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ON THE INTEGRATION OF MULTINORMAL DENSITIES

OVER EQUALITIES

G. Schall and R. Rackwitz

ABSTRACT: The available first—order techniques for the integration
of multinormal densities on surfaces are reviewed. Asymptotic
second—order corrections are then derived for general intersections of
equalities and inequalities. The approximate results are compared
with exact results for a simple but extreme example involving the
non—central chi-square distribution. It is found that volume integrals
over probability densities appear to be slightly more accurate than
integrals over surfaces

1. Introduction

Many reliability problems involve the computation of simple volume integrals of
probabilities over certain domains in multidimensional spaces. This can conveniently be done
by making use of first—order or asymptotic second—order concepts in the numerical analysis
as described in [1,2]. Those domains must be given as inequalities

However, the computation of outcrossing rates for Gaussian processes involves the
determination of surface integrals which in some special cases involves simply an integration
of probability densities over equalities [3]. In the reliability analysis of failure trees for systems
the calculation of the probability of intersections of failure domains is required. But some
further restrictions sometimes are given in the form of equalities, for example, if the initiating
event is a discrete event. In elastic—plastic structures the analysis of successive yielding of
hinges until collapse requires that the hinges except the temporary last one fulfill the yield
conditions which again are given in terms of equalities. Discrete events depending on further
random variables and to be introduced as equalities are also encountered in human error
control as shown in [4]. Furthermore, the calculation of conditional probabilities involving

equalities sometimes is required when updating structural reliability in view of special forms

of inspection results [5]




In this note suitable computation schemes for integrals of the type

(D) = J ¢, (x) ds(x) (1)
D
where
{ m { m
D=EnF=n {E}n n {F}= 0 {eX)=0}ln 0 {g(X)<0}
i=1 =L+ i=1 = €41

are developed. Herein, X = (X;.... Xy)T is a n—dimensional random vector with given
distribution function. ds{x) means surface integration. Since the vector X can always be
transformed into an independent standard normal vector U = (U;,...,U;)T as shown in [6], it
is sufficient to determine the integral in the so—called standard space. Of course, itis { < n
The surface integral in eq. (1) will be understood as a surface integral of the first kind. Thus
the results will be applicable precisely in the examples mentioned before. First, the available
first—order results will briefly be reviewed also further highlighting the meaning of eq. (1)
Then, asymptotic second—order results will be derived. Finally, an importance sampling
scheme is discussed for updating volume and surface integrals over arbitrary domains

2. Review of first—order results for integrals of multinormal densities over equalities

let U= (U, .Uy)T be an independent, standard normal vector with density
wa(u) = T:2,u;). A first—order approximation of integrals as in eq. (1) can be deduced
from the considerations in [7]. In particular, let the events in eq. (1) be given by their
linearizations

lei(u) = ol iu—al;u*=0and ..;j(u) = al.j u— alj v <0,

respectively. where u* is the so—called jpint J—point (see [2]) and a.. the normalized
gradient of these functions in u*. Alternatively, as in "crude” first—order reliability [2]. the
individual 7points u;* can be chosen with usually some loss of accuracy. Then, by viewing a
volume integral as the limit of an integration of a sequence of appropriately chosen surface
integrals the integral in eq. (1) can be given as
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with ¢; — . i LU (=140 and 2 o’y and zij—ci=0 the generic linear

representation of the failure surfaces. It is worth noting that this interpretation does not
cover all applications of surface integrals in probability theory. Evaluation of eq. (2) is best be
performed by applying a recursive scheme. By conditioning on the first variable the first step

of calculation is

s
3 ‘ { m 1 (2
(EinF) = acl | P( (z; <6z s)) ¢s)ds (3)
1 =2 :
Introducing y; as variables which are stochastically independent of z; for i#1 with
z; = py; 2+ {1-p,7 yi and p; = e T /(ll oyl 1eyll) eq. (3) can be rewritten as:
{+m 7 2
I(EiN F) = gc)) P( N y; ¢ (4)
=2
This scheme can be applied { times so that the first—order result finally becomes
{ s m : :
(EnF)=mLClp( n §.<E) (5)
i=1 =0+1"
where the quantities ¢;, o; = (1 )2 and y indicate the modifications to be performed
n each step. At most a m—(—dimensional normal integral needs to be evaluated. Note that

