that the closed Tyr99 conformation in 

Mdmx could be intrinsically caused by the distinct position of helix α2’ which also significantly 

changed the shape of the binding pocket. Joseph et al.40 tried to explain the differential binding 

of ligands to Mdm2/Mdmx with 15-ns trajectories of four systems: the Mdm2-p53 complex, 

Mdm2-Nutlin2 complex, Mdmx-p53 complex, and Mdmx-Nutlin2 complex. They obtained sev-

eral interesting findings, but they were based on the premise that p53 has a higher affinity for 

Mdm2 than Mdmx. Based upon hydrogen bond analysis, they inferred that p53 complexed with 

Mdm2 had a more stable and longer helix than when complexed with Mdmx. The electrostatics 

results illustrated Mdm2 had more positive charges than Mdmx, which might make p53 more 

complementary to the binding groove of Mdm2 than it was to Mdmx. However, Chen et al.41 

theoretically showed that the closed conformation in Mdmx weakened the van der Waals con-

tacts between the peptide-like ligand and several key residues, including Met53, which might be 

correlated with the lower affinity of ligands to Mdmx than to Mdm2. Despite whether electro-

static or van der Waals interactions dominated the differential binding to Mdm2/Mdmx, both 

Joseph and Chen assumed that p53 had a higher affinity for Mdm2 than Mdmx. They provided 

the biological argument that Mdm2 needed to transport p53 from the nucleus to the cytoplasm, 

but Mdmx did not require tight binding. Experimentally, this was not in agreement with the data 

in the review of Popowicz et al. (Ki = 0.89 µM for Mdm2- p53, Ki = 0.21 µM for Mdmx- p53).5 

With the contribution of more crystal structures, Bista et al.3 demonstrated the existence of a 

ligand-induced pocket between Tyr100 and Leu54 on the surface of the Mdm2 protein. The 4-

chlorobenzyl group of the ligand YH300 lay in the cavity, which was an extension of the Leu26 

pocket. Taken together, the Leu26 pocket in Mdm2 wrapped up the ligand more tightly, and 

YH300 induced wider opening of the Leu26 sub-pocket. This implied a higher binding affinity 

of inhibitors against Mdm2 than against Mdmx.42 The crystallographic proofs above can be ra-

tionally used to create more potent and selective ligands. Given the high similarity of Mdm2 and 

Mdmx, the dynamic characteristics of the Mdmx binding pocket were studied in order to develop 

more potent Mdmx inhibitors. 
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Figure 3-1. (A) The alignment of Mdmx and Mdm2 complex with p53, respectively. The χ1 of 

Tyr99 in Mdmx is -68.9° and that of Tyr100 in Mdm2 is 162.3°. Mdmx-p53 (PDB ID: 3dab33): 

green, cartoon; Mdm2-p53 (PDB ID: 1ycr43): white, cartoon. (B) Mdm2 complex with YH300 

(PDB ID: 4mdn3). Mdm2: white, cartoon; YH300: yellow, sticks. Key residues are shown in 

sticks. (The structures were plotted and measured by PyMOL.) 

3.2 Methods 

To check whether Mdmx also has an extension of the Leu26 sub-pocket, YH300 was utilised to 

investigate the binding mode with Mdmx by MD simulations. Docking was used because there 

was no crystal structure of the Mdmx-YH300 complex. Then, apo Mdmx, Mdmx-p53, and 

Mdmx-WK298 were used as reference systems with the same protocols (Figure 3-2). For com-

parison, I also investigated the crystal structures of typical Mdm2 complexes by visual inspec-

tion. 
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Figure 3-2 The general computational and analysis procedures 

3.2.1 Molecular docking 

It is interesting to learn how YH300 binds to Mdmx. I used the molecular structure of YH300 

extracted from the crystal structure deposited with PDB ID 4mdn.3 YH300 was first minimised 

to correct the bonds and atom positions because of the incorrect contacts in the formyl-

substituted amino group (wrong bonds and angles). Then, it was docked into the binding pocket 

of Mdmx extracted from the crystal structure deposited with PDB ID 3dab33 by AutoDock Vi-

na.29 The receptor was protonated at neutral pH with only polar hydrogens by AutoDockTools-

1.5.6,44 and Gasteiger charges were added. The centre was determined by the position of p53 in 

the Mdmx-p53 complex (x = 0.514, y = -21.838, z = 8.047). A grid box size of 24 × 18 × 22 was 

generated with spacing of 1.0 Å between the grid points. The other parameters of AutoDock Vi-

na were used as the default values. 

3.2.2 MD simulations 

System Setup for Molecular Dynamics (MD) Simulation 

To study the conformational change of the Mdmx binding pocket, all-atom MD simulations were 

implemented using AMBER 20 software running on CPUs and GPUs.30 In addition to the 

Mdmx-YH300 complex selected from the docking results, all initial structures were directly re-
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trieved from the crystal structures deposited in the RCSB Protein Data Bank 

(http://www.rcsb.org/).45 The first system consisted of one copy of the Mdmx protein (PDB ID: 

3dab33) surrounded by 5939 TIP3P water molecules, and one chloride ion neutralising the entire 

system. The second system consisted of one copy of Mdmx protein (PDB ID: 3dab), one copy of 

the transactivation domain of human p53 (PDB ID: 3dab), 5864 TIP3P water molecules, and one 

sodium ion neutralising the entire system. The third system consisted of one copy of the Mdmx-

WK298 complex (PDB ID: 3lbj46), 5633 TIP3P water molecules, and one chloride ion neutralis-

ing the entire system. The fourth system consisted of one copy of the Mdmx-YH300 complex, 

surrounded by 5918 TIP3P water molecules, and one chloride ion neutralising the entire system. 

The partial atomic charges of the ligands were derived using the antechamber module imple-

mented in the AMBER software package to calculate AM1-BCC charges. The other force field 

parameters of ligands derived from GAFF2 and the AMBER FF14SB force field were employed 

to model the Mdmx. Antechamber prepared residue topologies for ligands and LEaP for Mdmx. 

MD Simulation Protocols 

For each system, the solvent of the MD system was first minimised using the XMIN method 

across 20000 steps.47 All the solutes were restrained using a harmonic potential with a force con-

stant of 100 (kcal/mol)/Å2.47 The MD simulation consisted of three phases: the relaxation phase, 

equilibrium phase, and sampling phase. In the relaxation phase, the simulation system was heat-

ed progressively from 0 to 300 K in steps of 50 K and 5ps each with a force constant of 2 

(kcal/mol)/Å2, followed by maintaining the temperature at 300 K in the last 20 ps. After heating 

steps, the system was equilibrated at 1 bar for 10 ns but without any restraints or constraints in 

the last 5 ns. Finally, a 100 ns MD simulation was performed for each system. In total, 10 000 

snapshots were recorded during the production phase. Additional settings for constant volume 

and pressure MD simulations performed in this work are listed as follows: the temperature was 

regulated by the weak-coupling algorithm; pressure was regulated by the isotropic position scal-

ing algorithm with the pressure relaxation time being set to 1.0 ps; integration of the equations of 

motion was conducted at a time step of 0.5 fs for the heating steps and 2 fs for others. All bonds 

involving hydrogen atoms were constrained using the SHAKE algorithm in the MD simulation 

stages. The particle-mesh Ewald (PME) procedure processed long-range electrostatic interac-

tions.  

The RMSD of backbone atoms or ligands was used to monitor the stability of the entire trajecto-

ry and to check if the selected parameters for the MD simulations were valid. The χ1 angle of 

Tyr99 (Tyr100 in Mdm2) was used as an indicator of the shape change of the Leu26 pocket. 

3.3 Results 

3.3.1 Trajectory analysis 

The docking results of YH300 and Mdmx did not mimic the Phe19, Trp23 and Leu26 of p53 

very well and were quite different from the way it binds with Mdm2. Regardless of the docking 
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score, three binding poses for which the indole ring was the closest to the Trp23 sub-pocket were 

selected, referred to as YH300_03, YH300_04, and YH300_05. Comparing the last frames ex-

tracted from these three trajectories, YH300 was finally located in the vicinity of the Leu26 sub-

pocket (YH300_03) or only occupied the Phe19 and Trp23 sub-pocket of p53 (YH300_04 and 

YH300_05). The trajectory of the former was more stable (Figure 3-3, Mdmx and YH300_03). 

 

Figure 3-3 The RMSDs (backbone atoms) of three Mdmx-YH300 systems as a function of time 

were plotted through the 100-ns trajectories, each of which was calculated with the first 

frame as the reference. The docking and simulation indicated that YH300, as a promising 

Mdm2 inhibitor, could also bind with Mdmx to some extent because it did not escape from 

the pocket. 

 

As shown in Figure 3-4, both Mdmx and ligands had RMSDs fluctuating within a certain range 

without sharp increments or decrements throughout the trajectories. This indicated that the pa-

rameters used for MD simulations were appropriate, and the trajectories were reliable for further 

analysis. The sharp increase in RMSD of p53 bound to Mdmx was caused by the flexible termi-

nals of this peptide. Mdmx-WK298 had a stable trajectory compared to that of the Mdmx-p53 

complex. Intrigued, Mdmx binding with YH300 had a larger RMSD of the main chain and was 
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even less stable than the apo Mdmx, suggesting that YH300 does not have a stronger affinity to 

Mdmx than WK298 and p53.  

 

Figure 3-4 The RMSDs (backbone atoms) of apo Mdmx, Mdmx-p53, Mdmx-WK298 and Mdmx-

YH300 as a function of time were plotted through the 100-ns trajectories, each of which was 

calculated with the first frame as the reference. The binding affinity was positively correlated 

to the stability of the trajectory. The Mdmx-YH300 complex presented relatively unstable tra-

jectories compared to the other two complexes, indicating the binding affinity would be 

weaker. 

 

The dynamic change of Tyr99 χ1 was designated as an indicator to study the shape change of the 

Leu26 pocket. In the apo Mdmx, Tyr99 almost always stayed in the closed conformation (aver-

age χ1 ≈ 282°, Figure 3-5), which agreed with the inference that Tyr99 of Mdmx was intrinsically 

closed in the free state4. However, YH300 kept Tyr99 closed throughout the entire trajectory, 

which was exactly opposite to the situation when it was binding with Mdm23. In the other two 

bound states, Tyr99 of Mdmx presented more conformations in the open state, even though nei-

ther of them maintained this conformation until the end. It is worth mentioning that WK298 in-

duced the opening of Tyr99 for nearly half of the simulation time, among which Tyr99 χ1 was as 
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low as 77° (Figure 3-5). Interestingly, Pro95-Ser96 of Mdmx lost their helical structure by bind-

ing with WK298 rather than p53. Compared to the equivalent His96-Arg97 in Mdm2, they were 

uncharged and shorter. These results suggest that WK298 could be a starting point for develop-

ing a more active Mdmx inhibitor that made the open state last longer and formed some contact 

with Pro95 to protect its helical conformation.  

 

Figure 3-5 The dynamic change of Tyr99 χ1 in apo Mdmx, Mdmx-p53, Mdmx-WK298 and 

Mdmx-YH300 systems through the 100-ns trajectories. The open conformation of Tyr100 cor-

responds to χ1 around 180° and the closed conformation has χ1 around 300°. The apo Mdmx 

inherently had a flexible Tyr99 but mostly stayed in the closed state; the binding of YH300 

permanently made Tyr99 stuck in the closed state because YH300 occupied the same posi-

tion as the open-state Tyr99; the other two complexes left the freedom for the rotation of 

Tyr99 and had more open states than the apo one. 
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3.3.2 Key residues analysis 

The binding site in the Mdmx-WK298 complex involved the helix α2 (Met53, Gly57, Ile60), the 

sheet β (Tyr66, Gln71), the loop (Val92, Lys93, Asp94, Pro95), and the helix α2’ (Leu98, Tyr99). 

Among the differences between the Mdmx and Mdm2 pockets, Met53 and Pro95 (Leu54 and 

His96 in Mdm2) attracted my attention, as candidate residues that might lead to the different 

binding modes of p53 towards Mdmx and Mdm2.  

First, proline is a special amino acid that connects with the main chain twice by forming a ring 

that complicates the adoption of a normal helical conformation. The hydrophobicity of proline 

may cause its propensity to interact with aromatic structures. However, histidine at the equiva-

lent position in Mdm2 is the most common amino acid in the protein binding site, which is polar, 

aromatic and can be charged or neutral.48 In the Mdm2 complex, the characteristics of His96 

make it easily interact with various structures by forming hydrogen bonds or π-π interactions. By 

analysing the hydrogen bonds in the trajectories of Mdmx, Pro95 only formed intramolecular 

hydrogen bonds with Tyr99 and Leu98 for approximately 30 ns and 5 ns (distance cutoff = 3.5 

Å).  

Second, the sulphur atom of methionine can mediate Met-aromatic interactions.49 The aromatic 

residues could be tyrosine, tryptophan, and phenylalanine. In the Mdmx-p53 complex (Figure 

3-6, A), Met53 interacted with Trp23 of p53 and Tyr99 of Mdmx, together with the hydrogen 

bonds formed between Tyr99 and Pro27, restricting Tyr99 in the closed conformation. In the 

Mdmx-WK298 complex (Figure 3-6, B), the 4-chlorobenzyl ring participated in the Met-

aromatic interaction; however, Tyr99 was further to the Met53 and the Pro27 sub-pocket was 

unfilled, which might decrease the binding affinity to Mdmx. This implied that WK298 induced 

the opening of Tyr99 for a longer time, possibly due to a decrease in the Met-aromatic interac-

tion between Met53 and Tyr99.  

 

Figure 3-6 (A) Mdmx-p53 complex (PDB ID: 3dab); (B) Mdmx-WK298 complex (PDB ID: 3lbj). 

The distance between the sulphur atom and aromatic ring (Å): yellow dot line with white label. 
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Compared to endogenous p53, binding with WK298 made the Tyr99 further away from the 

Met53 of Mdmx, indicating the interaction between them was weakened. 

 

Meanwhile, the Met-aromatic interaction also played an important role in the Mdm2 pocket 

(Figure 3-7). Met50 (Val49 in Mdmx) interacted with Tyr100 (Tyr99 in Mdmx) forming an open 

orientation. In the Mdm2-YH300 complex (PDB ID: 4mdn), the 4-chlorobenzyl of YH300 filled 

the Pro27 sub-pocket and pushed Tyr100 away, weakening the Met50-Tyr100 interaction. In 

Table 3-1, I used the distance between the sulphur atom of Met50 and the ring of Tyr100 to rep-

resent the strength of the Met50-Tyr100 interaction. The lower the χ1 and distance, the stronger 

the ligand inhibited Mdm2. Moreover, the longer and more reactive His96 formed interactions 

with ligands independent of Tyr100. The His96-ligand interaction contributed much to the inhi-

bition of Mdm2 (shown as distance in Figure 3-7). 

 

Figure 3-7 (A) Mdm2-p53 complex (PDB ID: 1ycr); (B) Mdm2-MI-63-analog complex (PDB ID: 

3lbl); (C) Mdm2-Benzodiazepinedione complex (PDB ID: 1t4e); (D) Mdm2-YH300 complex 

(PDB ID: 4mdn); (E) Mdm2-WK23 complex (PDB ID: 3lbk); (F) Mdm2-Chromenotriazolopyr-

imidine complex (PDB ID: 3jzk). The distance between the sulphur atom and aromatic ring (Å): 

yellow dot line with white label. One can see from these complexes that the Met-aromatic in-

teraction also played a great role in the binding between Mdm2 and ligand. 
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Ligand Ki (uM) PDB ID 
Tyr100  

χ1 (°) 

Distance 

(Met50 to Tyr100, Å) 

p53 0.89 1ycr43 -162.3 5.4 

MI-63-analog 0.036 3lbl50 -141.2 5.9 

Benzodiazepinedione 0.08 1t4e51 -102.2 5.5 

YH300 0.6 4mdn3 -174.5 6.7 

WK23 0.916 3lbk50 -99.0 5.2 

Chromenotriazolopyrimidine 1.23 (IC50) 3jzk52 -97.2 5.6 

Table 3-1 The inhibition constant (Ki, μM) of Mdm2 ligands with crystal structures deposited 

in PDB. 

3.4 Summary and outlook 

A comprehensive analysis was carried out on the structural differences between Mdmx and 

Mdm2 based on crystal structures and all-atom simulations. The initial emphasis was placed on 

differences in the protein primary structure. In particular, methionine was at different positions in 

the main binding pocket, namely Met50 in Mdm2 and Met53 in Mdmx. This methionine caused 

the different orientations of the tyrosine, referred to as the ‘open’ and ‘closed’ state of Tyr99 in 

Mdmx (Tyr100 in Mdm2). By inspecting the conformations from crystal structures and MD 

simulations, the Met-aromatic interaction (Met-Tyr-Ligand interaction in the case of 

Mdmx/Mdm2) restricted the rotation of tyrosine. As a result, the ‘open’ state of tyrosine made 

the main pocket larger than the ‘closed’ state of tyrosine. The enlarged part was regarded as a 

transient pocket which was reachable only when the tyrosine was in the ‘open’ state. In addition 

to methionine, other variant residues at equivalent positions, such as Pro95 in Mdmx (His96 in 

Mdm2), also contributed to the low affinity of small-molecule inhibitors against Mdmx. The 

findings in this section would differentiate the strategy for developing Mdmx inhibitors from 

those for Mdm2 inhibitors.  

For Mdm2 ligands, forming stronger interactions with His96 and protecting the Met50-Tyr100 

interaction (the ‘open’ conformation) would remarkably improve the binding affinity. The ‘open’ 

or ‘closed’ state of Tyr100 could be identified by the change of Tyr100 χ1; the distance between 

Met50 and Tyr100 could be used to monitor the strength of the Met-aromatic interaction. To 

develop potent Mdmx inhibitors, a promising direction would be to mimic the Trp23 (p53)-

Met53-Tyr99 interactions and keep the helical conformation of Pro95 along with filling the 

Pro27 sub-pocket. Moreover, the substituent that occupied the Leu26 pocket should be small to 

avoid interference with the Met53-Tyr99 interaction.  

The analysis in this chapter and the references3,4 demonstrated that Mdm2 and Mdmx had differ-

ent intrinsic conformations. This part of the work revealed that Met50 interacted with Tyr100 so 

that Mdm2 had its intrinsic state ‘open’, while Mdmx had its ‘closed’ because of the interaction 

between Met53 and Tyr99. However, I could not completely exclude Mdmx, which was also 

able to bind ligands in the ‘open’ state; thus, both states were considered later in the thesis. 
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4 Developing new Mdmx inhibitors using struc-

ture-based drug discovery 

4.1 Introduction 

The first small molecule crystallised with Mdmx is WK298, which sheds light on the binding 

mode between a small-molecule inhibitor and Mdmx.53 The three key residues of p53 (Phe19, 

Trp23, and Leu26) were superimposed with the phenyl, 6-chloroindole, and 4-chlorobenzyl 

groups of WK298, respectively. WK23, which is an analogue of WK298, adopted almost the 

same conformation bound to Mdm2 as WK298 bound to Mdmx. While the extended side chain 

of the 2-substituted indole ring offered hydrophobic interactions and a transient hydrogen bond 

with Gln71 (650 ps of the trajectory) of benefit to the Mdmx inhibition, both affinities to Mdmx 

were much lower than to Mdm2 (Figure 4-1).  

