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Zusammenfassung

Diese Dissertation befasst sich mit Fragen der Quantenlerntheorie, an der Schnittstelle von Quan-

teninformationstheorie und maschinellem Lernen. Wir beweisen Garantien darüber, wie varia-

tionelle Quantenlernmodelle von Trainingsdaten auf unbeobachtete Daten verallgemeinern. Und

wir untersuchen Lernprobleme, in denen von Quantendaten gelernt wird. Schlieÿlich diskutieren

wir Fragen zur Markovianität von Quantenevolutionen und Aspekte von Unentscheidbarkeit in

der Lerntheorie.

Abstract

This dissertation treats questions from quantum learning theory, at the intersection point of

quantum information theory and machine learning. We prove guarantees on how variational

quantum machine learning models generalize from training data to unseen data. And we explore

the complexity of tasks of learning an unknown map from quantum data. Finally, we discuss

questions related to Markovianity in quantum evolutions and aspects of undecidability in learning

theory.
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� We can only see a short distance ahead, but we can see plenty there that needs

to be done. �

Alan Turing
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Chapter 1

Introduction

Both quantum information and machine learning open up new perspectives on computation,

the former by allowing for algorithms exploiting features of quantum mechanics, the latter by

introducing learning algorithms as a new paradigm of meta-algorithms. Quantum learning theory

aims to understand the potential as well as the limitations of combining these two perspectives.

Exactly that is the guiding theme of this thesis.

1.1 Outline

In this section, we explain the quantum information-theoretic and learning-theoretic questions

that we explore in this thesis. We also give an overview over the di�erent chapters.

Understanding training data requirements is vital for any machine learning problem, both clas-

sical and quantum. In machine learning theory, it has long been recognized that statistical

features of learning problems are crucial in determining how much data is necessary and/or suf-

�cient for solving them. In particular, statistical learning theory has considered the question of

when training data is representative of the true data distribution through the lens of general-

ization. For this framework, the following question is central: When is the average performance

of a machine learning model on the available data a reliable proxy for its performance on pre-

viously unseen data? This question, asked for variational quantum machine learning models

based on parametrized quantum circuits, is also one of the focus points of this thesis. We an-

swer it by proving upper bounds on the training data size su�cient for good generalization in

terms of di�erent architectural properties of the parametrized quantum circuits used to de�ne a

machine learning model. Beyond variational quantum machine learning, we also investigate the

training data requirements in two concrete tasks of learning from quantum data. Moreover, we

discuss generalization in both classical and quantum machine learning from the perspective of

computational and logical undecidability.

While we have become used to the usefulness of data in our modern world, it is not automatic

that information available in the present allows us to make accurate predictions about the fu-

ture when considering physical processes. Namely, in quantum physics, not all processes are

Markovian. Here, we call a process Markovian if, given the present, the future is independent

of the past. Therefore, we also explore quantum (Non-)Markovianity in this thesis. On the one
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Introduction

hand, we consider a mathematical formalization of quantum Markovianity as a certain divisi-

bility property, called in�nitesimal divisibility, and establish necessary criteria for a linear map

to satisfy this property. On the other hand, we study Markovianity in a type of higher-order

quantum evolutions by characterizing the generators that give rise to continuous one-parameter

semigroups of quantum superchannels.

The remainder of this thesis is structured as follows. In Section 1.2, the rest of this chapter, we

summarize the contributed articles appearing in this thesis. Chapter 2 gives an introduction into

selected topics of quantum information theory. Chapter 3 presents basic notions from classical

learning theory and discusses aspects of undecidability in learning theory. In Chapters 4 and 5,

we present two topics in the theory of quantum machine learning, at the intersection of quantum

information and learning theory, with a focus on theoretical guarantees for the training data

requirements. Namely, Chapter 4 revolves around variational quantum machine learning and

Chapter 5 investigates di�erent scenarios of learning from quantum data. In Chapter 6, we

review the notion of quantum Markovianity arising from the study of continuous one-parameter

semigroups, discuss a relaxation in terms of divisibility properties, and extend the framework of

continuous one-parameter semigroups from quantum channels to quantum superchannels.

Finally, we include all the contributed articles. Before each article, we summarize the main

contributions of the respective work and describe the individual contributions of the author of

this thesis. In addition, preceding each article, we include the respective permission to use it in

this thesis.

1.2 Summary of Results

The contributed articles deal with di�erent questions in quantum information theory, classical

learning theory, and quantum learning theory. Core Article I investigates the pseudo-dimension,

a complexity measure from classical learning theory, for function classes describing the statistics

of measurements performed at the output of a quantum circuit with variable gates. In a similar

spirit, Core Article IV and Article VI bound complexity measures for variational quantum ma-

chine learning models based on parametrized quantum circuits, thereby deriving generalization

guarantees. Here, Core Article IV emphasizes the e�ect of the encoding gates in the circuit, Arti-

cle VI focuses on the in�uence of the trainable gates on generalization. Both Core Article III and

Article V deal with tasks of learning from quantum data. In Core Article III, the goal is to learn

an unknown quantum state preparation procedure from classical-quantum training examples. In

contrast, Article V revolves around learning classical linear functions from non-uniform quantum

superposition examples. Article VII addresses a question at the intersection point of classical

learning theory, logic, and computability, namely the (un-)decidability of learnability. Finally,

Core Article II and Article VIII investigate questions related to quantum (Non-)Markovianity,

the former in terms of a divisibility property for quantum channels, the latter by studying con-

tinuous one-parameter semigroups of superchannels. Note: The author of this thesis does not

claim to be the principal author of the Article VIII.

2



Summary of Results

Core articles as principal author

� Article I [1]: Pseudo-dimension of quantum circuits

In this work, we propose the pseudo-dimension, a combinatorial complexity measure from

classical learning theory, as a tool to quantify the expressivity of 2-local quantum circuits

on qudits. Here, to a quantum circuit with variable gates we associate a class of [0, 1]-valued

functions that describe the possible outcome distributions of measurements performed at

the output of the circuit, upon input of the |0⟩ qudit state. The main result of this �rst

core article are upper bounds on the pseudo-dimension of this function class. Moreover,

we extend the result to more general scenarios of variable circuit circuit architecture, vari-

able input states, and circuits consisting of general quantum operations beyond unitaries.

Crucially, our pseudo-dimension bounds scale polynomially in the size and depth of the

circuit, as well as the local dimension. In particular, for e�ciently implementable quan-

tum circuits, which have depth polynomial in the number of qudits, this complexity bound

also scales polynomially in the number of qudits. We demonstrate two applications of our

pseudo-dimension bounds. First, we show that polynomial-size training data su�ces to

probably approximately correctly learn 2-local quantum circuits of known polynomial size

and depth. Second, we exhibit an explicit �nite class of quantum states at least one of

which has exponential gate complexity of state preparation.

Our proofs rely on understanding the di�erent [0, 1]-valued functions implemented by a

quantum circuit as arising by �xing some of the variables in a multivariate polynomial.

This polynomial is determined by the quantum circuit and its degree can be upper-bounded

using the size of the circuit. With this reinterpretation of the function class, bounding

its pseudo-dimension becomes a task of upper-bounding the number of consistent sign

assignments to a family of polynomials, whose degree we can bound. For this, we employ

a result due to [9].

� Article II [2]: Necessary criteria for Markovian divisibility of linear maps

The focus of this second core article is a divisibility notion related to (Non-)Markovianity of

quantum evolutions. Ref. [10] introduced the notion of in�nitesimal (Markovian) divisibil-

ity for quantum channels in. Generalizing this approach, we de�ne Markovian divisibility

and in�nitesimal Markovian divisibility for general linear maps and sets of generators. We

propose a general proof strategy for deriving necessary criteria for (in�nitesimal) Marko-

vian divisibility. More precisely, we show how to prove singular value inequalities for

(in�nitesimal) Markovian divisible maps, given certain spectral properties of the admissi-

ble generators. Our proofs are based on Trotterization and on majorization inequalities

from matrix analysis.

Following this strategy for the case of quantum channels and Lindblad generators, we prove

the �rst non-trivial necessary criteria for in�nitesimal divisibility of quantum channels that

hold in any �nite dimension. The main technical ingredient for this proof is a careful

analysis of eigenvalues of real parts of Lindblad generators. Through concrete examples,
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we show our criteria to be almost optimal. Moreover, we demonstrate that no analogous

criteria can hold in general in the classical counterpart of the quantum setting.

� Article III [3]: Binary Classi�cation with Classical Instances and Quantum Labels

In this third core article, we propose a toy problem for learning quantum state preparation

procedures from classical-quantum data and characterize its optimal sample complexity.

Concretely, we introduce a variant of binary classi�cation in which the labels are quantum

states. Importantly, we assume that a learner has access to the quantum labels in the

training data only via actual quantum copies of the respective label state, not in terms of

a full classical description.

We show upper bounds on the su�cient training data size for this quantum learning prob-

lem in terms of the complexity of the hypothesis class used by the learner. In proving these

upper bounds, we use local Holevo-Helstrom measurements to reduce the learning prob-

lem to a task of learning from classical data with noisy labels. Assuming pure quantum

label states, we complement the sample complexity upper bounds with essentially match-

ing lower bounds. The proofs of these lower bounds rely on a reduction to a problem of

quantum state discrimination. We lower bound the sample complexity of the latter via an

information-theoretic argument.

� Article IV [4]: Encoding-dependent generalization bounds for parametrized quantum circuits

Variational quantum machine learning is the subarea of quantum machine learning in which

parametrized quantum circuits (PQCs), trainable via classical optimization procedures,

serve as machine learning models. Applying such models to problems of learning from

quantum data requires a way of encoding the classical data such that it can be processed

by the quantum circuit. In this fourth core article, we investigate the e�ects of the quantum

data-encoding strategy on the training data requirements for good generalization in PQC-

based machine learning models. For several commonly used encoding strategies, we show

that training data of size polynomial in the number of encoding gates su�ces to guarantee

good generalization. Moreover, we demonstrate how to establish generalization bounds for

a PQC-based machine learning model by solving a purely combinatorial question about

the spectra of the encoding Hamiltonians.

For our proofs, we use a representation of the functions implemented by a PQC in terms of

generalized trigonometric polynomials (GTPs), arising from successive diagonalizations of

the Hamiltonians used for encoding the classical data. Crucially, we show that the acces-

sible frequency spectrum in the GTP representation is determined by the data-encoding

strategy. This allows us to derive explicitly encoding-dependent generalization guaran-

tees for PQC-based quantum machine learning from generalization guarantees for classes

of GTPs that explicitly depend on the accessible frequency spectrum. We demonstrate

two proof strategies for establishing the latter. First, we reinterpret GTPs as functions

implemented by simple neural networks, for which Rademacher complexity bounds are

known. Second, we regard the number of accessible frequencies as a bound on the e�ective

dimension of a class of GTPs and prove covering number bounds on this basis.

4



Summary of Results

Further articles as principal author

� Article V [5]: Quantum learning Boolean linear functions w.r.t. product distributions

In this article, we investigate a problem of learning Boolean linear functions from quan-

tum superposition examples. Prior work [11, 12] had demonstrated that quantum Fourier

sampling, in particular the Bernstein-Vazirani algorithm [13], can serve as a basis for a

quantum algorithm that e�ciently learns linear functions from superposition examples,

even in the presence of noise. However, these results required the superposition weights to

be uniform. We quantitatively investigate how a bias away from uniformity in the super-

position weights in�uences their usefulness for learning linear functions. More precisely,

we show the following results: For small bias, a constant number of quantum examples

su�ces for exactly learning an unknown Boolean linear function on n bits. For any ar-

bitrary (except full) bias, a number of quantum examples scaling logarithmically in n is

su�cient. And for large bias, the quantum sample complexity cannot scale better than

logarithmically in n. As classical learners require linearly-in-n many classical examples to

exactly learn an unknown Boolean linear function, this shows that even for biased prod-

uct distributions, quantum learners can outperform classical learners in both sample and

computational complexity.

In proving the sample complexity upper bounds, we build on a biased version of the

quantum Fourier transform and a corresponding biased version of quantum Fourier sam-

pling [14]. With this, we de�ne a biased version of the Bernstein-Vazirani algorithm and,

through ampli�cation, use it as subroutine for a quantum learning algorithm. To prove the

complementary sample complexity lower bounds, we relate the learning task to a problem

of identifying an unknown quantum state from a known ensemble. For the latter, we ob-

tain sample complexity lower bounds by bounding the success probability of the so-called

�pretty good measurement�, through studying the Gram matrix of the ensemble.

� Article VI [6]: Generalization in quantum machine learning from few training data

This article is a continuation of the line of research initiated in Core Article I [1] and at the

same time complementary to Core Article IV [4]. Namely, here we investigate the general-

ization behaviour of variational quantum machine learning models based on parametrized

quantum circuits, with a focus on the trainable part of the circuit. We prove an upper

bound of the generalization error in variational quantum machine learning in terms of the

number of trainable local quantum channels in the quantum circuit. In particular, our

result implies that e�ciently implementable models, which have polynomially many gates,

can be learned from polynomial-size training data. Moreover, we extend our bounds to

models with shared parameters between gates, variable circuit architecture, and take the

optimization process into account. This makes the bounds �exibly applicable, as we demon-

strate with theoretical guarantees for quantum phase recognition and unitary compiling,

both con�rmed by numerical experiments.

Our main technical contribution, which is at the core of our proofs, are covering number

bounds for the class of quantum channels that a quantum machine learning model can

5
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implement. To obtain these bounds, we combine compactness of the set of local quantum

channels with the circuit structure and subaddivity of the distance induced by the diamond

norm. We then use Dudley's covering number integral to relate Rademacher complexities

and covering numbers, and �nally obtain generalization bounds from the Rademacher com-

plexity bounds.

Further preprints and articles as principal author under review

� Article VII [7]: Undecidability of Learnability

This article explores the following fundamental questions in classical learning theory: If

learning is possible, can we prove that this is indeed the case? Is there an algorithmic

procedure for deciding for any given scenario whether learning is possible? We prove

that the answer is negative for both of these questions: For di�erent learning scenarios,

learnability is in general undecidable, both in the sense of independence of the axioms in

a formal system and in the sense of uncomputability. More precisely, we show this for

the models of probably approximately correct binary classi�cation, uniform and universal

online learning, and exact learning through teacher-learner interactions.

In all of these models, learnability is determined by combinatorial properties of the model

class. For example, under suitable measurability assumptions, learnability for probably

approximately correct binary classi�cation is equivalent to the model class having �nite

VC-dimension. Similar characterizations of learnability are known for online learning in

terms of Littlestone trees, and for teaching problems in terms of the teaching dimension.

In our proofs, we show that deciding whether a class satis�es any of these combinatorial

properties is in general not possible. We derive this from two fundamental undecidabil-

ity results, namely Gödel's second incompleteness theorem and the undecidability of the

halting problem.

Articles as co-author

� Article VIII [8]: Quantum and classical dynamical semigroups of superchannels and semi-

causal channels

The full characterization of the generators of continuous one-parameter semigroups of quan-

tum channels [15, 16], now usually called GKLS- or Lindblad generators, is fundamental

for studying (Non-)Markovianity in evolutions of quantum systems. In contrast, no corre-

sponding characterization for the generators giving rise to semigroups of quantum super-

channels was known. Here, superchannels are linear maps that map admissible quantum

evolutions to admissible quantum evolutions. In this article, we close this gap in the lit-

erature by fully characterizing such generators, both via an e�ciently checkable criterion,

based on a semide�nite program, and via a normal form. These can serve as a basis for

both analytical and numerical investigations of (Non-)Markovianity in higher-order quan-

tum theory. In addition to the quantum case, we also resolve the analogous question in

the classical case.

6



Summary of Results

As the �rst step towards proving our normal form, we use a correspondence between su-

perchannels and certain semicausal completely positive maps. Here, semicausal maps on

a bipartite system allow information �ow between the subsystems only in one direction.

Thus, it su�ces to characterize the generators of semicausal channels. In the quantum

case, we achieve the latter through a technique based on Haar integration, which allows to

transfer the semicausality assumption from a whole Lindblad generator to its completely

positive part. Now, the known equivalence between semicausal and semilocalizable quan-

tum channels, which we extend to in�nite dimensions, leads us to a constructive expression

for the admissible generators.
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Chapter 2

Mathematical Ingredients of Quantum

Information Theory

In this chapter, we introduce the mathematical framework for �nite-dimensional quantum infor-

mation theory. The material presented here can be found in textbooks such as [17�19] or lecture

notes such as [20�22]. Section 2.1 discusses the density matrix formalism for describing the state

of a (potentially composite) quantum system and the corresponding description of measure-

ments in quantum theory. In Section 2.2, we present the channel formalism for transformations

of quantum systems, before moving on to the superchannel formalism for transformations of

transformations.

In preparation for the remainder of this chapter and this thesis, let us introduce some notation.

Throughout this chapter, we work with �nite-dimensional Hilbert spaces Cd, with dimension

d ∈ N≥1 := {1, 2, . . .}. We denote the set of bounded linear operators between �nite-dimensional

Hilbert spaces CdA and CdB by B(CdA ;CdB ). If dA = dB = d, we write B(Cd) = B(CdA ;CdB ).

We will also use MdB ,dA to denote dB × dA matrices with complex entries, and write Md if

dA = dB = d. For X ∈ B(Cd), tr[X] denotes the trace of (a matrix representing) X. Here

and throughout, we sometimes implicitly identify B(CdA ;CdB ) and MdB ,dA . Using the trace, we

can equip B(CdA ;CdB ) with the Hilbert-Schmidt inner product ⟨X,Y ⟩HS := tr[X†Y ]. Here, X†

denotes the conjugate transpose of X. Note that, as is common in the mathematical physics

literature, our inner products are conjugate-linear in the �rst argument and linear in the second.

Also, for a Hermitian X ∈ B(Cd), we write X ≥ 0 if and only if X is positive semide�nite. We

denote by 1dA = 1A ∈ B(CdA), the identity operator, whereas we use the notation iddA = idA =

idB(CdA ) ∈ B(B(CdA)) for the identity map, that is, idA(X) = X for any X ∈ B(CdA).

Moreover, as is standard in quantum theory, we use Dirac bra-ket notation. That is, a vector

ψ ∈ Cd is denoted with a ket |ψ⟩. The corresponding element of the dual space is denoted

by a bra ⟨ψ|, i.e., ⟨ψ| : Cd → C, Cd ∋ |φ⟩ 7→ ⟨ψ|φ⟩ := ⟨ψ,φ⟩, where the inner product is

the standard inner product on Cd. Accordingly, if |ψ⟩ ∈ CdB and |φ⟩ ∈ CdA , then we de�ne

|ψ⟩ ⟨φ| ∈ B(CdA ;CdB ) via the mapping CdA ∋ |ϕ⟩ 7→ ⟨φ|ϕ⟩ |ψ⟩ ∈ CdB .

Our presentation in this chapter is structured as follows: Section 2.1 introduces the mathematical

framework for describing quantum systems and measurements thereof. Section 2.2 concerns evo-

lutions of quantum systems and their description in terms of completely positive maps. Finally,

9
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in Section 2.3, we discuss so-called quantum superchannels and their connection to semicausal

and semilocalizable quantum operations.

2.1 Quantum States and Measurements

First, we introduce quantum states and density matrices, which we use to describe quantum

systems:

De�nition 2.1.1 (Quantum States and Density Matrices). Let d ∈ N≥1. The set of d-dimensional

quantum states or density matrices is

S(Cd) :=
{
ρ ∈ B(Cd) | ρ ≥ 0 ∧ tr[ρ] = 1

}
. (2.1.1)

If d = 2, we often speak of qubit states, where qubit is an abbreviation for �quantum bit�.

Similarly, when d ∈ N≥1 is not speci�ed, we will use the term qudit. Throughout this thesis, we

will use the terms �quantum state� and �density matrix� e�ectively interchangeably.

At this point, we also make some additional remarks on S(Cd) and the nomenclature surrounding

it. First, the set S(Cd) of d-dimensional density matrices is convex. Its extreme points are the

rank-1 projections, which we call pure states. Any non-pure state is a mixed state. If ρ ∈ S(Cd)

is pure, then there is a unique |ψ⟩ ∈ Cd with ⟨ψ|ψ⟩ = 1 such that ρ = |ψ⟩ ⟨ψ|, and vice versa.

Thus, we also often speak of normalized d-dimensional complex vectors as pure states, thereby

implicitly identifying a rank-1 projection |ψ⟩ ⟨ψ| with the vector |ψ⟩. Second, notice that S(Cd)

constitutes a generalization of the set of classical d-dimensional probability vectors. Namely, the

diagonal d× d-density matrices are in 1-to-1 correspondence with non-negative and normalized

d-dimensional vectors, also known as probability vectors.

While we use quantum states to describe quantum systems, quantum theory tells us that these

states are not directly accessible in experiments. Rather, we can only make observations about

a quantum system by performing measurements on it. Therefore, we next describe our mathe-

matical formalism for measurements:

De�nition 2.1.2 (Measurements, E�ect Operators, and Positive Operator-Valued Measures).

Let d ∈ N≥1. The set of d-dimensional e�ect operators is

E(Cd) :=
{
E ∈ B(Cd) | 0 ≤ E ≤ 1d

}
. (2.1.2)

An (n-outcome) positive operator-valued measure, abbreviated as POVM, is a family {Ei}ni=1 of

n ∈ N≥1 e�ect operators Ei ∈ E(Cd) such that

n∑

i=1

Ei = 1d . (2.1.3)

We take a POVM {Ei}ni=1 as the mathematical description of a measurement with n possible

outcomes. We will use the terms �POVM� and �measurement� synonymously. The so-called

Born rule states that, when performing the measurement {Ei}ni=1 on a quantum system in the

state ρ ∈ S(Cd), the probability of observing the outcome i ∈ {1, . . . , n} is given by pi = tr[ρEi].
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Here, De�nitions 2.1.1 and 2.1.2 ensure that the vector (tr[ρEi])
n
i=1 indeed forms an n-dimensional

probability vector. Moreover, quantum theory postulates that the state of the quantum system

after we observe the measurement outcome i is the post-measurement state 1
pi

√
Eiρ

√
Ei.

Composite Systems: Above, we have de�ned states and measurements for single quantum

systems. Next, we consider composite systems. If system A is described by a Hilbert space

CdA , and system B has an associated Hilbert space CdB , then the joint AB-system has the

tensor product Hilbert space CdA ⊗ CdB ∼= CdA·dB . Accordingly, states of the joint system are

elements of S(CdA ⊗ CdB ), e�ect operators are taken from E(CdA ⊗ CdB ). Importantly, while

S(CdA ⊗CdB ) contains product states of the form ρA ⊗ ρB, with ρA ∈ S(CdA) and ρB ∈ S(CdB ),

not all elements of S(CdA ⊗ CdB ) are of this form. Also separable states, given by convex

combinations of product states, can be found in S(CdA⊗CdB ). Crucially, however, S(CdA⊗CdB )

even contains non-separable states, which we call entangled. As an important example, we

mention maximally entangled states: If dA = dB = d and we pick an orthonormal basis {|ai⟩}di=1

of CdA = CdB = Cd, then we call the pure state |Ω⟩ := 1√
d

∑d
i=1 |ai⟩ ⊗ |ai⟩ the maximally

entangled state with respect to the chosen orthonormal basis. The corresponding density matrix

is Ω := |Ω⟩ ⟨Ω| = 1
d

∑d
i,j=1 |ai⟩ ⟨aj |⊗|ai⟩ ⟨aj |. Closely related to Ω is the so-called SWAP operator.

For a general composite system, we de�ne SWAP = SWAPA,B ∈ B(CdA ⊗ CdB ;CdB ⊗ CdA) by

linearly extending SWAP |ai⟩⊗|bj⟩ = |bj⟩⊗|ai⟩, where {|ai⟩}dAi=1 and {|bi⟩}dBi=1 are (orthonormal)

bases of CdA and CdB , respectively. If dA = dB = d and if we choose the same orthonormal basis

{|ai⟩}di=1 for both tensor factors and for the de�nition of the maximally entangled state, then

SWAP and Ω are related through partial transposition. That is,

SWAP =

d∑

i,j=1

|aj⟩ ⟨ai| ⊗ |ai⟩ ⟨aj | = dΩTA , (2.1.4)

where the partial transpose XTA of X ∈ B(Cd ⊗ Cd) with respect to the chosen basis is de�ned

via ⟨ai|⊗⟨aj |X |ak⟩⊗|aℓ⟩ := ⟨ak|⊗⟨aj |X |ai⟩⊗|aℓ⟩. Unfortunately, an in-depth discussion of the

relevance of quantum entanglement to the theory of quantum information is beyond the scope of

this thesis. The interested reader is referred to [21, Chapter 4] for a more detailed introduction

to this material.

An important tool in the study of composite quantum systems is the partial trace. We de�ne

the partial trace over the B-subsystem of a composite AB-system as the unique linear map

trB : B(CdA ⊗ CdB ) → B(CdA) that satis�es

tr[trB[XAB]YA] = tr[XAB(YA ⊗ 1B)] for all XAB ∈ B(CdA ⊗ CdB ), YA ∈ B(CdA) . (2.1.5)

The partial trace over the A-subsystem is de�ned analogously. For ρAB ∈ S(CdA ⊗ CdB ), we

call ρA := trB[ρAB] and ρB := trA[ρAB] the reduced density matrices or reduced states of ρAB.

According to Eq. (2.1.5), performing a measurement {Ei}ni=1 on the reduced state ρA of ρAB

leads to exactly the same outcome statistics as performing the measurement {Ei ⊗ 1B}ni=1 on

the state ρAB of the composite system. In that sense, the partial trace allows us to focus on

subsystems of a composite quantum system.

11



Mathematical Ingredients of Quantum Information Theory

Distance Measures: We now shortly discuss some common distance measures in quantum

information theory. Here, �distance measure� is used in an informal sense, only three of the

quantities introduced below are actual �distances� in the sense of a metric.

First, and maybe most naturally, we can equip the set S(Cd) with the (for convenience scaled)

trace norm ∥·∥1/2. This allows us to measure the di�erence between two quantum states ρ, σ ∈
S(Cd) via the trace distance ∥ρ−σ∥1/2 = tr[|ρ−σ|]/2. In fact, this distance is not only intuitive

from a mathematical perspective, it also has an operational interpretation: The maximal success

probability in distinghuishing ρ, σ ∈ S(Cd), assuming that either of the two is prepared with

probability 1/2, by performing a 2-outcome measurement on a single copy of the unknown state

is given by supE∈E(Cd) tr[E(ρ− σ)] + 1
2 =

∥ρ−σ∥1+1
2 (see, e.g., [17, Chapter 9] for a derivation).

A second important measure of similarity between quantum states is the �delity. For states

ρ, σ ∈ S(Cd), the �delity is de�ned as F (ρ, σ) := tr[
√√

ρσ
√
ρ]. Notice that the �delity is

symmetric and satis�es 0 ≤ F (ρ, σ) ≤ 1 = F (ρ, ρ) for all ρ, σ ∈ S(Cd). However, it does not

satisfy a triangle inequality and is thus not a metric, in contrast to the trace distance. In the

special case of pure states |ψ⟩ ⟨ψ| , |ϕ⟩ ⟨ϕ| ∈ S(Cd), the �delity becomes the absolute value of the

overlap of the corresponding vectors, F (|ψ⟩ ⟨ψ| , |ϕ⟩ ⟨ϕ|) = |⟨ψ|ϕ⟩|. The trace distance and the

quantum �delity are closely related. Namely, the Fuchs�van de Graaf relations [23] state that,

for any ρ, σ ∈ S(Cd), 1− F (ρ, σ) ≤ ∥·∥1/2 ≤
√
1− F (ρ, σ)2.

Despite there being many other useful ways of determining distances between quantum states,

we only discuss one more, namely the quantum relative entropy. The quantum relative entropy

between two quantum states ρ, σ ∈ S(Cd) that satisfy supp(ρ) ∩ ker(σ) = ∅ is de�ned to be

D(ρ∥σ) := tr[ρ log(ρ)]−tr[ρ log(σ)]. Here, the logarithm is taken with base 2. We can rewrite the

relative entropy using the von Neumann entropy S(ρ), which is de�ned as S(ρ) := −tr[ρ log(ρ)].

With this, the relative entropy becomes D(ρ∥σ) = −tr[ρ log(σ)]−S(ρ). If supp(ρ)∩ ker(σ) ̸= ∅,
then we de�ne D(ρ∥σ) := +∞. A useful result in quantum information is the non-negativity

of the relative entropy, i.e., that D(ρ∥σ) ≥ 0 holds for any two quantum states ρ, σ ∈ S(Cd).

Moreover, for ρ, σ ∈ S(Cd), D(ρ∥σ) = 0 implies ρ = σ (see, e.g., [17, Theorem 11.7] for a

proof). However, the quantum relative entropy is neither symmetric nor does it satisfy a triangle

inequality, so it does not de�ne a metric. Nevertheless, it is an important tool for comparing

two quantum states. For example, when comparing a bipartite state ρAB ∈ S(CdA ⊗ CdB )

to ρA ⊗ ρB, the tensor product of its reduced density matrices, we obtain a measure for the

correlation between the A- and the B-system in the state ρAB. This de�nes the quantum mutual

information I(A : B)ρ := D(ρAB∥ρA ⊗ ρB).

2.2 Completely Positive Maps and Quantum Channels

Next, we consider valid transformations of quantum systems. To be consistent with the proba-

bilistic interpretation of quantum theory given by the Born rule, we take such transformations

to be linear. Moreover, we need to preserve the non-negativity of outcome probabilities of mea-

surements. This is part of the motivation for the following:
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De�nition 2.2.1 (Completely Positive Maps). A linear map T : B(CdA) → B(CdB ) is called

completely positive (CP) if for any dE ∈ N≥1 and for any ρ ∈ B(CdE ⊗ CdA) with ρ ≥ 0 also

(idB(CdE )⊗T )(ρ) ≥ 0. We denote the set of CP maps by

CPdA,dB :=
{
T : B(CdA) → B(CdB ) | T is linear and CP

}
. (2.2.1)

If dA = dB = d, we also write CPd := CPd,d.

De�nition 2.2.1 captures the following intuition: Suppose A is our quantum system of interest and

we consider an additional quantum system E of some arbitrary �nite dimension. Now, suppose

that only system A evolves non-trivially. Then, we have to preserve non-negativity of outcome

probabilities for measurements performed on the A-system also when viewing it as a subsystem

of the bipartite AE-system. In fact, it turns out (e.g., due to Theorem 2.2.3) that it su�ces to

consider auxiliary systems of dimension dE ≤ dA in the de�nition of complete positivity.

Now, adding a suitable normalization condition to the CP property, we arrive at the following

notion of transformations of quantum systems:

De�nition 2.2.2 (Quantum Channels and Operations � Schrödinger Picture). A quantum chan-

nel in the Schrödinger picture is a linear completely positive and trace-preserving (CPTP) map.

That is, a linear map T : B(CdA) → B(CdB ) is a quantum channel if T is CP and tr[T (A)] = tr[A]

holds for all A ∈ B(CdA). We denote the set of CPTP maps by

CPT PdA,dB :=
{
T : B(CdA) → B(CdB ) | T is linear and CPTP

}
. (2.2.2)

If dA = dB = d, we also write CPT Pd := CPT Pd,d.

De�ntion 2.2.2 is formulated in the Schrödinger picture, where we think of quantum states as

evolving and of measurements as remaining �xed. Namely, a quantum channel in the Schrödinger

picture exactly maps quantum states to quantum states, even when embedding the evolving

quantum system into a larger system.

We can, however, also take the view of the Heisenberg picture, i.e., of �xed states and evolv-

ing measurements. Mathematically, changing from the Schrödinger to the Heisenberg picture

corresponds to taking the adjoint with respect to the Hilbert-Schmidt inner product. Namely,

for a linear map T : B(CdA) → B(CdB ) describing the evolution of states in the Schrödinger

picture, we de�ne the corresponding Heisenberg picture evolution T ∗ : B(CdB ) → B(CdA) via

the requirement

tr[E†T (ρ)] = tr[(T ∗(E))†ρ] , for all ρ ∈ B(CdA), E ∈ B(CdB ) . (2.2.3)

The Schrödinger picture map T is CP if and only if T ∗ is CP, and T is CPTP if and only if T ∗ is

CP and unital (CPU ). Here, T ∗ is called unital if T ∗(1B) = 1A. In analogy to the notation for

CPTP maps introduced above, we will use CPUdA,dB and CPUd to denote sets of CPU maps.

Representations of Completely Positive Maps: We conclude our discussion of evolutions

of quantum systems in terms of CPTP or CPU maps by presenting di�erent useful character-
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izations and representations of these maps. The �rst of these is a similarity transform that in

particular facilitates checking complete positivity:

Theorem 2.2.3 (Choi-Jamiolkowski Isomorphism [24, 25]). Fix an orthonormal basis {|ai⟩}i of
CdA. Consider the linear map

CA;B : B(B(CdA);B(CdB )) → B(CdA ⊗ CdB ) , CA;B(T ) = d(idA⊗T )(|Ω⟩ ⟨Ω|) , (2.2.4)

where |Ω⟩ := 1√
d

∑dA
i=1 |ai⟩ ⊗ |ai⟩.

1. CA;B is bijective, its inverse is given by CA;B : B(CdA ⊗ CdB ) → B(B(CdA);B(CdB )),

C−1
A;B(τ)(ρ) = trA

[
(ρT ⊗ 1B)τ

]
. We call CA;B the Choi-Jamiolkowski isomorphism.

2. T ∈ B(B(CdA);B(CdB )) is Hermiticity-preserving if and only if CA;B(T ) is Hermitian.

3. T ∈ B(B(CdA);B(CdB )) is CP if and only if CA;B(T ) ≥ 0.

4. T ∈ B(B(CdA);B(CdB )) is TP if and only if trB[CA;B(T )] = 1A.

5. T ∈ B(B(CdA);B(CdB )) is unital if and only if trA[CA;B(T )] = 1B.

Through the spectral decomposition of the (positive semide�nite) Choi matrix CA;B(T ) of a CP

map T , Theorem 2.2.3 gives rise to the following representation of CP maps:

Theorem 2.2.4 (Kraus Representation [26]). A linear map T : B(CdA) → B(CdB ) is CP if and

only if there exist so-called Kraus operators K1, . . . ,Kr ∈ B(CdA ;CdB ), with r ∈ N≥1, such that

T (A) =
r∑

i=1

KiAK
†
i . (2.2.5)

In this case, T is CPTP if and only if
∑r

i=1K
†
iKi = 1dA, and T is CPU if and only if∑r

i=1KiK
†
i = 1dB .

In particular, when deriving Theorem 2.2.4 from Theorem 2.2.3, we directly see that the number

r of Kraus operators in Theorem 2.2.4 can be taken to be equal to the rank of the Choi matrix

τ = CA;B(T ). Thus, we can in particular always �nd a Kraus representation with r ≤ dA · dB
Kraus operators. While the Kraus operators are not unique, any two sets of Kraus operators for

the same CP map are unitarily related (see, e.g., [20, Theorem 2.1] for a more detailed statement

and proof).

Moreover, when considering the linear map V : CdA → CdB ⊗ Cr de�ned by V =
∑r

i=1Ki ⊗ |i⟩,
where {|i⟩}ri=1 is some orthonormal basis of Cr, we obtain the following further useful represen-

tation for CP maps:

Theorem 2.2.5 (Stinespring Dilation � Heisenberg Picture [27]). A linear map T : B(CdA) →
B(CdB ) is CP if and only if there exists a �nite-dimensional auxiliary space CdE and a linear

map V : CdA → CdB ⊗ CdE such that

T (X) = V †(X ⊗ 1E)V , for all X ∈ B(CdA) . (2.2.6)

Moreover, V is an isometry � i.e., V satis�es V †V = 1A � if and only if T is unital.
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In the setting of Theorem 2.2.5, we call CdE a dilation space and V a Stinespring isometry.

We will refer to any representation of a CP map in terms of a dilation space and a Stinespring

isometry as Stinespring dilation.

Coming from the Kraus representation, it is easy to see that can �nd Stinespring dilations for any

dilation space dimension dE ≥ rank(CA;B(T )). A Stinespring dilation with dE = rank(CA;B(T ))

is called minimal. Minimal Stinespring dilations are unique up to local unitaries acting on the

dilation space and give rise to all possible dilations via local isometries on the dilation space (see,

e.g., [20, Section 2.2] for a proof).

As Theorem 2.2.5 characterizes CP maps, we can apply it both in the Heisenberg and in the

Schrödinger picture. It is convenient to think of the CP map T in Theorem 2.2.5 as describing

the Heisenberg picture evolution, this then gives us the following representation for Schrödinger

picture CPTP maps:

Theorem 2.2.6 (Stinespring Dilation� Schrödinger Picture). A linear map T : B(CdA) →
B(CdB ) is CPTP if and only if there exist a unitary U ∈ B(CdA ⊗ CdB ⊗ CdB ) and a pure state

|φ0⟩ ∈ CdB ⊗ CdB , such that

T (ρ) = trAB[U(ρ⊗ |φ0⟩ ⟨φ0|)U †] , for all ρ ∈ B(CdA) , (2.2.7)

where the partial trace is over the �rst two tensor factors of CdA ⊗ CdB ⊗ CdB .

Theorem 2.2.6 is also often referred to as giving an open system representation for CPTP maps.

Namely, if T is a linear CPTP map, we can understand T as the reduced map of a unitary acting

on an intially uncorrelated composite system.

With these di�erent characterizations of CP, CPTP, and CPU maps at hand, we can now easily

construct concrete examples. We want to highlight just three such examples.

Example 2.2.7 (Unitary Channels). In standard quantum mechanics, an evolution of a quantum

system is described by a unitary. While this is not the most general kind of evolution allowed

in our framework, we do recover it as a special case. Namely, if U ∈ B(Cd) is a unitary, then

the linear map B(Cd) ∋ ρ 7→ UρU † is CPTP by Theorem 2.2.4 and thus describes a valid

transformation of a quantum system. We call such a CPTP map a unitary quantum channel.

In addition to being CPTP, a unitary quantum channel maps pure states to pure states and is

invertible, with its inverse given by the unitary quantum channel with unitary U †.

Example 2.2.8 (Partial Trace). In Section 2.1, we have encountered the partial trace. In fact,

the partial trace trB : B(CdA ⊗ CdB ) → B(CdA) as de�ned in Eq. (2.1.5) is a CPTP map.

We can, e.g., see that as a consequence of Theorem 2.2.6, when taking a pure product state

|φ0⟩ = |0⟩⊗ |0⟩ ∈ CdB ⊗CdB and as unitary U ∈ B(CdA ⊗CdB ⊗CdB ⊗CdB ) the swap operation

between the second and the fourth tensor factor.

Example 2.2.9 (Measurement Channels). Also measurements in quantum theory can be un-

derstood in the framework of CPTP maps. Namely, if we measure a POVM {Ei}ni=1, without

recording the measurement outcome, the evolution of the quantum system through the measure-

ment process is described by the CPTP map with Kraus representation
∑n

i=1

√
Ei(·)

√
Ei.
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2.3 Superchannels, Semicausality, and Semilocalizability

After introducing quantum states as describing quantum systems in Section 2.1, we have consid-

ered quantum evolutions as CP maps on states in Section 2.2. Now, we take a step further by

looking at a higher-order level of evolutions, namely evolutions of CP maps:

De�nition 2.3.1 (Quantum Superchannels [28]). A quantum superchannel is a linear map

Ŝ : B(B(CdA);B(CdB )) → B(B(CdA);B(CdB )) such that, for any dE ∈ N≥1, the map ŜdE de�ned

as ŜdE = idB(B(CdE ))⊗Ŝ satis�es that

(i) ŜdE (T ) is CP whenever T ∈ B(B(CdE ⊗ CdA);B(CdE ⊗ CdB )) is CP, and

(ii) ŜdE (T ) is a quantum channel whenever T ∈ B(B(CdE ⊗CdA);B(CdE ⊗CdB )) is a quantum

channel.