explicit surface integration is avoided, i.e. by a suitable parameterization of the equalities
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3. Asymptotic second—order results Applying the usual scaling by the factor b > 1 as proposed in [2,9] and making the
transformation v ui/b yields
3. One equality constraint
' n—1 i b = y n—1
: L : : IE) = b"t [ o (bv.etbv)) (1 + & (2ulby 1y1/2 Ty, (11)
let U=(U,...Uy)T be an independent, standard normal vector with density A }." n \ Y =
IR " r P Ky R
@n(u) = 1" @(u;) and E = {e(u) 0} the boundary of the domain f 18(u) <0}. The In writing
integral
y n—1 ) 2 n—1 )

[ (27)"/ @, (bv, 1{bv)) = exp| %( ¥ (bvi)

and expanding the second term to first order
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Define now the maximum point (7—point) o

el T 15

E={u e(u)=0} with 3= lu Assume that by ar I(bE) pn—1 @A) I (1-dk) 1< T | (1-3k,) " “(bvi (1—3¢ ‘Jl ) dv;
—point lies on the negative uy—axis, i.e u* = (0,0 1=1 =18

least twice differentiable near the u*™ and the mixed second

The last product term in eq. (12) is also unity. Therefore. one has for large 7 (b

again can be achieved by a s

table orthogonal tra

u" then are given by approximation:
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de(v ) & 1
FLTH
i B ;. This result was first given in [10] and is re—derived here on somewhat different lines

In view of the results in [2,9] it is admissible to choose the following -

parametenzation for u u”
§ traints
—
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3 : £ i=1 Assume now that [ { N E;} with n—1 and [ {ei(u) = 0}. The intersec
1= 1
dimensional surface to which exactly the considerations of the foregoing
This is 2 special hyperparaboloid t of e(u not vanishing in g™ T t
integral can then be calculated from the € integra 3 I %.h 1
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¢. One equality constraint intersected with a domain F

In order to demonstrate the generalization for a mixture of equality and inequality
constraints consider now the integral

(ENF)= | @u(u) du (15)
ﬂniEwF

where E = {g(u) =0} and F = Nie2 Fj with Fy= {gi(u) < 0} and gi(0) > 0 for at least
one i. Also, e;(u) and gi(u) are at least twice differentiable near the point u* obtained from

m

*
u = min{lul} for {u:e{u) =0n n g(u) <0} (16)
i=2

and there is ey(u*) = O and gi(u™) = 0 fori=2,... .k <m

In closely following the arguments in [11], assume, without loss of generality, that the

normalized gradient of e;(u*) is

a, = e
with e, the unit vector and w"=Sa;e; with a;#0 for i =2. Hence, the vectors

&, U", &..... & are linearly independent. Introducing the scaling factor as before and
rewriting eq.(15) as a surface integral gives:

(b(EnF))=b"™ | ©a(bu) ds(u) (17)
EnF

Applying the mappings

*

S,(u) = (u;v,. 3

(S

U3, ug, u.)
=1 '
5,(u) = (e{u), TEAT u,)

1

B
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one finds that for

T(u) = (S,{u)") S,(v)

it s

*

T(u) =u

and since around u‘, 5,(u) = S,(T(u))

o =

*
A suitable parameterization of T around u then is

g ik
H={uwuy=u}n "2{51(T(u)) < 0} (18)
J

and, therefore,

ENF H
*
By
/) *
=% I ‘ @(bulu,=u,) @(u,) r(u) du du,
tfu: _"‘ F*
* * ’ \
obu}) [*@(bv) r(u).v) dv (19)
F
where v=(u,..u) and F*= - F*  with  F} = {g;(T(u].v)) 0} and

r(u%.v)=(det[J(T(u*))TJ(T(u*))])* = 1 with the Jacobian J(T(u)) = L. Due to r(uj.v) =1
the last integral is the usual probability integral for intersections [2]. Using u} = a,'u* one