 

Figure 4-1 The structures of Mdm2/Mdmx inhibitors. 

 

The Leu22 of p53 was experimentally and computationally proven to be a key residue providing 

additional van der Waals contacts with Mdm2.43,54–57 To mimic the Leu22 of p53 is a way to 

improve the binding affinity of ligands to Mdmx.58 The 4-chlorophenyl group was not appropri-

ate for the Leu26 sub-pocket of Mdmx as demonstrated in the previous chapter. Therefore, a 

combination of docking and MD simulations was used to reconstruct WK298 in order to have a 

side chain superimposed with Leu22 of p53 as well as a better fit for the Leu26 sub-pocket 

(Strategy 1, referred to as NT series compounds in the rest of this dissertation). In addition, 

eight small fragments were identified by NMR screening to be bound to Mdmx (Figure 4-2). 

Therefore, the second strategy is to develop active molecules based on the eight fragments 

(Strategy 2, referred to as NC series compounds in the remainder of this dissertation). Similarly, 
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they were first docked into the Mdmx-binding pocket. Next, the top-scoring binding mode was 

used to run the MD simulations. The representative conformation was selected from the trajecto-

ry. By visually inspecting the binding modes between ligands and receptors, a linker was added 

to connect fragments so as to create some molecules superimposed with the three key residues of 

p53 as well as possible. The larger molecules created entered the next round of the MD simula-

tions. The molecules showing good alignment with the key residues of p53 were synthesised and 

their bioactivity (SN series compounds) was tested. 

 
LG1 

 
LG5 

 
LG2  

LG6 

 
LG3 

 
LG7 

 
LG4 

 
LG8 

Figure 4-2 Eight active fragments binding to Mdmx identified by NMR screening. 
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4.2 Methods 

Docking was first implemented for all the newly designed molecules. Then, apo Mdmx, Mdmx-

p53, and Mdmx-WK298 were used as reference systems. The simulation protocol was similar to 

that described in the previous section (Figure 4-3). 

 

Figure 4-3 The general computational and analysis procedures 

4.2.1 Molecular docking 

Each fragment and new reconstructed molecule were docked into the binding pocket of Mdmx 

extracted from the crystal structure deposited with PDB ID of 3dab33 by AutoDock Vina.29 The 

receptor was protonated at neutral pH with only polar hydrogens by AutoDockTools-1.5.6,44 and 

Gasteiger charges were added. The centre was determined by the position of p53 in the Mdmx-

p53 complex (x = 0.514, y = -21.838, z = 8.047). A grid box size of 24 × 18 × 22 was generated 

with spacing of 1.0 Å between the grid points. The other parameters were left as the default val-

ues. Because of some bad contacts that might exist in the new molecules, the minimisation that 

could be done by Maestro39 was necessary for each molecule to correct the bonds and atom posi-

tions. All 10 binding poses predicted for each molecule were visually inspected and one of them 

was selected according to the binding depth, and the occupation of the Trp23 sub-pocket was 

used for the MD simulation. 
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4.2.2 MD simulation 

All-atom MD simulations were implemented using the AMBER 20 software on GPUs.30 The 

initial structures were the binding poses selected from the docking results. NC series compounds 

were created based on the representative conformation of each fragment individually extracted 

from the trajectory, aiming to occupy three sub-pockets simultaneously as much as possible. 

Every two fragments that filled different sub-pockets were connected by single bonds with some 

saturated carbon or sulphur atoms and some removal of the ring structure if needed. Then, the 

energy of each NC molecule was minimised to remove bad contacts and optimise the structure. 

In addition, the pdb-tools59 was used to correct the atom names, which is necessary for the sys-

tem setup for the MD simulations. Each system consisted of one copy of the Mdmx protein 

(PDB ID: 3dab33) surrounded by TIP3P water molecules, and one chloride ion neutralising the 

whole system. The partial atomic charges of the ligands were derived using the antechamber 

module implemented in the AMBER software package to calculate AM1-BCC charges. The other 

force field parameters of ligands derived from GAFF2 and the AMBER FF14SB force field were 

employed to model the Mdmx. Antechamber prepared residue topologies for ligands and LEaP 

for Mdmx.  

The MD simulation protocol was similar to that described in the previous chapter, and the differ-

ences are as follows. First, some systems of Mdmx complexes with newly created molecules 

(NT and NC series compounds) are required to reconstruct grid cells of the constant pressure and 

temperature simulation to reach the equilibrated density before the final sampling phase. Second, 

the simulations of eight fragments were run for 50 ns for each fragment. This duration was suffi-

cient because the fragments were moderately small and had only a few degrees of freedom. 

The RMSD was calculated based on the backbone atoms with the first frame used as the refer-

ence. The χ1 angle of Tyr99 was an indicator of not only the open/closed state but also the shape 

change of the Leu26 pocket. The distance between Tyr99 and Met53 (the geometric centre of the 

ring to the sulphur atom) was mainly used to monitor the Met-aromatic interactions. The cluster 

analysis of the frames was carried out with a distance metric (RMSD of backbone atoms) using 

the K-means clustering algorithm. Both the representative and last frames were used to analyse 

the binding conformation. 

4.2.3 Bioactivity test 

The inhibitory activity of SN compounds against Mdm2 was evaluated using a fluorescence po-

larisation (FP) assay (see Appendix I).  
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4.3 Results 

4.3.1 Strategy 1 

Since the goal was to obtain a molecule with four side chains superimposed with four key resi-

dues of p53, the first attempt was simply removing the aliphatic chain of the indole ring and add-

ing a t-butyl group to the imidazole core connected by an amide group to mimic the Leu22 of 

p53. Next, a five-membered aliphatic ring was used alternatively to improve the occupancy of 

the Leu22 and Leu26 sub-pockets. The core from imidazole was changed to an indole ring and 

the position of substituent was also changed on the ring. Every change in the structure was guid-

ed and inspected by the most stable binding conformation selected from the trajectory. After 

more than 20 rounds of structural optimisation (Figure 4-4), the top eight compounds (NT-3, 

NT-4, NT-6, NT-7, NT-14, NT-16, NT-17, and NT-19) by ascending standard deviation of 

RMSD were selected for further analysis. As shown in Figure 4-5, all selected NT compounds 

entered into a stable phase at least by the end, except for NT-14. NT-3, NT-4, and NT-17 indi-

vidually maintained stable binding conformations for a very long time, especially NT-3 with an 

RMSD of approximately 1. In addition, Mdmx binding with NT3 barely exhibited large confor-

mational movements. According to the dynamic change of Tyr99 χ1 (Figure 4-6), NT-3, NT-16, 

and NT-19 stayed in the closed conformation for most of the simulation time; NT-4 and NT-7 

maintained the open state shortly after starting the simulation. Combined with the distribution of 

distance between Tyr99 and Met53 through the trajectory (Figure 4-7), the Met-aromatic interac-

tion was weakened when Tyr99 χ1 was in the open state. For example, the distance was mostly in 

the range of 7–8 Å for the NT-7 compound. However, binding with NT-4 maintained moderate 

Met-aromatic interactions and the open state simultaneously. Moreover, NT-16 strengthened the 

Met-aromatic interaction and maintained the native closed conformation of Tyr99. Because some 

trajectories had sharp conformational changes in the last frame, the representative structure of 

each NT compound was extracted from the last 70-ns simulation by cluster analysis, and their 

conformational characteristics are summarised in  

Table 4-1. Taken together, NT-3 and NT-4 had almost all the expected structural features.  
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Figure 4-4 The structural optimisation of WK298 to mimic the key residues of p53 including 

F19, L22, W23 and L26. 

 

Table 4-1 The characteristics of representative conformations of NT compounds 

compound 
Representative 

Frame No. 
Tyr99 χ1 (°) 

Distance  

(Met53-Tyr99, Å) 
Pro95  

NT-3 5532 Closed 5.6640 Helical 

NT-4 5470 Open 5.1773 Helical 

NT-6 6624 Closed 5.1051 Loop 

NT-7 3050 Open 6.9527 Helical 

NT-14 8259 Open 5.8129 Loop 

NT-16 5894 Closed 4.4204 Helical 

NT-17 8284 Closed 4.9961 Helical 

NT-19 4514 Closed 6.7319 Helical 
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Figure 4-5 The RMSDs (backbone atoms) of Mdmx complexes with selected NT compounds 

as a function of time were plotted through the 100-ns trajectories, each of which was calcu-

lated with the first frame as the reference. In addition to NT-14, the other NT compounds pre-

sented stably binding by the end. Particularly the Mdmx-NT-3 complex barely had large con-

formational movements due to significantly low fluctuations of RMSDs. 
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Figure 4-6 The dynamic change of Tyr99 χ1 in Mdmx complexes with selected NT compounds 

through the 100-ns trajectories. NT-3, NT-16 and NT-19 stayed in the closed conformation 

most of the simulation time; NT-4 and NT-7 kept the open state shortly after starting the simu-

lation. 
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Figure 4-7 The distribution of distance between Tyr99 and Met53 in Mdmx complexes with 

selected NT compounds through the 100-ns trajectories. Combined with Figure 4-6, the Met-

aromatic interaction was weakened when the Tyr99 χ1 was in the open state, e.g. NT-7. How-

ever, NT-4 maintained moderate Met-aromatic interaction and the open state simultaneously, 

which would be further inspected for the binding mode.  

 

Visual inspection revealed that the Mdmx-NT3 complex presented a similar conformation to the 

Mdmx-p53 complex, as shown in Figure 4-8. Consistent with WK298, the 6-chloroindole and 

phenyl ring still occupied the Trp23 and Phe19 sub-pockets, respectively. One of the five-

membered rings was located in the Leu26 sub-pocket, while the other one was not superimposed 

well with Leu22 of p53, as expected. For NT-4 (Figure 4-9), only the 6-chloroindole group re-

mained in the Trp23 sub-pocket, and the phenyl ring almost reached the Phe19 sub-pocket. The 

Leu26 sub-pocket was filled by Pro95 of Mdmx, and Tyr99 was largely open. Both movements 

made helix α2’ closely approach the core of the binding pocket, which was narrower than the 

Mdm2 binding pocket. Furthermore, helix α2 moved close to helix α2’ in order to preserve the 

Met53-Tyr99 interaction.  
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Figure 4-8 The alignment of Mdmx-NT-3 (the last frame of trajectory, orange) and Mdmx-p53 

complex (PDB ID: 3dab33, white). This indicated NT-3 could perfectly mimic the classical bind-

ing mode of the key residues (Phe19, Trp23 and Leu26) except Leu22.  

 

Figure 4-9 The alignment of Mdmx-NT-4 (the last frame of trajectory, blue) and Mdmx-p53 

complex (PDB ID: 3dab33, white). Although NT-4 kept the open state of Tyr99 and the short 

distance between Met53 and Tyr99, it was crucial that NT-4 only occupied the Trp23 sub-

pocket, meaning it did not mimic the classical binding mode as well as NT-3. 

4.3.2 Strategy 2   

Analysis on the eight fragments 

For the eight active fragments, the selected best binding pose of each fragment was superim-

posed at least with Trp23 of p53, since they were small in size and could not occupy all the sub-

pockets. Then a 50-ns MD simulation was run for each of them.  

As shown in Figure 4-10, Mdmx was not stabilised by binding with these fragments compared to 

the apo Mdmx, and the LG2–8 fragments seemed to flexibly transform between two or more 
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binding modes in the large hydrophobic cleft. However, LG1 presented various conformational 

changes but was likely to be steady during the last 7 ns. Moreover, the Tyr99 in the Mdmx-LG1 

complex was nearly always closed, and the Met53-Tyr99 interaction was moderate over the en-

tire 50-ns trajectory (Figure 4-11). In addition, when the time of Tyr99 being in the open state 

increased, the Met53-Tyr99 interaction weakened with the split peak of distance distribution 

shifting towards the right side, for example in the Mdmx-LG5 complex (Figure 4-12). Due to the 

short duration of the simulation and the frequent conformational changes in some cases, the rep-

resentative structure was selected from the entire trajectory by cluster analysis. The characteris-

tics of the representative conformations are summarised in Table 4-2. First, Pro95 retained its 

helical structure as the first residue of helix α2’ in all cases. In the closed state, the Met53-Tyr99 

interaction could be very strong, whereas this interaction would be lost in the open state along 

with relatively profound conformational changes. Intriguingly, Mdmx complexed with LG2 and 

LG4 closely resembled the Mdmx-p53 crystal structure, while these fragments left the Leu26 

sub-pocket empty, inducing a few inward movements of helix α2. However, the unfilled Leu26 

sub-pocket could also cause the inward bending of helix α2
’ (LG3, LG5, and LG8), especially in 

the case of LG5, where the Pro95 of Mdmx even reached the Pro27 sub-pocket passing by the 

Leu26 sub-pocket filled by Asp94 of Mdmx. Moreover, LG3 stopped in the core of the whole 

protein, which was the downward extension of Trp23 and Leu26 sub-pockets by the end of the 

simulation. As there were only two fragments occupying the Leu26 sub-pocket, LG6 and LG7 

were necessary for the next fragment-based drug design and caused the Pro95-Ser96-Pro97 re-

gion to move inwardly. In the Mdmx-LG1 complex, the indole ring of LG1 interacted with 

Met53, at a distance of approximately 5.1 Å but LG1 failed to insert into the Trp23 sub-pocket 

and popped out of the pocket at the end of the simulation; thus, it would not be used as a synthon 

in the next step. It is worth mentioning that the pyrrolidine ring of Pro95 was very close to the 

pyrazole part of LG6 (4.1 Å), implying some interaction which could contribute to the binding 

affinity and be utilised later on. 

 



 Developing new Mdmx inhibitors using structure-based drug discovery  

29 

 

 

Figure 4-10 The RMSDs (backbone atoms) of Mdmx complexes with 8 active fragments as a 

function of time were plotted through the 50-ns trajectories, each of which was calculated 

with the first frame as the reference. The simulation indicated Mdmx was not stabilised by 

binding with these fragments and the LG2 ~8 fragments seemed to flexibly transform among 

two or more binding modes in the large hydrophobic cleft. 
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Figure 4-11 The dynamic change of Tyr99 χ1 in Mdmx complexes with 8 active fragments 

through the 50-ns trajectories. The Tyr99 frequently changed the conformations during the 

simulation for seven fragments except LG1 in which Tyr99 was nearly always closed. 
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Figure 4-12 The distribution of distance between Tyr99 and Met53 in Mdmx complexes with 8 

active fragments through the 50-ns trajectories. When the time of Tyr99 in the open state was 

increased, the Met53-Tyr99 interaction weakened with the split peak of distance distribution 

shifting towards the right side, e.g. as in the Mdmx-LG5 complex. 

 

Table 4-2 The characteristics of representative conformations of 8 active fragments. (a: the 

pocket occupation of a fragment; the main binding site is bold and italic.) 

compound 
Representative 

Frame No. 
Tyr99 χ1 (°) 

Distance  

(Met53-Tyr99, Å) 

Pocket 

occupation 

{P19:A,W23:B, 

L26:C}a 

LG1 643 Closed 6.1523 - 
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LG2 4414 Closed 5.9581 A + B 

LG3 3494 Open 5.7142 B 

LG4 1929 Closed 6.3046 A + B 

LG5 4806 Open 8.8951 A + B 

LG6 3957 Open 7.6566 B + C 

LG7 2598 Closed 6.1271 B + C 

LG8 1532 Closed 4.7584 A + B 

Fragment-based drug design 

Based on the representative conformation of each fragment selected from trajectories, new and 

larger molecules were created consisting of groups expected to fill the three sub-pockets (Figure 

4-13). MD simulations were implemented on these molecules for 100 ns (see Appendix II for 

RMSD, etc.). NC series compounds might transform a lot in the pocket because they did not 

have the typical three rings of WK298 that were like three fingers separately anchored in the 

three sub-pockets. Therefore, the frames extracted by cluster analysis based on the RMSD of the 

ligands were also used to visually inspect the binding modes.  
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Figure 4-13 New created molecules (NC series) from eight active fragments (LG 1-8). The 

rounded rectangle marks a group expected to occupy one of the three sub-pockets; blue: 

Phe19 sub-pocket, green: Trp23 sub-pocket, yellow: Leu26 sub-pocket.  

 

As shown in Figure 4-14, all NC compounds did not run out of the pocket, but only NC5 had the 

same occupation of sub-pockets as expected. Moreover, NC4 occupied all sub-pockets with dif-

ferent substructures from the originally intended design. The pyrazole and trisubstituted benzene 

could occupy the Leu26 sub-pocket (NC5) as expected, but also the Phe19 sub-pocket (NC1, 

NC4, NC6, and NC8). For NC2 and NC3, the pyrazole ring extended over helix α2 without fill-

ing any of the sub-pockets. The indazole ring could fill the Phe19 sub-pocket as expected but 

also the other two sub-pockets. In the case of NC7, the indazole was over helix α2. For NC8, 

indazole pointed towards the solvent. In most cases, the Trp23 sub-pocket was filled by trifluo-

romethyl and 6-chlorophenyl rings, as expected. Based on the above analysis, it was concluded 

that NC4 and NC5 would be promising for bioactivity testing as well as for further optimisation. 

 

Figure 4-14 NC series compounds. The rounded rectangle marks which sub-pocket is occu-

pied by this part of molecule in the simulation; blue: Phe19 sub-pocket, green: Trp23 sub-
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pocket, yellow: Leu26 sub-pocket. Here one can see NC4 and NC5 showed the possibility to 

occupy all the sub-pockets. 

Analysis on the synthesised molecules 

Here, 10-ns trajectories were used to inspect the binding modes and decide which compound of 

the NC series would be promising. NC8 and NC9 had favourable binding modes with the Mdmx 

pocket and were used as templates for the synthesis process. Four synthesised derivatives (SN1-4, 

Figure 4-15) were tested for their inhibition of Mdm2, but all were negative. From a computa-

tional perspective, 100-ns MD simulations for each molecule were used to analyse the reason for 

the failure.  

 
Figure 4-15 Four derivatives from NC8 & NC9(SN1-4) were synthesised. 

 

In Figure 4-16,Figure 4-16 the synthesised molecules presented stable conformations, at least in 

the last 10 ns. Mdmx also formed a dynamic equilibrium of conformations, which was especially 

improved compared to that of the template NC9. In Figure 4-17, Tyr99 of Mdmx was closed for 

most of the simulation time; in contrast, the template compounds showed more Tyr99 switches. 

