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Abstract

While classical economic theory uses formal mathematical models to analyze existing
markets, market design studies how to set rules in new markets such that goods are
allocated efficiently and the room for strategic manipulation is minimized. At the core
of designing large-scale auction markets is the development of suitable allocation and
pricing rules which determine how goods are distributed among agents and what prices
bidders have to pay for the allocated set of objects.

When agents bid truthfully, an ideal auction mechanism provably terminates in a Wal-
rasian equilibrium, i.e., it produces an efficient allocation that clears the market and
assigns all bidders a set of goods they desire the most at the given prices. The first con-
tribution of this dissertation surveys conditions on the bidders’ value functions that allow
for the existence of Walrasian equilibria and shows how clock auction formats leading
to such equilibria can be interpreted in the framework of primal-dual algorithms.

Due to complementarities in the bidders’ preference relations, Walrasian equilibria gen-
erally do not exist in real-world auction markets. Designing suitable allocation and
pricing schemes in these settings becomes particularly challenging when the number of
bidders and items in the market is large. The exponential number of packages avail-
able in combinatorial auctions makes the communication of bids and the computation of
the final allocation highly complex. Therefore, devising a compact, domain-specific bid
language which allows for both a succinct preference elicitation and the computational
tractability of the market plays a central role in market design.

In the second and third research project of this dissertation, we carefully design and an-
alyze bid languages for two large-scale auction markets. First, we consider a wholesale
market for road capacity that aims to implement dynamic congestion pricing to alleviate
traffic jams in urban areas. As there are tens of thousands of road segments in large
cities, the number of goods in the wholesale market is unparalleled. Our novel compact
bid language does not only allow bidders to submit their preferences for multiple sub-
stitutable routes in a succinct manner but also keeps the market tractable even for a
major city like Berlin as we show with a set of extensive numeric experiments. For the
computation of market-clearing prices, we draw on pricing techniques commonly used
in electricity markets today.

The second large-scale market considered in this dissertation is an auction for allocating
electromagnetic spectrum in the United States. In this market, there are 14 license
blocks for sale in each of the 406 distinct geographic areas, making it impossible for
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the 1,000 bidders to state their valuations for all available packages. The Flexible Use
and Efficient Licensing (FUEL) bid language effectively reduces the communication and
computation complexity in such markets. By simulating the market through numerical
experiments, we analyze which features of the language allow for a fast computation of
the final allocation and compare the market’s efficiency to an auction design based on a
standard XOR bid language.
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1 Introduction

Classical economic theory describes and analyses existing markets using formal math-
ematical models. Given the set of rules of a market, it aims to predict the behavior
of agents as well as the allocation of goods. Market design, on the other hand, is a
microeconomic engineering discipline that uses insights from game theory, mechanism
design, mathematical optimization, and experimental studies to define rules for new
markets. The goal of a market designer is to put regulations into place that allow bid-
ders to state their preferences accurately, prevent strategic manipulations, and lead to
welfare-maximizing allocations. According to Vulkan et al. (2013), market design can
be understood as both a science and an art. It is a science in the sense that it relies on
formal mathematical results from mechanism design, but it is also an art because agents
in the field often behave differently than modeled in theory so that practical design
decisions have to be made which go beyond theoretical findings.

Two prominent examples which sparked modern market design are the invention of the
Simultaneous Multi Round Auction (SMRA) for radio spectrum sales by Paul Milgrom
and Robert B. Wilson in 1994 (Milgrom, 2021) and the redesign of the National Resident
Matching Program (NRMP) by Alvin E. Roth in 1995 (Roth and Peranson, 1999). Later
incidences where market design played a distinctive role include the organization of kid-
ney exchanges (Roth et al., 2004) and the design of electricity markets (Cramton, 2017).
From 1994 until today, the SMRA and its modified versions have been used worldwide
for selling electromagnetic spectrum and have raised hundreds of billions of dollars of
revenue (Milgrom, 2021). The theory and application of matching mechanisms to kidney
exchanges has saved numerous people’s lives, while the redesign of the NRMP matches
over 20,000 doctors including couples each year (Economic Sciences Prize Committee
of the Royal Swedish Academy of Sciences, 2012). The significance of market design
is not only reflected by these numbers but has also been recognized by the committee
for the prize in economic sciences in memory of Alfred Nobel. In 2012, Alvin E. Roth
and Lloyd S. Shapely were awarded the Nobel Memorial Prize in Economics “for the
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1 Introduction

theory of stable allocations and the practice of market design” (Economic Sciences Prize
Committee of the Royal Swedish Academy of Sciences, 2012). Paul Milgrom and Robert
B. Wilson received the same prize in 2020 “for improvements to auction theory and
inventions of new auction formats” (Committee for the Prize in Economic Sciences in
Memory of Alfred Nobel, 2020).

This dissertation focuses on the design of large-scale auction markets. A fundamental
part of designing such markets is to devise a suitable allocation and pricing rule. Given
the bids of the participating bidders, the allocation rule determines which bids are ac-
cepted and how goods are distributed among bidders. The prices that bidders have to
pay for their allocated set of items are determined by the pricing rule. The ultimate
goal for a market designer is to develop an auction mechanism that always terminates
in an outcome constituting a competitive equilibrium, i.e., the market is cleared and all
bidders receive bundles they desire the most at the given prices. In this case, the first
fundamental welfare theorem guarantees the efficiency of such an allocation, meaning
that social welfare is maximized. If the respective competitive equilibrium prices are
anonymous and linear, then the outcome is called a Walrasian equilibrium.

In the first contribution of this dissertation (see Chapter 3) we survey different condi-
tions on the bidders’ value functions that admit the existence of Walrasian equilibria.
A prominent example of such a condition for multi-item single-unit markets is the gross
substitutes condition which was originally proposed by Kelso and Crawford (1982). This
concept was extended to multi-item multi-unit markets by Milgrom and Strulovici (2009)
and is referred to as strong substitutes condition in the literature. If all bidders’ pref-
erences are strong substitutes, then it can be shown that a particular version of an
ascending clock auction by Ausubel (2006) terminates in a Walrasian equilibrium. In
our paper, we highlight the connection between this auction design and duality theory
by interpreting the clock rounds as iterations of a primal-dual algorithm.

Unfortunately, the restrictions posed on the bidders’ value functions which are necessary
to guarantee the existence of Walrasian equilibria are so rigid that they often do not hold
for practical applications of large-scale combinatorial auction markets. In particular,
market designers face the following two challenges.

First, in real-world auction markets, bidders often exhibit synergies between different
items. With such complementary value functions, the strong substitutes condition can
no longer be fulfilled so that Walrasian equilibrium prices are unlikely to exist in these
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settings. Much research in market design focuses on the development of methods for
computing prices that roughly have the same properties as equilibrium prices, thereby
“approximating” equilibrium prices (O’Neill et al., 2005; Gribik et al., 2007; Schiro et al.,
2015; O’Neill et al., 2020). Some of these pricing schemes are actively used in electricity
markets today (Hytowitz et al., 2020).

Secondly, if the strong substitutes condition can no longer be satisfied, the winner de-
termination problem degenerates to an NP-hard optimization problem (Lehmann et al.,
2006). Especially for large-scale auction markets with hundreds of bidders and tens of
thousands of goods, the allocation problem quickly becomes intractable, leading to a
high computation complexity for the auctioneer. In addition to that, the synergies in
the bidders’ preference relations make it necessary for bidders to state their valuations
not only over individual goods but entire packages of items. In order for the auctioneer
to be able to identify the welfare-maximizing allocation, bidders have to submit bids for
all bundles that could potentially be part of the winning allocation. As it is impossible
for bidders to predict which bids will be accepted by the auctioneer, a naive approach
is making bidders state their preferences for all available packages. However, due to
the exponential number of available bundles, it is often infeasible for bidders to deter-
mine values for all of them. Moreover, even for a smaller subset of bundles, eliciting
the bidders’ preferences succinctly is difficult and often causes a high communication
complexity (Nisan and Segal, 2006).

Both the communication and computation complexity of large-scale combinatorial auc-
tions can be tackled by designing compact bid languages that are restrictive enough to
allow for the tractability of the underlying optimization problem but that also use in-
sights from the domain so that bidders are not limited too much in expressing their true
valuations. Domain-specific bid languages have been devised for numerous applications,
including procurement (Bichler et al., 2011), TV ads (Goetzendorff et al., 2015), and
electricity markets (Cramton, 2017). The engineering of domain-specific bid languages is
at the core of market design for combinatorial auctions as it is vital for a high efficiency
of the market (Bichler, 2017; Milgrom, 2021).

In this dissertation, we consider two examples of large-scale auction markets, a whole-
sale market for road capacity and an auction design for selling 5G spectrum licenses in
the United States, for which we effectively address the two design challenges mentioned
above. By devising and analyzing two novel compact bid languages, we significantly
tame the communication and computation complexity in these markets. To compute

3



1 Introduction

approximate equilibrium prices in the road capacity market, we rely on a pricing tech-
nique which has been implemented successfully for electricity markets. In the following,
we briefly introduce the two large-scale auction markets considered in this dissertation.

In the second research project of this dissertation (see Chapter 4), we consider a wholesale
market for road capacity. The goal of this market is to take action against the mispricing
of the traffic’s main resource, the road capacity, which has been identified as the primary
reason for traffic congestion in urban areas (Cramton et al., 2018; de Palma and Lindsey,
2011). Cities like Singapore, London, and Stockholm have already adopted congestion
pricing schemes that charge drivers for entering or driving within the city center. All
of these pricing schemes set tolls with respect to a predefined schedule and do not take
the actual traffic on the road network into account (Lehe, 2019). However, researchers
agree that only dynamic real-time pricing of roads is suitable for charging drivers the
actual externalities they impose on others and the environment (Cramton et al., 2019a;
Cheng et al., 2017).

Beheshtian et al. (2020) propose a wholesale market for road capacity in analogy to elec-
tricity markets where dynamic real-time pricing has already been used for several years.
In such markets, an Independent System Operator (ISO) first sells road capacity to mul-
tiple Service Providers (SPs) on a wholesale market consisting of multiple forward and a
real-time market. The service providers then resell this capacity to end consumers on a
separate retail market. We model the wholesale market as an auction in which the goods
are defined as licenses for using specific road segments within particular time slots. Due
to complementarities in the bidders’ value functions, one cannot hope to find Walrasian
equilibrium prices in this market. Therefore, we rely on a pricing technique called IP
Pricing which produces linear, anonymous market-clearing prices and is commonly used
in electricity markets today (O’Neill et al., 2005). A downside of this pricing method is
that an outside party may have to pay bidders side-payments in order to prevent them
from incurring a loss when winning a bid. While these side-payments can be substantial
in electricity markets, we show with an extensive set of numerical experiments for the
city of Berlin that these side-payments are negligible in our congestion pricing market.

While the number of bidders in our wholesale market is small, the quantity of goods is
unparalleled. In a major city like Berlin, there are more than 34,000 non-residential road
segments, each of which is a good on the wholesale market and can potentially be priced.
As the service providers need to satisfy a customer demand between origin-destination
pairs, they favor a bid language that allows them to specify bids on entire routes. While
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Beheshtian et al. (2020) propose bids to be based on individual road segments, we devise
a novel compact bid language that allows service providers to state their preferences
over multiple substitutable routes between the same origin-destination pair, thereby
effectively mitigating the exposure problem of the design by Beheshtian et al. (2020).
Our extensive numeric experiments show that with our new bid language the underlying
allocation problem is solvable within 15 minutes for a major city like Berlin even though
it contains more than 1 million variables and 250 thousand constraints.

The analysis of domain-specific bid languages for large-scale auction markets is also the
objective of our third research project of this dissertation (see Chapter 5). In mid 2019,
a consortium of satellite providers offered the US Federal Communications Commission
to conduct a private auction to sell electromagnetic spectrum in the C-band, which is
currently used for broadcasting commercial television, to telecommunication providers.
The sold spectrum could then be used by the telecommunication providers to establish a
5G wireless network for end consumers. There were 14 spectrum licenses in 406 different
geographical areas up for sale, leading to 15406 distinct packages for which more than
1,000 bidders could submit bids in the auction. Nobel laureate Paul Milgrom proposed
the Flexible Use and Efficient Licensing (FUEL) bid language that aimed to mitigate
the missing bids and exposure problem of bidders in this auction (Milgrom, 2019). With
a series of extensive numerical experiments, we analyze whether the FUEL bid language
leads to a tractable allocation problem and which features of the bid language are critical
for finding an allocation quickly. We also compare the efficiency of the FUEL auction
design to a classical auction format that features a standard XOR bid language. Even
though the US Federal Communications Commission rejected the private auction pro-
posal in February 2020 and instead sold the C-band spectrum in a public auction using
its usual standard simultaneous clock auction format (Federal Communications Com-
mission, 2020), the FUEL bid language remains a potential candidate for other markets
due to its generic design.
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1 Introduction

Outline

The remainder of this dissertation is structured as follows: Chapter 2 introduces notation
and definitions of standard auction markets. It discusses different design desiderata for
auctions and presents several payment rules which are commonly used in auction markets
today. Finally, it puts congestion pricing markets and auctions for spectrum sales in their
historic and scientific context. Chapter 3 includes the work on the existence of Walrasian
equilibria. The second project on designing a wholesale market for road capacity is
discussed in Chapter 4. The last project on evaluating the FUEL bid language for a
large-scale spectrum auction in the US is presented in Chapter 5. Chapter 6 discusses
the results and highlights possible directions for future research and Chapter 7 concludes
this dissertation.
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2 Theoretical Background

This chapter gives a short introduction to combinatorial auction markets. After intro-
ducing the basic notation and defining the economic environment, the main theorems
and solution concepts of combinatorial auctions are discussed. This serves as a basis
for the subsequent publications listed in this dissertation. The chapter is concluded
by highlighting the connections to real-world applications of large-scale combinatorial
auction markets which are analyzed in detail in Chapter 4 and 5. The notation as well
as the definitions presented in this chapter mainly follow Bichler (2017) and Blumrosen
and Nisan (2007).

2.1 Market Model

A combinatorial auction market consists of n bidders i ∈ I = {1, . . . , n}, a single seller
(or auctioneer) indexed with i = 0, and m indivisible and heterogeneous items (or
goods) k ∈ K = {1, . . . ,m}. A bundle (or package) of items is denoted S ∈ 2K, with
2K representing the power set of K. If there are multiple units available of each item,
bundles have to be represented as vectors x ∈ Zm

≥0 or multisets. Unless stated otherwise,
we will consider the single-unit case throughout this dissertation, i.e., the auctioneer
offers exactly one unit of each item.

Each bidder i in the auction defines a valuation function

vi : 2K → R≥0 (2.1)

which gives the bidder’s value for a bundle S ⊆ K. If two bundles S, T ⊆ K with
S ∩ T = ∅ are complements for a bidder i ∈ I, then the bidder’s valuation for receiving
both bundles is strictly larger than the sum of valuations for being allocated only one
of the bundles, i.e., vi(S) + vi(T ) < vi(S ∪ T ). Conversely, two bundles S, T ⊆ K with
S ∩ T = ∅ are substitutes of one another if vi(S) + vi(T ) > vi(S ∪ T ).
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2 Theoretical Background

Throughout this dissertation, we restrict the preferences of all bidders to valuation func-
tions that fulfill the following three standard assumptions:

• Monotonicity (or free disposal): The valuation function vi of bidder i ∈ I is weakly
increasing, i.e., vi(∅) = 0 and vi(S) ≤ vi(S′) for S ⊆ S′. In other words, bidders
can always dispose additional items for free.

• Independent private values: A bidder’s valuation function is independent of the
values of other bidders, i.e., a bidder’s value for a bundle does not change if the
bidder learns the values of other bidders or the bundles allocated to them.

• Quasilinearity: The utility of bidder i for bundle S ⊆ K is given by ui(S) =
vi(S)− pi(S) where pi : 2K → R≥0 maps a bundle S to the price pi(S) that bidder
i ∈ I has to pay for it.

The outcome o = (x, p) ∈ O of an auction consists of an allocation x = (S1, . . . , Sn)
and price functions p = (p1, . . . , pn) so that bidder i is allocated bundle Si and has
to pay pi(Si). As bidders may not bid their true valuations, we define a bid function
bi : 2K → R≥0 for each bidder i ∈ I that maps each bundle S ⊆ K to the amount
that bidder i bids for it in the auction. If bidders bid truthfully, then their bids exactly
represent their true valuations, i.e., vi(S) = bi(S) for all S ⊆ K and i ∈ I. Bidders are
assumed to behave rationally in the auction, meaning that they aim to maximize their
utility. They bid straightforwardly, if they submit bids for those bundles that maximize
their utility at the given prices.

In some practical applications of combinatorial auctions (e.g., spectrum auctions), auc-
tioneers only want to sell their items if a certain price is exceeded. These so-called reserve
prices for items can be implemented by letting a dummy bidder submit bids on behalf
of the auctioneer which match the auctioneer’s reserve prices for the items. Whenever
the dummy bidder is allocated an item in the auction, this item remains unsold. Unless
stated otherwise, we assume that the auctioneer’s value for each item is zero. Under
this assumption, the reserve prices of all items are zero so that the dummy bidder is not
needed.
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2.2 Bid Languages

2.2 Bid Languages

By placing a bid in an auction, bidders can communicate their willingness to pay for
an object or even entire packages of objects. The bid language specifies the format to
which the bids must adhere and also sets logical rules that define which bids may win
simultaneously.

If there are m items up for sale, there exists an exponential number of 2m − 1 distinct
packages for which bidders can submit bids. Already for a small number of items, bidders
are unable to determine the value of each package (Parkes, 2006). Even if they could,
the communication complexity for sharing their bids with the auctioneer would be too
high (Nisan and Segal, 2006). In addition to that, the computation complexity quickly
gets so severe for the auctioneer that the allocation problem becomes intractable. To
address the communication and computation complexity, bidders either choose to submit
bids for only a fraction of bundles or may be limited by the auctioneer in the number
of admissible bids (Kroemer et al., 2016). As bidders are assumed to have a valuation
of zero for bundles for which they did not submit a bid, the auction may suffer from
substantial efficiency losses as Bichler et al. (2014) show in lab experiments. In the
literature, this effect is known as the missing bids problem.

To tame the communication and computation complexity, market designers often ex-
ploit the domain knowledge on valuation and cost structures of bidders when designing
domain-specific compact bid languages. Prominent examples are the design of bid lan-
guages for procurement auctions (Bichler et al., 2011; Olivares et al., 2012), TV ad
auctions (Goetzendorff et al., 2015), or electricity markets (Cramton, 2017). This dis-
sertation contributes to the line of research on parametric bid languages. In Chapter 4,
a novel compact bid language for a congestion pricing wholesale market is proposed,
while the communication and computation complexity of a parametric bid language for
a spectrum auction in the US is analyzed thoroughly in Chapter 5.

2.2.1 XOR and OR Bid Language

In auction markets with only a single item up for sale, the design of a bid language
is straightforward. Each bid defines a bidder’s willingness to pay for the object to be
sold, and a bidder is allocated the item if her bid is the highest among all submitted
bids in the auction. When multiple goods are offered, the same bid language can be
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2 Theoretical Background

used if items are sold one after another in separate single-item auctions. However, such
sequential auction procedures can lead to substantial strategic problems for bidders
with complementary valuations. This is often the case in large combinatorial auctions
such as spectrum auctions where bidders want to win spectrum licenses for multiple
geographic areas to benefit from economies of scope (see Chapter 5). If they only win
licenses for a subset of the desired regions, their market area may become scattered so
that they cannot profit from network effects. In the literature, this situation is known
as the exposure problem (Ausubel and Milgrom, 2002; Porter et al., 2003). It occurs
when bidders end up winning only a subset of items of their desired bundle and the
price they have to pay exceeds their valuation for these items. The exposure problem
demonstrates the need for more complex bid languages that allow bidders to submit
bids for entire packages of items. Auction markets that feature such package bids are
called combinatorial auctions. Two elementary bid languages for such auctions are the
exclusive-OR (XOR) and additive-OR (OR) bid language.

With an XOR bid language, bidders can submit multiple atomic bids for entire bundles
of items but the auctioneer accepts at most one of them per bidder. If a bid becomes
winning, the respective bidder is allocated all items specified in the bundle. If it is losing,
the bidder is not allocated any of the items. The XOR bid language is fully expressive
in the sense that it allows bidders to express every possible valuation (Nisan, 2000).

An additive-OR bid language also features atomic package bids but, in contrast to XOR,
any non-intersecting combination of a bidder’s bids may become winning simultaneously.
While the OR bid language might allow bidders to express their bids more succinctly
in some cases, this bid language is not fully expressive as it cannot represent valuations
with substitutes (Nisan, 2006). A bidder who is interested in winning exactly one of
two fully substitutable, non-intersecting bundles cannot express these preferences with
an OR bid language. Fujishima et al. (1999) and Nisan (2000) suggest the OR∗ bid
language that supports such XOR constraints with the help of phantom items. Nisan
(2000) shows that there are z OR∗ bids and z2 phantom items needed to represent z
bids of an OR or XOR bid language.

Domain-specific compact bid languages for combinatorial auctions usually combine both
the XOR and additive-OR bid language. By only allowing certain combinations of OR
and XOR bids, the number of potential packages for which bidders can submit bids is
reduced substantially. In addition to that, these bid languages often enforce a special
bid structure which can be exploited to keep the allocation problem tractable.
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2.3 Design Desiderata for Auctions

2.3 Design Desiderata for Auctions

Auctions can be understood as mechanisms that map the bids of bidders to an outcome.
An outcome consists of an allocation of items to bidders as well as the prices that bidders
have to pay for the allocated set of goods. In general, one cannot expect bidders to state
their true valuations in an auction. Instead, bidders may shade their bids or choose
not to disclose their valuations for certain bundles altogether in order to alter the final
allocation or minimize their payments. There exists a set of desirable properties that
auction mechanisms aim to fulfill. These are briefly reviewed in the following.

An auction mechanism M maps the bids of the bidders to a respective outcome o =
(x, p), i.e., it implements a function f : BI → O where B is the set of all bid functions
b : 2K → R≥0, I is the set of bidders, and O denotes all possible outcomes. In order
for the outcome to be realizable, the auction mechanism has to determine a feasible
allocation, i.e., the auctioneer’s supply is sufficient to cover the aggregated demand of
all bidders.

Besides that, auctioneers often strive for allocations that maximize social welfare which
is defined as the sum of utilities of all bidders and the auctioneer. As the auctioneer’s
value for all items is assumed to be zero, the auctioneer’s utility is simply the sum of the
prices which the bidders pay for their allocated bundles. Due to the quasi-linearity of the
bidders’ valuations, the prices occurring in the auctioneer’s and bidders’ utility functions
cancel so that social welfare can be defined equivalently as the sum of all bidders’ values
for the allocated set of goods, i.e.,

∑
i∈I vi(Si). Note that bidders may choose not to

disclose their true valuations for strategic purposes. In this case, the auctioneer can only
maximize the total bid value (i.e.,

∑
i∈I bi(Si)) in the auction. If bidders bid truthfully

and disclose their true valuations, this value is equivalent to the social welfare.

Allocations are efficient if items are distributed in a way so that social welfare is maxi-
mized. Whenever this is not the case, the (allocative) efficiency is often considered as a
metric for the quality of the allocation.

Definition 2.1 (Allocative Efficiency). Given the valuations vi of all bidders i ∈ I, let
x∗ = (S∗1 , . . . , S∗n) be a welfare-maximizing allocation and x = (S1, . . . , Sn) the allocation
produced by the auction mechanism. Then, the allocative efficiency of the outcome is
defined as ∑

i∈I vi(Si)∑
i∈I vi(S∗i ) . (2.2)
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2 Theoretical Background

As bidders cannot be forced to reveal their true preferences in an auction, they may
bid strategically to influence the resulting allocation and prices. Such strategic ma-
nipulations reach from bid shading (i.e., submitting lower bids than the own valuation
(Bichler, 2017)) over shill bidding (i.e., bidding with multiple identities (Sakurai et al.,
1999; Yokoo et al., 2004)) to spiteful bidding (i.e., placing additional bids that are not in-
tended to become winning but that drive up the payments of competitors (Morgan et al.,
2003)) and other collusive behavior (Ausubel et al., 2006b). If an auction mechanism
allows for such strategic behavior, this complicates the bidding process significantly as
bidders have to spend a large amount of time and effort to learn the bidding strategies
of their competitors and adapt their own bidding behavior accordingly. Market design-
ers try to develop auction formats in which strategic bidding is limited or in the best
case even impossible. The concept of strategyproofness (or dominant-strategy incentive
compatibility) describes mechanisms where truth-telling is a dominant strategy.

Definition 2.2 (Strategyproofness). An auction mechanism is strategyproof (or dominant-
strategy incentive compatible) if reporting true valuations always leads to a weakly higher
utility regardless of the bids of the other bidders, i.e., for all bidders i ∈ I and bid
functions (b1, . . . , bi, . . . , bn) ∈ BI ,

ui(f(vi, b−i)) ≥ ui(f(bi, b−i)) (2.3)

with b−i denoting the bid functions of all bidders except for bidder i and ui(o) representing
the utility of bidder i for the outcome o ∈ O computed by the mechanism’s function f .

A slightly weaker notion of strategyproofness is Bayesian-Nash incentive compatibility
which only states that truth-telling leads to a Bayesian Nash equilibrium, i.e., if the other
bidders reveal their preferences truthfully, then a bidder can maximize her expected
utility by also bidding her true valuations. Stronger notions of strategyproofness such
as group-strategyproofness consider deviations of entire coalitions of bidders. For formal
definitions of these properties we point the interested reader to (Bichler, 2017).

Mechanisms should terminate in an outcome in which the total payments of buyers
match the amount that sellers receive. Otherwise, a third party outside the market
needs to settle losses by paying market participants side-payments. On the other hand,
if bidders pay more money than sellers actually receive, buyers and sellers may refuse to
participate in such a market from the beginning. The described property is captured in
the notion of budget-balance.
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Definition 2.3 (Budget-Balance). A mechanism is budget-balanced if the total payments
of all buyers and sellers sum up to zero.

A typical requirement of bidders for participating in an auction is that they are guar-
anteed not to incur a loss. This implies that the auction mechanism never terminates
in an outcome where a bidder has to pay a higher price for an allocated set of items
than originally bid in the auction. If this condition is met, then the mechanism fulfills
individual rationality.

Definition 2.4 (Individual Rationality). An auction mechanism is individual rational
if for all bid functions b = (b1, . . . , bn) the mechanism produces an outcome o = (x, p)
with allocation x = (S1, . . . , Sn) and price functions p = (p1, . . . , pn) such that no bidder
i ∈ I has to pay more for the allocated set of goods than she bid in the auction, i.e.,
bi(Si) ≥ pi(Si) for all i ∈ I.

If bidders have to pay different amounts for the same set of items, then prices are
personalized. This is often perceived as unfair among bidders as it violates the law of
one price.

