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Abstract—In our digitized society, emerging applications re-
quire highly performant and flexible networks that can adapt
to satisfy varying connectivity needs. P4 as a domain-specific
programming language for data plane pipelines introduces the
required flexibility through easy-to-use programmability. How-
ever, the performance of P4-capable devices is still an open
question that has not yet been completely addressed. Under-
standing whether a P4-enabled device can meet the performance
requirements for a specific network function pipeline is key for
planning as well as deployment scenarios in a communication
provider network.

In this paper, we propose a simple analytical model that can
quickly predict the performance of network functions written
in P4 for a given device. The programmable data plane of P4
devices is modeled as a forward queuing system with a variable
service rate that depends on the complexity of the configured
data path program. On top of the data plane model, the
controller’s interaction is modeled as a feedback queuing system.
We evaluate the accuracy of our model through a parameter
study and simulation. The evaluation reveals corner cases, which
are analyzed to formalize a constraint on the service rate using
model parameters to guarantee stable system performance.

Index Terms—P4, Programmable Data Plane, Performance
Modeling, Queuing Theory

I. INTRODUCTION

Next-generation networks promise to satisfy stringent net-
working requirements, in terms of throughput and latency, to
enable emerging applications. Satisfying this promise requires
upgrading the capabilities of networking devices to be able to
adapt to the connectivity needs of new services and applica-
tions. The P4 programming language [1] enables the device-
independent development of data plane pipelines for network
functions. However, when it comes to the deployment and op-
eration of these network functions, the performance of the P4
target devices is an important factor. While devices sharing the
same target architecture are capable of executing the data plane
program, there may be significant differences in processing
power and forwarding performance depending on the hardware
implementation. Therefore, it is key to understand whether
a specific device can meet the performance requirements in
conjunction with a specific P4-based network function and
vice versa. This is true for network planning, dimensioning,
and purchasing considerations on the macro-scale but also for
inter- and intra-site function placement decisions within an
already operational network infrastructure.

Since not all combinations of target devices and P4-
pipelines, as well as load scenarios, can be measured and
tested, we propose the use of an analytical model to provide
quick feedback on the expected performance of a P4 pipeline
on a specific device. For this purpose, we create a simple
model of P4 programmable devices that can be parameterized
to match the setup in question and predict the packet’s mean
sojourn time. Furthermore, we conduct a parameter study
and verify the model through simulation, which helps us to
derive a performance constraint for the stable operation of the
investigated devices.

The remainder of this paper is structured as follows. Sec-
tion II revises related work. In Section III, the system’s
model is proposed and illustrated. In Section IV, the model
is extensively evaluated and validated. Finally, the work is
concluded in Section V, and future research directions are
highlighted.

II. RELATED WORK

Modeling the performance of packet processors is important
for planning, predicting, and mitigating problems in networks.

Jarschel et al. [2] analyze an OpenFlow-based architecture
where the switch and the control plane are each modeled
as M/M/1 queues. The previous model is then mapped to a
general Jackson model by Mahmood et al. [3] to be used
in modeling OpenFlow networks as Jackson networks in [4].
Goto et al. [5] refines the model of [2] for one node by
including processing priorities for packets going to the switch.
For practical usage, a control plane application is introduced
by Ansell et al. [6] for monitoring networks and predicting
the behavior based on queuing theory.

While literature is rich with papers analyzing and modeling
the performance of OpenFlow-based switches, few works tar-
get modeling the performance of devices with programmable
data planes. Dang et al. [7] evaluate the latency performance of
three software and emulated P4 devices, i.e. BMv2, PISCES,
and PAFPGA when running legacy P4-14 constructs. Scholz et
al. [8] measure and model the resource utilization of the ASIC-
based Tofino switch, while latency and throughput metrics
were selected in modeling the performance of the T4P4S
software switch.

None of the previous works consider deriving a complete
analytical model for the performance of P4 devices. In [9],




a network calculus-based model is proposed for analyzing
the worst-case data plane performance of OF and P4-based
switches. While network calculus-based models focus on the
worst-case analysis, in this work we consider stochastic mod-
els based on queuing theory that can provide information about
the mean of different network metrics. Moreover, this work
incorporates the controller’s impact on the overall performance
of the system.