Accordingly, both template compounds and derivatives maintained a relatively short distance 

between Met53 and Tyr99 (Figure 4-18). However, none of them had a similar distribution of 

Met-Tyr interactions to the Mdmx-p53 complex.  

NC8 did not fill the Leu26 sub-pocket, and the Pro95-Ser96-Pro97 sequence bent inwardly. SN2 

showed better alignments with Phe19 and Trp23 of p53 by its two phenyl rings, but still left the 

Leu26 sub-pocket empty. However, SN1 and NC9 had much weaker binding with Mdmx be-

cause they did not have a consistent binding mode according to their selected conformations 

(two centroidal frames from the cluster analysis on the protein and ligands as well as the last 
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frame of the 100-ns simulation). Therefore, NC9 was not a good choice as a template. The inda-

zole and phenyl ring of SN3 separately occupied the Phe19 and Trp23 sub-pockets. However, 

SN4 ran out of the pocket. Both the templates and the derivatives failed to fill the Leu26 sub-

pocket and affect Tyr99, as well as its interaction with Met53. Figure 4-17 and Figure 4-18 show 

the natural movements of Tyr99 and Met53. While the template compounds selected from 10-ns 

trajectories remained in the pocket in the 100-ns simulation, one of the synthesised derivatives 

ran out of the pocket at the end. This indicated that a 10-ns simulation was not sufficient to ac-

quire the stable binding mode of an Mdmx-small molecule complex. 
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Figure 4-16 The RMSDs (backbone atoms) of Mdmx complexes with the template compounds 

(NC8-9) and synthesised compounds (SN1-4) as a function of time were plotted through the 

100-ns trajectories, each of which was calculated with the first frame as the reference. The 

synthesised molecules presented stable conformations at least in the last 10 ns. However, 

binding with the template NC9 did not stabilise the Mdmx in the simulation. NC9 and its de-

rivative SN4 had frequent conformational changes. 
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Figure 4-17 The dynamic change of Tyr99 χ1 in Mdmx complexes with the template com-

pounds (NC8-9) and synthesised compounds (SN1-4) through the 100-ns trajectories. In all 

trajectories, the Tyr99 of Mdmx was closed most of time. By contrast, the template com-
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pounds showed more conversions of Tyr99, indicating that Tyr99 did not form stable interac-

tion with other residues.  

 

Figure 4-18 The distribution of distance between Tyr99 and Met53 in Mdmx complexes with 

the template compounds (NC8-9) and synthesised compounds (SN1-4) through the 100-ns 

trajectories. For all these compounds, Tyr99 and Met53 kept a short distance in between 

which was consistent with the general closed state of Tyr99 in their simulations. However, 

this common distribution was not observed in the trajectory of Mdmx-p53 complex. 

4.4 Summary and outlook 

New Mdmx inhibitors were designed to mimic the binding mode of p53 from known active 

compounds using two structure-based strategies. The binding modes of the molecules were in-
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vestigated by MD simulations and evaluated by a series of post-analyses. Ligands binding both 

‘open’ and ‘closed’ states of Mdmx were obtained. 

The first strategy was to optimise the structure of the known Mdmx inhibitor, WK298. In this 

way, two compounds developed from WK298 were obtained that could bind with Mdmx, NT-3, 

and NT-4. The NT-3 compound formed a complex in which the conformation of Mdmx was 

very similar to that in the Mdmx-p53 crystal structure. The RMSD values were comparatively 

stable compared to those of the Mdmx-WK298 and Mdmx-p53 complexes. While NT-4 also had 

a stable trajectory after 10 ns simulation, it induced massive conformational changes in Mdmx. 

Interestingly, Tyr99 remained in the open state in the Mdmx-NT4 complex, along with an out-

standingly strong interaction with the Met53 of Mdmx. In addition, extending the chain which 

connects the phenyl with the indole ring would be promising for improving the occupation of the 

Phe19 sub-pocket. 

The second strategy was to rationally connect the active fragments to fully occupy the binding 

pocket. The bioactivity of NC series compounds developed from eight active fragments identi-

fied by NMR experiments was examined using a bioassay. The structures of the test compounds 

(SN series) were simplified during chemical synthesis. A bioassay was used to test the inhibitory 

activity of the test compounds against Mdm2. The negative results emphasised the importance of 

the duration of the simulation. At the beginning of the work, limited computational resources 

without GPU acceleration were available, so 10-ns trajectories were used to determine the syn-

thesis template. Even though it was not necessarily the case that longer was better, in this in-

stance a 10-ns trajectory did not have a high enough sampling of the entire dynamic range to 

acquire the stable binding mode for an Mdmx-small molecule ligand complex.  

All the structural design and supposition in this chapter are worth further study and validation by 

wet experiments in the future. 
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5 De novo design new Mdmx inhibitors by ma-

chine learning methods 

5.1 Motivation 

Designing new chemical structures from scratch is a challenge. Given the almost endless number 

of possible organic compounds, simple combinatorial enumeration can do nothing valuable ex-

cept for waste resources. Therefore, new approaches are being developed. One of the promising 

strategies is utilising so-called generative models, complex machine learning models that can 

mimic the original distribution, producing new samples in a Natural Language Processing (NLP) 

fashion. In silico structure production by generative models aims to efficiently design new mole-

cules with desired properties against specific targets60,61. In this way, one can navigate into the 

unexplored area of chemical space not represented in existing libraries that are difficult to reach 

only by human cognition. It is believed that such compounds offer potentially better specificity, 

selectivity, and pharmacokinetic properties. They are also unlikely to be covered by existing in-

tellectual property limitations.  

The generative models are based on recent progress with sequence data processing methods. 

Examples of such data are natural language sentences or music where each subsequent piece of 

information (words or notes) depends on the previous parts. Since the first work on sequence 

generation revealed the possibility of recurrent neural networks to model the probability distribu-

tion of the next token in a sequence62, the scientific community immediately realised its power 

and opportunities. The chemical molecules can be presented as ordinary alphanumeric strings by 

means of a simplified molecular input line entry system (SMILES),63 from which the model can 

learn the conditional probability distribution of the next symbol with respect to all previous to-

kens. Once trained, the model can generate a new and diverse set of valid SMILES that are simi-

lar to the training dataset64. Though the ability to generate an arbitrary compound from "nothing" 

looks promising and appealing, its practical application is not different from exploiting combina-

torial libraries. Therefore, it is crucial to find a way to adapt the model for sampling new mole-

cules from the desired region of chemical space. To this end, transfer learning techniques, where 

the pre-trained model continues training on a task-specific dataset, are widely used65. After sev-

eral epochs, the model converges and begins producing SMILES, which are similar to such da-

tasets.  

A generative model was developed, which can computationally generate new molecules by using 

experimentally validated training sets. In this work, the generative model by the name of Genera-

tor was then used to discover potent Mdmx inhibitors. 
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5.2 Methods 

5.2.1 Datasets 

ChEMBL library of SMILES  

For our primary generative model, 1,727,112 compounds were selected from the ChEMBL li-

brary66. As distinct from all other works on SMILES generative models a pre-processing of the 

original data was not performed, for example, string size limitation, chirality removal, standardi-

sation, and chemistry-relevant tokenisation. This was done with a goal of training a universal 

recurrent model that would be able to cover the whole ChEMBL database and then, finding 

weights (“embedding”) that could also be used separately from the original generative model. A 

total of 77,112 randomly selected SMILES were used as a validation set, while the remaining 

1,650,000 SMILES were used as the training set.  

Mdmx inhibitors 

The training set of inhibitors (total 293) with experimental IC50 values,67–78 which were tested 

with human Mdmx, were selected from the ChEMBL and BindingDB79 databases. Their IC50 

values were measured by several methods, such as the enzyme-linked immune sorbent assay 

(ELISA) (21 compounds), dose-response confirmation of inhibitors of Mdm2/Mdmx interaction 

in luminescent format (19 compounds), time-resolved fluorescence energy transfer (TR-FRET) 

assay (237 compounds), fluorescence polarisation assay (FPA) (2 compounds), and quantitative 

sandwich immune-enzymatic assay (14 compounds). Most of the inhibitors had log (IC50) values 

less than − 4.0 (Figure 5-1).  

 
Figure 5-1 Distribution of log (IC50) experimental values, and also VINA scores for the known 

Mdmx inhibitors 
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5.2.2 SMILES generator neural network (SGNN) 

The generator neural network model consists of two long short-term memory (LSTM)80 layers 

stacked upon each other with 512 internal units and a hyperbolic tangent as a nonlinearity activa-

tion function. Following the last LSTM layer, an ordinary dense layer with a SoftMax output was 

added (Figure 5-2). To facilitate batch computation, masking was applied to differentiate the 

positions in the input sequence as valid symbols. The input vocabulary involving stereochemistry 

and inorganic ions was fixed to 66 letters, including characters for the start (^) and the end ($) of 

a string, as follows. 

$#%()+-./0123456789=@ABCFGHIKLMNOPRST- VXZ[\]abcdegilnoprstu^  

Each letter was one-hot encoded and then passed through the recurrent units. No tokenisation 

scheme was employed for the SMILES generation model because, as stated above, the primary 

goal was to train a universal model covering the entire ChEMBL database. Therefore, any re-

striction, even if it may seem chemistry-relevant, could lead to an under-representation of some 

classes of tokens in the training dataset, thus, worsening the quality of the entire model. The out-

put of the SGNN is a probability distribution of the next symbol conditioned on all previous 

symbols in a string over the vocabulary. During decoding, the model randomly picks a symbol 

from the vocabulary according to this distribution. To balance the diversity and validity in sam-

pling SMILES, the output of the Generator was adjusted to different temperatures (see details in 

Appendix III). 

 

Figure 5-2 The architecture of the SGNN model 
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The SGNN was implemented in Lasagne81 with Theano backend82, and SMILES validation was 

performed using the RDKit library83. The SGNN was trained for 100 epochs using the Adagrad 

optimisation algorithm84 (constant learning rate 0.01, gradient clipping 100, batch size 2048). To 

avoid overfitting, the early-stopping technique with a validation dataset was used.  

5.2.3 Molecular docking 

The crystal structure of Mdmx in complex with p53 (PDB ID: 3dab33) at a resolution of 1.9 Å 

was used for the docking studies. The docking protocol was identical to that describes in the pre-

vious section. The ligands were docked using the AutoDock Vina29 program. Ten predicted con-

formations were generated for each ligand. From the 10 binding poses, the optimal one was cho-

sen in terms of docking score.  

5.2.4 QSAR models for IC50 and solubility estimation 

To estimate the IC50 values of the new Mdmx inhibitors, I built a regression model using the 

OCHEM platform. The OCHEM platform36 automatically estimates the applicability domain 

(AD),85 which is a crucial requirement for the current project. The Generator treats molecules as 

simple sequences of characters with predefined grammar rules. Although the final sequence may 

be a valid SMILES, it can result in a molecule that is chemically non-synthesisable or is very 

different from the training set for which IC50 estimation may be unreliable. The QSAR model 

was used for additional filtering of the generated compounds by selecting only the molecules that 

are in its AD. Different machine learning methods and descriptors available on the OCHEM 

website were explored and the best model was based on a Transformer-CNN method37. The pa-

rameters of this model are the coefficient of determination (r2 = 0.69), root mean squared error 

(RMSE = 0.51), and mean absolute error MAE = 0.35 (n = 293). The model is publicly available 

at https://ochem.eu/model/785. All 293 compounds were used for modelling, although some val-

ues were measured using different methods because the number of points on individual assays 

was not sufficient to build and validate a model. 

5.2.5 Tuning the Generator 

After training the Generator on the ChEMBL database, the SGNN model was retrained on the 

transfer set, which in our case was the Mdmx dataset augmented (maximum 10 times) with non-

canonical SMILES86,87. For example, toluene canonical SMILES is Cc1ccccc1, and non-

canonical variants are c1cccc(C)c1, c1ccc(C)c1, c1c(cccc1)C, etc. The generated compounds 

which passed a Lipinski-like and a collection of Lilly filters88 were then docked with AutoDock 

Vina.29 Next, they were estimated the IC50 values by the QSAR model. The new molecules were 

ranked by an integrated score from the IC50 values and docking scores. A new training dataset 

was formed from the original data and highly scored putative ligands, keeping a ratio of known 

https://ochem.eu/model/785
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and generated ligands 1:1. The SGNN model was retrained on this new dataset. By repeating the 

above tuning steps, promising inhibitors were selected based on the integrated score after finish-

ing the default generation cycles.  

5.2.6 Virtual screening 

To perform virtual screening of the output of the Generator, a pharmacophore model was built 

using the Phase of Schrödinger suites89,90 based on the Mdmx-WK298 complex. The complex 

was obtained by docking WK298 into Mdmx, which was extracted from crystal structures with 

PDB IDs of 3lbj50 and 3dab33. The top-scoring binding pose was well superimposed with the 

crystal structure of the WK298-Mdmx complex, and when it was aligned with the crystal struc-

ture of the p53-Mdmx complex, one can see WK298 binds to Mdmx in a way that mimics the 

binding of the native p53 peptide. The Trp23 pocket is filled with the 6-chloroindole substituent, 

and the 4-chlorobenzyl ring inserts into the Leu26 pocket. Finally, the third key substituent of 

WK298, the phenyl ring, occupies the Phe19 pocket, although the plane of this ring is nearly 

perpendicular to the plane of the Phe19 side chain of p53. The pharmacophore model (Figure 5-3) 

was based on the aforementioned critical residues of p53 (Phe19, Trp23, and Leu26). The model 

was validated internally in the Schrödinger suite. In total, 204 of 274 active compounds were 

successfully retrieved, and the parameters were area under the curve (AUC) 0.72, EF1% 10.62. 

This pharmacophore model was used to screen all stereoisomers of the new molecules selected 

from the output of the Generator. Finally, the molecules were analysed using MD simulations.  

 
Figure 5-3 The pharmacophore model of Mdmx inhibitor used in this study (yellow: WK298, 

white: p53) 
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MD simulations were performed with AmberTools1891, including ligand reduction with reduce, 

atomic charge calculation with antechamber and AM1-BCC as the backend, and topology and 

coordinate file generation with tleap. Each MD simulation was run for 10 ns of production time 

under the NPT ensemble with a constant 0.987 atm with isotropic position scaling and 300 K 

using the weak-coupling and SHAKE algorithm; a maximum time step of 2 fs was used. The 

default value of the nonbonded cutoff was used along with the particle-mesh Ewald (PME) cal-

culations. For the stable ones with a small standard deviation of the RMSD value (“std” in Table 

5-2), the MMPBSA.py python script was further used to obtain the relative free energies of bind-

ing34. Post-processing trajectories according to the MM/PB(GB)SA approximation allows a bet-

ter evaluation of the binding patterns of these ligands to Mdmx and, therefore, can help to identi-

fy the most potent hits92. One hundred frames were selected from the last nanosecond of simula-

tion with 10 ps intervals to calculate ΔG values. To reduce the computational time, the ΔG calcu-

lation was not refined by the entropy contribution. Therefore, the calculated ΔG was only an 

approximation of the true free energy, but could nevertheless be used to compare the generated 

ligands with similar Mdmx binding patterns.  

The parameters and environment for MD simulations worked well on the WK298-Mdmx com-

plex. Stable trajectories could be obtained by running 10 ns MD simulations on this complex, 

according to the RMSD (see Appendix III).  

5.3 Results 

5.3.1 The Generator 

The ability of the Generator to produce chemical structures was examined by comparing the dis-

tributions of molecular weight, lipophilicity, topological surface area, and synthetic accessibility 

introduced in the work of Ertl et al64. For this purpose, approximately ten million SMILES were 

sampled from the SGNN, 79% of which were valid unique SMILES (see Table 5-1). The results 

in Figure 5-4 (blue dotted and solid lines labelled with "ChEMBL" and "ChEMBL (generated)") 

showed a good correlation between distribution shapes for different properties.  

Table 5-1 Parameters of generated molecules 

Strings All Valid SMILES Unique SMILES 

All 10,495,701 9,377,274 (89.3%) 8,297,705 (79.1%) 

Stereo (with @) 1,677,294 1,388,454 (13.2%) 1,325,236 (12.6%) 

Cis/trans (with / or \) 1,153,284 998,506 (9.5%) 905,536 (8.6%) 
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Figure 5-4 Distribution of molecular weight, logP, TPSA, and synthetic accessibility for origi-

nal ChEMBL database, generated molecules before and after tuning SGNN model with Mdmx 

inhibitors 

 

The Mdmx transfer dataset of known inhibitors consisted of 293 molecules. It was augmented to 

2916 SMILES and then used to retrain the original ChEMBL model. While an early stopping 

technique was not required for training using ChEMBL, it was essential in this step because the 

number of parameters of the model was large compared to the amount of training data, and the 

model could easily overfit93. In the experiments, to 3-4 epochs were sufficient for transfer of the 

information. Total 5803 valid SMILES that passed drug-like Lilly filters were generated during 

all 10 cycles of tuning and 778 with VINA score less than −7.5 were selected for further virtual 

screening. The visualisation of the chemical space of the generated inhibitors (Figure 5-5), based 

on the deep neural network model,94 reveals an interesting landscape consisting of a valley with 

the known WK298 inhibitor in the middle and two ridges. Most of the compounds selected by 

MD simulations were located at the highest and most occupied ridge to the left of the valley. The 

landscape evidently shows that the Generator explored particular directions in the vast chemical 

space, and it was not a pure random walk.  
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Figure 5-5 Visualisation of chemical space of Mdmx inhibitors 

5.3.2 Putative Mdmx inhibitors via virtual screening workflow 

The 5803 molecules, which passed advanced drug-likeness filters, were produced by the Genera-

tor and were ranked according to the sum of normalised VINA scores and pIC50 values (Figure 

5-6). Then, the pharmacophore model filtered the top 102 molecules to 96. Mdmx complexes 

were simulated with these ligands, and 50 trajectories were obtained.  

To investigate the stability of the ligand binding pose in the receptor pocket, RMSD values were 

analysed for the ligand of the Mdmx complex. For the known inhibitor WK298, which was sub-

jected to the same process, the standard deviations of RMSD were in the range of 0.317–2.758. 

The threshold was set to 2.758 to filter relatively unstable trajectories. This filter further de-

creased the number of molecules to 49, for which the binding free energies were also estimated. 

Theoretical ΔGexp can be estimated from the experimental IC50 values with the formula ΔGexp ≈ 

RTln(IC50)92,95. For WK298 with IC50 value of 19.7 μM50, its ΔGexp is around −6.5 kcal/mol. 