Definition 2.5 (Law of one price). The law of one price is fulfilled if bidders are charged
the same price for the same set of items, i.e., prices are anonymous: for each pair i, j ∈ I
and for all bundles S ⊆ K it holds that pi(S) = pj(S).

Besides anonymity, mechanism designers also strive for linear (or item-level) prices.
With a linear pricing scheme, each item k ∈ K is assigned an individual price p(k),
while the price of a bundle S is given as the sum of the prices of its components, i.e.,
p(S) =

∑
k∈S p(k). Unfortunately, efficient outcomes can generally only be realized with

linear, anonymous prices if the bidders’ value functions fulfill very restrictive conditions.
This will be discussed thoroughly in Chapter 3.

While all of these design desiderata are highly desirable for auctions, they cannot be
fulfilled simultaneously in general. For example, Myerson and Satterthwaite (1983)
show that for a bilateral trade problem with one buyer and one seller there does not
exist a mechanism that simultaneously satisfies budget-balance, efficiency, Bayesian-
Nash incentive compatibility, and individual rationality. A broad stream in literature
analyzes the conditions under which certain design desiderata are guaranteed to be sat-
isfied (d’Aspremont and Gérard-Varet, 1979; McAfee, 1992; Myerson and Satterthwaite,
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1983). In practice, market designers have to consider carefully which of the properties
are indispensable for their applications and where compromises can be made.

2.4 Winner Determination Problem

The auctioneer’s task of finding a feasible, welfare-maximizing allocation in a single-
unit environment with an XOR bid language can be stated as a binary program which
is commonly referred to as Winner Determination Problem (WDP) in the literature
(Bichler, 2017; Blumrosen and Nisan, 2007). For the WDP below, we assume that
bidders disclose their true valuations in the auctions so that vi(S) = bi(S) for all bidders
i ∈ I and bundles S ⊆ K.

max
∑
i∈I

∑
S⊆K

xi(S) vi(S) (WDP)

s.t.
∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I (2.4)

∑
i∈I

∑
S⊆K:k∈S

xi(S) ≤ 1 ∀k ∈ K (2.5)

xi(S) ∈ {0, 1} ∀i ∈ I, ∀S ⊆ K (2.6)

The first set of Constraints 2.4 restricts bidders to be allocated at most one bundle,
thus enforcing an XOR bid language. Omitting these constraints gives the WDP with
an OR bid language. Constraints 2.5 ensure that each item k ∈ K is allocated at most
once. The binary variables defined in 2.6 guarantee that bidders cannot win bundles
partially.

Unfortunately, there exists an equivalency between the WDP with an OR bid language
and the weighted set packing optimization problem (Rothkopf et al., 1998; Sandholm,
2002), which was shown to be NP-complete (Karp, 1972). Lehmann et al. (2006) show
that the WDP with an XOR bid language is equivalently NP-complete even if bidders
are restricted to a single bid, each item occurs in exactly two bids, and all bids are valued
the same.

An optimization problem is convex if its objective function is convex and the feasible area
represents a convex set. As the items k ∈ K are assumed to be indivisible, the decision
variables xi(S) are defined as binary decision variables in the WDP, making the WDP
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ultimately non-convex. If items and bundles can also be partially allocated, then the
decision variables in the WDP are relaxed to continuous variables. This relaxed version
of the WDP is called the relaxed winner determination problem (RWDP), which is a
convex optimization problem and is therefore solvable in polynomial time (Karmarkar,
1984).

max
∑
i∈I

∑
S⊆K

xi(S) vi(S) (RWDP)

s.t.
∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I (πi) (2.7)

∑
i∈I

∑
S⊆K:k∈S

xi(S) ≤ 1 ∀k ∈ K (p(k)) (2.8)

xi(S) ∈ R≥0 ∀i ∈ I, ∀S ⊆ K (2.9)

As the RWDP is a linear program, one can also state its dual, the dual of the relaxed
winner determination problem (DRWDP).

min
∑
i∈I

πi +
∑
k∈K

p(k) (DRWDP)

s.t. πi +
∑
k∈S

p(k) ≥ vi(S) ∀i ∈ I, ∀S ⊆ K (xi(S)) (2.10)

πi ∈ R≥0 ∀i ∈ I (2.11)

p(k) ∈ R≥0 ∀k ∈ K (2.12)

The dual variables corresponding to constraints are denoted πi and p(k) intentionally.
Given the (possibly fractional) allocation of the optimal solution of the RWDP, the
values of the dual variables πi and p(k) exactly match the bidders’ payoffs and item
prices, respectively.

Under certain conditions, it can be shown that the RWDP has an optimal integral
solution. Whenever this is the case, the WDP can be solved in polynomial time as the
optimal solution to the RWDP is also an optimal solution to the WDP. Unfortunately,
such cases are rather rare in practice. For example, an optimal solution of the RWDP
exists, if the constraint matrix is totally unimodular. This is the case for assignment
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markets where bidders bid on multiple goods but win at most one of them (Bikhchandani
and Ostroy, 2002). Another example are combinatorial auctions where the bidders’
valuation functions fulfill the gross substitutes condition. This will be discussed more
thoroughly in the context of Walrasian equilibria in Section 2.5.1.

2.5 Competitive Equilibria

A fundamental solution concept in economics is the notion of competitive equilibria.
The latter model a state where supply matches demand and all bidders receive a bundle
of items that they desire the most at the given prices. Arrow and Debreu (1954) as
well as McKenzie (1954) could show that with perfect competition, convex preferences,
and demand independence there always exists a set of competitive equilibrium prices
supporting a competitive equilibrium. Unfortunately, the conditions for the existence
of competitive equilibria are often not met in practice as in many cases items are in-
divisible and bidder preferences are non-convex. Before elaborating on the rich results
on the existence of competitive equilibria, we want to define the concept of competitive
equilibria more formally.

The demand set of a bidder contains the bundles that maximize the bidder’s utility given
the price function pi of the bidder, i.e.,

Di(pi) = arg max
S⊆K

{vi(S)− pi(S)} (2.13)

An outcome o = (x, p) is called envy-free if it assigns each bidder a bundle from her
demand set. An envy-free outcome corresponding to a feasible allocation always exists,
e.g., prices could be raised so high that all bidders maximize their utility by requesting
the empty bundle. If the auctioneer’s supply matches the allocated set of items, then
the outcome constitutes a competitive equilibrium.

Definition 2.6 (Competitive Equilibrium). A feasible allocation x = (S1, . . . , Sn) and
prices p = (p1, . . . , pn) are a competitive equilibrium if Si ∈ Di(pi) and

⋃
i∈I Si = K.

So far, we assumed that each bidder i ∈ I has her own price function pi : 2K → R≥0 that
maps arbitrary bundles S ⊆ K to a respective price that the bidder has to pay. This
means that prices neither have to be anonymous nor linear. In fact, for personalized
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and non-linear prices it can be shown that a competitive equilibrium always exists when
there is only a single seller in the market (Bikhchandani and Ostroy, 2002).

2.5.1 Walrasian Equilibria

If prices are anonymous and linear, then they can simply be denoted by a vector p ∈ Rm
≥0

where the entry at index k represents the price for item k ∈ K. The price for a bundle
S ⊆ K is then given by p(S) =

∑
k∈S p(k). In the presence of linear and anonymous

prices, a competitive equilibrium is also called a Walrasian equilibrium.

Definition 2.7 (Walrasian Equilibrium). A feasible allocation x = (S1, . . . , Sn) and
prices p ∈ Rm

≥0 constitute a Walrasian equilibrium if Si ∈ Di(p) = arg maxS⊆K{vi(S) −
p(S)} and

⋃
i∈I Si = K.

The two famous fundamental theorems of welfare economics were originally shown for
markets with divisible items (Arrow and Debreu, 1954; McKenzie, 1954). However, they
also hold for economic environments where items are indivisible (Blumrosen and Nisan,
2007).

Theorem 2.1 (First Welfare Theorem). If the allocation x = (S1, . . . , Sn) and prices
p ∈ Rm

≥0 constitute a Walrasian equilibrium, then x maximizes social welfare.

Theorem 2.2 (Second Welfare Theorem). If x = (S1, . . . , Sn) is a Pareto efficient
allocation, then it can be supported by Walrasian equilibrium prices p ∈ Rm

≥0 so that x
and p represent a Walrasian equilibrium.

Existence of Walrasian Equilibria

Walrasian equilibria are a very desirable outcome of combinatorial auctions. Not only
does each bidder receive one of her most desired bundles so that the resulting allocation
is welfare-maximizing, but also the prices are perceived as fair because they are linear
and anonymous. It is therefore not surprising that economic researchers have spent a lot
of effort to characterize the conditions which admit the existence of Walrasian equilibria
(Bikhchandani and Mamer, 1997; Kelso and Crawford, 1982; Fujishige and Yang, 2003;
Baldwin and Klemperer, 2019; Leme, 2017; Shioura and Tamura, 2015).
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A central result of these efforts marks the contribution of Bikhchandani and Mamer
(1997) who show via strong duality that Walrasian equilibrium prices always exist when
the relaxed winner determination problem (RWDP) yields an optimal integer solution.
They prove their theorem for a multi-item single-unit market. However, as already noted
in their publication, this result can be transferred straightforwardly to multi-item multi-
unit environments by treating each homogeneous unit of an item as a distinct good.
Kelso and Crawford (1982) introduce the gross substitutes condition and find that if all
bidders’ valuation functions are gross substitutes, then a Walrasian equilibrium always
exists.

Definition 2.8 (Gross Substitutes (GS)). Let p ∈ Rm
≥0 denote the prices for items k ∈ K.

An item k is demanded by bidder i ∈ I if it is part of a bundle S′ ⊆ K being in the demand
set of bidder i at prices p, i.e., k ∈ S′ and S′ ∈ Di(p) = arg maxS⊆K{vi(S)−p(S)}. The
gross substitutes condition is fulfilled if for any prices p′ ≥ p with p′(k) = p(k) it holds
that k is demanded at prices p′ whenever it is demanded at prices p.

Gul and Stacchetti (1999) introduce the single improvement and no complementarities
condition which are both equivalent to the gross substitutes condition. They also pro-
pose an ascending auction for the multi-item single-unit setting that terminates in a
Walrasian equilibrium if the bidders’ valuation functions satisfy the GS condition (Gul
and Stacchetti, 2000). Murota and Shioura (1999) introduce the notion of M \-concavity
for valuation function and Fujishige and Yang (2003) show that a bidder’s valuation
function satisfies the gross substitutes condition if and only if it is M \-concave. Sun
and Yang (2006) generalize the gross substitutes condition to the gross substitutes and
complements (GSC) condition and show that Walrasian equilibria also exist is this gener-
alized environment that allows complementarities across two different classes of goods.

While the gross substitutes condition and its equivalent formulations concern the exis-
tence of Walrasian equilibria in the multi-item single-unit economic environment, there
exist also extensions of these concepts to the multi-item multi-unit setting. Milgrom
and Strulovici (2009) generalize the notion of gross substitutes and propose the strong
substitutes condition. A multi-unit valuation function can be reduced to the single-unit
case by interpreting each homogeneous unit of a good as a distinct item. If this single-
unit valuation function satisfies the gross substitutes condition, then the corresponding
multi-unit valuations are strong substitutes. Milgrom and Strulovici (2009) also show
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that the single-improvement property can be extended to the multi-unit case, becom-
ing the binary single improvement property. Shioura and Tamura (2015) note that the
strong substitutes condition is equivalent to a multi-unit version of M \-concavity. Also
the GSC condition has a multi-unit extension which is the generalized gross substitutes
and complements (GGSC) condition (Shioura and Yang, 2015). Last but not least, Bald-
win and Klemperer (2019) consider so-called demand types which are a list of vectors
describing the possible individual or aggregate demand changes with respect to a generic
price change. They show that if the valuation functions of all bidders are concave and
belong to a demand type composed of a unimodular set of vectors, then a Walrasian
equilibrium exists.

Similar to the auction proposed by Gul and Stacchetti (2000) for the single-unit scenario,
Ausubel (2005, 2006) proposes a tâtonnement process for the multi-unit setting that ter-
minates in a Walrasian equilibrium if all bidders have strong substitutes valuations. The
algorithm is based on a greedy minimization of the Lyapunov function whose minimum
coincides with the lowest Walrasian equilibrium price vector. In the first publication
contained in this dissertation (see Chapter 3), we connect this result to optimization
algorithms by showing that a price vector is a minimizer of the Lyapunov function if
and only if it minimizes the DRWDP. This result allows us to interpret the tâtonnement
process presented in Ausubel (2005, 2006) as a primal-dual algorithm.

For a thorough summary of auction formats terminating in Walrasian equilibria as well
as an analysis of conditions on individual and aggregate valuation functions that are
sufficient for the existence of Walrasian equilibria, we point the reader to the publication
listed in Chapter 3.

2.6 Payment Rules

The existence of linear and anonymous Walrasian equilibrium prices can only be guar-
anteed for rather restricted settings. Unfortunately, in many practical applications, the
bidders’ preferences contain complementarities so that linear and anonymous equilib-
rium prices generally do not exist. This makes it not obvious how to set prices that are
acceptable to all market participants. This section provides an overview of the pricing
rules that have received much attention over the past decades and are commonly used
for practical applications today.
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2.6.1 Pay-as-Bid

The classic English auction is undoubtedly by far the most known auction format. This
is probably due to large auction houses like Sotheby’s and Christie’s using the English
Auction for auctioning off their goods. In an English auction, starting from an item’s
reserve price, bidders submit successively higher bids than their competitors. If none of
the bidders wants to raise their bid, the bidder with the highest bid wins the auction.
The payment of the bidder equals the standing bid. This pricing rule is often referred
to as pay-as-bid (or first-price) payment rule.

Because of its simplistic design, the pay-as-bid payment rule is often perceived as the
natural choice among bidders, especially in smaller auctions where only one item is auc-
tioned off. Apart from English auctions, the pay-as-bid pricing rule is also implemented
in first-price sealed-bid auctions. In the latter auction format, bidders place their bids
in a sealed form. After the bidding phase ends, the auctioneer opens all bids simultane-
ously and determines the bidder with the highest bid who is announced the winner of
the auction and has to pay an amount equal to her bid.

In order to maximize their utility in first-price sealed-bid auctions, bidders should not
bid up to their true valuation but need to shade their bid. While equilibrium bidding
strategies can be computed for simple auctions with only a single good (Bichler, 2017),
it is much more complex to derive them for other scenarios such as split-award auctions
(Kokott et al., 2019). For first-price sealed-bid combinatorial auctions, no closed-form
equilibrium bidding strategies can be derived (Bichler, 2017). In order to maximize their
utility in these settings, bidders often need to invest a lot of time and effort to learn
about the bidding behavior of their competitors so that they can estimate by how much
they should shade their own bids. As a result, bidding becomes very complex for bidders
in these types of auctions.

2.6.2 VCG Prices

In 1961, Vickrey published a groundbreaking paper in which he proposes a second-price
sealed-bid auction which is also known as Vickrey auction today (Vickrey, 1961). In
markets with only a single item up for sale, all bidders bid simultaneously in a sealed
bid format. The bidder with the highest bid wins the auction but only has to pay the
bid of the second highest bidder. Thus, the bidder’s own bid does not influence the
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resulting price. It can be shown that the dominant strategy of all bidders is to bid their
true valuations and that the resulting outcome is efficient, both being very desirable
properties in auction theory (Ausubel et al., 2006b).

Vickrey’s initial auction design and the later contributions of Clarke (1971) and Groves
(1973) led to the celebrated Vickrey-Clarke-Groves (VCG) mechanism which is applica-
ble also to multi-item multi-unit combinatorial auctions. Similar to Vickrey’s original
design, bidders have to pay the opportunity cost of the goods they are allocated in
the auction. A more formal definition of the VCG price of bidder i is given in Defini-
tion 2.9.

Definition 2.9 (VCG Price). Let x∗ = (S∗1 , . . . , S∗n) be the optimal allocation when
solving the WDP with the bids of all bidders I and let y∗ = (T ∗1 , . . . , T ∗i−1, T

∗
i+1, . . . , T

∗
n)

denote the optimal allocation considering only the bids of bidders I−i = I \ {i}. Fur-
thermore, let w(I) be the optimal objective value of the WDP with respect to the stated
valuations of all bidders I. Then, the VCG price of bidder i is

pV CG
i =

∑
j∈I−i

vj(T ∗j )−
∑

j∈I−i

vj(S∗j ) (2.14)

= vi(S∗i )−

∑
j∈I

vj(S∗j )−
∑

j∈I−i

vj(T ∗j )


= vi(S∗i )− (w(I)− w(I−i)) .

Similar to the Vickrey auction, it is a dominant strategy for bidders to report their
valuations truthfully in the VCG mechanism, i.e., the mechanism is strategyproof. This
makes bidding substantially easier for bidders than in the first-price sealed-bid auction
as they do not have to spend efforts to estimate the bids of their competitors when
submitting their own bid. In addition to that, Green and Laffont (1979) and Holm-
ström (1979) show that the VCG mechanism is the unique strategyproof and efficient
mechanism in the independent private values setting.

Despite these positive theoretical results, the VCG mechanism is barely used in practice.
Ausubel et al. (2006b) and Rothkopf (2007) list several properties of the VCG mechanism
that make it impractical for real-word applications: The VCG mechanism breaks the
law of one price as bidders potentially pay different amounts for the same set of items.
It may result in low and sometimes even zero revenue, and the revenue is not monotonic
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in the number of bidders present in the auction or the amount they bid. The mechanism
is also not group-strategyproof so that a group of bidders may collude and alter their
bids to change the allocation.

For large-scale combinatorial auctions with many items and available bundles, the VCG
mechanism puts a computational burden on the auctioneer as the computationally hard
winner determination problem does not only have to be solved to determine the welfare-
maximizing allocation but also once again for each winning bidder in the auction in order
to compute the VCG payments (Rothkopf, 2007). Moreover, due to the large number
of available packages, bidders are often unable to state their valuation for all possible
bundles. Even if the sheer number of packages was not of concern, bidders might be
reluctant to report their true preferences as this secret information might be exploited
by their competitors if bids get public. Moreover, the VCG mechanism is no longer
strategyproof if bidders have a limited budget, the independent private value model is
violated, or bidders do not report their valuations for all available bundles. Last but
not least, it can be shown that the VCG outcome is not necessarily in the core (Ausubel
et al., 2006b), a solution concept that is discussed more thoroughly in the following
section.

2.6.3 Core Pricing

The core can be seen as a measure of stability of an allocation. If an outcome o = (x, p)
consisting of an allocation x = (S1, . . . , Sn) and price functions p = (p1, . . . , pn) is a
core outcome, then no coalition of bidders can negotiate a side-deal with the auctioneer
in which the accumulative payoff of everyone involved is strictly larger than in the
original allocation. To define the core more formally, we have to introduce the notion of
coalitional values.

Let I0 = {0, . . . , n} denote the set of bidders including the auctioneer who is indexed
with i = 0 and let XC denote the set of all possible feasible allocations x = (S0, . . . , S|C|)
involving coalition C ⊆ I0. Then, the coalitional value of a coalition C ⊆ I0 is given
by

w(C) =

maxx∈XC

∑
i∈C vi(Si), if 0 ∈ C

0, otherwise.
(2.15)
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As the auctioneer is necessary for trade, the coalitional value of coalitions not including
the auctioneer is zero. This leads to the definition of the core:

Definition 2.10 (Core). A payoff vector π ∈ Rn
≥0 is in the core if it is part of

Core(I0, w) =

π ≥ 0 :
∑
i∈I0

π(i) = w(I0), w(C) ≤
∑
i∈C

π(i) ∀C ⊆ I0

 . (2.16)

An outcome is called a core outcome if the vector describing the bidders’ payoff is in
the core. The allocation and prices associated with the core outcome are referred to
as core allocation and core prices, respectively. If an outcome is not in the core (i.e.,
the outcome is unstable), then the payments of winning bidders are so low that their
losing competitors might be willing to pay a higher amount for the same set of goods.
Allocations outside of the core are often perceived as unfair and are therefore impractical
for auctioning off public goods such as spectrum (Day and Raghavan, 2007; Day and
Milgrom, 2008). Therefore, ascending combinatorial auctions which are commonly used
for spectrum sales worldwide are designed to terminate in a core outcome (Ausubel and
Milgrom, 2002; Ausubel et al., 2006a).

While the core in a combinatorial auction setting is non-empty as the pay-as-bid price
vector is always included (Day and Cramton, 2012), the core may contain several out-
comes, making it unclear which one to choose. If the VCG payoff vector is in the core,
then this would be a natural choice as it can be shown that the Vickrey payoff vector is
bidder dominant, meaning that all bidders unanimously prefer it over any other element
of the core (Ausubel et al., 2006b).

Unfortunately, the VCG mechanism generally does not lead to a core outcome (Ausubel
et al., 2006b). Only in very restricted settings where the bidders-are-substitutes condition
is fulfilled, VCG prices are guaranteed to support a core allocation (Bikhchandani and
Ostroy, 2002). However, for practical applications this condition is often violated. If the
VCG payoff vector is not in the core, then the associated VCG prices are always less than
or equal to any core prices (Ausubel et al., 2006b). Researchers have therefore tried to
develop pricing schemes that result in core prices which are as close as possible to VCG
prices. Day and Raghavan (2007) propose a method based on constraint generation
that terminates in bidder-Pareto-optimal core prices, i.e., prices that minimize the total
payments of all bidders. Similar to Parkes et al. (2001), they argue that these prices
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minimize the possibility of bidders to collude and manipulate the outcome. Day and
Cramton (2012) refine this method in the sense that the price vector among all bidder-
Pareto-optimal core prices is selected which minimizes the Euclidean distance to the
VCG prices.

Over the past years, the Vickrey-nearest bidder-optimal core-pricing rule based on Day
and Cramton (2012) has gained much popularity in spectrum auctions around the world.
As a pricing scheme for the Combinatorial Clock Auction (CCA) design, it has been used
in Denmark, Austria, Canada, Switzerland, Australia, the United Kingdom, and others
(Cramton, 2013; Ausubel and Baranov, 2017). The Vickrey-nearest core pricing rule
was also proposed for the Flexible Use and Efficient Licensing (FUEL) auction design
(Milgrom, 2019), which is analyzed in depth in Chapter 5.

2.6.4 IP Pricing

Electricity spot markets are two-sided markets where the load (i.e., the energy demand)
is matched with the output of generators (i.e., the supply). These markets are highly
non-convex due to start-up and shut-down costs of generators, minimum output re-
quirements, and piece-wise linear cost functions. In such non-convex markets, the dual
variables of the corresponding allocation problem no longer have a similar economic
interpretation as in convex settings. Linear and anonymous equilibrium prices gener-
ally do not exist in electricity markets. Nevertheless, many electricity market operators
around the world try to “convexify” the underlying optimization problem and mimic
equilibrium prices by adopting linear, anonymous pricing schemes in combination with
side-payments and penalties (Liberopoulos and Andrianesis, 2016).

A commonly used pricing scheme in electricity markets is IP pricing which was originally
proposed by O’Neill et al. (2005). Under this pricing rule, a non-convex mixed-integer
linear optimization program is solved to determine the optimal dispatch. Prices are then
computed by solving a modified version of the allocation problem, the so-called pricing
problem. In the latter, all integer variables are fixed to the value they attain in the
optimal solution of the allocation problem. This eliminates the non-convexities so that
the dual variables of the pricing problem can be interpreted as linear and anonymous
prices.

Unfortunately, such prices are neither budget-balanced nor do they fulfill individual
rationality. In fact, substantial side-payments (so-called make-whole payments) are nec-
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essary in energy markets to prevent market participants from incurring a loss. While
energy prices are linear and anonymous, the side-payments are personalized and private,
thereby reducing the transparency of the market (O’Neill et al., 2020; Hytowitz et al.,
2020). Moreover, the stability of the allocation can only be enforced by setting suitable
penalties for bidders that make deviation unattractive. High make-whole payments and
penalties indicate a high degree of non-convexities in the market.

While IP pricing is used extensively in electricity markets today, make-whole payments
remain a major concern as they are not incorporated in the public prices and therefore
lead to wrong investment signals. There is ongoing research to develop other pricing
mechanisms where make-whole payments and penalties are minimized. Convex Hull
Pricing (CHP) as proposed by (Gribik et al., 2007) minimizes penalties but is com-
putationally so challenging that it is not used for practical applications (Schiro et al.,
2015). Extended Locational Marginal Pricing (ELMP) attempts to approximate convex
hull pricing but its economic properties are not well understood yet (Schiro et al., 2015).
Another direction is followed by O’Neill et al. (2020) who propose Average Incremental
Cost (AIC) pricing which aims to eliminate make-whole payments. In the pricing run of
this method, a generator’s minimum output level is relaxed to zero and its marginal cost
is replaced by the AIC price, i.e., its original marginal cost plus the fixed cost averaged
over the generator’s assigned dispatch. The price at which market participants trade is
then defined as the highest AIC of supply dispatched.

In Chapter 4, we propose a wholesale market design for a congestion pricing market. To
determine prices for individual road segments, we apply the IP pricing method presented
above. Interestingly, unlike electricity markets, our numerical experiments show that the
make-whole payments in our congestion pricing market are negligible compared to the
overall payments made by the bidders.

2.7 Large-Scale Auction Market Design in Practice

Combinatorial auctions are the means of choice when the submission of package bids is
essential for bidders to state their preferences accurately. This is often the case when
bidders have complementary valuations. Combinatorial auctions are widely used in the
field, prominent examples include spectrum auctions (Bichler and Goeree, 2017), alloca-
tion of airport time slots (Rassenti et al., 1982), procurement of freight transportation
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services (Caplice et al., 2006), industrial procurement (Bichler et al., 2006), and pro-
curement of public transport services (Cantillon et al., 2006).

In Chapter 4 and 5 we consider two large-scale combinatorial auction markets, a whole-
sale market for road capacity and a spectrum auction in the United States. Before
analyzing our bid language designs for these markets in detail, we would like to provide
the reader with a short overview of the scientific and historic context of these markets.
First, in Section 2.7.1, we consider different static congestion pricing schemes and their
implementation in various cities around the world. The wholesale market design we
analyze in Chapter 4 admits dynamic congestion pricing which, in contrast to static
schemes, allows for setting tolls dynamically on individual road segments. Secondly, in
Section 2.7.2, we give a brief overview of the evolution of spectrum auctions over the
past decades, eventually leading to the large-scale 5G spectrum auction in the US which
is subject to Chapter 5.

2.7.1 Congestion Pricing

Traffic congestion leads to substantial economic and ecological damage in large cities
around the world. People sitting in traffic do not only lose time and waste fuel but
also cause higher air pollution and carbon dioxide emissions, both being a threat to
the health of a city’s population (Levy et al., 2010). According to an article by The
Economist, the total cost of traffic jams in Germany, Britain, and the US summed up
to approximately $461 billion.1 Due to an increase in population and a trend towards
urbanization, traffic is predicted to worsen in the coming decades. According to a study
by the German Federal Ministry of Transport and Digital Infrastructure, the car traffic
in Germany will increase by approximately 10% between 2010 and 2030 (Schubert et al.,
2014). The same study also predicts that the number of vehicles per capita raises by
around 10%.