In [10], we benchmarked the packet processing latency of
a Netronome SmartNIC when running different P4 constructs.
The results are then used to build a simple model for predicting
the packet processing latency when running full P4 programs
on the SmartNIC. This work was extended in [11] where
packet processing latency of the NetFPGA-SUME and the
T4P4S software switch beside the Netronome SmartNIC are
benchmarked when running a wider set of atomic P4 con-
structs. Apart from that, a more accurate estimation method is
derived based on these benchmarking results to perform a pri-
ori predictions regarding the packet processing latency when
running arbitrary P4 programs on any of the benchmarked
devices. The impact of processing a scaled number of flows
on packet processing latency was then investigated in [12].

The model proposed in this paper builds on top of the
measurements conducted in [11] and extends it to derive an
analytical model for characterizing a P4 device’s behavior
when considering variable input traffic intensities as well as
the impact of different levels of controller’s interaction.

III. P4 QUEUING MODEL

In this section, we introduce our queuing model for P4.
First, we list the desired requirements to be satisfied by the
model. Then, we describe a packet’s life cycle when traversing
P4 devices. Based on the latter, we propose the model focusing
on the data plane and controller components. Finally, we revisit
our assumptions.

A. Model Requirements

The model should be capable of capturing the performance
of P4 programmable devices while satisfying the following
requirements:

o The model takes into account that the packet processing
taking place at the P4 data plane varies based on the
configured P4 program/pipeline. This affects the packet
processing latency, even on the same device, when pack-
ets traverse pipelines with different complexities.

o The model takes into account the variable levels of SDN
Controller involvement in processing packets that have
no matching rule at the data plane; typically, these are
the first packets of every newly arriving flow.

« The model takes into account that a variable input traffic
load, which depends on the use case scenario, needs to
be processed by the P4 device.

o The model should be simple to enable a first-hand under-
standing of the device’s behavior and limitations as well
as quick computation.
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Figure 1: Packet’s Life cycle in P4 programmable device.
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B. A Packet’s Life Cycle in a P4 Device

A P4 program describes the data plane/pipeline of the device
that packets will transit. This pipeline describes the logical
flow of defined match-action units. First, headers are extracted
from the packet at the parser stage. Then, the packet passes
through a control flow of match-action units applied on the
extracted headers. The match-action unit is the basic unit for
packet processing in P4, which includes a table with matching
keys along with a list of possible custom actions that can be
invoked upon matching. Finally, the packet goes through the
deparser stage, where the modified header stack is added again
to the packet before it leaves through the designated egress
port.

The life cycle of a packet going through a P4 programmable
device is shown in Fig. 1. When a packet arrives at the
switch from an ingress port, it is processed according to the
configured P4 data plane pipeline. If the packet matches any
rule installed in the match-action unit, it is processed according
to that rule. Otherwise, the packet is forwarded to the con-
troller, which takes the packet forwarding decision based on
the running control plane applications. The processed packet
is sent back to the data plane along with the forwarding rule
that is installed into the device’s match-action units. Following
packets that match the installed rule will be processed only at
the data plane level. Thus, a packet can either be processed
at the data plane once or twice in case it is forwarded to the
controller.

The analysis focuses on the packet forwarding latency
(sojourn time) throughout the system as the key performance
metric as well as the dropping probability. The system’s
sojourn time is calculated according to Eq. 1. It is equal to
the summation of the sojourn time of the two paths explained
before: (i) data plane sojourn time, denoted as Fg; (ii) the
controller sojourn time, denoted as FE., along with the data
plane sojourn time only when a packet corresponding to a
new flow is forwarded to the controller with probability P, .

Esys :Ed+Pnf*(Ed+E() (D

C. A Simple Model for the System

To capture this forwarding behavior, we propose to model
the P4 programmable devices, similar to [2], as a feedback-
oriented queuing system. The data plane forwarding is ab-
stracted as an M/M/I queuing system and the controller as a
feedback queuing system of the type M/M/1/S. Fig. 2 shows
the overall proposed model, where the external arrival process
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Figure 2: A simple model for P4 programmable devices.

to the switch is assumed to be a Poisson process with a
rate equal to A.;:. A Poisson arrival process is selected as
it is a convenient mathematical representation of input traffic
in many communication systems. As we are working with
time averages, the PASTA property of the Poisson process
allows us to assume the arrival times as Markovian [13]. In
the following, we elaborate on each of the data plane and
controller models.