Below, five promising hits (Table 5-2) with ΔGexp < −6.5 were analysed, which could thus be 

expected to have a higher activity than WK298.  
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Figure 5-6 The scheme of the virtual screening workflow 

 

Table 5-2 RMSD and the binding free energy (ΔG) of the representative compounds and 

WK298 ascending by ΔG (a. avg = the average; b. std = standard deviation; c. min = the min-

imum; d. max = the maximum) 

Compound 
RMSD 

pIC50 
ΔG 

(kcal/mol) avga stdb minc maxd 

WK298 1.5 0.3 0.52 2.9 4.7 − 9.4 

3021 4.7 0.4 0.63 5.9 5.2 − 13.0 

92 1.6 0.5 0.51 3.7 7.7 − 10.8 

100 1.7 0.7 0.48 5.8 7.9 − 6.9 

34 2.8 0.7 0.67 5.2 7.9 − 6.7 

39 4 1 0.78 8.0 7.6 − 6.7 

 

3,3-Diphenylpropanamide is a common substructure among the generated molecules, such as 

compound 100. 4-chlorophenyl is located in the Trp23 pocket. One of the two phenyl rings oc-

cupies the space of Lys24 of p53, and the other is exposed to the solvent. In the case of com-

pound 34, one phenyl ring is substituted by its bioisosteres such as pyrrole and methyl ester. The 

latter appears more frequently to become another common fragment. Here, 4-fluorophenyl mim-

ics Trp23 of p53 and 4-chlorophenyl mimics Phe19. In addition, 1H-pyrrole in the opposite di-

rection was aligned with Lys24.  



 De novo design new Mdmx inhibitors by machine learning methods  

49 

 

Outside the range of filtered molecules, compound 39 with ΔG of − 6.7 kcal/mol also has an 

ester-substituted two-phenyl “umbrella”. Its long straight chain lies across the cleft of the protein, 

and the hydrophobic pocket shrinks significantly to fit around it. In the crystal structure of the 

Mdmx complex with the Mdmx selective inhibitor (PDB ID: 6q9y; compound 16, IC50 = 3.7 

μM), a similar binding conformation was observed96. Apart from filling the Trp23 and Leu26 

pockets, the remaining phenyl group nicely overlapped with Ser20 of p53 (Figure 5-7).  

 

Figure 5-7 Compound 39 and Mdmx complex aligned to known inhibitor in complex with 

Mdmx (PDB ID: 6q9y). (white: p53, magenta: 6q9y, yellow: compound 39) 

 

Compound 92 has a unique scaffold, 3,5-disubstituted-2-thioxo-2,3-dihydro-1H-imidazole. The  

Mdmx complex was aligned with the crystal structure of the p53-Mdmx complex (PDB ID: 

3dab). As shown in Figure 5-8c, the urea group points towards the indole ring of the p53 residue 

Trp23, and both of its imino groups have H-bond interactions with Met32. 3-phenyl was fairly 

close to the Phe19 pocket. The three aromatic rings lie on the top of helix α2 of Mdmx, and the 

imino group has H-bond interactions with His33. Moreover, Tyr99 of Mdmx kept the “closed” 

conformation, which was specially studied in this work50. 

Comparing the binding patterns of these complexes, the extremities of the molecule can be well 

aligned to Phe19, Trp23 and Leu26 of p53. Ligand fragments are frequently inserted into the 

Trp23 hydrophobic pocket. Simultaneously, the pocket shrinks to accommodate the size of the 

small molecules. Interestingly, almost every compound analysed could mimic the three key in-

teracting residues. Some of them can better align with p53 in more residues beyond these three 

residues. In particular, the surface over helix α2 is a hot spot for fragments that occupy the Ser20 

of p53. In most cases, Tyr99 remains in a “closed conformation”, pointing to the ligand. There-

fore, this assume that it tends to interact with the ligand and flips only with the movement of the 

ligand. Selecting some of them that are typical and yet very different from known Mdmx inhibi-

tors and testing by bioassay in the future would be a worthwhile endeavour. It is noted that some 

compounds with good ΔG values are not similarly ordered at the top of the results from the Gen-

erator. This is because of the different computational principles involved. The scoring function 

integrates both empirical information and experimental affinity measurements. Meanwhile, the 

relative ΔG in this work was calculated based on molecular mechanics and Poisson-Boltzmann 
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surface area (MM/PBSA) in the absence of entropic contribution. The evaluation criteria of the 

Generator also equivalently take the predicted IC50 values into account. 

 

Figure 5-8 (a) p53-Mdmx complex (PDB ID: 3dab). White colour indicates p53 and the surface 

of Mdmx is shown in purple colour; (b) WK298-Mdmx complex (PDB ID: 3lbj). Yellow colour 
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indicates WK298; (c–f) The binding patterns of respective compounds (shown in yellow) in 

complex with Mdmx are shown. Compounds 3021 and 92 had similar binding modes and thus 

only complex with compound 92 is shown. 

5.3.3 Comprehensive analysis on ChEMBL compounds re-

discovered by Generator 

The molecules generated by the Generator included 49 compounds deposited in the ChEMBL 

database97 (named the CID series, see Appendix III). The QSAR model of Mdmx inhibitors was 

used to rank the generated compounds. Within the applicability domain, the predicted pIC50 (-

lgM) of CID compounds were in the range of 6.41–7.55. Five CID compounds with the top pre-

dicted pIC50 values (Figure 5-9) were selected to run MD simulations and estimate the binding 

free energy of the last 30-ns trajectory refined by the entropy approximation. Remarkably, five 

CID compounds had the same core structure, that is, methyl N-acetyl-d-phenylalaninate. Notably, 

p53 interacted with the Met53, Pro95, Leu98 and Tyr99 of Mdmx in the Mdmx-p53 complex 

according to the pairwise decomposition of binding free energy. Therefore, the energy decompo-

sition was focused on these residues (Table 5-3).  

 

Figure 5-9 Five CID compounds with high predicted pIC50 

 

As shown in Figure 5-10, the binding of these five CID compounds maintained the ‘closed’ state 

of Mdmx for nearly the whole trajectory; the binding of WK298 had half ‘open’ and half ‘closed’ 

conformations, retaining the flexibility of Tyr99 and finally being stable in the ‘closed’ state. 

Even though all the CID molecules shown in Table 5-3 had predicted pIC50 values greater than 

WK298, the binding free energy helped us further detect the potential of these compounds. 

However, CID27228212, CID73936978 and CID25940556 had positive binding free energies, 

indicating that they had little binding affinity to Mdmx. By comparison, CID73939626 not only 
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has good predicted pIC50 but also comparable binding free energy to WK298. Furthermore, the 

interactions between Met53 and Pro95-Ser96-Pro97-Leu98 resulted in the helices α2 and α2’ ap-

proaching each other and even losing the secondary structure. For example, Pro95-Ser96 lost its 

helical conformation in Mdmx complexed with CID73936978. Nevertheless, the binding free 

energy between Met53 and Tyr99 was positive for all observed ligands. This indicated that the 

Met-aromatic interaction could barely be determined in this way. In the future, it would be inter-

esting to try quantum calculations or experimental methods (e.g. photoelectron spectra) to quan-

tify this relatively weak interaction. 
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Figure 5-10 The dynamic change of Tyr99 χ1 in Mdmx complexes with CID compounds 

through the 100-ns trajectories. All selected CID compounds stayed in the closed confor-

mation for most of the simulation time. 

 

Table 5-3 The estimation of binding free energy (ΔG) and its pairwise decomposition for puta-

tive ligands (WK298 is the positive reference) as well as the predicted pIC50 

Ligand 

ID 

ΔG 

(kJ/mol) 

M53 

- 

P95 

M53 

- 

S96 

M53 

- 

P97 

M53 

- 

L98 

Lig 

- 

M53 

Lig 

- 

Y99 

Lig 

- 

P95 

Lig

- 

S96 

Lig 

- 

P97 

Lig 

- 

L98 

pIC50 

(pred) 

WK298 -7.7 - - √ - -5.7 √ -1.1 √ √ -1.8 4.7 

CID2722

8212 
7.0 - √ - - -3.9 √ -1.6 √ √ -1.9 7.5 

CID7393

6978 
2.1 √ - - - -4.4 -1.77 -1.3 √ √ -1.6 7.5 

CID7393

9623 
-2.0 - - √ - -4.6 √ -1.2 √ √ √ 7.4 

CID7393

9626 
-6.0 - - - - -4.9 √ -1.3 √ √ -1.9 7.6 

CID2594

0556 
3.8 - - √ - -2.5 √ √ √ √ √ 7.5 

*√: mean of total energy decomposition is in the range of (-1, 0) kJ/mol; -: mean of total en-

ergy decomposition is greater than 0 kJ/mol. 

 

Based on the data analysis above, it is interesting to investigate the binding mode between the 

Mdmx and CID73939626 that was estimated to have the binding free energy comparable to 

WK298. The initial and final conformation were obtained from the 100-ns trajectory of Mdmx-

WK298 complex, as shown in Figure 5-11B and C. By comparison, the number of interactions 

between WK298 and Mdmx decreased by the end of the simulation. The distance between Val92 

and WK298 increased from 3.4 to 4.0 Å and thus, the interaction weakened. The final confor-

mation of CID73939626 in complex with Mdmx was shown in Figure 5-11D. This putative lig-

and formed more hydrophobic interactions with Mdmx compared to WK298. Apart from the 

hydrophobic interaction involving Val92, the ligand maintained such interactions presented in 

the Mdmx-WK298 as Ile60, Tyr66, and Phe90. Moreover, Met53 and Tyr99 also participated in 

the interaction network. Interestingly, there was a halogen bond exclusively, indicating the halo-

gen atoms should be beneficial to the inhibition against Mdmx. The missing of hydrogen bonds 

is enlightening, so that to add substructures acting as hydrogen-bond donors/acceptors will be a 

promising direction for optimizing the structure of CID73939626 in the future work. 
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Figure 5-11 The binding mode between Mdmx and small-molecule ligands was analysed us-

ing MD simulation. (A) The summary of interactions between the ligands and Mdmx. (B) The 

crystal structure of Mdmx-WK298 complex, i.e., the snapshot at simulation time t = 0 ns. (C) 

The snapshot of Mdmx-WK298 complex at simulation time t = 100 ns. (D) The snapshot of 

Mdmx-CID73939626 complex at simulation time t = 100 ns. The ligands and pocket residues 

are displayed as sticks and the protein is displayed as cartoon. The hydrophobic interactions, 

hydrogen bonds and halogen bonds are displayed in magenta, blue and yellow, respectively.  
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5.3.4 Constraints during tuning 

The current implementation of the tuning workflow for the Generator allows the introduction of 

several constraints while generating new molecules. In this study, the IC50 model was used to 

estimate the inhibitory potential of a compound and VINA scores to measure its binding affinity. 

Since solubility also druggability, a solubility model was added as another constraint on structure 

generation. The solubility model was built using the Transformer-CNN approach and resulted in 

r2=0.92, RMSE=0.58, and MAE=0.41 (n=1311), which is available at 

https://ochem.eu/model/784, and another cycle of generation with this additional solubility filter 

was started. The distributions of the Tanimoto similarity of the generated molecules for all com-

pounds and Murcko scaffolds98 are depicted in Figure 5-12. It is clear that adding another filter 

shifts the Generator to produce a more diverse set of compounds, as well as chemical scaffolds. 

Utilising more QSAR filters at this stage should benefit the entire de novo design pipeline and 

further investigate the mutual influences of different filters on the overall scoring procedure. As 

shown in Figure 5-13, the overlap between the generated compounds during two different runs 

was less than 10% (517/6395). Note that the total number of generated compounds also includes 

those structures that overlap with the training dataset. For example, for run-1, the Generator pro-

duced a total of 6395 structures, but 592 of them were already in the training dataset (the Gen-

erator can produce the same molecule more than once). Thus, different filters guide the explora-

tion of different regions of the chemical space and can be used complementarily to each other. 

However, the question of how to account for all of these filters in one workflow remains open. 

 

Figure 5-12 Comparison of similarity distributions for run-1 of generation (without solubility, 

left) and run-2 (with additional solubility parameter, right) 

https://ochem.eu/model/784
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Figure 5-13 The number of compounds generated during run-1 and run-2 as compared to the 

original dataset 

5.4 Summary and outlook 

In this chapter, generative neural networks were applied to the design of putative Mdmx inhibi-

tors in silico. The Generator model was developed to efficiently and automatically generate new 

molecules from scratch with the desired properties. The initial dataset comprised more than 1.7 

million compounds curated from the ChEMBL library without pre-processing, making the model 

output molecules covering the entire diversity of chemical space. The training of the model on 

this large set resulted in nearly 79% of the entire output being valid unique molecules. The mo-

lecular properties of the generated molecules correlated well with those of the ChEMBL set. The 

second training set (n = 293) consisted of all available Mdmx inhibitors collected from the litera-

ture. This set was augmented and used to retrain the previous model. This transfer learning pro-

cess conducted the model to specifically generate molecules with potential inhibition against 

Mdmx, which was refined by docking scores. The other constraints further tuned the model to 

output molecules with good drug-likeness and solubility.  

The validation of the focused library generated by the Generator was carried out through mo-

lecular dynamics simulations. The Generator generated potential Mdmx inhibitors with com-

pletely new structures but also re-discovered structures available in public databases, thus cir-

cumventing the difficulty of their synthesis. The promising molecules have better predicted pIC50 

and similar or higher binding affinities compared to the reference inhibitor WK298. The com-

pounds re-discovered from the ChEMBL database (CID series) were additionally investigated by 

100-ns simulations. The MD analysis demonstrated that these compounds made Mdmx keep the 

‘closed’ conformation for nearly entire simulated time. By contrast, WK298 had half ‘open’ and 

half ‘closed’ conformations. This suggests that the ‘closed’ state of Mdmx should not be neglect-

ed as a promising direction for developing new Mdmx inhibitors.  

This work was published,99 and the source code made available to the public 

(https://github.com/bigchem/online-chem).  

The hydrophobic effect and desolvation penalties critically influence the drug activity. Adding 

hydrophobic groups can improve the binding affinity of a ligand with a hydrophobic pocket by 

decreasing the solvent-accessible surface. If the solubility of a ligand is increased, the binding 

https://github.com/bigchem/online-chem
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affinity may suffer a great loss because of the cost of desolvation. Moreover, adding modifica-

tion groups has the risk of introducing higher flexibility, making the entropic cost of the binding 

process more significant. Future Generators should be penalised for the flexibility and desolva-

tion of buried polar groups. Although the number and quality of filters applied during the genera-

tion phase were to be optimised, the whole algorithmic scheme would guide future drug devel-

opment processes, yield new drug candidates for challenging targets, and contribute to the diver-

sification of medicinal chemistry methodologies.  
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6 Development of a general model to character-

ize ligands with respect to opening transient 

pockets in drug targets 

6.1 Motivation 

Inspired by 1) the open and closed state of Tyr100 (Tyr99 in Mdmx), 2) Mdm2-YH300 complex 

where the 4-chlorobenzyl phenyl ether induced the opening of the fourth binding site in Mdm2, 

many researchers searched for the extension of the main pocket in Mdmx and designed new 

Mdmx inhibitors accordingly. However, it is not clear which features of ligands could contribute 

to the opening of cryptic pockets of proteins. The development of a general model that can pre-

dict the ability of ligands to open cryptic pockets could be useful for designing such ligands for 

Mdmx, as well as for other proteins. 

The idea of this challenging project was to utilise the local structural flexibility of these interfac-

es to enable structure-based drug design. Imatinib (Figure 6-1) is an antineoplastic agent, which 

inhibits the Abelson (Abl) tyrosine kinase by capturing a transient state.100–103 It specifically 

binds with the preformed ATP pocket and an adjacent allosteric pocket which likely appears 

induced by the ligand itself. Both experiments and molecular dynamics simulations of proteins 

revealed the existence of transient pockets, also known as cryptic sites104. Cryptic binding sites 

are absent or occluded in unbound proteins, but are present in ligand-bound structures. They can 

provide druggable pockets in cases where the main functional site of the protein cannot be tar-

geted with sufficient potency or specificity. Mizukoshi et al.105 developed a strategy to identify 

cryptic sites and manipulate their dynamic changes through nuclear magnetic resonance (NMR) 

combined with allosteric mutations. Kii et al.106 identified an inhibitor (FINDY) targeting transi-

ent pockets in dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). Ci-

mermancic et al.107 created the CryptoSite dataset of apo-holo pairs with cryptic sites and used 

machine learning to predict cryptic sites with relatively high accuracy (AUC = 0.83). They found 

that cryptic sites were less hydrophobic and more flexible than traditional binding pockets. 

Beglov et al.108 explored the extended CryptoSite dataset by detecting hot spots using FTMap109. 

Their results showed that regions around cryptic sites had above-average flexibility. Moreover, 

they observed that cryptic sites, which were formed solely by side chain motion or less than 5 

backbone residues’ motion, showed weak ligand binding potential with limited use for drug dis-

covery. Clark et al. investigated the structural flexibility of proteins by root mean square devia-

tion (RMSD) calculations of backbone atoms and χ1 angles of side-chain atoms.110 The ligand-

induced backbone flexibility across apo-holo pairs was slightly larger than the inherent backbone 

flexibility of the apo and holo states. Upon ligand binding, sidechain χ1 angles were frequently 



 Development of a general model to characterize ligands with respect to opening transient pockets in drug targets  

59 

 

pushed to new orientations outside the range seen in the apo states. They found that the influ-

ences on binding-site variation could not be easily attributed to features such as ligand size or X-

ray structure resolution. More recently, Evans et al.111 developed a machine learning method 

(TACTICS) to predict cryptic sites. TACTICS was trained on an extended CryptoSite dataset 

and used molecular dynamics (MD) simulation data as input. This advanced method successfully 

detected the active sites and multiple allosteric sites in the SARS-CoV-2 main protease. The in-

creasing use of MD simulations in conjunction with machine learning algorithms will likely con-

tribute greatly to the identification of cryptic pockets and expand the scale of druggable proteo-

mes in the foreseeable future.112 

 
Figure 6-1 The structure of Imatinib is given as an example of the inducers (left). Two crystal 

structures of Abelson (Abl) tyrosine kinase bound with small-molecule ligands were aligned 

(PDB ID: 1iep, Imatinib, green; PDB ID: 2v7a, PHA-739358, red). In the binding site, the major 

structural displacement was present in the rotation of the activation loop (residue 381 to 402 

in Abl kinase). Imatinib (green) binds to the preformed pocket and the adjacent sub-pocket 

which is caused by the rotation of the loop. 

 

It was interesting to identify the structural features of ligands that are important for the opening 

of cryptic sites. This information could be useful for designing new active compounds against 

currently undruggable proteins or for discovering new binding sites for underexplored proteins. 

In addition, it was interesting to know the extent to which this comprehensive issue involving 

both the characteristics of proteins and structure-activity relationships of ligands could be ex-

plained by the investigation of small molecules.  