A widespread belief is that traffic congestion can be reduced in the future with a com-
bination of ride-hailing services, self-driving cars, additional public transportation, and
large investments in infrastructure. However, this belief cannot be supported by recent
research (Duranton and Turner, 2011; Schaller, 2017; Simoni et al., 2019). Unlike other
essential utilities such as electricity, water, gas, and communications for which consumers

1https://www.economist.com/graphic-detail/2018/02/28/the-hidden-cost-of-congestion,
published: 28.02.2018, accessed: 09.12.2021
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have to pay according to their level of usage, the road network in major cities is most
often accessible free of charge. Researchers see this mispricing of road capacity as the
main reason for traffic congestion (Cramton et al., 2018; Beheshtian et al., 2020).

Urban congestion pricing is designed to alleviate traffic jams by making drivers pay for
the negative externalities they impose on other drivers and the environment. Road prices
also give objective market signals that support policy makers in making the most effective
investment choices (Cramton et al., 2019a). Charging drivers the marginal social cost
of their trip has already been proposed by Pigou (1920). In the 1950s, Nobel laureate
William Vickrey who is sometimes referred to as the “father of congestion pricing”
proposed an increase of New York City’s subway system fares at peak hours in order to
reduce congestion (Vickrey, 1955). At the end of the 1950s, he also suggested to equip
cars with electronic transponders and automatically impose charges whenever the car
passes an intersection (Vickrey, 1959). Singapore was the first city to adopt downtown
congestion pricing in 1975. London, Stockholm, Milan, and Gothenburg followed suit in
the 2000s (Lehe, 2019). While concrete implementations of congestion pricing schemes
are subject to public debate in Jakarta, New York City, and Vancouver (Lehe, 2019),
various studies discuss implementing congestion pricing also in Germany, e.g., in Berlin
(Berliner Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 2020) and Munich
(Falck et al., 2020).

Classification of Congestion Pricing Schemes

Literature classifies congestion pricing schemes along different dimensions, among which
are their type (facility-bases, area-based, cordon-based, distance-based), fluctuations of
tolls over time (static, dynamic, predictive), and the technology used to implement tolls
(de Palma and Lindsey, 2011; Cheng et al., 2017). The most commonly used road
pricing type today is facility-based pricing that charges drivers for accessing certain
facilities such as roads, bridges, and tunnels. Most often facility-based pricing serves the
generation of revenue rather than reducing traffic congestion (de Palma and Lindsey,
2011).

Cordon-based pricing schemes charge drivers whenever they cross a cordon that is typi-
cally spanned around the center of a city. Prominent examples include Singapore’s Area
License Scheme (ALS) that was in practice from 1975 to 1998, its successor the Elec-
tronic Road Pricing (ERP), the Stockholm Congestion Tax (SCT) established in 2006,
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as well as the pricing schemes in Milan and Gothenburg which were launched in 2008
and 2013, respectively (Lehe, 2019). When drivers must also pay for trips taking place
within the toll area (and not only for those crossing its border), then this is referred
to as area-based or zonal pricing. The London Congestion Charge (LCC) which was
launched in 2003 uses this type of pricing scheme (Lehe, 2019). Cordon- and area-based
congestion pricing schemes impose tolls on drivers for entering or driving inside a toll
area but do not consider the actual distance traveled. This is the objective of distance-
based pricing schemes which produce prices that can generally better reflect a driver’s
real road capacity consumption. National distance-based heavy goods vehicle tolls are
imposed in various European countries including Germany but have not yet been used
to impose congestion prices in urban areas (de Palma and Lindsey, 2011).

Congestion pricing schemes can also be categorized by how tolls fluctuate over time,
distinguishing static from dynamic and predictive pricing policies (Cottingham et al.,
2007; de Palma and Lindsey, 2011; Cheng et al., 2017). With static pricing, toll levels
are announced long in advance and do not respond to the actual congestion on the road.
Both flat tolls and those that vary by time of day with respect to a previously announced
schedule are examples of static pricing methods. In dynamic pricing schemes, on the
other hand, prices are responsive to the observed level of congestion and vary in real-time
or near real-time. Instead of reacting to existing congestion levels, predictive schemes
try to anticipate future congestion levels and set prices accordingly in advance. However,
predictive schemes are still in their infancy (de Palma and Lindsey, 2011). They have
been analyzed for toll lanes on highways (Dong et al., 2011) but have only recently been
considered also for metropolitan areas (Vosough et al., 2020).

Theory suggests that dynamic pricing schemes better capture the inherent uncertainty
and time-dependent nature of traffic flows (Beheshtian et al., 2020; Cheng et al., 2017;
Wie and Tobin, 1998; Do Chung et al., 2012). Setting tolls dynamically allows to charge
drivers the actual social cost of their trip which is a necessity for maximizing social wel-
fare through efficient pricing. Dynamically adapting prices of individual road segments
also guides drivers in making their route choice so that traffic is distributed effectively
over the road network. Static pricing schemes do not provide the same benefits as they
usually price drivers for using roads within an entire area but do not pose prices for
individual road segments.

Despite these advantages of dynamic pricing schemes, the downtown congestion pricing
models currently used in practice all implement static tolls (Cramton et al., 2019b;

28



2.7 Large-Scale Auction Market Design in Practice

Lehe, 2019). Technological advances in satellite positioning technology have recently
sparked a discussion on the implementation of distance-based, dynamic road pricing
in Singapore (Cramton et al., 2019a; Lehe, 2019). Implementing dynamic congestion
pricing schemes is subject to ongoing research (Cheng et al., 2017). In the following, we
consider a market-based approach to dynamic congestion pricing which is tractable also
for a major city like Berlin.

A Wholesale Market Design for Congestion Pricing

In analogy to electricity markets, Cramton et al. (2019a) and Beheshtian et al. (2020)
propose a two-stage wholesale market in which an Independent System Operator (ISO)
sells road capacity to Service Providers (SPs). Whenever end consumers want to travel
across the road network, they need to purchase the respective road capacity for their
trip from one of the service providers on a separate retail market. The wholesale market
features several forward markets and a real-time market. Forward markets are run
monthly, weekly, and daily before the traded road capacity licenses become valid. These
markets are purely financial and allow service providers to take and adjust forward
positions with respect to the predicted demand of their customers. In the physical real-
time market, the ISO determines clearing prices for each road segment matching the
supply with the actual demand of end consumers who travel through the network.

In both the forward and real-time market, service providers define piecewise-linear de-
creasing demand curves for individual road segments. However, their customers typically
demand road capacity for an entire trip between an origin-destination pair and are of-
ten satisfied to be allocated licenses for one of several substitutable routes. As service
providers are unable to express their customer demand in terms of origin-destination
pairs in the auction, there is a risk of exposure for service providers if they only win a
route fractionally. While this exposure problem is mitigated by the recurrent structure
of forward markets and the large number of road capacity that service providers purchase
within a time slot, it certainly makes the bidding process much more complex.

In the second research project of this dissertation (see Chapter 4), we propose and evalu-
ate a compact bid language that aims to simplify the bidding process for service providers
in the wholesale market. This novel bid language allows service providers to express their
demand for multiple substitutable routes between the same origin-destination pair. Be-
sides being able to specify a different willingness-to-pay for each individual route, bidders
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can set lower and upper bounds on the total number of trips to be allocated between a
particular origin-destination pair. We model the allocation problem as a mixed-linear
integer program and show its tractability for realistic problem instances by a series of
numerical experiments. For this purpose, we rely on synthetic but calibrated traffic data
of the MATSim Open Berlin Scenario which is designed to model the traffic in the city
of Berlin accurately (Ziemke et al., 2019). Approximate competitive equilibrium prices
are computed by applying the IP pricing method which is commonly used in electricity
markets today (see Section 2.6.4). Unlike electricity markets, the non-convexities in our
congestion pricing market are small so that the amount of side-payments is negligible.
We find that the initial forward market which is the largest in terms of bids and trading
volume can be solved within 15 minutes, while only a small fraction of road segments
have to be priced. For a detailed discussion of the bid language and our results, we point
the reader to Chapter 4.

2.7.2 Spectrum Auctions

As part of his Nobel prize lecture, the winner of the 2020 Nobel Memorial Prize in Eco-
nomic Sciences, Paul Milgrom, published an excellent survey on the history of spectrum
auctions on which the next few paragraphs are mainly based (Milgrom, 2021).

Competitive Hearings and Lotteries

Up to the mid-1980s, the demand for radio spectrum in the US was small so that
the Federal Communications Commission (FCC) could conduct competitive hearings
in order to decide how to allocate the available spectrum. In such “beauty contests”,
competing companies had to lay out why the public benefited most if their firm was
granted spectrum. With the rise of mobile phone technology, the interest in spectrum
grew rapidly, making the time-consuming competitive hearings infeasible. Instead, the
FCC decided to use lotteries to distribute spectrum but failed to pose any requirements
on the participants who entered the lottery. This caused companies to win spectrum
licenses that were unable to establish a viable network. Whenever these lottery winners
did not resell their licenses to actual telecommunication companies within a reasonable
time frame, the roll-out of mobile phone services was slowed down significantly.
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Simultaneous Multiple Round Auction

In 1993, the US Congress intervened and ordered the FCC to use auctions for distribut-
ing spectrum. While the main goal was an efficient allocation of spectrum, earning a
substantial amount of money was a secondary objective. As scientific literature on de-
signing such large multi-item auctions did not exist at that point in time, the FCC sought
guidance from different experts in the field. The 2020 Nobel laureates Paul Milgrom and
Robert B. Wilson proposed the Simultaneous Multiple Round Auction (SMRA) which
is run in a series of discrete rounds. Starting with a reserve price for each item, bidders
can raise their bid on any good in each of the rounds. To ease the price discovery, bids
are made public after each round. In order to prevent bid sniping, i.e., the submission
of bids just before the auction closes, the process only terminates when no more bids
were submitted in a round. The design of Milgrom and Wilson also features an activity
rule which demands that bidders cannot bid for more spectrum in any round than they
had bid in the previous round. This forces bidders to bid actively from the beginning
and thereby reduces the number of required auction rounds.

The SMRA and its modified versions proved to be very successful not only in the US
spectrum auction in 1994 but also in other parts of the world, leading to an accumulated
transaction of more than $300 billion. Despite its success, the SMRA design is not with-
out problems as it is susceptible to demand reduction (Ausubel et al., 2014), signaling
through jump bids (Grimm et al., 2003), retaliating bids (Cramton and Schwartz, 2000),
budget bluffing (Porter and Smith, 2006), and the exposure problem (Cramton, 1997;
Brunner et al., 2010). Moreover, Milgrom (2000) shows that the auction only terminates
in a Walrasian equilibrium if the licenses are mutual substitutes to bidders and bidders
bid straightforwardly, which are rather strict assumptions that are often not met in
practice.

Combinatorial Clock Auction

One way to tackle the exposure problem of the SMRA design is by allowing bidders to
submit all-or-nothing package bids. This led to the development of Combinatorial Clock
Auctions (CCA) (Porter et al., 2003; Ausubel et al., 2006a; Ausubel and Baranov, 2014;
Cramton, 2013). Similar to the SMRA, such clock auction designs proceed in rounds.
Given the prices for individual items in each round, bidders respond with a bundle of
items they desire the most at the current prices. The prices of overdemanded items
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are raised between rounds and the auction terminates when aggregated demand of all
bidders can be served with the available supply of items. It can be shown that if the bid-
ders’ valuations fulfill the gross substitutes condition and bidders bid straightforwardly,
then the clock auction terminates in an efficient outcome (Ausubel and Milgrom, 2002).
Without substitute valuations, however, the linear and anonymous prices do not suf-
fice for the auction to be efficient even if bidders bid straightforwardly (Ausubel et al.,
2006a).

To promote efficiency, Ausubel et al. (2006a) suggest to add a second auction phase after
the clock stage terminates. This supplementary stage is sealed-bid, allows for package
bids, and features an XOR bid language. Activity rules in the clock and supplementary
phase of the auction ensure that if bidders bid straightforwardly in the clock phase
and truthful in the supplementary phase, then the outcome is efficient (Ausubel et al.,
2006a). A Vickrey-nearest core pricing rule is often applied to promote truthful bidding
(Cramton, 2013). The two-stage CCA in combination with the Vickrey-closest core
pricing rule has been used extensively for spectrum auctions around the world (Ausubel
and Baranov, 2017). However, researchers have identified a series of weaknesses of
this design including safe supplementary bids that allow bidders to safely win bundles
with bids lower than their true valuation (Bichler et al., 2013a), spiteful bids to drive
up the payments of the competing bidders (Janssen and Karamychev, 2013), and the
absence of equilibrium bidding strategies (Bichler et al., 2013b). Despite that, due to the
combinatorial package bidding with an XOR bid language in the supplementary phase,
the auction is susceptible to the missing bids problem (described in Section 2.2).

C-band Auction

In mid 2019, a consortium of four of the world’s largest satellite operators proposed
to sell a portion of their C-band spectrum in a private auction to telecommunication
companies.1 While the satellite companies provided satellite downlink for television
and radio stations on the C-band frequencies, telecommunication companies could use
the spectrum for establishing terrestrial 5G services. The satellite providers proposed
a sealed-bid package auction based on the novel Flexible Use and Efficient Licensing
(FUEL) bid language for the sale of 14 licenses in each of the 406 different geographic
areas (Milgrom, 2019).

1SpaceNews article on the formation of C-Band Alliance: https://spacenews.com/telesat-
changes-tune-joins-c-band-spectrum-group/, published: 01.10.2018, accessed: 09.12.2021
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Due to the high number of available goods and the need to allocate licenses quickly in
order to facilitate a fast deployment of 5G technology, existing auction formats like the
SMRA or CCA are unsuitable for the C-band auction. Multi-round auction formats
such as the SMRA or CCA often result in a time-consuming bidding process that needs
much strategic preparation in advance and is susceptible to bidding errors (Milgrom,
2019). Moreover, as spectrum licenses across neighboring geographic areas are highly
complementary goods for bidders, the SMRA and related clock auction formats suffer
from the exposure problem. In addition to that, the CCA does not scale up to the
large number of 15406 distinct packages available in the auction. It is susceptible to
the missing bids problem as we show in Chapter 5 by comparing FUEL with an XOR
bid language which is commonly used in the supplementary stage of CCA designs. The
FUEL bid language, on the other hand, features a novel concept of bid groups which
allows bidders to specify valuations for a large number of packages in a succinct manner,
making the allocation problem solvable within a few minutes even for large auctions like
the one suggested for the C-band auction.

After initial positive replies from the FCC regarding the proposed private spectrum
auction, the FCC decided against using the FUEL design and conducted the C-band
spectrum sale as a public auction with a simultaneous clock auction format instead.1,2

Due to its generic design, the FUEL bid language is well suited for other application do-
mains such as procurement auctions (Bichler et al., 2006), fishery access rights (Iftekhar
and Tisdell, 2012), or TV ads (Goetzendorff et al., 2015). In addition to that, there
remains the intriguing idea to use FUEL instead of a classic XOR bid language in the
supplementary stage of a CCA in order to tame the missing bids problem.

1Public statement of FCC’s former chairman Ajit Pay on the C-band proceeding: https://docs.
fcc.gov/public/attachments/DOC-360855A8.pdf, published: 18.11.2019, accessed: 09.12.2021

2FCC public notice establishing the procedures for Auction 107: https://docs.fcc.gov/public/
attachments/FCC-20-110A1.pdf, published: 07.08.2020, accessed: 09.12.2021
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Abstract
An ideal market mechanism allocates resources efficiently such that welfare is max-
imized and sets prices in a way so that the outcome is in a competitive equilibrium
and no participant wants to deviate. An important part of the literature discusses
Walrasian equilibria and conditions for their existence. We use duality theory to
investigate existence of Walrasian equilibria and optimization algorithms to describe
auction designs for different market environments in a consistent mathematical
framework that allows us to classify the key contributions in the literature and open
problems. We focus on auctions with indivisible goods and prove that the relaxed
dual winner determination problem is equivalent to the minimization of the Lya-
punov function. This allows us to describe central auction designs from the literature
in the framework of primal-dual algorithms. We cover important properties for exis-
tence of Walrasian equilibria derived from discrete convex analysis, and provide
open research questions.

KEYWORDS

duality, primal–dual algorithms, Walrasian equilibrium

1 INTRODUCTION

Many markets match supply and demand for multiple goods
or services (which we also refer to as items) via optimization.
Typically, the auctioneer computes an allocation and linear
(i.e., item-level), anonymous prices. Linear and anonymous
competitive equilibrium prices are often referred to as Wal-
rasian prices in honor of Léon Walras, a French mathematical
economist, who pioneered the development of general equi-
librium theory. Prominent examples include financial mar-
kets (Klemperer, 2010), day-ahead electricity markets (Meeus
et al., 2009; Triki et al., 2005), environmental markets (Bich-
ler et al., 2019), logistics (Caplice & Sheffi, 2003; Bichler
et al., 2006; Ağralı et al., 2008) or spectrum auctions (Bich-
ler & Goeree, 2017). In some of these markets the auctioneer
computes prices that are in a competitive equilibrium with

linear and anonymous prices (aka. a Walrasian equilibrium),1

in others Walrasian prices even lead to efficiency losses
(Özer & Özturan, 2009; Lessan & Karabatı, 2018; Bichler
et al., 2018; Meeus et al., 2009; Madani & Van Vyve, 2015).
This raises the question, which market characteristics admit
Walrasian equilibria.

While this is an established and central question in the
economic sciences, there have been a number of significant
contributions in computer science, economics, and operations
research in recent years. The literature on auction algorithms
initiated by Bertsekas (1988) is one of the early examples of
the fruitful interplay between optimization and equilibrium

1There are also competitive equilibria with nonlinear prices (Bikhchandani
& Ostroy, 2002). However, some authors only use competitive equilibrium
to refer to one with linear and anonymous prices.
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theory. In this paper, we survey the literature and describe
established and more recent results. We primarily draw on
convex analysis and linear programming duality, and provide
a consistent mathematical optimization framework to position
and explain the key results of this broad literature.

1.1 Competitive equilibrium

Early in the study of markets, general equilibrium theory
was used to understand how markets could be explained
through the demand, supply, and prices of multiple com-
modities or objects. The Arrow–Debreu model shows that
under convex preferences, perfect competition, and demand
independence there must be a set of competitive equilibrium
prices (Arrow & Debreu, 1954; McKenzie, 1959; Gale, 1963;
Kaneko, 1976). Market participants are price-takers, and they
sell or buy goods in order to maximize their value subject to
their budget or initial wealth in this model. The results derived
from the Arrow–Debreu model led to the well-known wel-
fare theorems, important arguments for markets as efficient
or welfare-maximizing ways to allocate resources. Stability
in the form of competitive equilibria where each participant
maximizes his utility at the prices is central to this theory.
More specifically, the theory focuses on Walrasian equilib-
ria where there is one equilibrium price per good (aka. linear
prices) and the price is the same for all bidders (aka. anony-
mous prices). The first theorem states that any Walrasian
equilibrium leads to a Pareto efficient allocation of resources.
The second theorem states that any efficient allocation can be
attained by a Walrasian equilibrium under the Arrow–Debreu
model assumptions.

However, general equilibrium theory assumes divisible
goods and convex preferences, and the results do not carry
over to markets with indivisible goods and complex (noncon-
vex) preferences and constraints. Also, in general equilibrium
models money does not have outside value and bidders max-
imize value subject to a budget constraint (Cole et al., 2016).
More importantly, bidders are assumed to be nonstrategic
price-takers. Based on the work by Vickrey (1961), atten-
tion in economics shifted to auction theory, which focuses on
small and imperfectly competitive markets, where strategic
players can influence prices. These bidders have a quasi-
linear utility function, that is, they aim to maximize payoff
(i.e., value minus price) (Krishna, 2009). Bayesian Nash
equilibria (rather than competitive equilibria) are the cen-
tral equilibrium solution concept in the auction literature, a
branch of noncooperative and incomplete information game
theory which led to remarkable results. Most importantly, the
Vickrey–Clarke–Groves (VCG) mechanism was shown to be
incentive-compatible, and truthful bidding to be a dominant
strategy for bidders (Vickrey, 1961).

Many markets that have been implemented for trading
financial products, electricity, or environmental access rights
as discussed earlier are large markets involving many items
and many market participants. Participants want to maximize

payoff, but they might not be able to influence prices on such
markets. As a consequence, much of the literature is based on
a complete-information game-theoretical analysis where bid-
ders are price-takers rather than an incomplete-information
game (Baldwin & Klemperer, 2019). Competitive equilib-
ria are the main design desideratum. Unfortunately, it is
well known that in many of these markets linear (i.e.,
block-level) prices might not allow for a welfare-maximizing
trade and that there might not be competitive equilibria
(Meeus et al., 2009; Madani & Van Vyve, 2015b).

Such new markets have led to a renewed interest in the ques-
tion of existence and computation of competitive equilibria
(Kim, 1986; Bikhchandani & Mamer, 1997; Bikhchandani &
Ostroy, 2002; Baldwin & Klemperer, 2019; Leme, 2017). The
problem is fundamentally rooted in mathematical optimiza-
tion, as we will show. In this survey, we will focus on central
and recent results in competitive equilibrium theory and mul-
tiobject auction design and reformulate them in the language
of optimization, specifically duality theory and primal-dual
algorithms.

1.2 Outline

There are various ways how surveys are written. Some arti-
cles collect and categorize a larger number of papers in a
new and emerging field (Herroelen & Leus, 2005; Galindo
& Batta, 2013; Olafsson et al., 2008), others provide a guide
to a larger literature and introduce important concepts in a
unified framework. Examples include a survey on bilevel pro-
gramming by Colson et al. (2005) or a survey on the gross
substitutes condition in economics by Leme (2017). We fol-
low the latter path and discuss competitive equilibrium theory
using duality theory and linear programming as a frame-
work. While most of the literature on this subject is published
in economics journals, key insights of this literature can be
introduced conveniently using the mathematical framework
of optimization. Fundamentally, auctions are algorithms for
optimal resource allocation and there are plenty of questions
where the OR community can contribute as we discuss in the
last section.

The survey starts with markets for divisible goods and
shows that the concave conjugate to the aggregate value
function of all bidders yields prices, and that the mini-
mizer of the Lyapunov function results in Walrasian prices
if the aggregate value function is concave. A condition
for concavity of the aggregate value function is concav-
ity of the individual value functions, which is equivalent
to diminishing marginal returns. The Lyapunov function is
convex so that a simple subgradient algorithm finds the min-
imum efficiently. This algorithm has an interpretation as an
auction.

We will next show that the same principles from duality
theory carry over to markets with indivisible objects. For
this, we describe the allocation problem as a binary program.
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Whenever the linear programming relaxation of this binary
program has integer solutions, then the dual variables of
the capacity constraints have an interpretation as Walrasian
prices for the respective resources. We prove that the dual
of the linear programming relaxation of this binary program
is equivalent to the Lyapunov function. Economic literature
discusses conditions on individual value functions that allow
for Walrasian equilibria. This is the case if the convolution
of these individual functions results in a discrete concave
aggregate value function.

As in the continuous case with divisible goods, we can
use a steepest descent algorithm to find the minimizer of the
Lyapunov function, which is equivalent to determining Wal-
rasian prices for the market. This is exactly what the auction
mechanism by Ausubel (2005) does, a central contribution
to auction design. Primal-dual algorithms are well-known
algorithms to solve linear programs, and they have a nice
interpretation as a market with an auctioneer and the bidders
optimizing alternatively. The steepest descent algorithm that
minimizes the Lyapunov function is equivalent and we show
the connections.

We contribute the equivalence of the Lyapunov function
and the dual linear programming relaxation of the alloca-
tion problem in markets with indivisible goods, as well as
the equivalence of primal-dual algorithms with central auc-
tion designs for selling multiple indivisible goods. These two
results allow us to organize the material and use duality theory
to discuss the literature on existence of Walrasian equilib-
ria, and linear programming algorithms to discuss auction
designs leading to Walrasian equilibria if it exists. The survey
helps scholars with a background in mathematical optimiza-
tion to understand central results in competitive equilibrium
theory and draws important connections between competitive
equilibrium theory, mathematical optimization, and discrete
convexity.

In Section 2 we introduce the notation and standard
assumptions in the economic literature for readers from oper-
ations research. Then we introduce important concepts for the
understanding of Walrasian equilibria such as the Lyapunov
function for markets with divisible goods in Section 3. The
same concepts play a role for markets with indivisible goods
and discrete value functions in Section 4. In Section 5 we use
primal-dual algorithms and show that these are equivalent to
important auction designs discussed in economics. Finally,
we provide a research agenda and discuss open research
problems for the operations research community.

2 NOTATION AND ECONOMIC
ENVIRONMENT

In the auction market, there are m types of items or
goods, denoted by k ∈  = {1, … ,m}, and n bidders
i∈ = {1, … , n}. In the multi-unit case, we have s ∈ Zm≥0

units available, that is, s(k) homogeneousunits for each of

the heterogeneous m items k ∈ . A bundle for bidder i is
described by a vector xi ∈ Zm≥0. In case of single-unit supply
the vector is binary, that is, xi ∈ {0, 1}m. We will sometimes
omit the subscript i for convenience. Each bidder i has a value
function vi ∶ Zm≥0 → Z≥0 over bundles of items or objects
xi. We assume integer-valued functions vi as it will be more
convenient to analyze the optimality of auction algorithms.
Moreover, integer-valued functions vi allow to use integral
prices in ascending auctions without losing efficiency.

Unless stated otherwise this paper we assume that bidders
have preferences described via a valuation function with the
following properties:

• Pure private values: Bidder i’s value vi(xi) does not change
when she learns other bidder’s information.

• Quasilinearity: Bidder i’s (direct) utility from bundle xi is
given by 𝜋i(xi, p) = vi(xi)− ⟨p, xi⟩, where ⟨⋅, ⋅⟩ is the dot
product.

• Monotonicity: The function vi ∶ Zm≥0 → Z≥0 is weakly
increasing with vi(0) = 0 and, if xi ≥ xi

′, then vi(xi)≥ vi(xi
′).

An auctioneer wants to find an allocation of items to bid-
ders. Such an allocation is feasible when the supply suffices
to serve the aggregate demand of the bidders. Furthermore,
the auctioneer aims for allocative efficiency. This means
the auctioneer wants to maximize social welfare which is the
sum of the utilities of all participants (the bidders and the
auctioneer). Maximization of welfare is also referred to as
a utilitarian welfare function. In case of quasilinear utility
functions, prices cancel and the social welfare is defined as∑

i∈vi(xi).
For the remainder of this survey we assume that the auc-

tioneer’s valuation for all items is zero. As a consequence,
the auctioneer would sell items to bidders for a price of zero.
In some auction scenarios, however, the auctioneer may want
to set reserve prices which are the minimum prices at which
the auctioneer would be willing to sell the goods. Often these
reserve prices can be implemented by introducing a dummy
bidder who simply bids the reserve prices on behalf of the
auctioneer in the auction. In case the dummy bidder wins any
items in the auction, these items remain unsold.