obtains after some algebra the result
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ar (r = 1...k) is the normalized gradient of constraint r at the point u* and the . < 0 are

obtained as the solution of

k is the total number of equality constraints and active inequality constraints in u*. The first
two factors represent the first—order result which could have been derived in 3 more
elementary manner as illustrated before

d. General case

The result is invariant under orthogonal transformations. Therefore, recursive application
for the case of more than one equality constraint yields the general result. The forth
expression in eq. (19) also suggests to condition on all equality constraints simultaneously so

that the result eq. (20) obtains the form

N
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D as in eq. (20) and

(/2 1/2

v B = (20)12 (det(8,)) /2 expl- 5 (2" 5, 2)]

the (—dimensional standard normal density

4. Example

In order to demonstrate the validity and accuracy of the derived approximations they are
compared with some exact "probabilities” on surfaces. One such exact result are the

are given by the derivative with respect to the radius r of the non—central chi—square
distribution. For even n a suitable formula is

¢ P a2, ) =

where r is the radius of the sphere, n the dimension of the standard space and A = ¥ &2 the

non—centrality parameter with the §; the offsets of the center of the sphere from the origin
In fig. 1 the ratio of the approximations according to the one dimensional versions of eq. 4
and eq. 20 and the exact result eq. 22 is presented. The curves are calculated for a constant
ratio r/.7 = 5. For comparison, the corresponding results for the volume integral are given in
fig. 2. It is seen that even in this extreme example (same curvatures in all directions) the
ratios converge to unity for growing .7 for all n. The results for the volume integral are

slightly better than for the surface integral
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The same example also allows to check the general case. In particular, if

= 9.9 L
ERF={(E (U + &) ~r"=0)n 0 (U.>0)}
T B il
=1 =2
it is easy to see that the exact probability density of this event for § = (—3, —¢, ..., —¢) with
e-+0 is:
P ulr2n)
HEnF)=2L X

Lm

On the other hand, the second order approximation must be

n—1 s
wd) 0 (1-3)°

HENF) =~ '“;;1

which can also be verified numerically by applying eq. (20). Therefore, fig. 1 is also valid in
this case.

4. Conclusions

The asymptotic results for volume integrals as described in [2] can be generalized to
general surface integrals in a straightforward manner. The asymptotic surface integrals
represent a significant improvement of the corresponding first—order results. Convergence to
the exact results with growing distance of fu™ 1 as defined in eq. (16) appears to be slightly
slower for surface integrals than for volume integrals. However, arbitrarily exact results can
always be achieved by a correction obtained by importance sampling in line of the
mnvestigations described in [12] at the expense of some more numerical effort
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Oslo which is acknowledged.
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UPDATING FIRST-ORDER PROBABILITY INTEGRALS
BY
IMPORTANCE SAMPLING

S. Gollwitzer and R. Rackwitz

ABSTRACT: An importance sampling scheme is designed for the
determination of a correction factor for the probability of arbitrary
domains in multidimensional spaces evaluated according to
first—order reliability techniques. The correction factor essentially is
independent of the magnitude of the probability to be estimated and
independent of the shape of the integration domain. It is shown that
the numerical effort grows by a factor of roughly ten if the
coefficient of variation of the correction factor for the probability
estimate is to be reduced below 5%. The importance sampling
scheme is illustrated at two examples.

1. Introduction

In recent years the idea of importance sampling put forward first by Shinozuka [1] in the
area of structural reliability has triggered an interesting development to replace or update
first— and/or second—order estimates for the probabilities of failure domains as obtained by
the methods described in [2] and [3]. For the considerations to come it is, without loss of
generality, assumed that the probability space is a space in independent standard normal
variables [4] and the failure domain is given in a suitable form, i.e. by F = {g(U) £ 0} or by
F={unF} with Fi; = {gij(U) <0} and U= (U;, Us, ... Uy)T the standard normal
vector. The basic importance sampling idea is to use information about the neighborhood of
the most "interesting" region or, in terms of the terminology in [2,3], the most likely failure
point(s) (or simply the J-point(s)) which contribute(s) most to the probability integral of
interest. In the following it will be assumed that the "important" region(s) exist(s) and can
be determined uniquely. The importance sampling methods proposed so far distinguish
themselves by the degree of information they take from the properties of the failure surface
around the J—point(s). In [1] and later, in slight improvement, in [5] it is suggested to
sample around the J—point and count sample points in the failure domain. A valid point

weighted with the ratio of the multinormal density and the sampling density produces a