In this study, the ligands were classified into two groups: the first group consisted of the ligands 

that induced the opening of cryptic pockets, called ‘inducers’, and the second group included 

those that could not open the pockets, referred to as ‘non-inducers’. The classification criterion 

was based on the volume change of the pocket between the unbound state (apo) and the bound 

state (holo). The degree to which the enlargement of a pocket was considered as opening was 

discussed. 

 matini     l kinase

             

      

 matini 

        



 Chapter 6  

60 

 

6.2 Methods 

6.2.1 Datasets 

Dataset I: PDBbind-CN 

PDBbind-CN113 v.2020 included all types of biomolecular complexes and their experimentally 

measured binding affinity data deposited in the Protein Data Bank (PDB)45. Starting from 5316 

crystal structures of holo proteins, a dataset comprising apo (does not contain a bound ligand) 

and holo (complex with a ligand) protein pairs was established. The protein and ligand structures 

of the holo complexes were retrieved using their PDB IDs. The requirements were that only one 

ligand in the same pocket as identified by the ligand ID114 and that the resolution of the crystal 

structure was better than 2.5 Å. The initial set of apo structures included PDB proteins with the 

same resolution requirements. The binding pocket was defined by the residues within 10 Å of the 

cognate ligand. Since I was only interested in drug-like small molecules, the holo structures 

whose identified ligands were peptide-like, cofactors, detergents and crystal additives, were ex-

cluded, as suggested in previous work115. Next, the sequence of each holo protein was analysed 

using the blastp program116 to generate a list of PDB IDs descending by the similarity between 

the holo and apo protein sequences. It was determined that no ligands were bound in the same 

binding pockets of the apo structure, and the protein pair with the highest similarity score was 

retained for analysis. Both the retrieving and calculating processes were automatically carried 

out by the PyMOL38, blastp and SiteMap117–119 programs with the help of custom scripts. 

Moreover, the CryptoSite dataset was combined with the PDBbind dataset as the training set, 

which has been commonly used in previous studies on cryptic pockets104,107,108,111. Originally, 

this dataset contained 93 holo proteins matched with multiple apo structures individually. Eight 

items binding to either multiple ligands or oligosaccharides in the pocket were removed. After 

the removal of duplicates from the CryptoSite dataset compared to the PDBbind dataset, eighty-

four pairs of holo-apo proteins as well as their ligands were retrieved. All these ligands were 

labelled as inducers because the corresponding receptors had cryptic sites, which were manually 

curated and illustrated by the creators. 

Dataset II: NR-DBIND 

Nuclear receptors (NRs) are important drug targets and their ligand binding is generally accom-

panied by large conformational changes. The same workflow as the PDBbind dataset was im-

plemented to build a dataset comprising apo and holo NR pairs. To this end, the nuclear receptor 

database (NR-DBIND)120 was used as the starting point. These data indicated whether the PDB 

ID corresponded to a holo or apo structure, which helped in validating the developed in-house 

searching script. 

Below, tools and procedures used to analyse the retrieved structures and create datasets were 

described. 
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Structure preparation and visualisation 

PyMOL38 was used to retrieve structures from the PDB database to define the pocket and align 

the holo-apo pairs. It was also used to visually validate the matching results from in-house 

scripts. 

The quality of starting structures is critical for computational drug design. Therefore, all protein 

structures were processed using the Schrodinger Protein Preparation Wizard121. This script is a 

tool for correcting common structural problems with experimentally derived structures to create 

reliable protein models. This tool was used 1) to assign bond orders in known residues and small 

molecule components based on their SMILES strings in the Chemical Component Dictionary114, 

2) to add explicit hydrogens, 3) to create zero-order bonds to metals, and 4) to generate a favour-

able ligand protonation state based on the number of H-bonds and the Epik penalty score122. 

Identification and characterisation of binding pockets 

The SiteMap117–119 of Schrodinger suite was used to identify and calculate the pocket volumes of 

the pre-processed proteins. This program first detected all sites suitable for docking in the protein 

structure and then individually calculated the corresponding pocket volume. In this way, I ob-

tained the volumes of the identical pocket in the holo and apo structures. Technically it was done 

using trajectory_binding_site_volumes.py with -sitemap_site_asl option by specifying the resi-

dues constituting the pocket of interest. SiteMap determined the pockets suitable for docking 

using geometry and energy-based algorithms. As a result of this restriction, around one thousand 

input structures failed in this step, and thus were not further considered in this work. 

The structures which were present in both databases were kept in the PDBbind set for model 

training and removed from NR-DBIND, which comprised the external validation set. Thus, nei-

ther datasets had overlapping structures. In total, 992 and 135 apo-holo pairs were obtained in 

PDBbind and NR-DBIND, respectively. Among them, 675 and 117 pairs increased Vholo -Vapo > 

0 Å3 the pocket volume. Small changes in the volume could also be due to fluctuations in the 

volume or restricted conformational adjustments, and thus some threshold could be beneficial to 

use. A detailed procedure for defining the threshold to separate inducers and non-inducers is de-

scribed in the Results section. 

6.2.2 Development of models to separate inducers and non-

inducers 

The OCHEM platform123 was used to develop classification models for inducers and non-

inducers. The models were developed with data from the PDBbind set, and the NR-DBIND set 

was used as an external validation. In practice, different machine-learning methods and de-

scriptors available in OCHEM were explored. Random Forest (RF) and ALogPS and OEstate 

(AO) descriptors contributed to the models with the highest accuracy and were selected for all 

analyses. Below, they were briefly described. 
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Random forest (RF)124 is an ensemble of several decision trees that are used to classify a new 

sample by a majority vote of individual decision trees. It is an effective tool for predictions and 

is widely used as a reference in classification and regression tasks. There are two important tun-

ing parameters that significantly affect the performance of RF models: numFeatures and 

numTrees. For the first parameter, the recommendation of previous work125 was followed and 

this parameter was set to the sqrt(p) of the number of descriptors, p, used to build the models. 

Increasing the number of trees above 512 did not lead to better models, as shown in other previ-

ous work126. Therefore, the fixed values of these both parameters were used. 

The ALogPS and OEstate127 (AO) descriptors contain the octanol/water partition coefficient 

(logP), solubility in water (logS),127–129 and electrotopological state (E-state) indices that com-

bine the electronic properties and topological context of skeleton atoms derived from the mo-

lecular hydrogen-depleted graph.130–133 The E-state index is defined as follows: 

𝑆𝑖 =  𝐼𝑖 +  ∆𝐼𝑖 =  𝐼𝑖 +  ∑
𝐼𝑖 −  𝐼𝑗

(𝑑𝑖𝑗 + 1)
𝑘

𝐴

𝑗=1

 

where Si is the E-state of the ith atom, Ii is the intrinsic state of the ith atom, ∆Ii is the field effect 

on the ith atom calculated as perturbation of the intrinsic state of the ith atom by all other atoms 

in the molecule, dij is the topological distance between the ith and jth atoms, and A is the number 

of atoms. The exponent k is a parameter that modifies the influence of distant or nearby atoms in 

particular studies. This is usually taken as k = 2. The intrinsic state of the ith atom is calculated 

as 

𝐼𝑖 =  
(

2
𝐿𝑖

)
2

 ∙ 𝛿𝑖
𝑣 + 1

𝛿𝑖
 

where Li is the principal quantum number, 𝛿𝑖
𝑣 is the number of valence electrons, and 𝛿𝑖 is the 

number of sigma electrons of an atom in the H-depleted molecular graph. The intrinsic state of 

an atom can be simply considered as the ratio of π and lone-pair electrons over the σ bond count 

in the molecular graph. Therefore, the E-state index is a measure of the electronic accessibility of 

an atom and can be interpreted as the probability of interaction with another molecule. 

Atom-type E-state indices encode electronic and topological information related to particular 

atom types in molecules. They are calculated by summing the E-state values of all atoms of the 

same atom type in the molecule. The symbol of each atom-type E-state index is a composite of 

three parts. The first part is “S”, which refers to the sum of the E-states of all atoms of the same 

type. The second part is a string representing the bond types associated with the atom (“s”, “d”, 

“t”, “a” for single, double, triple, and aromatic bonds, respectively). The third part is the symbol 

identifying the chemical element and eventual bonded hydrogens, such as CH3, CH2, and F. 

The bond E-state index is defined as:  

𝐵𝑆𝑏 = 𝐵𝐼𝑏 + ∆𝐵𝐼𝑏𝑡 =
(𝐼𝑖 + 𝐼𝑗)

𝑏

2
+ ∑

𝐵𝐼𝑏 − 𝐵𝐼𝑡

(𝑟𝑏𝑡̅̅̅̅ + 1)2

𝑡≠𝑏
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where BS is a bond-state index, b is the bond formed by the atoms i and j, t runs over all the re-

maining bonds different from bond b, BI is the bond intrinsic state defined by the intrinsic states 

I of the adjacent vertices, ∆BS is the perturbation term, 𝑟𝑏𝑡̅̅̅̅  is the average bond length of the 

bonds b and t. 

Some non E-state descriptors such as molecular weight, number of hydrogen bond accep-

tors/donors, rotatable bonds, etc., were also included. 

Model validation 

N-fold cross-validation was used to evaluate the robustness of the models and to avoid over-

fitting of the models. The method was performed as follows: (i) the initial dataset was randomly 

divided into n mutually disjoint subsets of the same size; (ii) (n–1) subsets were used to train the 

model and the remaining subset was used as a test set. The prediction results for the respective 

test sets were accumulated and used to evaluate the prediction performance of the final model, 

which was developed using the initial dataset. In this study, a 5-fold stratified cross-validation 

was used to account for data imbalance. 

Performance measurement 

The predictions of the models were evaluated based on prediction accuracy and balanced accura-

cy. They are calculated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃
𝑇𝑃 +  𝐹𝑁

+  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
2

× 100% 

Here, True Positives (TP) is the number of inducers predicted correctly by the model, True 

Negatives (TN) is the number of non-inducers predicted correctly, False Positives (FP) is the 

number of non-inducers predicted as inducers, and False Negatives (FN) is the number of induc-

ers predicted as non-inducers.  

Balanced accuracy was the average accuracy for the prediction of inducers and non-inducers. 

This measure better reflected the accuracy of models when using different thresholds to separate 

inducers and non-inducers, which contributed to their imbalances. In addition, AUC, the area 

under the receiver operating characteristic (ROC) curve, was used. 

Interpretation of models 

The Shapley value was introduced by Lloyd Shapley134, which provides a natural way to com-

pute the features that contribute to a prediction. Shapley Additive exPlanations (SHAP)135 is a 

unified framework for the class of additive feature attribution methods including LIME136, 

DeepLIT137, layer-wise relevance propagation (LRP)138, Shapley regression values139, Shapley 

sampling values140, and quantitative input influence141. SHAP combines all the characteristics of 

the six aforementioned methods and three additional desirable properties (local accuracy, miss-

ingness, and consistency). Features contributing to the predicted classification are evaluated via 

the absolute values as well as the plus/minus signs corresponding to the positive/negative im-

pacts. TreeExplainer142 is specifically implemented for tree-based models to compute SHAP 
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values for trees and ensembles of trees. Variables enter the machine learning model sequentially 

or repeatedly in the trees of the model. In every step of tree growth, the algorithms evaluate each 

of the variables equally to settle with the variable that contributes the most. In total, thousands of 

trees are constructed. It is possible that various permutations of the variables are available. 

Therefore, the marginal contribution of each variable is calculated. TreeExplainer computes local 

explanations based on exact Shapley values in polynomial time and extends local explanations to 

directly capture feature interactions so that it can interpret a model’s global behaviour based on 

many local explanations. 

The RF model to estimate the SHAP values was built using scikit-learn143. The same default fea-

ture filtering as for the OCHEM model was used using the same parameters for RF as described 

above to keep both models as similar as possible. The model was explained by TreeExplainer 

which allowed us to identify important descriptors in terms of structural features and properties. 

6.2.3 Analysis of similarity of ligands 

The RDKit which is an open-source toolkit for chemoinformatics was used83. It was used to load 

and convert the 3D structure files of ligands to 2D molecular graphs facilitating the presentation. 

It was also used to perform fragment analysis based on Functional-Class Fingerprints (FCFP)144. 

FCFP4 (radius = 2) was used to calculate the similarity of molecules based on the Tanimoto co-

efficient145. Tanimoto (SAB) is one of the most popular methods for comparing fingerprints, and 

is also known as the Jaccard coefficient. It is defined as: 

𝑆𝐴𝐵 =  
𝑐

𝑎 + 𝑏 − 𝑐
 

where a and b are the number of bits set in FCFP4 of A and B, respectively, and c is the number 

of bits shared in both. 

6.3 Results 

6.3.1 Model performance 

The PDBbind and NR-DBIND databases were processed using the protocol described in the Da-

ta section. The number of holo structures or apo structures considered for the same protein were 

not limited. Thus, the data covered the same protein binding with different ligands. Both agonists 

and antagonists were used in the analysis. In some cases, a protein had more than one apo struc-

ture resolved, providing diverse conformations during the movement of this protein in the lig-

and-free state. The 474 holo structures in the PDBbind set and 53 holo structures in the NR-

DBIND set had only one matched apo structure. The remaining holo structures had multiple apo 

structures deposited in the PDB database, which were tentatively retrieved (at most ten apo struc-

tures per holo structure) to exactly determine the classification labels of the ligands. Among all 

apo structures that were considered as produced by the intrinsic flexibility of proteins, the one 

with the maximum pocket was used as a reference for comparison with respective holo structures. 
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To some extent, this analysis eliminated the cryptic pocket formed by the conformational selec-

tion. 

Before modelling, both datasets were manually checked to ensure that the apo structure correctly 

matched the corresponding holo structure; the blastp identities for holo-apo pairs were greater 

than 85% for PDBbind and NR-DBIND sets. The OCHEM was used to build classification mod-

els to separate inducers and non-inducers. 

For each protein, a pair with the largest differences in the volumes of apo and holo pockets was 

identified. The number of pairs that had Vholo -Vapo > 0 Å3 was more than twice the number of 

pairs that had a negative change in volume (Figure 6-2). However, a small change in pocket size 

should not be considered as a pocket opening. This could be simply pocket adaptation or pocket 

fluctuation. The minimum volume of the holo pocket identified by SiteMap was 41 Å3 and the 

minimum ligand (pyruvic acid) was 67 Å3 in size. An optimum threshold to separate inducers 

and non-inducers would be of similar size. 

To determine an optimal threshold, different ΔV values from 20 to 100 Å3 at intervals of 10 Å3 

was investigated. The assumption was that if inducers and non-inducers have different features, 

then an optimal threshold should correspond to a model with the highest performance. 

 

Figure 6-2 The distribution of two classes in the PDBbind set (ΔV = 0 Å3) 

After analysing the performance of machine learning methods and descriptors available in 

OCHEM, random forest (RF)124 combined with ALogPS129 and OEstate127 (AO) descriptors on 

average provided models with higher performances compared to other analysed methods and 

descriptors. The highest average AUC value for both sets was obtained with a threshold of 60 Å3 

(Table 6-1). For this threshold 132 and 93 ligands were classified as inducers for the PDBbind 

and NR-DBIND sets, respectively. The binding of NR ligands usually triggered large move-

ments of NR, and thus, most of the ligands binding these proteins were likely to be inducers. 

Therefore, the change in the threshold practically did not change the number of inducers and 

non-inducers for this set. For the training set, the selection of the threshold strongly affected the 

ratios of induces and non-inducers. 
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There are 95 types of proteins in the training set. The model was trained with the diverse proteins 

and was tested on the external validation set exclusively containing nuclear receptors. The model 

had a lower AUC accuracy for the test set as compared to that for the training one. Still the dif-

ference in the performances was not large (AUC 0.71 vs AUC 0.65). 

 

Table 6-1 Accuracy of classification models when using different thresholds 

Threshold 

(ΔV, Å3) 
No. of  

inducers 
No. of  

non-inducers 

Training set External validation set 

AUC 
Balanced 

Accuracy 
Accuracy AUC 

Balanced 

Accuracy 
Accuracy 

0 759 (117)* 317 (18)* 0.61 68 72 0.56 56 81 

20 498 (112) 578 (23) 0.67 69 69 0.51 51 76 

30 405 (110) 671 (25) 0.69 73 75 0.59 59 78 

40 356 (105) 720 (30) 0.68 73 76 0.54 54 67 

50 319 (103) 757 (32) 0.7 74 78 0.58 58 75 

60 293 (100) 783 (35) 0.71 76 80 0.65 65 80 

70 251 (97) 825 (38) 0.73 77 81 0.60 60 73 

80 216 (93) 860 (42) 0.68 75 81 0.67 67 79 

90 185 (90) 891 (45) 0.64 73 83 0.57 57 64 

100 170 (86) 906 (49) 0.68 77 86 0.60 60 64 

*The number of inducers/non-inducers was determined by the threshold used. Numbers in 

brackets correspond to the validation set. 

6.3.2 Interpretation of models 

Table 6-2 contains the top-20 important descriptors identified by the SHAP algorithm. 

Table 6-2 The most influential descriptors to classify ligands as inducers.a 

Increases Probability of Being Inducers Decreases Probability of Being Inducers 

Descriptor Description Descriptor Description 

SddssS 

 

SdO (sulpho) 

 

ALogPS_logP octanol/water partition coefficient AlogPS_logS solubility in water 

HALOG number of halogen atoms SaaNH 
 

 aCNOS 
the sum of aromatic C, N, O, and S 

atoms  
SsNH2 

 

SaaCH 
 

SeaC3NHaa 
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Se1C3S4ad 

 

S number of sulphur atoms 

SaasC  

 

SdssC 

 

SeaC2C2aa 

 

  

RBONDS number of rotatable bonds   

P number of phosphorus atoms   

SeaC2C3aa  

 

  

MW Molecular weight   

SdO (acid) 

 

  

asee SHAP values calculated for the filtered descriptor in Figure S1 

 

The top-20 AO descriptors were plotted in descending order of their respective importance in the 

model (see Appendix IV). There are several features related to heteroatoms. Sulphonyl (SddssS) 

and Se1C3S4ad had a positive impact, while the sulphones/sulphoxides [SdO (sulpho)] and sul-

phur atoms (S) were not beneficial as inducers. These results indicate that the influence of sul-

phur on the target property might be ambiguous and requires a deeper analysis to determine 

which fragment it participates in. Moreover, three nitrogen-containing substructures showed 

negative impacts, such as aromatic (SaaNH, SeaC3NHaa) and primary (SsNH2) amino groups. 