The goal of the auctioneer is to find an efficient alloca-
tion that yields linear (i.e., item-level) and anonymous market
clearing prices p = {p(k)}k∈ ∈ Rm. The linearity of prices
refers to the property that individual prices are set for each
item k ∈ ; the price for a bundle x is then simply the sum
of the prices of its components, that is, it is given by the dot
product ⟨p, x⟩. Anonymity means that the resulting prices p are
the same for all bidders and there is no price differentiation.
Furthermore, prices p are market clearing when the aggregate
demand of all bidders at the given prices p meets the supply s.

With linear and anonymous prices p = (p(1), … , p(k),
… , p(m)), the bidder’s indirect utility function is defined as

ui(p) = max
x∈Zm

≥0

{vi(x) − ⟨p, x⟩}.
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The indirect utility function is widely used in economics and
returns the maximal utility that bidder i can obtain for any
bundle at prices p. The demand correspondence Di(p) is the
set of bundles that maximize the indirect utility function at
prices p, that is,

Di(p) = arg max
x∈Zm

≥0

{vi(x) − ⟨p, x⟩}.

If in an outcome (consisting of an allocation and prices) all
bidders are allocated a bundle from their demand set, then the
outcome is envy-free. No bidder would want to get another
bundle, as a bidder cannot increase her utility at these prices.
Envy-free prices always exist. For example, if prices were
higher than the valuations, then every bidder would only want
the empty set. If in addition to envy-freeness all items are
allocated,

∑
i∈xi = s, then the outcome is a competitive

equilibrium.

Definition 1 (Competitive equilibrium, CE).
A price vector p* and a feasible allocation
(x1, … , xn) form a competitive equilibrium if∑

i∈xi = s and xi ∈ Di(p*) for every bidder
i∈.

If there were unsold items, an auctioneer could always add
unsold units to the allocation of a bidder without decreas-
ing welfare as bidders are assumed to have monotone value
functions vi.

In our setting with linear and anonymous prices, a com-
petitive equilibrium is also called a Walrasian equilibrium.
If there exists a Walrasian price vector p* such that p* ≤ p′

for any other Walrasian price vector p′, then p* is called the
bidder-optimal Walrasian price vector. For Walrasian equilib-
ria the well-known welfare theorems hold:

Theorem 1 First and second welfare
theorem (following Blumrosen and Nisan
(2007)) Let x = (x1, … , xn) be an equilibrium
allocation induced by a Walrasian equilibrium
price vector p, then x yields the optimal social
welfare. Conversely, if x is a Pareto efficient
allocation, then it can be supported by a Wal-
rasian price vector p so that the pair (p, x)
forms a Walrasian equilibrium.

3 WALRASIAN EQUILIBRIA WITH
DIVISIBLE GOODS AND CONJUGACY

In this article, we focus on markets with indivisible goods.
However, for instructive purposes, we briefly consider the
case of divisible goods to introduce relevant concepts. These
can then be transferred to the indivisible case. Our aim is to
give an intuitive graphical and analytical interpretation of how
the aggregate valuation function is connected to the indirect
utility function, the Lyapunov function and the market prices.

We consider a market with multiple bidders i∈ and mul-
tiple divisible goods k ∈  with | | = n and || = m. The
aggregate value function v is defined as the supremum con-
volution of concave functions vi ∶ Rm≥0 → R where vi is the
value function of the ith bidder.

v(s) = max
{xi}i∈

{∑
i∈

vi(xi) | xi ∈ Rm≥0 and
∑
i∈

xi = s

}
.

By compactness and continuity, the maximum exists. Con-
cavity implies that vi((1− 𝛼)x+ 𝛼y)≥ (1− 𝛼) vi(x)+ 𝛼 vi(y)
with x, y∈R≥0 and 𝛼 ∈ (0, 1). The economic interpretation
of a concave valuation function is that it exhibits decreasing
marginal valuations. Since every function vi is concave, also
their convolution v is concave.

The aggregate indirect utility is defined as u(p) = ∑
iui(p)

and the aggregate demand set is given by the Minkowski sum
D(p) = ∑

iDi(p).
For the sake of simplicity of the following graphical inter-

pretation of indirect utility and the concept of conjugacy, we
consider a market with multiple bidders but only a single
divisible good x∈R≥0. However, our explanations carry over
directly to markets with multiple goods. It is also worth men-
tioning that in the presence of only a single bidder i the aggre-
gate valuation function v becomes the individual valuation
function vi of the single bidder. Thus, even though the follow-
ing example illustrates the aggregate valuation and indirect
utility function of multiple bidders, it similarly applies to the
valuation and indirect utility function of an individual bidder.

In our example, we assume v(x) = ln(x+ 1). It is well
known that for concave functions v local optimality implies
global optimality and this yields efficient optimization algo-
rithms.

At a given price, every rational bidder i∈ only demands
a quantity of good x which maximizes her utility at this price.
The utility of such a quantity is described by the indirect util-
ity function ui(p) = maxx{v(x)− ⟨p, x⟩}, which is convex as
it is the maximum of affine linear functions. As the aggregate
indirect utility function u(p) is a sum of convex functions, it
must also be convex.

A quantity x* is demanded at prices p if and only if
v(x*)− ⟨p, x*⟩≥ v(x)− ⟨p, x⟩ for all x∈R. When rearrang-
ing terms to v(x*)+ ⟨p, x− x*⟩≥ v(x), it becomes clear
that the left-hand side of the inequality describes the tan-
gent at v(x*) (see Figure 1). In other words, a quantity x*

is demanded at prices p whenever the slope of the tangent at
v(x*) equals the price p. The aggregate utility of quantity x*

is given by 𝜋(x*, p) = v(x*)− ⟨p, x*⟩. As x* ∈D(p), the
aggregate utility 𝜋(x*, p) equals the aggregate indirect utility
u(p). The graphical interpretation of the aggregate indirect
utility function u(p) is the intercept of the tangent at v(x*)
with the ordinate.

We can now compute the quantity of good x that gen-
erates maximum utility at prices p. In our illustrative
example with v(x) = ln(x+ 1), the aggregate utility 𝜋(x,
p) = ln(x+ 1)− ⟨p, x⟩ at given prices p is maximized when
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FIGURE 1 Graphical representation of v (x) = ln(x+ 1) with tangent at

v (x*)

𝜕𝜋 /𝜕x = 1/(x+ 1)− p = 0. This means, at a price of p = 1/3
for example, the total utility 𝜋 is maximized for a demand
of x* = 2. Thus, the aggregate indirect utility function at
prices p = 1/3 equals u(1/3) = 𝜋(2, 1/3) = ln(3)− 2/3.
The concave conjugate (or Legendre transformation) of v
is defined as v•(p) = minx{⟨p, x⟩ − v(x)}, which is the
aggregate indirect utility function multiplied by −1. We also
note that convex and concave conjugates are connected via
v•(p) = −(−v)∗(−p), so u(p) = (−v)*(−p). From these
results, we can make the following connection: In order to
construct the concave conjugate v•(p) of v(x) = ln(x+ 1) for
a fixed p, we must calculate the minimum of ⟨p, x⟩− ln(x+ 1).
Taking the derivative, we see that a minimizing x must solve
x = 1/p− 1, so we get v•(p) = 1− p+ ln(p) and consequently
u(p) = −v•(p) = p − ln(p) − 1. For a given price of p = 1/3
the reader may verify that the bidders’ aggregate indirect util-
ity equals u(1/3) = 1/3− ln(1/3)− 1 = ln(3)− 2/3, which is
in line with our calculations above.

Unlike in this single-item example, the price p is not known
in an auction setting. Instead, the auctioneer tries to find a
price vector p* for which the supply s is a maximizer of the
aggregate utility function 𝜋(x, p*). Note that such a p* is
a Walrasian equilibrium price vector, because s maximizes
𝜋(s, p*) = v(s)− ⟨p*, s⟩ and the aggregate demand of the
bidders equals the supply s.

We will now return to a market with multiple divisible
goods k ∈ . First, we introduce important notions from
convex analysis.

Definition 2 Let f : Rd →R∪ {+∞} be a
convex function. The subdifferential of f at x is
the set of all tangents of f at x:

𝜕f (x) = {y ∈ Rd|f (x′) ≥ f (x) + ⟨y, x′ − x⟩∀x′ ∈ Rd}.

Any element of 𝜕f (x) is called a subgradient. The convex
conjugate or Legendre transform of f is the convex function

f ∗(y) = sup
x∈Rd

⟨y, x⟩ − f (x).

Under additional mild assumptions on the convex func-
tion f , the conjugate of the conjugate is again f , f ** = f ,
and subdifferentials of f and f * are connected in the follow-
ing way: y ∈ 𝜕f (x) ⇔ x ∈ 𝜕f *(y). For more details, we refer
to Rockafellar (2015). The concave conjugate defined above
and the convex conjugate are related as follows: If g is con-
cave, then g•(y) = −(−g)*(−y). In particular, we have for
the indirect utility function u(p) = (−v)*(−p). We make
the following important observation: The bundle x is in the
demand set D(p), if and only if v(x)− ⟨p, x⟩≥ v(x′)− ⟨p,
x′⟩ for all x′ ∈ R||. By rearranging terms we see that this
is equivalent to −v(x′)≥−v(x)+ ⟨−p, x′ − x⟩ and thus to
−p∈ 𝜕(−v)(x). Convex analysis tells us that this is equivalent
to x∈ 𝜕(−v)*(−p) = − 𝜕u(p). Consequently, demand sets
are equal to subdifferentials of the indirect utility function—a
fact that allows us to interpret auctions as descent algorithms.

The Lyapunov function was a central concept already in
the early literature on general equilibrium theory (Arrow &
Hahn, 1971). The same function plays a central role in more
recent auction designs for markets with indivisible goods
(Ausubel, 2006). Since this function plays such a central role,
we introduce it in detail for the continuous case.

Definition 3 (Lyapunov function). The Lya-
punov function is defined as L(p) =

∑
i∈ui(p)+

⟨p, s⟩, where s is the supply and ui(p) is the indi-
rect utility function of bidder i∈ at prices p.

The Lyapunov function has its roots in the dynamical sys-
tems literature (La Salle & Lefschetz, 2012). Since the indi-
rect utility ui(p) is convex in p, also the Lyapunov function is
convex, because it is the sum of convex functions. For con-
vex functions such as L(p) the vector p* minimizes L iff 0 is
a subgradient at p*. The first-order condition for L(p) yields
−
∑

i∈xi + s = 0, where xi ∈ Di(p).
∀i∈. In words, the prices are minimized when supply

equals demand:

Proposition 1 A vector p* ∈Rm is a Wal-
rasian equilibrium price vector for supply s if
and only if it is a minimizer of the Lyapunov
function L(p) = u(p)+ ⟨p, s⟩.

Proof If there is a Walrasian equilibrium, then∑
i∈xi = s and xi ∈ Di(p*) need to hold. The

minimizer p* of L(p) requires that 𝜕L(p) =
s −

∑
i∈xi = 0, which is equivalent to the

first condition of a Walrasian equilibrium. Also,
when L(p) =

∑
i∈maxxi{vi(xi) − ⟨p, xi⟩} +

⟨p, s⟩ attains the minimum, then each bidder is
assigned a bundle xi that maximizes her util-
ity vi(xi)− ⟨p, xi⟩. This implies xi ∈ Di(p*) for
all i, so that the second condition of a Wal-
rasian equilibrium is fulfilled. Thus, if L(p) is
minimized then both conditions of a Walrasian



BICHLER ET AL. 501

equilibrium are satisfied. By reversing the argu-
ment it becomes evident that any price vector p*

supporting s in a Walrasian equilibrium is also
a minimizer for L(p). ▪

Similar results can be found in Ausubel and Mil-
grom (2006) or later in Murota (2016). One way to find
Walrasian equilibria is now to minimize the Lyapunov func-
tion. Since we can interpret the subdifferential of ui at price
p as the demand set at this price—for an auction setting it is
natural to utilize standard subgradient methods for (approx-
imately) minimizing L(p)—computing subgradients is then
equivalent to asking bidders for their demand sets at a given
price. Note that it is in general not possible to compute exact
minimizers to general convex functions—algorithms for min-
imizing a convex function f can in general only provide
complexity bounds for finding an 𝜀-approximate solution x′,
in the sense that

f (x′) ≤ 𝜀 + min
x

f (x).

Note that in general x′ does not even have to be close to the
true minimizer x without additional assumption on f . Since
the aim of our treatment of divisible economies is mainly to
motivate the ideas in the indivisible case, we will not go into
more detail here. If no additional regularity assumptions on
L are imposed, it can be shown that finding 𝜀-approximate
solutions has a worst-case running time of Θ(1/𝜀2) (Nes-
terov, 2018). Interestingly, for markets with indivisible goods
where Walrasian equilibria exist, we will show that the Lya-
punov function equals the dual of the allocation problem.

Central results of convex economic theory with divisi-
ble goods are reasonable approximations to large economies
where nonconvexities vanish in the aggregate (Starr, 1969).
However, most markets are such that indivisibilities and non-
convexities matter. As one would assume, the analysis of
markets with indivisible items has proven much harder.

4 EXISTENCE OF WALRASIAN
EQUILIBRIA WITH INDIVISIBLE GOODS

In this section, we discuss sufficient and necessary condi-
tions for the individual value functions of bidders such that
Walrasian equilibria exist in markets with indivisible goods.

4.1 Conditions on aggregate value functions

A simple multi-item market with remarkable properties is the
assignment market by Shapley and Shubik (1971). In assign-
ment markets each bidder can bid on multiple items but wants
to win at most one (aka. unit-demand). As a consequence,
the allocation problem reduces to an assignment problem,
that is, the problem of finding a maximum weight match-
ing in a weighted bipartite graph. On an aggregate level, the
LP relaxation of the assignment problem is always integral.
This is a consequence of the unit demand on an individual

level and the resulting total unimodularity of the constraint
matrix, and this is a sufficient condition for the existence
of Walrasian prices. The environment of assignment mar-
kets allows for incentive-compatible auctions. Besides, sim-
ple ascending clock auctions yield bidder-optimal Walrasian
prices (Demange et al., 1986).

4.1.1 The allocation problem
Let us first extend the assignment market to a more general
multi-item, multi-unit market which allows for package bids.
Let i ⊆ Zm≥0 denote all bundles for which bidder i submit-
ted a bid. For simplicity, we make the natural assumption that
every bidder submits a bid with value 0 for the empty bun-
dle. Let zi(x) ∈ {0, 1} be a binary decision variable denoting
whether bidder i wins bundle x ∈ i. The allocation or win-
ner determination problem WDP can then be written as an
integer program as follows:

max
∑
i∈

∑
x∈i

vi(x)zi(x) (WDP)

s.t.
∑
x∈i

zi(x) ≤ 1 ∀i ∈  (𝜋i)

∑
i∈

∑
x∈i

x(k)zi(x) ≤ s(k) ∀k ∈  (p(k))

zi(x) ∈ {0, 1} ∀i ∈ ,∀x ∈ i

For a given supply s the WDP determines an allocation of
bundles to bidders maximizing social welfare. The LP relax-
ation RWDP in standard form replaces zi(x) ∈ {0, 1} by
zi(x) ≥ 0 and introduces additional slack variables. We use the
standard form with slack variables (ai, bk) because it will be
helpful in our algorithmic treatment of the subject.

max
∑
i∈

∑
x∈i

vi(x)zi(x) (RWDP)

s.t.
∑
x∈i

zi(x) + ai = 1 ∀i ∈  (𝜋i)

∑
i∈

∑
x∈i

x(k)zi(x) + bk = s(k) ∀k ∈  (p(k))

zi(x), ai, bk ≥ 0 ∀i ∈ ,∀x ∈ i,∀k ∈ 
In contrast to the assignment problem where bidders have
unit demand, the RWDP does not yield integer solutions in
general.

Example 1 Consider a market with three
items  = {A,B,C} and two bidders with val-
uations v1 and v2

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v1(x) 0 1 2 1 2 2 2 2

v2(x) 0 1 2 2 3 2 3 3

The optimal solution of the RWDP
given these valuations is fractional:
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z1(xB) = z1(xAC) = z2(xC) = z2(xAB) = 0.5 with
all other decision variables set to 0. The opti-
mal value of the RWDP with respect to this
fractional solution is 4.5. An optimal integral
solution (e.g., assigning bundle xAC to the first
and xB to the second bidder) only leads to a
social welfare of 4.

Let us also introduce the dual DRWDP of the RWDP.

min
∑
i∈

𝜋i +
∑
k∈

s(k)p(k) (DRWDP)

s.t. 𝜋i +
∑
k∈

x(k)p(k) ≥ vi(x) ∀i ∈ ,∀x ∈ i (zi(x))

𝜋i ≥ 0 ∀i ∈  (ai)
p(k) ≥ 0 ∀k ∈  (bk)

We will draw on these models in the subsequent sections.

4.1.2 Integrality of the linear program
Bikhchandani and Mamer (1997) describe a multi-item,
single-unit market. Their central theorem shows that there
exist clearing prices for the indivisible single-unit problem if
and only if the RWDP has an integer solution. In this case, the
set of equilibrium prices is the set of solutions to the dual LP
projected to the price coordinates. The result can be proven
via the strong duality theorem in linear programming (Blum-
rosen & Nisan, 2007). As was already noted by Bikhchandani
and Mamer (1997), the result for multi-item, multi-unit mar-
kets also directly follows from their result, by considering
each of the multiple units as separate items. As the proof is
a particularly nice application of duality theory, we provide
a direct proof in the Appendix. Note that this theorem proves
the welfare theorems from general equilibrium theory (see
Theorem 1).

Theorem 2 Walrasian prices exist for the
supply s if and only if the RWDP has an optimal
integral solution.

The proof can be found in Appendix A.
As indicated, the RWDP typically does not yield an inte-

gral solution, and there can be a significant integrality gap
between the objective function value of the RWDP and that
of the optimal integer program WDP. In the next sections,
we will discuss conditions on the individual value functions,
which yield integral solutions of the RWDP and Walrasian
prices.

Before we do this, let us return to the Lyapunov function
that has proven so helpful in our analysis of markets with
divisible goods. A minimizer to this function yielded the
Walrasian prices in Section 3, where we analyzed markets
with divisible goods. It turns out that the Lyapunov func-
tion is actually equivalent to the DRWDP, as we show in the
following proposition.

Proposition 2 A vector p* ∈Rm minimizes
the DRWDP if and only if it is a minimizer of the
Lyapunov function L(p) = u(p)+ ⟨p, s⟩.

Proof We can substitute the utilities 𝜋i in
the dual objective function min

∑
i∈𝜋i +∑

k∈s(k)p(k) by the tight dual constraints 𝜋i =
vi(x) −

∑
k∈x(k)p(k) of the optimal DRWDP

and get the following convex function:

min
p

∑
i∈

max
x∈Zm

≥0

[
vi(x) −

∑
k∈

x(k)p(k)

]
+
∑
k∈

s(k)p(k). (4.1)

Note that this is equivalent to mini-
mizing the Lyapunov function L(p) =∑

i∈ui(p) + ⟨p, s⟩. Obviously, ⟨p, s⟩ in L(p)
is equal to

∑
k∈s(k)p(k), and ui(p) equals

maxx∈Zm
≥0

[
vi(x) −

∑
k∈x(k)p(k)

]
for every bid-

der i. Since the equivalence of the Lyapunov
function and the DRWDP holds for any price
vector p, minimizing prices of the Lyapunov
function also constitutes a minimal solution to
the DRWDP and vice versa. ▪

In summary, both the Lyapunov function and the LP
approach yield equilibrium prices, and such prices are min-
imizers of both problems. We will leverage this insight,
when we analyze auction algorithms to solve the RWDP in
Section 5.

4.2 Conditions for individual value functions

In practical applications a market designer often wants to
understand which assumptions on the individual value func-
tions vi allow for integer solutions of the LP relaxation and
Walrasian prices. Discrete convex analysis identifies classes
of convex functions defined on a subset of the discrete lat-
tice Zm, which allow for integrality and efficient optimization
algorithms.

First, we discuss single-unit, multi-item auctions. There
are several classes of integrally convex functions such as
separable-convex functions on Zm or gross substitutes set
functions on {0, 1}m, which yield a discrete concave aggre-
gate value function v and integral solutions of the RWDP,
such that Walrasian equilibria exist.

4.2.1 Single-unit multi-item auctions
Let us first define monotonicity and submodularity, two
well-known properties of set functions that allow for efficient
function minimization.

Definition 4 For a finite set  of items, the
set function v ∶ 2 → R is

• monotone if v(S)≤ v(T) for all S,T ⊆  with
S⊆T ,
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• submodular if v(S ∪{k})− v(S)≥ v(T
∪{k})− v(T) for all S,T ⊆  with S⊆T and
for all k∉T .

In the above definition, submodularity can be understood
as diminishing marginal values. Alternatively, submodularity
can be defined as v(S)+ v(T)≥ v(S ∪ T)+ v(S ∩ T) for all
S, T . The vector notation v : {0, 1}m →R in the single-unit
case maps a set S to a vector x ∈ {0, 1}m by setting x(k) = 1
whenever k ∈ S and x(k) = 0 otherwise.

It is well-known that the minimization of unconstrained
submodular functions can be done in polynomial time, for
example via the ellipsoid method (Grötschel et al., 1981).
The ellipsoid method is notoriously slow in practice. How-
ever, there are also more effective algorithms such as the
Fujishige-Wolfe algorithm (Chakrabarty et al., 2014) and
specialized subgradient methods (Chakrabarty et al., 2017).
Unfortunately, even when submodularity and monotonicity
are satisfied, this does not guarantee the integrality of a
welfare maximization problem such as the RWDP.

Example 2 The reader may verify that the
valuation functions of both bidders in example 1
satisfy monotonicity and submodularity. How-
ever, the optimal solution of the RWDP is not
integral.

The subset of submodular valuations called gross substi-
tutes valuations, however, has this desirable property. Gross
substitutes roughly means that a bidder regards the items as
substitute goods or independent goods but not complementary
goods.

Definition 5 (Gross substitutes, GS). Let p
denote the prices on all items, with item k
demanded by bidder i if there is some bundle
S, with k ∈ S, for which S maximizes the util-
ity vi(S′) −

∑
j∈S′p(j) across all bundles S′ ⊆ .

The gross substitutes condition requires that, for
any prices p′ ≥ p with p′(k) = p(k), if item
k ∈  is demanded at the prices p then it is still
demanded at p′.

The definition includes both substitute goods and indepen-
dent goods, but rules out complementary goods.2

Example 3 Consider a market with three
items  = {A,B,C} and a single bidder with a
valuation function v fulfilling the gross substi-
tutes condition

xø xA xB xC xAB xAC xBC xABC

x (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

v(x) 0 1 2 3 3 3 5 5

2Sometimes the word “gross” used by Kelso and Crawford (1982) is omitted,
but it is useful to distinguish the single-unit case from substitutes valuations
in other environments, such as the strong substitutes definition that we will
introduce later.

At prices p = (0, 1, 2) the bidder’s indirect
utility is u(p) = 2 and the bidder’s demand set
is given by D(p) = {xAB, xBC, xABC}, that is,
items A, B, and C are demanded as for each item
there exists at least one bundle in the demand
set containing the item. If the price for item A
is raised to 1 but stays constant for items B and
C, then the gross substitutes condition implies
that items B and C must still be demanded at
the new prices p′ = (1, 1, 2). This is obviously
true as the demand set at the new prices p′ is
given by D(p′) = {xBC}. Note that price vectors
p and p′ were only chosen for illustrative pur-
poses. In fact, valuation function v satisfies the
gross substitutes condition for any price vectors
p, p′ ∈ R3≥0 with p′ ≥ p.

Kelso and Crawford (1982) show that if all agents have
GS valuations, then a Walrasian equilibrium always exists,
which implies that the RWDP has an optimal integral solu-
tion. Ausubel and Milgrom (2002) prove that a bidder has
GS valuations if and only if the indirect utility function u is
submodular. Gross substitutes appear to be a rather restricted
type of valuations, but it contains important subclasses such
as unit-demand valuations (Shapley & Shubik, 1971) and
additive valuations. Gul and Stacchetti (1999) show that GS
excludes complementarity between goods and show equiva-
lence with the so called single improvement property. The
latter property states that whenever a bundle is not opti-
mal at the given prices, then a better bundle can be found
which is derived from the original one by performing any
of the following operations: removing an item, adding an
item, or doing both. Leme (2017) provides a survey of the
extensive literature on the gross substitutes condition and
its alternative definitions for multi-item, single-unit markets,
and show that additive valuations ⊂ GS⊂ submodular valu-
ations⊂ subadditive valuations. We also refer to Shioura and
Tamura (2015) for an extensive survey of GS.

Sun and Yang (2006) identify the gross substitutes and
complements (GSC) condition, which also guarantees for
Walrasian equilibria in single-unit, multi-item markets. It
describes an exchange economy with two classes of goods,
where each class only contains substitutes, but there are com-
plements across these classes of goods. Teytelboym (2014)
generalizes the GSC condition in the sense that goods are par-
titioned into more than two classes. His generalized version
of the GSC condition is satisfied if it is possible to partition
goods into several classes so that whenever considering the
bidders’ valuations for items contained in only two of these
classes in isolation, there exist some bidders for which these
valuations satisfy the GSC condition.

4.2.2 Multi-unit ulti-item auctions
Let us now concentrate on more general conditions for x ∈
Zm≥0 rather than x ∈ {0, 1}m. A⊂Zm is integrally convex if
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A= (conv A)∩Zm. First, we define the convex closure f of f as

f (x) = sup
p∈Rm

,𝛼∈R
{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ Zm}.

Geometrically, the epigraph of f is the convex hull of the
epigraph of f . If the convex closure coincides with f on the
set of integer vectors, that is, if f (x) = f (x) for all x∈Zm, f is
called convex-extensible. In the same way, we can define the
concave closure of f by−(−f ). The definition can be restricted
to the integral neighborhood of a bundle x∈Rm and is then
referred to as a local convex extension f̃ of f (Murota, 2003,
Chap. 3). Formally, set N(x) = {y ∈ Zm | ⌊x(k)⌋ ≤ y(k) ≤
⌈x(k)⌉∀k = 1, … ,m}. Then the local convex extension is
given by

f̃ (x) = sup
p∈Rm

,𝛼∈R
{⟨p, x⟩ + 𝛼 | ⟨p, y⟩ + 𝛼 ≤ f (y) ∀y ∈ N(x)}.

Definition 6 A function f : Zm →R is called
integrally convex if the local convex extension
of f is convex, or integrally concave if the func-
tion − f is integrally convex.