Physically, the motivation behind De�nition 2.3.1 is clear: Quantum superchannels take a valid

quantum evolution as input and output another valid quantum evolution. From a computing per-

spective, quantum superchannels are a mathematical framework for describing quantum circuit

boards with a free slot, into which we can then plug a gate to change the overall functionality.

Studying quantum superchannels becomes feasible due to their close connection to quantum

operations with a certain causal structure. We now introduce this causality assumption and

then, in Theorem 2.3.5, discuss their connection to quantum superchannels:

De�nition 2.3.2 (Semicausal CP Maps � Heisenberg picture [29, 30]). A linear CP map T :

B(CdA ⊗ CdB ) → B(CdA ⊗ CdB ) in the Heisenberg picture is Heisenberg B ̸→ A-semicausal if

there exists a linear CP map TA : B(CdA) → B(CdA) such that

T (X ⊗ 1B) = TA(X)⊗ 1B , for all X ∈ B(CdA) . (2.3.1)

When changing from the Heisenberg to the Schrödinger picture, this leads us to de�ne: A

CP map T∗ : B(CdA ⊗ CdB ) → B(CdA ⊗ CdB ) is called Schrödinger B ̸→ A semicausal if

there exists a CP map TA
∗ : B(CdA) → B(CdA) such that, for every ρAB ∈ S(CdA ⊗ CdB ),

trB[T (ρAB)] = TA
∗ (trB[ρAB]).

In the Schrödinger picture, the physical motivation for De�nition 2.3.2 becomes clear: For a

semicausal evolution of a bipartite system, the evolution of the A-subsystem must be independent

of the input on the B-subsystem. Informally, this means that no information �ow from the B-

to the A-subsystem is allowed. The following de�nition introduces a natural, operationally

motivated class of maps that satisfy this requirement:

De�nition 2.3.3 (Semilocalizable Quantum Channels [29]). A linear CP map T on a bipartite

space, T : B(CdA ⊗ CdB ) → B(CdA ⊗ CdB ), is called Heisenberg B ̸→ A semilocalizable if there

exist a �nite-dimensional auxiliary space CdE , a linear CPU map F : B(CdB ) → B(CdE ⊗ CdB ),

and a linear CP map G : B(CdA ⊗ CdE ) → B(CdA) such that

T = (G⊗ idB)(idA⊗F ) . (2.3.2)
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Again, the corresponding notion in the Schrödinger picture is easily obtained by considering

the adjoint with respect to the Hilbert-Schmidt inner product. Namely, a linear CP map T∗ :

B(CdA ⊗CdB ) → B(CdA ⊗CdB ) is Schrödinger B ̸→ A semilocalizable if and only if we can write

T∗ = (idA⊗F∗)(G∗ ⊗ idB) for some linear CPTP map F∗ : B(CdE ⊗ CdB ) → B(CdB ) and some

linear CP map G∗ : B(CdA) → B(CdA ⊗ CdE ).

Again, the Schrödinger picture perspective allows us to easily interpret De�nition 2.3.3. Namely,

a semilocalizable evolution is implemented as follows: First, act on the A-system to produce

a bipartite output on the AE-system. Then, transmit the E-subsystem of the output to B.

Finally, act on the joint EB-system to produce the B-system output. Intuitively, such a B ̸→ A

semilocalizable procedure in particular does not allow for information �ow from the B- to the

A-system and is thus B ̸→ A semicausal. This can be easily checked by verifying that a CP

map satisfying Eq. (2.3.2) also satis�es Eq. (2.3.1). An important insight into semicausality and

semilocalizability is that the converse also holds for CP maps:

Theorem 2.3.4 (Semicausality versus Semilocalizability [30]). A CP map T : B(CdA ⊗CdB ) →
B(CdA ⊗ CdB ) is Heisenberg B ̸→ A semilocalizable if and only if it is Heisenberg B ̸→ A

semicausal.

This result was �rst proved by [30], later reproved with a di�erent reasoning by [31], and extended

to in�nite dimensions in [8]. Theorem 2.3.4 tells us that any semicausal CP map can be realized

in a semilocalizable manner. In particular, the operational interpretation of semilocalizability

carries over to semicausality. In fact, semicausal (and thus semilocalizable) CP maps are closely

connected to quantum superchannels:

Theorem 2.3.5 (Quantum Superchannels versus Semicausal CP Maps [28]). Consider a linear

map Ŝ : B(B(CdA);B(CdB )) → B(B(CdA);B(CdB )), write S : B(CdA ⊗ CdB ) → B(CdA ⊗ CdB ),

S := CA;B ◦ Ŝ ◦ C−1
A;B. Ŝ is a quantum superchannel if and only if S is a Schrödinger B ̸→ A

semicausal CP map whose reduced map SA : B(CdA) → B(CdA) satis�es SA(1A) = 1A.

Remark 2.3.6. In this chapter, we have restricted our presentation to a mathematical formula-

tion of quantum mechanics in �nite dimensions. As already �nite-dimensional quantum system

o�er a plethora of fascinating phenomena central to quantum theory, this restriction is wide-

spread in quantum information theory. In particular, the Core Articles I-IV [1�4] as well as the

Articles V [5] and VII [6] fall into this �nite-dimensional framework. Among the contributed

articles that investigate questions in quantum computing and information, only Article VIII [8]

contains results for the in�nite-dimensional case. Therefore, to enhance the clarity of the pre-

sentation, this chapter introduces only the tools of �nite-dimensional theory. In Section III of

Article VIII [8], we discuss the in�nite-dimensional case in more detail.

While there are many further interesting features of quantum information theory, the short

introduction given in this chapter already covers the aspects most relevant to the remainder of this

thesis. Thus, this concludes our presentation of the mathematics behind quantum information

theory.
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Chapter 3

Mathematical Ingredients of Statistical

Learning Theory

Having introduced our mathematical framework for quantum theory in Chapter 2, we devote

this chapter to the second theory underlying this thesis, namely to statistical learning theory.

Here, we focus on the speci�c aspects relevant to the remainder of this thesis and recommend

textbooks such as [32�35] or lectures notes such as [36] as references for this and further material.

Our presentation is structured as follows: In Section 3.1, we introduce the model of probably ap-

proximately correct learning, emphasizing the importance of generalization bounds. Section 3.2

reviews di�erent complexity measures for function classes and the corresponding generalization

guarantees. This is followed by an overview over relations between di�erent complexity measures

in Section 3.3. Finally, Section 3.4 discusses some aspects of undecidable problems in learning

theory.

3.1 Probably Approximately Correct Learning

Our focus is on the standard statistical framework for learning problems with labelled data,

so-called supervised learning problems. In this formalism, we consider a data space Z = X × Y,
where we think of X as an input/instance space and of Y as an output/label space. Usually, if

Y is discrete, we speak of a classi�cation task, and if Y is continuous, we speak of a regression

task. A training data set S of size m is a multiset S = {z1, . . . ,zm} = {(x1, y1), . . . , (xm, ym)}
consisting of m training examples zi = (xi, yi) ∈ X × Y. A learning algorithm A takes such a

training data set as input and outputs a hypothesis in YX . That is, a learner A is a map

A :
⋃

m∈N≥1

(X × Y)m → YX , S 7→ A(S) = hS . (3.1.1)

Note that at this point, the �algorithm� in �learning algorithm� is not to be taken literally, here

we do not assume A to be a (Turing) computable function. Informally, this means that we do
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not demand there to be a computer program for evaluating A. We refer to Section 3.4 for a

discussion of select aspects computability in learning theory. We will call the class

F := A


 ⋃

m∈N≥1

(X × Y)m


 ⊆ YX (3.1.2)

of all functions that the learning algorithm can produce as output hypothesis the concept/hypothesis

class associated with A.

Next, we introduce the underlying statistical assumption for our framework. Namely, we suppose

that there is some probability measure P on X × Y such that the training examples are drawn

independently and identically distributed (i.i.d.) according to P . Thus, we also refer to P as

the data-generating distribution/measure. Crucially, we usually think of P as being unknown to

the learner. Here and throughout, we tacitly assume that the corresponding σ-algebra is chosen

as a product of Borel σ-algebras, and that all involved functions are suitably measurable. Also,

we denote by Prob(X × Y) the set of all probability distributions on X × Y, Prob(X ) is used

analogously.

To evaluate a learner's performance, we take a loss function ℓ : Y×Y → R≥0, the choice of which

should be adapted to the problem at hand. Intuitively, a large (small) value ℓ(y1, y2) indicates

that y1 ∈ Y and y2 ∈ Y are far apart (close). For fairness, we assume that the learner knows the

loss function ℓ according to which the performance is judged. Now, we can formulate the goal

of the learner: Given access to training data, a learner should output a hypothesis h ∈ F that

achieves a small expected/true risk

R(h) := RP (h) :=

∫

X×Y

ℓ(y, h(x)) dP (x, y) . (3.1.3)

Note that the true risk R(h) depends on both the loss function ℓ and the probability measure

P . To illustrate this de�nition, we consider two commonly used loss functions. If Y = {1, . . . , k}
is a discrete space of k ∈ N>1 labels, one often uses the 0-1-loss de�ned as ℓ(y1, y2) := 1− δy1,y2 ,

with δy1,y2 denoting the Kronecker delta. This leads to the probability of misclassi�cation as

expected risk R(h) = P(x,y)∼P [h(x) ̸= y]. For a continuous target space Y = R, if we take the

square loss ℓ(y1, y2) := (y1 − y2)
2, the expected risk becomes the mean squared error R(h) =

E(x,y)∼P [(y − h(x))2].

The notion of true risk now allows us to formulate what we mean by learning:

De�nition 3.1.1 (Agnostic PAC Learning [37, 38]). A learner A :
⋃

m∈N≥1
(X × Y)m →

YX , S 7→ A(S) = hS with hypothesis class F := A
(⋃

m∈N≥1
(X × Y)m

)
⊆ YX is an agnostic

(ε, δ)-probably approximately correct ((ε, δ)-PAC) learner for F , where ε, δ ∈ (0, 1), from train-

ing data of size m ≥ m0 = m0(ε, δ) ∈ N≥1 if the following holds: For every P ∈ Prob(X × Y),

with probability ≥ 1 − δ over the choice of a training data set S = {(xi, yi)}mi=1 consisting of m

examples drawn i.i.d. according to P ,

R(hS) ≤ inf
h∈H

R(h) + ε . (3.1.4)
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Moreover, we say that A is an agnostic PAC learner for F if there exists a map mF : (0, 1) ×
(0, 1) → N≥1 such that A is an agnostic (ε, δ)-PAC learner for F from training data of size

m ≥ mF (ε, δ) for all ε, δ ∈ (0, 1). Finally, we say that F is agnostically PAC learnable if there

exists an agnostic PAC learner A for F .

While our focus mostly will be on the setting of De�nition 3.1.1, there is a related model that is

also often of interest:

De�nition 3.1.2 (Realizable PAC Learning [39, 40]). A learner A :
⋃

m∈N≥1
(X × Y)m →

YX , S 7→ A(S) = hS is a realizable (ε, δ)-PAC learner for a concept class F ⊆ YX , where

ε, δ ∈ (0, 1), from training data of size m ≥ m0 = m0(ε, δ) ∈ N≥1 if the following holds: For

every P ∈ Prob(X ) and for every f∗ ∈ F , with probability ≥ 1− δ over the choice of a training

data set S = {(xi, f∗(xi))}mi=1 consisting of m examples, with the xi drawn i.i.d. according to P ,

R(hS) ≤ ε . (3.1.5)

Moreover, we say that A is a realizable PAC learner for F if there exists a map mF : (0, 1) ×
(0, 1) → N≥1 such that A is a realizable (ε, δ)-PAC learner for F from training data of size

m ≥ mF (ε, δ) for all ε, δ ∈ (0, 1). Finally, we say that F is realizably PAC learnable if there

exists a realizable PAC learner A for F .

It is immediate from these two de�nitions that agnostic PAC learning describes a more general

scenario than realizable PAC learning. In fact, the realizable case goes back to [39, 40], the

agnostic case was then introduced later by [37, 38]. We will phrase most of the results in this

chapter in the agnostic framework and only occasionally comment on possible strengthenings

under the realizability assumption, i.e., under the assumption that there is some hypothesis in

F that achieves zero error.

We also note that De�nition 3.1.2 describes what is often referred to as improper (or representation-

independent) realizable PAC learning. Here, we speak of improper learning because we do not

require the learner A to output a hypothesis from the class F with respect to which the data is

assumed to be realizable. If we change the de�nition to also restrict ourselves to learners whose

range is contained in F , we obtain the notion of proper realizable PAC learning.

With De�nitions 3.1.1 and 3.1.2, we have formalized what we mean by successful learning. Next,

we investigate how this can be achieved. The following observation is crucial for our discussion:

A learner that has access to a training data set S does not have su�cient information to evaluate

the true risk since she does not know the data-generating distribution P . A natural approach

towards overcoming this challenge is to employ the training data to build a proxy for the true risk.

That is, given a training data set S = {(xi, yi)}mi=1 of size m, we de�ne the empirical/training

risk of a hypothesis h ∈ YX to be

R̂S(h) :=
1

m

m∑

i=1

ℓ(yi, h(xi)) . (3.1.6)

In contrast to the true risk of Eq. (3.1.3), a learner that knows the training data set S, the loss

function ℓ, and the hypothesis h can indeed evaluate the empirical risk of Eq. (3.1.6). Thus,
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empirical risk minimization (ERM) provides a natural way of approaching the learning problem:

Given training data, we attempt to �nd a hypothesis that achieves small (or even minimal)

empirical risk.

To prepare the statistical analysis of approaches based on the empirical risk, we now consider

the so-called estimation error of ERM. Namely, given training data S, we will denote by ĥ =

ĥ(S) ∈ F a hypothesis that minimizes the empirical risk among hypotheses in F . We de�ne the

estimation error of ĥ to be

R(ĥ)− inf
h∈H

R(h) , (3.1.7)

the di�erence between the true risk achieved by ĥ and the optimal true risk achievable by a

function in F . By De�nition 3.1.1, for ERM to be a valid agnostic PAC learner, we want exactly

this expression to be small, with high probability. We now insert a zero into Eq. (3.1.7) and use

the de�ning property of ĥ to observe that we can bound the estimation error as

R(ĥ)− inf
h∈F

R(h) =
(
R(ĥ)− R̂S(ĥ)

)
+ sup

h∈F

(
R̂S(ĥ)−R(h)

)
(3.1.8)

≤ 2 sup
h∈F

|R(h)− R̂(h)| . (3.1.9)

For a hypothesis h, the di�erence R(h)− R̂(h) is the generalization error of h. Thus, the above

inequality tells us: We can control the estimation error of ERM if we have uniform (over the

hypothesis class F) bounds on the absolute generalization error.

Motivated by this discussion, we extract the aspect of generalization in PAC learning:

De�nition 3.1.3 (PAC Generalization Bounds). Let F ⊆ YX be a hypothesis class. A PAC

generalization bound for F is a guarantee of the following form: For every probability distribution

P over X × Y and for every δ ∈ (0, 1), with probability ≥ 1− δ over the choice of training data

S = {xi, yi}mi=1 consisting of m examples drawn i.i.d. according to P ,

∀h ∈ F : |R(h)− R̂(h)| ≤ gF (m, δ, h, P ) , (3.1.10)

where gF : N≥1 × (0, 1) × F × Prob(X × Y) → R≥0, with Prob(X × Y) denoting the set of all

probability distributions over X × Y.

Naturally, for Eq. (3.1.10) to be useful, we aim for an upper bound that in particular satis�es

limm→∞ gF (m, δ, h, P ) = 0, and we are interested in the speed of convergence. In the setting of

De�nition 3.1.3, if we have Eq. (3.1.10) with a P -independent upper-bound gF (m, δ, h), where

gF : N≥1×(0, 1)×F → R≥0, we speak of a distribution-independent generalization bound. Also, if

Eq. (3.1.10) holds with an h-independent bound g(m, δ, P ), with gF : N≥1×(0, 1)×Prob(X×Y) →
R≥0, we call the generalization bound uniform (over F). By the above discussion, distribution-

independent uniform generalization bounds for F can be used to give PAC learning guarantees

for ERM in the sense of De�nition 3.1.1.

The remainder of this chapter, as well as much of this thesis, focuses on deriving generalization

bounds. Notice, however, that generalization is not the only important aspect in machine learning
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problems. For instance, there is also an often signi�cant optimization challenge in �nding a

hypothesis that (approximately) minimizes the empirical risk, given a data set. Moreover, also

the choice of a machine learning model, which then dictates the hypothesis class F and thus

the optimal achievable risk infh∈F R(h), is crucial. While these aspects are certainly important,

discussing them in detail exceeds the scope of this thesis. Rather, we emphasize generalization

as the statistical aspect at the heart of PAC learning.

Remark 3.1.4. In this section, we have considered deterministic learning procedures. The

scenario can be extended to allow for stochasticity in the learning algorithm. Namely, if we

consider a learner A that, upon input of a training data set S, outputs a probability measure

µS over output hypotheses, we can study the expected true risk Eh∼µS
[R(h)] and the expected

empirical risk Eh∼µS
[R̂S(h)], where the expectations are with respect to hypotheses drawn from

µS . This is the perspective usually taken in the PAC-Bayesian framework [41]. Alternatively, for

randomized learning algorithms, we can also consider variants of De�nitions 3.1.1,3.1.2, and 3.1.3

in which we require the respective statements to hold with high probability over the randomness

both in the choice of the data and in the learner itself.

Remark 3.1.5. There are other mathematical frameworks for formalizing tasks of learning from

data. Beyond the PAC framework, some in�uential models include learning from membership

queries or equivalence queries [42], learning from statistical queries [43], the mistake bound

model of online learning [44], regret minimization in online learning [45], and di�erent scenarios

for teacher-learner interactions [46�48].

3.2 Complexity Measures and Generalization Bounds

A well established path towards PAC generalization bounds in classical learning theory leads

through complexity measures for concept classes. In this section, we review some of those

complexity measures and the resulting generalization bounds. We begin with a combinatorial

dimension for binary-valued function classes:

De�nition 3.2.1 (VC Dimension [39]). Let F ⊆ {0, 1}X . A set {x1, ...,xk} ⊆ X is shattered

by F if for any C ⊆ {1, ..., k} there exists a function fC ∈ F such that for all 1 ≤ i ≤ k, i ∈ C if

and only if fC(xi) = 1. We de�ne the Vapnik-Chervonenkis (VC) dimension of F as the largest

size of a set shattered by F :

VCdim(F) := sup {k ∈ N0 | ∃x1, . . . ,xk ∈ X s.t. {x1, . . . ,xk} is shattered by F} . (3.2.1)

Already from De�nition 3.2.1, it makes intuitive sense to consider the VC dimension as measuring

the complexity of a {0, 1}-valued concept class. This intuition is strengthened when evaluating

the VC dimension of simple geometric hypotheses classes, for example arising from axis-aligned

rectangles [34, Example 3.14] or from more general convex polygons [34, Example 3.15], and of

hypothesis classes obtained by post-processing elements of a real function vector space by the

sign function [36, Theorem 1.9]. The following theorem demonstrates that the VC dimension

indeed is a complexity measure useful for PAC generalization bounds:

23



Mathematical Ingredients of Statistical Learning Theory

Theorem 3.2.2 (Generalization Bound via VC Dimension [49, 50]). Let F ⊆ {0, 1}X and let

ℓ : {0, 1} × {0, 1} → {0, 1} be the 0-1-loss de�ned as ℓ(y1, y2) := 1 − δy1,y2. Then, for every

P ∈ Prob(X × {0, 1}) and for every δ ∈ (0, 1), with probability ≥ 1 − δ over the choice of a

training data set S = {(xi, yi)}mi=1 consisting of m examples drawn i.i.d. according to P ,

sup
h∈F

|R(h)− R̂S(h)| ≤ C ·
√

VCdim(F) + ln (1/δ)

m
, (3.2.2)

where C > 0 is some universal constant.

Theorem 3.2.2 is paradigmatic for the � in this case, distribution-independent and uniform � PAC

generalization bounds that we can derive from complexity measures. Any such generalization

bound also comes with a corresponding sample complexity bound. In this case, it takes the

following form:

Corollary 3.2.3 (Sample Complexity Bound via VC Dimension). Let F ⊆ {0, 1}X , assume that
VCdim(F) <∞. Let ℓ : {0, 1} × {0, 1} → {0, 1} be the 0-1-loss de�ned as ℓ(y1, y2) := 1− δy1,y2.

Then, for every P ∈ Prob(X × {0, 1}) and for every ε, δ ∈ (0, 1), a sample size

m = m(ε, δ) = C · VCdim(F) + ln (1/δ)

ε2
, (3.2.3)

where C > 0 is a universal constant, su�ces to guarantee: With probability ≥ 1 − δ over the

choice of a training data set S = {(xi, yi)}mi=1 consisting of m examples drawn i.i.d. according to

P ,

sup
h∈F

|R(h)− R̂S(h)| ≤ ε . (3.2.4)

As a consequence of the discussion in Section 3.1, Corollary 3.2.3 in particular implies that the

sample size in Eq. (3.2.3) is su�cient for ERM to be an agnostic (ε, δ)-PAC learner for F in

the sense of De�nition 3.1.1. In the realizable case, this sample complexity guarantee can be

improved with respect to the dependence on the accuracy ε. Namely, a sample size of

m = m(ε, δ) = C · VCdim(F) ln (1/ε) + ln (1/δ)

ε
(3.2.5)

su�ces for ERM to be a (proper) realizable PAC learner for F . In fact, if we allow for improper

learning, the ln (1/ε) can be removed [51].

Interestingly, also sample complexity lower bounds that match these upper bounds up to constant

factors are known [52�54], both for the agnostic and the realizable case. Thus, the VC dimension

is central in understanding and quantifying the information-theoretic complexity of PAC binary

classi�cation. Naturally, this led to attempts at generalizing the VC dimension to other learning

scenarios. Among the results of these e�orts is the following combinatorial complexity measure

for R-valued concept classes:

De�nition 3.2.4 (Pseudo-Dimension [55]). Let F ⊆ RX . A set {x1, ...,xk} ⊆ X is pseudo-

shattered by F if there exist y1, ..., yk ∈ R such that for any C ⊆ {1, ..., k} there exists a function
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fC ∈ F such that for all 1 ≤ i ≤ k, i ∈ C if and only if fC(xi) ≥ yi. We de�ne the pseudo-

dimension of F as the largest size of a set pseudo-shattered by F :

Pdim(F) := sup{k ∈ N0 | ∃x1, . . . ,xk ∈ X s.t. {x1, . . . ,xk} is pseudo-shattered by F} .
(3.2.6)

For a {0, 1}-valued function class F ⊆ {0, 1}X , we have Pdim(F) = VCdim(F), pseudo- and VC

dimension coincide. Thus, the pseudo-dimension indeed is a generalization of the VC dimension.

A sometimes useful re�nement of the pseudo-dimension is provided in the following:

De�nition 3.2.5 (Fat-Shattering Dimension [56]). Let F ⊆ RX and let α > 0. A set {x1, ...,xk} ⊆
X is α-fat-shattered by F if there exist y1, ..., yk ∈ R such that for any C ⊆ {1, ..., k} there exists

a function fC ∈ F such that for all 1 ≤ i ≤ k:

1. i ̸∈ C ⇒ fC(xi) ≤ yi − α and

2. i ∈ C ⇒ fC(xi) ≥ yi + α.

The α-fat-shattering dimension of F is de�ned to be

fat(F , α) := sup{k ∈ N0 | ∃x1, . . . ,xk ∈ X s.t. {x1, . . . ,xk} is α-fat-shattered by F} . (3.2.7)

Trivially, fat(F , α) ≤ fat(F , β) ≤ Pdim(F) holds for any 0 < β < α and for any function class

F ⊆ RX . In that sense, the fat-shattering dimension constitutes a re�nement of the pseudo-

dimension that includes a margin parameter.

Similarly to the VC dimension, also the fat-shattering and thus the pseudo-dimension can be

used to obtain distribution-independent uniform generalization error bounds. We do not state

these generalization bounds at this point because they can be obtained as corollaries of the re-

maining results in this section when combined with the insights of Section 3.3. For fat-shattering

dimension-based generalization guarantees in the realizable case, see, e.g., [57, Corollary 3.3].

The combinatorial dimensions introduced above serve to quantify the complexity of a function

class. In a learning problem, however, the functions and concept classes do not appear in

isolation, but together with training data and a data-generating distribution. This observation

motivates the study of distribution-dependent generalization guarantees, arising from data- or

distribution-dependent complexity measures. Among those, a particularly prominent one is the

Rademacher complexity:

De�nition 3.2.6 ((Empirical) Rademacher Complexities [58]). Let Z be a data space, let H ⊆
RZ be an R-valued function class, and let S = {zi}mi=1 ∈ Zm be a data set consisting of m ∈ N≥1

data points zi ∈ Z. The empirical Rademacher complexity of H with respect to S is de�ned as

R̂S(H) := E
σ∼U({−1,1}m)

[
sup
h∈H

1

m

m∑

i=1

σih(zi)

]
, (3.2.8)

where U({−1, 1}m) denotes the uniform distribution on the Boolean hypercube {−1, 1}m. The

i.i.d. random variables σ1, . . . , σm are often called Rademacher random variables.
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If P ∈ Prob(Z), then the Rademacher complexities of H with respect to P are de�ned as

Rm(H) := ES∼Pm

[
R̂S(H)

]
for m ∈ N≥1 , (3.2.9)

where S ∼ Pm means that S = {zi}mi=1 with the zi drawn i.i.d. according to P .

As a consequence of McDiarmid's bounded di�erences inequality [59], the empirical Rademacher

complexity concentrates strongly around the Rademacher complexity with respect to the measure

that the data is generated from. Thus, while we phrase the results in this section in terms of

empirical Rademacher complexities, we can usually replace them by Rademacher complexities

without changing the essential features of the results.

From the perspective of high-dimensional probability and random process theory, it is natural to

consider variants of De�nition 3.2.6 in which we replace the i.i.d. Rademacher random variables

by a di�erent choice of i.i.d. symmetric random variables. An especially important variant is

obtained when using Gaussian random variables:

De�nition 3.2.7 ((Empirical) Gaussian Complexities [60]). Let Z be a data space, let H ⊆ RZ

be an R-valued function class, and let S = {zi}mi=1 be a data set consisting of m ∈ N≥1 data

points zi ∈ Z. The empirical Gaussian complexity of H with respect to S is de�ned as

ĜS(H) := E
γi∼N(0,1)

[
sup
h∈H

1

m

m∑

i=1

γih(zi)

]
, (3.2.10)

where γ1, . . . , γm are i.i.d. standard Gaussian random variables.

If P ∈ Prob(Z), then the Gaussian complexities of H with respect to P are de�ned as

Gm(H) := ES∼Pm

[
ĜS(H)

]
for m ∈ N≥1 , (3.2.11)

where S ∼ Pm means that S = {zi}mi=1 with the zi drawn i.i.d. according to P .

In fact, empirical Rademacher complexities and empirical Gaussian complexities are closely re-

lated (see, e.g. [61, Eqs. (4.8) and (4.9)]):

Theorem 3.2.8 (Empirical Rademacher Complexities versus Empirical Gaussian Complexities).

There are universal constants c, C > 0 such that, for any R-valued function class H ⊆ RZ and

for any data set S = {zi}mi=1 consisting of m ∈ N≥1 data points zi ∈ Z,

c · R̂S(H) ≤ ĜS(H) ≤ C ·
√
log(m) · R̂S(H) . (3.2.12)

Theorem 3.2.8 implies that for many purposes, we can treat empirical Rademacher complexities

and empirical Gaussian complexities almost interchangeably.

The next theorem shows that we have data-dependent generalization guarantees in terms of

empirical Rademacher complexities.

Theorem 3.2.9 (Generalization Bound via Empirical Rademacher Complexities). Let F ⊆ YX

and let ℓ : Y × Y → [0, 1]. Write H := {X × Y ∋ (x, y) 7→ ℓ(y, f(x)) | f ∈ F}. For every
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P ∈ Prob(X × Y) and for every δ ∈ (0, 1), with probability ≥ 1− δ over the choice of a training

data set S = {(xi, yi)}mi=1 consisting of m examples drawn i.i.d. according to P ,

sup
h∈F

(
R(h)− R̂S(h)

)
≤ 2 · R̂S(H) + C ·

√
ln (1/δ)

m
, (3.2.13)

where C > 0 is a universal constant.

PS∼Pm

[
sup
h∈F

∣∣∣R(h)− R̂S(h)
∣∣∣ > C1√

m

suph∈H∥h∥2,S∫
ε

√
logN (H, ∥·∥2,S , β) dβ + C2 ·

√
ln(1/δ)

m

]
≥ 1 −

δ ,

Such Rademacher complexity-based generalization guarantees, which can be proved using the so-

called �ghost sample� symmetrization technique, go back to [60, 62]. We have chosen to present

a version of the result that can, e.g., be found in [34, Theorem 3.3].

We highlight two important consequences of Theorem 3.2.9 for binary classi�cation and for

regression over the reals.

Corollary 3.2.10. In the setting of Theorem 3.2.9, if Y = {−1, 1} and ℓ(y1, y2) = 1− δy1,y2 is

the 0-1-loss, then we have: For every P ∈ Prob(X ×R) and for every δ ∈ (0, 1), with probability

≥ 1− δ over the choice of a training data set S = {(xi, yi)}mi=1 consisting of m examples drawn

i.i.d. according to P ,

sup
h∈F

(
R(h)− R̂S(h)

)
≤ R̂S|X (F) + C ·

√
ln (1/δ)

m
, (3.2.14)

where C > 0 is a universal constant and we de�ned S|X := {xi}mi=1.

Corollary 3.2.11. In the setting of Theorem 3.2.9, if Y = R and ℓ is L-Lipschitz in the second

argument (for any �xed �rst argument), then we have: For every P ∈ Prob(X × R) and for

every δ ∈ (0, 1), with probability ≥ 1− δ over the choice of a training data set S = {(xi, yi)}mi=1

consisting of m examples drawn i.i.d. according to P ,

sup
h∈F

(
R(h)− R̂S(h)

)
≤ 2L · R̂S|X (F) + C ·

√
ln (1/δ)

m
, (3.2.15)

where C > 0 is a universal constant and we de�ned S|X := {xi}mi=1.

Corollary 3.2.10 can be obtained from Theorem 3.2.9 after observing that, for the output space

Y = {−1, 1} and for the 0-1-loss ℓ, we have R̂S(H) = 1
2R̂S|X (F) for every data set S, see,

e.g., [36, Section 1.8] for a proof. To obtain Corollary 3.2.11, we can apply Talagrand's Lemma

(going back to [61]; see also [34, Lemma 5.7]).

We emphasize once more that, in contrast to Theorem 3.2.2, (empirical) Rademacher complex-

ities lead to guarantees that depend on the speci�c training data set S or, using the strong

concentration of empirical Rademacher complexities around their mean, on the underlying dis-

tribution P . A further di�erence between the guarantees of Theorem 3.2.2 and Theorem 3.2.9

is that the latter gives only one-sided bounds on the generalization error, whereas the former

bounds the absolute generalization error. However, we can obtain also two-sided generalization
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error bounds in terms of an expected supremum of a random process, if we consider not the em-

pirical Rademacher complexities as in De�nition 3.2.6, but a variant with an additional absolute

value. That is, we can employ the data-dependent complexity measure

E
σ∼U({−1,1}m)

[
sup
h∈H

∣∣∣∣∣
1

m

m∑

i=1

σih(zi)

∣∣∣∣∣

]
(3.2.16)

for a function class H ⊆ RZ , given a data set S of size m. Sometimes, also Eq. (3.2.16) is taken

as the de�nition of �Rademacher complexity� in the literature.

To conclude our non-exhaustive overview over di�erent complexity measures, we present a further

data-dependent way of measuring the complexity of a function class. To this end, we �rst recall

the notion of covering numbers in (pseudo-)metric spaces:

De�nition 3.2.12 (Covering Numbers and Metric Entropies (see, e.g., [63, De�nition 4.2.1])).

Let (X, d) be a (pseudo-)metric space. Let K ⊆ X and let ε > 0. We call N ⊆ X an (interior)

ε-covering net of K if for all x ∈ K there exists an y ∈ N such that d(x, y) ≤ ε.

The (interior) ε-covering number N (K, d, ε) is de�ned as the smallest possible cardinality of an

ε-covering net of K. The ε-metric entropy is log2N (K, d, ε), the logarithm of the ε-covering

number.

For our purposes, covering numbers and metric entropies with respect to the pseudometric arising

from the following seminorm will be particularly important:

De�nition 3.2.13 (Empirical p-Seminorm). Let Z be some data space, let p ∈ [1,∞], and let

S = {zi}mi=1 be a data set consisting of m ∈ N≥1 data points zi ∈ Z. We de�ne the empirical

p-seminorm ∥·∥p,S on RZ as

∥h∥p,S :=

(
1

m

m∑

i=1

|h(zi)|p
) 1

p

, for h ∈ RZ . (3.2.17)

The seminorm de�ned in Eq. (3.2.17) can be thought of as an Lp-norm when integrating against

the probability measure given by a uniform distribution over the data set. In particular, this per-

spective explains the normalizing factor 1/m. Because of this normalization, we see the following

monotonicity behavior of these seminorms: For any data set S, if 1 ≤ p ≤ q, then ∥·∥p,S ≤ ∥·∥q,S .
Now, by combining De�nitions 3.2.12 and 3.2.13, we arrive at the following:

De�nition 3.2.14 (Empirical Covering Numbers and Empirical Metric Entropies). Let Z be

some data space, let p ∈ [1,∞], and let S = {zi}mi=1 be a data set consisting of m ∈ N≥1

data points zi ∈ Z. Let ε > 0. The ε-empirical covering number of a function class H ⊆
RZ with respect to S is de�ned as N (H, ∥·∥p,S , ε), the covering number for the set H in the

seminormed space (RZ , ∥·∥p,S). Accordingly, the ε-empirical metric entropy of H with respect to

S is log2N (H, ∥·∥p,S , ε).

Empirical covering numbers and their non-empirical counterparts, de�ned as covering numbers

in the Hilbert space Lp(P ) of functions that are p-integrable against the probability measure P ,

come from the study of Banach spaces through random processes, see, e.g., [64, 65].
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The monotonicity of empirical p-seminorms observed above implies a corresponding montonicity

for empirical covering numbers and metric entropies: For any data set S, for any ε > 0, and for

any function class H ⊆ RZ , if 1 ≤ p ≤ q, then N (H, ∥·∥p,S , ε) ≤ N (H, ∥·∥q,S , ε).
Again, we can justi�ably see empirical covering numbers as capturing the complexity of a function

class because we can use them to derive PAC generalization guarantees:

Theorem 3.2.15 (Generalization Bound via Empirical Covering Numbers (see, e.g., [33, The-

orem 16.5] and [36, Theorem 1.18])). Let F ⊆ YX and let ℓ : Y × Y → [0, 1]. Write again

H := {X × Y ∋ (x, y) 7→ ℓ(y, f(x)) | f ∈ F}. For every P ∈ Prob(X × Y) and for every

ε ∈ (0, 1),

PS∼Pm

[
sup
h∈F

∣∣∣R(h)− R̂S(h)
∣∣∣ < ε

]
≥ 1− C1 ·

(
sup

z̃1,...,z̃2m∈Z
N (H, ∥·∥1,{z̃1,...,z̃2m} , ε/C2)

)
· e−

mε2

C3 ,

(3.2.18)

where C1, C2, C3 > 0 are universal constants.

The core ingredients towards proving a result like Theorem 3.2.15 typically are ghost sample

symmetrization and a union bound over a covering net. As we will comment on in more detail

in Section 3.3, a di�erent proof strategy leads to generalization guarantees that are usually

slightly tighter, if we have control of empirical covering numbers with respect to the empirical

2-seminorm.

3.3 Relations Between Complexity Measures

A variety of relations between the di�erent complexity measures introduced in Section 3.2 are

known. In this section, we collect some of them. We begin with di�erent ways of upper bounding

empirical covering numbers and metric entropies in terms of other complexity measures. First, we

recall how the di�erent combinatorial complexity measures of VC dimension, pseudo-dimension,

and fat-shattering dimension can be used to upper bound empirical covering numbers. We start

with a result for the VC dimension:

Theorem 3.3.1 (Empirical Covering Numbers versus VC Dimension (see, e.g., [63, Theorem

8.3.18 and its proof])). There is a universal constant C > 0 such that , for any {0, 1}-valued
function class H ⊆ {0, 1}Z , for any data set S = {zi}mi=1 consisting of m ∈ N≥1 data points

zi ∈ Z, and for any ε ∈ (0, 1),

N (H, ∥·∥2,S , ε) ≤
(
2

ε

)C·VCdim(H)

. (3.3.1)

Thus, the VC dimension gives rise to covering number bounds with respect to the empirical 2-

seminorm that look very much like standard covering number bounds for norm balls in Euclidean

space in terms of the dimension of the space. Next, we present covering number bounds in terms

of pseudo- and fat-shattering dimension:
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Theorem 3.3.2 (Empirical Covering Numbers versus Pseudo- and Fat-Shattering Dimension ([66,

Theorem 1], see also [33, Sections 12 and 18] and [67, Sections 4.2.2 and 4.2.4])). Let p ∈ [1,∞).

There are universal constants c, C > 0 such that , for any [0, 1]-valued function class H ⊆ {0, 1}Z ,
for any data set S = {zi}mi=1 consisting of m ∈ N≥1 data points zi ∈ Z, and for any ε ∈ (0, 1),

N (H, ∥·∥p,S , ε) ≤
(
2

ε

)C·fat(H,cε)

≤
(
2

ε

)C·Pdim(H)

. (3.3.2)

Moreover, there exist universal constants C̃, c̃ > 0 such that, if m ≥ fat(H, c̃ε), then

N (H, ∥·∥p,S , ε) ≥ 2C̃·fat(H,c̃ε) . (3.3.3)

Thus, upper bounds on combinatorial dimensions imply empirical covering number upper bounds

with respect to any p-seminorm. Note that, in particular, for the case of a {0, 1}-valued function

class, pseudo-dimension and VC dimension are equal, so Theorem 3.3.2 leads to a version of

Theorem 3.3.1 for general p ∈ [1,∞). Interestingly, due to the second part of Theorem 3.3.2,

we also have a converse in the case of the fat-shattering dimension: Empirical covering number

upper bounds imply upper bounds on the fat-shattering dimension. Such a converse, however,

is not possible for the pseudo-dimension, as discussed, e.g., in [33, Section 12.5].

Empirical covering numbers are also closely related to Gaussian and Rademacher complexities.

Namely, we can upper bound empirical Rademacher complexities in terms of an integral over

square roots of empirical metric entropies:

Theorem 3.3.3 (Dudley's Theorem [68]). For a �xed data set S = {zi}mi=1 consisting ofm ∈ N≥1

data points zi ∈ Z, let H be a subset of the pseudo-metric space (RZ , ∥·∥2,S) and let γ0 :=

suph∈H ∥h∥2,S. Then the empirical Rademacher complexity R̂S(H) of H with respect to S can be

upper bounded as

R̂S(H) ≤ inf
ε∈[0,γ0/2)



4ε+

12√
m

γ0∫

ε

√
logN (H, ∥·∥2,S , β) dβ



 . (3.3.4)

We have stated a version of Dudley's Theorem that can, e.g., be found in [36, Theorem 1.19].

As discussed in [63, Remark 8.1.5] a similar result also holds for the variant of the Rademacher

complexity that involves an additional absolute value, as introduced in Eq. (3.2.16), assuming

that the class H contains the zero function.