13
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rather efficient probability estimate. The method has the advantage to provide an error
estimate which is difficult to obtain directly for the classical methods in [2] on [3]. Only
information about the location of the 3—point is used. According to the classification given in
[6] this method will be denoted by method A in the sequel A somewhat different, more
efficient approach has been suggested in [7] where the potential error in first— or
second—order methods is estimated by comparing point—wise the exact probability with the
probability of an approximation of the failure domain yielding a correction factor Convenient
approximations of the failure domain are either linearizations or quadratic forms of the failure
surfaces. In following [6], the use of linearizations will be denoted with method B while the
use of quadratic approximations is associated with method In [6] 2 comparison is made
between the various methods indicating that either importance sampling method can, in fact
be an efficient tool to update and even replace first— or second order methods provided that
the 3—point(s) and, if required, some further properties of the failure domains are known
The efficiency increases from method 4 to method C. In [6] it was found that the
importance sampling updates increase the computation time by at least an order of
magnitude as compared with the simpler estimates. Nevertheless and even if the probability
estimates according to the methods described in [2] or [3] turn out to be sufficiently accurate
from a practical point of view it is worthwhile to supplement those methods by methods

which update and/or quantify their error

The studies in [6] and [7] concentrated on simple differentiable failure surfaces. In this
note we generalize the arguments in [6] to arbitrary failure domains that is to unions of
intersections. We shall, in following the basic idea in [7], determine a correction factor
together with its error in terms of the coefficient of variation of the correction factor. The
general form of a probability estimate then is

P(F) = P(A) ELE) — p(a) C

P(A)

[

where P(A) is the probability of an approximation of the failure surface and the second factor

5

he correction factor to be determined by importance sampling. In general, this factor is

o

estimated by

e, s D
W Nic1H(, € Ay

where N is the number of sampling points and the precise meaning of the quantities H in the
numerator and the denominator, respectively, is explained below

While the importance sampling method where only information about the location of the
#point is needed (method .4), is shown in [6] to be the least efficient among the mentioned
alternatives it must be considered as a robust method because it requires only simple
function calls which determine whether a sampled point is in the failure domain or not. For
given or only approximate location of the F—point and smooth failure surfaces one can expect
"hits" with probability around 0.5 at each sampling. An even higher hit probability can be
achieved if one samples only outside a sphere with radius 3 (see [8]). Unfortunately, the
same argument no more holds if the failure domain is an intersection domain which, in
extreme cases, can be a very small subdomain of Re. Then, the probability of "hits" in this
method can reduce substantially and tends to zero in the mentioned extreme cases. The
variance of the estimate then increases significantly. The method can become inefficient and
therefore, is discriminated as a suitable, general importance sampling method for cases where
the failure domain is of a more complex nature. The probability of "hits" is substantially
increased if a directional sampling scheme is used. For example in following [7]. one can
sample on a plane going through the origin with normal equal to the direction cosines of the
#-point. In this case it is not only possible to integrate analytically in one dimension. It is
also possible to use information about the curvature of the failure surface in the F—point
This scheme must be considered as the most efficient importance sampling method for
smooth failure surfaces. It produces the smallest coefficient of variation of the probability
estimate among the alternatives because the variability of the sampling density is adjusted to
the actual curvatures as indicators for the "important" sampling domain. It has even been
found that this adjustment is necessary in cases of extreme curvatures because not adjusted
sampling densities most likely produce too many points outside the important region and
there is no indication, e.g. by the magnitude of the coefficient of variation of the estimate,
that the important region has not yet been sampled unless the number of sampled points is
very large. The same phenomenon must be expected for arbitrary failure domains and
especially for intersections with small probability content. Therefore, a sampling scheme
must be designed with a large likelihood to hit the important region. Also, we require the