1) Data Plane: The packet processing taking place on a
P4 device varies based on the configured P4 program loaded
into the device, where more complex network functions result
in longer processing delays. This imposes a challenge in
capturing the varying performance of the data plane as it can
arbitrarily vary based on the complexity of the network func-
tionality described in the configured P4 program. To address
this challenge, we leverage the fact that P4 programs are made
up of a limited set of atomic P4 constructs/operations. When
these P4 constructs are combined in a P4 program, they can
describe arbitrary network functions. For example, the Layer 3
Forwarding network function is made up of five P4 constructs:
(i) Two parse header operations (for Ethernet and IPv4); (ii)
One table matching on IPv4 destination address; (iii) Two
header modification operations (for Ethernet and IPv4).

In a previous work [11], we benchmarked three different
P4 programmable devices reporting the average latency cost
of processing different atomic P4 constructs. We showcased
that the average packet processing latency of a P4 device is
the summation of two terms: (i) the average base latency of
a device which captures the processing delay when a packet
traverses the non-P4 programmable blocks in a device; (ii) the
latency due to the processing defined in the P4 program, which
is equal to the summation of the average latency cost of all P4
constructs constituting the desired network functionality when
running on a P4 device.

Building on these findings, we model the data plane of a P4
device as a queuing system made up of a queue followed by a
series of sequential servers. The first server represents the base
processing that takes place in a P4 device, and the following
servers represent the processing of every P4 construct defined
in the loaded P4 program. To simplify the model, we assume

that all service processes, when combined, form a service
process with exponentially distributed service times with an
average service rate equal to ,udD (NF) calculated as shown in
Eq. 2.

P (NF) = (TF + Y Thy,.)"" VYPdace NF,¥D (2)
Pdac

where ,ug’ (NF) is the data plane service rate when running
network function NF on device D. The terms 75 and T5),.
refer to the average service times of the base packet processing
and the processing of the atomic P4 constructs P4ac on a
device D respectively. The service rate of the data plane is
calculated as the inverse of the summation of the service times
of the base processing component and the component due to
P4 constructs processing.

The queue size of the data plane model is assumed to be
infinite. The arrival process into the data plane has rate \g,
evaluated as shown in Eq.3, which is equal to the combination
of the externally arriving packets with rate A.,; and the loop-
backed packets from the controller [3].
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where P, is equal to the dropping probability at the controller,
which is assumed to have a limited buffer capacity.

2) Controller: The controller is abstracted as a feedback
queuing system on top of the data plane model. The service
times of the controller are assumed to be exponentially dis-
tributed to keep the model simple, and the queue capacity in
the system to be limited to buffer only S packets similar to the
approach taken in [2]. As the data plane model is assumed to
be an M/M/I model with an exponentially distributed service
times, the departure process leaving the data plane will follow
a Poisson process. Recalling that packets corresponding to new
flows will be forwarded to the controller only once after being
processed at the data plane, the arrival process incoming to the
controller will then be a Poisson process with an arrival rate
equal to P ¢ * Aegt.

This results in an M/M/1/S system for the overall controller
system. As the controller has a finite buffer capacity, there is a
possibility, with probability P, that packets get dropped while
waiting to be processed at the controller. Accordingly, only a
packet rate of (1 — Pp) % P,y * Acy leaves the controller back
to the data plane as shown in Fig. 2.

The model under consideration resembles a Jackson net-
work [13]. Therefore, the average sojourn time of packets
traversing the system, shown in Eq. 4, can be calculated by
substituting the sojourn time equations of the M/M/I system at
the data plane and controller in Eq. 1. Note that uB,,.(NF)
and Ay can be calculated as illustrated in Eqgs. 2 and 3
respectively, while p. and A, correspond to the controller’s
service and arrival rates respectively.
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D. Assumptions

To simplify the model, it is assumed that the external arrival
process coming to the switch follows a Poisson distribution.



Additionally, exponentially distributed service times are as-
sumed for all servers in the system. Moreover, a single queue
is used to abstract incoming traffic over different ports of the
switch. The model works well with TCP traffic, where the
first packet of every newly observed flow is forwarded to the
controller. Finally, the analysis and evaluation conducted in
this work focus on steady-state average results of the system
rather than distributions.

IV. MODEL EVALUATION

In this section, we evaluate the derived model under dif-
ferent scenarios and validate the results using simulations.
Finally, we highlight the performance bottlenecks revealed by
the model and the corresponding limits.