Integrally convex functions share with convex functions
the property that local minima are also global minima
(Murota, 2016). We have already seen in the divisible case
that concavity of the valuation functions is necessary for equi-
librium prices to exist. We also want to make this connection
here in the indivisible case, by explaining how convexity is
related to integrality of the WDP—which is necessary and
sufficient for the existence of equilibrium prices. To start
with, consider the aggregate valuation function v(s), given
by the value of the WDP for the supply s, and the “relaxed”
aggregate valuation function ṽ(s), given by the value of the
RWDP at s. Note ṽ is well-defined for all real supply vec-
tors s≥ 0 and attains finite values at each such s. A central
observation is the following: ṽ is the concave extension of
v . This shows that v is concave-extensible, and thus vI = ṽ
if and only if for every integral supply vector s, the RWDP
has an integral solution, which—as we have seen—is equiva-
lent to the existence of equilibrium prices. While the stronger
assumption of integral concavity is not necessary for the exis-
tence of equilibrium prices, it is not hard to imagine, that this
property is of importance for the algorithmic problem of com-
puting equilibrium prices. Loosely speaking, since the value
of the concave extension can then be evaluated at any point s
by considering an easy to characterize neighborhood of s, the
computation of subgradients of v gets much simpler. Unfor-
tunately, concave extensibility, and even integral concavity of
the individual valuation functions does not suffice to guaran-
tee concave extensibility of the aggregate valuation function,
or equivalently, existence of equilibrium prices. It is thus of
central importance to identify conditions on the individual
valuations that imply concave extensibility of the aggregate
valuation, or equivalently integrality of the RWDP.

Definition 7 A function f : Zm →R∪ {∞} is
said to be M♮-convex if for x, y ∈ domf and
j ∈ supp+(x − y)

(i) f (x)+ f (y)≥ f (x−1j)+ f (y+1j) or
(ii) f (x)+ f (y)≥ f (x−1j +1k)+ f (y+1j −1k)

for some k ∈ supp−(x − y).

A function f is M♮-concave if the function −f
is M♮-convex. A set X ⊆Zm is an M♮-convex set
if its indicator function 𝛿X is M♮-convex.

Here 1j denotes the jth unit vector, whereas the posi-
tive and negative support are defined as supp+(x) = {k ∈|x(k) > 0} and supp−(x) = {k ∈ |x(k) < 0}, respec-
tively. The effective domain is domf = {z ∈ Zm|f (z) ≠
∞}. An M♮-convex function is integrally convex, and thus
convex-extensible (Murota, 2003, Theorem 6.42). Since the
exchange property (ii) is closely related to the exchange axiom
of a matroid, the M stands for “matroid”. It means that if we
add the jth unit-vector to one point x and exchange it with
the ith unit vector of another point y, then the function value
decreases or stays the same. Fujishige & Yang, 2003 showed
that for the single-unit case the GS condition is equivalent to
M♮-concavity.

Theorem 3 (Fujishige and Yang (2003)). A
value function v : {0, 1}m →R satisfies the GS
condition if and only if it is an M♮-concave
function.

This equivalence extends to multi-unit extensions of the
gross substitutes property. Milgrom and Strulovici (2009)
distinguish between weak and strong substitutes. The weak
substitutes condition can be seen as the natural extension of
the original gross substitutes property to the multi-unit set-
ting by simply quantifying the demand for every item. Note
however, that weak substitutes do not correspond to M♮ func-
tions anymore (Shioura & Tamura, 2015). The strong sub-
stitutes condition, on the other hand, transforms a multi-unit
to a single-unit valuation function by treating each copy of
a good as an individual item. Whenever the corresponding
single-unit valuation function fulfills the original gross substi-
tutes property (as defined by Kelso and Crawford (1982)), the
multi-unit valuation function satisfies the strong substitutes
condition.

Definition 8 (Strong substitutes, SS). Let = {k1, k2, … , km} be the set of items with
di ∈N denoting the number of units available
of item ki. Treating each copy of a good as an
individual item leads to the definition of a sets = {(ki, z)|ki ∈ , 1 ≤ z ≤ di}. A multi-unit
valuation function v ∶ Nm

0 → R can then be
transformed to a single-unit valuation function
vs ∶ {0, 1}s → R by setting vs(xs) = v(x)
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for xs ∈ {0, 1}s where x(i) =
∑di

z=1 xs(ki, z).
The valuation v fulfills the strong substitutes
condition if vs is a gross substitutes valuation
function.

There exist many equivalent definitions of the strong substi-
tutes condition, among them the binary single-improvement
property as shown by Milgrom and Strulovici (2009).

Danilov et al. (2001) and Milgrom and Strulovici (2009)
show that a Walrasian equilibrium exists for every finite set
of strong substitutes valuations. Ausubel (2006) shows that in
case of strong substitutes valuations the Lyapunov function is
submodular which ensures the existence of a bidder-optimal
Walrasian price vector. While the strong substitutes property
is a sufficient condition for the existence of Walrasian equi-
libria, it is not a necessary one and alternatives exist.

Shioura and Yang (2015) extend the gross substitutes and
complements (GSC) condition to a multi-unit and multi-item
economy with two classes of items, where units of the same
type are substitutable, whereas goods across two classes are
complementary. When there is only one class of indivisible
goods, their generalized gross substitutes and complements
(GGSC) condition becomes identical to the strong-substitute
valuation of Milgrom and Strulovici (2009). Further, if each
type of good has only one unit, it becomes the gross substitute
condition of Kelso and Crawford (1982).

Baldwin and Klemperer (2019) provide an innovative
approach characterizing preferences where Walrasian equilib-
ria exist. Instead of working with the value functions, their
framework is based on properties of the geometric structure of
the regions in the price space where a bidder demands differ-
ent bundles. A demand type is defined by a list of vectors that
give the possible ways in which the individual or aggregate
demand can change in response to a small price change. Intu-
itively, given a valuation vi, consider the set i = {p|Di(p)| >
1} of all prices at which more than one bundle is in the
bidder’s demand set. i can be shown to form a so-called
polyhedral complex, and in particular is a union of hyper-
planes, which splits price space into multiple full-dimensional
regions where a unique bundle is demanded, which are called
unique demand regions (UDRs). Now given a set of integral
vectors, vi is of the demand type defined by  if all normals
of all hyperplanes in i are integral multiples of vectors in.

3 We say that the demand type defined by  is unimodu-
lar if any linear independent subset of vectors in  can be
extended with integral vectors to a basis with determinant
in {−1, 1}. It can be shown, that if participants’ valuations

3The normals of these hyperplanes have the following economic meaning:
Consider a path in price space starting in some UDR. Each time the path
crosses an indifference hyperplane, and thus entering another UDR, the
demanded bundle changes by the normal vector of the crossed hyperplane,
which points into the opposite direction of the price path. In Figure 2 for
example, if the price path goes from the UDR (0, 1) to the UDR (1, 0) in a
straight line, we cross the hyperplane with normal (1, −1), and of course (1,
0) = (0, 1) + (1, −1).

(0,0)

(1,1)
(0,1)

(1,0)

1

2

FIGURE 2 Illustration of i (gray). For each indifference hyperplane, we

indicate one of the two normal vectors associated with this hyperplane. We

can directly see that these normals all lie in  as defined in Example 4. The

tuples (x1, x2) indicate the bundles that are demanded in the respective UDRs

are concave and all have the same unimodular demand type, then a Walrasian equilibrium exists. There are several
proofs for the unimodularity theorem, see Baldwin and Klem-
perer (2019); Danilov et al. (2001); Tran and Yu (2015). The
authors further show that an equilibrium is guaranteed for
more classes of pure complements than of pure substitutes
preferences. Note that while all agents being drawn from an
equal certain valuation type (SS, GGSC, pure complements)
allows for Walrasian equilibria, agent valuations drawn from
a mixture of these types in general do not allow for one. Uni-
modularity of the demand types is a sufficient condition for
the existence of Walrasian equilibria. Remarkably, it is also
necessary: Given valuations of the agents, there exist equilib-
rium prices for every given supply if and only if the agents’
demand types are unimodular. Again, whenever the unimod-
ularity condition holds, the optimal solution to the RWDP is
integral.

Example 4 Consider a market with two items = {A,B} and a single bidder with a valuation
function v, given by the following table

xø xA xB xAB

x (0, 0) (1, 0) (0, 1) (1, 1)

v(x) 0 2 3 4

The set  is shown in Figure 2. We can see
that v is of the demand type given by  =
{±(1, 0),±(0, 1),±(1,−1)}. It can be checked
that  is actually unimodular.

4.2.3 From individual to aggregate value functions
We now want to understand when we can expect individ-
ual value functions vi to yield aggregate value functions
v that are integrally concave. The aggregation of value
functions is referred to as convolution (see Section 3).
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FIGURE 3 For a market with two units of a single indivisible item x, the

figure shows the aggregate valuation function v (x), the aggregate utility

function u , and the Lyapunov function L (p). The Lyapunov function is

minimized at p = 2, denoting the Walrasian equilibrium prices. Note that

p = 2 is also the supergradient of v (x) at x = 2

Murota (2016)[p. 196] shows that if the individual value
functions vi of all bidders i∈ are M♮-concave, also their
convolution is M♮-concave. Similarly, one can define the
aggregate demand correspondence D(p), which is equal to
the Minkowski sum

∑
i∈Di(p).

For M♮-concave functions there is a supergradient at any
point that determines a Walrasian price p. To show this,
let us consider an arbitrary bounded, integrally convex set
A ⊂ Zm≥0. Let v : A→Z be an M♮-concave valuation on
this set. A bundle x ∈ A is demanded at price p∈Rm iff
v(x)− ⟨p, x⟩≥ v(x′)− ⟨p, x′⟩ ∀ x′ ∈A, which is equivalent
to v(x)+ ⟨p, x′ − x⟩≥ v(x′) ∀ x′ ∈A (as for divisible goods
in Section 3). Figure 3 now illustrates an integrally concave
value function on the left and the resulting indirect utility
function u(p) as well as the Lyapunov function L(p) for a
single item on the right.

With indivisible items and an integrally concave aggregate
value function v , bundle x is demanded at p if and only if p
is a supergradient of v at x. The superdifferential 𝜕v(x) of
an integrally concave function v ∶ Zm≥0 → R ∪ {−∞} at
x∈ dom v is defined as

𝜕v(x) = {p ∈ Rm≥0 | v(y) − v(x) ≤ ⟨p, y − x⟩ ∀y ∈ Zm≥0}.

The individual and aggregate value functions are nondecreas-
ing such that the gradient p* of the superdifferential is p* ≥ 0.
With an integrally concave value function v there exists an
integral equilibrium price vector p* (Murota et al., 2016).
The integrality of the prices follows from the fact that an
integer-valued M♮-concave function v on Zm≥0 has an inte-
gral subgradient at every point x in dom v . As both v(x) and
the subgradient at x are integral, the tangent at v(x) has an
integral slope p, which can be verified in Figure 3.

An underlying assumption in the study of competitive
equilibria is that agents are price-takers, that is, agents

honestly report their true demand in response to prices in
each round of an auction. Mechanism design, a line of
research initiated by Hurwicz (1972), wants to understand
how such markets perform when agents are strategic about
their demands. Unfortunately, Gul and Stacchetti (1999)
showed that even if goods are substitutes, Walrasian markets
are not incentive-compatible. The assignment market, where
bidders have unit-demand is an exception where straightfor-
ward bidding is actually an ex post equilibrium (Shapley &
Shubik, 1971; Demange et al., 1986).

5 ALGORITHMIC AUCTION MODELS

Auctions can be understood as algorithms to solve a welfare
maximization problem. Some algorithms provide models that
allow us to understand when an auction can be expected to be
efficient and when it yields a Walrasian equilibrium.

The auction proposed by Ausubel (2005) for strong substi-
tutes valuations follows a greedy steepest descent algorithm to
minimize the (integrally convex) Lyapunov function (Murota
& Tamura, 2003). This algorithm has an intuitive interpreta-
tion as an ascending auction: subgradients of the Lyapunov
function at p are oversupplies at this price: 𝜕L(p)= s−D(p).4

Knowing that the Lyapunov function is equivalent to the
DRWDP (see Proposition 1), the overall auction can now be
described as a primal-dual algorithm to solve the RWDP. For
the price minimization, both algorithms require all subgradi-
ents at each point, that is, the entire demand set needs to be
revealed. A specific version of a primal-dual algorithm yields
the same steps.

We focus on primal-dual algorithms as a consistent algo-
rithmic framework to model Walrasian auction mechanisms.
Let us first describe the auction by Ausubel (2005) as a
steepest descent algorithm before we introduce the overall
primal-dual auction framework.

5.1 The auction by Ausubel (2005)

The auction algorithm starts with an arbitrary price vector p
below the bidder-optimal Walrasian prices, possibly p(k) = 0
for all k ∈ . The algorithm then searches iteratively in
each round t ∈ T for a subset of goods S ⊆  such that
L(pt)−L(pt +1S) is maximized. Here, pt denotes the prices
in round t. This is equivalent to determining the direction of
steepest descent to find the global minimum of this function:

4Note that subgradient and steepest descent algorithms for convex minimiza-
tion are equivalent for differential functions but not for the minimization of
discrete functions as in the case of markets with indivisible goods. The dif-
ference between the two algorithms is that the steepest descent algorithm
evaluates all subgradients at a point, while subgradient algorithms use only a
single subgradient. This is equivalent to eliciting the entire demand demand
correspondence or only a single bundle from the demand correspondence. As
a result, the primal-dual algorithm needs fewer iterations to converge to the
exact solution (de Vries et al., 2007).
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FIGURE 4 A primal-dual algorithm following Papadimitriou and Steiglitz (1998)

(i) At pt the auctioneer asks each bidder i∈
for her entire demand set Di(pt).

(ii) For all potential price update vectors p̃ ∈
{1S ∶ S ⊆ } the auctioneer determines
each bidder’s decrease of the indirect
utility. The auctioneer chooses the price
update p̃ ∈ {1S ∶ S ⊆ } such that the
Lyapunov function is decreased the most,
that is, L(pt) − L(pt + p̃) is maximized. In
case there are multiple such minimizers,
the p̃ with the smallest number of posi-
tive entries is selected. This price vector is
referred to as the minimal minimizer and is
guaranteed to be unique.

(iii) If no nonempty subset S can be found
satisfying L(pt)−L(pt +1S)> 0, then the
submodularity of the Lyapunov function
guarantees that pt is the bidder-optimal
Walrasian price vector and the algorithm
terminates. Otherwise the price pt+1 is set
to pt + p̃ and the algorithm continues.

With integer valuations, L(p) decreases by at least 1 in each
iteration and therefore converges after finitely many steps.
Murota et al. (2016) analyze the convergence and number of
iterations of this steepest descent algorithm. In particular, if
the auction algorithm is initialized with p(k) = 0 for all k ∈ 
and p* is the minimal equilibrium price, the algorithm termi-
nates in exactly ||p∗||∞ = maxk∈|p∗(k)| iterations. The price
update step described in this subsection can now be inter-
preted as an operation in a primal-dual algorithm to solve the
WDP, as we show next.

5.2 The primal-dual auction framework

Let us now describe the auction by Ausubel (2005) in
the context of the more general primal-dual framework.
Primal-dual algorithms (Papadimitriou & Steiglitz, 1998) can
be used to compute solutions of the RWDP and DRWDP (see
Section 4.1.1). Based on a feasible solution of the DRWDP,
one derives a restricted primal RP that determines whether
supply equals demand at these prices or not. If this is not
the case, the dual restricted primal DRP determines the price
increment, which is then added to the current price vec-
tor of the dual DRWDP, before a new restricted primal is

computed. The overall process is illustrated in Figure 4. There
is some flexibility in choosing each iteration’s direction of
price adjustment. In this primal-dual auction framework, we
compute the price update that yields the steepest descent of
the DRWDP.

Instead of solving the RWDP and the DRWDP directly,
the primal-dual algorithm replaces these linear programs by
a series of other linear programs known as the restricted pri-
mal RP and the dual of the restricted primal DRP. As the
primal dual algorithm follows the same price trajectory as
Ausubel’s auction as we will show below, exactly ||p*||∞
iterations must be executed where p* is the minimal equi-
librium price vector (Murota et al., 2016). In each iteration
two linear programs (the RP and DRP) must be solved which
both are of exponential size in the number of goods. Clearly,
the primal dual algorithm does not give any runtime bene-
fits over solving the RWDP and DRWDP directly. However,
executing the primal-dual algorithm instead of solving the
RWDP and DRWDP directly allows to interpret the auc-
tion by Ausubel (2005) in terms of a primal-dual framework.
Moreover, unlike the solution obtained by solving the RWDP
and DRWDP directly, the allocation and prices computed by
the primal-dual algorithm are guaranteed to constitute the
Walrasian equilibrium with bidder-optimal prices.

Let us discuss the algorithm in more detail. In an ascending
auction the components of the initial price vector are set to
p(k) = 0 for all k ∈ . To obtain an initial feasible dual solu-
tion, the dual is solved with these prices to find initial values
for the indirect utility 𝜋i of every bidder i.

With a feasible dual solution, one can exploit the com-
plementary slackness conditions to derive an optimal primal
solution which defines a welfare-maximizing allocation of
bundles to bidders. Naturally, not every feasible dual solu-
tion allows for an optimal primal solution. To check this, one
solves an optimization problem known as the restricted primal
RP problem.

max−
∑
i∈

𝜆ici −
∑
k∈

𝜇kdk (RP)

s.t.
∑
x∈i

zi(x) + ai + ci = 1 ∀i ∈ (𝜋i)
∑
i∈

∑
x∈i

x(k)zi(x) + bk + dk = s(k) ∀k ∈ (p̃(k))

zi(x), ai, bk ≥ 0 ∀zi(x) ∈ z,∀ai ∈ a,∀bk ∈ b

zi(x) = 0, ai = 0, bk = 0 ∀zi(x) ∉ z,∀ai ∉ a,
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∀bk ∉ b

ci, dk ≥ 0 ∀i ∈ ,∀k ∈ 
Given a feasible dual solution for the DRWDP, any tight
dual constraint 𝜋i ≥ vi(x) −

∑
k∈x(k)p(k) corresponds to

a bundle x that maximizes the utility of bidder i at prices
p. Thus, the set of tight dual constraints z corresponds to
the bidders’ demand sets. In case the given dual solution is
optimal, the complementary slackness conditions mandate
that whenever the dual constraint has slack, that is, 𝜋i >
vi(x) −

∑
k∈x(k)p(k), the corresponding primal variable zi(x)

defining whether bidder i is allocated bundle x equals zero.
The interpretation of this is that a bidder is never allocated
a bundle not being part of her demand set. Of course, if the
given dual solution is not optimal, there might not exist an
allocation such that each bidder receives a bundle from her
demand set. Therefore, additional slack variables ci and dk are
introduced to the RP that measure by how much the comple-
mentary slackness conditions are violated. A violation may
either occur due to bidder i not being allocated a bundle from
her demand set (ci > 0) or an item k remaining (partially)
unsold (dk > 0). The restricted primal problem tries to find an
allocation in which these violations are minimized. In fact,
when the optimal solution of the RP equals 0, the comple-
mentary slackness conditions are fulfilled so that the current
primal and dual solution constitute a Walrasian equilibrium.
Otherwise, the price of some items needs to be raised.

Complementary slackness conditions must also hold for
the dual constraints 𝜋i ≥ 0 and p(k)≥ 0. We denote the set of
tight dual constraints by a and b respectively. Due to com-
plementary slackness, the primal variable ai must equal zero
whenever the corresponding dual constraint 𝜋i ≥ 0 has slack.
In other words this means that whenever a bidder’s indirect
utility is positive, she must be allocated a nonempty bun-
dle from her demand set. Similarly, complementary slackness
implies that when a price of an item k ∈  is greater than
zero, then slack variable bk must equal zero, which guarantees
that all units of item k are allocated in an optimal solution.

In the primal-dual framework of Papadimitriou and Stei-
glitz (1998) all coefficients 𝜆i and 𝜇k in the objective function
of the restricted primal RP equal 1. Note that as long as 𝜆i
and 𝜇k are chosen to be strictly positive, their specific values
do not influence the termination criterion of the primal-dual
algorithm as one only checks whether the objective equals
zero. However, the particular choice of 𝜆i and 𝜇k affects the
constraints in the dual of the restricted primal DRP, and we
will take advantage of this to find a particular price update
vector when solving the DRP.

In case the RP objective does not equal zero, the current
dual solution of the DRWDP is updated using the solution to
the dual of the restricted primal DRP. Solving the DRP essen-
tially means computing a direction 𝜋, p̃ in which the dual
objective function can be improved the most. We set 𝜋, p̃ such
that it minimizes the function

∑
i∈(𝜋i+𝜋i)+

∑
k∈s(k)(p(k)+

p̃(k)). This is equivalent to finding a subgradient to the Lya-
punov function as we will show below.

As there may exist multiple potential directions (𝜋, p̃) that
minimize the Lyapunov function, we need to make small
adaptions to the DRP such that the gradient found by the
DRP is equivalent to the minimal minimizer in Ausubel’s
auction. For this purpose we introduce additional constraints
0 ≤ p̃(k) ≤ 1 for all k ∈ . As proven in Ausubel (2005),
the Lyapunov function restricted to the unit ||-dimensional
cube {p + p̃ ∶ 0 ≤ p̃(k) ≤ 1 ∀k ∈ } is minimized on the
vertices of this cube. Thus, limiting price updates p̃(k) to the
interval [0, 1] for all k ∈  ensures that the same potential
price updates as in Ausubel’s auction (i.e., {1S ∶ S ⊆ }) are
considered. Note that this also implies that in each iteration of
our primal-dual auction framework the respective prices and
price updates are integer valued.

Another adaption to be made is to chose 𝜆i suitably large
for all i∈ so that the decrease of utility for each bidder i is
unrestricted when raising prices. To guarantee that the gradi-
ent found by the DRP is not only a minimizer of the Lyapunov
function but a minimal minimizer, price penalties 𝜏k > 0 are
added to the objective function that are small enough so that
their impact on the objective value is negligible.

min
∑
i∈

𝜋i +
∑
k∈

(s(k) + 𝜏k)p̃(k) (DRP)

s.t. 𝜋i +
∑
k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z (zi(x))

𝜋i ≥ 0 ∀i ∶ ai ∈ a (ai)
𝜋i ≥ −𝜆i ∀i ∶ ai ∉ a (ci)
p̃(k) ≥ 0 ∀k ∶ bk ∈ b (bk)
p̃(k) ≥ −𝜇k ∀k ∶ bk ∉ b (dk)
0 ≤ p̃(k) ≤ 1 ∀k ∈ 

In the following we make the connection between the DRP
and the price update step of Ausubel’s ascending auction
explicit by demonstrating how to transform one approach into
the other. Recall that in Ausubel (2006) the goal is to find a
p̃ ∈ {1S ∶ S ⊆ } leaving all entries of p + p̃ nonnegative
and minimizing

L(p + p̃) − L(p).

Ausubel (2006) shows that for a fixed p̃ it holds that

L(p + p̃) − L(p) =
∑
i∈

max
x∈Di(p)

{
−
∑
k∈

x(k)p̃(k)

}

+
∑
k∈

s(k)p̃(k).

The term maxx∈Di(p)
{
−
∑

k∈x(k)p̃(k)
}

is clearly equal to

min 𝜋i

s.t. 𝜋i ≥ −
∑
k∈

x(k)p̃(k) ∀x ∈ Di(p)

Consequently, by adjusting notation and noting that z rep-
resents the demand set Di(p), we can rewrite the problem of
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minimizing L(p + p̃) − L(p):

min
∑
i∈

𝜋i +
∑
k∈

s(k)p̃(k)

s.t. 𝜋i +
∑
k∈

x(k)p̃(k) ≥ 0 ∀i, x ∶ zi(x) ∈ z

p(k) + p̃(k) ≥ 0 ∀k ∈ 
0 ≤ p̃(k) ≤ 1 ∀k ∈ 

As argued above, all price updates and consequently also the
prices are integral in each step of our primal-dual auction
framework. Hence, the second last set of inequalities can be
replaced by

p̃(k) ≥ 0 ∀k ∶ bk ∈ b

since b represents all indices where p(k) equals 0.
The only remaining difference to the DRP is that we are

missing the inequalities 𝜋i ≥ 0 for ai ∈ a. From the
definition we see, however, that ai ∈ a if and only if the util-
ity of bidder i at price p is 0. But this means that the empty
bundle is in her demand set. Hence, 𝜋i ≥ 0 is actually one of
the constraints 𝜋i +

∑
k∈x(k)p̃(k) ≥ 0. As a result we get that

one step of the Lyapunov minimization approach is exactly
the same as one step of the primal-dual algorithm.

We restricted our attention so far on explaining the
relationship between the primal-dual algorithm and the
ascending version of the tâtonnement process described by
Ausubel (2005). However, similar observations can also be
made for the descending version. The only adaptions to be
made in our argument concern the formulation of the DRP.
Instead of applying positive price penalties 𝜏k in the objective
function, negative ones have to be used to ensure that a max-
imal minimizer is found in each iteration. Furthermore, the
price updates p̃(k) need to be bounded to the interval [−1, 0]
instead of [0, 1]. Of course, this also implies that 𝜇k must be
chosen suitably large, that is, 𝜇k ≥ 1, in order to allow for price
updates of −1.

While the auction described by Ausubel (2005) requires
the bidders’ valuations to satisfy the strong substitutes con-
dition, the primal-dual algorithm also works for other envi-
ronments, in particular for economies where the preferences
of the bidders fulfill the more general GGSC condition. Sun
and Yang (2006) propose the dynamic double-track auction
(DDT) that terminates in a Walrasian equilibrium if bidders
bid straightforwardly and have GSC valuations. Given two
sets S1 and S2 describing two classes of goods, the auction-
eer announces start prices of zero for items in S1 and suitable
high start prices in S2 such that items in S1 are overdemanded
while items in S2 are underdemanded. In the course of the
auction the auctioneer simultaneously adjusts prices of items
S1 upwards but those of items in S2 downwards.

Shioura and Yang (2015) introduce the generalized
double-track auction which is an extension of the DDT to
multi-item multi-unit economies where bidders’ valuations
satisfy the GGSC condition. Their auction starts with an arbi-
trary integral price vector and then proceeds in two phases.

While in the first phase the auctioneer adjusts prices of items
in S1 upwards and prices in S2 downwards, the price update
directions are reversed in the second phase.

Similar to the auction proposed by Ausubel (2005),
the price updates in the generalized double-track auction
correspond to the steepest descent direction of the Lya-
punov function, which can be embedded into a primal-dual
algorithm. Essentially, the primal-dual algorithm for the gen-
eralized double-track auction combines the DRP adaptions
for the ascending and descending version of the auction by
Ausubel (2005) as described above. Let the set S1 and S2

denote the set of items with an upward and downward moving
price trajectory, respectively. While price updates for items
in S1 are bounded to the interval [0, 1], they are restricted to
interval [−1, 0] for items in S2. Similarly, the price penalties
in the objective of the DRP are positive for items in S1 and
negative for items in S2. Once the generalized double-track
auction moves from the first to the second phase, the price
trajectories of items in S1 and S2 are inverted so that the adap-
tions made to the DRP for items in S1 now apply for items in
S2 and vice versa.