In addition, the molecular weight (MW), halogen (HALOG), phosphorus (P), and the double-

bonded oxygen of carboxylic acids [SdO (acid)] also contribute to the probability that the ligand 

is an inducer. Interestingly, RBONDS descriptors suggested that sufficient flexibility is neces-

sary for an inducer to adapt itself into a transient pocket, which is consistent with the conclusions 

of Cimermancic et al.107 and Beglov et al.108 

With regard to carbon atoms, descriptors such as SaaCH, SaasC, SeaC2C2aa, SeaC2C3aa, and 

number of aromatic atoms (aCNOS), were derived from aromatic atoms, indicating the im-

portance of aromatic interactions between protein and ligand to the inducer properties of ligands.  

The lipophilicity of molecules (ALogPS_logP) increased the ability of molecules to act as induc-

ers, while their solubility (ALogPS_logS) had the opposite effect. The more hydrophobic a mol-

ecule was, the more likely it was to be an inducer. 
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6.3.3 Analysis of functional groups 

The OCHEM SetCompare tool146–148 uses a hyper-geometric distribution to identify the func-

tional groups that are over-presented in inducers and non-inducers. As shown in Table 6-3, sul-

phonic acid derivatives appeared more often in non-inducers and sulphonamides accounted for 

97% of these derivatives (179 out of 184 ligands). Note that, the primary amine was favourable 

for non-inducers, as indicated by the descriptor SsNH2 in the previous section. Here, inducers 

showed a propensity to have aromatic structures substituted by tertiary amines or halogens. In 

addition, phosphoric and carboxylic acids were over-presented in the inducer cohort. These fea-

tures were consistent with the explanation of the model by SHAP, but also offered some new 

clues that were not shown before. The pyridine and five-membered heterocycles with two het-

eroatoms were two substructures, particularly identified by SetCompare, which could be used as 

building blocks for inducers. 

Table 6-3 Functional groups over-presented in inducers and non-inducers are listed as well 

as the p-value of the respective distribution. 

Functional group 
The ratio in 

 Inducers (%) 

The ratio in  

Non-inducers (%) 
p-value 

Sulphonamides 6.3 23.4 -4.8 × 10-12 

Sulphonic acid derivatives 7.3 24.1 -4.03 × 10-11 

Halogens 44.1 28.7 1.93 × 10-6 

Halogenated benzene 28.1 15.1 1.83 × 10-6 

Aryl halides 36.5 24.3 7.79 × 10-5 

Tertiary mixed amines 11.5 4.5 6.66 × 10-5 

Five-membered heterocycles with two 

heteroatoms 
17.4 9.9 9.45 × 10-4 

Pyridine 11.8 5.6 7.52 × 10-4 

Phosphorus 13.5 6.8 6.28 × 10-4 

Phosphoric acids 10.1 4.3 5.95 × 10-4 

Carboxylic acids 31.6 21.2 3.62× 10-4 

Aromatic halogen 33.3 22.1 1.61 × 10-4 

6.3.4 Fragment analysis on PDBbind set 

Some ligands targeting the identical protein had similar structures (similarity score ≥ 0.9, calcu-

lated on FCFP4) but had different effects on cryptic pocket opening, as shown in Figure 6-3, 

where the structures were grouped according to the effect type.  

In group A, inducers preferred to have a long fatty acid chain with unsaturated bonds. A short 

aliphatic chain or a halogen atom turned non-inducers into inducers, as shown in groups B, C, 

and D. In group D, the ligand in the crystal structure with PDB ID of 4agm149 had additional 

tertiary amine and closed one of the tertiary amines forming a piperidine as compared to the sim-

ilar non-inducer structure of PDB ID of 4agl149. This emphasises the importance of large hydro-
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phobicity and a large number of tertiary amines for inducers. The addition of singly-bonded oxy-

gen helped to obtain inducers in groups E and F.  

In group F, replacement of the benzene ring by a pyrazole turned a non-inducer to an inducer, 

which was consistent with the SetCompare result, indicating that five-membered heterocycles 

with two heteroatoms were over-presented in the inducers. In group G, the difference between 

inducers and the non-inducer was the amide substructure substituted by alkyl chains or a furan 

ring. In group H, the inducer in the crystal structure with PDB ID of 5fnr150 became a non-

inducer with the addition of a sulphonamido group, which may suggest that sulphur atoms can 

decrease the propensity of a chemical structure to act as an inducer. In the crystal structure with 

PDB ID of 5fnt150, the addition of another benzene ring did not influence the property of the 

structure to act as an inducer.  

These examples illustrate that tiny changes in chemical structures can change their ability to act 

as inducers or non-inducers. They still follow the general tendencies identified using the SHAP 

and SetCompare algorithms.  

 

Figure 6-3 Similar structures but which are identified as inducer and non-inducers in the 

PDBbind set. Green: inducer; red: non-inducer. The ΔV represents the volume difference be-

tween the apo and holo pockets. The unit of △V is Å3. 
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6.3.5 Analysis of Mdmx inhibitors 

In the previous section of this dissertation, a series of Mdmx inhibitors were designed, i.e., NC 

and NT series compounds. Together with LG series fragments, all were studied using MD simu-

lations. As seen from Figure 6-4, the increase in the number of rotatable bonds, molecular weight 

(MW) and aromatic atoms increased the probability of the ligands to bind the open state of 

Mdmx during the simulation time. Indeed, ligands LG5 and LG6 only partially bonded the 

Mdmx open state while NC4, which combined both ligands and thus had increased rotatable 

bonds and MW as well as aromatic atoms, continuously did it (Figure 6-4A). Figure 6-4B 

showed three ligands with common core structure consisting of single phenyl, indole and pyra-

zole rings. Compared to WK236 and NT3, WK2986 had more rotatable bonds and MW. The ad-

dition of the tertiary amine sub-structure also promoted the inducing property of WK298 while 

WK23 and NT3 were both non-inducers. The changes of the inducing propensity of ligands were 

thus consistent with the analysis of the descriptors and functional groups described in sections 

6.3.2 and 6.3.3. 
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Figure 6-4 MD simulations and structural features of Mdmx inhibitors. WK23 (non-inducer) 

and WK298 (inducer) are known Mdmx inhibitors while the others are computationally pre-

dicted structures. The open conformation of Mdmx corresponds to Tyr99 Χ1 around 180° 

while the closed one has Χ1 around 300°. The dynamic changes of Χ1 in Mdmx complexes 

with the analysed ligands show differences in binding properties of inducers (NC4 and 

WK298) as compared to the other analysed ligands. NC4 and WK298 have more data points 

of Χ1 around 180°, i.e. more open states; the others have more data points of Χ1 around 300°, 

i.e. more closed states. 

 

In addition, the known Mdmx inhibitors were retrieved from the ChEMBL database and the 

model was used to analyse these latest data. The search conditions were set as follows: i) Target: 

Mdmx, ii) Type: small molecule, iii) molecular weight < 700, iv) having exact experimental in-

hibitory activities (“=”). This set of molecules (n = 336) was unique to the training set, and all of 

them were located in the applicability domain of the Inducer model. The prediction results 

showed that the majority of known Mdmx inhibitors (n = 324) were classified as inducers, and 

only 19 of them were classified as non-inducers. This indicated that the classical paradigm to 

design these inhibitors targeted the ‘open’ state of Mdmx. 

Mdmx has a transient pocket which is an extension of the Leu26 sub-pocket via the opening of 

Tyr99. The high flexibility of helices α2 and α2’ was observed in the MD trajectories (see Chap-

ters 3 and 4). The characteristics of the corresponding receptor also affected the classification of 

inducers or non-inducers despite the molecular properties of the ligand itself. This, to some ex-

tent, explained from another perspective why most of the known Mdmx inhibitors were inducer-

like due to the highly flexible Mdmx.  
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6.4 Summary and outlook 

In this part of the work, the features of ligands that are relevant to the opening of cryptic pockets 

were investigated, which could be important in designing Mdmx inhibitor binding in the ‘open’ 

conformation. An automated program was developed to establish a holo-apo pair dataset, which 

accurately matched apo proteins for each holo (bound with a small-molecule ligand) protein. The 

training set comprised both the PDBbind and CryptoSite databases. NR-DBIND was used as the 

external validation set. The volume change between the holo and apo pockets was used as a met-

ric to identify whether the ligand was an inducer. Classification models were developed by 

OCHEM and the optimum threshold to separate both types of molecules was determined as 60 

Å3. The analysis of the developed machine learning model indicated that higher hydrophobicity 

and aromaticity increased the propensity of ligands to act as inducers. Inducers also tended to 

have tertiary amines, rather than primary or secondary amines. The impact of sulphur groups was 

ambiguous, and the analysis suggested that sulphones/sulphoxides substituents decreased the 

probability of molecules being inducers. The presence of phosphorus or halogen atoms increases 

the probability of molecules to be inducers, as identified by the SHAP and SetCompare methods. 

The five-membered heterocycles with two heteroatoms and pyridine were overrepresented in the 

class of inducers as identified by the SetCompare analysis. Pairs of similar molecules with oppo-

site properties were also analysed and it was shown that small changes in the structures of mole-

cules could result in a change in the class of compounds. We validated our findings about the 

inducing properties on the Mdmx inhibitors. Based on the results from MD simulations, Mdmx 

inhibitors that induced the opening of the transient pocket possess the same features as summa-

rized from the previous analysis of the inducers. Last but not the least, the model was applied to 

a set of known Mdmx inhibitors collected from the ChEMBL database. Most of the Mdmx inhib-

itors available in the literature were classified as inducers, thus indicating that the classical para-

digm to design these inhibitors was targeting the ‘open’ state. 

Lipinski’s rule of five was implemented by Schrodinger software for analysing inducers. Majori-

ty of inducers (64%) were in agreement with the rules. A deep learning classification model151 

was used to evaluate the aggregation propensity of the analysed ligands. As a result, 92.7% of 

our dataset were predicted as non-aggregators and thus aggregation propensity did not affect the 

conclusion of this work.  

The proposed approach is a general one and can be adopted to analyse, e.g., peptide ligands, 

identify inducers of enzymes and/or signaling proteins involved in extensive protein/protein in-

teraction networks. Since this is a statistical approach a sufficiently large dataset should be col-

lected from the literature to develop these models. Depending on the target class of compounds 

additional descriptors could be also considered, e.g. encoding the conformational information of 

peptide ligands. 

This study revealed the structural features that are important for molecules to induce cryptic sites 

in a potential protein target, and the developed model can be used to provide such an analysis of 

potential ligands.  
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The calculated models do not have high accuracy, which can be attributed to the difficulty of the 

analysed property. Indeed, if the molecule has features that make it an inducer, it may not always 

induce a new pocket if there is already a suitable pocket for binding. Moreover, the protein 

should also have structural features that can enable cryptic pocket opening.  

The Inducer classification model has the potential to be improved. The use of MD results as a 

filter to validate model predictions and/or their use as an additional input to the model could in-

crease its accuracy. Furthermore, MD analysis can also improve the measurement of pocket vol-

ume. While MD simulations require a lot of computational time, a faster method could be to use 

the flexibility of the protein, especially of the binding site. Such an extension of the model 

should make it sensitive to the type of protein analysed. Still, the analysis provided and the fea-

tures identified could be important for researchers in the design of new molecules which can 

open cryptic pockets. This topic is worth being further investigated together with wet-lab work in 

the future. 
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7 Discussion 

7.1 Difference in binding modes of ligands with Mdmx and 

Mdm2 

Previous studies have suggested that the open state of Tyr100 in Mdm2 leads to the high activity 

and selectivity of inhibitors against Mdm2. Therefore, the opening Tyr99 of Mdmx was consid-

ered a promising strategy and the side chain torsion angle χ1 of Tyr99 was frequently used as an 

indicator to check whether it was open or not.  

This work helped to understand the differences between the Mdmx and Mdm2 pockets in nature. 

As concluded in Chapter 3, the variant amino acids Met53/Pro95 and Leu54/His96 which were 

present in the pockets of Mdmx and Mdm2, respectively, could be important for selective target-

ing of Mdmx (Figure 7-1).  

First, proline was undoubtedly a special amino acid because it was the only one that was con-

nected to the main chain twice by forming a ring, which prevented itself from adopting a normal 

helical conformation. The hydrophobicity of proline may underlie its propensity to interact with 

aromatic structures. It is worth noting that Pro95 was the first residue of helix α2’ in the crystal 

structure of the Mdmx-p53 complex (PDB ID: 3dab) but lost its helical conformation in the crys-

tal structure of the Mdmx-WK298 complex (PDB ID: 3lbj). At the equivalent position, His96 in 

Mdm2 was the most common amino acid in the protein binding site, which was polar and free to 

be charged or neutral. Histidine also exhibits aromaticity. Therefore, this site of Mdm2 could be 

more active in forming interactions with ligands compared to the Pro95 of Mdmx. According to 

the crystal analysis in Chapter 3, His96 significantly contributed to the interaction with Mdm2 

inhibitors. 

Second, the particularity of methionine was that its sulphur atom could mediate the Met-aromatic 

interaction49. The aromatic residues could be tyrosine, tryptophan, and phenylalanine. In the 

Mdmx-p53 complex, Met53 interacted with Trp23 of p53 and Tyr99 of Mdmx, together with 

the hydrogen bonds formed between Tyr99 and Pro27, restricting Tyr99 in the closed confor-

mation. This might determine the closed conformation as the intrinsic conformation of Mdmx. In 

the Mdmx-WK298 complex, the 4-chlorobenzyl ring participated in the Met-aromatic interaction; 

however, Tyr99 was farther to Met53 and the Pro27 sub-pocket was unfilled, which might de-

crease the binding affinity to Mdmx. This implied that WK298 induced the opening of Tyr99 for 

a longer time, possibly due to the reduction of the Met-aromatic interaction between Met53 and 

Tyr99. Moreover, the Met-aromatic interaction also plays an important role in the Mdm2 pocket. 

Met50 (Val49 in Mdmx) interacted with Tyr100 (Tyr99 in Mdmx), forming an open orientation. 

In the Mdm2-YH300 complex (PDB ID: 4mdn), the 4-chlorobenzyl of YH300 filled the Pro27 

sub-pocket and blocked the Met50-Tyr100 interaction, but also possibly took part in this Met-

aromatic interaction to some extent.  
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Based on the above considerations, it was suggested that the open state was intrinsic for Mdm2 

and the closed state was native to Mdmx. In addition to the side chain torsion angle χ1 of Tyr99 

(Tyr100 in Mdm2), the distance between the sulphur atom of methionine and the ring of tyrosine 

could be used to evaluate the strength of the Met-aromatic interaction that mattered to the ligands 

binding with Mdmx/Mdm2. The Met53-Tyr99-ligand interaction is crucial for the post-analysis 

of the Mdmx-ligand complex. 

From our point of view, the correlation between inhibitory activity and the transient state of 

Mdmx remains unclear. Stable binding with Mdmx should maintain the intrinsic state of the re-

ceptor (‘closed’), which was proposed as an alternative strategy to design Mdmx inhibitors in 

this thesis. This assumption could be argued in the future with more experimental data targeting 

the ‘closed’ state of Mdmx. 

 

Figure 7-1 The key residues (stick) of Mdm2 (left, PDB ID: 1ycr) and Mdmx (right, PDB ID: 

3dab); yellow surface: methionine, grey surface: tyrosine, red surface: histidine, green sur-

face: proline. 

7.2 Explanation of inactivity of synthesised ligands 

In Chapter 4, several ligands were designed that were later found to be inactive during experi-

mental testing in Mdm2 assays. As explained earlier, LG series were active fragments against 

Mdmx identified by NMR; NC series compounds were optimised from LG fragments; SN series 

were derivatives of two promising NC compounds (NC8 and NC9). 

There are several possible explanations for why the SN1–4 compounds did not show activity in 

the wet experiments. 
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First, SN1–4 did not have identical structures as initially designed, especially SN1 and 2 lack of 

the indole-like substructure which was necessary for occupying the Trp23 sub-pocket as well as 

interacting with the Met53 of Mdmx. 

Second, the duration of MD simulations was too short for our molecular system according to the 

subsequent longer trajectories, as explained in Chapter 4. At the beginning of the work, there 

were limited computational resources without GPU acceleration, so a 10-ns trajectory was used 

to determine the synthesis template. In the very first 10ns of the entire trajectories (Figure 4-16), 

all of them including the templates (NC8 and 9 compounds) entered into a stable binding state at 

the last moment. However, the binding conformation changed significantly during the rest of 

each trajectory. For instance, in the Mdmx-NC9 complex, the RMSD of NC9 fluctuated 

throughout and Mdmx significantly deviated from the initial stable binding conformation in the 

last half of the trajectory, illustrating that it was not a qualified template for carrying out the syn-

thesis. 

Third, the target protein was Mdm2 in the bioactivity test because, as stated by the scientists per-

forming the assay, “if a molecule can bind with Mdmx, it will probably bind tightly with Mdm2” 

based on their practical experience. Nevertheless, this information was not known at the phase of 

molecular design. Therefore, the ligands were not optimised against Mdm2, which could be one 

of the reasons for these negative results. In the future, it would be better to start the simulation by 

targeting Mdm2 at first and then targeting Mdmx. 

Fourth, only the RMSD data taken into account were insufficient when making decisions for the 

synthesis. Given the distance between Met53 and Tyr99 as an indicator for checking the binding 

situation, NC8 and NC9 would not have been selected as templates. As noted later, nearly half of 

their conformations had a distance of more than 6 Å (Figure 4-18); thus, they lost the Met-

aromatic interactions, or these interactions were too weak, as discussed by Weber et al49. Unfor-

tunately, this study was not available during this phase of the project. 

Taken together, a reliable MD analysis should include the following: 1) RMSD of the ligand and 

the protein throughout the whole trajectory referring to the initial structure, which is used to 

check the stability of the binding; 2) the significant and specific interaction measured by distance,  

angle, etc., which is used to check the specificity of the binding. However, the priority is to en-

sure that the ligand does not come out of the pocket, which is difficult to know exactly from 

RMSD plots (e.g. LG1 and SN4 reside far away from the pocket; Figure 4-10 and Figure 4-16). 

Therefore, one should check the last frames of the trajectory to fulfil this requirement prior to 

any data analysis. It is also suggested that using cluster analysis of conformations to identify the 

meta-stable states, transition states, and dominant states. In addition, the estimation of the bind-

ing free energy is a good reference to determine the affinity between the protein and ligand be-

fore carrying out wet experiments.  

In addition to the general analyses mentioned above, MD simulations and post-analysis should 

be set up in a case by case basis. With the hope of finding the ligands stably and selectively bind-

ing with the target protein as well as looking into the binding mode at the atom level, an exclu-

sive analytic plan for the available data by monitoring a specific distance, angle, torsion, and H-

bond through the whole trajectory will help to reduce the error probability in the wet experiment. 
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8 Conclusion 

With the emergence of many new methods and rapid advances in computer technology, CADD 

has become an important tool for pharmaceutical companies and academia. Faster and cheaper 

computers and related hardware and software have made it possible to simulate complex biologi-

cal systems at the atomic scale, which has greatly facilitated the development of CADD. The 

drugs designed by CADD, such as zanamivir and imatinib, have been marketed successfully. 