Measurements conducted in our previous work [11] are
used to characterize the forwarding latency of P4 devices
when running different P4 programs. In [11] the forwarding
latency of three P4-based network functions is estimated
by adding the latency cost of their constituting atomic P4
constructs. The estimations were then validated against the
real measured latency when running these three programs
on three different P4 devices: (i) An Agilio CX 2x10GbE
SmartNIC from Netronome, which is a Network Processor
Unit (NPU)-based NIC with tens of multi-threaded cores
that support an instruction set architecture optimized for
packet processing [14]; (ii)) A NetFPGA-SUME board with
Xilinx Virtex-7 XC7V690T FFG1761-3 FPGA [15], which
is an FPGA-based packet processor optimized to make use
of FPGA programmability while maintaining high packet
processing performance; (iii) An open-source T4P4S DPDK-
based P4 software switch [16], which is a software switch that
can run on commodity servers while leveraging the DPDK
framework for optimizing packet processing on CPUs. The
three programs, which have increasing complexity, are Layer
3 Forwarding (L3FWD), Layer 3 Forwarding with Firewall
filtering (L3FWD + Firewall), and VXLAN Decapsulation
(VXLAN). Table I summarizes the packet processing latency
of the surveyed measurements. These results will be used to
derive the service rate pf (NF) of the data plane of a P4
device when different P4 programs are loaded.

The probability of a new flow, P, ¢, is varied from zero,
where all packet processing takes place on the data plane,
to one where the controller handles every packet arriving at
the switch. The latter can be useful in an experiment testing

Table I: Packet Processing latency measurements of three
evaluated network functions on three P4 targets [11].

NF P4 target Measured Avg. Latency
T4P4S 45.9 us

L3FWD Netro. SmartNIC 8.2 us
NetFPGA-SUME 3.7 us
T4P4S 45.9 us

L;g rv/vDa || Netro. SmarNIC 8.9 yus
NetFPGA-SUME 4.0 us
T4P4S 45.9 us

VxLAN Netro. SmartNIC 15.2 ps
NetFPGA-SUME 5.2 us

new southbound protocols where every packet needs to be
forwarded to the controller, such as the case in [17]. Values of
0.2 and 0.5 are selected as intermediate values, while P,y =
0.04 is selected as it presents the probability that a switch will
observe a new flow in a normal productive network carrying
end-user traffic according to [18]. We evaluate the model based
on three different controller’s service times: 31us, 240 us,
and 10000 ps to accommodate for a wide range of possible
controller’s performance [2]. The largest controller’s service
time is based on the findings of [19] on the performance of
P4Runtime based controllers. The buffer size of the controller
system is selected to be S = 512Bytes as a middle ground
between experimental and commercial switches.

The model presented in the previous section, shown in
Fig. 2, is validated using simulations. We chose to validate
the model by simulations rather than measurements because
simulation results can be obtained faster while still being
able to widely vary different parameters of the model. To
this end, we implemented a packet-based simulation using
MATLAB [20] to reflect the adopted model. To adhere to
the realistic behavior of the packet’s life cycle, the simulation
ensures that a packet may visit the controller at most once.
In the simulation, the service times of the controller and the
data plane are set to be exponentially distributed, while the
external arrival process is set to follow a Poisson process
likewise the analytical model. The Poisson assumption on the
arrival process to the controller, which is the departure process
from the data plane, as well as the one on the arrival process
to the data plane from the controller, which is the loopback
traffic, are relaxed. This way, simulations can reflect the real
interaction between the controller and data plane systems.

Each simulation presented in this section with different
parameter sets is performed on around 1.3 million packets and
repeated 5 times with different seeds. The 95% confidence
interval is plotted on top of the average simulation results.
Note that the drop probability at the controller, P, is evaluated
and always found to be almost equal to zero.

The sojourn time, evaluated based on Eq. 4, derived from the
proposed model along with the simulation results are presented
in Subsections IV-A, IV-B, and IV-C when the controller
service time is set to 10ms, 240us, and 31us respectively.
In Subsection IV-D, we make use of the derived results to
provide a constraint for properly dimensioning the usage of
systems with P4 devices.