Theorem 3.3.3 can be combined with Theorem 3.2.9 to obtain yet another generalization bound

in terms of empirical covering numbers. The generalization guarantee obtained in this way is

formulated via covering numbers for the empirical 2-seminorm. This is in contrast to Theo-

rem 3.2.15, which considered covering with respect to the empirical 1-seminorm. If, however,

we can control the empirical covering numbers N (H, ∥·∥2,S , ε), using the combination of Theo-

rems 3.2.9 and 3.3.3 � or, to be more precise, their respective versions with a reinstated absolute

value � can lead to a slightly tighter generalization bound than the one obtained by plugging the

bound on N (H, ∥·∥2,S , ε) into Theorem 3.2.15.
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Moreover, we can lower bound empirical Gaussian complexities in terms of square roots of em-

pirical metric entropies. This follows from a more general result about mean-zero Gaussian

processes, Sudakov's minoration inequality, which can, e.g., be found in [63, Theorem 7.4.1]. We

state it here only for the special case relevant to our learning-theoretic framework:

Theorem 3.3.4 (Sudakov's Minoration Inequality for Empirical Gaussian Complexities). For

a �xed data set S = {zi}mi=1 consisting of m ∈ N≥1 data points zi ∈ Z, let H be a subset of

the pseudo-metric space (RZ , ∥·∥2,S). Then the empirical Gaussian complexity ĜS(H) of H with

respect to S can be lower bounded as

ĜS(H) ≥ C√
m

· sup
ε≥0

{
ε ·
√

logN (H, ∥·∥2,S , ε)
}
, (3.3.5)

where C > 0 is a universal constant.

According to Theorem 3.2.8, Theorem 3.3.4 also allows us to lower bound empirical Rademacher

complexities via empirical covering numbers. The scaling with training data size m in the

obtained lower bound matches that in Dudley's upper bound of Eq. (3.3.4) up to a logarithmic

factor.

The above relations can now be combined to establish further connections between complexity

measures, such as the following:

Corollary 3.3.5 (Rademacher Complexities versus VC Dimension). There is a universal con-

stant C > 0 such that, for any {0, 1}-valued function class H ⊆ {0, 1}Z and for any data set

data set S = {zi}mi=1 consisting of m ∈ N≥1 data points zi ∈ Z,

R̂S(H) ≤ C ·
√

VCdim(H)

m
. (3.3.6)

We highlight this last connection because, together with Theorem 3.2.9, it can be used to prove

Theorem 3.2.2. (Again, to get two-sided generalization error bounds, we can reinstate absolute

values in Theorem 3.2.9 and Corollary 3.3.5.)

There are several further approaches towards generalization bounds beyond the one based on

complexity measures. In particular, whereas the perspective of complexity measures focuses on

the hypothesis classes used by the learner, other approaches take additional properties of the

learning procedure into account. Important examples include sample compression schemes [69],

PAC-Bayesian generalization bounds [41], algorithmic stability [70], or di�erential privacy [71].

Discussing these topics is, unfortunately, beyond the scope of this thesis.

3.4 Undecidable Problems in Classical Learning Theory

So far in this chapter, we have presented the PAC framework as an approach to mathematically

formalize statistical questions in machine learning. And we have seen ways of obtaining theo-

retical learnability guarantees, in the form of generalization bounds, from di�erent complexity

measures. While this shows the usefulness of these complexity measures, we have mostly ignored

the question of how to evaluate them. For example, in the setting of PAC binary classi�cation, we
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have seen that the VC dimension determines whether a class is learnable, and even characterizes

the corresponding sample complexity. However, we have not described a general procedure for

evaluating the VC dimension of a hypothesis class. In this section, we present a high-level discus-

sion regarding some subtleties in the approach of determining learnability through complexity

measures, from the perspective of formal logic and computability theory.

Prior work has emphasized di�erent aspects of logic and computability in connection to learn-

ing theory. Here, we highlight only some of these directions and refer to [7, Section 1.2] for a

more extensive discussion of prior work. For instance, [72] investigated the learnability of un-

computable problems. Also, [73] considered the computational complexity of deciding �niteness

of the VC dimension, in particular showing this to be an undecidable problem. Later, this was

reproved and interpreted from a philosophical perspective in the context of the problem of induc-

tion by [74]. Recently, [75] demonstrated that learnability can in general be undecidable in the

sense of formal logic. Motivated by this development, [76] proposed a variant of PAC learning in

which learners have to be computable functions and investigated connections between standard

PAC learnability and computable PAC learnability in binary classi�cation problems. This (in-

complete) list of references already demonstrates that research on (un-)decidability in learning

theory is multi-faceted and, despite a history of over 20 years, still ongoing. In the remainder of

this section, we describe how our work [7] adds to this research e�ort.

Section 3.2 introduced complexity measures as a tool for answering the fundamental question of

when (PAC) learning is possible. This question, however, is potentially di�erent from the question

of whether we can decide when (PAC) learning is possible. Concretely, we can understand

the verb �decide� in the previous sentence to mean �mathematically prove� or �algorithmically

determine�. For these two interpretations, we know from Gödel's Incompleteness Theorems [77]

and Turing's Halting Problem [78] that we cannot always succeed at �deciding.� This now

raises the following questions: First, if a hypothesis class is learnable, can we prove it to be

so (in a formal system of interest)? And second, is there a universal algorithmic procedure for

determining whether a hypothesis class is learnable?

According to the results of Section 3.2, if we focus on the learning framework of PAC binary

classi�cation with respect to the 0-1-loss, PAC learnability becomes equivalent to �niteness of

the VC dimension, a purely combinatorial property of the respective hypothesis class. Thus, in

this setting, we can translate the two questions above as: First, if a hypothesis class has �nite VC

dimension, can we prove this �niteness? And second, is there a universal algorithmic procedure

for determining whether a hypothesis class has �nite VC dimension? In [7], we �nd the following

two negative answers to these questions:

Theorem 3.4.1 (Informal Version of [7, Corollary 2.11]). There are hypothesis classes with �nite

VC dimension for which we cannot prove that the VC dimension is �nite.

Theorem 3.4.2 (Informal Version of [7, Corollary 2.20]). There is no general-purpose algorithm

for deciding whether a hypothesis class has a �nite VC dimension.

Taken together, Theorems 3.4.1 and 3.4.2 tell us that, in general, we can neither prove nor

algorithmically determine �niteness of the VC dimension. Thus, �niteness of the VC dimension,

and with it PAC learnability in binary classi�cation problems are undecidable. This result carries
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over to PAC binary classi�cation using quantum examples, since also there the VC dimension

characterizes learnability, compare [79]. This undecidability is not speci�c to the VC dimension.

In fact, as we argue in [7], combinatorial complexity parameters relevant to teaching problems

and to online learning settings share this property. So, this undecidability also translates to

learnability in teacher-learner interactions [46] and to di�erent notions of online learnability [44,

80]. In this sense, we have demonstrated in [7] that certain basic questions in di�erent learning

frameworks are undecidable.

We conclude this section with a short discussion of how our results in [7] relate to two of the

prior works mentioned above. First, the undecidability of �niteness of the VC dimension stated

informally in Theorem 3.4.2 can be obtained as a Corollary of [73, Theorem 4.1] and of [74,

Theorem 1]. Both [73] and [74] prove a stronger result, namely the so-called Σ2-completeness

of deciding �niteness of the VC dimension, deriving it as a consequence of the Σ2-completeness

of deciding �niteness of the domain of a partial recursive function. Compared to this line of

reasoning, our proof strategy in [7] has mainly two advantages. On the one hand, we give a

construction that allows to prove undecidability not only for the VC dimension, but also for

other combinatorial complexity measures, and not only in the sense of uncomputability, but also

in the sense of independence of the axioms in a formal system. On the other hand, we use

no results from formal logic and computability theory beyond the arguably most fundamental

undecidable problems, Gödel's second incompleteness theorem and Turing's halting problem.

Second, while also [75] proved the logical undecidability of a certain learning problem, tracing

it back to the independence of the continuum hypothesis from the axioms of Zermelo-Fraenkel

set theory (including the axiom of choice), their scenario di�ers from our setting in [7] in at

least two important ways. While [75] show that learnability for their learning problem cannot

be characterized by a dimension-like parameter akin to the VC dimension, our undecidability

results in [7] are for learning problems that admit such a characterization. In fact, we make use

of exactly such dimension-like parameters (the VC, teaching, and Littlestone dimensions) in our

proofs. And whereas the results in [75] rely on the use of the continuum, we formulate our results

in [7] using only natural numbers and computable constructions. In particular, this allows us

to also obtain uncomputability results and, relying on insights from [76], to immediately extend

our results from PAC binary classi�cation also to computable PAC binary classi�cation.

To conclude this chapter: The complexity measures of Section 3.2 are powerful mathematical

tools for understanding generalization bounds for PAC learning. Still, there are further computa-

tional questions in learning theory beyond the probability theory and statistics of generalization.

Our deliberations on undecidability outline merely one of many possibilities of emphasizing al-

gorithmic and computational aspects of learning theory. In the next two chapters, we now

take a quantum computing perspective on learning, and also a learning perspective on quantum

information.
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Chapter 4

Variational Quantum Machine Learning

This chapter discusses a �eld lying at the intersection point of these two theories, namely the

theory of variational quantum machine learning (QML). More precisely, we focus on questions of

generalization in variational QML: We discuss generalization error bounds for supervised machine

learning models based on parametrized quantum circuits (PQCs) that are trained via classical

optimization.

The structure of this chapter is as follows: In Section 4.1, we describe how to use PQCs for ma-

chine learning on either classical or quantum data. Having de�ned the machine learning models

used in variational QML, we then proceed by giving an overview over generalization bounds

for such models in Section 4.2. In this discussion, we in particular distinguish between general-

ization guarantees arising from properties of the trainable part of the PQC (Subsection 4.2.1)

and, when using variational QML for classical data, generalization guarantees derived from the

classical-to-quantum data-encoding (Subsection 4.2.2).

4.1 Parametrized Quantum Circuits for Machine Learning

Variational Quantum Algorithms: In recent years, variational quantum algorithms (VQAs)

have established themselves as a promising candidate for applications of near-term quantum com-

puting architectures. VQAs are based on parametrized quantum circuits (PQCs), i.e., quantum

circuits containing gates that depend on classical parameters. Crucially, while the quantum

circuits themselves are run on a quantum computer, the classical parameters are trained using

classical optimization with respect to a certain target function. More precisely, the quantum

computer is typically used in the evaluation of the target function and its gradient, the latter

often achieved through so-called parameter-shift rules [81, 82], but then the remaining parame-

ter optimization is performed classically. This delegation of the optimization task to a classical

computer is what can make VQAs viable already on noisy intermediate-scale quantum devices,

in what was termed the �NISQ era� by John Preskill [83]. Among the early works on VQAs,

in particular the variational quantum eigensolver (VQE) [84] for approximating ground state

energies of a Hamiltonian and the Quantum Approximate Optimization Algorithm (QAOA) for

approximating the solutions of combinatorial optimization problems [85] have spurred further

research into the potential of such hybrid quantum-classical methods. In this chapter, we focus
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speci�cally on the use of PQCs for machine learning. We refer interested reader to the review [86]

for a broader overview over VQAs.

PQCs and Variational QML: As described above, PQCs lead to classically trainable models

and therefore naturally lend themselves to applications in machine learning by optimizing the

parameters in the circuit to perform well on a given training data set. We will refer to QML

models implemented by classically optimizing a PQC on data as PQC-based QML models or

variational QML models. Since the �rst proposals of variational QML in the in�uential works [87�

89], this �eld has attracted signi�cant interest. In particular, works such as [90�94] are beginning

to understand challenges arising when training variational QML models. Moreover, several works

present numerical experiments exploring applications of variational QML, as for example [87, 88,

95�97]. For the purposes of this thesis, however, we focus on a mathematically rigorous analysis

of generalization in variational QML.

· · ·

· · ·

· · ·

· · ·

· · ·

T1 F2

F3

T3

T4

T2 F1

Figure 4.1: A schematic of a PQC for quantum data, here for n = 5 qudits and locality parameter
k = 2. The circuit, which can act on any n-qudit input state, consists of k-local trainable gates
Ti = Ti(θ) (red) and �xed (potentially global) gates Fℓ (blue). At the output of a circuit, a
(potentially global) measurement is performed.

Mathematical Framework for PQC-based QML Models: We dedicate the remainder of

this subsection to a careful formulation of a mathematical framework formalizing the discussion

above. We begin by presenting PQCs that can be used to learn from quantum data. We describe

such a PQC by a quantum circuit on n qudits, schematically depicted in Fig. 4.1, consisting

of two types of gates: On the one hand, it contains trainable gates Ti, which we assume to be

k-local for some n-independent k ≤ n. These gates are trainable in the sense that they depend

on some parameter vector θ with real entries, that is, Ti = Ti(θ). Note: We do not require the

trainable gates to be geometrically local. For example, for k = 2 we also allow trainable gates to

act on two non-neighboring qudits. On the other hand, the circuit contains �xed gates Fℓ, which

are allowed to be global. Importantly, these �xed gates are not trainable. In this thesis, quantum

circuits and the gates therein are not restricted to unitaries but can be CPTP maps. Thus, we

ascribe the variational QML model corresponding to such a PQC on n qubits the parametrized
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CPTP map TQMLM
θ ∈ CPT Pdn obtained by composing the circuit gates according to the circuit

structure.

Viewed in this way, a variational QML model naturally acts on quantum data, since quantum

states are the natural inputs for CPTP maps. When aiming to use a PQC-based QML model for

learning with classical data, we can add a further type of gate to the PQC. Namely, as depicted

in Fig. 4.2, we may add an initial circuit layer with a (potentially global) CPTP map E that

depends on the classical data input x, that is E = E(x). If we �x the input state to be (|0⟩ ⟨0|)⊗n,

the �rst layer implements a classical-to-quantum data encoding x 7→ ρ(x) := E(x) ((|0⟩ ⟨0|)⊗n),

on which the remaining PQC then acts. We will refer to such a PQC as encoding-�rst PQC.

Mathematically, we can describe an encoding-�rst PQC either by considering the encoding x 7→
ρ(x) and the parametrized CPTP map TQMLM

θ ∈ CPT Pdn separately, or by viewing the whole

PQC as implementing a CPTP map TQMLM
x,θ ∈ CPT Pdn , depending on both the inputs x and

the choice of parameters θ, where we focus on the action of TQMLM
x,θ on (|0⟩ ⟨0|)⊗n. Notice that,

with this choice of notation, TQMLM
x,θ ((|0⟩ ⟨0|)⊗n) = TQMLM

θ (ρ(x)).

· · ·

· · ·

· · ·

· · ·

· · ·

|0⟩ ⟨0|

E

T1 F2

F3

|0⟩ ⟨0|
T3

|0⟩ ⟨0|
T4

|0⟩ ⟨0|
T2 F1

|0⟩ ⟨0|

Figure 4.2: A schematic of an encoding-�rst PQC for classical data, here for n = 5 qudits and
locality parameter k = 2. The circuit, acting on the (|0⟩ ⟨0|)⊗n-state, consists of an encoding
gate E = E(x) (green), preparing the data-encoding state ρ(x), followed by k-local trainable
gates Ti = Ti(θ) (red) and �xed (potentially global) gates Fℓ (blue). At the output of a circuit,
a (potentially global) measurement is performed.

While encoding-�rst PQCs already provide a way of incorporating classical data inputs, this is not

the most general way. Namely, in the spirit of data re-uploading [98], we can allow for encoding

gates to be placed throughout the circuit, as illustrated in Fig. 4.3. Such a data re-uploading

PQC is then naturally described by a CPTP map TQMLM
x,θ ∈ CPT Pdn that is �parametrized�

both by data inputs x and trainable parameters θ. Again, we focus speci�cally on the action

of TQMLM
x,θ on the state (|0⟩ ⟨0|)⊗n. Note that encoding-�rst PQCs are a special case of data

re-uploading PQCs, in which the encoding and the trainable parts of the PQC are separate from

each other.

From now on, we will abuse notation in the interest of a uni�ed presentation for the cases of

quantum and classical data: We will write TQMLM
x,θ for the CPTP map associated to a variational

QML model, even if the QML model acts on quantum data. In this case, that is, for a quantum
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input x = ρ ∈ X = S(Cdn), we use this notation for a PQC acting on quantum data by formally

identifying it with our notation for an encoding-�rst PQC in which we take the �encoding�

X ∋ x → ρ(x) as given by the identity map X ∋ x = ρ 7→ ρ(x) = ρ. Continuing this abuse of

notation, in this case we also write TQMLM
x,θ ((|0⟩ ⟨0|)⊗n) = TQMLM

θ (ρ(x)) to mean TQMLM
θ (ρ).

· · ·

· · ·

· · ·

· · ·

· · ·

|0⟩ ⟨0|
T1

E2

F1

F2

|0⟩ ⟨0|
T3

|0⟩ ⟨0| E1

T4

|0⟩ ⟨0|
T2 E3

|0⟩ ⟨0|

Figure 4.3: A schematic of a data re-uploading PQC for classical data, here for n = 5 qudits and
locality parameter k = 2. The circuit, acting on the (|0⟩ ⟨0|)⊗n-state, consists of k-local trainable
gates Ti = Ti(θ) (red), encoding gates Ej = Ej(x) (green), and �xed (potentially global) gates
Fℓ (blue). At the output of a circuit, a (potentially global) measurement is performed.

Evaluating the Performance in Variational QML: To conclude our presentation of the

mathematical setting in which we prove our generalization bounds, we discuss how to evaluate

the performance of a PQC-based QML model. Here, we consider two options. For the �rst of

the two, we �x a Hermitian observable M ∈ B(Cdn). Then, given a variational QML model for

processing classical data, with associated parametrized CPTP map TQMLM
x,θ ∈ CPT Pdn , for each

choice of parameters θ, we can consider the function

fθ : X → R, fθ(x) := tr
[
M · TQMLM

x,θ

(
(|0⟩ ⟨0|)⊗n

)]
. (4.1.1)

That is, the function value fθ(x) upon input x is the expectation value of the observableM when

measured in the state TQMLM
x,θ ((|0⟩ ⟨0|)⊗n). Accordingly, the variational QML model implements

the hypothesis class

FQMLM := {fθ | θ ∈ Θ} ⊆ RX , (4.1.2)

where Θ is the set of admissible parameters. Now, we have arrived at a real-valued concept class

for the QML model and can thus employ any loss function ℓ : R × R → R≥0 to evaluate the

performance of a hypothesis from FQMLM and work in the PAC setting of Chapter 3.

For the second option, we use observables not to de�ne a hypothesis class associated to the

model, but directly to de�ne a physically motivated notion of loss. Namely, for each (classical

or quantum) input x and for each (classical or quantum) output y, we let Oloss
x,y ∈ B(Cdn) be
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a Hermitian loss observable. Then, on the data point (x, y), the variational QML model with

parameter setting θ incurs the loss

ℓ(θ;x, y) := tr
[
Oloss

x,y · TQMLM
x,θ ((|0⟩ ⟨0|)⊗n)

]
. (4.1.3)

With this de�nition of loss in place, even without an intermediate hypothesis class, we can

again work in the PAC framework of Chapter 3: Our goal is to achieve a small expected loss

(with high probability), where the expectation is over a data-generating probability measure

P ∈ Prob(X × Y). And we study generalization guarantees to justify an approach towards this

goal based on training the model to achieve small empirical risk on training data.

Variational QML and Kernel Methods: Above, we have introduced variational QML based

on PQCs. At this point, we shortly mention a second in�uential perspective on quantum circuits

in quantum machine learning, through the lens of kernel models. Kernel methods are a well

established framework in classical machine learning theory [99]. Here, we embed training data

into a (typically high- or even in�nite-dimensional) feature space and then optimize a loss function

over linear models in feature space. This optimization is analytically tractable for several cases

of interest, for example using kernel ridge regression for a least squares loss with Tikhonov

regularization (compare, e.g., [36, Section 3.6]). Importantly, combining the so-called �kernel

trick� with the Representer Theorem [100, 101], solving this optimization and evaluating the

obtained function does not require explicit knowledge of the feature map or computations in

the high-dimensional feature space, but can be achieved given only the ability to compute inner

products with the feature vectors associated to the training data instances. This makes kernel

methods attractive both for theoretical analysis and numerical implementations.

In this spirit, one can study quantum kernel methods, that is, quantum machine learning using

kernels that can be evaluated on a quantum computer, as advocated for, e.g., in [87]. Here,

one considers mapping classical data to n-qudit quantum states, thereby embedding into the

dn × dn-dimensional feature space of Hermitian operators. In this feature space, linear models

correspond to Hermitian observables. A detailed review of the literature on quantum kernels is

beyond the scope of this thesis, we only discuss their connection to our framework of variational

quantum machine learning. Quantum kernel methods are e�ectively equivalent to encoding-

�rst PQC-based QML models in which we allow for PQCs of arbitrarily large depth [102, 103].

As pointed out by [102, 104], this means that quantum kernel methods outperform variational

QML models with respect to training performance, however, potentially at the cost of a worse

generalization performance. In the next section, we discuss how limiting the size and depth of

PQCs used for QML leads to generalization guarantees. In particular, we do not work in the

in�nite-depth regime, which would give rise to quantum kernel methods. Therefore, our results

hint at the �hidden� in�nite depth in quantum kernel methods as a potential explanation for

their sometimes problematic generalization behavior.
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4.2 Generalization Guarantees for Variational Quantum Machine

Learning

From the very de�nition of a PQC, three natural sources for �complexity� � thought of in the

learning-theoretic sense of Section 3.2 � in a PQC-based QML model arise. First, the train-

able elements in a PQC crucially in�uence the generalization performance of the corresponding

variational QML model. This facet of generalization in variational QML is the focus of Sub-

section 4.2.1. Second, also the choice of the measurement performed at the output of the PQC

can be important for generalization. In this thesis, we do not investigate this aspect of the

problem in detail, but instead refer the interested reader to [105]. And third, when using a

PQC-based QML model to process classical data, also the strategy for encoding the classical

inputs into the quantum circuit is relevant from the perspective of generalization. We discuss

this in Subsection 4.2.2.

While these three approaches to generalization in variational QML cover a signi�cant fraction

of the literature on rigorous generalization guarantees for PQC-based QML, some recent works

have explored di�erent paths. Before discussing generalization bounds derived from the trainable

part and the encoding strategy in a PQC in more detail, we highlight some of these alternative

approaches. On the one hand, [96] suggested to use the so-called empirical Fisher information

matrix to de�ne a new complexity measure, which they termed e�ective dimension, a local

variant of which was recently considered for generalization in classical machine learning [106].

On the other hand, [107] proposed a quantum information-theoretic approach towards bounding

both the generalization and the approximation error that a PQC-based model achieves in a

classi�cation task. Both of these works take a holistic perspective on the PQC, not separating

trainable gates from the encoding gates or from the measurement. While this perspective has the

advantage of incorporating the interplay between the di�erent architectural elements in a PQC,

and potentially even the training procedure, the resulting generalization error bounds are not

easy to evaluate analytically except in simple examples. This is in contrast to the generalization

bounds presented in this chapter.

4.2.1 Generalization Guarantees Based on the Trainable Part

When trying to bound the generalization error of machine learning models, classical or quantum,

described by a concrete architecture, a natural approach is as follows: We bound the complexity

of the corresponding function class, measured by one of the complexity measures introduced in

Section 3.2, in terms of properties of the trainable elements in the model architecture. As a con-

crete classical example, we can aim to bound the complexity of a class of functions implemented

by a classical neural network in terms of the number of adjustable parameters (weights and bi-

ases) in the network (see, e.g., [108] and [33, Chapter 14]). In this subsection, we present two

ways of implementing this strategy of proving generalization bounds in the case of variational

QML models based on PQCs with local trainable gates.

First, in the case of a variational QML model for processing classical data, we can bound the

pseudo-dimension of the associated function class FQMLM, introduced in our �rst variant of

evaluating the performance of a QML model, in terms of the number of local trainable gates.
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With the notation and framework as formulated in Section 4.1, we can now reformulate the main

result of [1] as follows:

Theorem 4.2.1 (Pseudo-Dimension Bounds for variational QML (see [1, Theorems 2 and 4, Re-

mark 1])). Let X := {x ∈ (Cd)⊗n | ∥x∥2 = 1} for some n, d ∈ N≥1. Consider an encoding-�rst n-

qudit PQC with Γ ∈ N 2-local trainable gates and the encoding map E : X → CPT Pdn, E(x)(ρ) =

tr[ρ] |x⟩ ⟨x|, which leads to the classical-to-quantum data encoding x 7→ tr[(|0⟩ ⟨0|)⊗n] |x⟩ ⟨x| =
|x⟩ ⟨x|. Fix the Hermitian observable M = (|0⟩ ⟨0|)⊗n ∈ B(Cdn). Then, the pseudo-dimension of

the associated function class FQMLM ⊆ [0, 1]X satis�es

Pdim(FQMLM) ≤ C · Γ log2(Γ) , (4.2.1)

where C = C(d) > 0 depends polynomially on d.

The proof of Theorem 4.2.1 is inspired by [109], which bounded the VC dimension of semi-

algebraic function classes in terms of the number and degrees of the involved polynomials. First,

we show that hypotheses in FQMLM can be written as polynomials with real coe�cients, with

the entries of the trainable gates and the entries of the input vector as variables. Importantly,

we prove that the degree of these polynomials in the variables associated to the trainable gates

is bounded by 2d8 · Γ. This allows us to reduce questions of pseudo-shattering (as de�ned in

De�nition 3.2.4) to questions of consistent sign assignments to polynomials. Similarly to [109],

we can now employ a result due to [9], which bounds the number of such sign assignments in

terms of the number and degrees of the involved polynomials, to obtain an upper bound on the

maximal size of a pseudo-shattered set and thus on the pseudo-dimension of FQMLM.

Theorem 4.2.1 shows that, assuming a simple classical-to-quantum encoding strategy and a

speci�c observable, the learning-theoretic complexity of a variational QML model, as measured

by the pseudo-dimension of the associated function class, grows at worst slightly superlinearly

with the number of trainable gates in the PQC. It turns out that both the restriction on the

data-encoding and on the observable can be lifted and such a statement remains valid. In [6], we

prove a corresponding complexity bound for general PQCs, this time in terms of metric entropies

and for our second way of evaluating the performance in variational QML.

Theorem 4.2.2 (Metric Entropy Bounds for variational QML Models [6, Theorem 7, Proof of

Theorem 11]). Let X ,Y be some (classical or quantum) input and output spaces, respectively.

Consider an n-qudit PQC with Γ ∈ N k-local trainable gates. Fix Hermitian loss observables

Oloss
x,y ∈ B(Cdn) with the corresponding loss function as in Eq. (4.1.3). Then, for any training

data set S = {(xi, yi)}mi=1, the empirical metric entropies of the function class

GQMLM := {X × Y ∋ (x, y) 7→ ℓ(θ;x, y) | θ ∈ Θ} ⊆ RX×Y (4.2.2)

with respect to S satisfy

log2N (GQMLM, ∥·∥∞,S|X , ε) ≤ C · Γ log2

(
Closs · Γ

ε

)
, (4.2.3)
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for any ε ∈ (0, 1], where C = C(d, k) > 0 depends polynomially on d and exponentially on k, and

we de�ned the quantity Closs := supx,y
∥∥Oloss

x,y

∥∥.

The two crucial steps in proving Theorem 4.2.2 are: First, regard the space of possible choices

for a single k-qudit gate as a compact subset of a complex vector space whose dimension depends

only on k and d. Thus, we can use standard covering number bounds for norm balls in �nite

dimensions (compare, for instance, [63, Corollary 4.2.13] or [36, Example 1.10]) to get covering

number bounds, depending only on k and d, for any single gate. Second, exploit the circuit

structure together with subadditivity of the 1 → 1 norm (or even the diamond norm) on CPTP

maps to construct from covering nets for the single gates a covering net for the whole PQC.

For this second step, it is also useful to observe that, by Hölder's inequality for Schatten norms,

|ℓ(θ;x, y)−ℓ(θ′;x, y)| ≤ Closs

∥∥∥TQMLM
x,θ ((|0⟩ ⟨0|)⊗n)− TQMLM

x,θ′ ((|0⟩ ⟨0|)⊗n)
∥∥∥
1
, so we can e�ectively

ignore the loss observables in our covering number proofs when suitably taking the Lipschitz-type

constant Closs into account.

Given the relation between empirical covering numbers and the pseudo-dimension discussed in

Theorem 3.3.2 and the pseudo-dimension bound of Theorem 4.2.1, the slightly superlinear scaling

of empirical metric entropies with the number of trainable gates stated in Theorem 4.2.2 may

not be surprising at �rst glance. Indeed, plugging the pseudo-dimension bound of ≲ Γ log2(Γ)

into Theorem 3.3.2 leads to an empirical metric entropy bound of ≲ Γ log2(Γ) log2(1/ε). Indeed,

while the bound in Theorem 4.2.2 provides the slightly better ≲ Γ log2(Γ/ε), the scaling in

Γ, the relevant parameter of the PQC, is the same in both bounds. However, importantly, the

complexity bounds of Theorem 4.2.2 apply to general PQCs, without restrictions on the encoding

strategy or the measurements. Moreover, in [6, Theorem 9], we also show that the reasoning

behind Theorem 4.2.2 extends to even more general PQCs, e.g., when multiple copies of a QML

model are run in parallel, or when not only continuous parameters inside gates but also discrete

structural parameters are optimized during training. While also the pseudo-dimension bounds

of [1] can be generalized, e.g., to data re-uploading PQCs, these extensions are arguably more

straightforward on the level of covering numbers. Nevertheless, the empirical covering number

bounds of Theorem 4.2.2 do not constitute a strict generalization of the pseudo-dimension bound

of Theorem 4.2.1 because, as discussed after Theorem 3.3.2, there is no general upper bound on

the pseudo-dimension via empirical covering numbers.

Using the machinery of Section 3.2, the complexity measure upper bounds of Theorem 4.2.1

and 4.2.2 imply generalization guarantees. More concretely, starting from the pseudo-dimension

bound, we can invoke [57, Corollary 3.3] or combine Theorems 3.2.9, 3.3.2, and 3.3.3. And

given the empirical metric entropy bound, Theorems 3.2.9 and 3.3.3 together give generalization

error bounds. These di�erent pathways all lead to a generalization guarantee of the following

�avor: A training data size scaling e�ectively as ∼ Γ log2(Γ) is, with high probability, su�cient

for good generalization when using a variational QML model based on a PQC with Γ k-local

trainable gates. While such guarantees become particularly useful for PQCs with especially few

trainable gates, they already give an interesting insight for e�ciently implementable variational

QML models: If we use a PQC with poly(n) k-local trainable gates for machine learning, poly(n)

training data points su�ce to guarantee good generalization, with high probability.
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A Quantum Process Tomography Perspective: In the discussion above, we have empha-

sized the perspective of variational QML. That is, we have interpreted PQCs in terms of the cor-

responding QML models, and we have used the complexity measure bounds from Theorems 4.2.1

and 4.2.2 to obtain generalization guarantees for them. At this point, we describe a somewhat

di�erent perspective on the above results, in the spirit of [1, Section 4.2]. Namely, if the above was

a (quantum) machine learning perspective, we now take a more quantum information-theoretic

perspective and interpret the results from the perspective of quantum process tomography.

It is well known that full quantum state and process tomography are information-theoretically

expensive tasks, requiring a number of samples of the unknown state or process that grows ex-

ponentially in the number of qudits involved [110]. However, depending on the task at hand,

full tomography might not be necessary. Theorems 4.2.1 and 4.2.2 and the corresponding gen-

eralization bounds tell us that a probably approximately correct variant of quantum process

tomography for an unknown quantum circuit with Γ unknown k-local gates is possible already

from roughly ∼ Γ log2(Γ) training samples. In particular, if the unknown circuit has poly(n)

gates, then poly(n) samples are su�cient for PAC quantum process tomography. This can mean

a signi�cant improvement in sample size compared to the exp(n) samples required for full process

tomography. Note: As both [1] and [6] also contain results similar to Theorems 4.2.1 and 4.2.2

that apply to variable-structure PQCs, we can obtain useful sample complexity bounds for PAC

process tomography even without assuming the structure of the unknown quantum circuit to be

known in advance.

The interpretation of the above as results about a relaxed version of quantum process tomog-

raphy �ts well into recent developments in quantum information research focused on learning

classical representations of quantum objects from data. Notable papers in this direction in-

clude [111�123]. We can trace this line of research back to the PAC variant of quantum state

tomography introduced by [124]. For comparison, while [124] proved that �pretty good quantum

state tomography� of an unknown n-qubit state is possible from training data of size scaling

linearly in n, Theorems 4.2.1 and 4.2.2 imply that �pretty good quantum process tomography�

for an unknown quantum circuit with Γ k-local gates is possible from training data of size scaling

slightly superlinearly in Γ.

Comparison to related work: We conclude this subsection by comparing the results of

Theorems 4.2.1 and 4.2.2 and the corresponding generalization bounds with two selected related

works. In [1], we used pseudo-dimension bounds as in Theorem 4.2.1 in combination with results

of [57] to deduce generalization guarantees for learning PQCs in a realizable setting. Ref. [125]

shows similar generalization bounds also in the agnostic setting. While not explicitly stated

in [1], our pseudo-dimension bounds for parametrized quantum circuits imply empirical covering

number bounds when combined with Theorem 3.3.2. In fact, the bound obtained through this

combination recovers the scaling in the number of trainable gates in the PQC stated in [125,

Theorem 5], extends this bound beyond unitary circuits to CPTP circuits, and, in contrast to

the bound of [125, Theorem 5], is independent of the sample size.

A further work showing empirical covering number bounds for PQCs is [126]. In fact, the

empirical metric entropy bounds proved in [126] are similar to those of Theorem 4.2.2. However,
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the attention in [126] is restricted to unitary PQCs acting on quantum data, whereas our results

in [6] apply also to PQCs for processing classical data and for PQCs consisting of general CPTP

gates. Moreover, we signi�cantly extend the reach of the proof technique to include more general

PQC architectures, as already discussed above. Finally, our more careful application of methods

from statistical learning theory in [6] leads to a quadratic improvement in the dependence of the

generalization error bound on the number of trainable gates compared to [126, Theorem 2].

With this, we end our discussion of generalization guarantees for PQC-based variational QML

models arising from properties of the trainable part of the PQC. We now turn our attention to

how the choice of classical-to-quantum encoding strategy can in�uence generalization.

4.2.2 Generalization Guarantees Based on the Data-Encoding

Whereas the results from Subsection 4.2.1 apply for variational QML models independently of

whether they are used on classical or quantum data, in this subsection, we focus on the case of

classical data inputs. In this scenario, we have to decide how to encode classical data into the

quantum circuit. Here, we investigate the impact of the choice of an encoding strategy on the

generalization behavior of the QML model.

From PQCs to Generalized Trigonometric Polynomials: As pointed out by [127, 128],

the choice of classical-to-quantum encoding is crucial to the expressive power of a PQC for pro-

cessing classical data. With the perspective on PQCs put forward in [4, 127, 128], we can make

this intuitively reasonable statement mathematically precise for a broad class of encoding strate-

gies. Namely, for the input space X = [0, 2π)d of d-dimensional vectors of angles, we consider

data-reuploading PQCs as in Fig. 4.3 and additionally assume that all encoding gates are of

the form Ej : [0, 2π)d 7→ CPT P
dkj

, Ej(x)(ρ) = e−ixnjHjρeixnjHj for some kj ∈ {1, . . . , n} and

nj ∈ {1, . . . , d}. That is, upon input x, the jth encoding gate implements the unitary channel

on the associated kj qudits obtained by evolving along the time-independent Hamiltonian Hj for

time xnj . While more general encoding maps are mathematically possible, the above class already

covers a variety of commonly used ansätze in which classical inputs are processed as rotation

angles, among them the hardware-e�cient ansatz [129]. For these encodings, we now study func-

tions fθ ∈ FQMLM, which by Eq. (4.1.1) can be written as fθ(x) = tr
[
M · TQMLM

x,θ ((|0⟩ ⟨0|)⊗n)
]

for some Hermitian n-qudit observable M .

By writing out the action of TQMLM
x,θ as dictated by the circuit structure and then iteratively

expanding in the eigenbases of the respective encoding Hamiltonians, Refs. [4, 127, 128] show

that any fθ ∈ FQMLM implemented by the PQC-based QML model can also be written as

fθ(x) =
∑

ω∈Ω
cω exp(−iω · x) , (4.2.4)

for some coe�cients (cω)ω∈Ω ⊆ C such that ∥f∥∞ ≤ ∥M∥. Here, ω · x denotes the standard

inner product between the vectors ω ∈ Rd and x ∈ [0, 2π)d, and Ω ⊆ Rd is the set of admissible

frequency vectors, which is determined by the spectra of the encoding Hamiltonians Hj . In

contrast, the coe�cients (cω)ω∈Ω depend on the choice of parameters θ, the measurement M ,

and on the eigenbases of the encoding Hamiltonians Hj . We will use the terminology of [4]
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and refer to Eq. (4.2.4) as the generalized trigonometric polynomial (GTP) representation of fθ.

Here, the �generalized� expresses that, when using Euler's formula to rewrite Eq. (4.2.4) in terms

of trigonometric functions, their arguments are of the form ω ·x with ω not necessarily a vector

with integer entries.

In [4, Section 3], we give a concrete prescription for how to obtain the frequency set Ω from

the encoding Hamiltonians Hj . While determining the exact coe�cients (cω)ω∈Ω when starting

from the PQC structure is challenging, the above GTP representation allows us to upper bound

the complextity of FQMLM by upper bounding the complexity of the superset of GTPs with

frequency spectrum Ω and in�nity norm bounded by ∥M∥. That is, we can focus our attention

on the class

FGTP :=

{
[0, 2π)d ∋ x 7→ f(x) =

∑

ω∈Ω
cω exp(−iω · x) | ∥f∥∞ ≤ ∥M∥

}
. (4.2.5)

Generalization Bounds for GTPs and PQCs: We give the following two complexity

bounds for FGTP in terms of the size of the admissible frequency spectrum:

Theorem 4.2.3 (Rademacher Complexity and Metric Entropy Bounds for GTPs [4, Lemmas 3

and 9]). Let d ∈ N≥1. Let FGTP be the hypothesis class de�ned in Eq. (4.2.5). Let m ∈ N≥1 and

x1, . . .xm ∈ [0, 2π)d.

1. The empirical Rademacher complexity of FGTP with respect to S|X := {x1, . . . ,xm} can be

upper-bounded as

R̂S|X (FGTP) ≤ C · (2π) d
2 ∥M∥ ·

√
|Ω| log(|Ω|)

m
, (4.2.6)

where C > 0 is some universal constant.

2. Let ε > 0. The empirical metric entropy of FGTP with respect to S|X := {x1, . . . ,xm} can

be upper-bounded as

log2N (FGTP, ∥·∥2,S|X , ε) ≤ C · |Ω| log
(
(2π)

d
2 ∥M∥ · |Ω|
ε

)
, (4.2.7)

where C > 0 is some universal constant.

To prove the Rademacher complexity bound, we show how to interpret FGTP as a class of

functions implemented by a simple classical neural network with a single hidden layer and with

trigonometric activation functions. For such an architecture, we can then bound the empirical

Rademacher complexity, here |Ω| acts as the number of neurons in the hidden layer. Our proof of

the empirical metric entropy bound relies on the insight that |Ω| limits the e�ective dimensionality

of FGTP. We make this intuitive statement formal by showing how to lift covering nets from an

object in a |Ω|-dimensional normed real vector space to obtain covering nets for FGTP.