scheme to be as robust as possible

So far, method (' where curvature information in the J—point is also used must be
considered as the most efficient importance sampling method for smooth failure surfaces. It
produces the smallest coefficient of vanation of the probability estimate among the
alternatives because the variability of the sampling density is adjusted to the actual
curvatures as indicators for the "important" sampling domain. The same must. be expected
for arbitrary failure domains. However, if the probability of the approximation cannot be
evaluated exactly, the final probability estimate necessarily will have a bias which cannot be
removed even asymptotically for large N. if unbiasedness is considered a vital requirement for
any importance sampling method it is, therefore, mandatpry to choose an approximation A

for the failure domain F for which the exact probability can be determined. If A is

15



approximated by a quadratic form as in [3] the probability can be computed only
asymptotically exact (P(.) = 0 or P(.) = 1) with adequate numerical effort. For this reason
the subsequent derivations for a correction factor will be concerned only with appropriately
linearized failure domains for which a sufficiently accurate basis for the probabilities of the
approximation exists in the form of the multinormal integral evaluated numerically according
to the methods described in [9] or [10]

2. Intersections

An arbitrary intersection with failure domain

i ]
F=1n [gU)<o]; (3)
U=l
is either a "small” intersection, i.e. with at least one g;(0) > 0 or a "large" intersection if
gi(0) < 0 for all j. Small intersections and large intersections require separate treatment. For
both cases it is supposed in the following that the first—order approximations of the active
constraints exist. The linearized constraints are denoted as the "linear form" of the
intersection in the sequel.

2.1. Small Intersection

If m denotes the number of constraints g of the intersection, k < m linearizations define
the linear form. The linearizations are either the linearizations of the "active" constraints at
the common F—point u (i.e. where ':i]gj( ug) = 0) and, possibly, also the linearizations of
“inactive” constraints (i.e. where gj(u7) < 0). Alternatively individual linearizations of the
constraints (corresponding to "crude” FORM as defined in [3]) can be used. In the latter
case the common F—point u'| of the linear form has to be evaluated which also yields the

number of active constraints in this case

The linear form first is used for the multinormal integral which evaluates P(A) as defined
in eq. (1), i.e.

P(F)=®,(-A:R) C (4)

with

16

]| T
B { uii) rr]} and R {u”} CH rrl}
and P(A) = ®y(—f: R). The a are the normalized (I agll=1) gradients of the constraints at

the point(s) u” j)

The information supplied by the linear form is now used to define a sampling direction and
the mean values and standard deviations of the sampling densities. An orthogonal
transformation is performed such that the point u* lies on the n—th axis, i.e. has coordinates

(0,....0, lu* 1 VT, Then, the integral for the correction factor is written as

~ (EY

Fe o e Sl e _

C | P(R) rf)“(v) dv | PR 1, (_v‘vﬂj zp(vﬁf dv lpﬁ”l(\’j dv (5)
F Ro-1 R

where 1p(V,vy) is the indicator function of the failure domain and ¥ = (vi,...vaq)T. The

integration over vy can be carried out analytically and by introducing a suitable sampling

density 9(.) one obtains

c= | pimy | 1pv,) dvy) dv, 0, 4(3) 66
Rn-1 R
(-2 (V) ¢,_1(V) « S
= 2 Ly () dV
i P(A) % (9

where Ap(V) is the distance from the origin to the failure surface and the ¥; are simulated

points according to t-1(.) (see also figure 3)