A. Slow Controller Case

Fig. 3 shows the analytical and simulation results of the
average sojourn time in us and in logarithmic scale, as a
function of controller load, p., for different P,y values when
controller service time is set to 10 ms. The results shown in
Figs. 3a, 3b, and 3c correspond to the cases when Layer 3
Forwarding and VXLAN Decapsulation P4 pipelines are eval-
uated on Netronome SmartNIC, NetFPGA-SUME, and T4P4S
software switch respectively, where data plane service times
are taken from Table I. Note that the results corresponding to
the L3FWD + Firewall pipeline are not plotted because they
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Figure 3: Average sojourn time of the system when Controller’s service time set equal to 10 ms.
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Figure 4: Average sojourn time of the system when Controller’s service time set equal to 240 us.

are similar to L3FWD results, since their service times are
similar, and they are consistent with the observed patterns.
Also note that when P,y = 0, the x-axis varies according to
the data plane load as the controller’s load is always equal to
ZEero.

In all these results, we can observe that the sojourn time
increases almost linearly up to a load value equal to 0.8, where
the latency increases more sharply when the load approaches
full utilization, i.e., equal to one. Moreover, we can also
observe that the derived analytical equations always capture
the simulated system’s behavior under various loads.

Looking at the case where P,y = 0, the system’s perfor-
mance is only impacted by the data plane performance. In
this case, we can observe that the increase in the data plane’s
service time has an offset impact, where the curves are shifted
upward when the service time of the data plane increases
as in the cases of NetFPGA-SUME followed by Netronome
SmartNIC and finally T4P4S software switch in Figs. 3b, 3a,
and 3c respectively. Additionally, when the load is small, the
sojourn time is almost equal to the service time of the data
plane. For example, as shown in Fig. 3a, the sojourn time
is respectively equal to 8.6 and 16 us in cases of Layer3-
Forwarding and VXxLAN-Decapsulation when running on the
Netronome SmartNIC with a load equal to 0.05.

The sojourn time shifts upward increasing 2 to 3 orders of
magnitudes when the P, values increase from zero to 1. This
high increase in latency is due to the controller’s involvement
in packet processing who has a very high service time, i.e.,
10ms, compared to the data plane’s service time. Moreover,

we can also observe that the impact of loading different P4
pipelines becomes negligible when P, ¢ values increase where
the small difference in the data plane’s service time is obscured
by the controller’s long service time.

B. Average Controller Case

In this subsection, we evaluate the differences in the
system’s performance when the controller’s service time is
smaller, i.e. relatively faster than the case in Subsection. IV-A.
Corresponding to Fig. 3, Fig. 4 shows the analytical and
simulation results of the average sojourn time for different
cases when the controller’s service time is set to 240 us.

Note that as most of the previously analyzed observations
still hold, we will only analyze the changes in performance
taking place due to the decreased controller’s service time. In
this case, the data plane performance is playing a larger role
in determining the system’s performance as the controller’s
service time decreased. Looking at the cases when P, is low,
the performance curves corresponding to different P4 pipelines
are more distinct especially in Fig. 3a, where the difference in
pipelines’ service time is larger in the Netronome card case
compared to other devices.

When P, ; increases, the sojourn time increases around one
to two orders of magnitude. This smaller impact of P, ; on the
sojourn time is due to the smaller service time needed by the
controller to process packets corresponding to newly observed
flows forwarded to it.

Interestingly, we observe that there is a sharp increase in
latency occurring in some of the cases breaking the previously
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Figure 5: Average sojourn time of the system when Controller’s service time set equal to 31 us.

observed patterns. This sharp increase is occurring in the
following cases: (i) Netronome SmartNIC at P,y = 0.04 with
VXLAN pipeline, (ii) T4P4S software switch at P,y = 0.04
and at a later stage at P,y = 0.2 with L3FWD and VXLAN
pipelines. Note that in these cases, we skipped plotting the
sojourn time after some point as the values grow arbitrarily
large. The reason behind this sudden increase in latency is
that the load/utilization of the data plane in these cases is
approaching one. More importantly, we can observe that the
analytical model can still capture the system’s performance
when approaching these corner cases. This issue will never
occur for the controller system as we are explicitly varying it
between 0.05 and 0.95 in all tested cases. Detailed analysis
on this behavior is provided in Subsection I'V-D.

C. Fast Controller Case

Fig. 5 shows the average sojourn time of the different
considered cases when the controller is fast with an average
service time equal to 31us. In this case, similar to the case
in Subsection IV-B, the data plane plays a larger role in
determining the system performance when latency induced by
the control plane processing is reduced. In general, we can
see that the overall latency is decreased compared to the latter
two cases, and the impact of loading different P4 programs is
amplified.