Mdmx is a promising anticancer target. The structural particularity of Mdmx causes difficulties 

in the design of inhibitors against Mdmx. Although several candidates targeting Mdm2 have 

entered the clinical stage, there is no such progress exclusively for Mdmx. This inspired us to 

seek new insights into the development of Mdmx inhibitors using advanced computational 

methods and exhaustively investigate all available data, including structural and activity infor-

mation.  

Starting from the variant residues in Mdmx and Mdm2 and a comprehensive survey of relevant 

crystal structures, methionine was found to be very important for determining the different 

shapes of binding pockets (Chapter 3). The Met-aromatic interaction restricted the rotation of 

Tyr99 in Mdmx (Tyr100 in Mdm2), leading to transient states in both proteins. The strength of 

the Met-Tyr-Ligand interaction was evaluated based on the distance between them. The ‘open’ 

state of tyrosine designated by the side chain torsion angle χ1 made the main pocket larger than 

the ‘closed’ state of tyrosine. The enlarged part corresponded to a cryptic pocket which was 

reachable only when the tyrosine was in the ‘open’ state. Therefore, it was concluded that 

Tyr100 of Mdm2 was open, while Tyr99 of Mdmx was closed in the intrinsic state. However, 

that Mdmx was also able to bind ligands in the ‘open’ state could not be completely excluded; 

thus, both states were considered later in the thesis. 

Optimised from known active compounds, new Mdmx inhibitors were developed to mimic the 

binding mode of p53 with Mdmx using ligand-based drug design methods (Chapter 4). One of 

the strategies was to optimise the structure of the known inhibitor WK298, and the other was to 

connect active fragments to make molecules fully occupy the binding pocket. Their binding 

modes were obtained by MD simulations and evaluated by RMSD, dynamic change of Tyr99 χ1, 

and distance between Met53 and Tyr99. By visually inspecting conformations, new molecules 

were either binding separately with ‘open’ and ‘closed’ states of Mdmx, or transforming between 

the two states in a dynamic way through the whole simulation. Since experimental testing did not 

confirm the theoretical prediction of the activity of these molecules, a critical analysis of the 

used protocol pointed out several shortcomings that should be avoided in the future for similar 

studies.  

A machine learning model named Generator (Chapter 5) was developed to efficiently create 

new molecules with predefined properties. Combined with a QSAR model of Mdmx inhibitors 

as well as models to predict physicochemical properties, the Generator generated potential 

Mdmx inhibitors with completely new structures, but also re-discovered existing molecules that 
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were available to be tested, circumventing the need for the synthesis. The promising molecules 

had better predicted pIC50 than WK298 and constantly kept the ‘closed’ state of Mdmx. In con-

trast, WK298 induced Mdmx to present half ‘open’ and half ‘closed’ conformations. This sug-

gests that the ‘closed’ state should not be neglected for the R&D of Mdmx inhibitors. The overall 

approach is entirely artificial intelligence driven until the final inspection of the binding poses 

proved its ability, at least virtually, to design new compounds with machine learning methods 

and validate them with traditional molecular dynamics simulations in an automated manner. The 

study demonstrated that the Generator equipped with appropriate constraints could rationally 

navigate in the chemical space and generate promising inhibitors. 

In the last part of this PhD research project, a general classification model based on the crystal 

data deposited in the PDB database was developed to learn the common features of molecules 

that could induce the opening of cryptic pockets (Chapter 6). An automated program was uti-

lised to establish a holo-apo pair dataset, which accurately matched apo proteins for each holo 

protein. The volume changes between apo and holo proteins were used to differentiate the chem-

ical features in inducers and non-inducers. Based on the holo-apo pair dataset, classification 

models were built to determine the optimum threshold. The model analysis suggested that induc-

ers were more hydrophobic and aromatic, as well as an over-representation of phosphorus and 

halogen atoms. Fragment analysis showed that small changes in the structure of molecules could 

strongly affect the potential to induce a cryptic pocket. The model was used to classify a set of 

small-molecule Mdmx inhibitors collected from the ChEMBL database that were not included in 

the training set (n = 336). Interestingly, most of Mdmx inhibitors available in the literature (n = 

324) were classified as inducers thus indicating the classical paradigm to design these inhibitors 

was targeting the ‘open’ state of Mdmx but our analysis suggested that ‘closed’ state should be 

also considered. The provided analysis and identified features of the Inducer classification model 

can be used to design new molecules which could open cryptic pockets. 

In the conclusion of the thesis, new perspectives on the structure-based approaches for design-

ing Mdmx inhibitors were summarised and the importance to consider also the ‘closed’ state of 

Mdmx was pinpointed. Through in-depth computational analyses, new insights into crucial inter-

actions that caused the distinct binding modes of small-molecule ligands with Mdm2/Mdmx 

were uncovered. The classical and common strategy that either Mdm2 or Mdmx ligand should 

simultaneously occupy the three sub-pockets (Phe19, Trp23, and Leu26) is still inevitable for 

developing potent Mdm2/Mdmx inhibitors. The study produced putative ligands either directly 

optimised from known active compounds or de novo created by the Generator model, which 

would be promising for testing their inhibitory activities in the future. The use of the Inducer 

model would help discover novel ligands that precisely target the transient states. Moreover, both 

Generator and Inducer models are not limited to Mdmx, but can also be used for other drug tar-

gets. 
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Appendix I 

 
Figure S 1 The RMSDs (backbone atoms) of Mdmx complexes with NC (1 - 6) compounds as a 

function of time were plotted through the 100-ns trajectories, each of which was calculated 

with the first frame as the reference. 
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Figure S 2 The RMSDs (backbone atoms) of Mdmx complexes with NC (7 - 9) compounds as a 

function of time were plotted through the 100-ns trajectories, each of which was calculated 

with the first frame as the reference. 
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Figure S 3 The dynamic change of Tyr99 χ1 in Mdmx complexes with NC (1 - 6) compounds 

through the 100-ns trajectories. 
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Figure S 4 The dynamic change of Tyr99 χ1 in Mdmx complexes with NC (7 - 9) compounds 

through the 100-ns trajectories. 
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Figure S 5 The distribution of distance between Tyr99 and Met53 in Mdmx complexes with NC 

(1 - 6) compounds through the 100-ns trajectories. 
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Figure S 6 The distribution of distance between Tyr99 and Met53 in Mdmx complexes with NC 

(7 - 9) compounds through the 100-ns trajectories. 
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Appendix II 

Evaluation of inhibitory activity of SN compounds towards Mdm2 

 (Cited from the collaborator: Beata Łabuzek) 

1. Determination of dissociation constant of labelled peptide P2 and Mdm2 

New protein stock (constructs: Mdm2 1-118) was thawed and the concentration was measured 

using Bradford method. Dissociation constant (Kd) of labelled peptide P2 – Mdm2 was deter-

mined for further evaluation of optimal protein concentration for inhibition constant determina-

tion. Peptide P2 was labelled with carboxyfluorescein and had the following sequence: 

LTFEHYWAQLTS. Kd was determined for each thawed new protein stock using fluorescence 

polarization (FP) assay. 

FP assay was performed in duplicates on 96-well microplates (Corning NBS 3991) in final vol-

ume 100 μl (70 μl protein + 5 μl DMSO + 25 μl P2). Protein dilutions were made in FP buffer 

(10 mM Tris-HCL pH 8.0, 1 mM EDTA, 50 mM NaCl) to have to concentrations appropriate for 

Kd determination: 1,07 μM for Mdm2. First column of the Corning NBS 3991 microplate was 

filled with protein, rest of the columns were filled with FP buffer. Next, serial dilutions of the 

protein (range from 750 to 0,012 nM final concentration on the plate for Mdm2) were prepared 

in columns 2 -11, last column (12) contained only FP buffer. The highest protein concentration 

in first column (0,75 μM for Mdm2) corresponded to FP values of the peptide saturated with 

protein; whereas the FP buffer with no protein corresponded to FP values of the peptide alone. 

To all columns DMSO (Bioshop DMS555.500) previously distributed on Greiner PP 651201 

microwell plate was added to protein dilutions on Corning NBS 3991 plate. After mixing and 15 

min incubation at room temperature, 40 nM P2 peptide solution prepared in 15 ml Sarstedt Fal-

con and was added to every column (1-12) so that the final concentration of P2 peptide was 10 

nM. FP measurements were made using BioTek Synergy H1 microplate reader. Kd was deter-

mined by fitting curve of Equation S1. to the experimental data. 

Equation S1. 

𝑦 =  𝑦0  
𝑎𝑥

𝐾𝑑 + 𝑥
 

where y0: FPmin 

a: FPmax – FPmin 

x: protein concentration 

y: FP value measured at the desired concentration. 

2. Preparation of stock solutions 

The SN compounds were dissolved in DMSO (Sigma Aldrich 175943-10G 08828EJ) to obtain 

50 mM concentration. Provided compounds were fully dissolved at room temperature at 50 mM 

and gave a transparent (SN1024) or slightly yellowish solutions (SN1025, SN1020, SN1021). 

3. Determination of the inhibition constants of SN compounds 
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Optimal protein concentration for the measurement (f0=0.8) was calculated based on the deter-

mined Kd value (see point 1). FP assay was made using 96-well microplates (Corning NBS 3991) 

and final volumes of 100 μl (70 μl protein + 5 μl inhibitor + 25 μl P2). 

Serial dilutions in DMSO (Bioshop DMS555.500) of the tested compounds were prepared in 

duplicates on 96-well Greiner 651201 microplates (wells A2-H12). The dilutions ranged from 50 

μM to 0.05 μM (final concentrations on the plate). Wells A1-F1 were filled with DMSO to ob-

tain the Pmax, Pmin and Pf0 values. Wells G1-H1 were controls filled with Nutlin 3 (Cayman 

Chemicals; control; final concentration 25 μM). Protein at the optimal concentration was pre-

pared in 15 ml Sarstedt Falcon and added into A2-H12 and E1- H1 wells on Corning NBS 3991 

96-well microplates. Wells A1-B1 contained protein at final concentrations of 0.75 μM for 

Mdm2 in order to determine Pmax, whereas wells C1-D1- FP buffer only (to determine Pmin). 

Next, 5 μl of each inhibitor dilution was transferred from Greiner 651201 to Corning NBS plate, 

mixed and incubated for 15 minutes at room temperature. After incubation, 40 nM P2 peptide 

solution was added (to final 10 nM concentration of the P2) and FP measurements were made 

using BioTek Synergy H1 microplate reader. Inhibition constants (Ki) were determined by fitting 

curves into experimental values. 

4. Results 

The results of the assay of inhibitory activity of tested compound are presented in Table S 1. 

5. Summary 

Inhibitory activity of SN compounds against Mdm2 was evaluated using FP assay. The com-

pounds were not active towards Mdm2. 
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Table S 1 Results of the evaluation of inhibitory activity of SN compounds towards Mdm2. 

 

No Compound 
Obtained solubility 

[mM] 

Ki  Mdm2 

[µM] 

1 

 

 

50 not active 

2 

 

 

 

50 not active 

2 

 

 

 

50 not active 

4 

 

 

 

50 not active 
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1 Generator

1.1 Temperature adjustment

The output of the Generator is a probability distribution of the next symbol over all vocabulary. Technically, this is the
result of the softmax activation function.

yi =
ezi∑
ezi

. (1)

Here, zi stands for logits, yi is a normalized probability. To adjust this probability to a different temperature T , one
needs to evaluate:

pi =
e

ln(yi)

T∑
e

ln(yi)

T

. (2)

After logarithm of the left and the right parts of the Eq. 1, and then divinding by T , we get:

ln(yi)

T
=

zi
T

− ln(
∑

ezi)

T
(3)

Then after softmax using ln(yi)
T as logits:

e

ln(yi)

T =
e

zi
T

1

T

∑
ezi

(4)
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pi =
e

ln(yi)

T∑
e

ln(yi)

T

=
e

zi
T

1

T

∑
ezi

∑ e

zi
T

1

T

∑
ezi

=
e

zi
T∑
e

zi
T

. (5)

1.2 Dependence of the valid SMILES on the temperature

At higher temperatures the probability landscape is smoother and the model is getting more erroneous in sampling
SMILES. The fig. 1 shows this dependency. At 1.45 the model produces 34% of garbage.
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Figure 1: Dependence of the valid SMILES on the temperature.

1.3 Learning curves

Fig. 2 shows learning curves obtained during retraining of the Generator. Dash lines (1-6 cycle) have decrease of the
validation loss during first epochs of training, whereas solid lines (8-10 cycle) show overfitting.
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Figure 2: Learning curves. The numbers in circles correspond to cycle of the generation procedure.
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2 Molecular Dynamics validation

For MD, the parameters and environment were set to run MD simulations work well on the WK298-Mdmx complex.
We were able to get stable trajectories by running 10ns MD simulations on this complex, according to the RMSD (as
shown in the table and the figure below).

Table 1: RMSD for trajectories of WK298-Mdmx

std avg min max

1 0.462 1.798 0.681 3.430
2 0.664 3.132 0.768 5.332
3 0.317 1.505 0.521 2.918
4 0.510 3.422 0.750 4.748
5 0.391 1.811 0.495 3.575
6 0.685 4.693 0.731 7.137
7 0.570 2.086 0.610 3.974
8 0.467 3.343 0.737 4.263
9 2.758 5.966 0.735 11.059
10 0.414 1.757 0.516 3.106
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We also performed RMSD analysis based on the center of mass of the ligands.

Table 2: RMSD for trajectories of WK298-Mdmx (center of mass)

std avg min max

1 0.431 1.957 0.829 3.087
2 0.455 2.865 0.821 4.356
3 0.364 1.990 0.613 3.176
4 0.364 2.999 0.610 4.340
5 0.283 1.644 0.553 2.822
6 0.556 4.516 0.669 5.883
7 0.394 1.792 0.597 3.188
8 0.344 2.687 0.757 3.260
9 1.624 4.243 0.712 7.344

10 0.344 1.628 0.666 2.750

Table 3: RMSD for the most promising ligands (center of mass)

Compound std avg min max

WK298 0.364 1.990 0.613 3.176
3021 0.353 4.132 0.499 5.071
92 0.338 1.387 0.433 2.644
100 0.547 1.473 0.383 4.220
34 0.746 2.680 0.722 4.817
39 0.832 4.292 0.593 6.504

3 Putative ligands

3.1 Top-500 compounds from the Run-1

For each compound in the following tables we present at least two of the values: IC50 values (I), VINA scores (V),
Solubility (log(mol/L)) (S), and CID (ChEMBL ID).
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201 V= -6.9, I =-7.08 202 V= -6.4, I =-7.45 203 V= -6.2, I =-7.6 204 V= -6.3, I =-7.52
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221 V= -6, I =-7.72 222 V= -6.5, I =-7.35 223 V= -5.8, I =-7.87 224 V= -5.8, I =-7.87
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233 V= -6.7, I =-7.18 234 V= -6.1, I =-7.62 235 V= -6.8, I =-7.1 236 V= -6.2, I =-7.55,
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241 V= -7.3, I =-6.72 242 V= -6.3, I =-7.46 243 V= -6.3, I =-7.46 244 V= -6, I =-7.68,
CID73935588
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261 V= -6.1, I =-7.57 262 V= -6.9, I =-6.96 263 V= -7.2, I =-6.74 264 V= -6.1, I =-7.56,
CID941863
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281 V= -6.1, I =-7.52 282 V= -6.6, I =-7.15 283 V= -6.9, I =-6.92 284 V= -6.7, I =-7.07

Appendix III: Supporting information of the Generator (Chapter 5)

120

https://pubchem.ncbi.nlm.nih.gov/compound/29861853
https://pubchem.ncbi.nlm.nih.gov/compound/6990864


Cl

N
H

O
O

O

HN

H3C

O

HO

NH

HN

_
O

OHO

O

HN
N

NH

SN
H

N

F F

O

O
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301 V= -6.3, I =-7.33 302 V= -6.6, I =-7.1 303 V= -6.3, I =-7.33 304 V= -5.8, I =-7.7
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321 V= -6.4, I =-7.22 322 V= -5.9, I =-7.59 323 V= -6.2, I =-7.37 324 V= -6.6, I =-7.07
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341 V= -6.6, I =-7.04 342 V= -6.2, I =-7.34 343 V= -6.6, I =-7.04 344 V= -7, I =-6.74
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361 V= -6.3, I =-7.24 362 V= -6.6, I =-7.02 363 V= -5.7, I =-7.69 364 V= -6.5, I =-7.09
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381 V= -7.2, I =-6.54 382 V= -7, I =-6.68 383 V= -8.1, I =-5.86 384 V= -6.8, I =-6.83
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401 V= -6.8, I =-6.81 402 V= -6.1, I =-7.33 403 V= -7.2, I =-6.5 404 V= -6.3, I =-7.18
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405 V= -6.2, I =-7.25,
CID73919135 406 V= -5.5, I =-7.78 407 V= -6.8, I =-6.8 408 V= -6.6, I =-6.95
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417 V= -6.3, I =-7.16 418 V= -5.9, I =-7.46 419 V= -5.9, I =-7.46 420 V= -6.4, I =-7.08
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421 V= -6.3, I =-7.15 422 V= -6.2, I =-7.23 423 V= -6.4, I =-7.08 424 V= -6.8, I =-6.78
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437 V= -7.2, I =-6.45 438 V= -5.7, I =-7.58 439 V= -6.7, I =-6.83 440 V= -7.6, I =-6.15
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441 V= -6.5, I =-6.98 442 V= -6.1, I =-7.27 443 V= -6.2, I =-7.2 444 V= -5.7, I =-7.57
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445 V= -6.7, I =-6.82,
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457 V= -6.8, I =-6.74,
CID16066547 458 V= -6.5, I =-6.96 459 V= -6.4, I =-7.03 460 V= -6, I =-7.33
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461 V= -5.8, I =-7.48 462 V= -6.3, I =-7.1 463 V= -5.8, I =-7.47 464 V= -6.4, I =-7.02
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465 V= -6.5, I =-6.94 466 V= -6.9, I =-6.64 467 V= -5.9, I =-7.39,
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481 V= -6.8, I =-6.7 482 V= -6.1, I =-7.23,
CID15687991 483 V= -5.2, I =-7.9 484 V= -5.6, I =-7.6
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497 V= -5.9, I =-7.35 498 V= -5.9, I =-7.35 499 V= -6.8, I =-6.68 500 V= -6.2, I =-7.13
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3.2 Top-500 compounds from the Run-2
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9 V= -6.4, I =-8.11, S =-
2.51