Figure 3 lHlustration of sampling scheme for intersections

¥u1(.) now needs to be chosen such that the important region is sampled most. For
example, points are sampled according to the normal distribution on the plane going through
the point u* and perpendicular to some representative value as of the gradients of the active
constraints. More specifically, the sampling points are obtained from independent normal
variables V; with the coordinates of u* as their mean values. Points on the failure surfaces
are then sought in the direction of a.. The sampling direction as is chosen as the mean of
the gradients of the active constraints a5... The simplest choice for the standard deviation of
the V; is a value of one which also is chosen as the upper limit. The angles between a; and
the a5, however, allow a more efficient assessment of the standard deviations of the V;. For

example, the simple linear relationship

oAV,) = d/x (7)
where o(V;) is the standard deviation and 1; the largest angle spanned by the i—th

components of the gradients of the linear form. It concentrates sampling points around u™.
The concentration becomes denser for decreasing angles. In this way it is assured that
0<o<lfor0< < r Note that # > 7 would violate the definition of u* as the minimal

distance of the intersection of the linearizations to the origin

Now denote v, a sampled point on 2 plane through the origin with gradient a, and A\ the
minimal distance from V. to the intersection of the linear form in direction a.. This distance
can be computed analytically from the aj, v* and possibly the v*j from v, and from «,. The
point v, + A. @ lies on one of the linearizations, |; say. and defines the starting solution for

a Newton search in the direction a, to the point v, = ¥, + A, a, where g((v) = 0. For this

18

point it is checked whether it is in the intersection of the m nonlinear constraints. If not, the
Newton search is repeated with respect to the constraint (t') for which gi(v¢) > 0 to obtain

a suitable point

2.2. Large Intersection

For a "large" intersection (all gi(0) < 0) a slightly different sampling scheme is proposed

The linear form is given by the linearizations of all m constraints at their individual 7—points

u™j with

] u; rrJ} o lu, } (all 1] 0) (8)
The complement of F in this case is interpreted as a "small" union

it [0 (m

F=iU [g(U)>0] =1 U [-g(U)<0] (9)

J | i
J =1

and P(F) is approximated by:

P(F)=1-P(F)~1-[® (+B:R)C]21~ 3 ¢, (+ 3) (10)

J

Here, for each constraint the sampling density is obtained from the V; with the coordinates
of the u*j as mean values and standard deviations o(V;) all set to one. Note that a better
estimate of o could be given according to [3,7] which requires the second—order derivatives
of the g;. For each constraint a number of points uj,s are sampled on a plane through the
origin with gradient a; and, in analogy to the small intersection case, the Aj.; denote the
distance from the sampled point to the nonlinear form in the direction az = a5. The root of
gj(uj,s + Aj.s a5) =0 must again be found by a Newton search. As for the small
intersection it is checked whether the point uy = uj.s + Aj.s @ is in the large intersection (or

alternatively in the small union). If gi(u;) > 0 for any i # ). the Newton search is repeated

with respect to constraint number i (but still in direction a5) which yields a point uy.
Consequently Aj.s has to be updated. \j., = a} u.; now is the distance of u..; to a plane

through the origin with gradient a;

The right hand side of eq. (10) also allows to distribute the total computational effort
according to the contribution of the constraints to the probability of the small union. For

example, one could take
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N.= N.mwlj:il Y N.=N (11)

j [0 e
L 9, (3) i
=10

with N the number of samples for the large intersection and Nj the number of sample points
for each constraint provided that the denominator in eq. (11) is smaller than unity
Otherwise one has to normalize appropriately. The correction factor C for the case of a large

intersection then is:

N 3 s
E.l ‘b{_‘)'F( Visl} ?ﬂ—l(vi‘s)
is=1 P{A) ¥ .(v9)

il =13

1
C=mx.

3. Union of Small Intersections

If the failure set is given as a (minimal) cut set of small—probability intersection domains

{cuts)

&

m k{t)
W=1 j=1

F (13)

t.

sufficiently narrow probability bounds can usually be derived on the basis of the material
given in [2] and [3] provided that the cut set probabilities all are relatively small.
Unfortunately, those bounds cannot be improved easily (see [2]). Therefore, a check of the
accuracy of the results can be especially interesting for m very large and/or P(F.,;) not
small, i.e. when these bounds can become unsatisfactory wide. The sampling procedure is
very similar to the one just described. The total number of sampling points first is distributed
to the various cuts according to eq. (11) with obvious modifications. Then, the individual
cuts are treated as before with the additional task to check whether projected points are also
in other cuts and are closer to the plane on which the sampling points have been generated.
If projected points are, in fact, also in other cuts one proceeds as described for the case of
large intersections.