Moreover, we can clearly observe that the limit of data
plane utilization is often violated. This is observed in each of
the following cases: (i) In Netronome SmartNIC, the violation
occurs in both pipelines when P,y = 0.04 and 0.2, and only
in VXLAN case when P,y = 0.5, (ii) In NetFPGA-SUME,
the violation occurs in both pipelines when P,y = 0.04, (iii)
In T4P4S software switch, the violation occurs in all cases
except when P, = 0 when the data plane’s load is explicitly
configured. This violation occurs at different p. values, and
when the violation happens at an early stage before p. = 0.05,
the curve is not shown at all as in the case observed in Fig. 5c
when P,y = 0.04.

Note that in all cases, the confidence intervals are very
small. It is barely visible in high load cases where the system
performance approaches instability. Additionally, the deviation
of the model results from simulations is evaluated in all cases
and found to be on average less than 1.5% for all controller
service rates.
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Figure 6: Data plane’s service rate and arrival rate for different
cases.

D. Derived Performance Constraint

In the following, we derive a constraint for dimensioning
the system to avoid packet drop. In the previous evaluation,
we observed that the sojourn time increased arbitrarily in
some of the cases. The reason is that the data plane system
is over-utilized. Note that the controller’s load never exceeds
one because we explicitly vary it between 0.05 and 0.95. To
keep the data plane system stable, the load should strictly be
less than 1. In other words, the packets arrival rate to the
data plane should be less than the service rate of the data
plane. Expressing the external arrival rate as a function of the
controller load as Aeyy = (e * pe)/Pny, and substituting it
in Eq. 3 of the data plane arrival rate, we get the following
constraint:
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Given the anticipated traffic characteristics for a use case
scenario, this constraint can help select the appropriate P4
device for running the intended network functionality based
on its service rate or inversely its forwarding latency. Alterna-
tively, the constraint can be used to dimension the permissible
volume of incoming external traffic before packet drop takes
place on a given P4 device with a specific service rate. In
Fig. 6, we evaluate and plot, in logarithmic scale, the arrival
rate at the data plane (right hand term of Eq. 5) as a function
of p. for different P,y values. Additionally, the service rates
corresponding to the different P4 pipelines and P4 devices,
i.e., equal to the inverse of the previously provided service
times, are plotted in this figure. Figs. 6a and 6b correspond to
the cases when controller service rates are set equal to (240
us)~t and (31 us) ! respectively. Note that the case with the
controller’s service time equal to 10ms is not shown as the data
plane utilization is always stable. The cases when P,y = 0 are
skipped because the data plane utilization is explicitly set to
less than 1 in this case. As long as the service rate is greater
than the arrival rate with different P,y values, the data plane
system and thus the overall system is in a stable state.

By looking at Figures 6a and 6b, it can be observed that the
constraint presented in Eq. 5 is violated at P, and p. values
that match the cases where the sojourn time, shown in Figs. 4
and 5 respectively, increases arbitrarily and is thus not plotted.
For example, let us consider the case where the controller
service time is equal to 240 us in Fig. 6a. It can be seen
that the arrival rate corresponding to P,y = 0.5 and 1 never
exceeds any of the data plane service rates. On the contrary, the
arrival rate corresponding to the case when P,y = 0.04 crosses
the service rate of the T4P4S switch for both pipelines after
pe = 0.2 and crosses the service rate corresponding to running
the VXLAN pipeline on the Netronome SmartNIC after p. =
0.6. The same applies for the case when P,y = 0.2, where
it only crosses the service rate corresponding to the T4P4S
switch after p. = 0.85. The same analysis can be applied by
cross-checking the findings in Subsection IV-C with Fig. 6b.

V. CONCLUSION

Deriving analytical models for the performance of net-
working devices is important for first-hand evaluation and
dimensioning of networks. In this work, we abstract the
behavior of P4 programmable devices as a forward queuing
system at the data plane with variable service rates depending
on the complexity of the loaded P4 pipeline. The controller’s
interaction is modeled as a feedback queuing system on
top of the data plane model. The average sojourn service
time of the system is evaluated and cross-validated using
simulations showing more than 98.5% accuracy. Results show
that increasing the data plane service time has an offset effect
on the average sojourn time of the system. Crucially, the
evaluation revealed corner cases in the system performance.
The latter were analyzed to derive a constraint on devices’
service rate for guaranteeing a stable system’s behavior.

In future work, the model can be further refined by consid-
ering a more generic service process based on the distribution

of the measured packet processing latency. Moreover, a polling
system can be used to abstract the behavior of switches with
multiple ingress lines.
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