Using the tools introduced in Chapter 3, namely Theorems 3.2.9 and 3.2.15, we can use the

complexity bounds of Theorem 4.2.3 to derive generalization bounds for classes of GTPs. As the

bounds in Theorem 4.2.3 crucially depend on |Ω|, the size of the admissible frequency spectrum,
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so do the resulting generalization error bounds. Namely, we obtain generalization guarantees

of the following type: A training data size scaling e�ectively as ∼ |Ω| log(|Ω|) is, with high

probability, su�cient for good generalization when using a QML model with a GTP hypothesis

class FGTP with frequency spectrum Ω. In this informal statement of the generalization bound,

we focus on the dependence on |Ω|. A more detailed statement, including the dependencies on

∥M∥ and d, can be found in [4, Theorems 6 and 10].

While the generalization error bounds just discussed apply to classes of GTPs, together with our

above observation the functions implemented by data re-uploading PQC-based QML models can

be understood as GTPs, they imply generalization bounds for variational QML. Importantly,

the |Ω|-dependence on the level of GTPs becomes a dependence on the classical-to-quantum

data-encoding strategy on the level of PQCs, since Ω is determined by the encoding Hamiltoni-

ans. Moreover, as we show in detail in [4, Section 6], for di�erent natural choices of encoding

Hamiltonians, |Ω| can be upper-bounded by an expression polynomial in the number of encoding

Hamiltonians appearing in the PQC. For example, if we restrict the set of possible encoding

Hamiltonians to Pauli strings, then |Ω| ≤
(
2N
d + 1

)d
, with N the number of encoding Hamiltoni-

ans. Thus, the generalization bounds proved in this subsection depend explicitly on architectural

properties of the data-encoding strategy, such as which encoding Hamiltonians are used and how

often they appear.

Outlook: Combining Di�erent Generalization Guarantees: In this Chapter, we have

described two di�erent routes towards understanding the generalization behavior of PQC-based

variational QML models, �rst via the trainable gates, then via the encoding gates. There is

a natural strategy for combining the two bounds obtained in this way, namely via a simple

union bound, as discussed in [4, Section 7]. In fact, given a countable number of generalization

bounds for the same class, we can always combine them using a union bound. In the case of

variational QML, such a reasoning e�ectively allows us to pick whichever generalization bound

among the trainable-gate-based or the encoding-gate-based on is stronger. This implies that

even a PQC-based model with many trainable gates can enjoy good generalization if it contains

only few encoding gates and vice versa. In particular, as soon as at least one among the number

of trainable gates or the number of encoding gates scales only polynomially with the number of

qudits, then training data of size scaling polynomially in the number of qudits will su�ce for

good generalization.

As a �nal comment for this chapter, we want to emphasize that this union bound-based reasoning

for obtaining generalization bounds that depend on both the trainable and the encoding part

of a PQC is only possible a posteriori, once separate generalization bounds for trainable and

encoding part are available. As such, this approach fails to take interactions between these two

parts into account. This points to a path for tightening our generalization guarantees: Instead of

studying separately the e�ects of the trainable gates and the encoding gates on the generalization

performance of the variational QML model, we may want to take both of them into account at

the same time. For example, studying the coe�cients (cω)ω∈Ω that can appear in the GTP

representation of functions implemented by a PQC-based model in more detail could be one way

of incorporating the trainable part into our reasoning for data re-uploading PQCs.
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Chapter 5

Learning from Quantum Data

In Chapter 4, we presented variational quantum machine learning as one con�uence of quantum

information theory and statistical learning theory. In particular, we saw that variational quantum

machine learning can be applied both to classical and quantum data. This chapter takes a

broader perspective on problems of learning from quantum data and explores the training data

requirements for two concrete tasks.

The chapter is subdivided into two parts. First, in Section 5.1, we consider a model of learning

classical functions from quantum superposition examples and discuss the speci�c case of learning

Boolean linear functions in more detail. Second, in Section 5.2, we turn our attention to tasks

of learning quantum processes from quantum data, with a focus on a toy model for learning

quantum state preparation procedures.

5.1 Learning Classical Concepts from Quantum Examples

A prominent line of research in quantum learning theory revolves around learning classical

Boolean functions assuming quantum data access. While such data access can come in di�erent

forms, among them quantum membership queries [130�132] and quantum statistical queries [133],

we focus on quantum superposition examples as introduced in [134] and refer the reader to the

survey [135] for an overview over other approaches.

Classically, as discussed in Chapter 3, given a data-generating distribution P ∈ Prob(X × Y)

for some input space X and output space Y, a training example (x, y) in statistical learning

theory is drawn at random according to the distribution P . If X = {0, 1}n for some n ∈ N≥1

and Y = {0, 1}, we take a quantum superposition example for P to be a pure quantum state of

the form

∑

x∈{0,1}n

∑

y∈{0,1}

√
P (x, y) |x, y⟩ , (5.1.1)

a superposition of computational basis states [134]. A corresponding quantum training data set

of size m is then given by the mth tensor power of the state in Eq. (5.1.1). In particular, for a

setting of realizable learning, where P ∈ Prob({0, 1}n) is a probability distribution over n-bit
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inputs and there is some (unknown) target function f∗ : {0, 1}n → {0, 1}, the corresponding

quantum superposition example is

|ψP,f∗⟩ :=
∑

x∈{0,1}n

√
P (x) |x, f∗(x)⟩ , (5.1.2)

and a quantum data set is again obtained by taking a tensor power of this state. Such quantum

examples are at least as information-theoretically powerful as their classical counterparts, since

we can generate a suitably randomly sampled classical example by performing a computational

basis measurement on the state in Eq. (5.1.1) or (5.1.2). However, it is a priori unclear whether

quantum superposition examples are strictly more powerful than classical examples and, if so,

for which tasks. And even if the physical plausibility of such quantum data is still a matter

of debate, compare the discussions in [136, 137], we can already investigate its potential and

limitations mathematically.

In the case of distribution-independent PAC learning, both agnostic and realizable, the series of

works [79, 138, 139] has shown that the sample complexities of learning from classical and from

quantum examples di�er by at most a constant factor. Both are characterized in essentially the

same way by the VC dimension of the hypothesis class under consideration. Therefore, when

trying to separate classical from quantum examples, we investigate distribution-dependent learn-

ing scenarios, in which the underlying distribution is known to the learner in advance. By now,

there are several results about advantages, both information-theoretical and computational, of

quantum over classical training data for distribution-dependent PAC learning [5, 11, 12, 14, 132,

134, 140�143]. Most of these works considered learning with respect to the uniform distribution,

i.e., with P (x) = 1/2n for all x ∈ {0, 1}n. In the remainder of this section, we discuss how

quantum Fourier sampling can serve as a useful tool for learning from quantum superposition

examples and present the concrete task of learning Boolean linear functions in more detail. For

both of these points, we will not restrict our attention to the uniform distribution, but allow for

more general biased product distributions.

Quantum Fourier Sampling as a Subroutine for Quantum Learning: Since the pio-

neering works [144, 145], Fourier analysis has played an important role in the learning theory of

Boolean functions. As nicely presented in [146, Chapter 3], recent decades have led to a variety

of insights into the complexity of the Fourier spectrum for certain classes of Boolean functions,

as well as into the resulting implications for learning theory. Here, we only partially review the

basics of Fourier analysis for Boolean functions and sketch some of its applications for learning

algorithms, with a particular emphasis on quantum learning.

Before beginning our short review, the material of which can be found in [146, Section 8.4],

we recall that equivalently to the view of Boolean functions as mapping elements of {0, 1}n to

{0, 1}, after the simple relabeling 0 → 1 and 1 → −1, we can regard them as mapping elements of

{−1, 1}n to {−1, 1}. The latter is the perspective on Boolean functions taken in our presentation

of Fourier analysis. We �rst de�ne the underlying probability distributions that we use:
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De�nition 5.1.1 (Biased Product Distributions). For a bias vector µ = (µ1, . . . , µn) ∈ [−1, 1]n,

we de�ne the corresponding µ-biased product distribution on {−1, 1}n via

Pµ(x) :=

n∏

i=1

1 + xiµi
2

, for x = (x1, . . . , xn) ∈ {−1, 1}n . (5.1.3)

Such a probability distribution now gives rise to an inner product on R{−1,1}n , de�ned as

⟨f, g⟩µ := Ex∼Pµ [f(x)g(x)] , for f, g : {−1, 1} → R . (5.1.4)

If we de�ne, for j = (j1, . . . , jn) ∈ {0, 1}n, the function

ϕµ,j : {−1, 1}n → R , ϕµ,j(x) =
∏

i:ji=1

xi − µi√
1− µ2i

, (5.1.5)

then the set {ϕµ,j}j∈{0,1}n forms an orthonormal basis for (R{−1,1}n , ⟨·, ·⟩µ). We can now expand

any Boolean function f : {−1, 1}n → {−1, 1} in terms of this ortonormal basis to obtain its µ-

biased Fourier expansion. That is, we de�ne the µ-biased Fourier coe�cients of f as

f̂µ(j) := Ex∼Pµ [f(x)ϕµ,j(x)] , (5.1.6)

so that f(x) =
∑

j∈{0,1}n f̂µ(j)ϕµ,j(x) holds for all x ∈ {−1, 1}n. We will refer to the collection

of µ-biased Fourier coe�cients as the µ-biased Fourier spectrum of f . If µ = 0 ∈ [−1, 1]n is

the zero vector, which means that Pµ is the uniform distribution over {−1, 1}n, we simplify

the notation for Fourier coe�cients as f̂(j) := f̂0(j). Notice that, for f : {−1, 1}n → {−1, 1},
Parseval's identity becomes

∑

j∈{0,1}n

(
f̂µ(j)

)2
= Ex∼Pµ [f(x)

2] = 1 , (5.1.7)

So, the squares of the µ-biased Fourier coe�cients form a probability distribution over the

Boolean hypercube {0, 1}n.
One way of connecting the notions of Fourier analysis introduced above to learning-theoretic

questions goes through the following elementary observation:

Lemma 5.1.2 ([144, Lemma 9]). If f : {−1, 1}n → {−1, 1} and g : {−1, 1} → R, then

Px∼Pµ [f(x) ̸= sgn(g(x))] ≤ Ex∼Pµ [(f(x)− g(x))2] =
∑

j∈{0,1}n

(
f̂µ(j)− ĝµ(j)

)2
. (5.1.8)

Here, sgn denotes the sign function, where 0 is assigned sign +1.

As a consequence of this Lemma, whenever we are able to approximate the µ-biased Fourier

coe�cients of an unknown Boolean function f , then we obtain a corresponding PAC approxima-

tion to f with respect to the 0-1-loss and the underlying distribution Pµ. In general, without

prior assumptions on the Fourier spectrum of f , this approach towards learning f requires us to

approximate an exponentially-in-n large number of Fourier coe�cients, and thus does not lead to
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an information-theoretically or computationally e�cient learning strategy. If, however, we know

a priori that the set of non-negligible Fourier coe�cients has small cardinality, the approach can

be more fruitful, especially if that set is known in advance.

Quantum Fourier sampling can serve as a subroutine for identifying the relevant Fourier coe�-

cients of an unknown Boolean function, assuming quantum example access. At the basis of this

approach lies the biased quantum Fourier transform, extending the standard quantum Fourier

transform [13]:

De�nition 5.1.3 (Biased Quantum Fourier Transform [14]). For n ∈ N≥1 and a bias vector

µ ∈ (−1, 1)n, the n-qubit µ-biased quantum Fourier transform Hn
µ acts on a computational basis

state |x⟩ with x ∈ {−1, 1}n as

Hn
µ |x⟩ :=

∑

j∈{0,1}n

√
Pµ(x)ϕµ,j(x)|j⟩ . (5.1.9)

Armed with the unitary Hn
µ, we can describe the procedure for µ-biased quantum Fourier

sampling: Given a quantum example |ψPµ,f ⟩ :=
∑

x∈{−1,1}n
√
Pµ(x) |x, f(x)⟩ of a function

f : {−1, 1}n → {0, l} � this is the same as in Eq. (5.1.2) up to a relabeling of inputs � we apply

Hn
µ to the �rst n-qubits and H := H1

0 to the last qubit, and then measure all n+1 qubits in the

computational basis. When following this prescription, the output is as follows:

Lemma 5.1.4 ([14, Lemma 3]). When performing µ-biased quantum Fourier sampling on a

quantum example |ψPµ,f ⟩ :=
∑

x∈{−1,1}n
√
Pµ(x) |x, f(x)⟩ of a function f : {−1, 1}n → {0, l},

we observe the measurement outcome 1 for the last qubit with probability 1
2 . Conditioned on

that event, we observe outcome j ∈ {0, 1}n for the �rst n qubits with probability (ĝµ(j))
2, where

g : {−1, 1}n → {−1, 1} is de�ned as g(x) = (−1)f(x).

Hence, as its name suggests, µ-biased quantum Fourier sampling indeed allows us to sample

from the probability distribution formed by the squares of µ-biased Fourier coe�cients of the

unknown function, assuming access to quantum superposition examples. In particular, repeating

this sampling with multiple quantum examples, we can identify the non-negligible Fourier coef-

�cients of the unknown function, thereby achieving an important �rst step for a Fourier-based

learning strategy. Notably, classical Fourier sampling from an unknown Boolean function via

the Goldreich-Levin algorithm [147] works on the basis of membership access, whereas quantum

example access is su�cient for quantum Fourier sampling.

Learning Boolean Linear Functions From Quantum Examples: Learning strategies

based on quantum Fourier sampling have proven useful for a variety of function classes, among

them disjunctive normal forms [14, 134, 140] and Fourier-sparse functions [132]. In addition,

and interestingly from a cryptographic perspective, Fourier-based quantum learning has suc-

cessfully been used for exactly learning Boolean linear functions with respect to the uniform

distribution [13], even from noisy quantum data [11, 12, 142]. Here, we take exact learning

of Boolean linear functions as an example to analyze the possible advantage of quantum over

classical examples as the underlying distribution deviates from uniformity.
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A Boolean linear function described by a bit string a ∈ {0, 1}n is de�ned as

f (a) : {−1, 1}n → {0, 1}, f (a)(x) :=
n∑

i=1

ai
1− xi

2
(mod 2). (5.1.10)

When the underlying distribution is uniform, the Fourier spectrum of a Boolean linear function

is particularly simple. Namely, for g(a) : {−1, 1}n → {−1, 1} de�ned as g(a)(x) = (−1)f
(a)(x) we

have ĝ(a)(j) = δa,j for j ∈ {0, 1}n. In particular, as observed in [13], a single successful run of

unbiased quantum Fourier sampling on a quantum example state of an unknown Boolean linear

function su�ces to identify the unknown string a exactly. Here, we speak of a successful run

if the measurement outcome observed for the last qubit is 1. As a single run is successful with

probability 1/2, this observation implies:

Lemma 5.1.5. Let δ ∈ (0, 1). In the case of no bias, that is µ = 0 ∈ [−1, 1]n, if a ∈ {0, 1}n
is an unknown n-bit string, O (log2 (1/δ)) quantum examples |ψP0,f (a)⟩ of f (a) su�ce to exactly

identify a, with probability ≥ 1− δ.

Interestingly, the upper bound on the su�cient training data size in Lemma 5.1.5 is independent

of n. In contrast, solving the analogous classical learning problem � that is, exactly identifying an

unknown a ∈ {0, 1}n from classical training examples (x1, f
(a)(x1)), . . . , (xm, f

(a)(xm)), with

the xi drawn i.i.d. from the uniform distribution over {−1, 1}n � requires a training data size

of m = Ω(n). This well-known fact can, e.g., be proven through information-theoretic consid-

erations, compare [5, Theorem 5]. Therefore, for the problem of exactly learning an unknown

Boolean linear function with respect to the uniform distribution, quantum superposition exam-

ples provide an information-theoretic advantage over classical examples: Whereas the classical

sample complexity depends linearly on n, the quantum sample complexity is independent of n.

This advantage quite directly translates into a similar one in terms of computational complexi-

ties. And while the classical version of the problem can be solved using O(n) examples and thus

e�ciently, this simple quantum speedup and its relatives can o�er us further insight into the

power of quantum examples.

A variant of the problem of learning linear functions, the so-called �Learning With Errors (LWE)�

problem, or more precisely its assumed hardness, is important for cryptographic purposes [148].

Classically, in LWE for bits � in which case the problem is also referred to as �Learning Parity

With Noise (LPN)� �, training data takes the form {(xi, f
(a)(xi) + ei)}mi=1, where the xi are

drawn i.i.d. uniformly at random from {−1, 1}n, a ∈ {0, 1}n is an unknown (possibly also

randomly chosen) bit string to be identi�ed, and the ei are noise terms drawn i.i.d. from some

error distribution over {0, 1}. While classical algorithms for LPN and LWE with sub-exponential

sample and/or time complexity have been proposed [149�151], no polynomial-time algorithm is

known. In contrast, as demonstrated by [11, 12, 142], even noisy quantum algorithms still allow

for simple e�cient Fourier-based quantum learning algorithms. Here, in the interest of brevity

of presentation, we reproduce an informal statement from [12] in a simpli�ed form:

Theorem 5.1.6 ([12, Main Result (Informal)]). For error distributions used in cryptographic

schemes, and for any δ ∈ (0, 1), there exists a Fourier-based quantum learning algorithm that
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solves LWE with probability ≥ 1− δ using O (n log2 (1/δ)) noisy quantum examples and that runs

in time poly (n, log2 (1/δ)).

Thus, when adding noise the quantum examples, quantum Fourier sampling still proves to be

a powerful tool for learning Boolean linear functions, even if the sample and time complexity

bounds now become n-dependent.

In [5], we explored how the sample and time complexities, both for the noiseless and for the noisy

case, change if the underlying distribution is no longer uniform but can be a general biased prod-

uct distribution. Importantly, if the underlying distribution is biased, the correspondingly biased

Fourier spectrum of a linear function is no longer a simple delta function. However, as we show

in [5, Lemma 4], also the biased Fourier spectrum has a distinct structure, which can be exploited

to generalize the Bernstein-Vazirani algorithm to the biased case, compare [5, Algorithm 2]. If

the bias is small enough, this leads to a quantum learning algorithm that essentially recovers the

n-independent sample complexity upper bound of O (log2 (1/δ)) of the unbiased case [5, Theorem

3]. Even for larger bias, as long as no input bit is fully biased to ±1, the generalized version of

Bernstein-Vazirani can serve as the basis of a quantum exact learner for linear functions, then

again with a sample complexity upper bound polylogarithmic in n [5, Theorem 4]. In the case of

large bias, such a polylogarithmic dependence cannot be avoided [5, Theorem 6]. For small bias,

we additionally show that linear functions can be learned from noisy quantum examples with a

sample complexity that depends polylogarithmically on n, under a certain structural assump-

tion on the noise model [5, Appendix A.1]. This strengthens the case for noise-robustness of

Fourier-based quantum learning, providing a better bound than Theorem 5.1.6 for more general

distributions under slightly more restrictive noise models. Moreover, our results in [5] provide

quantitative insight into how the power of quantum superposition examples depends on the

superposition weights.

5.2 Learning State Preparation Procedures from Quantum Data

In the framework of Section 5.1, the training data was quantum, but the object to be learned

was still a classical function. This section now considers learning settings in which the object to

be learned is itself quantum, which makes it natural to let the data and learning algorithms be

quantum as well.

To describe such a quantum learning problem, we imagine an unknown physical process as the

object to be learned. According to the mathematical framework introduced in Chapter 2, we

can thus think of an unknown CPTP map as the target object of learning. We can now consider

di�erent scenarios of obtaining information about the unknown process. For example, in the

spirit of Chapter 3, we might describe models of learning a CPTP map from data consisting of

randomly sampled quantum input-output examples, as in [3, 152]. However, we can also consider

scenarios of learning from queries, in which a learner can query the unknown map multiple times

and we allow queries and the processing thereof to be adaptively chosen depending on previous

steps of the protocol. Scenarios like this were explored in [153�158].

These di�erent formulations of quantum learning models raise new questions beyond those com-

mon in classical learning theory. On the one hand, we have to physically justify the form of
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training data. For instance, as discussed in [152], due to the no-cloning theorem for quantum

states, not in all scenarios of randomly sampled examples is it reasonable to assume that a

learner has access to both quantum input and quantum output states at the same time. To

avoid this issue, [3, 152] take examples consisting of a classical description of an input state and

an actual quantum copy of the corresponding output state. On the other hand, novel quantum

learning scenarios also allow for qualitatively di�erent kinds of learning algorithms. Naturally,

simple semi-classical procedures, in which each quantum example is measured separately and the

observed measurement outcomes are processed classically, are possible. However, when learning

from randomly sampled quantum examples, we can also allow for quantum learners that mea-

sure multiple quantum examples simultaneously. And if we have query access to an unknown

CPTP map, quantum information theory also allows for quantum learning procedures that can

potentially make use of entanglement through coherent processing of quantum data, as empha-

sized in [153, 154]. Both of these kinds of quantum processing hinge on the assumption that the

learner has access to a quantum memory, the importance of which was pointed out in [155�157].

Given this, for inherently quantum learning problems, it is of particular interest whether the

qualitative di�erences between learning strategies, such as coherent versus incoherent access

or quantum versus classical memory, translate to quantitative di�erences in terms of sample

and/or computational complexity. E�ectively, this is the question of whether quantum learning

algorithms have an advantage over classical learners for naturally quantum learning tasks. Before

discussing this question by way of a concrete example, we shortly review some recent results in

this line of research.

Independently, both [153] and [154] presented a general framework for investigating the power

of coherent quantum data access learning from physical experiments. [153, Theorem 1] presents

a limitation on the potential improvement in query complexity when going from incoherent to

coherent access for tasks in which the focus is on a kind of average-performance. However, [153,

Theorems 2 and 3] show an exponential sample complexity advantage of coherent over incoherent

processing for predicting expectation values of Pauli observables in a worst-case model. And [154,

Theorem 1] establishes a similar exponential advantage for a speci�c problem of distinguishing

two di�erent physical processes. This line of work was continued by [155], who highlighted the

relevance of the availability of quantum memory. In particular, [155] proposed a novel proof

strategy leading to generalizations of the separation results of [153, 154] and to similarly strong

separations for further tasks. In addition, [156] analyzed separations arising from di�erences in

the number of quantum copies that can be measured simultaneously. Finally, the results of [157]

demonstrate that machine learning models enhanced with coherent access to data from quantum

experiments and with a quantum memory can signi�cantly outperform their (semi-)classical

counterparts already in the NISQ era.

Learning State Preparation Procedures � A Toy Model: To complement the general

deliberations above, here we investigate a concrete task of learning from quantum data, with the

goal of determining its sample complexity and an optimal learning algorithm. As a �rst step

in �quantizing� a classical learning problem, where both the inputs and outputs are classical,

we consider learning maps with classical input and quantum output. Physically, such a map
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corresponds to a state preparation procedure: Given a choice of classical parameters, which

we can for example think of as modi�able elements in an experimental setup, a corresponding

quantum state is prepared. The goal of a quantum learner in such a model is then, given training

data consisting of classical inputs and the corresponding quantum output states, to �nd a state

preparation procedure that mimics the action of the unknown one. Next we describe a toy model

for such a learning task in more detail and characterize its sample complexity.

Recall that in classical binary classi�cation, the output space is Y = {0, 1} and a possible

loss function is the 0-1-loss. To de�ne our quantum version of binary classi�cation, we instead

consider an output space Y = {σ0, σ1}, where σ0, σ1 ∈ S(Cd) are qudit quantum states. The

input space is some classical space X . As the target space is still a binary one, the 0-1-loss is

again a reasonable choice of loss function. For our purposes, it is natural to rescale the loss

according to the distinguishability of the two label states as measured by their trace distance.

That is, we take as loss function

ℓ : Y × Y → R≥0, ℓ(ρ1, ρ2) :=
∥σ0 − σ1∥1

2
· δρ1,ρ2 =

∥ρ1 − ρ2∥
2

. (5.2.1)

Therefore, for a data distribution P ∈ Prob(X × {σ0, σ1}) and a hypothesis h : X → {σ0, σ1},
the expected risk is

R(h) =

∫

X×Y

∥ρ− h(x)∥1
2

dP (x, ρ) . (5.2.2)

And the empirical risk of h on a training data set S = {(xi, ρi)}mi=1 ⊆ X × {σ0, σ1} is given as

R̂S(h) :=
1

m

m∑

i=1

∥ρi − h(xi)∥1
2

. (5.2.3)

The above setup strongly resembles that of classical statistical learning established in Chapter 3.

The crucial di�erence lies in the fact that the quantum label states ρi in a training data set

S = {(xi, ρi)}mi=1 are provided as actual quantum states. In particular, given such data, a

learner obtains a single quantum copy of each ρi. If σ0 and σ1 are not perfectly distinguishable,

such a single copy is not su�cient to discern with certainty whether ρi equals σ0 or σ1. Instead,

a learner has to process the quantum training data and then extract information through a

measurement.

As the main result of [3], we characterize the sample complexity of this task of binary classi�cation

with classical instance and quantum labels. For agnostic learning, we obtain the following:

Theorem 5.2.1 ([3, Corollary 1]). Let σ0, σ1 ∈ S(Cd) be distinct. Let F ⊆ {σ0, σ1}X be a

non-trivial hypothesis class. De�ne F̃ := {f̃ : X → {0, 1} | ∃f ∈ F : f(x) = σf̃(x) ∀x ∈ X}, and
assume that VCdim(F̃) <∞. Let ℓ : {σ0, σ1}×{σ0, σ1} → R≥0 be the trace distance loss de�ned

as ℓ(ρ1, ρ2) :=
∥ρ1−ρ2∥

2 . Then, for every P ∈ Prob(X × {σ0, σ1}) and for every ε ∈ (0, ∥σ0−σ1∥/8)

and δ ∈
(
0, 1− 1

4 log2(
1
4)− 3

4 log2(
3
4)
)
, a sample size

m = m(ε, δ) = C · VCdim(F̃) + ln (1/δ)

ε2
, (5.2.4)
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where C > 0 is a universal constant, is su�cient to guarantee: With probability ≥ 1− δ over the

choice of a training data set S = {(xi, ρi)}mi=1 consisting of m examples drawn i.i.d. according to

P ,

sup
h∈F

|R(h)− R̂S(h)| ≤ ε . (5.2.5)

In addition, a sample size as in Eq. (5.2.4) (but with a di�erent constant prefactor) is also

necessary.

This agrees with the sample complexity for agnostic classical binary classi�cation, compare

Eq. (3.2.3). In the realizable case, we show in [3] that a sample size of

m = m(ε, δ) = C · VCdim(F̃) + ln (1/δ)

ε(1− 2max{tr[E0σ1], tr[E1σ0]})2
, (5.2.6)

with {E0, E1} the Holevo-Helstrom measurement achieving the optimal success probability in

distinguishing σ0 from σ1, su�ces for (improper) PAC learning, and that a sample size of

m = m(ε, δ) = C · VCdim(F̃) + ln (1/δ)

ε
(5.2.7)

is also necessary. Thus, despite the quantum nature of the labels, the sample complexities for

agnostic and realizable PAC binary classi�cation remain essentially unchanged compared to the

classical case, they are again determined by the VC dimension of the hypothesis class.

To prove the sample complexity upper bounds, in [3] we describe semi-classical learning proce-

dures for which the sample sizes are su�cient, proceeding as follows: First, the learner measures

each quantum label separately using the Holevo-Helstrom measurement for {σ0, σ1}, thereby
producing a classical training data set S̃ with labels in {0, 1}. We can interpret S̃ as a noisy

version of a �true� training data set, with the noise induced by the measurement. Second, the

learner uses S̃ as input to a classical algorithm for learning from noisy data. In the agnostic

case, the latter is simply empirical risk minimization, albeit with a modi�ed loss function to

account for the noise. For the realizable scenario, we combine techniques of [51, 159] to develop

an information-theoretically optimal classical learner from noisy data. The sample complexity

lower bounds are established by relating the respective learning problem to a quantum state

discrimination task, the sample complexity of which we analyze information-theoretically.

The proofs of these results establish an additional insight beyond the bounds themselves. Namely,

they show that no coherent processing of the quantum data is needed to achieve the optimal

sample complexity for binary classi�cation with classical instances and quantum data. For this

speci�c task, this strengthens a result of [153], which for our purposes guarantees that the optimal

achievable sample complexities of coherent and incoherent procedures for binary classi�cation

with classical instances and quantum labels di�er at most by a factor polynomial in log2(d).

Moreover, our proofs demonstrate that it is not necessary for a quantum learner to receive a

whole classical-quantum training data set at once, the examples can also be provided one after

the other if the learner stores each measurement result in a classical memory. In the language

of [155], no quantum memory is needed to achieve information-theoretic optimality here. We
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note, however, that these results depend on our implicit assumption that a quantum learner

knows a priori which label states σ0 and σ1 can appear.

In this chapter, we have demonstrated that, beyond the quantum computing-based models

for classical machine learning discussed in Chapter 4, quantum information theory allows for

inherently quantum learning problems. Interestingly, recent works such as [155, 157] pose

tasks of learning from data generated through quantum experiments as promising candidates

for information-theoretic and computational advantages of quantum over classical computing.

However, as a consequence of the results of [79] and [153], an information-theoretic quantum

advantage is not automatically possible, but the potential for it depends on di�erent features of

the learning problem, such as distribution-independent versus distribution-dependent or average-

case versus worst-case. The results of this chapter add to this in two ways: On the one hand, in

learning from quantum superposition examples, the underlying distribution in�uences the possi-

ble quantum advantage quantitatively. On the other hand, in learning simple state preparation

procedures, the possible advantage of coherent quantum over incoherent semi-classical learning

strategies can vanish.
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Chapter 6

Quantum (Non-)Markovianity

In Chapters 4 and 5, we have discussed di�erent questions of learning from data in the framework

of quantum information theory. For this learning-theoretic perspective, we implicitly presuppose

the usefulness of available data for making the predictions of interest. However, when the goal

is to predict the future, data about the present-to-future evolution does not necessarily su�ce.

As an example, consider the following thought experiment: At time t = −2, a bipartite product

input quantum state ρAB = ρA ⊗ ρ̃B is provided. Next, at t = −1, a measurement {Ei}i
is performed on the B-subsystem, the post-measurement state is discarded, and the observed

outcome i∗ is recorded in a classical memory that the learner cannot access. Thus, the quantum

state at the time t = 0, viewed from the perspective of the learner, is ρA. Finally, at t = 1,

depending on the outcome i∗ stored in the classical memory, a quantum channel Ti∗ is applied

to the A-system, leading to an output state Ti∗(ρA). A learner, classical or quantum, that has

access only to snapshots of the A-subsystem at times t = 0 and t = 1, sees data consisting of

pairs of the form (ρA, Ti∗(ρA)). Now, if in a new run of the experiment the learner is confronted

with an �input� state σA at the present time t = 0, she cannot reliably predict the corresponding

future �output� state at t = 1, because the correct output depends on information lying further

in the past than accessible through the data.

In this example, data about the present-to-future evolution is not enough to make predictions

about the future. The use of a classical memory in the overall evolution from t = −2 to t = 1

leads to a direct dependence of the future (t = 1) on the past (t = −2,−1), thereby limiting the

usefulness of information about the present-to-future (t = 0 to t = 1) evolution. This problem

does not occur if we consider a memoryless evolution, in which the future depends on the past

only through the present. In this sense, memorylessness, also called Markovianity, is important

for guaranteeing that certain tasks of extracting information from data in quantum experiments

are well-posed.

Motivated by this perspective on Markovianity as potential underlying justi�cation for the use-

fulness of data in quantum experiments, in Section 6.1, we review �nite-dimensional quantum

dynamical semigroups as a strong notion of Markovianity for the continuous-time evolution of a

quantum system. Next, we discuss a relaxation of this notion in terms of in�nitesimal Marko-

vian divisibility in Section 6.2. We conclude the chapter by extending the framework of quantum

dynamical semigroups to quantum superchannels in Section 6.3.
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6.1 Quantum Dynamical Semigroups

Continuous one-parameter semigroups serve as a traditional mathematical framework for time-

homogeneous Markovian evolutions in continuous time:

De�nition 6.1.1 (Continuous One-Parameter Semigroup). A family (Tt)t≥0 of linear maps

Tt ∈ B(Cd) forms a continuous one-parameter semigroup if

(i) Tt+s = TtTs for all s, t ≥ 0,

(ii) T0 = 1d, and

(iii) the map R≥0 ∋ t 7→ Tt ∈ B(Cd) is continuous.

In De�nition 6.1.1, property (i) captures both Markovianity and time-homogeneity. It describes

a Markovian evolution because, for any 0 ≤ s ≤ t and any input x ∈ Cd, we can obtain Tt(x),

the output after time t, by processing Ts(x), the output after time s, via the map Tt−s. And

it describes a time-homogeneous evolution in the sense that the evolution from time s to time

t ≥ s depends only on the time di�erence t− s. Properties (ii) and (iii) formalize the physically

motivated intuitions that no non-trivial evolution takes place at time 0 and that the evolution

depends continuously on time

Note also that, in property (iii) of De�nition 6.1.1, we de�ne continuity with respect to the

topology on B(Cd) induced by the operator norm, the topology of uniform convergence, (and

with respect to the standard topology on R). From a functional analytic perspective, strong

convergence gives rise to a natural alternative topology on B(Cd). In �nite dimensions, the

notions uniform and strong convergence coincide. Thus, we can work with uniform convergence

without much need for justi�cation. We will comment on generalizations to in�nite dimensions

only shortly towards the end of this section.

A crucial tool in studying continuous one-parameter semigroups are their generators:

Theorem 6.1.2 (Generators of Continuous One-Parameter Semigroups). Let (Tt)t≥0 be a contin-

uous one-parameter semigroup of linear maps Tt ∈ B(Cd). Then, the map R>0 ∋ t 7→ Tt ∈ B(Cd)

is di�erentiable. Moreover, there exists a linear map L ∈ B(Cd) such that Tt = etL for all t ≥ 0.

We call L the generator of (Tt)t≥0.

Proof sketch. Continuity of t 7→ Tt, together with T0 = 1d being invertible, by openness of the set

of invertible linear maps in B(Cd), equipped with the operator norm, implies thatMτ :=
∫ τ
0 Ts ds

is invertible for τ > 0 small enough. And since Mτ is de�ned in terms of an integral, the

map τ 7→ Mτ is di�erentiable. Now, observing that, by property (i), Tt can be rewritten as

Tt =M−1
τ (Mt+τ −Mt), t 7→ Tt is di�erentiable as a composition of di�erentiable maps.

Moreover, this representation of Tt, via the fundamental theorem of calculus and property (i) in

De�nition 6.2.2, implies that d
dtTt = M−1

τ (Tτ − 1d)Tt. Hence, de�ning L := M−1
τ (Tτ − 1d), the

continuous one-parameter semigroup satis�es the di�erential equation d
dtTt = LTt with initial

condition T0 = 1d. This has the unique solution Tt = etL, t ≥ 0.

Theorem 6.1.2 and its proof show us an alternative perspective on continuous one-parameter

semigroups (Tt)t≥0 in terms of a di�erential equation d
dtTt = LTt, T0 = 1d, where L generates
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the semigroup. On this level, the Markovianity of the evolution is re�ected by the fact that d
dtTt

depends only on Tt, not on earlier times. Similarly, the time-independence of the generator L

captures the time-homogeneity of the evolution.

So far, we have considered continuous one-parameter semigroups for general linear maps. Now,

we focus on quantum dynamical semigroups, the case particularly relevant when considering the

evolution of quantum systems:

De�nition 6.1.3 (Quantum Dynamical Semigroups). A one-parameter family (Tt)t≥0 of linear

maps Tt ∈ B
(
B(Cd)

)
forms a quantum dynamical semigroup in the Schrödinger picture if

(i) Tt is CPTP for all t ≥ 0,

(ii) Tt+s = TtTs for all s, t ≥ 0,

(iii) T0 = idB(Cd), and

(iv) the map R≥0 ∋ t 7→ Tt ∈ B
(
B(Cd)

)
is continuous.

In other words, in the Schrödinger picture, a quantum dynamical semigroup is a continuous

one-parameter semigroup (Tt)t≥0 of linear CPTP maps Tt ∈ B
(
B(Cd)

)
. Naturally, to obtain the

Heisenberg picture analogon of this de�nition, we have to replace CPTP by CPU.

By Theorem 6.1.2, we know that we can understand quantum dynamical semigroups in terms

of their generators. In a seminal result for the study of Markovian quantum evolutions, these

generators have been fully characterized:

Theorem 6.1.4 (GKLS/Lindblad Generators [15, 16]). A linear map L ∈ B
(
B(Cd)

)
is the

generator of a continuous one-parameter semigroup of CP maps if and only if it can be written

as

L(ρ) = Φ(ρ)−Kρ− ρK† , (6.1.1)

where Φ ∈ B(B(Cd)) is a CP map and K ∈ B(Cd) is arbitrary. Moreover, L is the generator of

a quantum dynamical semigroup (in the Schrödinger picture) if and only if it can be written in

the form of Eq. (6.1.1) with Φ∗(1d) = 2Re(K). This is equivalent to L being representable as

L(ρ) = i[ρ,H] +
∑

j

LjρL†
j −

1

2
{L†

jLj , ρ} , (6.1.2)

where H = H† ∈ Md is self-adjoint and {Lj}j is a set of matrices in Md. Here, {·, ·} denotes

the anti-commutator. We call such generators GKLS or Lindblad generators.

Remark 6.1.5. We shortly mention two in�nite-dimensional generalizations of the results pre-

sented in this section. First, while we state Theorem 6.1.2 only in �nite dimensions, it is more

generally true that a uniformly continuous one-parameter semigroup of bounded linear maps on

a Banach space admits a bounded generator [see, e.g., 160, Theorem I.3.7]. Indeed, even when

we relax the continuity assumption from uniform to strong continuity, there still exists a closed

and densely de�ned generator [see, e.g., 160, Theorem II.1.4].
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Second, [16, Theorem 2] also contains in�nite-dimensional analogues of Theorem 6.1.4. [16] char-

acterized the bounded generators of uniformly continuous one-parameter semigroups of CPTP

maps in the Schrödinger picture- In the Heisenberg picture, [16] established such a characteriza-

tion under the additional assumption that all elements of the respective semigroup are normal

CPU maps, i.e., CPU maps that are ultraweakly continuous.

As norm-continuous one-parameter semigroups are determined by their generators according to

Theorem 6.1.2, it is tempting to see Theorem 6.1.4, with its characterization of these generators in

the case of quantum dynamical semigroups, as providing a complete mathematical understanding

of time-homogeneous Markovian quantum evolutions (at least in continuous time). However,

there are interesting questions that Theorem 6.1.4 alone does not answer satisfactorily.

Concretely, consider the following task: Given a CPTP map T ∈ CPT Pd, decide whether T

is a member of some quantum dynamical semigroup. From the GKLS representation, we get

an �answer� to this problem: T ∈ CPT Pd is a member of some quantum dynamical semigroup

if and only if there exists a Lindblad generator L as in Eq. (6.1.2) such that T = eL. While

mathematically valid, this statement is practically useful only if there is an e�cient procedure

for deciding the existence of such a Lindblad generator. [161] showed that a rigorous version of

this decision problem is hard in general, in fact NP-hard, as the system size grows. However,

for a �xed system dimension d, we can determine whether a CPTP map T ∈ CPT Pd can be

written approximately written as an exponential of a Lindblad generator e�ciently in the desired

accuracy [161, 162]. Therefore, for near-term quantum architectures, in which we can often

e�ectively assume the system dimension to be a small constant, we can �t Lindblad generators

to data gathered from quantum process tomography at a single point in time [162, 163].