4. Presence of Equalities
if equality constraints are present the importance sampling scheme becomes even simpler

A sampled point then must lie on the intersection of the equality constraints and must fulfil
the inequality constraints. The integral is written as

20
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If there are  equality constraints n—( independent sample points are generated according to
some normal sampling density which, of course, is centered around the pint F—point. The
rest of the coordinates is found by solving the system of equations for the equality
constraints. A suitable starting point for the non—linear equation solver is the solution of the
corresponding linear form. If no detailed information about the behavior of the intersection of
the equalities in the neighborhood of the j—point is available the obvious choice for the
standard deviation of the sampling densities is unity. This essentially is a sampling according
to method B. It certainly can be improved but we will make no attempt to do so herein
because some numerical investigations have shown that very little extra efficiency can be
achieved.

5. Examples

In Ref. [3] the reliability of a simple lifeline system is studied. Its failure domain is given
by a minimal cut set consisting of five small intersections in the union and the exact failure
probability is Py = 2.25-107° (for details see [3]). This example was recalculated with N=500
sample points (100 points per intersection on the average) with the following results (C.o.V
= Coefficient of Variation in %):

Crude FORM (individual linearizations of the constraints)
without importance sampling: 384-107° < Pf < 3.91-107

with importance sampling: P¢=1.90-107 (CoV.=5%)

*
FORM (linearizations of the constraints at u )
without importance sampling: 26210 < Py < 2.63-107°

with importance sampling: Pe=216-10° (CoV.=2%)

It can be seen that the importance sampling scheme gives a fairly good approximation of the
exact result. SORM reproduces the exact result (see [3]). It remains to compare the

computational effort in terms of the number ng of evaluations of the constraint functions.




Crude FORM without /with importance sampling

FORM without /with importance sampling 246

396

SORM:

Due to the small number of U-space variables in this example (n = 6) the second—order
method uses less computation time For FORM with importance sampling ng s smaller than
for crude FORM because the lineanizations of the constraints at uL provide better starting

solutions for the Newton iterations

As 3 second example the (small) intersection of the failure domain of the
"Daniels"—system with elastic—brittle elements as studied in [3] is recalculated. It should be
emphasized that this test example is particularly awkward in the sense that first—order
methods produce unusual bad results and even second—order methods are not completely
satisfying in the non—asymptotic case because the failure surfaces have significant curvatures
also outside the neighborhood of the 3—point. The following table 1 repeats the values given
in [3] and compares them with the results of the importance sampling scheme in terms of
the equivalent safety index % = — & 1(P¢). N=100 sample points were taken in all cases for

comparison

In table 1. I denotes individual linearization (crude FORM). II stands for a linearization of
the active constraints at u'( and linearizations of the inactive constraints. In this case

quadratic approximations (SORM) of the active constraints do not improve the

FORM—result. IT_is the importance sampling improvement of 1] The values in brackets are
3

the numbers ng of evaluations of the

Table 1: Results for Intersection Problem ("Daniels"—system)

exact

00( 9)

The importance sampling scheme reduces the error of the classical metheds which here is
primarily due to the non—asymptotic conditions (low reliability level). If the equivalent safety
index were larger than a value of around 4, say, SORM would reproduce the exact results
Crude FORM-—results, however, are quite inaccurate for higher dimensions m. The coefficient
of variation of the probability estimate increases with the dimension m of the intersection
One can recognize that the exact results always are within the 20—bounds. A substantial
increase of the number of sample points, of course, reproduces the exact result. Finally, it is
noted that the number of function calls for the importance sampling updates is roughly ten
times larger than for the classical methods if the same quality of estimates is required. For

very large m the importance sampling scheme would require comparatively less function calls