5.3 Allocation of items

While our paper focuses on the process of determining equi-
librium prices, of course, the auctioneer must determine an
equilibrium allocation as well. That is, given a target supply
s and an equilibrium price vector p*, we must find alloca-
tions xi ∈ Di(p*) for every bidder, such that

∑
i∈xi = s. Since

we assume access to demand oracles, that is, each bidder i
reports her whole demand set Di(p*) in each iteration of the
auction, and as demand sets only contain integer points, we
could just try every of the finitely many combinations of allo-
cations xi ∈ Di(p*) in order to match the target supply. This
approach is however not very efficient: the number of com-
binations we possibly have to check is Πi∈ |Di(p*)|, which
can clearly be exponential.

The allocation problem can also be interpreted as a flow
problem: Consider the directed graph G= (V , A) consisting of
|| ⋅ || vertices bi(k), describing bidder i’s demand of good
k, and || vertices t(k), describing the total supply of good
k. For each i∈ and k ∈ , there is an arc pointing from
t(k) to bi(k). Now consider a flow x on this graph, where xi(k)
denotes the amount of flow from vertex bi(k) to vertex t(k).
We interpret xi(k) as the number of units of good k bidder i
receives. As usually, given a flow x, and a node v in the graph,
the excess at node v is the difference of the flow entering the
node and the flow leaving the node:

𝜕x(v) =
∑

(w,v)∈A
x(w, v) −

∑
(v,w)∈A

x(v,w).

We call the vector 𝜕x the boundary of x. In our above defined
graph, we have 𝜕x(bi(k)) = xi(k) and 𝜕x(t(k)) = −

∑
i∈xi(k).

The total number of goods of type k should be equal to the sup-
ply of good k. Hence, we have the constraint 𝜕x(t(k)) = −s(k).
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Also, each bidder should receive an allocation in her demand
set Di(p*), so (𝜕x(bi(1)), … , 𝜕x(bi(||)) ∈ Di(p∗) should
hold. Thus, the allocation problem can be interpreted as find-
ing a feasible flow with respect to these constraints on the
boundary. In the case of strong-substitutes valuations, the
demand sets Di(p*) are all M♮-convex, so this is an instance
of the M-convex submodular flow problem. Polynomial-time
algorithms have been developed for this problem, many
of them are based on well-known algorithms for min-cost
flows. For an overview, see for example (Murota, 2003,
Ch. 10).

6 SUMMARY AND RESEARCH AGENDA

A number of assumptions are crucial for the existence of
Walrasian equilibria. Apart from (a) integral concavity of the
aggregate value function, (b) the bidders’ valuations need to
be independent of each other, and all bidders need to be pure
payoff maximizers, that is, have a (c) quasilinear utility func-
tion. Also, we assume that (d) the bidders are price-takers and
truthfully reveal their demand correspondence in each round.
With these assumptions we can guarantee Walrasian equilib-
ria. However, these are strong assumptions, which might not
hold in the field.

(i) Bidder valuations in real-world auctions
include complements and substitutes such
that Walrasian equilibria might not even
exist. Competitive equilibria with nonlin-
ear and personalized prices always exist in
ascending auctions under the assumptions
above.5

(ii) Quasilinearity is not always given as
there might exist budget constraints, spite-
fulness, or market-power effects. For
example, if bidders have financial con-
straints, quasilinearity is violated, and
ascending auctions with budget con-
strained bidders have only been analyzed
recently (Gerard van der Laan, 2016; Yang
et al., 2018). Even if one tries to set bud-
get constraints endogenously for bidders,
it might not always be possible to imple-
ment an efficient outcome via an auction
(Bichler & Paulsen, 2018).

(iii) Finally, bidders might not bid straightfor-
ward in a simple clock auction and behave
strategically. A number of papers discusses

5For example, Sun and Yang (2014) introduces an ascending and
incentive-compatible auction in markets with only complements using
non-linear and anonymous prices. Ausubel and Milgrom (2002), Parkes and
Ungar (2000) and de Vries et al. (2007) discuss ascending auctions for
markets where bidders have substitutes and complements and allow for dis-
criminatory and non-linear prices. These auctions are incentive-compatible
if the bidders’ valuations were gross substitutes.

variations or extensions of simple clock
auctions, which yield incentive compati-
bility (Ausubel, 2006). These are, however,
quite different from the simple clock auc-
tions we see in the field.

The assumptions (i)–(iii) above also lead to corresponding
research challenges for the operations research community.

1. Most resource allocation problems analyzed
in operations research (e.g., scheduling
or packing problems) do not satisfy the
assumptions that allow for Walrasian equi-
libria. Duality breaks for nonconvex integer
programming problems and new concepts
for competitive equilibrium prices need to be
derived. The literature on integer program-
ming duality can provide useful insights
and guidance how to derive equilibrium
prices for such nonconvex allocation prob-
lems (Wolsey, 1981).

2. Budget constraints play a major role in many
markets. We need to understand equilibria in
markets where bidders maximize payoff, but
are financially restricted. Very recent results
suggest that budget constraints have a sub-
stantial impact on the computational com-
plexity of the allocation and pricing problem
and require bilevel integer programs which
are known to be Σp

2-hard (Bichler & Wald-
herr, 2019). Overall, it will be useful to
analyze utility models different from the
standard quasi-linear utility function as they
have been observed in advertising and other
domains where bidders might not maximize
payoff but their net present value or return
on investment (Fadaei & Bichler, 2017;
Baisa, 2017; Baldwin et al., 2020). Effective
ways to compute market equilibria in such an
environment still need to be developed.

3. Finally, incentive-compatibility plays an
important role in small markets where par-
ticipants can influence the price. Recent
research tries to design simple ascend-
ing auction and pricing rules that are
incentive-compatible (Baranov, 2018).
Incentive-compatibility is very restric-
tive in most environments. For example,
in markets with purely quasilinear utili-
ties, the Vickrey–Clarke–Goves mechanism
is unique (Green & Laffont, 1979). For
larger markets it can also be useful to
understand weaker notions of robustness
against strategic manipulation (Azevedo &
Budish, 2018).
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Overall, competitive equilibrium theory is closely related
to mathematical optimization and it provides a rich field for
operations research to contribute.
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APPENDIXA.

Proof of Theorem 2. First, let {z∗i (x)}i∈,x∈i be an opti-
mal solution to the RWDP and ({𝜋∗

i }i∈ , {p∗(k)}k∈) be an
optimal solution to the DRWDP. By assumption, the optimal
value of the WDP is equal to the one of the RWDP, so we may
assume that all z∗i (x) are in {0, 1}. We may further assume
without loss of generality that for each bidder i, there exists
exactly one x with z∗i (x) = 1: If z∗i (x) = 0 for all x ∈ i, we
can just set z∗i (0) = 1, where 0 is the empty bundle, without
altering the value of the WDP, since vi(0) = 0. Similarly, if for
some k ∈ ,

∑
i∈

∑
x∈i

x(k)z∗i (x) < s(k), we may distribute
the remaining items of type k arbitrarily among the agents.
This does not decrease the value of the WDP because of
monotonicity of the agents’ valuations. The (possibly altered)
variables z∗i (x) thus constitute an allocation where the whole
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supply is distributed among the agents—so the first criterion
of a Walrasian equilibrium is satisfied. Let us now check that
every bidder receives a bundle in her demand set: If z∗i (x) = 1,
that is, bidder i receives bundle x, we have by complementary
slackness 𝜋i = vi(x) −

∑
k∈x(k)p∗(k). Since 𝜋∗

i is part of an
optimal solution,

𝜋∗
i = max

x∈i
vi(x) −

∑
k∈

x(k)p∗(k).

Otherwise, we could decrease 𝜋∗
i , making the value of the

DRWDP smaller. Consequently, vi(x) −
∑

k∈x(k)p∗(k) =
maxx∈i vi(x) −

∑
k∈x(k)p∗(k), so x is in the demand set

of bidder i at prices {p∗(k)}k∈. The second condition of a
Walrasian equilibrium is thus satisfied, and {p∗(k)}k∈ are
equilibrium prices.

For the other direction, let {p∗(k)}k∈ be equilibrium prices
together with an allocation, described by binary variables
{z∗i (x)}i∈,x∈i . Let x be the bundle with z∗i (x) = 1. Set 𝜋∗

i =
vi(x)−

∑
k∈x(k)p(k). Since x is in the demand set of bidder i,

𝜋∗
i ≥ vi(x)−

∑
k∈x(k)p(k) for all bundles x, so ({p∗(k)}, {𝜋∗

i })
is feasible for the DRWDP (𝜋∗

i ≥ 0 follows from choosing
x = 0 in the above inequality). By definition of the Wal-
rasian equilibrium, {z∗i (x)} is also feasible for the (R)WDP.
All inequalities in the WDP actually hold with equality—so
complementary slackness of the primal problem is trivially
fulfilled. From the choice of 𝜋∗

i we also directly see, that
complementary slackness is satisfied for the dual problem. It
follows that the optimal value of the WDP equals the optimal
value of the DRWDP.
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road capacity was recently proposed in which an Independent System Opera-
tor (ISO) sells road capacity to multiple Service Providers (SPs) who then resell
it to end consumers [1]. As urban road networks consist of tens of thousands of
road segments, the number of products in the market is unparalleled, making the
preference elicitation and market tractability challenging. We propose a compact
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ming techniques to maximize welfare in the market. Utilizing calibrated traffic
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1 Introduction

Due to population growth and urbanization, traffic congestion has increased substantially
in major cities around the world causing significant economic losses and environmental
damage. A central challenge is the mispricing of the core resource for mobility, the
road capacity. In most cities, road capacity is not priced at all leading to severe traffic
congestion. In 2017, the total costs due to traffic jams in Britain, Germany, and the US
were estimated $461 billion.1 Those numbers come from the lost productivity of workers
sitting in traffic, the increased cost of transporting goods through congested areas and
wasted fuel, among other factors.

While Vickrey proposed urban congestion pricing already in the 1960s [2], its
practical implementation has lagged behind for decades. Singapore was the first city to
implement congestion pricing in 1975, others such as London, Milan, and Stockholm
followed suit only in the 2000s [3]. Almost all existing models are based on static traffic
assignment theory, setting fixed prices based on prior estimates of the demand at certain
times of the day [4, 5]. Maximizing social welfare requires efficient pricing, i.e., the cost
of a trip must equal its marginal social cost, which makes it necessary to price individual
road segments [6]. Static pricing schemes are not suitable for this as they either only
consider pure travel distances or entire areas but not individual road segments.

1 https://www.economist.com/graphic-detail/2018/02/28/the-hidden
-cost-of-congestion
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Dynamic congestion pricing is the determination of time-varying prices to control
traffic congestion. By pricing roads dynamically, drivers can select their route through
the network based on these prices which effectively redirects traffic through the network.
More than that, prices also guide drivers when to start their journey, thereby not only
distributing traffic over the network but also over time. With the help of these dynamic
prices, the roads’ capacity constraints are respected so that harmful traffic congestion
can be avoided [7]. Prior literature agrees that dynamic congestion pricing offers the
most efficient approach to manage and operate roads [8, 9]. Even though nowaday’s
privacy-preserving mobile applications for GPS-based tracking of vehicles allow for
real-time dynamic congestion pricing, it has not been implemented in practice [10].

In other major utilities markets (e.g., electricity) real-time dynamic pricing is applied
regularly already today. These markets follow a two-tiered structure with an Independent
System Operator (ISO) managing the market and multiple Service Providers (SPs) who
serve end consumers. A market-based congestion pricing model similar to electricity
markets has received much scholarly attention over the past few years [1, 7, 11, 12].
Despite some fundamental differences, both electricity and road pricing markets aim
to allocate scarce network resources in the presence of locational and temporal supply-
demand variations, making electricity markets a suitable template for the design of road
pricing markets (see [1] for a detailed discussion).

The authors of [1] envision a wholesale market which is managed by an ISO and
allows SPs to buy and trade road capacity. Their wholesale market consists of several
forward markets and a real-time market. Forward markets let participants plan and hedge
risk by taking positions consistent with their underlying demands, while deviations from
forward positions can be settled on the real time market. Forward markets could be
run monthly, weekly, and daily to adapt to changing information about the demand on
a particular day. SPs resell their capacity bought on the wholesale market to end con-
sumers on a separate retail market. SPs compete in this retail market to offer customers
attractive prices for individual trips but also package deals for recurrent work trips. This
competition is vital as it enhances the effective redirection of traffic and ultimately brings
down consumer prices. Without SPs, the ISO would act as a monopolist in the market.

Market design studies the rules for allocating and pricing goods on a market with
multiple decision makers. Designing a wholesale market for road capacity is challenging
due to the unparalleled number of products available in the market. In a city like Berlin,
there are more than 34 thousand road segments that can potentially be priced. Thus, the
number of products in our wholesale market is significantly higher than in other utilities
markets, e.g., spectrum sales where there are typically not more than a few hundred
products [13]. The decision makers in our wholesale market, the service providers, have
preferences over entire routes consisting of many individual road segments. Eliciting
these preferences in a succinct manner and pricing the road segments with respect to the
disclosed valuations of the market participants is far from obvious.

1.1 Contributions

We propose a novel, compact bid language that allows SPs to state their preferences not
only for individual road segments as in [1] but for multiple substitutable routes. Each



3

bid defines an SP’s demand for road capacity between two locations in the network (i.e.,
an origin-destination (OD) pair). SPs may associate each bid with a set of substitutable
routes connecting these locations and specify an individual willingness-to-pay for each of
them. We determine an allocation by solving a mixed-integer linear optimization program.
To approximate competitive equilibrium prices, we draw on ideas from electricity market
design and rely on a pricing technique called IP Pricing which is commonly used in
electricity markets today [14]. Unlike to electricity markets, almost no side-payments
are required in our market to prevent SPs from losses.

In order to evaluate the computational tractability as well as the volatility of road
prices throughout the day for realistic problem instances, we rely on traffic data taken
from the MATSim Open Berlin Scenario, a calibrated transport simulation scenario that
aims to model the traffic in Berlin’s urban area accurately [15]. Our tests show that the
underlying optimization problems are tractable for multi-million cities like Berlin and
can be solved within 15 minutes to optimality. The resulting allocation problem has
more than ∼90k binary variables, ∼950k continuous variables, and 250k constraints. It
is far from obvious that such problems can be solved with modern optimization software.
Interestingly, our tests indicate that only a small fraction of road segments have to be
priced to reach an efficient allocation. The solver makes effective use of substitutable
routes between OD pairs and effectively distributes the available capacity.

The paper contributes to a growing stream of research on market design in Informa-
tion Systems [16]. In particular, pricing in non-convex markets has played a considerable
role in this literature, with combinatorial auctions as leading examples [17–21]. By
proposing a novel design for a road capacity wholesale market, the paper also advances
recent research on congestion pricing in urban areas [1, 3, 5, 6].

2 Market Design

The products in our wholesale market are licenses for road capacity (measured in
vehicles/hour). Each license is associated with a single road segment and a one-hour time
slot during a specific day. Licenses for different time slots are traded on separate markets.
Initially, all road capacity is owned by the ISO. The wholesale market for licenses of a
particular time slot consists of multiple forward markets (taking place monthly, weekly,
and daily before the time slot) and a real-time market. SPs can buy road capacity from
the ISO or trade capacity among each other on both the forward and real-time market.

SPs resell the road capacity bought on the wholesale market to end consumers on a
separate retail market. Products in the retail market may include licenses for unlimited
road use, monthly packages for daily work trips, or capacity for one-time trips. SPs
compete against one another to offer end consumers affordable route alternatives with
few detours within the desired time slot. This competition incentivizes innovation and
brings end consumer prices down. In case of high demand for a road segment, SPs will
raise prices in the retail market, thereby encouraging drivers to switch to other modes of
transportation or shift their trips to other time slots.

The end consumers’ trips may stretch over several time intervals. However, as they
purchase road capacity for their entire trips from SPs, it is the obligation of the SPs
to ensure that no more vehicles drive across a road segment than their capacity allows.
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The ISO sets suitable penalties to prevent SPs from overbooking. Due to the temporal
discretization of the wholesale market, SPs may need to combine licenses from different
time slots to serve a customer, making bidding in the wholesale market more complex.
However, the subsequent structure of the forward markets which allows to settle demand
fluctuations and the fact that SPs serve tens of thousands of customers within a time slot
mitigates this problem. In the following, we exclusively focus on the wholesale market
and leave the design of the retail market for future research.

Bidding for tens of thousands of individual road segments in the wholesale market
is impractical for SPs. The number of OD pairs is much more manageable and is what
traffic planners work with today. Bidding on entire routes vastly simplifies the bidding
process of SPs who need to satisfy a certain customer demand between an OD pair. It
also prevents SPs from winning much capacity on one segment of a route but little on
the next, which would render the capacity on the first worthless.

In our bid language each buy bid is associated with a set of substitutable routes for
an OD pair. Bidders can specify an individual willingness-to-pay for each of the routes
(see Example 1). Buy bids also have a lower and upper capacity bound, restricting the
total allocated capacity for all routes to this interval if the bid is accepted. Specifying
lower bounds allows SPs to run marketing campaigns that require them to offer at least
a certain amount of capacity for particular routes. Sell bids only correspond to single
road segments and must have a lower bound of zero. Limiting sell bids to individual
road segments prevents potential fitting problems that may occur in practice: SP1 sells
capacity for route {k1, k2, k3, k4}, while SP2 wants to buy capacity only for k1. The
trade will not take place because a route must either be sold entirely or not at all. Limiting
sell bids to single road segments is a mild restriction for SPs, but it significantly increases
the probability of finding matches with the package buy bids.

A

B

C

D

k1

k4

k3
k2

k5

SP1 7-8am BUY [100, 500]
Route Price

S1 = {k1, k2} 0.19
S2 = {k3} 0.22
S3 = {k4, k5} 0.18

SP2 7-8am SELL [0, 200]
Segment Price

k1 0.08

SP2 7-8am SELL [0, 200]
Segment Price

k2 0.07

SP2 7-8am SELL [0, 200]
Segment Price

k3 0.15

Example 1. SP1 wants to buy capacity for at least 100 and at most 500 vehicles traveling
from node A to D in the 7-8 am time slot. SP1 specifies three alternative routes: S1 =
{k1, k2}, S2 = {k3}, S3 = {k4, k5}. SP2 wants to sell up to 200 licenses each for road
segments k1, k2, and k3. SP1 may win in total 400 licenses for routes from A to D: 200
for S1 and 200 for S2.

The bid language can be extended in several ways, e.g., by guaranteeing bidders that
they either win road capacity in one area of the city or another. Such XOR-constraints add
further non-convexities to the market, making the price determination more challenging
and requiring higher side-payments for SPs. This will be discussed thoroughly in the
long version of this paper.
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3 Allocation Problem

As the allocation problem (AP) is solved hourly and these hourly auctions are indepen-
dent, no index for time is needed. Let I be the set of bidders (ISO and SPs), K the set of
road segments, S ⊆ K a route, Bi the set of buy bids of bidder i, and vi(k) and vi(S)
the valuation of bidder i for road segment k and route S, respectively. Each buy bid
b ∈ Bi represents a set of alternative routes and is associated with an upper bound ubi and
lower bound `bi . Bidders also specify an upper bound uki for each road segment k they
intend to sell. The binary decision variable zi(b) denotes whether buy bid b is accepted,
the continuous decision variables xi(S) and yi(k) define the amount of licenses a bidder
wins for route S or sells for segment k, respectively. The ISO is modeled as a bidder
who only sells capacity and whose value for all road segments is zero.

max
x,y

∑

i∈I

∑

S⊆K
vi(S) · xi(S)−

∑

i∈I

∑

k∈K
vi(k) · yi(k) (AP)

s.t.
∑

i∈I

∑

S⊆K:k∈S
xi(S)−

∑

i∈I
yi(k) = 0 ∀k ∈ K (p(k)) (1a)

`bi · zi(b) ≤
∑

S∈b
xi(S) ≤ ubi · zi(b) ∀i ∈ I, b ∈ Bi (1b)

yi(k) ≤ uki ∀i ∈ I, k ∈ K (1c)
xi(S) ∈ R≥0 ∀i ∈ I, S ⊆ K (1d)
yi(k) ∈ R≥0 ∀i ∈ I, k ∈ K (1e)
zi(b) ∈ {0, 1} ∀i ∈ I, b ∈ B (1f)

The objective function maximizes the gains of trade, constraints (1a) ensure that for
each segment the bought and sold road capacity match, constraints (1b) fix a buy bid’s
lower and upper quantity bounds in case the bid is accepted, and constraints (1c) define
the upper quantity bounds for the sell bids. As variables xi(S) and yi(k) are continuous
to make real life problem instances tractable, it is possible that bidders end up buying or
selling fractional capacities for certain road segments. These are of no value to SPs as
they cannot be resold to end consumers. However, our experiments in Section 6.1 show
that the number of fractionally allocated road segments is negligible.

4 Pricing Problem

Because of the binary variables, the (AP) is a non-convex integer program so that the dual
variables corresponding to constraint (1a) cannot be interpreted as shadow prices. The
problem is ultimately a non-convex mixed integer programming problem. There is an
extensive literature on the existence of Walrasian equilibrium prices [22,23]. Such prices
are linear (i.e., the route price is the sum of its components’ prices) and anonymous
(i.e., prices are the same for all bidders). In a Walrasian equilibrium no bidder wants to
change the set of allocated road capacities at the given prices. Unfortunately, Walrasian
equilibria generally do not exist for non-convex allocation problems as the (AP) [22].



6

Pricing in such non-convex markets has been a significant concern in the IS literature
[16], but also for the design of electricity markets [24]. We follow an approach called IP
pricing that is being used by several ISOs in US electricity markets [14]. To calculate IP
prices, the binary variables zi(b) are fixed to their optimal value in the (AP), while all
other variables and constraints remain unchanged. As xi(S) and yi(k) are continuous,
the resulting pricing problem is a linear program which allows to interpret the dual
variables of constraint (1a) as shadow prices. IP pricing may cause bidders to incur losses
so that side-payments (so-called make-whole payments) are necessary as compensation.
In our market, given the optimal solutions x∗i (S), y

∗
i (k) and dual prices p(k), bidder i

receives a make-whole payment mwpi(b) = max
{
0,
∑

S∈b x
∗
i (S) · (p(S)− vi(S))

}

for a buy bid b ∈ Bi and mwpi(k) = max {0, y∗i (k) · (vi(k)− p(k))} for a sell bid,
where p(S) =

∑
k∈S p(k). In electricity markets these side-payments can be substantial

and may lead to a significant bias in the market prices. However, in our road pricing
market such side-payments are negligible as our tests indicate because the level of
non-convexities due to the lower bounds on the demand is less pronounced.

5 Experimental Design

In our experiments we focus on the sale of road capacity for a single day consisting of
24 one-hour time slots. In the initial forward market the ISO holds all road capacity,
while SPs can only buy but not sell licenses. The subsequent forward markets allow
SPs to handle demand fluctuations from their forecasts by trading capacities or buying
previously unsold licenses from the ISO. In our experiments we focus on the initial
forward market as it is by far the largest in terms of trading volume and number of bids.
As no road capacity market has been implemented in practice yet, the number of SPs in
the market is somewhat speculative. We base our guess on other large utilities markets
in Germany, e.g., electricity and telecommunication, and set to number of SPs to four.

5.1 MATSim Open Berlin Scenario

In order to analyze the road pricing market for realistic problem instances, we generate
bids based on synthetic but calibrated traffic demand from the MATSim Open Berlin
Scenario2, which was published 2019 for the open-source traffic simulator MATSim.
The scenario contains full day activity-travel patterns for a 10% sample of all adults
living in the states of Berlin and Brandenburg and is designed to model the traffic in the
city of Berlin realistically. The scenario is solely built upon openly available data and is
calibrated with respect to traffic counts, choice of transport modes, and mode-specific trip
duration and distance distributions [15]. To simulate our market for the entire population
and also reflect the anticipated increase of traffic volume [25], we scale up this sample
demand to values between 100% and 130%.

The underlying road network consists of all road categories within Berlin and all main
roads in the surrounding state of Brandenburg, covering an area of roughly 150×250 km
and consisting of ∼73k nodes and ∼159k one-way car-only links. For our market we

2 https://github.com/matsim-scenarios/matsim-berlin
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only consider private cars and freight delivery as transport modes since public transport
moves along a completely separated network. In our experiments only non-residential
roads within the urban center of Berlin can potentially be priced, which sum up to ∼34k
segments. The latter are highlighted in Figure 1.

Figure 1. MATSim’s private traffic network restricted to the urban area. Blue road segments can
potentially be priced, gray segments are residential streets or lie outside of the city and cannot be
priced, red segments represent the fastest route from Berlin Alexanderplatz to the eastern outskirts.

5.2 Value Model

The flow rate f(k) of a road segment k is the number of vehicles passing it per hour. The
capacity c(k) of segment k is the maximum sustainable flow rate at which vehicles can
reasonably be expected to traverse it. The ratio of both, i.e., the volume to capacity ratio
λ(k) = f(k)/c(k), is the utilization of a segment [26]. The number of licenses that the
ISO sells for a segment equals the segment’s capacity c(k). This prevents congestion
and allows cars to drive at free flow speed, i.e., they drive at the segment’s speed limit.
Given the length d(k) and the free flow speed s(k) of a road segment, one can calculate
the free flow travel time t(k) = d(k)/s(k). Summing up these numbers for the segments
assembling a route, gives the free flow travel time for an entire route t(S).

As Berlin’s road network consists of ∼73k nodes, the number of OD pairs is too
large for SPs to determine bids manually. Instead, SPs need to rely on a value model that
determines bid values automatically. In our experiments, SPs have the value function

v(S) =





µ
∑

k∈S
d(k) · λ(k) if S = S∗,

min

{
µ
∑

k∈S
d(k) · λ(k), v(S∗) · t(S

∗)
t(S)

}
otherwise,

where µ = 0.00018 euros/m denotes the distance-based marginal cost of any driver [27],
R ⊆ 2K the set of alternative routes, and S∗ ∈ R the fastest route. This value function
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ensures that SPs place higher bids for longer routes and those passing across highly
demanded segments (reflected by µ

∑
k∈S d(k) · λ(k)). Moreover, SPs never bid more

for alternative routes that require detours. Since S∗ is the fastest route, it must hold that
t(S∗) ≤ t(S) for all S 6= S∗. Therefore, v(S∗) · t(S∗)/t(S) scales down the value v(S)
of an alternative route with respect to the additional time for detours.

Assuming that all drivers take the fastest route in the Open Berlin Scenario, we can
calculate exact values for λ(k). In reality, SPs must forecast these numbers so that we
assume that the SPs in our experiments deviate from these values by up to 20%. SPs
must also predict their number of customers. Designing an accurate demand forecast
for an SP is out of scope of this article so that we adopt a simplified model. Each trip
between an OD pair represents the journey of an individual customer. For each time
slot all available customers are distributed uniformly at random among the SPs, which
submit their bids according to this demand. By doing so, the total demand of all SPs
matches the one of the Open Berlin Scenario. This allows for a meaningful analysis of
the allocation and pricing of road segments. Distributing customers between the same
OD pair uniformly at random among the SPs causes the latter to submit buy bids for
almost all requested OD pairs in the market, thus driving up the number of binary and
continuous variables in the allocation problem. Creating these hard problem instances is
done intentionally as it allows us to derive a strong upper bound on the tractability of
real life problem instances.