The task of �nding a best-�t Lindblad generator to a given CPTP map thus serves as an example

of a computationally, mathematically, and physically fruitful problem in quantum Markovianity

beyond the GKLS characterization. As a further natural question, we might ask for an under-

standing of Markovian quantum evolutions that need not be time-homogeneous, thereby leaving

the framework of semigroups. Motivated by these and other questions, several di�erent notions

relating to quantum Markovianity have been introduced. Many of them are related to divisibil-

ity, originating from [10], or to in�nitesimal deviations from complete positivity [164]. Others

consider non-increasing distinguishability and (the lack of) quantum information back�ow [165,

166]. Several review papers discuss the relations between these notions [166�169] and reiterat-

ing these connections is beyond the scope of this thesis. Rather, in Section 6.2, we explore the

divisibility-based approach initiated by [10] in more detail.

6.2 In�nitesimal Markovian Divisible Quantum Channels

As discussed in the previous section, quantum dynamical semigroups model time-homogeneous

Markovian quantum evolutions. We have seen that they correspond to solutions of so-called

master equations, i.e., di�erential equations d
dtTt = LTt, T0 = 1d, with L a Lindblad generator.

Now, a natural way of dropping the assumption of time-homogeneity is to consider solutions

of di�erential equations d
dtTt = LtTt, T0 = 1d, where Lt is a Lindblad generator that depends

continuously on the time t. This serves as our motivation for the following de�nition:
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De�nition 6.2.1 (In�nitesimal Markovian Divisibility of Quantum Channels [10]). De�ne the

set Id ⊂ CPT Pd as

Id :=
{
T ∈ CPT Pd | ∀ε > 0 ∃n ∈ N, Lindblad generators {Lj}nj=1 (6.2.1)

s.t. (i)
∥∥eLj − 1d

∥∥ ≤ ε ∀j and (ii)
n∏

j=1

eLj = T
}
. (6.2.2)

We call the (operator norm-)closure Id the set of in�nitesimal Markovian divisible quantum

channels (on qudits).

Note that De�nition 6.2.1 encompasses quantum dynamical semigroups in the following sense:

If T ∈ CPT Pd is an element of a quantum dynamical semigroup, then in particular T ∈ Id.
Reference [10] provided some general insight into the structure of in�nitesimal Markovian di-

visible quantum channels and completely characterized them in the qubit case. However, the

only necessary criterion for a higher-dimensional quantum channel to be in�nitesimal Marko-

vian divisible observed in [10] was non-negativity of the determinant. This follows immediately

from De�nition 6.2.1 using continuity and multiplicativity of the determinant. In Core Article

II [2], we complement this by showing that in�nitesimal Markovian divisibility also implies upper

bounds on the determinant in terms of products of smallest singular values. There, we consider

notions of Markovian divisibility and in�nitesimal Markovian divisibility for linear maps and

general (compact and convex) sets of generators:

De�nition 6.2.2 (Markovian Divisibility [2, De�nition III.1]). Let G ⊂ B(Cd) be a set of bounded

linear maps, whose elements we call generators. We de�ne the set

DG := {T ∈ B(Cd) | ∃n ∈ N, generators {Gi}1≤i≤n ⊂ G s.t.
n∏

i=1

eGi = T} . (6.2.3)

We call the closure DG the set of linear maps that are Markovian divisible w.r.t. G.

De�nition 6.2.3 (In�nitesimal Markovian Divisibility [2, De�nition III.2]). Let G ⊂ B(Cd) be

a compact and convex set of bounded linear maps containing 0 ∈ B(Cd). We will again refer to

elements of G as generators. We de�ne the set

IG := {T ∈ B(Cd) | ∀ε > 0 ∃n ∈ N, generators {Gj}1≤j≤n ⊂ G (6.2.4)

s.t. (i)
∥∥eGj − 1d

∥∥ ≤ ε ∀j and (ii)
n∏

j=1

eGj = T} . (6.2.5)

We call the closure IG the set of linear maps that are in�nitesimal Markovian divisible w.r.t. G.

As explained in Remark III.3 of Core Article II [2], if we choose G to be the set of Lindblad

generators on B(Cd) with norm bounded by some strictly positive constant, then Id = DG = IG .

That is, we recover the notion from De�nition 6.2.1.

In the �rst of the two main results of Core Article II [2], we show how to exploit majorization

inequalities from matrix analysis together with Trotterization to prove the following result:
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Theorem 6.2.4 ([2, Corollary IV.6]). Let G ⊂ B(Cd) be a compact and convex set of bounded

linear operators containing 0 ∈ B(Cd). Let G̃ := {λG | λ ∈ [0, 1], G an extreme point of G} ⊂ G.
Assume that every G̃ ∈ G̃ satis�es tr[G̃ + G̃∗] − p

k∑
i=1

λ↑i (G̃ + G̃∗) ≤ 0. Let T ∈ IG. Then

0 ≤ det(T ) ≤
(

k∏
i=1

s↑i (T )
)p

.

Theorem 6.2.4 allows us to derive upper bounds on the determinant of an in�nitesimal Markovian

divisible map from certain spectral properties of the real parts of admissible generators. A similar

result also holds for elements of DG [2, Theorem IV.5].

As our second central result in Core Article II [2], we prove that the real parts of Lindblad gen-

erators satisfy eigenvalue inequalities as needed in Theorem 6.2.4 when choosing the parameters

(p, k) = (d/2, 1) or (p, k) = (1, ⌊2d−2
√
2d+1⌋) [2, Lemmas IV.7 and IV.14]. Combining this with

Theorem 6.2.4, we obtain the following necessary criteria for in�nitesimal Markovian divisibility

of quantum channels:

Corollary 6.2.5. Let T ∈ Id. Then we have

0 ≤ det(T ) ≤ min




(
s↑1(T )

) d
2
,

⌊2d−2
√
2d+1⌋∏

i=1

s↑i (T )



 . (6.2.6)

Corollary 6.2.5 shows that singular value inequalities can serve as a tool for detecting �quantum

Non-Markovianity� in the sense of a quantum channel not being in�nitesimal Markovian divisible.

They may also provide some guidance to an eventual characterization of in�nitesimal Markovian

divisible quantum channels beyond the qubit case.

In this section, we have discussed in�nitesimal Markovian divisibility as an approach towards

time-inhomogeneous quantum Markovianity. This generalizes the notion of quantum dynamical

semigroups of quantum channels. The next section discusses a di�erent extension of the frame-

work of Section 6.1 by turning our attention from quantum channels to quantum superchannels.

6.3 Quantum Dynamical Semigroups of Quantum Superchannels

With the interest in higher-order quantum operations growing in recent years, and quantum

Markovianity being an important topic in the study of �regular� quantum operations, it becomes

natural to investigate Markovianity in higher-order quantum theory. As a �rst step in this

direction, we go beyond quantum channels to quantum superchannels and consider continuous

one-parameter semigroups thereof:

De�nition 6.3.1 (Quantum Dynamical Semigroups of Superchannels [8]). A family (T̂t)t≥0 of

linear maps T̂t : B(B(CdA);B(CdB )) → B(B(CdA);B(CdB )) forms a quantum dynamical semi-

group of superchannels in the Schrödinger picture if

(i) T̂t is a quantum superchannel (according to De�nition 2.3.1) for all t ≥ 0,

(ii) T̂t+s = T̂tT̂s for all s, t ≥ 0,
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(iii) T̂0 = idB(B(CdA );B(CdB )), and

(iv) the map R≥0 ∋ t 7→ T̂t ∈ B(B(B(CdA);B(CdB ))) is continuous.

Again by Theorem 6.1.2, such quantum dynamical semigroups of superchannels are determined

by their generators. The goal of Article VIII [8] was to characterize these generators, thereby

proving a superchannel analogon of Theorem 6.1.4. From Section 2.3, we know that quantum

superchannels are intimitately connected to semicausal, and therefore semilocalizable, CP maps.

Thus, we aim to characterize the generators of continuous one-parameter semigroups of semi-

causal CP maps. It is easy to see that semicausality of the semigroup elements is equivalent to

semicausality of the generator. Now, the main technical result of Article VIII [8] is the following

normal form for semicausal Lindblad generators, which we state only in the Heisenberg picture

and in �nite dimensions for brevity:

Theorem 6.3.2 ([8, Theorem V.6]). Let L ∈ B(B(CdA ⊗ CdB )), L(X) = Φ(X)−K†X −XK,

be a Lindblad generator, with Φ ∈ B(B(CdA ⊗ CdB )) CP and K ∈ B(CdA ⊗ CdB ). Then, L

is Heisenberg B ̸→ A semicausal if and only if there exists a Hilbert space CdE , a unitary

U ∈ B(CdE ⊗ CdB ;CdB ⊗ CdE ), a self-adjoint operator HB ∈ B(CdB ), and arbitrary operators

A ∈ B(CdA ;CdA ⊗ CdE ), B ∈ B(CdB ;CdB ⊗ CdE ) and KA ∈ B(CdA), such that

Φ(X) = V † (X ⊗ 1E)V , with V = (1A ⊗ U)(A⊗ 1B) + (1A ⊗B) , (6.3.1)

K = (1A ⊗B†U)(A⊗ 1B) +
1

2
1A ⊗B†B +KA ⊗ 1B + 1A ⊗ iHB . (6.3.2)

Using Theorem 2.3.5, we translate this to a complete characterization of the generators of quan-

tum dynamical semigroups of superchannels:

Theorem 6.3.3 ([8, Theorem V.17]). A linear map L̂ : B(B(CdA);B(CdB )) → B(B(CdA);B(CdB ))

generates a semigroup of superchannels if and only if there exists there exists a Hilbert space CdE ,

a state σ ∈ S(CdE ), a unitary U ∈ B(CdB ⊗ CdE ), a self-adjoint operator HB ∈ B(CdB ), and

arbitrary operators A ∈ B(CdA ⊗ CdE ), B ∈ B(CdB ⊗ CdE ) and KA ∈ B(CdA), satisfying that

trσ
[
A†A

]
= KA +K†

A and that L̂ acts on T ∈ B(B(CdA);B(CdB )) as

L̂(T ) = Φ̂(T )− κ̂L(T )− κ̂R(T ) , (6.3.3)

with

Φ̂(T )(ρ) = trE

[
U (T ⊗ idE)(A(ρ⊗ σ)A†) U †

]
+ trE

[
B (T ⊗ idE)((ρ⊗ σ)A†) U †

]

+ trE

[
U (T ⊗ idE)(A(ρ⊗ σ)) B†

]
+ trE

[
B (T ⊗ idE)((ρ⊗ σ)) B†

]
, (6.3.4)

κ̂L(T )(ρ) = trE

[
B†U (T ⊗ idE)(A(ρ⊗ σ))

]
+

1

2
trE

[
B†B(T ⊗ idE)(ρ⊗ σ)

]

+ T (KA ρ) + iHB T (ρ) , (6.3.5)

κ̂R(T )(ρ) = trE

[
(T ⊗ idE)((ρ⊗ σ)A†) U †B

]
+

1

2
trE

[
(T ⊗ idE)(ρ⊗ σ)B†B

]

+ T (ρK†
A)− T (ρ) iHB . (6.3.6)
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Pseudo-dimension of quantum circuits

Matthias C. Caro and Ishaun Datta

The pseudo-dimension is a complexity measure from classical learning theory. There, it is used

to quantify the expressivity of real-valued function classes. In particular, bounds on the pseudo-

dimension of a function class allow to derive generalization bounds for learning the function

class. Such generalization bounds are central in statistical learning theory for understanding the

training data requirements of machine learning models.

Quantum circuits are a central object of study in quantum computing. They are the natural

quantum analogue of classical circuits. To ensure e�cient implementability, one often considers

quantum circuits that are 2-local, which means that every quantum gate acts on at most 2 qudits,

and that have size (i.e., number of gates) and depth (i.e., number of gate layers) polynomial in

the number of input qudits.

In this work, we propose the pseudo-dimension as a tool to quantify the complexity of 2-local

quantum circuits. We establish pseudo-dimension bounds in terms of circuit depth and size.

Moreover, we present two applications of our learning theory-inspired perspective, namely to the

gate complexity of state preparation and to the learnability of quantum circuits.

After the introduction, in which we motivate the questions of the article, discuss related work, and

summarize our results, Section 2 introduces basic notions of quantum information and statistical

learning theory. In Section 3 of the paper, we present our setup and our main results. We �rst

consider 2-local quantum circuits in which the layout of the 2-qudit gates is �xed, but the gates

themselves can be arbitrary 2-qudit unitaries. We can view this as a quantum circuit with �xed

architecture and variable gates. To such a circuit, we associate a class of [0, 1]-valued functions

by considering, for any �xed choice for the variable unitaries, the outcome probabilities of rank-1

projective measurements performed independently at the output of the circuit, upon input of the

|0⟩ state. In Theorem 2, we prove that the pseudo-dimension of this function class scales at worst

as O(d4 · γ log γ), with d the local dimension and γ the size of the circuit. That is, the pseudo-

dimension grows at most polynomially in the qudit dimension and slightly superlinearly in the

number of 2-local gates in the circuit. To show this result, we �rst establish a representation of

functions in our class of interest in terms of a polynomial, whose rank depends on the number of

gates in the circuit. We then combine this with a known bound on consistent sign assignments

to a family of polynomials (Theorem 1 and Corollary 1) to obtain Theorem 2.

The remainder of Section 3 is concerned with extensions of Theorem 2 to di�erent scenarios.

First, we admit also quantum circuits with variable architecture (Theorem 3). Next, we allow

for variable input states (Subsection 3.3). And third, we consider circuits consisting not of

unitaries but of gates described by completely positive and trace-preserving maps (Theorem

4). Crucially, we prove that in all of these extensions, the pseudo-dimension of the respective

function class is still upper bounded by a polynomial in the qudit dimension, the circuit depth,

and the circuit size.

We continue in Section 4 with two applications of our pseudo-dimension bounds. On the one

hand, we demonstrate a connection between complexity as measured by the pseudo-dimension
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and the gate complexity of state preparation. More precisely, we construct a concrete set of pure

n-qubit quantum states such that at least one of those states cannot be implemented by a 2-local

quantum circuit with subexponential (in n) depth or size. As our set of candidate states has

cardinality doubly exponential in n, in this case, our pseudo-dimension-based approach provides

a constructive alternative to a more standard reasoning based on covering number arguments.

On the other hand, we use classical generalization bounds in terms of the fat-shattering or

the pseudo-dimension to show that 2-local quantum circuits of polynomial depth and size can

be learned from polynomial-size training data, in which each example is a triple of input state,

observed output measurement outcome, and corresponding measurement probability. This result

constitutes a �pretty good� version of quantum process tomography.

I was signi�cantly involved in �nding the ideas and carrying out the scienti�c work of all parts

of this article. I was in charge of writing the article, with the exception of the Appendix.
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Abstract
We characterize the expressive power of quantum circuits with the pseudo-dimension, a measure of complexity for
probabilistic concept classes. We prove pseudo-dimension bounds on the output probability distributions of quantum circuits;
the upper bounds are polynomial in circuit depth and number of gates. Using these bounds, we exhibit a class of circuit
output states out of which at least one has exponential gate complexity of state preparation, and moreover demonstrate that
quantum circuits of known polynomial size and depth are PAC-learnable.

Keywords Quantum computing · Computational learning theory · Complexity theory

1 Introduction

An important line of research in classical learning theory
is characterizing the expressive power of function classes
using complexity measures. Such complexity bounds can
in turn be used to bound the size of training data
required for learning. Among the most prominent of these
are the Vapnik-Chervonenkis (VC) dimension introduced
by Vapnik and Chervonenkis (1971). Other well-known
measures are the pseudo-dimension due to Pollard (1984),
the fat-shattering dimension due to Alon et al. (1997),
the Rademacher complexities (see Bartlett and Mendelson
2002), and more generally covering numbers in metric
spaces.

The goal of characterizing an object’s expressive power
also appears in different guises throughout quantum
information. A well-known example is quantum state
tomography. Aaronson (2007) related a variant of state
tomography to a classical learning task whose fat-shattering
dimension can be bounded using a particular function class
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related to the set of quantum states. Associated with this is
a corresponding upper bound on sample complexity.

Aaronson (2007) observes that there is no analogous the-
orem for general quantum process tomography, but leaves
as an open question whether there are restricted classes
of operations that are information-efficiently learnable. We
answer this question in the affirmative. In particular, we
show that for quantum circuits with depth and size polyno-
mial in the number of qubits, quantum process tomography
is possible using only polynomially many examples.

Gate complexity of unitary implementation and state
preparation are yet another example of how one may capture
the richness of a function class that corresponds to a
quantum computational process (see, e.g., Aaronson 2016).
For unitary complexity, the challenge is to determine, e.g.,
how many two-qubit unitaries (i.e., two-qubit logical gates,
in a computational setting) are required to implement a
certain multi-qubit unitary (i.e., a quantum circuit). For
the gate complexity of state preparation, it is to determine
how many unitaries produce a certain multi-qubit state. An
alternative perspective, adopted in this work, is to consider
the expressive power of a set of circuits with a fixed number
of unitaries.

In this work we describe a new way of applying
complexity measures from classical learning, specifically
pseudo-dimension, to quantum information. We associate
with a quantum circuit a natural probabilistic function
class describing the outcome probabilities of measurements
performed on the circuit output. In this way, a function
class corresponding to a quantum circuit can be studied with
the classical tool of pseudo-dimension. Here, we show that
the pseudo-dimension of such a class can be bounded in

/ Published online: 6 November 2020
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terms of a polynomial of the circuit depth and size. We
also give two applications of these bounds, one for the
gate complexity of quantum state preparation, the other in
learnability of quantum circuits.

These findings are noteworthy not only because of
the results themselves, but because we demonstrate the
power of pseudo-dimension to gain insight into quantum
computation. We hope that these tools may be applied to
other problems in quantum computing in future work.

1.1 Related work

Aaronson (2007) showed that using the framework of PAC
learning, one can introduce a variant of quantum state
tomography and prove an upper bound on the required
number of copies of the unknown state. This idea was
developed further in Aaronson et al. (2018) and Aaronson
(2018).

Motivated by Aaronson’s work, Cheng et al. (2016)
use pseudo-dimension and fat-shattering dimension to
characterize the learnability of measurements, as a dual
problem to learning the state. We apply this mathematical
framework to study the problem of learning the circuit
itself, in particular by offering a natural function class
corresponding to a quantum circuit.

Rocchetto (2017) proved that stabilizer states, prevalent
in error correction, are computationally efficiently learn-
able, establishing a connection between efficient classical
simulability and computationally efficient learnability. This
was realized experimentally for small optical systems in
Rocchetto et al. (2019). Similarly, in Section 5 we pose as
an open problem whether there are quantum operations that
can be PAC-learned with modest computation, which could
then in principle be demonstrated in an experiment.

In Chung and Lin (2018), the authors study the problem
of PAC learning classes of functions with computational
basis states as input and quantum output, possibly mixed.
We highlight two main differences: first, whereas we
assume the training data to be measurement statistics,
Chung and Lin (2018) consider examples given as classical-
quantum states. Thus, the two scenarios are not directly
comparable. Our learning result yields a semi-classical
strategy for the problem described in Chung and Lin (2018),
though it is possibly suboptimal. Second, the learnability
result of Chung and Lin (2018) is only for finite concept
classes, whereas our result does not have this restriction.
While Chung and Lin (2018) show learnability of quantum
circuits with a finite gate set, we allow for arbitrary 2-
qudit gates, i.e., a continuous gate set. Note that our
corresponding notions of learnability differ.

While we take a formal approach to learning quantum
circuits, others have studied learning unitaries numerically,
e.g., with heuristics such as gradient descent (Kiani et al.

2020). Practical machine learning algorithms have also been
used for state tomography by Torlai et al. (2018), and similar
techniques could be applied to restricted classes of process
tomography.

Another branch of quantum learning deals with whether
quantum examples can decrease the information-theoretic
complexity of learning a classical function. There are
different flavors of this question, e.g., depending on whether
learning is distribution-specific or distribution-independent.
Arunachalam and deWolf (2017) gives an overview of some
of these aspects of quantum learning.

In classical learning theory, bounding the complexity
measures of function classes (based on complexity-theoretic
assumptions) has been studied widely. Goldberg and Jerrum
(1995) derived an upper bound on the VC-dimension of
a function class in terms of the runtime required by
an algorithm implementing the elements of that class.
Karpinski and Macintyre (1997) established an analogous
bound for the function class implemented by a neural
network (for various activation functions) in terms of
the number of nodes and the number of programmable
parameters of the network. Koiran (1996) demonstrated
that by bounding the complexity of function classes
implemented on a given architecture, one can lower bound
the size of an architecture implementing a specific “hard”
function.

1.2 Overview of results

We consider the general scenario in which one mea-
sures the output state of a 2-local qudit quantum circuit,
generating a probability distribution. We do not assume
geometric locality, i.e., we do not assume that 2-qudit
unitaries act on neighboring qudits. We show an upper
bound on the pseudo-dimension of the distributions aris-
ing from these quantum circuits. By doing so, we provide
insight into the complexity or “hardness” of the circuit and
the output state that gives rise to the probability distribu-
tion. Below, we provide informal statements of the key
results.

Theorem (Pseudo-dimension bounds, Informal) Consider
quantum circuits with fixed architecture, namely those for
which the input qudits of the 2-qudit gates are specified, but
the gates may vary subject to this constraint. That is, we
allow for arbitrary 2-qudit unitaries, and in particular we
do not restrict ourselves to a finite gate library.

Parameterize a quantum circuit N by its qudit
dimension d, depth δ, and number of gates or size γ .

Theorem 2: For a suitable function class FN corre-
sponding to the possible probability distributions formed by
product measurements in the computational basis on the
circuit output, Pdim(FN ) ≤ O(d4 · γ log γ ).

Quantum Machine Intelligence (2020) 2:14Page 2 of 1414



Consider quantum circuits with variable architecture,
i.e., those for which the input qudits of the gates are
not specified. For such circuits of depth δ and number of
gates or size γ, one may similarly define function classes
Fδ,γ for circuits whose gates are unitaries, and Gδ,γ

for circuits whose gates are quantum operations, which
describe the possible probability distributions formed by
product measurements on the circuit output. Then,

Theorem 3: Pdim(Fδ,γ ) ≤ O(δ · d4 · γ 2 log γ ).
Theorem 4: Pdim(Gδ,γ ) ≤ O(δ · d8 · γ 2 log γ ).

All upper bounds are polynomial in the dimension d , the
depth δ, and the size γ .

In Section 4.1, we demonstrate how to apply these
complexity upper bounds to explicitly construct, for each
n ∈ N, a finite-but-large set of n-qubit quantum states, out
of which at least one cannot be implemented by a 2-local
qudit circuit of subexponential depth or size.

Theorem (Gate Complexity of State Preparation, Informal)

For any subset C ⊆ {|x0〉}x∈{0,1}n , define

|ψC〉 =
⎧⎨
⎩

1√|C|
∑

|x0〉∈C

|x0〉 if C �= ∅
|0〉⊗n ⊗ |1〉 if C = ∅.

If each state in {|ψC〉}C can be generated from the input
state |0〉⊗(n+1) by some circuit of depth δ and size γ , then
2n ≤ O

(
δ · γ 2 log γ

)
. As a corollary, there exists at least

one such C so that |ψC〉 requires a circuit exponential in
depth and size.

Analogously to Aaronson (2007), in Section 4.2 we use
our pseudo-dimension bounds to prove a relaxed variant of
quantum process tomography, which following Aaronson’s
terminology can be called pretty-good circuit tomography:

Theorem (Learnability, Informal) Given a circuit with
depth Δ and size Γ , both polynomial in the number of
qudits and known in advance to the learner, polynomially-
many training examples, each a triple of input state, output
measurement, and corresponding probability, suffice to
learn the quantum operation implemented by a 2-local
quantum circuit of depth Δ and size Γ .

That is, for confidence δ, accuracy, ε, and error margins
α and β, all in (0, 1), a candidate circuit of depthΔ and size
Γ that performs sufficiently well (in a sense made rigorous
in Section 4.2) on

O

(
1

ε

(
Δd8Γ 2 logΓ log2

(
Δd8Γ 2 logΓ

(β − α)ε

)
+ log

1

δ

))

many samples will with probability at least 1 − δ

approximate the actual circuit from which the samples are
drawn.

In this framework, each training example is a three-tuple
of the input state, the observed measurement outcome, and
the corresponding measurement probability. Alternately,
one may take each training example as a two-tuple of
the input state and the measurement outcome, whose
probability is the corresponding measurement probability
(see Aaronson 2007, Appendix 8).

We review the basics of quantum information, quantum
computation, and classical learning theory in Section 2. We
also discuss prior classical results as motivation. Section 3
contains our main results on the pseudo-dimension of
quantum circuits and the respective proofs. In Section 4,
we apply these results to fin lower bounds on the gate
complexity of quantum state preparation and to a learning
problem for quantum operations. We conclude with open
questions in Section 5.

2 Preliminaries

As our readership includes both physicists and computer
scientists, in this section we review the mathematical
frameworks of quantum information theory and learning
theory. Further details appear in the reference texts
(Heinosaari and Ziman 2013; Nielsen and Chuang 2010).

2.1 Quantum information and computation

The most general descriptor of a d-level quantum system or
statistical ensemble thereof is a density matrix, an element
of

S
(
C

d
)

:= {ρ ∈ C
d×d | ρ ≥ 0, tr[ρ] = 1}.

Here, ρ ≥ 0 means that the matrix ρ is Hermitian and
all its eigenvalues are non-negative. An important subset
of density matrices is the set of pure states, which are
one-dimensional projections. Following Dirac notation, we
denote the projector onto the subspace spanned by a unit
vector |ψ〉 ∈ C

d by |ψ〉〈ψ |. By the spectral theorem,
every quantum state can be written as a convex combination
of pure states, though this decomposition is not unique in
general.

Central to the framework of quantum mechanics is
the measurement, the mechanism by which one may
observe properties of a quantum system. These are typically
described by so-called positive-operator valued measures
(POVMs). As we focus on measurements with a finite
set of outcomes {i}, it suffices to think of measurements
as collections of so-called effect operators {Ei}mi=1 with
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, and . We denote the
set of effect operators by

Again, we highlight a special case: if we take an
orthonormal basis {|ψi〉}di=1 of C

d , then the set {Ei =
|ψi〉〈ψi |}di=1 is called a projective measurement.

Born’s rule connects measurements to measurement
outcomes: given a state characterized by a density operator,
the effect operator has a corresponding probability pi =
tr[ρEi]. Thus the requirement that the effect operators sum
to the identity can be seen as probabilities summing to
one. In the special case of pure state ρ = |ψ〉〈ψ | and
projective measurement {Ei = |ψi〉〈ψi |}di=1, the probability
of outcome i is pi = tr[ρEi] = |〈ψ |ψi〉|2.

So far we have described the components of static
quantum theory. The dynamics of quantum states are
described by so-called quantum operations, which we
denote by

T
(
C

d
)

:= { T : Cd×d → C
d×d | T is linear,

completely positive, and trace-non-increasing}.
Here, a map T is completely positive if T ⊗Idn is positivity-
preserving for every n ∈ N. If T ∈ T

(
C

d
)
is trace-

preserving, we call T a quantum channel. An important
example is the unitary quantum channel, T (ρ) = UρU∗ for
some unitary U ∈ C

d×d .
Note that any element of T

(
C

d
)
is a linear map between

vector spaces of dimension d2 and can thus be understood
as a d2 × d2 matrix.

2.2 Classical learning theory and complexity
measures

Next we describe the “probably approximately correct”
(PAC) model of learning, introduced and formalized by
Vapnik and Chervonenkis (1971) and Valiant (1984). In
(realizable) PAC learning for spaces X, Y and a concept
class F ⊆ YX, a learning algorithm receives as input
labeled training data {(xi, f (xi))}mi=1 for some f ∈ F ,
where the samples xi are drawn independently according
to some unknown probability distribution D on X that is
unknown to the learner. Given the training examples, the
goal of the learner is to approximate the unknown function
f by a hypothesis function h, with high probability.

We can formalize this as follows: first, we introduce a
loss function � : Y × Y → R+ to quantify the discrepancy
between the hypothesis h and the function f . We call a
concept class F PAC-learnable if there exists a learning
algorithm A such that for every probability distribution D

on X, f ∈ F and δ, ε ∈ (0, 1), running A on training
data drawn according to D and f yields a hypothesis h

such that Ex∼D[�(h(x), f (x))] ≤ ε with probability ≥
1− δ (with regard to the choice of training data). Moreover,
we quantify the minimum amount of training data that an
algorithm A needs to meet the above conditions by a map
mF : (0, 1) × (0, 1) → N, (δ, ε) �→ m(δ, ε), the so-called
sample complexity of F . We focus on proper learning, in
which the learning algorithm must output as its hypothesis
an element of the concept class, i.e., we require h ∈ F .

A standard approach to assessing learnability is to
characterize the complexity of the respective concept
class F . Many such complexity measures are used,
the most common being the VC-dimension for binary-
valued function classes F ⊆ {0, 1}X, named after
its progenitors (Vapnik and Chervonenkis 1971). This
combinatorial parameter can be shown to fully characterize
the learnability: a concept class F ⊆ {0, 1}X is PAC-
learnable (w.r.t. the 0-1-loss) if and only if the VC-
dimension of F is finite. Moreover, the sample complexity
of PAC learning F can be expressed in terms of its VC-
dimension (see Blumer et al. 1989; Hanneke 2016).

In this work, we employ a widely used extension of the
VC-dimension to real-valued concept classes:

Definition 1 (Pseudo-dimension (Pollard 1984)) Let F ⊆
R

X be a real-valued concept class. A set {x1, ..., xk} ⊆ X is
pseudo-shattered by F if there are y1, ..., yk ∈ R such that
for any C ⊆ {1, ..., k} there is an fC ∈ F such that for all
1 ≤ i ≤ k, i ∈ C if and only if fC(xi) ≥ yi .

The pseudo-dimension of F is defined to be

Pdim(F ) := sup{n ∈ N0 | ∃S ⊆ X s.t. |S| = n and

S is pseudo-shattered by F }.
Alternatively, one can express the pseudo-dimension in

terms of the VC-dimension. Namely,

Pdim(F ) = VC({X × R � (x, y) �→ sgn(f (x) − y) | f ∈ F }).

Here, the VC-dimension for a function class H ⊆ {±1}Z
is defined as

VC(H ) := sup{n ∈ N0 | ∃z1, . . . , zn ∈ Z s.t. ∀b ∈ {±1}n
∃hb ∈ H s.t. ∀i : hb(zi) = bi}.

There is also a scale-sensitive version of the pseudo-
dimension:

Definition 2 (Fat-Shattering Dimension (Alon et al. 1997))
Let F be a real-valued concept class and let α > 0. A
set {x1, ..., xk} ⊆ X is α-fat-shattered by F if there are
y1, ..., yk ∈ R such that for any C ⊆ {1, ..., k} there is an
fC ∈ F such that for all 1 ≤ i ≤ k:

1. i /∈ C ⇒ fC(xi) ≤ yi − α and
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2. i ∈ C ⇒ fC(xi) ≥ yi + α.

The α-fat-shattering dimension of F is defined to be

fatF (α) := sup{n ∈ N0| ∃S ⊆ X s.t. |S| = n ∧ S

is α-fat-shattered by F }.

Note that, trivially, fatF (α) ≤ Pdim(F ) holds for every
α > 0 and for every real-valued function class F .

Sample complexity upper bounds for [0, 1]-valued
function classes in terms of the fat-shattering dimension
have been proved in Bartlett and Long (1998) and Anthony
and Bartlett (2000).

3 Pseudo-dimension bounds for quantum
circuits

We now formulate how to characterize the expressive power
of quantum circuits. In particular, we consider circuits with
n input registers of qudits, size (i.e., number of gates) γ, and
depth (i.e., number of layers) δ. More precisely, we consider
circuits composed of two-qudit unitaries, i.e., logical gates
with two inputs. Note that two-qudit gates include one-qudit
gates. We assume that gates in the same layer and acting
on disjoint pairs of qudits can act in parallel. Additionally,
we assume that each qudit is acted upon by at least
one gate, else it effectively does not participate in the
circuit.

In this section, we assign function classes to quantum
circuits and then derive bounds on the pseudo-dimension
of these function classes, in terms of the number of qudits
and the size and depth of the circuits. First, we fix quantum
circuit structure and inputs, varying only the entries of the
unitary gates and thereby the resulting function. Then, we
broaden our scope to variable circuit architectures, variable
inputs, and circuits whose “gates” are general quantum
operations.

An important tool that will recur throughout our work is
the following result on polynomial sign assignments, used
in Goldberg and Jerrum (1995) to derive VC-dimension
bounds from computational complexity.

Theorem 1 (Warren 1968, Theorem 3) Let {p1, . . . , pm}
be a set of real polynomials in n variables with m ≥
n, each of degree at most d ≥ 1. Then the number of
consistent non-zero sign assignments to {p1, . . . , pm} is at
most

(
4edm

n

)n

.

Here, e is Euler’s number and a “consistent non-zero sign
assignment” to a set of polynomials {p1, . . . , pm} is a vector
b ∈ {±1}m s.t. there exist x1, . . . , xn ∈ R for which it holds
that sgn(pi(x1, . . . , xn)) = bi for all 1 ≤ i ≤ m.

The following implication of Theorem 1 for consistent
but not necessarily non-zero sign assignments (which we
define as above, but with b ∈ {−1, 0, 1}m) to sets of
polynomials was observed in Goldberg and Jerrum (1995,
Corollary 2.1).

Corollary 1 Let {p1, . . . , pm} be a set of real polynomials
in n variables with m ≥ n, each of degree at most
d ≥ 1. Then the number of consistent sign assignments to

{p1, . . . , pm} is at most
(
8edm

n

)n

.

Proof (Sketch) This can be obtained by applying Theorem 1
to the set {p1 + ε, p1 − ε, . . . , pm + ε, pm − ε} with ε > 0
chosen sufficiently small.

3.1 Fixed circuit structure

Suppose we fix the architecture of a quantum circuit of
depth δ and size γ . Specifically, we restrict our attention to
2-local quantum circuits, i.e., circuits whose logical gates
have support on two qudits, not necessarily neighboring
each other (see Fig. 1). “Fixed architecture” means that we
specify the positions of the two-qudit unitaries, namely their
order and which qudits they act on. Though the unitaries’
positions are fixed, we may vary the entries of the unitaries
themselves. Here, we allow for arbitrary 2-qudit unitaries.
In particular, we do not restrict ourselves to a finite gate
library. Can we bound the pseudo-dimension of the function
class of measurement probability distributions that this
circuit generates? And how does the bound depend on d (the
dimensionality of the qudits), δ and γ ?

To formalize this question: let n ∈ N be the number of
qudits, d ∈ N be their dimensionality, and N be a fixed
quantum circuit architecture of depth δ and size γ acting
on n qudits. We enumerate the positions of the two-qudit
unitaries in N by tuples (i, j) with 1 ≤ i ≤ δ denoting

Fig. 1 An example 2-local circuit. U(i,j) denotes the j th 2-qudit
unitary in the ith layer of the circuit

Quantum Machine Intelligence (2020) 2:14 Page 5 of 14 14



the layer and 1 ≤ j ≤ γi the position of the unitary among
all the unitaries inside layer i, where w.l.o.g. we count from
top to bottom and take into account only the first qudit on
which a unitary acts.

Note that
δ∑

i=1
γi = γ , and trivially γi ≤ γ and γi ≤

n
2 , as we assume that every qudit is acted upon by at
least one gate. We write the unitary at position (i, j) as
U(i,j). These constitute the “free parameters” which we
can vary in order to make the quantum circuit perform
different tasks. The overall unitary implemented by N
when plugging in the unitaries {U(i,j)}1≤i≤δ,1≤j≤γi

at the
respective positions we denote by UN |{U(i,j)}. Note that
UN |{U(i,j)} strongly depends on the two-qudit unitaries
that are plugged into the architecture, but sometimes we
will suppress this dependence and simply write UN for
notational ease.

The quantum circuit N now gives rise to the following
set of output states:

SN

(
(Cd)⊗n

)
:=

{
UN |{U(i,j)}

∣∣0〉⊗n
∣∣ U(i,j) ∈ U

(
(Cd)⊗2

)}
.

These output states in turn give rise to a function class
of measurement probability distributions with regard to
product measurements:

FN :=
{
f : X → [0, 1] | ∃|ψ〉 ∈ SN

(
(Cd )⊗n

)
: f (x) = |〈x|ψ〉|2

}
,

where we takeX = Sd×. . .×Sd to be the Cartesian product
of n unit spheres of Cd .

The main insight of this subsection is the following:

Theorem 2 With the notation and assumptions from above,
it holds that Pdim(FN ) ≤ 8d4 · γ · log(16e · γ ).

Here and throughout the paper, log denotes the logarithm
to base 2.

To prove this result, we provide the following.

Lemma 1 With the notation and assumptions from above,
there exists a polynomial pN with real coefficients, in
2γ d4 + 2dn real variables of degree ≤ 2(γ + n) such that
every f ∈ FN can be obtained from pN by fixing values
for the first 2γ d4 variables. Moreover, in each term of p,
the degree in the first 2γ d4 real variables is ≤ 2γ and the
degree in the last 2dn real variables is ≤ 2n.

Notably, there is no explicit dependence on depth δ.

Proof We first observe that

|〈x|UN |0〉⊗n|2 = |〈0|⊗nU
†
N |x〉|2.

We study this expression in a layer-wise analysis. When
reading the circuit from right to left, the state that enters

layer δ is transformed by the unitary
γδ⊗

j=1
U(δ,j)† such that

each amplitude of the state after the δth layer is a linear
combination of the amplitudes of |x〉, where each coefficient
is a multilinear monomial of degree γδ in some of the γδ ·d4

complex entries of the {U(δ,j)†}1≤j≤γδ .
By iterating this reasoning, we see that the state after the

(δ − i)th layer has amplitudes which are given by a linear
combination of the amplitudes of |x〉, where each coefficient
is a multilinear polynomial of degree ≤

i∑
k=0

γδ−k in (some

of) the entries of the unitaries {U(δ−k,jk)†}0≤k≤i,1≤jk≤γk
.

In particular, the |0〉⊗n-amplitude of the state U
†
N |x〉 can

be written as a linear combination of the amplitudes of |x〉,
where each coefficient is given by a multilinear polynomial

qN of degree ≤
δ∑

k=0
γδ−k = γ in (some of) the γ · d4

complex entries of the unitaries {U(i,ji )†}0≤i≤δ,1≤ji≤γi
.

Recalling that the probability of observing outcome
|0〉⊗n is the square of the absolute value of the correspond-
ing amplitude of |x〉, we obtain from the polynomial qN a
polynomial pN = |qN |2 that describes the output proba-
bilities. As qN has degree at most γ in the γ · d4 complex
parameters of the unitaries, pN has degree at most 2γ in the
corresponding 2γ · d4 real parameters. Fixing these 2γ d4

parameters corresponds to fixing the circuit, and therefore
one may obtain every f ∈ FN by fixing these parameters
in pN .

Moreover, pN is a polynomial in the 2dn real parameters
which give rise to the amplitudes of |x〉. (Here, the
assumption that |x〉 is a product state enters.) As each such
amplitude has degree ≤ n in the 2dn complex parameters,
the degree of pN in these real parameters is at most 2n.

Remark 1 We formulate the result only for measure-
ment operators consisting of tensor products of 1-
dimensional projections, and continue to do so through-
out this manuscript. For x ∈ X, we can write |x〉 =
n⊗

i=1

(
d−1∑
j=0

α
(i)
j |j〉

)
, so we associate dn complex variables

with x. That each amplitude of |x〉 can be written as a prod-
uct of n complex parameters gives rise to the upper bound
of n in the degree.

We could instead look at more general measurement
operators consisting of 1-dimensional projections without
requiring product structure, i.e., entangled measurements.
In this scenario, we would write |x〉 = ∑

z∈{0,...,d−1}n
xz|z〉,

associating dn complex variables with x. In this setup, each
amplitude of x is simply a polynomial of degree 1 in these
complex variables.