6. Summary and concluding remarks

The importance sampling scheme proposed in the foregoing requires the J—point(s)
together with at least the active gradients of the constraints to be known. If these are known
or at least known approximately a correction factor can be determined updating the
semi—analytical results obtained by first—order reliability techniques. The correction factor is
an unbiased estimate. Its coefficient of variation can be made arbitrarily small. As a rule the
correction requires roughly ten times the effort of simple first—order estimates to reduce the
coefficient of variation below 5% which parallels the findings in [6] for smoothly bounded
failure domains. It is presumed that by choosing a slightly medified sampling density which
uses more information of the failure surfaces in the neighborhood of the F—point(s), the
scheme can still be made slightly more efficient. But any such further improvement must be
judged in view of the additional effort required for the importance sampling update. For any
further refinement of the method there also appears to be some loss of robustness in the
sense that then the F—point(s) must be located with great accuracy

The proposed importance sampling update of probability estimates by the inexpensive
first—order reliability methods thus not only supplements and/or provides a check against the
exact result. It also can be used as a check of the results produced by asymptotic
second—order methods where those appear to be not adequate. Numerical expenience in 3
number of further applications suggests to prefer the importance sampling updates of
first—order results to the more "expensive" asymptotic second—order results in high
dimensional problems sometimes even in the asymptotic case (J large) for numerical reasons
because the computation of the second—order derivatives of the failure surfaces in the
}-point occasionally is less reliable. This will certainly be true when there are only a few
active constraints in the J—point and the search for the higher—order J—points in a Cut set is

difficult. What is probably most important in some practical applications is that the inherent




but not easily improved weakness of the Ditlevsen—bounds for not high—reliability problems

can be overcome easily.

Finally, a warning appears appropriate The correction factor is by its very nature of how
it is computed not differentiable. This implies that the determination of sensitivity and/or
importance factors is not possible Their evaluation would require special schemes which are

not discussed herein.

Acknowledgements: Part of this study was financially supported by A. S. Veritas Research,
Oslo. The authors also appreciate fruitful comments by P. Bjerager and L. Tvedt

References

i1 Shinozuka, M.: Basic Analysis of Structural Safety, Journ. of Struct. Eng., ASCE,
Viol. 109, 3, 1983, pp. 721740

12 Hohenbichler. M.: Rackwitz, R.: First—Order Concepts in System Reliability,
Structural Safety, 1, 3, 1983, pp. 177188

13 Hohenbichler, M.; Gollwitzer, S.; Kruse, W.; Rackwitz, R.: New Light on First—and
Second—Order Reliability Methods, Structural Safety, 4, 1987, pp. 267284

4] Hohenbichler, M.: Rackwitz. R.: Non—Normal Dependent Vectors in Structural
Safety, Journ. of the Eng. Mech. Div., ASCE, Vol. 107, No. 6, 1981, pp. 1227—1249

5] Melchers, R.: Efficient Monte Carlo Probability Integration, Res. Rep. No. 7-1984,
Monash University, 1984

{6l Fujita, M_; Rackwitz, R.: Updating First— and Second— order Reliability Estimates
by Importance Sampling, Structural Eng./ Earthquake Eng., JCSE, 5(1), 1988,
pp. 31s—37s

{7l Hohenbichler, M.; Rackwitz, R.: Improvement of Second—order Reliability Estimates
by Importance Sampling, Journ. of Eng. Mechanics, ASCE, Vol. 114, 12, 1988
pp. 2105-2190

8] Harbitz, A: An Efficient Sampling Method for Probability of Failure Calculation,
Structural Safety, Vol. 3, 2, 1986, pp. 109-115

[9] Hohenbichler, M.; Rackwitz, R.: A Bound and an Approximation to the Multivariate
Normal Distribution Function, Math. Jap., Vol. 30, 5, 1985, pp. 821828

[10] Gollwitzer, S: Rackwitz, R: An Efficient Numerical Solution to the Multinormal
integral, Probabilistic Engineering Mechanics, 3 (2), 1988, pp. 98101

[11] Ditlevsen, O.: Narrow Reliability Bounds for Structural Systems. J Struct. Mech
7(4), 1979, pp. 453-472

24




l“iv Be
Veroffent
Forscht I
b (LK) der
ossenen Instit
Bauwerke
Form. no

fPENIASSIGRENS

her Beri

reseal

Laboratery