For each OD pair of any customer in a time slot, we generate up to 10 alternative
routes. SPs are assumed to include all these routes in their buy bids, as this increases
their chance to win capacity even when a specific road segment on another route is
overdemanded. A full description of the route set generation algorithm can be found in
the long version of this paper.

Internally, the MATSim traffic simulator calculates the utility of agents based on
a modified version of the Charypar-Nagel scoring function [28]. An agent’s activity
score is given by summing up the agent’s marginal gain for performing the activity for a
certain amount of time and subtracting the agent’s disutilities incurred when traveling to
activity’s location [27]. Most of the parameters of the Charypar-Nagel utility function are
agent-specific, making it impractical for our wholesale market as SPs need to purchase
road capacity for thousands of agents which are unknown to them at the time of bidding.

6 Results

In this section we report the results of our computational experiments using the Gurobi
Optimizer 9.1.0 to solve the allocation and pricing problem up to a “MIPGap” of 10−4,
i.e., the solution computed by Gurobi differs from the optimal solution by no more than
0.01%. Our test computer contains two Intel Xeon CPU E5-2620 @ 2.00GHz and 64GB
of RAM. We analyze the tractability of the allocation problem as well as the emerging
road prices for the initial forward market with one ISO and four service providers. The
market is solved separately for all 24 time slots consisting of one hour each. Additionally,
we also consider four different demand scalings (100%, 110%, 120%, 130%).
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6.1 Allocation

To get a better understanding for the market size, let us consider time slot 17 with a
demand scaling of 100%. In this specific time slot, service providers demand ∼244k
trips between ∼23k distinct OD pairs. They submit ∼92k buy bids, while the ISO places
one sell bid for each of the ∼34k road segments in the auction. This corresponds to an
allocation problem with ∼92k binary and ∼951k continuous variables as well as ∼252k
constraints. Despite this vast number of variables and constraints, the allocation problem
can be solved surprisingly fast (see Figure 2), while the fraction of trips served with
either an alternative or the fastest route is very large (see Figures 4 and 5). In total, the
ISO sells more than 14.4 million road segment licenses (see Figure 3).
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that are served with the fastest route

Result 1 With a demand scaling of 100% the allocation and pricing problem can be
solved in less than 875 and 385 seconds, respectively. In each time slot, more than 85.2%
of the demanded trips can be served with the fastest route and less than only 0.01% of
the trips cannot be satisfied. Even when demand is scaled to 130%, the allocation and
pricing problem can be solved in less than 1,300 and 1,200 seconds, respectively. In
each time slot, more than 70% of the trips can be served with the fastest route and less
than 0.031% trips cannot be served. The optimization problem effectively distributes the
traffic demand in substitutable routes on the available capacity.

Increasing the demand above 100% causes more lower bounds of buy bids to become
binding. This drives up the runtime of the allocation problem and reduces the number of
trips being served with fastest routes.



10

For the sake of tractability, variables xi(S) and yi(k) are defined as continuous
variables in the allocation problem (see Section 3). Whenever SPs are allocated a
fractional capacity for a road segment, they incur a financial loss as they cannot resell
this capacity to end consumers. However, our tests show that the number of fractionally
allocated road segments is negligible compared to the overall number of segments traded.

Result 2 The percentage of fractionally sold licenses is below 0.029% for the entire day
when demand is scaled to 100%. For a demand scaling of 130% this value is 0.073%.

6.2 Road Prices

Only a small fraction of the ∼34k road segments which can potentially be priced is
actually priced in our experiments (see Figure 6). While some roads that are priced with
varying amounts throughout the day, the vast majority of roads is never priced, leading
to a low average road segment price (see Figure 7). The price fluctuations for roads in
the city center are visualized in Figure 8.
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Result 3 If the demand is scaled to 100%, only 599 of all 34,179 road segments are
priced at least once throughout the day and at most 271 road segments are priced
simultaneously per time slot. Averaged over all time slots, the road segment price is
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0.031 cents and the route price is 13.6 cents. When scaling the demand to 130%, there
are 1,607 distinct road segments priced throughout the day, while at most 729 road
segments are priced simultaneously per time slot. The average road segment and route
price raise to 0.082 and 26.0 cents, respectively.

When calculating road prices with IP pricing, SPs may incur a loss when having
to trade road capacities at these prices so that side-payments (so-called make-whole
payments) become necessary (see Section 4). With the proposed bid language, our
experiments show that these payments are negligible. Due to a high proportion of trips
that can be served, the lower bounds specified in the buy bids are almost never binding,
leading to a degeneration of the allocation problem to a linear program. However, adding
further non-convex constraints to the bid language will lead to an increase of make-whole
payments as we will show in the long version of this article.

Result 4 For a demand scaling of 100%, the sum of all make-whole payments over all
SPs and time slots is less than 3.1 cents, the social welfare (i.e., the sum of all bidder
valuations for traded road capacities) is 2.4 million euros, and the total payment of all
SPs is 471,000 euros. Scaling the demand to 130% results in total make-whole payments
of less than 7.5 cents, while the social welfare increases to 3.8 million euros and the
total payment of all SPs to 1.1 million euros.

To get a better understanding on how prices evolve for entire routes, we track the
price for traveling between Berlin Alexanderplatz and the eastern outskirts (see Figure 1)
over all time slots (see Figure 9). The route prices reflect the traffic waves during the
course of a day. While in the morning it is more expensive to enter the city center from
the eastern outskirts (see Figure 9a) than leaving the city center towards the East (see
Figure 9b), it is the other way around in the afternoon.
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Figure 9. Price trajectory for traveling between Berlin Alexanderplatz and the eastern outskirts.

7 Discussion

The adoption of congestion pricing schemes has led to substantial revenues and signifi-
cant traffic reductions in cities like London, Stockholm, and Singapore [3]. Due to these
positive results, other cities such as Munich or Berlin currently discuss the implementa-
tion of similar policies [29, 30]. Often, congestion pricing is critically opposed upon its
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adoption, followed by a shift in public opinion in favor of such policies after the positive
effects of traffic congestion become evident [3]. The skepticism towards congestion
pricing are due to the fear of negative welfare effects (i.e., the high income class benefits
at the expense of the poor) and privacy concerns (i.e., cars need to be tracked). Some
authors [11, 12] provide some compelling arguments mitigating these concerns and we
point the reader to these articles for a detailed discussion. The revenue redistribution has
been identified as a crucial aspect for the public acceptance of road pricing [31].

The implementation of market-based dynamic congestion pricing is a gradual process,
likely to start out with a simple static pricing scheme and then incrementally extending
this policy towards dynamic congestion pricing. Singapore started out with a simple
static cordon pricing scheme in 1975. In 2020, the city began to equip vehicles with GPS
devices, which is the technological basis for distance-based and dynamic congestion
charges in the future [3]. Researchers have already laid out a detailed plan on how the
existing policy can gradually extended to reach such a futuristic pricing scheme [11].

For modeling a wholesale market for road capacity it is inevitable to make assump-
tions that may seem speculative, e.g., forecasting the number of SPs in the market.
Certainly, also our value model does not capture an SP’s true valuation in its entirety and
resulting prices may change with another choice of parameters. However, these decisions
do not weaken the core message of our research, which is to show that with our novel bid
language a wholesale market for road capacity is feasible for a major city like Berlin.

8 Conclusion

Markets for utilities such as electricity are typically organized in a two-tiered structure.
An independent system operator provides the basic infrastructure and a market on
which multiple SPs compete. This sets incentives for innovation and the competition
drives down prices for the end consumer. A similar market structure is compelling for
congestion pricing as well. Wholesale markets are a central piece of the overall market
design. Compared to other markets the sheer volume of products traded, the number of
road segments per time slot, is far beyond what is traded on other markets. This leads to a
huge welfare maximization problem and it is unclear whether such a market is tractable.

We propose a novel, compact bid language where SPs only need to specify prices
for substitutable routes on origin-destination pairs. The demand for such pairs is readily
available nowadays. We show that the welfare maximization problem is indeed huge
with more than one million variables and 250 thousand constraints for a city like Berlin,
but it can be solved with today’s optimization technology. We can also derive effective
prices in spite of a significant number of binary variables in the problem. Actually, only
a small number of road segments has a positive price and the optimization does a good
job in distributing the demand for origin-destination pairs on different routes throughout
the network, thus keeping the city congestion-free. It is important to mention that the
bid language is also decisive for tractability. Overall, the study shows that a wholesale
market for road capacity is feasible and practical even for a city as large as Berlin.
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Combinatorial auctions have found widespread application for allocating multiple items

in the presence of complex bidder preferences. The enumerative XOR bid language is the

de facto standard bid language for spectrum auctions, despite the difficulties of enumerating

all the relevant packages or solving the resulting NP-hard winner determination problem. We

introduce the FUEL bid language, which was proposed for radio spectrum auctions to ease

both communications and computations. We introduce a mathematical model of the resulting

allocation problem and conduct extensive computational experiments, showing that the winner

determination problem of the FUEL bid language can be solved reliably for large realistic-

sized problem sizes in less than half an hour on average. In contrast, auctions with an XOR

bid language quickly become intractable even for much smaller problem sizes. For the XOR

bid language, the missing bids problem and computational hardness incur significant welfare

losses compared to the FUEL bid language.
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1 Introduction

Many information systems nowadays are designed to coordinate activities or allocate scarce re-

sources. The design of respective information systems has a number of challenges because incen-

tives of the participants need to be considered, but also computational problems play a role. This

has led to a fruitful line of research on the design of electronic markets (Banker and Kauffman

2004, Bichler et al. 2010, Adomavicius et al. 2012). The information systems literature has made

many contributions to the design of electronic market mechanisms, specifically to allocation and

payment rules (Xia et al. 2004, Adomavicius and Gupta 2005, Bichler et al. 2009), to the analy-

sis of bidder behavior (Scheffel et al. 2011, Adomavicius et al. 2012), as well as to the design of

markets for specific domains (Guo et al. 2007, Bapna et al. 2007). We extend this line of research

and focus on auction mechanisms for large multi-object markets. Auctions for radio spectrum are

the most prominent example of such markets as they are often involving hundreds of licenses to be

sold to telecom companies by a regulator (Bichler and Goeree 2017). A common recommendation

in such auctions world-wide is to use a combinatorial auction with XOR bidding, in which bid-

ders simply enumerate values for all possible combinations of items. The auctioneer then solves a

combinatorial optimization problem to find the allocation that maximizes the total bid.

As the number of items to be allocated becomes large, however, a full XOR-based approach

to auctioning quickly becomes impractical for two reasons. The first is related to communication

complexity (Nisan and Segal 2006). In combinatorial spectrum auctions in Canada using XOR

bidding, there have sometimes been more than 100 spectrum licenses for sale, leading to more

than 2100 different packages — far too many for any bidder to enumerate (Kroemer et al. 2017).

The second reason is that computations at this scale can be impractical. To address that problem,

the auctioneer in Canada limited the number of XOR bids that each bidder is permitted to submit to

2,000, treating the many missing packages as if they have received bids of zero. In lab experiments

comparing an XOR design to alternatives, the resulting missing bids problem from XOR bidding

leads to substantial efficiency losses, even with many fewer than 100 licenses (Bichler et al. 2014).
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We focus on the design of large markets with hundreds of items and bidders and use the re-

cent plans for a private C-band auction as a case for our analysis. In mid-2019, a consortium of

companies providing satellite downlink for commercial television in the United States proposed to

conduct a private sale of their C-band spectrum rights to support a fast 5G wireless deployment.

They suggested a novel combinatorial auction design dubbed FUEL (Flexible Use and Efficient

Licensing) (Milgrom 2019).1 Spectrum licenses were to be offered in 406 geographical areas —

the Partial Economic Areas (PEAs) with 14 licenses to use 20 MHz of bandwidth in each, so the

number of possible combinations that any bidder might win in the proposed auction was 15406.

The FUEL bid language was introduced in an attempt to tame both the communication and com-

putational complexity by requiring bidders to use a particular parameterized valuation model to

describe values for all license combinations or for certain subsets of them.2

This paper explains the rationale for the language and tests and compares the computational

tractability of the FUEL and XOR designs assuming a high level of participation in the auction

by bidders with similar license values. High participation and similar values are thought to make

the optimization more challenging by providing more near-optimal combinations of bids for the

software to rule out. Our simulations of the auction show that even with a vastly reduced bid set,

accurate computations with XOR bids require significantly more computation time than FUEL.

The optimization problem coded using the FUEL bid language utilizes many binary variables, and

just as for the XOR auction, computing the optimal solution is NP-hard. However, our computa-

tional experiments show that, in practice, even in auctions with more participating bidders than are

expected for an actual spectrum auction, optimal solutions for the FUEL auction can be computed

on a desktop computer in mere minutes using commercial off-the-shelf optimization software.

Moreover, computation time tends to grow only linearly in the number of bid groups.

With the FUEL restrictions on bid groups in place, we are able, in practice, to solve large

problems with more than 400 licenses and more than 1000 bidders using a state-of-the-art branch-

1In February 2020, the US Federal Communications Commission decided against using a private auction, so the
FUEL design will not be adopted for the C-band auction.

2The design of parametric bid languages for various auction problems has previously received scholarly attention
in Milgrom (2009), Bichler et al. (2011), Eilat and Milgrom (2011), Bichler et al. (2017).
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and-cut algorithm in a few minutes of runtime. Similar problems are intractable when coded using

the XOR bid language and beyond what one would expect to solve to optimality.3

The FUEL design may also serve as a template for other large combinatorial auctions in which

there are several kinds of items with economies of scale and scope among them. By exploiting

computationally tractable hierarchical valuation structures, some of the most important barriers to

large-scale auctions may be overcome. Auctions with regional lots as in the procurement of school

meals (Kim et al. 2014) and the sale of fishery access rights (Iftekhar and Tisdell 2012) could be

appropriate candidates, but so could be TV ad auctions (Goetzendorff et al. 2015).4

2 Bid Languages

A bid in an auction expresses a bidder’s willingness to pay money for various outcomes and de-

pends both on the bidder’s private preferences and its bidding strategy. A bid language defines the

format used to communicate the bids. For combinatorial auctions some common bid languages are

built from bundles (also known as packages), which are subsets of the item set, atomic bids, which

associate a price with a bundle, and logical rules, which govern which bids can win simultaneously.

The two most popular and intuitive bid languages of this kind are exclusive-OR (XOR) and

additive-OR (OR). In both bid languages bidders can specify multiple atomic bids and in case a bid

becomes winning, the bidder gets all items contained in the bundle. While in an XOR bid language

at most one of each bidder’s atomic bids become winning, any non-intersecting combination of

atomic bids can win in an OR bid language.

Spectrum auctions have so far resisted the design of particular bid languages and, until recently,

only XOR bid languages have been used, leading to significant limitations in applications like the

Canadian auctions in 2014 with 100 licenses (Kroemer et al. 2017). The even larger number of

3We use a time limit of 30 minutes for each problem instance in our experiments. If problems could not be solved
to near-optimality within 30 minutes or if there was a large integrality gap after 30 minutes, they typically could also
not be solved to optimality or near-optimality with several hours of computation time.

4The bidding language is just one element of a sealed-bid auction design. Two others are the winner determination
rule and the payment rule, which together determine bidders’ incentives. If a hierarchical language like FUEL makes
optimization tractable, then that would allow selecting the allocation that maximizes the total bid and setting payments
using the Vickrey-Clarke-Groves payment rule, which is incentive-compatible (Green and Laffont 1977).
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licenses available in spectrum auctions in the United States are one reason why combinatorial auc-

tions have not yet been adopted there. On the one hand, the missing bids problem in such auctions

is huge and the auctioneer cannot confidently solve a large winner determination problem with

hundreds of licenses and an XOR bid language. On the other hand, using simple auction formats

such as the simultaneous multi-round auction and related clock auctions limits expressiveness of

the bids and creates an exposure problem for bidders, in which they may win some but not all of

the licenses they need for a viable network.

3 FUEL Auction Design

Similar to previous auctions designed by the Federal Communications Commission (FCC), the

market area for the C-band auction is geographically subdivided into smaller entities, so-called

Economic Areas (EAs). As some local market participants are expected to be only interested

in spectrum for some part of an Economic Area, each EA is split again into Partial Economic

Areas (PEAs), with the number of PEAs in an EA ranging from 1 to 12. In total, there are 170 EAs

and 406 PEAs across the contiguous United States.

In each PEA, 280 MHz of spectrum is sold in the C-band auction. The spectrum in a PEA is

split into 14 homogeneous blocks, each containing 20 MHz of the 280 MHz available per PEA. All

license blocks can be made available within 36 months of the FCC’s final order. Furthermore, in 46

of the 50 most populous PEAs the satellite companies are able to provide 100 MHz (5 blocks) of

spectrum even earlier, within 18 months of the FCC’s approval of the auction process. With respect

to these temporal constraints, licenses for spectrum blocks that are available within 18 months are

referred to as early, the remaining licenses are called late. It is possible to serve a bidder’s demand

for late blocks with available early blocks, but the reverse is not possible.

3.1 Bid Language

Assuming the C-band auction is executed with 406 PEAs and 14 spectrum blocks per PEA, the

number of potential distinct packages equals 15406: far too many to enumerate. The FUEL bid lan-
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guage circumvents this problem by allowing each bidder to submit a small number of bid groups.

Each bid group is based on a single package bid, called the base bid consisting of a base package

and a base price. Furthermore, a bid group incorporates adjustments, defining the price that ap-

plies to a package that increments or decrements the number of licenses to be purchased in a PEA.

Each increment is associated with a markup to the base price and each decrement is associated

with a discount (see Figure 1). Adjustments are intended to provide a natural and intuitive way for

bidders to specify their demand for spectrum and at the same time avoid the missing-bids problem.

Bidder 1 LATE SMALL Base price: 177
#Licenses

EA PEA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
60 155 -90 Base 101 174
60 354 Base

Figure 1: Bidder 1 submits a bid group whose base package contains 2 licenses in PEA 155 and
2 licenses in PEA 354. She also defines adjustments (in $) for 1, 3, and 4 licenses in PEA 155.
If the auctioneer accepts her bid group and assigns her 4 licenses in PEA 155 and 2 licenses in
PEA 354 (highlighted blue), her bid for this set of licenses is $177 + $174 + $0 = $351.

In 46 of the PEAs, 5 of the 14 spectrum blocks are available early and bidders may wish to

bid more for those blocks. The FUEL bid language addresses this issue by allowing each bidder to

designate its bid groups as bids for early/mixed spectrum or for late spectrum and interpreting the

base bids and adjustments differently for each specification.

A late bid group works exactly as described above, with the interpretation that its adjustments

apply only to late spectrum. The seller, at its sole discretion, can convert early spectrum to late

spectrum by delaying rights to use that spectrum. For an early/mixed bid group, the base bid is

interpreted as follows. If the base package contains a PEA providing 5 early and 9 late licenses

and a bidder states a demand for k licenses in her base bid, then this is interpreted as demand for

min{5,k} early licenses and max{0,k− 5} late licenses. Increments in the bid group constitute

demand for additional late license blocks, while decrements from the base package first reduce the

number of early licenses in the package and, if the reduction takes the number below zero, then

apply to reduce the number of late licenses.

Bid groups are further classified with respect to the MHz-pop of their base package. The MHz-
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pop of a set of licenses for the same PEA is given by the product of the frequency bandwidth in

MHz and the population of the respective PEA. Summing up the MHz-pop of all PEAs present in

the base package gives the MHz-pop of the base package. If the MHz-pop of a base package is

no less than the MHz-pop equivalent of two national licenses (i.e. two licenses in all 406 PEAs),

then the corresponding bid group is considered to be a nationwide bid group and is labeled large,

otherwise it is a local bid group and is classified small. While large bid groups may include

any combination of PEAs, small bid groups may only contain PEAs from the same EA. Bidders

are also restricted in the number of small and large bid groups they are allowed to submit. The

exact numbers were to be determined according to the computational feasibility of the underlying

allocation problem. Moreover, bidders may either win a single large bid group or multiple small

bid groups, but never large and small bid groups at the same time. In addition to that, small bid

groups can never become winning simultaneously if they contain bids on the same EA.

Reserve prices are commonly used in auctions to set the minimum price at which the auctioneer

is willing to sell the products. The FUEL bid language implements reserve prices by placing a bid

group on behalf of the auctioneer. In the course of the auction, the reserve bid is treated like any

other bid group of a bidder. If the auctioneer’s reserve bid is winning when solving the underlying

allocation problem, the respective licenses remain unsold.

The auctioneer in the C-band auction sets reserve prices by submitting a single bid group which

includes bids on each of the 406 PEAs. The number of demanded licenses in the base package as

well as the base price is set to 0. Through suitable markups the auctioneer then specifies linear

reserve price for multiple licenses of the PEA. It is sufficient for the auctioneer to specify reserve

prices only for late licenses as every early license can be transformed to a late license.

3.2 Pricing

As presented in Appendix A, the allocation problem of the C-band auction can be represented as a

binary program. The winning bid groups and also their associated winning adjustments are given

by the optimal solution of the corresponding binary program. In accordance with other auctions
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conducted by the FCC, the determination of winning bids and the price that bidders are obliged

to pay are separate calculations. While the binary program is used to determine the allocation of

licenses to bidders, a Vickrey-nearest core-selecting rule is applied to compute the prices that the

bidders will have to pay.

In the following we will exclusively focus on the most computationally challenging problem:

the allocation problem that follows the main bidding round. Incentives and payment rules are not

treated in detail here. Rather, we observe that VCG payment rules require the winner determination

problem to be solved to optimality. So, among the advantages of the FUEL language is to enable

such payment computations.5

4 XOR Bid Language

As we compare the empirical complexity of auctions with the FUEL bid language to auctions with

a standard XOR bid language, we briefly introduce the XOR bid language for the application of

the C-Band auction.

Similar to FUEL bid groups an XOR bid consists of a set of PEAs for which the bidder would

like to acquire licenses. For each of these PEAs the bidder specifies two numbers which indicate

the amount of early and late licenses that the bidder would like to purchase in the respective PEA.

Every XOR bid is also associated with a price which expresses the bidder’s willingness to pay

for the set of licenses. In contrast to the FUEL bid language, the XOR bid language neither

distinguishes between early and late nor between small and large bid groups. While local and

national bidders may win at most one of their XOR bids, the auctioneer is exempt from this rule.

In order to represent the auctioneer’s reserve bid for a single PEA offering 14 licenses, only 4 XOR

bids need to be generated: one XOR bid each for 1, 2, 4, and 8 licenses.

The corresponding winner determination problem can be found in Appendix B. It is well-

known that the winner determination problem with an XOR bid language is strongly NP-hard and

can be modeled as a weighted set packing problem (Lehmann et al. 2006).

5Core-selecting payment rules, which are widely used in spectrum auctions, also require the allocation problem to
be solved to optimality (Day and Milgrom 2008, Goetzendorff et al. 2015).
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5 Experimental Design

In our experiments we differentiate between local and national bidders. Local bidders are only ac-

tive in up to a dozen PEAs, while national bidders are interested in licenses in almost all 406 PEAs.

For our tests we assume that there are 10 national and 1,000 local bidders, which we chose to be

larger than (but of the same order as) the actual numbers in any previous spectrum auction.

5.1 Value Model

A widespread international metric for comparing the prices of spectrum is the license price per

MHz-pop. The value model of the FUEL bid generator is based on this convention using the PEA

population data provided by the FCC.6 The worth wp of a single license in PEA p ∈ P is chosen to

be a constant fraction of the license’s MHz-pop.

Naturally, bidders’ valuations for licenses in a particular PEA differ depending on their finan-

cial strength and their current possession of frequencies. To generate idiosyncratic bidder valua-

tions, we introduce value factors rip for each bidder i ∈ I and PEA p ∈ P which scale the worth

of a PEA for a particular bidder. In general, local bidders are financially weaker than national

bidders so that we choose rlocal
ip and rnational

ip uniformly at random from the intervals [1.0,1.3] and

[1.1,1.4], respectively. The auctioneer’s idiosyncratic value factor is set to 1.0 for all PEAs, so that

the auctioneer’s reserve prices equal a constant fraction of the MHz-pop in each PEA.

To provide a functional 5G network, bidders need spectrum bandwidth of at least 40 MHz.

Therefore, bidders have only little interest in being allocated less than 2 licenses (i.e. less than 40

MHz) but also their marginal valuation for more than 5 licenses is very small. As a consequence,

the valuation of a bidder is represented best by a sigmoid function whose point of inflection ∆i is

a bidder specific value chosen uniformly at random from the interval [2,4]. Scaling this sigmoid

function by the idiosyncratic bidder valuations and shifting it so that is crosses the origin gives

dip(x) = rip wp

(
1

1+e−x+∆i
− 1

1+e∆i

)
, where x is the number of licenses demanded by bidder i ∈ I in

PEA p ∈ P, and rip wp describes the bidder’s idiosyncratic valuations for the respective PEA.

6https://transition.fcc.gov/bureaus/oet/info/maps/areas/data/FCC_PEA_website.xlsx
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In 46 of the PEAs, 5 out of the 14 offered licenses can be made available 18 months earlier

than the remaining 9 licenses. Depending on the bidder’s current stock of licenses, receiving early

licenses might be essential but may also have little value to the bidder. This is modeled by factor ti,

drawn uniformly at random from the interval [1.0,1.5] for each bidder i∈ I, that describes by which

factor the bidder values early over late licenses. A bidder’s valuation for winning x early and y late

licenses in PEA p ∈ P is then given by

vip(x,y) =





0 if x+ y = 0,

rip wp

(
1

1+ e−x−y+∆i
− 1

1+ e∆i

)(
ti

x
x+ y

+
y

x+ y

)
otherwise.

For exemplary values of wp, rip, ∆i, and ti the valuation function vip(x,y) is plotted in Figure 2.

Figure 2: Valuation function vip(x,y) with wp = 5, rip = 1.25, ∆i = 3, and ti = 1.1.

5.2 FUEL Bid Generation

We assume that every local bidder is active in only a single EA. The number of PEAs included in

the bidder’s small bid group is chosen uniformly at random between 1 and the number of PEAs

available in the respective EA (at most 12). In practice, some local bidders may be active in

several PEAs belonging to different EAs, but for the purposes of estimating runtime, these bidders

can equivalently be represented as multiple independent local bidders. Unlike local bidders, we

assume that national bidders are active throughout the whole United States: each of their bid groups
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covers at least 380 of the 406 PEAs. The PEAs not contained in a bid group are chosen uniformly

at random among the 50% least populous PEAs, so that national bidders are always able to provide

service in all of the most densely populated areas whenever one of their bid groups is winning.