As we fix the variables corresponding to x and y in
the shattering assumption that appears in our proof of
Theorem 2, their corresponding degrees are not relevant to
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our argument; only the degree in the entries of the unitaries
enters our analysis. Therefore, both product measurements
or entangled measurements lead to the same pseudo-
dimension bound. This is due to the fact that allowing for
entangled measurements changes the set of allowed inputs
but not the function class itself.

Now that we have established Lemma 1, we can prove
Theorem 2 with reasoning analogous to that in Goldberg
and Jerrum (1995).

Proof (Theorem 2) Let {(xi, yi)}mi=1 ⊆ X × R be such that
for every C ⊆ {1, . . . , m} there exists fC ∈ FN such that
fC(xi) − yi ≥ 0 if and only if i ∈ C.

By Lemma 1, there exists a polynomial pN in 2γ d4 +
2dn real variables of degree ≤ 2(γ + n) such that for every
C ⊆ {1, . . . , m} there exists an assignment �C to the first
2γ d4 variables of pN such that pN (�C, xi) − yi ≥ 0 if
and only if i ∈ C.

In particular, this implies (using the “moreover” part of
Lemma 1) that the set P = {pN (·, xi) − yi}mi=1 is a set of
m polynomials of degree ≤ 2γ in 2γ d4 real variables that
has at least 2m different consistent sign assignments.

We now claim that m ≤ 8d4 · γ · log(16e · γ ). If m <

2γ d4, this holds trivially. Hence, w.l.o.g. m ≥ 2γ d4. So by
Corollary 1, we have

2m ≤
(
8e · 2γ · m

2γ d4

)2γ d4

.

Taking logarithms now gives

m ≤ 2γ d4
(
log(16e · γ ) + log

(
m

2γ d4

))
.

Now we distinguish cases. If 16e · γ ≥ m

2γ d4
, then the

above immediately implies m ≤ 4γ d4 · log(16e · γ ). If

16e · γ ≤ m

2γ d4
, then we obtain m ≤ 4γ d4 · log

(
m

2γ d4

)
,

which in turn implies m ≤ 8γ d4. In both cases we have
m ≤ 8d4 · γ · log(16eγ ). By definition of the pseudo-
dimension, we conclude Pdim(FN ) ≤ 8d4 · γ · log(16eγ ),
as claimed.

The attentive reader may notice that we do not explicitly
refer to the unitarity assumption in our reasoning; our
argument mainly uses linearity. This already hints at a
generalization to quantum circuits not of unitaries but of
operations, which we will describe in Section 3.4. In that
subsection, we will also see how the unitarity assumption
implicit in this proof produces a better upper bound than in
the general setting of quantum operations.

Remark 2 We formulate our bounds in terms of the
pseudo-dimension, not its scale-sensitive version called
fat-shattering dimension, even though the latter is more

commonly used in classical learning. In our scenario,
however, the pseudo-dimension and the fat-shattering
dimension effectively coincide. This is because we could
apply our reasoning for general matrices instead of only
unitaries in the setting of Theorem 2 as well and achieve
the same bounds. In that case, however, the resulting real-
valued function class is closed under scalar multiplication
with non-negative scalars and it follows from the definition
that for such classes, the fat-shattering dimension equals the
pseudo-dimension.

3.2 Variable circuit structure

Whereas in the previous subsection we fixed a quantum
circuit architecture and only varied the entries of the
two-qudit unitaries plugged into this structure, we now
additionally vary the structure of the quantum circuit
architecture itself and consider the complexity of the class of
all quantum circuits of a given depth and size. Once again,
we consider 2-local quantum circuits, i.e., circuits with one-
and two-qudit gates acting on arbitrary pairs of qudits.

The class of states which is of relevance in this analysis is

Sδ,γ

(
(Cd)⊗n

)
:= {|ψ〉 | ∃ quantum circuit N of depth δ

and size γ such that |ψ〉 ∈ SN

(
(Cd)⊗n

)
}.

Again, this set of states gives rise to a function class via

Fδ,γ := {f : X → [0, 1] | ∃|ψ〉 ∈ Sδ,γ

(
(Cd)⊗n

)
:

f (x) = |〈x|ψ〉|2},

where X is as above given by X = Sd × . . .×Sd . As before,
we want to bound the pseudo-dimension of this function
class.

We summarize the result of this subsection in the
following:

Theorem 3 With the notation and assumptions from above,
it holds that Pdim(Fδ,γ ) ≤ O(δ · d4 · γ 2 log γ ).

As with Theorem 2, the main step towards this result
consists of relating the functions appearing in Fδ,γ to
polynomials. The difference here is that we must upper
bound the number of polynomials, as below.

Lemma 2 With the notation and assumptions from above,
there exists a set Pδ,γ of polynomials with real coefficients,
in 2γ d4 + 2dn real variables of degree ≤ 2(γ + n) such
that for every f ∈ Fδ,γ there exists a polynomial p ∈ Pδ,γ
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such that f can be obtained from p by fixing values for the
first 2γ d4 variables, and such that

|Pδ,γ | ≤ γ ! δγ−δ

(γ − δ)! (n!)δ .

Moreover, in each term of p ∈ Pδ,γ the degree in the first
2γ d4 real variables is ≤ 2γ and the degree in the last 2dn

real variables is ≤ 2n.

Proof There are at most γ ! δγ−δ

(γ−δ)! ways to assign them among

the δ layers. The term γ !
(γ−δ)! counts assigning a single gate

to each layer, to ensure that there are no trivial (empty)
layers. Having assigned each layer one gate, the remaining
γ − δ gates may be distributed to any of the δ layers.

Next, we bound the number of ways of assigning qudits
to the circuit layers, so that the qudits are inputs to the fixed-
position unitaries. For our purposes, it suffices to crudely
upper bound this by n! for each single layer and thus by
(n!)δ overall. Hence, there are at most

γ ! δγ−δ

(γ − δ)! (n!)δ

different quantum circuit architectures. The proof is
completed by applying Lemma 1 to every such quantum
circuit architecture.

Now that we have established Lemma 2, we can prove
Theorem 3 by reasoning analogous to that in Goldberg
and Jerrum (1995) (see the Appendix for the proof of
Theorem 3).

3.3 Extension to circuits with variable inputs

We now modify the results of Sections 3.1 and 3.2 to allow
not only for the fixed input |0〉⊗n, but also for variable
input. This is of use, for instance, in Section 4.2, in which
we consider the PAC-learnability of quantum circuits (of
unitary gates or more general quantum channels). In that
context, allowing variable input amounts to learning the
entire quantum circuit, rather than just its action on |0〉⊗n.
This is necessary in order to meaningfully compare the
learning problem in Section 4.2 to exact circuit tomography.

To consider variable input states, we define the following
function classes, analogously to those in Sections 3.1 and
3.2:

F ′
N := { f : X × Y → [0, 1] | ∃UN |{U(i,j)},

U(i,j) ∈ U
(
(Cd)⊗2

) : f (x, y) = |〈x|UN |y〉|2},
where Y can be taken as the computational basis states

{0, 1, ..., d−1}n, or more generally as Y = X = Sd×...×Sd .

Lemma 3 With the notation and assumptions from above
the following holds: There exists a polynomial p′

N in
2γ d4 + 4dn real variables of degree ≤ 2γ + 4n such
that every f ∈ F ′

N can be obtained from p′
N by fixing

values for the first 2γ d4 variables. Moreover, in each term
of p′

N the degree in the first 2γ d4 real variables is ≤
2γ , the degree in the 2dn real variables corresponding to
x ∈ X is ≤ 2n, and the degree in the 2dn real variables
corresponding to y ∈ Y is ≤ 2n.

Proof Consider the product state input |y〉 = ∑
z yz|z〉.

As we consider product states, each yz is a product of
n complex parameters. Following the same reasoning as
before, for a fixed z ∈ {0, . . . , d − 1}, 〈z|UN |x〉 is a
multilinear polynomial qz

N . Then, the amplitude 〈y|UN |x〉
is

q ′
N (x, y) = 〈y|UN |x〉 =

∑
z∈{0,1,...,d−1}n

yz 〈z|UN |x〉

=
∑

z∈{0,1,...,d−1}n
yz qz

N (x).

In the above equation, q ′
N (x, y) has degree at most n in

y, and so upon squaring the amplitude q ′
N (x, y) to obtain

p′
N (x, y) as in Lemma 1, we have a degree at most 2n in

the 2dn real variables corresponding to y. The rest follows
from Lemma 1.

The bound from Theorem 2 still holds for the case of
variable circuit input, with the proof proceeding almost
identically upon replacing Lemma 1 by Lemma 3. The
2d · n additional variables that arise from the polynomial y-
dependence do not alter the bound because we fix the values
of these variables in the pseudo-shattering assumption.

3.4 Extension to circuits of quantum operations

We finish this section by describing an extension of
Theorems 2 and 3 to the case of circuits of quantum
operations, instead of only unitaries. This generalization
is relatively straightforward because the decisive property
of unitaries used in our previous proofs was not the
preservation of inner products, but rather linearity. This
setting is useful to, e.g., describe circuits with imperfect
gates. Rather than consider a logical gate that implements
a unitary exactly, each gate can instead be considered
a quantum operation that executes the desired unitary
with some probability, and, e.g., depolarizes input qudits
with some probability. (Other noise models are of course
possible.) Note that although quantum operations can, by
Stinespring’s dilation theorem, be viewed as subsystem
dynamics of a larger, unitarily evolving system, if we only
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have access to measurement data for the subsystem then we
cannot directly apply our result for the unitary case.

We use analogous notation to that introduced at the
beginning of Section 3.1, writing TN |{T (i,j)} for the overall
quantum operation implemented by N when plugging the
two-qudit quantum operations {T (i,j)}1≤i≤δ,1≤j≤γi

into the
respective positions of the quantum circuit.

The quantum circuit N (of operations) now gives rise to
the set of output states

DN

(
(Cd)⊗n

)
:= {TN |{T (i,j)}(|0n〉〈0n|) |

T (i,j) ∈ T
(
(Cd)⊗2

)
},

where we write |0n〉 = |0〉⊗n, so |0n〉〈0n| = (|0〉〈0|)⊗n.
By taking into account all possible quantum circuits of

size γ and depth δ, we obtain

Dδ,γ

(
(Cd)⊗n

)
:= {ρ | ∃ circuit N of two-qudit operations

of size γ and depth δ such that ρ ∈ DN

(
(Cd)⊗n

)
}.

These states now yield again a p-concept class

Gδ,γ := {f :X→[0, 1] | ∃ρ ∈Dδ,γ

(
(Cd)⊗n

)
:f (x)=〈x|ρ|x〉}.

In this scenario, we show:

Theorem 4 With the notation and assumptions from above,
it holds that Pdim(Gδ,γ ) ≤ O(δ · d8 · γ 2 log γ ).

Proof We only sketch the reasoning, as it is similar to that
in the proof of Theorem 3. We first need to establish an
analogue of Lemma 2. To this end, observe that a quantum
operation acting on two-qudit states can be interpreted as
a d4 × d4 matrix with complex entries. Moreover, we may
write

〈x|TN (|0n〉〈0n|)|x〉 = tr[TN (|0n〉〈0n|)|x〉〈x|]
= tr[|0n〉〈0n|T ∗

N (|x〉〈x|)]
= 〈0n|T ∗

N (|x〉〈x|)|0n〉,
where T ∗

N denotes the adjoint operation of TN with regard
to the Hilbert-Schmidt inner product.

As before, we can do a layer-wise analysis of the
transformation of |x〉〈x| and observe that the entries of the
(sub-normalized) density matrix after a layer can be written
as linear combinations of the entries of the (sub-normalized)
density matrix before the layer. Moreover, the coefficients
can be written as multilinear polynomials with the degree
determined by the number of two-qudit operations in the
layer. Hence, we obtain the result of Lemma 1 with d8

instead of d4. The bound on the number of different
quantum circuit architectures can be derived in exactly the
same way as before, so the analogue of Lemma 2 holds,
completing the proof of the theorem.

Theorem 4 and its proof sketch also help to elucidate
the relevance of the unitarity assumption in Theorems 2
and 3. Unitarity justifies our restriction to pure states, but
in other respects Theorems 2 and 3 do not exploit unitary.
The difference between Theorems 3 and 4 amounts to the
size of the matrices that represent the unitaries or quantum
operations.

4 Applications

In this section, we explore two different applications of
our pseudo-dimension upper bounds. First, we employ the
pseudo-dimension to exhibit a large but finite discrete
set of quantum states, out of which at least one is
hard to implement in the sense that preparing it requires
exponentially many 2-qubit unitaries. Second, we combine
the pseudo-dimension bound with results from the theory
of p-concept learning to derive the PAC-learnability of
quantum circuits.

4.1 Lower bounds on the gate complexity
of quantum state preparation

It is well known that almost all n-qubit unitaries require
an exponential (in n) number of 2-qubit unitaries to be
implemented. Similarly, almost all pure n-qubit states
require an application of exponentially (in n) many 2-
qubit unitaries to be generated from the |0〉⊗n state (see,
e.g., Nielsen and Chuang 2010). However, in neither
case are there explicit examples of unitaries or states
saturating this exponentiality bound (see Aaronson 2016
for more information on the gate complexity of unitary
implementation and state preparation). We will use the
pseudo-dimension as a tool to exhibit a discrete set of
pure qubit states such that at least one of them requires
exponentially many 2-qubit unitaries to be generated from
|0〉⊗n.

The drawback of our result is that the size of this set
is 22

n
and thus unsatisfyingly large. By relatively simple

deliberations this size can be reduced by an order of 2n

elements, though this is negligible compared to the overall
size.

We now describe the construction of the candidate set of
states. For a subset C ⊆ {|x0〉}x∈{0,1}n , namely a subset of
the set of all computational basis states of n + 1 qubits that
end on 0, with C �= ∅, define

|ψC〉 = 1√|C|
∑
x0∈C

|x0〉.

For C = ∅ we take

|ψ∅〉 = |0〉⊗n ⊗ |1〉.
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(Note that the (n + 1)st qubit only really matters for |ψ∅〉.)
Our set of interest will be

S := {|ψC〉 | C ⊆ {|x0〉}x∈{0,1}n}.
This discrete set of 22

n
multi-qubit quantum states now

gives rise to a class of p-concepts

FS = {fC : X → [0, 1] | ∃C ⊆ {|x0〉}x∈{0,1}n :
fC(x) = |〈x|ψC〉|2}.

This class has large pseudo-dimension, as described in
the following lemma.

Lemma 4 With the notation introduced above, it holds that
Pdim(FS ) ≥ 2n.

Proof Consider the subset of computational basis states
{|x0〉}x∈{0,1}n and the corresponding threshold values
yx0 = 1

2n = min
C⊆{|x0〉}x∈{0,1}n

1
|C| independently of x0. By

construction of S and thus FS the following holds:
For any C ⊆ {|x0〉}x∈{0,1}n

fC(x0) = |〈x0|ψC〉|2 =
{

1
|C| if |x0〉 ∈ C

0 else
.

In particular, we have

fC(x0) ≥ yx0 ⇐⇒ |x0〉 ∈ C.

Hence, Pdim(FS ) ≥ 2n, because we have found an
example of a set of size 2n that is pseudo-shattered.

We now combine this simple observation with Theo-
rem 3, which gives us the following:

Theorem 5 With the notation introduced above, if γ and
δ are such that each state in S can be generated from the
state |0〉⊗(n+1) by some circuit of size γ and depth δ, then

2n ≤ O
(
δ · 24 · γ 2 log γ

)

Proof Under the assumption of the Theorem we can
conclude FS ⊆ Fδ,γ . Now combine the lower bound of
Lemma 4 with the upper bound from Theorem 3.

Corollary 2 There exists a C ⊆ {|x0〉}x∈{0,1}n such that
|ψC〉 = 1√|C|

∑
|x0〉∈C

|x0〉 cannot be implemented by a

quantum circuit of 2-qubit unitaries with subexponential (in
n) size or depth.

Note that any set of functions which pseudo-shatters a set
of size 2n has to have at least 22

n
elements. Hence, the large

size of the set C is an automatic consequence of our line of
reasoning.

Remark 3 We note that a set of n-qubit states with
cardinality doubly exponential in n s.t. at least one of them
needs an exponential number of gates (up to logarithmic
factors) to be implemented can also be obtained with more
standard reasoning. Namely, it is well known that there
are n-qubit states the approximation of which up to trace-

distance ε requires

(
2n log

(
1
ε

)
log(n)

)
unitary gates (see Nielsen

and Chuang 2010, chap. 4.5.4). So if we pick a 1
2 -net of size

O
(
22

n)
for the set of pure n-qubit quantum states, this will

have the desired properties.

We sketch another way of using our pseudo-dimension
bound to study the gate complexity of state preparation
and which might lead to a smaller set of candidates.
Given n-qubit pure states |ψ1〉, . . . , |ψm〉 and efficiently
implementable (i.e., with polynomially many 2-qubit
unitary gates arranged in polynomially many layers)
unitaries U1, . . . , Uk , one can study the set of states
{Ui |ψj 〉}1≤i≤k,1≤j≤m.

If an exponential (in n) pseudo-dimension lower bound
can be established for
{f : X → [0, 1] | ∃1 ≤ i ≤ k, 1 ≤ j ≤ m : f (x) = |〈x|Ui |ψj 〉|2},
then, since every Ui is efficiently implementable, one can
conclude that at least one among the states |ψj 〉 is not
efficiently implementable.

The advantage of such a pseudo-dimension-based rea-
soning would be that m need not be doubly exponential
in n, since we can compensate for this in k. This realiza-
tion can already be used to reduce the size of the set of
candidate states given in Corollary 2. However, we have
not yet been able to identify sufficiently many efficiently
implementable unitaries to reduce the size below doubly
exponential. Nevertheless, there is likely room for improve-
ment in applying our method to the gate complexity of
quantum state preparation.

4.2 Learnability of quantum circuits

We now use our pseudo-dimension bounds to study
learnability. Specifically, we use the pseudo-dimension
bound for the case of variable inputs (Section 3.3) combined
with the generalization to quantum operations (Section 3.4).
We proceed quite similarly to Aaronson (2007).

The learning problem which we want to study is the fol-
lowing: Let μ be a probability measure on (X ×Y )×[0, 1],
unknown to the learner. Let S = {((x(i), y(i)), p(i))}mi=1 be
corresponding training data drawn i.i.d. according to μ. A
learner must, upon input of training data S, size Γ ∈ N,
depth Δ ∈ N, confidence δ ∈ [0, 1), accuracy, ε ∈ [0, 1)
and error margin β ∈ (0, 1), output a hypothesis quantum
circuit N of size Γ and depth Δ consisting of two-qudit
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operations such that, with probability ≥ 1 − δ with regard
to the choice of training data,

P((x,y),p)∼μ [|fN (x, y) − p| > β] ≤ ε

+ inf
M

P(x,p)∼μ [|fM (x, y) − p| > β] ,

where the infimum runs over all quantum circuits M of size
Γ and depthΔ. Here, fN denotes the function fN (x, y) =
〈x|TN (|y〉〈y|)|x〉 and fM is defined analogously, similarly
to Section 3.3.

We use our pseudo-dimension bound in order to upper
bound the size of the training data sufficient for solving this
task. More precisely, we make use of sample complexity
upper bounds from the fat-shattering dimension as proved in
Anthony and Bartlett (2000) and Bartlett and Long (1998),
together with the fact that the fat-shattering dimension is
upper-bounded by the pseudo-dimension.

First we restrict our scope to the “realizable” scenario,
i.e., we will assume the probability measure to be of the
form

μ((x, y), p) =
{

μ1(x, y) if p = fN∗(x, y)

0 else

for some quantum circuit N∗ of size Γ and depth Δ. This
will in particular imply that for quantum circuits M of size
Γ and depth Δ

inf
M

P((x,y),p)∼μ [|fM (x, y) − p| > β] = 0.

Colloquially, realizability means that there exists a set of
“correct” parameters Γ and Δ and these are known to the
learner, i.e., training samples are promised to be drawn from
circuits of size Γ and depth Δ.

We will focus on a proper learning scenario, i.e., we will
assume the unknown target circuit to be in some (known)
class, namely the class of circuits whose size and depth
satisfy certain polynomial bounds, and require the learner to
output an element of that same class as hypothesis.

We will make use of the following classical result:

Theorem 6 (Anthony and Bartlett 2000, Corollary 3.3) Let
X be an input space, letF ⊆ [0, 1]X. LetD be a probability
measure on X, let f∗ ∈ F . Let δ, ε, α, β ∈ (0, 1) with
β > α. Let S = {x1, . . . , xm} be a set of m samples
drawn i.i.d. according to D. Let h ∈ F be such that
|h(xi) − f∗(xi)| ≤ α for all 1 ≤ i ≤ m.

Then, a sample size

m = O

(
1
ε

(
fatF

(
β−α
8

)
log2

(
fatF

(
β−α
8

)
(β−α)ε

)
+ log 1

δ

))
suffices to guarantee that, with probability ≥ 1 − δ with
regard to the choice of training data S ,

Px∼D[|h(x) − f∗(x)| > β] ≤ ε.

In our setting, this result implies:

Corollary 3 Let N∗ be a quantum circuit of quantum
operations with size Γ and depth Δ. Let μ be probability
measure on X × Y unknown to the learner. Let

S = {((x(i), y(i)), fN∗(x
(i), y(i))}mi=1

be corresponding training data drawn i.i.d. according to
μ. Let δ, ε, α, β ∈ (0, 1). Then, training data of size

m = O
(
1
ε

(
Δd8Γ 2 log(Γ ) log2

(
Δd8Γ 2 log(Γ )

(β−α)ε

)
+ log 1

δ

))
suffice to guarantee that, with probability ≥ 1 − δ with
regard to choice of the training data, any quantum circuit
N of size Γ and depth Δ that satisfies

|fN (xi, yi) − fN∗(xi, yi)| ≤ α ∀1 ≤ i ≤ m

also satisfies

P(x,y)∼μ[|fN (x, y) − fN∗(x, y)| > β] ≤ ε.

Proof Combine Theorem 6 with Theorem 3 (more pre-
cisely, with its version for variable input states, which can
be proved for operations analogously to the reasoning in
Section 3.3) and use that the fat-shattering dimension is
always upper-bounded by the pseudo-dimension.

Note that in particular, this implies that for the class of
circuits of quantum operations with polynomial size and
depth in the number of qudits, a hypothesis that performs
well on training data will also perform well in a probably
approximately correct sense.

Next, we want to discuss briefly how our result compares
to the work (Aaronson 2007) on the learnability of
quantum states. There, it is shown that quantum states can
be PAC-learned with a sample complexity that depends
linearly on the number of qubits and (among other
dependencies) polynomially on 1

ε
, where ε denotes the

desired accuracy. However, this result does not imply
learnability of quantum channels with a sample complexity
that depends polynomially on the number of qubits. This
observation is already stated in Aaronson (2007), and we
provide an alternate, intuitive explanation for why the result
on states does not directly apply to operations.

One can straightforwardly apply the result of Aaronson
(2007) to learn the Choi-Jamiolkowski state of a quantum
channel. One can then compute measurement probabilities
of output states of a channel T acting on n-qubit states,
using its Choi-Jamiolkowski state τ . For this we must make
use of the formula

tr[ET (ρ)] = 2ntr[τ(E ⊗ ρT )].
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Here, we see that any error on the side of the Choi-
Jamiolkowski state will be multiplied by a factor
exponential in n, and thus in this case the overall n-
dependence of the sample complexity bound fromAaronson
(2007) becomes exponential via the accuracy-dependence.

This motivates our study of learnability of a restricted
class of quantum operations. Finding such operations for
which process tomography is possible was left as an open
problem in Aaronson (2007). Our answer to this question
is that a PAC-version of quantum process tomography is
possible when we restrict our scope to operations that can
be implemented by quantum circuits of depth and size
polynomial in the number of qudits. However, note that this
is subject to a realizability assumption: the learner must
known in advance a polynomial bound on the size and
depth of the circuit. We show that imposing the operations
be efficiently implementable automatically reduces the
information-theoretic complexity of learning, requiring only
a modest number of training examples. We do not make
any statement about the computational complexity of this
learning task; this remains an open problem.

How can this probably approximately correct version
of quantum process tomography be put to use? Given
polynomially many uses of a black box implementing an
unknown quantum operation of polynomial size and depth,
one can exhibit a circuit of two-qudit quantum operations
that approximates the unknown channel. In other words, we
obtain a classical description of an approximate copy of the
channel.

5 Open problems

Finally, in this section we discuss future directions and
possible generalizations of our results.

Two natural parameters of a circuit, depth and size,
appear polynomially in the pseudo-dimension upper
bounds. Notably, these bounds are independent of the num-
ber of qudits in the circuit. Are our upper bounds tight in
their dependence on size and depth? Can similar techniques
produce pseudo-dimension lower bounds? For example, by
considering a single 2-qudit unitary it is relatively straight-
forward to see that the pseudo-dimension of a circuit is
≥ (d). Can we close the gap in dimension-dependence
between this linear lower bound and our quartic upper
bound?

Our application of pseudo-dimension for lower bounds
on the gate complexity of state preparation complements
known methods (described, e.g., in Nielsen and Chuang
2010), based on counting dimensions or covering argu-
ments. We exhibit a class of states of size 22

n
, for which at

least one has exponential gate complexity of state prepara-

tion. Can we exploit this new technique to exhibit a smaller
set of states? Perhaps the most exciting application of
pseudo-dimension bounds could be provable lower bounds
on the gate complexity of state preparation, if the reason-
ing in Section 4.1 is sharpened or the tools are developed
further.

If circuit depth and size are known in advance, one
can information-efficiently learn the circuit. If the learner
receives training data generated by an approximation of
the circuit, does the result still hold? Can the realizability
assumption be relaxed?

Does “pretty-good circuit tomography” have applica-
tions? On the theory side, this might involve exploiting the
learning process as an approximate copy-machine for quan-
tum circuits. Of interest for both theory and experiment is
whether circuits can be learned with a reasonable amount
of computation. One can imagine progress on this question
for process tomography similar to that for state tomogra-
phy; demonstrating a class of states for which learning is
computationally efficient in Rocchetto (2017) made it pos-
sible to learn physically interesting states in a laboratory
in Rocchetto et al. (2019). An efficiency improvement in
the process tomography case might also have experimental
ramifications.
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Appendix

Here, we prove Theorem 3, namely that Pdim(Fδ,γ ) ≤
O(δ · d4 · γ 2 log γ ).

Proof (Theorem 3)
We rely upon Lemma 2. Let {(xi, yi)}mi=1 ⊆ X × R be

such that for every C ⊆ {1, . . . , m}, there exists fC ∈ Fδ,γ

such that fC(xi) − yi ≥ 0 if and only if i ∈ C.
By Lemma 2, there exists a set of polynomials Pδ,γ in

2γ d4 + 2dn real variables such that |Pδ,γ | ≤ γ ! δγ−δ

(γ−δ)! (n!)δ
and such that for every C ⊆ {1, . . . , m}, there exists a pC ∈
Pδ,γ and an assignment �C to the first 2γ d4 variables of
pC such that pC(�C, xi) − yi ≥ 0 if and only if i ∈ C.

In particular, this implies (using the “moreover”-part of
Lemma 2) that the set P = {p(·, xi) − yi}mi=1 | p ∈ Pδ,γ }
is a set ofm·|Pδ,γ | ≤ m

γ ! δγ−δ

(γ−δ)! (n!)δ polynomials of degree

≤ 2γ in 2γ d4 real variables that has at least 2m different
consistent sign assignments. So by Corollary 1, we have

2m ≤
(
8e · 2γ · m

2γ d4
· γ ! δγ−δ

(γ − δ)! (n!)δ
)2γ d4

.

Taking logarithms yields

m ≤ 2γ d4
(
log(16e · γ ) + log

(
m

2γ d4
· γ ! δγ−δ

(γ − δ)! (n!)δ
))

.

Repeating the argument in the proof of Theorem 2, we
distinguish cases and observe that in both cases,

m ≤ 8d4 · γ · log
(
16eγ · γ ! δγ−δ

(γ − δ)! (n!)δ
)
.

Expanding the logarithm and using Stirling’s formula up
to two terms, we have

We use the fact that n ≤ 2γ (because we assume that
each qudit is acted upon by at least one gate) in the second
step, and note that because γ ≥ δ, the asymptotic behavior

of all of the above terms are subsumed by the first term
in the bracket. We have also confirmed that the log(16eγ )

term above may be neglected. Thus, by the definition of the
pseudo-dimension we conclude Pdim(FN ) ≤ O(δ · d4 ·
γ 2 log γ ).
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Necessary criteria for Markovian divisibility of linear maps

Matthias C. Caro and Benedikt R. Graswald

Markovian evolutions, in which the future is independent of the past, given the present, have

been studied intensely, both in classical probability theory and in quantum theory. In particu-

lar, the generators of continuous one-parameter semigroups have been identi�ed: Transition rate

matrices generate semigroups of stochastic matrices, Lindblad generators generate semigroups of

quantum channels. These semigroups and their generators describe time-homogeneous Marko-

vian evolutions of classical and quantum systems, respectively. In this work, we investigate a

notion of divisibility describing time-inhomogeneous Markovian evolutions.

After an introduction, in which we motivate our problem, give an overview of our results, and

discuss related work, we recall some well known notions from quantum information theory in

Section II. Next, in Subsection III.A, we de�ne Markovian divisibility (De�nition III.1) and

in�nitesimal Markovian divisibility (De�nition III.2) of a linear map with respect to a general

(compact and convex) set of generators, the two central notions studied in this article. After

discussing some basic properties related to these de�nitions, we note that, when taking as our

set of generators the Lindblad generators, we recover the notion of in�nitesimal Markovian

divisibility of quantum channels introduced in [10]. In Subsection III.B, we recall from [10] that

such in�nitesimal Markovian divisible quantum channels have nonnegative determinant, and that

in the qubit case, they have been fully characterized.

Section IV contains our main results. Throughout, our goal is to prove that an (in�nitesimal)

Markovian divisible map T ∈ B(Cd) satis�es an inequality of the form

|det(T )| ≤
(

k∏

i=1

s↑i (T )

)p

, (A.2.1)

for suitably chosen d-dependent parameters p ∈ R and k ∈ {1, 2, . . . , d}. In Subsection IV.A, we

present a general proof strategy for deriving such an inequality from properties of the generators.

Namely, we �rst exploit submultiplicativity of products of largest singular values to show that, if

T1 and T2 satisfy Eq. (A.2.1), then so does their product T1T2 (Lemma IV.1). Next, with the case

of in�nitesimal Markovian divisibility in mind, we combine this �rst insight with Trotterization

to establish an analogous result for exponentials of generators: If eG1 and eG2 satisfy Eq. (A.2.1),

then so does eG1+G2 (Lemma IV.2). Using a majorization inequality for the singular values of a

matrix exponential, we then prove in Lemma IV.4 that a su�cient condition for eG to ful�ll the

singular value inequality Eq. (A.2.1) is that G satis�es the eigenvalue inequality

tr[G+G∗]− p

k∑

i=1

λ↑i (G+G∗) ≤ 0 . (A.2.2)

Together with continuity of the determinant, Lemmas IV.1 and IV.4 lead to our �rst main result

(Theorem IV.5): If every admissible generator G satis�es Eq. (A.2.2), then any map T that is

Markovian divisible with respect to that set of generators satis�es Eq. (A.2.1). In the case of
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in�nitesimal divisibility, we employ Lemma IV.2 to show that it su�ces to have Eq. (A.2.2) for

positive multiples of extreme points of the convex and compact set of generators to guarantee

Eq. (A.2.1) (Corollary IV.6).

In Subsection IV.B, we apply this strategy for the case of in�nitesimal Markovian divisible quan-

tum channels. Namely, in Lemmas IV.7, IV.14, and Proposition IV.21, we show that Lindblad

generators on qudits satisfy Eq. (A.2.2) for the parameter settings (p, k) ∈ {(d/2, 1), (1, ⌊2d −
2
√
2d + 1⌋)} ∪ {(2d/k+2

√
d+1, k) | 1 ≤ k ≤ d2}. Consequently, according to the results of Sub-

section IV.A, in�nitesimal Markovian divisible quantum channels satisfy Eq. (A.2.1) with the

same choices of p and k. Thus, we have proved necessary criteria for the in�nitesimal Markovian

divisibility of quantum channels in terms of an upper bound on the determinant via smallest

singular values. Example IV.11 describes an analytical application of these criteria in identifying

new examples of not in�nitesimal Markovian divisible quantum channels. Moreover, we argue

in Examples IV.12 and IV.17 that our parameter choices (p, k) are close to optimal in general,

prove a small improvement in the Appendix, and discuss strengthenings of our results for normal

Lindbladians in Proposition IV.13 and Remark IV.15.

To demonstrate that the necessary criteria obtained in Subsection IV.B are indeed quantum

features, we show in Subsection IV.C that no non-trivial necessary criteria of the same form

can hold in the classical case, with arbitrary transition rate matrices as generators. We do so by

studying a concrete example (Example IV.24). However, as we demonstrate in Lemma IV.26 and

Corollary IV.27, after appropriately restricting the set of generators to a subset of transition rate

matrices, the proof strategy from Subsection IV.A can be applied successfully. With Section V.,

we conclude the article with a short discussion of our results and some open questions, including

a concrete conjecture (Conjecture IV.19).

I was signi�cantly involved in �nding the ideas and carrying out the scienti�c work of all parts

of this article. The idea for this project was motivated by discussions between my doctoral

advisor, Michael M. Wolf, and myself. In these discussions, also the �rst idea for the general

proof strategy was developed. All other parts of the scienti�c work for this article were completed

by Benedikt R. Graswald and myself. I was in charge of writing the article, with the exception

of Corollary IV.10., Example IV.11., Proposition IV.13., and the Appendix.
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ABSTRACT
We describe how to extend the notion of infinitesimal Markovian divisibility from quantum channels to general linear maps and compact and
convex sets of generators. We give a general approach toward proving necessary criteria for (infinitesimal) Markovian divisibility. With it, we
prove two necessary criteria for infinitesimal divisibility of quantum channels in any finite dimension d: an upper bound on the determinant in
terms of a Θ(d)-power of the smallest singular value and in terms of a product of Θ(d) smallest singular values. These allow us to analytically
construct, in any given dimension, a set of channels that contains provably non-infinitesimal Markovian divisible ones. Moreover, we show
that, in general, no such non-trivial criteria can be derived for the classical counterpart of this scenario.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031760

I. INTRODUCTION
References 1 and 2 made an important step toward understanding the connection between master equations and the framework of

quantum channels for describing quantum evolutions by characterizing the generators, which give rise to semigroups of quantum channels
via the corresponding (time-independent) master equation. The converse question, i.e., the problem of characterizing those quantum channels
that can arise from the solution of a (possibly time-dependent) Lindblad master equation, is, however, still awaiting an answer.

Endeavors toward a resolution of this problem have given rise to different notions of (non-) Markovianity for quantum evolutions. One
line of research is based on connecting Markovianity to certain divisibility properties of quantum evolutions, particularly to the possibility
of dividing the evolution into infinitesimal pieces. While this gives an intuitively plausible notion of time-dependent quantum Markovianity
and some structural properties can be established on its basis, it has so far not given rise to easily verifiable criteria for Markovianity (with
a simple exception). Only for evolutions of qubit systems is this notion completely understood. We go beyond this characterization for the
two-dimensional case and establish necessary criteria for a quantum channel—or a linear map in general—to be divisible into infinitesimal
Markovian pieces. Our criteria take the form of an upper bound on the determinant in terms of the power of a product of smallest singular
values.

Our proof strategy is not specific to quantum channels but can be applied to obtain necessary criteria for (infinitesimal) Markovian
divisibility of general linear maps with respect to a closed and convex set of generators if the generators satisfy certain spectral properties.

A. Overview of our results
In this work, we study the following question: Given a linear map T and a set of linear maps G, acting on Cd, can T be approximated

arbitrarily well by linear maps of the form∏ie
Gi , where Gi ∈ G? If that is the case, we say that T is Markovian divisible with respect to the set of

generators G.
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We aim toward establishing necessary criteria for Markovian divisibility of the form

∣det(T)∣ ≤ (
k

∏
i=1

s↑i (T))
p

,

where k = k(d) and p = p(d) depend on the underlying dimension. Proving such criteria becomes tractable by combining multiplicativity of
the determinant and sub-/super-multiplicativity of products of largest/smallest singular values with Trotterization.

In Sec. IV A, we describe how to use these properties to reduce the problem of establishing necessary criteria of the above form to a
spectral property of the generators. We can summarize our reduction as follows:

Theorem (Theorem IV.5—informal version). Let G ⊆Md be a set of generators. Let T be Markovian divisible with respect to G, and

suppose that every G ∈ G satisfies Tr[G +G∗] − p
k
∑
i=1

λ↑i (G +G∗) ≤ 0. Then, ∣det(T)∣ ≤ (
k
∏
i=1

s↑i (T))
p

.

We employ our proof strategy for the physically motivated scenario of infinitesimal Markovian divisibility. Here, the objects of interest
are linear maps T that, for any ε > 0, can be arbitrarily well approximated by linear maps of the form ∏ie

Gi , where Gi ∈ G are such that
∥eGi − 𝟙d∥ ≤ ε.

We first study the case in which G is the set of Lindblad generators seen as linear maps on d × d-matrices, i.e., we consider those generators
that give rise to semigroups of quantum channels. With this choice, the notion of infinitesimal Markovian divisibility of a linear map T on
d × d-matrices becomes that of infinitesimal Markovian divisibility of quantum channels introduced in Ref. 3.

We prove necessary criteria for infinitesimal Markovian divisibility of quantum channels in any finite dimension. Specifically, for an
infinitesimal Markovian divisible quantum channel T on d × d-matrices, we show in Corollaries IV.9 and IV.16 that

∣det(T)∣ ≤ (s↑1(T))
d
2 and ∣det(T)∣ ≤

⌊2d−2
√

2d+1⌋
∏
i=1

s↑i (T).

Moreover, we give explicit examples (Examples IV.12 and IV.17) of infinitesimal divisible channels from which we can conclude that the
d-dependence of the exponent (in the first bound) and of the number of singular value factors (in the second bound) is close to optimal,
respectively.

We also describe how to interpolate between these bounds in Corollary IV.21 and obtain that for an infinitesimal divisible quantum
channel T acting on d × d-matrices,

∣det(T)∣ ≤ (
k

∏
i=1

s↑i (T))

2d
k+2
√

k+1

for 1 ≤ k ≤ d2.

These criteria allow us to give new examples of provably non-infinitesimal divisible channels in dimensions strictly bigger than 2, which were
not recognizable as such previously (Example IV.11).

As a second application of our proof strategy, we take G to be the set of transition rate matrices of dimension d and thereby study
the question of (infinitesimal) Markovian divisibility of stochastic matrices. We first show via an explicit example (Example IV.24) that no
necessary criterion of the above form can hold in this scenario when we allow all transition rate matrices as generators. Combined with
our results for infinitesimal Markovian divisible quantum channels, this implies that stochastic matrices cannot be embedded into quantum
channels while preserving both the singular values and the property of infinitesimal Markovian divisibility at the same time.

If, however, we restrict our set of generators to transition rate matrices whose diagonal elements differ by at most a constant factor, our
proof strategy can be applied and yields an upper bound on the determinant in terms of a power of the smallest singular value (Corollary
IV.27).

B. Related work
The quantum Markovianity problem, the question of deciding whether a given quantum channel is a member of a quantum dynamical

semigroup, was considered from a complexity-theoretic perspective in Ref. 4. Therein, it was shown to be NP-hard and the same is true
for the classical counterpart of this problem, with stochastic matrices instead of quantum channels and transition rate matrices instead of
Lindblad generators. The computational complexity of a related divisibility problem for stochastic matrices, namely, that of finite divisibility,
was studied in Ref. 5. In addition, this divisibility problem turns out to be NP-hard, even NP-complete.