10 V= -6.2, I =-7.72, S =-
1.81

11 V= -6.4, I =-7.58, S =-
1.82

12 V= -5.9, I =-8.19, S =-
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13 V= -6.4, I =-7.9, S =-
2.29

14 V= -5.9, I =-7.59, S =-
1.37

15 V= -6.2, I =-7.43, S =-
1.49

16 V= -5.7, I =-7.31, S =-
0.83
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33 V= -6.6, I =-7.99, S =-
2.74

34 V= -6.0, I =-7.66, S =-
1.73

35 V= -5.8, I =-8.31, S =-
2.4

36 V= -6.2, I =-7.94, S =-
2.32
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49 V= -5.7, I =-8.28, S =-
2.32

50 V= -6.4, I =-7.6, S =-
2.12

51 V= -5.5, I =-8.16, S =-
1.98

52 V= -6.2, I =-7.43, S =-
1.71

Appendix III: Supporting information of the Generator (Chapter 5)

134

https://pubchem.ncbi.nlm.nih.gov/compound/7019906


OH

O

O

HN

H2N

CH3

O

O NOH

O

H3C

O

N
H

HO

O

HO

O

N
H

H3C

O

O

OH

CH3

O

O

N
H

O

OH

53 V= -6.4, I =-7.55, S =-
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2.5

58 V= -5.7, I =-8.24, S =-
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1.47

60 V= -6.2, I =-7.16, S =-
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69 V= -5.7, I =-7.2, S =-
0.94

70 V= -5.7, I =-7.92, S =-
1.91

71 V= -6.2, I =-7.34, S =-
1.63

72 V= -6.2, I =-7.41, S =-
1.73
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2.26
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75 V= -6.8, I =-7.47, S =-
2.41

76 V= -5.5, I =-7.87, S =-
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77 V= -5.8, I =-7.58, S =-
1.56

78 V= -5.8, I =-7.26, S =-
1.14

79 V= -6.2, I =-8.32, S =-
2.95

80 V= -5.7, I =-8.29, S =-
2.41
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81 V= -6.3, I =-7.43, S =-
1.87

82 V= -6.5, I =-7.84, S =-
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83 V= -5.8, I =-8.17, S =-
2.36

84 V= -6.4, I =-6.91, S =-
1.28
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85 V= -5.8, I =-8.17, S =-
2.36

86 V= -6.1, I =-7.56, S =-
1.85

87 V= -5.9, I =-7.44, S =-
1.5

88 V= -5.5, I =-7.45, S =-
1.11
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89 V= -6.1, I =-7.69, S =-
2.02

90 V= -6.1, I =-7.43, S =-
1.69

91 V= -6.7, I =-7.04, S =-
1.77

92 V= -6.4, I =-7.59, S =-
2.2
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93 V= -6.2, I =-7.54, S =-
1.95

94 V= -6.8, I =-7.36, S =-
2.3

95 V= -5.5, I =-7.51, S =-
1.21

96 V= -6.2, I =-7.66, S =-
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97 V= -6.2, I =-8.21, S =-
2.85

98 V= -5.8, I =-7.44, S =-
1.42

99 V= -6.5, I =-7.39, S =-
2.05

100 V= -6.4, I =-8.0, S =-
2.77
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105 V= -6.3, I =-7.6, S =-
2.14

106 V= -6.1, I =-7.4, S =-
1.68

107 V= -5.8, I =-7.76, S =-
1.86

108 V= -6.2, I =-7.59, S =-
2.03
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109 V= -6.5, I =-7.82, S =-
2.65

110 V= -6.9, I =-7.21, S =-
2.24

111 V= -5.8, I =-7.44, S =-
1.44

112 V= -6.2, I =-7.86, S =-
2.41
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113 V= -7.1, I =-6.29, S =-
1.21

114 V= -6.0, I =-7.58, S =-
1.84

115 V= -6.3, I =-7.51, S =-
2.05

116 V= -6.5, I =-7.37, S =-
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117 V= -5.5, I =-7.4, S =-
1.11 , CID124500287

118 V= -5.8, I =-7.61, S =-
1.68

119 V= -5.9, I =-7.44, S =-
1.56

120 V= -5.9, I =-7.4, S =-
1.51
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121 V= -6.2, I =-7.88, S =-
2.44

122 V= -5.9, I =-7.19, S =-
1.23

123 V= -5.7, I =-7.3, S =-
1.18

124 V= -5.8, I =-8.19, S =-
2.46
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125 V= -6.9, I =-7.32, S =-
2.41

126 V= -5.9, I =-6.92, S =-
0.87

127 V= -6.8, I =-8.42, S =-
3.77

128 V= -5.6, I =-7.47, S =-
1.3
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129 V= -6.0, I =-7.43, S =-
1.66
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131 V= -5.4, I =-7.47, S =-
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132 V= -5.7, I =-7.36, S =-
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134 V= -6.7, I =-7.53, S =-
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137 V= -6.1, I =-7.6, S =-
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138 V= -6.3, I =-7.37, S =-
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140 V= -6.5, I =-7.64, S =-
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141 V= -6.1, I =-7.57, S =-
1.96

142 V= -6.5, I =-7.35, S =-
2.08

143 V= -6.4, I =-7.58, S =-
2.29

144 V= -5.7, I =-7.46, S =-
1.43
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145 V= -6.4, I =-7.13, S =-
1.69

146 V= -6.0, I =-8.06, S =-
2.53

147 V= -6.1, I =-7.16, S =-
1.43

148 V= -5.8, I =-7.44, S =-
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151 V= -6.5, I =-7.02, S =-
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153 V= -6.9, I =-7.39, S =-
2.55

154 V= -5.5, I =-7.11, S =-
0.77 , CID2222571

155 V= -5.4, I =-7.1, S =-
0.67 , CID2222570

156 V= -6.1, I =-7.66, S =-
2.11
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157 V= -5.6, I =-7.6, S =-
1.53

158 V= -6.1, I =-7.51, S =-
1.91

159 V= -6.5, I =-7.68, S =-
2.55

160 V= -6.1, I =-8.0, S =-
2.57
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161 V= -6.6, I =-7.57, S =-
2.5

162 V= -6.2, I =-7.53, S =-
2.05

163 V= -6.0, I =-7.34, S =-
1.59

164 V= -6.5, I =-7.33, S =-
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165 V= -6.1, I =-6.77, S =-
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167 V= -6.8, I =-7.18, S =-
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168 V= -5.9, I =-7.26, S =-
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169 V= -6.4, I =-7.36, S =-
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170 V= -6.3, I =-7.48, S =-
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173 V= -6.4, I =-7.33, S =-
1.99 , CID73909115

174 V= -6.7, I =-8.02, S =-
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175 V= -6.2, I =-7.27, S =-
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176 V= -6.4, I =-7.46, S =-
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177 V= -6.1, I =-7.13, S =-
1.44

178 V= -5.4, I =-7.41, S =-
1.11

179 V= -5.7, I =-8.09, S =-
2.31

180 V= -5.5, I =-8.29, S =-
2.39
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181 V= -6.4, I =-7.58, S =-
2.33

182 V= -6.8, I =-7.53, S =-
2.67 , CID691603

183 V= -6.9, I =-7.46, S =-
2.68

184 V= -5.9, I =-7.79, S =-
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186 V= -6.8, I =-8.22, S =-
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187 V= -6.9, I =-7.22, S =-
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189 V= -6.3, I =-7.45, S =-
2.07

190 V= -7.1, I =-7.83, S =-
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191 V= -6.3, I =-7.98, S =-
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192 V= -6.2, I =-7.74, S =-
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193 V= -6.3, I =-7.61, S =-
2.29

194 V= -6.6, I =-6.96, S =-
1.72

195 V= -5.5, I =-7.42, S =-
1.24

196 V= -6.9, I =-7.86, S =-
3.22
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197 V= -6.3, I =-7.69, S =-
2.41

198 V= -6.2, I =-7.65, S =-
2.25

199 V= -6.4, I =-7.33, S =-
2.02

200 V= -6.3, I =-7.62, S =-
2.3 , CID13341189
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2.21
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213 V= -5.8, I =-8.06, S =-
2.4

214 V= -6.3, I =-7.4, S =-
2.03

215 V= -6.2, I =-7.35, S =-
1.86

216 V= -5.5, I =-8.33, S =-
2.47
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217 V= -6.0, I =-7.42, S =-
1.75 , CID22871490

218 V= -6.0, I =-7.55, S =-
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219 V= -6.7, I =-7.19, S =-
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220 V= -6.5, I =-7.73, S =-
2.68
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223 V= -5.9, I =-7.57, S =-
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225 V= -6.2, I =-7.24, S =-
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226 V= -6.4, I =-7.15, S =-
1.81

227 V= -5.8, I =-7.51, S =-
1.69

228 V= -5.3, I =-7.46, S =-
1.13
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229 V= -5.8, I =-7.43, S =-
1.58

230 V= -5.2, I =-7.39, S =-
0.94

231 V= -6.6, I =-7.59, S =-
2.6

232 V= -6.5, I =-7.44, S =-
2.3

Appendix III: Supporting information of the Generator (Chapter 5)

144

https://pubchem.ncbi.nlm.nih.gov/compound/22871490


H3C O

O

O

OH

O

H3C

Cl

HN

NH CH3

O

O

O

OH

O

O

HN

HN

CH3

HO

O

HN OH

ON O

H3C

N
O

N

O

HN

OH

O

233 V= -5.7, I =-7.68, S =-
1.82

234 V= -6.2, I =-7.66, S =-
2.29

235 V= -6.1, I =-7.65, S =-
2.18

236 V= -6.8, I =-6.97, S =-
1.98
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237 V= -5.4, I =-7.28, S =-
1.0 , CID63307126

238 V= -6.1, I =-7.66, S =-
2.2

239 V= -6.5, I =-7.46, S =-
2.34

240 V= -6.0, I =-7.64, S =-
2.08
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241 V= -6.5, I =-7.17, S =-
1.95

242 V= -5.6, I =-7.43, S =-
1.4

243 V= -5.8, I =-7.83, S =-
2.14

244 V= -6.5, I =-7.26, S =-
2.07
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245 V= -6.1, I =-7.35, S =-
1.79

246 V= -5.7, I =-7.36, S =-
1.42

247 V= -6.0, I =-7.76, S =-
2.25

248 V= -7.1, I =-7.12, S =-
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249 V= -6.8, I =-7.92, S =-
3.26

250 V= -6.1, I =-7.56, S =-
2.08

251 V= -6.1, I =-7.33, S =-
1.78

252 V= -5.6, I =-8.14, S =-
2.35
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253 V= -6.7, I =-7.75, S =-
2.94

254 V= -7.1, I =-7.87, S =-
3.51

255 V= -6.3, I =-7.65, S =-
2.41

256 V= -6.5, I =-7.54, S =-
2.46
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257 V= -6.7, I =-8.02, S =-
3.3

258 V= -6.2, I =-7.05, S =-
1.5

259 V= -6.2, I =-7.56, S =-
2.19

260 V= -5.9, I =-8.41, S =-
3.03
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261 V= -5.5, I =-8.33, S =-
2.52

262 V= -5.6, I =-7.44, S =-
1.44

263 V= -6.4, I =-7.56, S =-
2.4 , CID14752371

264 V= -7.2, I =-6.89, S =-
2.31
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265 V= -6.5, I =-7.47, S =-
2.38

266 V= -6.4, I =-7.63, S =-
2.5

267 V= -6.6, I =-7.38, S =-
2.36

268 V= -6.2, I =-7.39, S =-
1.98
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269 V= -6.2, I =-7.59, S =-
2.25

270 V= -6.5, I =-6.82, S =-
1.51

271 V= -6.1, I =-7.26, S =-
1.7

272 V= -7.1, I =-7.54, S =-
3.08
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273 V= -6.0, I =-7.65, S =-
2.12

274 V= -6.9, I =-7.54, S =-
2.88

275 V= -5.9, I =-7.02, S =-
1.19

276 V= -6.8, I =-8.11, S =-
3.53
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277 V= -5.4, I =-8.02, S =-
2.02

278 V= -6.0, I =-7.49, S =-
1.91

279 V= -5.9, I =-8.39, S =-
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280 V= -6.5, I =-7.15, S =-
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281 V= -6.1, I =-7.67, S =-
2.26

282 V= -6.0, I =-7.01, S =-
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285 V= -6.0, I =-7.15, S =-
1.48

286 V= -6.4, I =-7.83, S =-
2.78

287 V= -6.0, I =-7.41, S =-
1.82

288 V= -6.7, I =-7.82, S =-
3.07
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289 V= -6.2, I =-7.83, S =-
2.58

290 V= -5.4, I =-7.49, S =-
1.33

291 V= -7.2, I =-7.46, S =-
3.09

292 V= -5.4, I =-7.49, S =-
1.33
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293 V= -6.2, I =-7.42, S =-
2.04

294 V= -6.3, I =-7.54, S =-
2.31

295 V= -6.6, I =-6.9, S =-
1.75

296 V= -6.3, I =-7.53, S =-
2.29
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297 V= -6.3, I =-7.6, S =-
2.39

298 V= -5.9, I =-8.07, S =-
2.61

299 V= -6.1, I =-7.56, S =-
2.13

300 V= -6.0, I =-7.47, S =-
1.91
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301 V= -7.0, I =-8.11, S =-
3.77

302 V= -6.3, I =-7.71, S =-
2.53

303 V= -5.5, I =-7.35, S =-
1.26

304 V= -5.3, I =-7.22, S =-
0.88
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305 V= -5.4, I =-7.16, S =-
0.9

306 V= -6.2, I =-7.26, S =-
1.84

307 V= -6.2, I =-7.57, S =-
2.25

308 V= -5.5, I =-7.41, S =-
1.34
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309 V= -5.6, I =-7.32, S =-
1.32

310 V= -6.0, I =-8.09, S =-
2.75

311 V= -6.5, I =-7.39, S =-
2.32

312 V= -5.9, I =-7.38, S =-
1.7
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313 V= -5.9, I =-6.35, S =-
0.33

314 V= -6.3, I =-7.29, S =-
1.98

315 V= -6.2, I =-8.44, S =-
3.42

316 V= -6.3, I =-7.58, S =-
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317 V= -6.2, I =-7.68, S =-
2.4

318 V= -5.3, I =-7.53, S =-
1.3

319 V= -6.4, I =-7.26, S =-
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320 V= -6.2, I =-7.76, S =-
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321 V= -7.0, I =-6.86, S =-
2.11

322 V= -6.2, I =-7.87, S =-
2.66

323 V= -7.8, I =-7.66, S =-
3.98

324 V= -5.9, I =-6.92, S =-
1.09
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325 V= -5.7, I =-7.46, S =-
1.62

326 V= -6.4, I =-7.21, S =-
1.98

327 V= -5.3, I =-7.55, S =-
1.34

328 V= -6.7, I =-8.1, S =-
3.48
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329 V= -6.0, I =-8.18, S =-
2.89

330 V= -6.5, I =-7.32, S =-
2.23

331 V= -5.6, I =-6.83, S =-
0.68

332 V= -5.4, I =-7.33, S =-
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333 V= -6.9, I =-7.02, S =-
2.24

334 V= -6.1, I =-8.09, S =-
2.86

335 V= -5.4, I =-7.44, S =-
1.3

336 V= -6.5, I =-7.86, S =-
2.97
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337 V= -6.4, I =-7.67, S =-
2.61

338 V= -6.0, I =-7.41, S =-
1.86

339 V= -6.3, I =-7.63, S =-
2.45

340 V= -6.4, I =-7.64, S =-
2.57
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341 V= -6.2, I =-7.59, S =-
2.3

342 V= -5.6, I =-7.44, S =-
1.5

343 V= -5.8, I =-7.14, S =-
1.31

344 V= -6.9, I =-7.32, S =-
2.65
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345 V= -7.0, I =-7.27, S =-
2.69

346 V= -6.5, I =-7.67, S =-
2.72

347 V= -6.3, I =-7.46, S =-
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348 V= -6.0, I =-7.47, S =-
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349 V= -6.2, I =-7.65, S =-
2.4

350 V= -6.6, I =-7.35, S =-
2.4

351 V= -5.9, I =-7.71, S =-
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353 V= -6.3, I =-7.2, S =-
1.91

354 V= -6.2, I =-7.11, S =-
1.69

355 V= -5.5, I =-7.44, S =-
1.43
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357 V= -6.0, I =-7.58, S =-
2.12

358 V= -6.0, I =-7.46, S =-
1.95

359 V= -5.3, I =-7.42, S =-
1.2

360 V= -5.8, I =-7.44, S =-
1.73
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361 V= -6.1, I =-7.35, S =-
1.91

362 V= -5.9, I =-6.95, S =-
1.17

363 V= -6.4, I =-7.48, S =-
2.38

364 V= -6.2, I =-7.67, S =-
2.44
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365 V= -6.0, I =-7.58, S =-
2.11

366 V= -5.5, I =-7.13, S =-
1.02

367 V= -6.4, I =-7.25, S =-
2.08

368 V= -6.4, I =-7.65, S =-
2.61
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369 V= -6.6, I =-6.98, S =-
1.92

370 V= -6.6, I =-7.15, S =-
2.14

371 V= -5.8, I =-7.49, S =-
1.8

372 V= -6.3, I =-7.57, S =-
2.4
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373 V= -6.1, I =-7.12, S =-
1.61

374 V= -6.4, I =-8.3, S =-
3.48

375 V= -5.7, I =-7.31, S =-
1.47

376 V= -5.6, I =-8.22, S =-
2.58
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377 V= -6.5, I =-7.11, S =-
2.0

378 V= -6.1, I =-7.47, S =-
2.07

379 V= -6.3, I =-6.92, S =-
1.54

380 V= -6.1, I =-7.15, S =-
1.66

N
H

H2N

N

O

Cl

O

CH3O

O

HO

O

HN

O

HO

H3C

O

O

N
H

O

HO

O

N

OH

O

N
H

381 V= -6.4, I =-7.6, S =-
2.55

382 V= -6.9, I =-7.72, S =-
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Appendix IV 

1. Interpretation of models 

 

Figure S1 The SHAP values calculated for the filtered descriptors. Green: the bit has a posi-

tive impact (increasing the propensity to be inducers) on the target property; red: the bit has 

a negative impact on the target property. 

2. Analysis on pocket residues 

The distribution of pocket residues between inducer and non-inducer groups was investigated 

into four categories of amino acids (nonpolar aliphatic, polar charged, polar uncharged, and aro-

matic) as shown in Figure S2. For inducers, the number of hydrophobic amino acids in holo 

pockets was always larger than that in apo pockets, which was inconsistent with the result of 

Cimermancic et al107. This observation explains why inducers tended to have strong hydrophobi-

city and aromaticity. 
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Figure S2 The distribution of pocket residues compared between holo and apo pockets for 

both groups of ligands (based on the optimal threshold = 60 Å3). 
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