When local and national bidders place a bid on licenses in a PEA, they have to state a base

bid and may additionally specify several adjustments. According to the sigmoid value model (see

Section 5.1), a bidder’s largest marginal gain for a license is at ∆i, the point of inflection of the

bidder’s valuation function vip. Therefore, the base package either contains b∆ic or d∆ie licenses

in each PEA. The number of adjustments a bidder specifies for each PEA is chosen uniformly at

random from the interval [0,4]. The selected adjustments always constitute a consecutive interval

around the base bid as it is assumed that this models the bidders’ valuations most accurately.

If a FUEL bid group contains PEAs for which early licenses are available, then the bid group is

marked early/mixed with a probability of 5/14≈ 40% as this refers to the fraction of early licenses

available in the respective PEAs. Otherwise, the bid group is considered late.

The number of bid groups that local and national bidders are allowed to submit is a parameter

that was still undefined for the C-band auction at the time the design was proposed. For the

following tests we assume that both local and national bidders are allowed to submit up to five

bid groups. This number assures computational tractability within a time limit of 30 minutes and

is expected to be a sufficiently large for bidders to express their valuations accurately.

5.3 Deriving XOR from FUEL Bids

In an XOR bid language bidders are unable to specify adjustments. If a bidder wants to state the

same information as in a FUEL bid, she has to place one XOR bid for each possible combination

of adjustments and adapt the price of the XOR bid according to the chosen markups and discounts.

Unfortunately, the number of XOR bids necessary to reproduce a FUEL bid group can become

very large. If a national bidder submits a bid group containing all 406 PEAs and specifies two

adjustments in each of them, then there would be 3406 ≈ 5.14 ·10193 XOR bids necessary to repli-

cate the FUEL bid group. In order to guarantee computational tractability of the XOR allocation

problem, it is indispensable to restrict bidders in the number of XOR bids to be submitted. Thus,
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bidders can only submit bids for a fraction of all possible adjustment combinations (see Figure 3).

EARLY SMALL Base price: 780
#Licenses

EA PEA 3 4 5
7 44 Base 418 741
7 271 -50 Base

=⇒

XOR Price: 1,471
#Licenses

EA PEA 2 3
7 44 Early Base
7 44 Late Base
7 271 Late Base

Figure 3: A random XOR bid is generated from a FUEL bid by picking a random adjustment
combination (highlighted blue).

5.4 XOR Bid Generation

In contrast to the FUEL bid language, bids in the XOR bid language are no longer subject to any

EA restrictions. In particular this means that bidders can submit bids for any subset of PEAs even

though they belong to different EAs. When generating XOR bids it is assumed that any local

bidder’s market area contains between 1 and 10 PEAs (potentially belonging to different EAs)

which form a highly cohesive component. Each XOR bid of a local bidder contains between 1 and

the maximum number of PEAs available in her market area, so that each local bidder’s XOR bid

encompasses 3.25 PEAs on average. Similar to a national bidder’s FUEL bid groups, each XOR

bid of a national bidder contains at least 380 of the 406 PEAs. The PEAs not contained in an XOR

bid of a national bidder are chosen uniformly at random among the 50% least populous PEAs.

Both local and national bidders demand between 1 and 5 licenses in each PEA. The exact

number of licenses is chosen uniformly at random from this interval for each XOR bid and each

PEA. In case an XOR bid contains a PEA offering early licenses, then the number of early li-

censes demanded by a bidder is chosen uniformly at random between 1 and the number of licenses

demanded by the bidder in this PEA.

6 Results
We conduct our computational experiments using the Gurobi Optimizer 8.1.1 to solve the winner

determination problem up to a tolerance (“MIPGap”) of 0.001, i.e., the solution computed by

Gurobi differs from the optimal solution by no more than 0.1%. The time limit is set to 30 minutes

for all test instances. Our test computer contains two Intel(R) Xeon(R) CPU E5-2620 @ 2.00GHz

12



and 64GB of RAM. All test instances are available upon request.

6.1 FUEL Bid Groups

The original FUEL proposal did not specify the number of bid groups that local and national

bidders would be allowed to submit, but proposed to choose those to ensure the computational

tractability of the winner determination program.

Let zL and zN denote the number of bid groups that local and national bidders are allowed to

submit, respectively. For each configuration of zL and zN , we generated 25 random instances with

the FUEL bid generator. Table 1 summarizes the number of bid groups submitted by all bidders

including the auctioneer (denoted ∑z), the average number of binary variables and constraints in

the winner determination problem, the average runtime, the number of test instances that exceed

the time limit of 30 minutes, the maximum MIPGap of all 25 test instances, and the average number

of licenses that remain unsold out of 5,684 (406×14) licenses. Test instances that exceed the time

limit of 30 minutes are weighted with 1,800 seconds when computing the average runtime.

zL zN ∑z Binary
Variables

Constr. Runtime in
sec.

TLE Max.
MIPGap

Unsold
Licenses

1 1 1,011 27,935 6,613 5 0 of 25 0.0010 1.1
3 3 3,031 63,688 18,871 153 0 of 25 0.0010 2.5
5 5 5,051 99,351 30,121 356 0 of 25 0.0010 1.8
7 7 7,071 135,246 41,374 745 1 of 25 0.0014 1.3

10 10 10,101 188,709 58,193 1,212 3 of 25 0.0030 1.2
15 15 15,151 278,317 86,368 1,640 16 of 25 0.0101 1.3

Table 1: Average values of 25 test instances for different configurations of the number of small
(large) bid groups that local (national) bidders are submitting.

Result 1. If the 1,000 local bidders are allowed to submit 5 small bid groups and the 10 national

bidders are allowed to submit 5 large bid groups, we can compute the winning allocation within

356 seconds and a MIPGap of only 0.001 on average.

The number of small and large bid groups that bidders are allowed to submit has a direct impact

on the number of binary variables and constraints present in the winner determination problem.

Restricting the number of bid groups in the auction can therefore reduce the runtime substantially.
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6.2 FUEL vs. XOR

To compare the efficiency of the standard XOR and FUEL bid language, we first generate the FUEL

bids and then derive XOR bids from them as described in section 5.3. For our FUEL instances, we

assume that local and national bidders submit 5 bid groups as our tests in section 6.1 imply that

such instances can be solved within the time limit of 30 minutes.

In order to keep the XOR allocation problem tractable, we restrict local and national bidders in

the maximal number of XOR bids they are allowed to submit and denote these upper bounds by zL

and zN , respectively. The adjustment combinations for which XOR bids are generated are selected

uniformly at random. As a consequence, bidders in the XOR auction have the same valuations as

in the FUEL auction, but they are only able to state a fraction of the potential winning FUEL bid

combinations.

Table 2 shows the efficiency (denotes Eff.) for different combinations of the maximum number

of bids that local and national bidders may submit (denotes zL and zN). The interpretation of the

remaining columns is the same as for table 1.

Type zL zN ∑z Bin.
Vars.

Constr. Runtime
in sec.

TLE Max
MIPGap

Unsold
Licenses

Eff.

FUEL 5 5 5,051 99,351 30,121 356 0 of 25 0.0010 1.8 1.000
XOR 1 1 2,634 2,634 1,462 32 0 of 25 0.0010 806.3 0.756
XOR 5 5 6,605 6,605 1,462 277 2 of 25 0.0022 299.3 0.903
XOR 10 10 10,358 10,358 1,462 654 8 of 25 0.0115 202.6 0.925
XOR 15 15 13,565 13,565 1,462 770 9 of 25 0.0052 164.0 0.936

Table 2: Average values of 25 test instances for different limitations on the number of
XOR bids that local and national bidders are allowed to submit.

Result 2. If bidders are only allowed to submit the same number of bids in the XOR as in the

FUEL auction, more than 5.2% of all licenses remain unsold, the welfare loss compared to FUEL

is almost 10%, and there are already 2 out of 25 test instances that are intractable. Even when

bidders are allowed to submit three times as many XOR as FUEL bids, still more than 2.8% of the

licenses remain unsold and the welfare loss is 6.4%.
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6.3 Unrestricted XOR

Deriving XOR bids from previously generated FUEL bids (as done in the tests of Section 6.2)

implies that the XOR bids encompass the same EA restrictions as the original FUEL bids. In

particular, this means that the XOR bids which are derived from a local bidder’s small bid group

contain bids for only a single EA. A fully combinatorial XOR bid language, however, does not pose

such restrictions on the bids but allows the auction participants to bid on licenses for any subset

of PEAs. Due to the additional interdependencies between bids containing PEAs of different EAs,

the corresponding winner determination problem becomes more complex.

In the following test, we check whether an XOR bid language that only restricts bidders in the

maximum number of admissible XOR bids without imposing any further restrictions is computa-

tional tractable for the C-band auction. Similar to our previous tests, we assume that there are 10

national and 1,000 local bidders. Table 3 shows the test results for different configurations of the

maximum number of XOR bids that local and national bidders may submit in the auction. The

interpretation of the columns is the same as for tables 1 and 2.

zL zN ∑z Binary
Variables

Constr. Runtime
in sec.

TLE Max
MIPGap

Unsold
Licenses

1 1 2,634 2,634 1,462 34 0 of 25 0.0010 748.5
2 2 3,644 3,644 1,462 699 5 of 25 0.0037 444.9
3 3 4,654 4,654 1,462 1,800 25 of 25 0.0158 309.4

10 10 11,193 11,193 1,462 1,800 25 of 25 0.0123 146.4
50 50 45,545 45,545 1,462 1,800 25 of 25 0.0217 55.0

Table 3: Average values of 25 test instances for different restrictions on the number of XOR bids
that both local and national bidders are allowed to submit.

Result 3. Even if both local and national bidders are restricted to submit no more than two XOR

bids without restrictions on the EAs, 5 out of 25 instances could not be solved within the time limit.

Even if all bidders are restricted to submit no more than 3 XOR bids, none of the 25 instances

can be solved within the time limit even though this number of XOR bids is far too small to give a

reasonable account of national bidders’ preferences. Such limited bids also result in many licenses

remaining unsold.
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7 Conclusions

The missing bids problem is one of the key problems in larger combinatorial auctions with the

standard XOR bid language. Such design issues are at the core of auction design research in

information systems. In this paper we investigate the empirical hardness of the FUEL bid language

based on the case of the planned C-band auction for the US, which constitutes an important real-

world case. Even though the winner determination problem of the FUEL bid language is NP-hard

and contains roughly 100,000 binary variables and 30,000 constraints, our experiments indicate

that this auction can consistently be solved in less than 30 minutes, and usually much less. We find

evidence that the short solution times result predominantly from the hierarchical structure created

by FUEL, which allows the Gurobi optimizer to decompose the binary program effectively.

In contrast to FUEL, we show that a fully enumerative XOR bid language quickly becomes

computationally intractable. More importantly, bidders would need to specify an exponentially

large set of XOR bids to express the same preferences as in a FUEL bid group with adjustments.

Although the FUEL bid language is not fully expressive and limits the set of values that can be

expressed relative to an XOR bid language, it is based on common spectrum valuation methods and

may often be able to express values close to the bidders’ actual ones. To the extent that FUEL bids

fail to capture actual values, that must be weighed against its powerful mitigation of the missing

bids problem that inevitably arises in large auctions using XOR bids. Our experiments show that

both the missing bids problem and computation failures using an XOR bid language can lead to

significant welfare losses.

In summary, by allowing bidders to use bid groups with adjustments to their base bids, the

FUEL bid language gives bidders an intuitive and compact way to describe their valuations and

effectively address the missing bids problem. The hierarchical structure of the bid groups makes

it possible to solve very large problem instances exactly on a desktop computer in a matter of

minutes. The specifics of the bid language allow for exact solutions in large-scale auctions with

several hundred items, for which this would not have been considered feasible only recently.
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Appendix A FUEL Winner Determination Problem

Let I0, A, and P, denote the set of bidders including the auctioneer, the set of EAs and the set of

PEAs, respectively. In each PEA p ∈ P there are ep ∈ {0,5} early and `p ∈ {9,14} late licenses

up for sale; the set PE ⊆ P denotes the set of PEAs with ep = 5. Each bidder i ∈ I0 submits

a set Gi of bid groups. Large early and late bid groups of bidder i are denoted GT E
i and GT L

i ,

respectively. Similarly, small early and late bid groups of bidder i are denoted GSE
i and GSL

i . For

both of these sets, we define subsets GSE
ia and GSL

ia , respectively, which include all small early

and late bid groups of bidder i that include bids on EA a ∈ A. The PEAs contained in the base

package of bid group g ∈ Gi of bidder i are denoted Pg
i . For each PEA p ∈ Pg

i bidder i specifies

a number bpg
i , which defines the number of licenses contained in the bidder’s base bid and a set

K pg
i ⊆ K = {0,1, . . . ,14} of adjustments. For each of the adjustments k ∈ K pg

i bidder i specifies

a markup or discount µgpk
i that defines how the bid group’s base price ωg

i is adjusted in case the

adjustment k becomes winning. The number M denotes the maximum number of small bid groups

that any bidder submits.

There exist three types of decision variables. Binary variables xg
i ∈ {0,1} denote whether

bidder i ∈ I0 wins bid group g ∈ Gi. The information which adjustment k is accepted for each

PEA p contained in a winning bid group g is conveyed in binary variable ygpk
i ∈ {0,1}. Finally, the

decision variable zi ∈ {0,1} denotes whether bidder i wins multiple small (z = 0) or large (z = 1)

bid groups.

The objective is the sum of base prices of winning bid groups and the respective base price

markups/discounts of the winning adjustments. Constraint (2) ensures that exactly one adjustment

must be accepted for each PEA contained in a winning bid group. Constraints (3) and (4) limit the

supply of early and late licenses for each PEA. Recall that early licenses can be used to serve the

demand for late licenses. Constraint (5) and (6) guarantee that a bidder wins at most one large bid

group and never small and large bid groups simultaneously. Constraint (7) ensures that at most one

small bid group of a bidder may become winning per EA.
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max ∑
i∈I0

∑
g∈Gi

(xg
i ωg

i )+ ∑
i∈I0

∑
g∈Gi

∑
p∈Pg

i

∑
k∈Kgp

i

(ygpk
i µgpk

i ) (1)

s.t. ∑
k∈Kgp

i

ygpk
i = xg

i ∀i ∈ I0,∀g ∈ Gi,∀p ∈ Pg
i (2)

∑
i∈I0

∑
g∈GSE

i ∪GT E
i

∑
k∈Kgp

i

(
ygpk

i max
{

0,
(

min{ep,b
gp
i }−max{0,bgp

i − k}
)})
≤ ep ∀p ∈ PE (3)

∑
i∈I0

∑
g∈Gi

∑
k∈Kgp

i

(ygpk
i k)≤ ep + `p ∀p ∈ P (4)

∑
g∈GT E

i ∪GT L
i

xg
i ≤ zi ∀i ∈ I0 (5)

∑
g∈GSE

i ∪GSL
i

xg
i ≤M(1− zi) ∀i ∈ I0 (6)

∑
g∈GSE

ia ∪GSL
ia

xg
i ≤ 1 ∀i ∈ I0,∀a ∈ A (7)

xg
i ∈ {0,1} ∀i ∈ I0,∀g ∈ Gi (8)

ygpk
i ∈ {0,1} ∀i ∈ I0,∀g ∈ Gi,∀p ∈ Pg

i ,∀k ∈ Kgp
i (9)

zi ∈ {0,1} ∀i ∈ I0 (10)

Appendix B XOR Winner Determination Problem

We reuse the notation introduced in Appendix A for sets I0, A, P, PE and Parameters ep, `p, ωg
i .

We further introduce set I which includes all bidders except for the auctioneer. Furthermore, let cgp
i

and dgp
i denote the number of early and late licenses, respectively, demanded in XOR bid g ∈ Gi

for PEA p ∈ P. There exists only a single type of decision variable, namely xg
i ∈ {0,1} which

indicates whether bidder i wins XOR bid g ∈ Gi.

The objective function sums up prices of winning XOR bids. Constraint (2) and (3) are the

supply constraints for early and late licenses, respectively. Constraint (4) ensures that at most one

XOR bid becomes winning per bidder.
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max ∑
i∈I0

∑
g∈Gi

(xg
i ωg

i ) (1)

s.t. ∑
i∈I0

∑
g∈Gi

(xg
i cgp

i )≤ ep ∀p ∈ PE (2)

∑
i∈I0

∑
g∈Gi

(xg
i (c

gp
i +dgp

i ))≤ ep + `p ∀p ∈ P (3)

∑
g∈Gi

xg
i ≤ 1 ∀i ∈ I (4)

xg
i ∈ {0,1} ∀i ∈ I0,∀g ∈ Gi (5)
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6 Discussion

A central question in mechanism design is which market properties admit Walrasian
equilibria. The latter are so desirable to attain because they describe a very favorable
market situation: the market is cleared, the allocation of goods is efficient and envy-free,
and the resulting prices are anonymous and linear. As outlined in our first contribution
of this dissertation (see Chapter 3), the conditions to be satisfied for Walrasian equilibria
to exist are very restrictive. One possibility to enforce their existence is to define the bid
language in a way so that bidders can only express strong substitutes valuations. The
product-mix auction which has successfully been used for financial markets in the UK
follows such an approach (Klemperer, 2010).

While it can be proven that the bid language of the product mix auction is capable
of expressing all possible strong substitutes valuations (Baldwin and Klemperer, 2021),
it still restricts bidders’ preferences to a very specific class of valuation functions. In
particular, strong substitutes valuations do not allow the expression of any kind of com-
plementarities. However, in most practical applications, stating synergistic preferences
is essential for guaranteeing a high allocative efficiency (Cramton, 2013). Therefore,
market designers have focused on developing domain-specific bid languages that admit
complementarities; examples include TV ad auctions (Goetzendorff et al., 2015), pro-
curement auctions (Bichler et al., 2011), and electricity markets (Cramton, 2017). While
the possibility to state synergies eases the preference elicitation, it makes the design of
a proper allocation and pricing rule more challenging because competitive equilibria
generally do not exist in these settings.

Two projects in this dissertation focus on the design and analysis of combinatorial bid
languages for real-world applications. In Chapter 4, we consider a market-based ap-
proach to dynamic congestion pricing. Our research is based on a proposal for a road
capacity wholesale market by Beheshtian et al. (2020). Instead of letting bidders bid on
individual road segments, we develop a bid language that allows them to submit bids
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for road capacity between OD pairs. Bids can include multiple substitutable routes be-
tween the same OD pair and bidders can specify a different willingness-to-pay for each
of them. As one cannot hope for competitive equilibrium prices in this setting, we draw
on ideas from electricity markets, namely the IP pricing technique (see Section 2.6.4)
to “approximate” equilibrium prices. As opposed to electricity markets, our tests show
that the make-whole payments are negligible in our wholesale market. Utilizing traffic
data from the MATSim Open Berlin scenario (Ziemke et al., 2019), our numerical ex-
periments further indicate that realistic problem instances of our wholesale market can
be solved within 15 minutes for a major city like Berlin.

A possible direction for future research is to simulate not only the auction market but
also the resulting traffic on the road when drivers choose their trips with respect to the
actual allocated set of road capacity. As the road capacity licenses in our wholesale
market are issued for 60 minute time intervals, the market operator does not have any
control over the point in time when drivers actually use the respective road segment
within this time slot. Especially during rush hours, one cannot expect a uniform traffic
distribution over the 60 minute time interval so that congestion may still occur at peak
times. Of course, this could be addressed by simply selling less road capacity from the
beginning or using smaller time intervals during rush hour. However, while the first
approach would unnecessarily reduce the throughput, the second one would not only
increase the overhead due to the additional auctions necessary but would also make
bidding more complex for service providers as end consumers may now need licenses
from multiple time slots to complete their trips. To decide upon a reasonable time slot
length, more simulations of the impact of congestion pricing on the actual traffic are
necessary.

In addition to that, policy makers have to overcome some considerable administrative
and regulatory obstacles before a market-based approach to congestion pricing can be
implemented successfully: Legislation must pass new laws to set the legal framework for
road pricing policies (Berliner Senatsverwaltung für Umwelt, Verkehr und Klimaschutz,
2020). Security experts must devise a virtual network that allows for secure registration
and tracking of vehicles. Policy makers must address the citizen’s skepticism towards
road pricing that often stems from privacy and equity concerns (Cramton et al., 2018).
While recent research provides compelling arguments in favor of dynamic congestion
pricing (Cramton et al., 2019a), the discussion about the societal consequences of such
policies is still an ongoing process (Creutzig et al., 2020).
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While from a theoretical perspective setting road prices dynamically is the most effective
way to charge drivers for externalities they impose on others (Cheng et al., 2017; Cramton
et al., 2019a), the technical burden for setting tolls in response to the actual traffic
on the road is much higher than implementing static pricing schemes. All cities that
adopted congestion pricing in the past are using simple cordon- or area-based static
pricing schemes (Lehe, 2019). Back in 1975, when the city of Singapore launched its
road pricing scheme, technology simply did not allow for more complex pricing policies.
However, Singapore has recently started to equip cars with GPS transponders, opening
up the possibility for dynamic distance-based congestion pricing (Cramton et al., 2019a;
Lehe, 2019). Singapore’s approach of gradually refining its pricing policy whenever
technology allows and social consensus is given serves as a template for other cities, e.g.,
policy makers in Berlin described such an incremental procedure to congestion pricing
in a recent study (Berliner Senatsverwaltung für Umwelt, Verkehr und Klimaschutz,
2020).

The third project of this dissertation studies an auction for selling electromagnetic spec-
trum in the United States (see Chapter 5). The market we consider for evaluating the
FUEL bid language consists of 406 geographic areas in each of which 14 license blocks are
up for sale. This leads to 15406 distinct packages, far too many for bidders to evaluate.
The high communication and computation complexity which are typical for large-scale
combinatorial auctions is mitigated by the novel FUEL bid language that allows bidders
to express their valuations succinctly. With an extensive set of numerical experiments,
we can identify the hierarchical structure of bids to be the main reason for the tractabil-
ity of the FUEL allocation problem even in the presence of more than 1,000 bidders. In
contrast to a standard XOR bid language, FUEL effectively prevents the missing bids
problem, leading to a substantially higher efficiency of the auction.

Unfortunately, the US Federal Communications Commission decided against running a
private auction in which satellite companies would have sold their C-band spectrum to
telecommunication providers. While this led to FUEL not having been implemented in
practice yet, its generic bid language design makes FUEL also attractive for auctions in
other domains. FUEL is particularly suitable whenever there are economies of scale in
a product category and economies of scope between them. Possible application fields
are TV ads (Goetzendorff et al., 2015), procuring school meals in Chile (Olivares et al.,
2012), or selling fishery access rights (Iftekhar and Tisdell, 2012).
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More than that, it is an intriguing idea to use FUEL instead of a standard XOR bid
language in the supplementary phase of combinatorial clock auctions. While different
variants of combinatorial clock auctions have been used worldwide for selling spectrum
(Ausubel and Baranov, 2017; Cramton, 2013), these designs are not without problems.
One drawback of some variants is using the XOR bid language in the supplementary
phase. Due to the high number of available packages in spectrum auctions, bidders are
often restricted in the number of bids they are allowed to submit in the supplementary
phase in order to keep the allocation problem tractable. A case in point is the 2014
Canadian spectrum auction that featured 98 licenses. Bidders were restricted to a max-
imum of 2,000 package bids in the supplementary phase, clearly too few to state their
preferences accurately.1 For the spectrum auction we considered in Chapter 5, FUEL
proved suitable to effectively mitigate this missing bids problem while still allowing a
high tractability of the market.

An open question for future research is how prices can be computed when applying the
FUEL bid language. In the FUEL whitepaper (Milgrom, 2019), it is suggested to use
Vickrey-closest core payments (see Section 2.6.3). While core pricing is the de-facto
standard for combinatorial clock auctions (Ausubel and Baranov, 2017; Cramton, 2013),
this pricing technique may lead to prices that are perceived as unfair by bidders. In
the 2012 Swiss spectrum auction, two telecommunication providers had to pay vastly
different amounts of money (482 million CHF versus 360 million CHF) for almost the
same set of licenses, clearly violating the law of one price (Bichler, 2017; Levin and
Skrzypacz, 2016).

Besides that, the computation of Vickrey-closest core payments is non-trivial and com-
putationally challenging (Cramton, 2013). To compute VCG prices, the winner deter-
mination problem has to be solved once for each winning bidder. This computation
is followed by a method proposed by Day and Raghavan (2007) which iteratively finds
the most violated core constraint and adds it to the partial core representation until
there is no more coalition that could gain from deviating. In large markets with hun-
dreds or thousands of bidders (e.g., electricity markets), computing Vickrey-closest core
payments may no longer be feasible.

While core stability is an arguably fair and desirable property, it can only be fulfilled in
practical settings when compromising on the linearity and anonymity of prices. There-

1Licensing Framework for Mobile Broadband Services (MBS) – 700 MHz Band: https://www.ic.
gc.ca/eic/site/smt-gst.nsf/eng/sf10572.html; published: 07.03.2013; accessed: 09.12.2021
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fore, an interesting direction for future research on the FUEL bid language is to calculate
prices using techniques currently used in electricity markets. Depending on the degree of
non-convexities available in the market, considerable side-payments might be necessary
to prevent bidders from incurring a loss. However, this can be seen as a tradeoff for
fulfilling the law of one price.
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7 Conclusion

While various allocation and pricing rules have been proposed for auction markets over
the past decades, the research in this field is still evolving. This is partly due to the
advances in technology which allow solving large allocation problems today that were
considered infeasible a couple of years ago. In addition to that, more and more elec-
tronic markets emerge every day which replace central market operators that allocated
resources (often inefficiently) in the past. These new markets frequently require other
rules than existing ones as allocation and pricing rules that were applied successfully
in one market may not be suitable for another. For example, mitigating the commu-
nication and computation complexity drives the design decisions of large-scale auction
markets but can be neglected in settings where only a single object is up for sale as it is
commonly the case in auction houses like Sotheby’s or Christie’s.

Auction markets differ in both their size and design desiderata. While the law of one
price is often sacrificed in spectrum sales to guarantee core stability (Cramton, 2013; Day
and Cramton, 2012; Levin and Skrzypacz, 2016), electricity markets produce anonymous
prices but can only fulfill individual rationality through substantial side-payments and
satisfy market stability by threatening bidders with high penalties in case they deviate
from the allocation (O’Neill et al., 2020; Hytowitz et al., 2020). In other markets such
as financial markets in the UK for providing liquidity to banks, the bid language only
admits the expression of strong substitutes valuations (Klemperer, 2010). While this
guarantees for strong theoretic properties such as the existence of Walrasian equilibria,
it is not suitable for most other practical applications where expressing complementary
valuations is crucial for achieving high allocative efficiency.

The focus of this dissertation is the design of large-scale auction markets. At the core
of this research is the design and analysis of combinatorial bid languages. While the
bid languages considered in this dissertation have not been applied in the field yet, their
generic design and our numerical tests provide valuable insights for both the research
community and market designers in the field.
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