When fixing the system dimension, however, deciding whether a quantum channel is an exponential of a Lindblad generator, in which
case it can be called time-independent Markovian because it solves a time-independent Lindblad master equation, becomes feasible. Cor-
responding necessary and sufficient criteria and an efficient (in the desired precision) algorithmic procedure for this case with a fixed
dimension were given in Refs. 4 and 6. These results pertain to time-independent (quantum) Markovianity and cannot be directly applied to
the time-dependent case.
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FIG. 1. A depiction of the relations between different notions of divisibility and Markovianity of quantum channels and quantum dynamical maps. A simple arrow indicates that
a channel or dynamical map satisfying the condition at the tail also satisfies that at the head. ⇕ indicates the equivalence of two notions. ≃ is used to indicate a correspondence
that, to the best of our knowledge, has been rigorously proven only for the qubit case.

Our focus is on infinitesimal Markovian divisible quantum channels. These were introduced and studied in detail for qubit channels by
Ref. 3. Therein, it is also observed that every infinitely divisible quantum channel, i.e., every channel that can be written as an nth power of
a quantum channel for every n ∈ N, is infinitesimal divisible. The notion of infinitesimal Markovian divisibility can be seen as corresponding
to time-dependent Markovianity, i.e., to solutions of time-dependent Lindblad master equations. Thereby, it offers a route to studying a
time-dependent version of the Markovianity problem.

A plethora of different notions of Markovianity for quantum evolutions and relations between them are discussed in several review
papers.7–10 On the one hand, one considers notions of quantum Markovianity based on the divisibility of the evolution, either for quantum
channels or for quantum dynamical maps with corresponding propagators. This line of research was initiated by Ref. 3, and Refs. 11 and 12
constitute recent additions to it. In relation to this approach, Ref. 13 proposed a measure of non-Markovianity on the basis of infinitesimal
deviations from complete positivity. On the other hand, there are notions and measures of non-Markovianity based on (quantum) information
backflow, often formalized in terms of distinguishability measures that are known to be non-increasing under completely positive and trace-
preserving maps. This idea was introduced in Ref. 14, and Ref. 9 recently proposed a variant of it.

In Fig. 1, we present only a selected few of these notions and the connections between them.

C. Structure of the paper
Section II introduces basic notions from quantum information that provide our overall framework. In Sec. III, we introduce the core

definition of infinitesimal Markovian divisibility in a general setting and discuss prior work in the quantum scenario. Section IV contains our
main results: We describe the general proof approach in Subsection IV A and apply it to derive necessary criteria for infinitesimal Markovian
divisibility of quantum channels in Subsection IV B. The same type of criterion does not, in general, hold for infinitesimal divisibility of
stochastic matrices, only for suitable subsets, as we argue in Subsection IV C. We conclude with some open questions and the references.

II. PRELIMINARIES
We introduce some of the basic notions of quantum information with focus on quantum channels and the corresponding semigroups.

The interested reader is referred to Ref. 15 for more details.
Throughout this paper, we denote the set of d × d complex matrices as Md for a dimension d ∈ N. The identity matrix in Md is written

as 𝟙d, whereas id = idMd
denotes the identity map on Md. For A ∈Md, we use λi = λi(A) to denote its eigenvalues. If A ∈Md is Hermitian,

we use λ↓i (λ↑i ) to denote the eigenvalues in decreasing (increasing) order. Similarly, we use the notation s↓i and s↑i for singular values. Finally,
Tr[A] will denote the trace of A.

A. Quantum states and channels
A d-level quantum system (for d ∈ N) is described by a d × d density matrix, i.e., an element of

S(Cd
) ∶= {ρ ∈Md ∣ ρ ≥ 0, Tr[ρ] = 1},

where ρ ≥ 0 means that the matrix ρ is positive semidefinite.
Physically admissible transformations of quantum systems are described by quantum channels (in the Schrödinger picture), i.e., by

elements of
T (Cd,Cd′

) ∶= {T : Md →Md′ ∣ Tis linear, completely positive, and trace − preserving}.

Here, we call T completely positive iff T ⊗ idMn
is positivity-preserving for every n ∈ N. This definition guarantees that a quantum channel

maps states to states and that this is still the case when embedding the quantum system of interest into a larger system with trivial evolution
on the environmental subsystem.
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We will also use the shorthand Td ∶= T (Cd,Cd
) for channels with equal input and output dimension.

B. Quantum dynamical semigroups
It is a foundational postulate in quantum theory that the dynamics of a closed quantum system can be described in terms of a Schrödinger

equation, which gives rise to a one-parameter group of unitaries. For open quantum systems, we will work with one-parameter semigroups.

Definition II.1 (Continuous dynamical semigroups). A family of linear maps Tt : Md →Md with time parameter t ∈ R+ is called a
dynamical semigroup if ∀t, s ∈ R+ = [0,∞) : TtTs = Tt+s and T0 = Id. If in addition, the map t ↦ Tt is continuous (we are working on finite
dimensional spaces, so there is no need to specify the type of continuity here), then the family is called a continuous dynamical semigroup.

It is well-known that such continuous dynamical semigroups can be represented via a generator, i.e., if {Tt}t≥0 is a continuous dynamical
semigroup, then there exists a linear map L : Md →Md such that Tt = etL for all t ≥ 0.

When requiring such a semigroup to consist of physically admissible evolutions of a quantum system, i.e., of quantum channels, the
question arises of what the corresponding generators are. This was answered in the following.

Theorem II.2 (Generators of quantum dynamical semigroups—GKLS, Refs. 1 and 2). A linear map L : Md →Md is the generator of a
continuous dynamical semigroup of quantum channels if and only if it can be written as

L(ρ) = i[ρ, H] +∑
j
LjρL†

j −
1
2
{L†

j Lj, ρ}, (1)

where H = H†
∈Md is self-adjoint and {Lj}j is a set of matrices in Md. Here, {⋅, ⋅} denotes the anti-commutator.

For such generators, often called GKLS or Lindblad generators, we refer to the term i[⋅, H] as the Hamiltonian part and to ∑jLj ⋅L†
j

− 1
2{L

†
j Lj, ⋅} as the dissipative part with Lindbladians {Lj}j.

We will call a quantum channel Markovian if it is an element of a quantum dynamical semigroup.

III. MARKOVIAN DIVISIBILITY
The main motivation for our work is the following problem: Given a quantum channel, decide whether it comes from a (possibly time-

dependent) Lindblad master equation. We take two different perspectives on this task to motivate our definitions.
The first perspective is that of differential equations. Specifically, we want to understand which quantum channels can arise as a solution

of a time-dependent master equation of the form d
dt Tt = L(t)Tt , where L(t) is a time-dependent Lindblad generator. More generally, we want

to study the possible solutions of a linear ordinary differential equation d
dt Tt = G(t)Tt , where t ↦ G(t) ∈ G, with G ⊂Md being a fixed set of

generators.
Our second perspective on the problem comes from the semigroup structure of the solutions to time-independent master equations.

Specifically, each such equation corresponds to a quantum dynamical semigroup. If we now also want to take into account a possible time-
dependence of the generator while still preserving the semigroup structure, we can consider the semigroup generated by all elements of
quantum dynamical semigroups. On an intuitive level, the question about solutions of master equations that we asked above now becomes
the question of whether a given quantum channel is an element of this semigroup, i.e., we are dealing with the membership problem for this
semigroup. Again, we can generalize the question by going from Lindblad generators to general generators.

A. Markovian divisibility with respect to general sets of generators
The two perspectives given above lead us to two slightly different definitions. In the first, we focus on the semigroup structure.

Definition III.1 (Markovian divisibility). Let G ⊂Md be a set of matrices, whose elements we call generators. We define the set

DG ∶= {T ∈Md ∣ ∃n ∈ N, generators {Gi}1≤i≤n ⊂ G so that
n

∏
i=1

eGi = T}.

We call the closure DG the set of linear maps that are Markovian divisible with respect to G.

When translating the mathematical motivation of semigroups to a more physical motivation, Definition III.1 can be seen as an approach
to the question of which linear maps can be arbitrarily well approximated using alternating exponentials of a fixed set of (control) generators.

Now, we give a definition based much on the perspective of differential equations determining the overall evolution on infinitesimal time
intervals while keeping the semigroup structure in mind.

Definition III.2 (Infinitesimal Markovian divisibility). Let G ⊂Md be a compact and convex set of matrices containing 0 ∈Md. We will
again refer to the elements of G as generators. We define the set
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IG ∶=
⎧⎪⎪
⎨
⎪⎪⎩

T ∈Md ∣ ∀ε > 0 ∃n ∈ N, generators {Gj}1≤j≤n ⊂ G

so that (i) ∥eGj − 𝟙d∥ ≤ ε ∀ j and (ii)
n

∏
j=1

eGj = T
⎫⎪⎪
⎬
⎪⎪⎭

.

We call the closure IG the set of linear maps that are infinitesimal Markovian divisible with respect to G.

Remark III.3. In the definition, we require G to be compact. This can be assumed without loss of generality. First, closedness can be
assumed without loss of generality since for non-closed G0, we have IG0

= IG0
. Second, boundedness can also be assumed without loss of

generality. Specifically, suppose that G̃ ⊂Md is an unbounded closed and convex set with 0 ∈ G̃ and T ∈ IG̃. Then, by definition, ∀ε > 0 ∃n
∈ N and {Gj}1≤j≤n ⊂ G̃ such that ∥eGj − 𝟙d∥ ≤ ε and ∏n

j=1eGj = T. By convexity, also 1
N Gj ∈ G̃ ∀1 ≤ j ≤ n for every N > 1. By continuity of the

matrix exponential, there exists N0 ∈ N such that ∥e
1
N Gj − 𝟙d∥ ≤ ε for all N ≥ N0. Clearly, we can write T =∏n

j=1eGj =∏
n
j=1(e

1
N Gj)

N
. Thus, as

∥ 1
N Gj∥→ 0 as N →∞, we conclude that for every B > 0, we have T ∈ IG̃≤B

, where G̃≤B ∶= {G ∈ G̃ ∣ ∥G∥ ≤ B}. Hence, we can impose an arbitrary
(non-zero) norm bound on our generators without changing the set of infinitesimal Markovian divisible channels.

Therefore, we are justified in using Definition III.2 also for non-compact G (in particular, Lindblad generators and transition rate
matrices).

Remark III.4. By continuity of the matrix exponential, it is easy to see that, if G ∈ G implies 1
n G ∈ G for all n ∈ N, then DG = IG. This is

particularly the case if G satisfies the assumptions of Definition III.2.
If, however, G does not have this property, then (i) in the definition of IG will, in general, lead to IG ≠ DG (e.g., IG could be empty even

if DG is not).

When specifying G to be the set of Lindblad generators and thus the linear maps of interest to be quantum channels, Definitions III.1 and
III.2 become connected to quantum channels arising from master equations. Studying such channels via a notion of Markovian divisibility
into infinitesimal pieces was first proposed in Ref. 3. Next, we discuss some results of that work.

B. Infinitesimal Markovian divisibility of quantum channels
For ease of notation, we will denote by Id the set IG for the specific choice of G being the set of Lindblad generators acting on

d × d-matrices. Then, the set Id is the set of infinitesimal Markovian divisible quantum channels, as defined in Ref. 3.
When referring to these channels, we will sometimes drop the “Markovian” for convenience. This can also be justified in a rigorous sense

(see Theorem 16 in Ref. 3).
While some insight into the structure of infinitesimal Markovian divisible quantum channels has been obtained in Ref. 3, so far, there

are no simple-to-check criteria for infinitesimal divisibility for a general dimension d. Such criteria are the main focus of this work.
A straightforward necessary criterion for infinitesimal divisibility is already observed in Ref. 3, namely, we have the following as a direct

consequence of multiplicativity and continuity of the determinant:

Proposition III.5. An infinitesimal divisible quantum channel T satisfies det(T) ≥ 0.

This is, to our knowledge, the only necessary criterion for infinitesimal divisibility known so far that holds in any finite dimension.
For the special case of qubit channels, the set of infinitesimal divisible channels can be explicitly characterized by making use of the

Lorentz normal form (the latter is discussed in Ref. 16).

Theorem III.6 (Infinitesimal divisible qubit channels3—informal). Let T : M2 →M2 be a generic qubit channel with the Lorentz

normal form
⎛
⎜
⎝

1 0

0 Δ

⎞
⎟
⎠

.

T is infinitesimal Markovian divisible if and only if 0 ≤ det(Δ) ≤ s2
min, where smin is the smallest singular value of Δ.

This characterization serves as one motivation for our results in higher dimensions, which we derive in Subsection IV B.

IV. NECESSARY CRITERIA FOR MARKOVIAN DIVISIBILITY
We now develop necessary criteria for a linear map to be (infinitesimal) Markovian divisible. More precisely, our discussion aims toward

establishing inequalities of the form

∣det(T)∣ ≤ (
k

∏
i=1

s↑i (T))
p

. (2)
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We first present some results for the case of general linear maps and generators and later combine these observations with a more
detailed analysis for quantum channels and Lindblad generators and stochastic matrices and transition rate matrices, respectively.

A. General sets of generators
We first observe that if each of two matrices satisfies the desired inequality (2), then so does the product of the matrices.

Lemma IV.1. Let T1, T2 ∈Md. Suppose that 1 ≤ k ≤ d and p > 0 such that

∣det(Tj)∣ ≤ (
k

∏
i=1

s↑i (Tj))

p

holds for j = 1, 2. Then, also

∣det(T1T2)∣ ≤ (
k

∏
i=1

s↑i (T1T2))

p

.

Proof. A well-known majorization inequality for singular values states that

k

∏
i=1

s↓i (AB) ≤
k

∏
i=1

s↓i (A)s
↓
i (B) (3)

for any 1 ≤ k ≤ n for n × n-matrices A, B (see Ref. 17, Theorem 3.3.4). With this, we obtain

∣det(T1T2)∣ = ∣det(T1)∣∣det(T2)∣

≤ (
k

∏
i=1

s↑i (T1))

p

(
k

∏
i=1

s↑i (T2))

p

=

⎛
⎜
⎜
⎜
⎜
⎝

∣det(T1)∣∣det(T2)∣

d−k
∏
i=1

s↓i (T1)s↓i (T2)

⎞
⎟
⎟
⎟
⎟
⎠

p

≤

⎛
⎜
⎜
⎜
⎜
⎝

∣det(T1T2)∣

d−k
∏
i=1

s↓i (T1T2)

⎞
⎟
⎟
⎟
⎟
⎠

p

= (
k

∏
i=1

s↑i (T1T2))

p

as claimed. Here, the first inequality is that, by assumption, the following step uses ∣det(Ti)∣ =
d
∏
j=1

s↓j (Ti), the second inequality is due to Eq. (3),

and the last step uses ∣det(T1T2)∣ =
d
∏
j=1

s↓j (T1T2). ◻

This means that, when trying to establish an inequality of the form (2), if T is a finite product, it suffices to consider the single factors
separately.

Now we show that, once we have our desired inequality (2) for non-negative multiples of two separate generators, the exponential of the
sum of these two generators also satisfies the inequality. This observation will be particularly useful in our analysis of Lindblad generators.

Lemma IV.2. Let G1, G2 ∈Md. Suppose that 1 ≤ k ≤ d and p > 0 are such that

∣det(e
Gj
n )∣ ≤ (

k

∏
i=1

s↑i (e
Gj
n ))

p

holds for all n ∈ N and j = 1, 2. Then, also

∣det(eG1+G2)∣ ≤ (
k

∏
i=1

s↑i (e
G1+G2))

p

.
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Proof. By the Lie–Trotter formula, eA+B
= limn→∞(e

A
n e

B
n )

n. As both the determinant and the singular values depend continuously on

the matrix, we can combine this with (an iterative application of) Lemma IV.1 to see whether it suffices to have ∣det(e
Gi
n )∣ ≤ (

k
∏
i=1

s↑i (e
Gi
n ))

p

for

arbitrary n ∈ N. We can summarize this reasoning as follows:

∣det(eG1+G2)∣ = lim
n→∞
∣det((e

G1
n e

G2
n )

n
)∣

≤ lim
n→∞
(

k

∏
i=1

s↑i ((e
G1
n e

G2
n )

n
))

p

= (
k

∏
i=1

s↑i (e
G1+G2))

p

,

where the inequality follows by combining the assumption with Lemma IV.1. ◻

Remark IV.3. If Gj in Lemma IV.2 are normal matrices, then it is easy to see that the assumed inequality for n = 1 already implies the
corresponding inequality for any n ∈ N. In general, however, this implication is not true. This can be seen as considering L and 1

2 L, with L
given in Example IV.12. Therefore, we make the assumption for all n ∈ N. This is also why we formulate Definition III.2 for convex sets of
generators that contain the zero-matrix.

Next, we discuss how to reduce an inequality of the form (2) for a single matrix exponential to an inequality of eigenvalues of the
exponent.

Lemma IV.4. Suppose that G ∈Md satisfies Tr[G +G∗] − p
k
∑
i=1

λ↑i (G +G∗) ≤ 0, then

∣det(eG
)∣ ≤ (

k

∏
i=1

s↑i (e
G
))

p

.

Proof. We observe that
k

∏
i=1

s↑i (e
G
) =
∣det(eG

)∣

d−k
∏
i=1

s↓i (eG)

≥
∣det(eG

)∣

d−k
∏
i=1

s↓i (e12(G+G∗))

=
det(e

1
2 (G+G∗)

)

d−k
∏
i=1

e12λ↓i (G+G∗)
=

k

∏
i=1

e
1
2 λ↑i (G+G∗),

where we used
d−k
∏
i=1

s↓i (e
G
) ≤

d−k
∏
i=1

s↓i (e
R(G)
) (see p. 259 of Ref. 18) as well as ∣det(eG

)∣ = det(e
1
2 (G+G∗)

), which can be seen via Lie–Trotter. With

this, we now obtain

∣det(eG
)∣

2
= eTr[G+G∗]

≤
⎛

⎝
e

k
∑
i=1

λ↑i (G+G∗)⎞

⎠

p

= (
k

∏
i=1

e
1
2 λ↑i (G+G∗)

)

2p

≤ (
k

∏
i=1

s↑i (e
G
))

2p

,

where the first inequality is exactly our assumption. Now we take the square root and obtain the claimed inequality. ◻

We summarize the results of the foregoing discussion for Markovian divisibility in the following.

Theorem IV.5. Let G ⊆Md be a set of generators. Let T ∈ DG and suppose that every G ∈ G satisfies Tr[G +G∗] − p
k
∑
i=1

λ↑i (G +G∗) ≤ 0.

Then, ∣det(T)∣ ≤ (
k
∏
i=1

s↑i (T))
p

.

Proof. By continuity of the determinant and the singular values, we can restrict our attention to T ∈ DG. In that case, there exist n ∈ N

and generators {Gi}1≤i≤n ⊂ G such that
n
∏
i=1

eGi = T. By Lemma IV.1, it suffices to have the desired inequality for each factor eGi . These now

satisfy the inequality by Lemma IV.4.

We obtain an analogous result for infinitesimal Markovian divisibility:

Corollary IV.6. Let G ⊂Md be a compact and convex set of matrices containing 0 ∈Md. Let G̃ ∶= {λG ∣ λ ∈ [0, 1],

G an extreme point o f G} ⊂ G. Assume that every G̃ ∈ G̃ satisfies Tr[G̃ + G̃∗] − p
k
∑
i=1

λ↑i (G̃ + G̃∗) ≤ 0. Let T ∈ IG. Then, 0 ≤ det(T)

≤ (
k
∏
i=1

s↑i (T))
p

.
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Proof. det(T) ≥ 0 follows in the same way as in Proposition III.5. By continuity, it suffices to prove the desired upper bound for
T ∈ IG. By the definition of the set IG and Lemma IV.1, it then suffices to consider single factors of the form eG, G ∈ G. By definition of
G̃, G̃ ∈ G̃, in particular, implies that 1

n G̃ ∈ G̃ for all n ∈ N. In addition, every element of G can be expressed as a finite sum of elements of G̃ (by
Krein–Milman). Therefore, we can apply Lemma IV.2 to conclude that it suffices to consider single factors of the form eG̃, G̃ ∈ G̃. Now we
apply Lemma IV.4 to finish the proof. ◻

The assumption in Corollary IV.6 is about (truncated) rays through extreme points of the convex set of interest. In light of Remark IV.3,
we expect that this can, in general, not be further simplified to an assumption only about the extreme points themselves (without multiples).

B. Quantum channels
We now want to apply the reasoning from Subsection IV A to the more specific question of infinitesimal (Markovian) divisibility of

quantum channels.
To avoid confusion about notation, in this subsection, we will denote the eigenvalues of a matrix L as λi = λi(L), whereas the eigenvalues

of a linear map L on matrices are written as ΛK = ΛK(L). For real eigenvalues of such linear superoperators, we use Λ↓K (Λ↑K ) to denote the
eigenvalues in decreasing (increasing) order.

1. Determinant vs power of the smallest singular value
We first show that purely dissipative Lindblad generators with one Lindbladian satisfy an inequality, as assumed in Lemma IV.4 with

only one summand:

Lemma IV.7. Let L : Md →Md and L(ρ) = LρL†
− 1

2{L
†L, ρ} be a purely dissipative Lindblad generator with one Lindbladian L ∈Md.

Then,

Tr[L + L∗] −
d
2

Λ↑1(L + L∗) ≤ 0. (4)

Proof. We adopt the following convention for vectorization of matrices: If A is an n × n-matrix with column vectors ai, then vec(A)
= (aT

1 , . . . , aT
n )

T is the column vector obtained by stacking the columns of A on top of one another. When using vec(ABC) = (CT
⊗ A)vec(B)

to rewrite L + L∗ as a d2
× d2-matrix, we obtain

vec(L + L∗) = L⊗L +L† ⊗L†
− 𝟙d ⊗L†L −L†L⊗ 𝟙d.

From this, it is easy to see that
Tr[L + L∗] = ∣Tr[L]∣2 − 2d∥L∥2

F .

We observe that the Lindbladians L and λ𝟙d +L give rise to the same superoperator L + L∗ for every λ ∈ C. Hence, we can, without loss of
generality, assume that Tr[L] = 0 and therefore Tr[L + L∗] = −2d∥L∥2

F . Thus, we obtain

Tr[L + L∗] −
d
2

Λ↑1(L + L∗) ≤ −2d∥L∥2
F +

d
2
∥L + L∗∥∞

≤ −2d∥L∥2
F +

d
2
(∥L⊗L∥∞ + ∥L

† ⊗L†
∥
∞
+ ∥𝟙d ⊗L†L∥

∞
+ ∥L†L⊗ 𝟙d∥∞

)

= −2d∥L∥2
F +

d
2
⋅ 4∥L∥2

∞

≤ 0,

which finishes the proof. ◻

Remark IV.8. In our Proof of Lemma IV.7, one step might strike the reader as particularly simplistic. Specifically, we estimate

d
2
∥L + L∗∥∞ ≤

d
2
(∥L⊗L∥∞ + ∥L

† ⊗L†
∥
∞
+ ∥𝟙d ⊗L†L∥

∞
+ ∥L†L⊗ 𝟙d∥∞

) ≤
d
2
⋅ 4∥L∥2

∞.

With a more thorough analysis, we can slightly improve this upper bound and thereby increase the prefactor in the statement of Lemma IV.7
from d

2 to ≈ 0.610 733 d. (We then get the same improvement in Corollary IV.9.) We derive this improvement in the Appendix.

We can now apply the reasoning from Subsection IV A (for k = 1 and p = d
2 ) to obtain the following corollary:

Corollary IV.9. Let T ∈ Id. Then, 0 ≤ det(T) ≤ (s↑1(T))
d
2 .
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Proof. By combining the form of Lindblad generators from Theorem II.2 with Corollary IV.6, it suffices to consider Lindblad generators
with a single summand, i.e., of the form

L(ρ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

i[ρ, H]with H = H†

LρL†
−

1
2
{L†L, ρ}.

[⋅, H] : Md →Md is a self-adjoint map if H = H†, and therefore, ei[⋅,H] has 1 as only singular value. The desired singular value inequality (2)
is thus trivially satisfied for factors of this form. For factors of the form eL with L(ρ) = LρL†

− 1
2{L

†L, ρ}, the desired eigenvalue inequality is
exactly shown in Lemma IV.7. ◻

This necessary criterion can be used to find channels that are not infinitesimal divisible and are given by convex combinations of a
rank-deficient channel with the identity channel.

Corollary IV.10. Let T : Md →Md be a quantum channel that has singular value of 0 of multiplicity 1 ≤ k < d
2 . Then, every neighborhood

of T contains a non-infinitesimal divisible channel.

Proof. Given such a quantum channel T, we can explicitly write down non-infinitesimal divisible channels via convex combination with
the identity, Tϵ = (1 − ϵ)T + ϵ Id. By assumption, Tϵ has exactly k singular values, which go to 0 as ϵ→ 0. Thus, either det(Tϵ) < 0 or we have

det(Tϵ) =
d2

∏
j=1

s↑j (Tϵ) ≥ (s↑1(Tϵ))
k d2

∏
j=k+1

s↑j (Tϵ) > (s↑1(Tϵ))
d/2

for ϵ small enough,

where we just used that the d2
− k largest singular values do not go to 0 for ϵ→ 0. Hence, for ϵ > 0 small enough, Tϵ does not satisfy the

criterion given in Corollary IV.9 and is therefore not infinitesimal divisible. ◻

Example IV.11. We can use the above Corollary to find infinitesimal divisible channels near the channel T : Md →Md, T(ρ) = Tr[ρ]
d 𝟙d.

T is diagonal with respect to the generalized Gell–Mann basis of Md with the corresponding matrix given by T̂ = diag[1, 0, 0, . . . , 0] . The
Choi matrix τ of T has full rank and is thus particularly strictly positive definite (because complete positivity of T translates to positive
semidefiniteness of its Choi matrix τ; see Ref. 15).

Hence, we can pick ε > 0 small enough such that T̂ε = diag[1, ε, . . . , ε, 0] is the matrix representation of a completely positive map in the
generalized Gell–Mann basis. As such a matrix T̂ε describes by its very form a trace-preserving map, it corresponds to a quantum channel Tε,
which now has an eigenvalue of 0 with a multiplicity of 1. Hence, we can apply Corollary IV.10 to Tε and thus find channels arbitrarily close
to T that are not infinitesimal divisible.

Naturally, the question arises whether the power d
2 in Corollary IV.9 is optimal. Our next example shows that the dependence on d

cannot be better than linear and that the factor of 1
2 cannot be improved by much.

Example IV.12. When considering the pathological case of a matrix of the form

L =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

⋮
. . . ⋮

0 0 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

we can easily compute that

L + L∗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 1

0 0 ⋅ ⋅ ⋅ 0

⋮
. . . ⋮

1 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1 0 ⋅ ⋅ ⋅ 0

0 D2 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ Dd,

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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with Di = diag(0, . . . , 0,−1) ∈ Rd×d for 1 ≤ i ≤ d − 1 and Dd = diag(−1, . . . ,−1,−2) ∈ Rd×d. Hence, L + L∗ has eigenvalues −1 of multiplicity
2(d − 1), 0 of multiplicity d2

− 2d, and −1 ±
√

2, each of multiplicity 1. In particular, Tr[L + L∗] − pΛ↑1(L + L∗) = −2d + (1 +
√

2)p ≤ 0 iff
p ≤ 2

1+
√

2
d.

This example also shows that in Theorem IV.9, nothing better than det(T) ≤ (s↑1(T))
p

with p = O(d) can be achieved. Specifically, with
the above choice of L, we get

L =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 1

0 0 ⋅ ⋅ ⋅ 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
1
2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1 0 ⋅ ⋅ ⋅ 0

0 D2 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ Dd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This can now be exponentiated to obtain

T ∶= eL
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 1 − e−1

0 0 ⋅ ⋅ ⋅ 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e
1
2 D1 0 ⋅ ⋅ ⋅ 0

0 e
1
2 D2 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ e
1
2 Dd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where e1/2Di = diag(1, . . . , 1, e−1/2
) for 1 ≤ i ≤ d − 1 and e1/2Dd = diag(e−1/2, . . . , e−1/2, e−1

).
We can now compute

T∗T =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋅ ⋅ ⋅ 1 − e−1

0 0 ⋅ ⋅ ⋅ 0

⋮
. . . ⋮

1 − e−1 0 ⋅ ⋅ ⋅ (1 − e−1
)

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

eD1 0 ⋅ ⋅ ⋅ 0

0 eD2 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ eDd

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

from which we see that T has singular values of 1 of multiplicity (d − 1)2
− 1, e−

1
2 of multiplicity 2(d − 1),

√
1−e+e2+(e−1)

√
1+e2

e ≈ 1.200 of

multiplicity 1, and
√

1−e+e2−(e−1)
√

1+e2

e ≈ 0.306 of multiplicity 1. In particular, we have

det(T) ≤ (s↑1(T))
d
2 ,

but

det(T) > (s↑1(T))
d
.

More precisely, we see that det(T) ≤ (s↑1(T))
p

requires, as d →∞,

p ≤
ln(s↓1(T)) + ln(s↑1(T)) − (d − 1)

ln(s↑1(T))
≈

ln(1.200) + ln(0.306) − (d − 1)
ln(0.306)

∼
1

− ln(0.306)
d ≈ 0.845 d.

If we do the same computation for 1
n L instead of L, we obtain, in the limit of large n, the upper bound,

p ≤
2

1 +
√

2
d + 1 +

√
2

1 +
√

2
,

which coincides up to an additive constant with the bound obtained above on the level of eigenvalues.
This concludes our discussion of the example.
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The result of Theorem IV.9 applied to the qubit case does not reproduce the criterion from Theorem III.6. In particular, we do not obtain
s2

min but merely smin. For normal Lindbladians and thus products of unital channels, our reasoning can, however, be improved.

Proposition IV.13. For normal Lindbladians, the prefactor in Lemma IV.7 (thus the exponent in Corollary IV.9) can be improved to d.
Furthermore, this estimate is sharp, i.e., cannot be improved for general normal L.

Proof. For normal L, we know all the eigenvalues of L + L∗, and they are given by {−∣λi − λj∣
2
}i,j, where λi are the eigenvalues of L (see

Remark IV.15 for a detailed derivation). Now choose two indices i∗, j∗ such that

∣λi∗ − λj∗ ∣
2
= max

i,j
∣λi − λj∣

2.

Then, (4) for exponent d becomes

Tr[L + L∗] − dΛ↑1(L + L∗) = −∑
i,j
∣λi − λj∣

2
+ d∣λi∗ − λj∗ ∣

2. (5)

Now using ∣a + b∣2 ≤ 2(∣a∣2 + ∣b∣2) and denoting the indices {1, . . . , d}/{i∗, j∗} = {n1, . . . , nd−2}, we obtain

(5) ≤ −∑
i,j
∣λi − λj∣

2
+ 2∣λi∗ − λj∗ ∣

2
+ 2

d−2

∑
k=1
(∣λ∗i − λnk ∣

2
+ ∣λ∗j − λnk ∣

2
) ≤ 0.

In the last step, we used that every difference ∣λi∗/j∗ − λnk ∣
2 appears twice in the first sum.

In order to see that d is also optimal, consider the example L = diag[1,−1, 0, . . . , 0] . Here, a straightforward calculation shows that
L + L∗ has eigenvalues −4 of multiplicity 2, −1 of multiplicity 4(d − 2), and 0 of multiplicity 2 + (d − 2)2. Thus,

Tr[L + L∗] = −4d = −d∣λ1 − λ2∣
2
= dΛ↑1(L + L∗),

so d is optimal. ◻

Note that the example used in the previous proof can also be used to show that for normal L, the exponent in det(eL
) ≤ (s↑1(e

L
))

d
cannot

be improved.

2. Determinant vs product of smallest singular values
So far, we have used the ideas from Subsection IV A to derive an upper bound on the determinant of infinitesimal divisible quantum

channels in terms of the power of its smallest singular value. Now we focus on the other aspect of Lemma IV.4 and bound the determinant via
a product of smallest singular values.

Lemma IV.14. Let L : Md →Md and L(ρ) = LρL†
− 1

2{L
†L, ρ} be a purely dissipative Lindblad generator with one Lindbladian

L ∈Md. Then, for f (d) = 2d − 2
√

2d + 1, we have

Tr[L + L∗] −
⌊ f (d)⌋
∑
K=1

Λ↑K(L + L∗) ≤ 0. (6)

Proof. As in the Proof of Lemma IV.7, we can, without loss of generality, assume that Tr[L] = 0, and therefore, Tr[L + L∗] = −2d∥L∥2
F .

We can now bound

−

⌊ f (d)⌋
∑
K=1

Λ↑K(L + L∗) ≤
⌊ f (d)⌋
∑
K=1
∣Λ↑K(L + L∗)∣

≤

⌊ f (d)⌋
∑
K=1

s↓K(L + L∗)

= ∥L + L∗∥(⌊ f (d)⌋)

= ∥L⊗L +L† ⊗L†
− 𝟙d ⊗L†L −L†L⊗ 𝟙d∥(⌊ f (d)⌋)

≤ 2∥L⊗L∥(⌊ f (d)⌋) + ∥𝟙d ⊗L†L +L†L⊗ 𝟙d∥(⌊ f (d)⌋)
,
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where we used the kth Ky Fan norm,

∥A∥(k) :=
k

∑
i=1

s↓i (A).

We bound those two norms separately: For the first term,

∥L⊗L∥(⌊ f (d)⌋) =
⌊ f (d)⌋
∑
K=1

s↓K(L⊗L)

≤
√
⌊ f (d)⌋(∑

⌊ f (d)⌋
K=1 (s↓K(L⊗L))

2
)

1
2

≤
√
⌊ f (d)⌋∥L⊗L∥

F

=
√
⌊ f (d)⌋∥L∥2

F ,

where the first inequality is an application of Cauchy–Schwarz.
For the second term, we choose an ONB with respect to which L†L is diagonal with the squares of the singular values si of L on the

diagonal (which is possible by unitary invariance of the Ky Fan norms) and then compute

∥𝟙d ⊗L†L +L†L⊗ 𝟙d∥(⌊ f (d)⌋)
= ∥diag[2s2

1, s2
1 + s2

2, . . . , s2
1 + s2

d, s2
1 + s2

2, . . . , 2s2
d]∥(⌊ f (d)⌋)

≤ (⌊ f (d)⌋ + 1)
d

∑
i=1

s2
i

≤ (⌊ f (d)⌋ + 1)∥L∥2
F .

Plugging this into the above, we obtain

Tr[L + L∗] −
⌊ f (d)⌋
∑
K=1

Λ↑K(L + L∗) ≤ −2d∥L∥2
F + (1 + 2

√
⌊ f (d)⌋ + ⌊ f (d)⌋)∥L∥2

F .

This is ≤ 0 if 1 + 2
√

f (d) + f (d) − 2d ≤ 0, which is guaranteed by the choice f (d) = 2d − 2
√

2d + 1. ◻

Remark IV.15. The reasoning in the Proof of Lemma IV.14 becomes particularly simple if the Lindbladian L is normal. In that case,
let {vj}j be an orthonormal basis for Rd consisting of eigenvectors of L corresponding to eigenvalues {λj}j. By normality, the {vj}j are
also eigenvectors of L† to eigenvalues {λj}j. Recalling that in the matrix representation, we can write L + L∗ = L⊗L +L† ⊗L†

− 𝟙d ⊗L†L
−L†L⊗ 𝟙d, it is now easy to see that {v̄i ⊗ vj}i,j is an orthonormal basis of Cd2

consisting of eigenvectors of L + L∗ to eigenvalues
{−∣λi − λj∣

2
}i,j. Hence, all eigenvalues of L + L∗ are ≤ 0, and the inequality of Lemma IV.14 is trivially satisfied.

We can now apply our reasoning from Subsection IV A (with k = ⌊2d − 2
√

2d + 1⌋ and p = 1) to obtain the following corollary:

Corollary IV.16. Let T ∈ Id. Then, with f (d) = ⌊2d − 2
√

2d + 1⌋, we have

0 ≤ det(T) ≤
f (d)
∏
i=1

s↑i (T).

Example IV.17. Consider again the Lindblad generator L from Example IV.12 and the corresponding channel T. With the eigenvalues

and singular values computed in Example IV.12, we see that in this case,
d2−k
∑
i=1

Λ↓i (L + L∗) > 0 for all k ≥ 2d − 1, and we have

det(T) ≤
2d−2

∏
i=1

s↑i (T),
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but

det(T) >
k

∏
i=1

s↑i (T)

for every d2
> k > 2d − 2. This shows that in Corollary IV.16, nothing better than det(T) ≤

k
∏
i=1

s↑i (T) with k = 2d − 2 can be achieved.

Remark IV.18. After establishing the optimality of picking the smallest 2d − C singular values in Corollary IV.16, the question naturally
arises whether this bound can, in principle, be achieved with our proof strategy. In other words, what is the optimal choice for k such that

∥L⊗L +L† ⊗L†
− 𝟙d ⊗L†L −L†L⊗ 𝟙d∥(k)

≤ 2d∥L∥2
F?

We clearly have
∥L⊗L +L† ⊗L†

− 𝟙d ⊗L†L −L†L⊗ 𝟙d∥(k)
≤ 2∥L⊗L∥(k) + ∥𝟙d ⊗L†L +L†L⊗ 𝟙d∥(k)

.

The first term has the singular values si(L)sj(L), and the second one has singular values s2
i (L) + s2

j (L). Thus, if we normalize the Frobenius
norm of L to 1 and write pi = s2

i (L), we can reduce the desired bound to the following conjecture:

Conjecture IV.19. Let p ∈ Rd
≥0 with

d
∑
i=1

pi = 1. Define the matrices a, g ∈ Rd×d via

aij =
pi + pj

2
, gij =

√
pipj.

Denote by a↓k and g↓k the kth largest entry of a and g, respectively. Define

A =
h(d)
∑
k=1

a↓k, G =
h(d)
∑
k=1

g↓k .

We conjecture that the maximal integer h(d) such that A +G ≤ d holds for any probability vector p is given by h(d) = 2d − 5.

We have tested this conjecture numerically for a wide range of dimensions. Theoretically, it stems from the fact that we know the optimal
values and corresponding probability vectors for the arithmetic [h(d) = 2d − 2] and geometric mean [h(d) = d2], respectively. Hence, A is by
far more decisive and G can only worsen the maximal number of summands by a bit. If we were able to prove this conjecture, we could choose
f (d) = h(d) = 2d − 5 in Corollary IV.16, which would bring us closer to the optimum of 2d − 2 up to an additive constant.

Remark IV.20. In contrast to Subsection IV B 1, here, we cannot provide an example of a quantum channel that violates the criterion
from Corollary IV.16. As any channel having only singular values ≤ 1 trivially satisfies the criterion, no unital channel will provide a violation,
which makes analytically constructing an example more difficult. We have also tried to find an example of a non-infinitesimal divisible channel
that is recognized as such by the conjectured optimal version of our criterion (which we cannot prove yet) numerically via minimizing the

fraction
2d−2
∏
i=1

s↑i (T)/det(T) over channels. This has, however, not been successful. We would be interested in any comments as to how such

an example can be found or why finding one is a challenging task.

So far in our treatment of infinitesimal divisible quantum channels, we considered two extreme cases, namely, estimating the determinant
by the highest possible power of the smallest singular value and by the product of the largest possible number of the lowest singular values all
with exponent 1. The next proposition corresponds to an interpolation between those two results.

Proposition IV.21. Let T ∈ Id. Then, for any 1 ≤ k ≤ d2 with g(d) = 2d
k+2
√

k+1
, we have

0 ≤ det(T) ≤ (
k

∏
i=1

s↑i (T))
g(d)

.

Proof. As shown in Subsection IV A, it suffices to show that any Lindblad generator L satisfies

Tr[L + L∗] − g(d)
k

∑
ℓ=1

Λ↑ℓ(L + L∗) ≤ −2d∥L∥2
F + g(d)∥L + L∗∥(k) ≤ 0.
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Again, we only need to consider purely dissipative Lindblad generators with a single Lindbladian. For such generators, the desired
assertion follows from the bound on the Ky Fan norm provided in the Proof of Lemma IV.14,

∥L + L∗∥(k) ≤ (k + 2
√

k + 1)∥L∥2
F .

◻

Remark IV.22. In our numerical tests, we observe the result of Corollary IV.9 to be the strongest in generic cases in higher dimen-
sions, since generically, the smallest singular value seems to be of some orders of magnitude smaller than the others. However, the result in
Proposition IV.21 might give useful improvements for small dimensions, especially if some of the lowest singular values are all of the same
order of magnitude. Take the case d = 3, k = 2, and then, we get the three results,

0 ≤ det(T) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s↑1(T)
3/2

(Corollary IV.9)

s↑1(T)s
↑
2(T) (Corollary IV.16)

(s↑1(T)s
↑
2(T))

6
3+2
√

2
(Proposition IV.21).

Hence, if s↑1(T) is a lot smaller than s↑2(T) , the first result is the strongest. However, if s↑1(T) ≈ s↑2(T) , then the last result becomes the strongest
criterion out of the three.

C. Stochastic matrices
The classical counterparts of quantum channels and Lindblad generators are stochastic matrices and transition rate matrices, respectively.

In particular, when choosing the set of generators to be the set of all transition rate matrices, we obtain a notion of (infinitesimal) Markovian
divisibility for stochastic matrices.

Motivated by the results of Subsections IV A and IV B, we now study whether similar criteria for infinitesimal divisibility of stochastic
matrices can be established. More precisely, we define the following:

Definition IV.23 (Markovian divisible stochastic matrices). We define the set of d × d stochastic matrices to be

Sd ∶=

⎧⎪⎪
⎨
⎪⎪⎩

S ∈ Rd×d
∣ Sij ≥ 0 ∀i, j and

d

∑
j=1

Sij = 1 ∀i
⎫⎪⎪
⎬
⎪⎪⎭

and the set of d × d transition rate matrices to be

Qd ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Q ∈ Rd×d
∣ Qij ≥ 0 ∀i ≠ j and

d

∑
j=1

Qij = 0 ∀i
⎫⎪⎪
⎬
⎪⎪⎭

.

We call a stochastic matrix S ∈ Sd Markovian divisible if it is Markovian divisible with respect to the set of generators Qd in the sense of Definition
III.1.

Note that, as discussed in Remark III.4, the “infinitesimal” requirement is automatically contained in this definition due to the structure
of the set Qd, which is why we do not write it out explicitly.

Our first observation is that, in contrast to the case of Lindblad generators studied in Subsection IV B, when allowing all transition rate
matrices as generators, no non-trivial necessary criteria of our desired form (2) can hold.

Example IV.24. Take the transition rate matrix

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Qd, and then, eQ
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
e

0 ⋅ ⋅ ⋅ 0 1 −
1
e

0 1 ⋅ ⋅ ⋅ 0 0

⋮
. . . ⋮

0 0 ⋅ ⋅ ⋅ 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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which has singular values
√

1−e+e2+(e−1)
√

1+e2

e ≈ 1.200 of multiplicity 1, 1 of multiplicity d − 2, and
√

1−e+e2−(e−1)
√

1+e2

e ≈ 0.306 of multiplicity
1. In particular, we see that for every 1 ≤ k < d,

det(eQ
) >

k

∏
i=1

s↑i (e
Q
).

Hence, for Markovian divisible stochastic matrices, there cannot be a non-trivial necessary criterion of the form of Corollary IV.16. Similarly,
no non-trivial necessary criterion as in Corollary IV.9 with an exponent growing with some positive power of d can hold when we take the set
G of generators to be all transition rate matrices.

This example, together with Corollaries IV.16 and IV.9, implies the following:

Corollary IV.25. There cannot be a mapping from d2
× d2 stochastic matrices to Td that both preserves infinitesimal Markovian divisibility

and leaves singular values invariant.

We can, however, restrict our attention to strict subsets of all transition rate matrices and derive analogous criteria there.

Lemma IV.26. Let c ∈ (0, 1]. Consider the set of generators

Gc ∶= {Q ∈ Rd×d
∣ Q is a transition rate matrix and Qkk ≤ c min

1≤l≤d
Qll ∀1 ≤ k ≤ d}.

Then, Tr[Q +QT
] −

1+c(d−1)
2 λ↑1(Q +QT

) ≤ 0.

Proof. Clearly, for Q ∈ Gc, we have Tr[Q +QT
] = 2

d
∑
i=1

Qii ≤ 2(1 + c(d − 1))min
1≤l≤d

Qll. As
d
∑
j=1

Qij = 0 for all 1 ≤ i ≤ d, we can use Gerschgorin

discs to obtain λ↑1(Q +QT
) ≥ 4 min

1≤l≤d
Qll. In particular, we have that

Tr[Q +QT
] −

1 + c(d − 1)
2

λ↑1(Q +QT
) ≤ 2(1 + c(d − 1))min

1≤l≤d
Qll − 2(1 + c(d − 1))min

1≤l≤d
Qll = 0,

as claimed. ◻

According to our reasoning from Subsection IV A, this directly implies the following corollary:

Corollary IV.27. Let c ∈ (0, 1]. Suppose that S ∈ [0, 1]d×d is a stochastic matrix that is Markovian divisible with respect to Gc. Then, det(S)

≤ (s↑1(S))
1+c(d−1)

2 .

If we set c = 1, then G1 describes the set of transition rate matrices with constant diagonal. For Markovian divisibility of a stochastic

matrix S with respect to this restricted set of generators, we obtain again the criterion det(S) ≤ (s↑1(S))
d
2 .

V. CONCLUSION
In this work, we described how the notion of infinitesimal Markovian divisibility introduced in Ref. 3 as a notion of Markovianity for

quantum channels with the generators in Lindblad form can be extended to a notion applicable to general linear maps and a (closed and
convex) set of generators.

Our main contribution toward an understanding of this notion is a general proof strategy based on (sub-) multiplicativity properties of
the determinant and products of largest singular values as well as Trotterization, with which we can establish necessary criteria for infinitesimal
Markovian divsibility from a spectral property of the generators.

We showed that all Lindblad generators satisfy such a property, and therefore, our approach yields necessary criteria for infinitesi-
mal Markovian divisibility of quantum channels in any (finite) dimension. These are the first such criteria beyond dimension 2 aside from
non-negativity of the determinant. Using these criteria, we gave new examples of provably non-infinitesimal Markovian divisible quantum
channels that can be found in any neighborhood of any rank-deficient quantum channel.

However, when studying the classical counterpart—stochastic matrices as maps of interest and transition rate matrices as generators—we
found that in the general scenario in which all possible transition rate matrices are allowed as generators, no necessary criterion of our desired
form can hold. We could apply our proof strategy only after imposing an additional restriction on the allowed transition rate matrices, which
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can be interpreted as requiring that the time scales for remaining in any of the states of the Markov chain are comparable. (In particular, we
have to assume that there are no absorbing states.)

Several follow-up questions arise naturally from our work. The first such question is for improvements of our results of Corollaries IV.9
and IV.16. In Examples IV.12 and IV.17, we have shown that our results are close to optimal with respect to the dimension dependence of
the exponent in Corollary IV.9 and optimal in the leading order with respect to the number of factors in Corollary IV.16. Nevertheless, there
remains a gap to be closed. One possible step for improving Corollary IV.16 might lie in a better understanding of Conjecture IV.19. One
might also wonder whether there is a subclass of Lindblad operators for which our proof strategy yields stronger bounds.

More generally, we are hoping for a better understanding of the result of Corollary IV.16. A crucial first step would be to find—either
analytically or numerically—examples of not infinitesimal Markovian divisible quantum channels that violate the inequality in Corollary
IV.16 (or, for that matter, our conjectured improvement of it). As our proof of this inequality makes extensive use of the assumed divisibility
structure, we would consider it surprising if no such examples could be found, which would make it trivial as a necessary criterion.

We mention one more natural question concerning the case of infinitesimal Markovian divisible quantum channels. Specifically, now
that we have established necessary criteria for this property, can these be complemented by sufficient criteria of a similar form? The results of
Ref. 3 show that for generic qubit channels, an inequality between the determinant of a channel and the square of its smallest singular value is
indeed a necessary and sufficient criterion for infinitesimal Markovian divisibility. However, it is not at all clear whether this gerneralizes to
higher dimensions.

Finally, here, we have applied our general proof strategy to two scenarios: that of Lindblad generators and that of transition rate matrices
as generators. It would be interesting to find other sets of matrix semigroups whose generators satisfy a spectral property as required in
Theorem IV.5.
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APPENDIX: PROOF OF AN IMPROVEMENT TO COROLLARY IV.9

As mentioned in Remark IV.8, we are able to improve the exponent in Corollary IV.9 from d
2 to 2

2+
√

13
8

d ≈ 0.610 733 d.

The idea behind the improvement is to estimate more carefully the smallest (“most negative”) eigenvalue Λ↑1(L + L∗). In the proof of
Corollary IV.9, we simply estimate Λ↑1(L + L∗) from below by −4∥L∥2

F , which yields the exponent d
2 when comparing it to the −2d∥L∥2

F from
the trace of L + L∗. To obtain our improved version, we prove the following lemma.

Lemma A.1. Let L ∈Md and L(ρ) = LρL†
− 1

2{L
†L, ρ}. Then,

Λ↑1(L + L∗) ≥ −
⎛

⎝
2 +

√
13
8
⎞

⎠
∥L∥2

F .

Proof. The starting point for our reasoning is the l2-version of the Gerschgorin disc Theorem (see Ref. 18), which states that for a
Hermitian matrix A = (aij)i,j, each interval [aii − ri, aii + ri] contains at least one eigenvalue of A, where

ri =
⎛

⎝
∑
j≠i
∣aij∣

2⎞

⎠

1/2

.

Next, note that due to the tensor-structure of L + L∗, we can write its entries in a matrix representation as

(L + L∗)
kl
= L(q+1)(p+1)Lrs +L(p+1)(q+1)Lsr − δqp(L†L)rs − (L†L)(q+1)(p+1)δrs,

where k = qd + r, l = pd + s with q ∈ {0, . . . , d − 1}, r ∈ {1, . . . , d}. If we now choose an orthonormal basis such that L†L = diag[σ2
1 , . . . , σ2

d],
we obtain, for the diagonal entries,
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(L + L∗)
kk
= L(q+1)(q+1)Lrr +L(q+1)(q+1)Lrr − σ2

r − σ2
(q+1).

For the off-diagonal entries, we need to consider only the first two terms in L + L∗ due to the choice of our basis, i.e., we get, for k ≠ l,

(L + L∗)
kl
= L(q+1)(p+1)Lrs +L(p+1)(q+1)Lsr .

We need to distinguish two cases.

Case k = 1: Here, we have

(L + L∗)
11
= 2∣L11∣

2
− 2σ2

1

and

∑
k≠1
∣ (L + L∗)

1k
∣

2
=∑

q,r
∣L1(q+1)L1r +L(q+1)1Lr1∣

2

≤∑
q
∣L1(q+1)∣

2
∑

r
∣L1r ∣

2
+∑

q
∣L(q+1)1∣

2
∑

r
∣Lr1∣

2
+ 2
⎛
⎜
⎜
⎜
⎝

∑
r
∣L1rLr1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

≤ 1
2 (∣L1r ∣2+∣Lr1 ∣2)

⎞
⎟
⎟
⎟
⎠

2

≤ ∥L∥2
F(∥L∥

2
F + ∣L11∣

2
) +

1
2
(∥L∥2

F + ∣L11∣
2
)

2
,

where in the last step, we used that, since we are summing up the first row and column, only the diagonal entry ∣L11∣
2 appears twice and

the sum of the remaining squares can be bounded by one Frobenius norm.
Before we proceed, let us note that without loss of generality, we can normalize ∥L∥2

F = 1 to make the following computations more
readable. Then, we obtain, by completing the square,

∑
k≠1
∣(L + L∗)

1k
∣

2
≤ 1 + ∣L11∣

2
+

1
2
(1 + ∣L11∣

2
)

2
=
⎛

⎝

√
3
2
+

√
2
3
∣L11∣

2⎞

⎠

2

−
1
6
∣L11∣

4.

Thus,

(L + L∗)
11
−
⎛

⎝
∑
k≠1
∣(L + L∗)

1k
∣

2⎞

⎠

1/2

≥ 2∣L11∣
2
− 2σ2

1 −

√
3
2
−

√
2
3
∣L11∣

2
≥ −
⎛

⎝
2 +

√
3
2
⎞

⎠
.

Hence, in this case, we are even able to bound aii − ri from below by −(2 +
√

3
2)∥L∥

2
F .

Case k ≠ 1: Here, we obtain, for the diagonal entries using Young’s inequality,

(L + L∗)
kk
= L(q+1)(q+1)Lrr +L(q+1)(q+1)Lrr − σ2

r − σ2
(q+1) ≥ −2∣L(q+1)(q+1)Lrr ∣ − ∥L∥2

F .

Note that the two singular values might be the same but can, nevertheless, be bounded by just one Frobenius norm, which is the important
difference to the case k = 1.
For the off-diagonal entries, we start off in the same way as above,

∑
l≠k
∣ (L + L∗)

kl
∣

2
≤ ∑
(p,s)≠(q,r)

∣L(q+1)(p+1)Lrs∣
2
+ ∣L(p+1)(q+1)Lsr ∣

2
+ 2∣L(q+1)(p+1)LrsL(p+1)(q+1)Lsr ∣

=
⎛

⎝
∑

p
∣L(q+1)(p+1)∣

2⎞

⎠
(∑

s
∣Lrs∣

2
) +
⎛

⎝
∑

p
∣L(p+1)(q+1)∣

2⎞

⎠
(∑

s
∣Lsr ∣

2
)

+ 2
⎛

⎝
∑

p
∣L(q+1)(p+1)L(p+1)(q+1)∣

⎞

⎠
(∑

s
∣LrsLsr ∣) − 4∣L(q+1)(q+1)Lrr ∣

2

≤ ∥L∥2
F(∥L∥

2
F +min{∣Lrr ∣

2, ∣L(q+1)(q+1)∣
2
}) − 4∣L(q+1)(q+1)Lrr ∣

2

+
1
2
(∥L∥2

F + ∣Lrr ∣
2
)(∥L∥2

F + ∣L(q+1)(q+1)∣
2
).
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Again normalizing ∥L∥2
F = 1 and denoting x = ∣L(q+1)(q+1)∣ , y = ∣Lrr ∣ give us

(L + L∗)
kk
−
⎛

⎝
∑
l≠k
∣ (L + L∗)

kl
∣

2⎞

⎠

1/2

≥ −2xy − 1 − ((1 +min{x2, y2
}) +

1
2
(1 + x2

)(1 + y2
) − 4x2y2

)
1/2

=: g(x, y).

Taking the minimum of the function on the right-hand side over (the upper half of) the unit disk x2
+ y2
≤ 1 gives us

(L + L∗)
kk
−
⎛

⎝
∑
l≠k
∣ (L + L∗)

kl
∣

2⎞

⎠

1/2

≥ min
B1(0)

g(x, y) = g(
1
√

2
,

1
√

2
) = −2 −

√
13
8

.

As the second case k ≠ 1 gives us the worse bound, our final estimate is precisely the statement from Lemma A.1. ◻

Again, this has to be compared to −2d∥L∥2
F in the reasoning of the proof of Corollary IV.9, whereby we obtain the claimed exponent

2
2+
√

13
8

d (instead of the previous d
2 ).
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Binary classi�cation with classical instances and quantum labels

Matthias C. Caro

Binary classi�cation is one of the central and most well studied tasks in classical machine learning

theory and practice. There, the challenge is to produce, given input data with (classical) labels

0 or 1, a hypothesis that predicts the labels of previously unseen data points well. This task is

formalized in the probably approximately correct (PAC) model of binary classi�cation. In this

work, we propose a quantum version of PAC binary classi�cation, in which the labels are quantum

states. We show how to reduce this problem to a task of classical binary classi�cation with

noisy labels, which allows us to prove sample complexity upper bounds. With an information-

theoretic proof strategy, we also establish almost matching sample complexity lower bounds. This

demonstrates that our suggested semiclassical strategy is e�ectively optimal for this problem from

a sample complexity perspective.

We begin the article with an introductory section, in which we give an overview over our results,

the proof strategy, as well as related work. Section 2 �rst recalls basic notions from quantum

information theory (Section 2.1), and then presents the PAC framework for classical binary

classi�cation, together with the characterization of its sample complexity in terms of the VC-

dimension (Section 2.2).

After these two preparatory sections, we introduce the quantum learning problem investigated

in this work in Section 3. Here, the task is to use training data to learn a mapping from classical

inputs to quantum states, where the performance is measured in terms of the trace distance

between output states. Crucially, the training data is assumed to be classical-quantum: A single

training example consists of a classical input and a copy of the corresponding quantum label

state. This di�erentiates our learning problem from scenarios in which classical descriptions of

the quantum objects in the training data are provided. We do, however, assume that (classical

descriptions of) the two possible quantum label states are known in advance.

Section 4 contains our �rst results, namely sample complexity upper bounds for binary classi�ca-

tion with classical instances and quantum labels. First, in Section 4.1, we treat the agnostic case.

We describe a semi-classical learning strategy in which we perform local Holevo-Helstrom mea-

surements on the quantum part of the training data and then classically process the obtained

measurement outcomes with a learning algorithm that corrects for label noise. By proving a

Rademacher complexity upper bound (Lemma 1 and the discussion thereafter), we establish our

sample complexity upper bound for this scenario. Next, Subsection 4.2 contains our sample com-

plexity upper bounds for the realizable case. Again, we reduce the task to a classical problem

of learning from noisy labels. For the latter, we determine the optimal sample complexity in

Appendix 4 and then translate this guarantee to our quantum learning scenario (Theorem 2).

In Section 5, we complement the results of the previous section with sample complexity lower

bounds, assuming that the quantum labels are pure states. Again, we treat the agnostic (Corol-

lary 1) and the realizable case (Theorem 4) separately. The proof strategy for both cases is

information-theoretic: We identify pathological distributions such that the ability to solve the

quantum learning problem with respect to these distributions implies the ability to extract a cer-
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tain amount of information from the training data. Exactly this information content, however,

can also be upper bounded using the form of the training data state, as we show with detailed

computations in Appendix 1. Comparing lower and upper bounds on the information content in

the data leads to our sample complexity lower bounds.

We conclude the article in Section 6 by emphasizing again how our scenario di�ers from prior

work and with some open questions.

The idea for this project was motivated by discussions between my doctoral advisor, Michael

M. Wolf, and myself. The formulation of the learning problem studied in this work has arisen

from these discussions. I have developed the idea for Examples 1, 2 and 3 in a discussion with

Benedikt R. Graswald. I am solely responsible for the scienti�c content of this article, with the

two restrictions just mentioned. As the single author of this article, I am solely responsible for

writing this article.
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Abstract
In classical statistical learning theory, one of the most well-studied problems is that of binary classification. The information-
theoretic sample complexity of this task is tightly characterized by the Vapnik-Chervonenkis (VC) dimension. A quantum
analog of this task, with training data given as a quantum state has also been intensely studied and is now known to
have the same sample complexity as its classical counterpart. We propose a novel quantum version of the classical binary
classification task by considering maps with classical input and quantum output and corresponding classical-quantum
training data. We discuss learning strategies for the agnostic and for the realizable case and study their performance to obtain
sample complexity upper bounds. Moreover, we provide sample complexity lower bounds which show that our upper bounds
are essentially tight for pure output states. In particular, we see that the sample complexity is the same as in the classical
binary classification task w.r.t. its dependence on accuracy, confidence and the VC-dimension.

Keywords Quantum learning theory · Sample complexity · Binary classification · VC-dimension

1 Introduction

The fields of machine learning and of quantum computation
provide new ways of looking at computational problems
and have seen a significant increase in academic as well as
practical interest since their origins in the 1970s and 1980s.
More recently, attention was directed to paths for combining
ideas from these two fruitful research areas. This gave rise
to new approaches under different names such as “quantum
machine learning” or “quantum learning theory”.

In classical statistical learning theory, one of the most
influential frameworks is that of probably approximately
correct (PAC) learning due to Vapnik and Chervonenkis
(1971) and Valiant (1984). It is particularly well studied for
the task of binary classification. For this problem the so-
called VC-dimension Vapnik and Chervonenkis (1971) is
known to characterize the sample complexity of learning
a function class (Blumer et al. 1989; Hanneke 2016).
Motivated by these strong theoretical results, a quantum
analog of this problem was soon defined and studied in

� Matthias C. Caro
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1 Department of Mathematics, Technical University of Munich,
Garching, Germany

2 Munich Center for Quantum Science and Technology
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a series of papers (an overview over which is given in
Arunachalam and de Wolf (2017)), which culminated in
the results of Arunachalam and de Wolf (2018). There it
is shown that the information-theoretic complexity of the
task of quantum PAC learning a 0-1-valued function class is
characterized by the VC-dimension in exactly the same way
as for the classical scenario.

The scenario studied in Arunachalam and de Wolf (2018)
assumes the training data available to the learner to be
given in a specific quantum form and allows the learner to
perform quantum computational operations on that training
data. The functions to be learned, however, still map
classical inputs to classical outputs. We propose a different
quantum version of the binary classification task by not
only considering the possibility of quantum training data
but by allowing the objects to be learned to be inherently
quantum. More specifically, we consider functions that map
classical inputs to one of two possible quantum output states
(“quantum labels”). These maps describe state preparation
procedures. A more general learning task of this type,
for which our problem can be seen as a toy model,
could be relevant for cases in which state preparation is
either costly or time-consuming, e.g., preparing thermal
states at low temperatures (see Brandão and Kastoryano
2019; Chowdhury 2020, and references therein). Here, one
could first produce sample data, learn a predictor, and
then reproduce the preparation more efficiently using the
predictor.
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1.1 Main results

We consider maps f : X → {σ0, σ1} that assign to points
in a classical input space X one of two labelling quantum
states {σ0, σ1}. (Here, σ0 and σ1 are, in general, mixed
states described by density matrices.) Let F be a function
class consisting of such functions. We assume the training
data to be given as a classical-quantum state about which,
according to the laws of quantum theory, we can only gain
information by performing measurements.

Our learning model is that of PAC-learning with accuracy
ε and confidence δ. Here, we require a learning algorithm,
given as input classical-quantum training data generated
according to some unknown underlying distribution, to
output with probability ≥ 1 − δ over the choice of training
data a hypothesis that achieves accuracy ε. (Accuracy is
measured in terms of the trace distance.)

We present a learning strategy that (ε, δ)-PAC learns
F ⊆ {f : X → {σ0, σ1}} in the agnostic scenario from

classical-quantum training data of size O
(

d

ε2 + log 1/δ

ε2

)
,

where d is the VC-dimension of the {0, 1}-valued function
class F̃ ⊆ {f̃ : X → {0, 1}} induced by F via
σi �→ i, i = 0, 1. Here, “agnostic” means that there
need not be a function in F that would achieve perfect
accuracy. We also show that solving this learning problem

requires training data size Ω
(

d

ε2 + log 1/δ

ε2

)
, so our strategy

is optimal w.r.t. the sample complexity dependence on ε, δ

and d .
For the realizable scenario of the quantum learning

problem, i.e., under the assumption that perfect accuracy
can be achieved using F , we prove a sample complexity
upper bound of

O

(
1

ε(1− 2 max{tr[E0σ1], tr[E1σ0]})2 (d + log 1/δ)

)
,

where {E0, E1} is the Holevo-Helstrom measurement for
distinguishing σ0 and σ1, and a sample complexity lower

bound of Ω
(

d
ε
+ log 1/δ

ε

)
. Also here, these bounds coincide

w.r.t. their dependence on ε, δ and d . The prefactor (1 −
2 max{tr[E0σ1], tr[E1σ0]})−2 in the upper bound comes
from our procedure trying to distinguish σ0 and σ1 by
measuring single copies. (Note: Even though we formulate
this in terms of the Holevo-Helstrom measurement, we
could use any other two-outcome POVM {Ẽ0, Ẽ1} that
satisfies max{tr[Ẽ0σ1], tr[Ẽ1σ0]} < 1/2.).

In proving the sample complexity upper bound for the
realizable scenario, we combine algorithms from Laird

(1988) and Hanneke (2016) to show that O
(

1
ε(1−2ηb)

2

(d + log 1/δ)) classical examples with two-sided classi-
fication noise, i.e., in which each label is flipped with
probability given by a noise rate, suffice for classical (ε, δ)-
PAC learning a function class of VC-dimension d in the

realizable scenario if the noise rate is bounded by ηb <

1/2. This upper bound has, to the best of our knowledge,
not been observed before and, when combined with the
lower bound from Arunachalam and de Wolf (2018), estab-
lishes the optimal sample complexity of this classical noisy
learning problem.

As is common in statistical learning theory, our main
focus lies on the information-theoretic complexity of the
learning problem, i.e., the necessary and sufficient number
of quantum examples, whereas we do not discuss the com-
putational complexity. Our proposed strategies are “semi-
classical” in the following sense: After initially performing
simple tensor product measurements, in which each tensor
factor is a two-outcome POVM, the remaining computa-
tion is done by a classical learning algorithm. In particular,
the procedure does not require (possibly hard to implement)
joint measurements and its computational complexity will
be determined by the (classical) computational complexity
of the classical learner used as a subroutine.

1.2 Overview over the proof strategy

We first sketch how we obtain the sample complexity upper
bounds. We propose a simple (semi-classical) procedure
that consists of first performing local measurements on
the quantum part of the training data examples to obtain
classical training data and then applying a classical learning
algorithm.

We observe that the learning problem for which the
classical learner is applied, can then be viewed as a classical
binary classification problem with two-sided classification
noise, i.e., in which the labels are flipped with certain error
probabilities determined by the outcome probabilities of
the performed quantum measurements. Therefore, we have
reduced our problem to obtaining sample complexity upper
bounds for a classical learning problem with noise.

In the general (so-called agnostic) case, we can use
known sample complexity bounds formulated in terms of a
complexity measure called Rademacher complexity to show
that classical empirical risk minimization w.r.t. a suitably
modified loss function (as suggested in Natarajan et al.
2013) achieves optimal sample complexity for this classical
learning problem with noise.

In the realizable case, i.e., under the assumption that
any non-noisy training data set can be perfectly represented
by some hypothesis in our class F̃ , the optimal sample
complexity for binary classification with two-sided clas-
sification noise has not been established in the literature.
We combine ideas from Laird (1988) and Hanneke (2016)
to exhibit an algorithm that achieves information-theoretic
optimality for this scenario.

To obtain the sample complexity lower bounds, we apply
ideas from Arunachalam and de Wolf (2018). Namely, we
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observe that for sufficiently small accuracy parameter, any
quantum strategy that solves our learning problem indeed
has to be able to distinguish between the possible different
training data states with high success probability.

In the simple case of distinguishing between two quan-
tum states, arising from two different “hard-to-distinguish”
underlying distributions, this probability can be upper
bounded in terms of the trace distance of the states. In the
more general case of many states, we do not study this
success probability directly. Instead, we consider the infor-
mation contained in the quantum training data about the
choice of the underlying distribution, again chosen out of a
set of “hard-to-distinguish” distributions.

1.3 Related work

Bshouty and Jackson (1998) introduced a notion of quantum
training data for learning problems with classical concepts
and used it to learn DNF (Disjunctive Normal Form)
formulae w.r.t. the uniform distribution. This was extended
to product distributions by Kanade et al. (2019). Using
ideas from Fourier-based learning, this type of quantum
training data was also studied in the context of fixed-
distribution learning of Boolean linear functions (Bernstein
and Vazirani 1993; Cross et al. 2015; Ristè et al. 2017;
Grilo et al. 2017; Caro 2020), juntas Atıcı and Servedio
(2007), and Fourier-sparse functions (Arunachalam et al.
2019a). Arunachalam and de Wolf (2017) and Arunachalam
et al. (2019b) study the limitations of these quantum
examples. A broad overview over work on quantum learning
classical functions is given in Arunachalam and de Wolf
(2017).

Also for the model of learning from membership queries,
a quantum counterpart can be considered. Servedio and
Gortler (2004) showed that the number of required classical
queries is at most polynomially larger than the number of
required quantum queries. Recently,this polynomial relation
was improved upon in Arunachalam et al. (2019a). A
more specific scenario, namely that of learning multilinear
polynomials more efficiently from quantum membership
queries, is studied in Montanaro (2012).

Similarly, also a quantum counterpart of the classical
model of statistical query learning can be defined. This was
recently studied in Arunachalam et al. (2020).

Another line of research at the intersection of learning
theory and quantum information focuses on applying
classical learning to concept classes arising from quantum
theory, e.g., from states or measurements. This was initiated
by Aaronson (2007) and studied further by Cheng et al.
(2016) and Aaronson (2018), and Aaronson et al. (2018).

Our learning model is similar to the one studied in Chung
and Lin (2018). Also there, the inputs are assumed to be
classical and the outputs are quantum states. The crucial

difference to our scenario is that we assume that there
are only two possible label states and these are known in
advance. In Chung and Lin (2018), there can be a continuum
of possible label states.

Our additional assumption allows us to study infinite
function classes F , whereas the results in Chung and Lin
(2018) are for classes of finite size. (We expect that the
reasoning of Chung and Lin (2018) can be extended to
infinite classes using the so-called “growth function” when
restricting to a finite set of possible target states. This
might lead to a learning procedure that can be applied
in our scenario without prior knowledge of the possible
quantum label states.) As a further difference between the
approaches, whereas the strategy of Chung and Lin (2018)
requires the ability to perform measurements in random
orthonormal bases, the measurements in our procedures can
be taken to be fixed and of product form and are thus
potentially easier to implement.

The classical problems to which our quantum learning
problems are reduced are problems of learning from noisy
training data. These were first proposed by Angluin and
Laird (1988) and Laird (1988) and studied further, e.g., by
Aslam and Decatur (1996) and Cesa-Bianchi et al. (1999)
and Natarajan et al. (2013).

1.4 Structure of the paper

In Section 2 we recall some notions from learning theory
as well as from quantum information and computation. The
central learning problem of this contribution is formulated
in Section 3. The next section exhibits strategies for solving
the task and establishes sample complexity upper bounds.
In doing so, we derive a tight upper bound on the sample
complexity of classical binary classification with two-
sided classification noise (see Appendix 4). The quantum
sample complexity upper bounds are complemented by
lower bounds in Section 5. We conclude with open questions
and the references.

2 Preliminaries

2.1 Basics of quantum information and computation

A finite-dimensional quantum system is described by a
(mixed) state and mathematically represented by a density
matrix of some dimension d ∈ N, i.e., an element of
S (Cd) := {ρ ∈ Cd×d | ρ ≥ 0, tr[ρ] = 1}. Here, ρ ≥
0 means that ρ is a self-adjoint and positive semidefinite
matrix. The extreme points of the convex set S (Cd) are
the rank-1 projections, the pure states. We employ Dirac
notation to denote a unit vector ψ ∈ Cd also by |ψ〉 ∈ Cd

and the corresponding pure state by |ψ〉〈ψ |.
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To make an observation about a quantum system, a
measurement has to be performed. Measurements are
built from the set of effect operators E (Cd) := {E

. For our purposes it suffices to
consider a measurement as a collection {Ei}	i=1 of effect

operators Ei ∈ E (Cd) s.t. . (For the
more general notion of a POVM see Nielsen and Chuang
(2009) or Heinosaari and Ziman (2012).) When performing
a measurement {Ei}	i=1 on a state ρ, output i is observed
with probability tr[Eiρ]. A projective measurement is one
where the effect operators are rank-1 projections, i.e., there
exists an orthonormal basis {|i〉}di=1 s.t. Ei = |i〉〈i|.

When multiple quantum systems with spaces Cdi are
considered, the composite system is described by the tensor
product

⊗n
i=1 Cdi 	 C

∏
i di and the set of states becomes

S (
⊗n

i=1 Cdi ). Given a state ρAB ∈ S (CdA ⊗ CdB ) of a
composite system, we can obtain states of the subsystems
as partial traces ρA = trB [ρAB ], ρB = trA[ρAB ].
Here, the partial trace is defined as satisfying the relation

.
The dynamics of a quantum system are usually described

by unitary evolution or, more generally, by quantum
channels. For our purposes, these dynamics will not have
to be discussed explicitly since they can be considered
as part of the performed measurement by changing to
the so-called Heisenberg picture (see Nielsen and Chuang
2009). We will take this perspective in proving our sample
complexity lower bounds because it allows us to restrict our
attention to proving limitations of measurements rather than
of channels.

We will also make use of some standard entropic quanti-
ties which have been generalized from their classical origins
Shannon (1948) to the realm of quantum theory. We denote
the Shannon entropy of a random variable X with proba-
bility mass function p by H(X) = −∑

x p(x) log(p(x)),
the conditional entropy of a random variable Y given X as

H(Y |X) =∑
x,y p(x, y) log

(
p(x,y)
p(x)

)
and the mutual infor-

mation between X and Y as I (X : Y ) = H(X) + H(Y) −
H(X, Y ). Similarly, the von Neumann entropy of a quan-
tum state ρ will be denoted as S(ρ) = −tr[ρ log ρ] and
the mutual information for a bipartite quantum state ρAB as
I (ρAB) = I (A : B) = S(ρA) + S(ρB) − S(ρAB). All the
standard results and inequalities connected to these quanti-
ties which appear in our arguments can be found in Nielsen
and Chuang (2009) or in Wilde (2013).

2.2 Basics of the PAC framework and the binary
classification problem

The setting of Probably Approximately Correct (PAC)
learning was introduced by Vapnik and Chervonenkis

(1971) and Valiant (1984). The general setting is as follows:
Let X , Y be input and output space, respectively, let
F ⊂ Y X be a class of functions, a concept class, and
let 	 : Y × Y → R+ be a loss function. A learning
algorithm (to which X , Y , F and 	 are known) has access
to training data of the form S = {(xi, yi)}mi=1, where (xi, yi)

are drawn i.i.d. from a probability measure μ ∈ Prob(X ×
Y ). Moreover, the learner is given as input a confidence
parameter δ ∈ (0, 1) and an accuracy parameter ε ∈ (0, 1).
Then a learner must output a hypothesis h ∈ Y X s.t., with
probability ≥ 1− δ w.r.t. the choice of training data,

E(x,y)∼μ[	(y, h(x))] ≤ inf
f∈F

E(x,y)∼μ[	(y, f (x))] + ε.

(2.1)

Note that the first term on the right-hand side vanishes
if there exists an f ∗ ∈ F s.t. μ(x, y) = μ1(x)δy,f ∗(x)

∀(x, y) ∈ X ×Y . In this case, we call the learning problem
realizable, otherwise we refer to it as agnostic.

Both in the agnostic and in the realizable scenario, a
learning algorithm that always outputs a hypothesis h ∈
F is called a proper learner, and otherwise it is called
improper.

A quantity of major interest is the number of examples
featuring in such a learning problem. Given a learning
algorithm A , the smallest m = m(ε, δ) ∈ N s.t. the
learning requirement (2.1) is satisfied with confidence 1− δ

and accuracy ε is called the sample complexity of A . The
sample complexity of the learning problem is the infimum
over the sample complexities of all learning algorithms
for the problem. This characterizes, from an information-
theoretic perspective, the hardness of a learning problem,
but leaves aside questions of computational complexity.

The binary classification problem now arises as a special
case from the above if we specify the output space Y =
{0, 1} and take the loss function to be 	(y, ỹ) = 1−δy,ỹ , the
0-1-loss. This setting is well studied and a characterization
of its sample complexity is known. At its core is the
following combinatorial parameter:

Definition 1 (VC-Dimension Vapnik and Chervonenkis
(1971)) Let F ⊆ {0, 1}X . A set S = {x1, . . . , xn} ⊂ X

is said to be shattered by F if for every b ∈ {0, 1}n there
exists fb ∈ F s.t. fb(xi) = bi for all 1 ≤ i ≤ n.

The Vapnik-Chervonenkis (VC) dimension of F ⊂
{0, 1}X is defined to be

VCdim(F ) := sup{n ∈ N0 | ∃S ⊂ X s.t. |S| = n and S is

shattered by F }.

The main insight of VC-theory lies in the fact that
learnability of a {0, 1}-valued concept class is equivalent
to finiteness of its VC-dimension. Even more, the sample
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complexity can be expressed in terms of the VC-dimension.
This is the content of the following

Theorem 1 (see, e.g., Blumer et al. 1989; Hanneke 2016;
Shalev-Shwartz and Ben-David 2014; Vershynin 2018)

In the realizable scenario, the sample complexity of
binary classification for a function class F of VC-

dimension d is m = m(ε, δ) = Θ
(

1
ε
(d + log 1/δ)

)
.

In the agnostic scenario, the sample complexity of binary
classification for a function class F of VC-dimension d is

m = m(ε, δ) = Θ
(

1
ε2 (d + log 1/δ)

)
.

The proof of the sample complexity upper bound in
the agnostic case typically goes via a different complexity
measure, the Rademacher complexity, which is then related
to the VC-dimension. As this will reappear later on in our
analysis, we also recall this definition here.

Definition 2 (Rademacher Complexity (see Bartlett and
Mendelson 2002)) Let Z be some space, F ⊆ RZ , z ∈ Zn.
The empirical Rademacher complexity of F w.r.t. z is

R̂(F ) := E
σ∼U({−1,1}n)

[
sup
f∈F

1
n

n∑
i=1

σif (zi)

]

= E
σ∼U({−1,1}n)

[
sup
f∈F

1
n
〈σ, f (z)〉

]
,

where U({−1, 1}n) denotes the uniform distribution on
{−1, 1}n.

If we consider n i.i.d. random variables Z1, ..., Zn

distributed according to a probability measure μ on Z and
write Z = (Z1, ..., Zn), the Rademacher complexities of F

w.r.t. μ are defined to be Rn(F ) := EZ∼μn

[
R̂F

]
, n ∈ N.

3 The binary classification problem
with classical instances and quantum labels

We introduce a generalization of the classical binary classi-
fication problem to the quantum realm by allowing the two
labels to be quantum states. Thus let σ0, σ1 ∈ S (Cn) be
two (possibly mixed) quantum states, write D = {σ0, σ1}.
We assume that classical descriptions of these states (their
density matrices) are known to the learning algorithm as
well as the fact that only these two quantum labels appear.
The class to be learned is now a class of functions F ⊂
{f : X → D} and the underlying distribution will be a
μ ∈ Prob(X × D), where X is some space of classical
objects.

We now deviate from the standard PAC setting: We
assume the training data to be S = {(xi, ρi)}mi=1, m ∈ N,
where the (xi, ρi) are drawn independently according to
μ (in particular, ρi ∈ D for all i). Here, the ρi are the
actual quantum states, not classical descriptions of them.
Therefore, our learning problem is not a classical one, we
have to perform measurements on the quantum labels to
extract information from them. Equivalently, we represent
an example (xi, ρi) drawn from μ as the classical-quantum
state
∑
x,ρ

μ(x, ρ)|x〉〈x| ⊗ ρ,

with {|x〉}x∈X orthonormal.
Note that this model for the training data differs from

the one introduced by Bshouty and Jackson (1998), where
the training data consists of copies of a superposition state.
Instead, here we assume copies of a mixture of states.
This is done mainly for two reasons: First, it allows us to
naturally talk about maps with mixed state outputs. Second,
it is debatable whether assuming access to superposition
examples as in Bshouty and Jackson (1998) is justified
(see, e.g., Ciliberto et al. 2018, section 5), and this problem
remains when considering maps with quantum outputs. In
contrast, the mixtures assumed in our model arise naturally
as statistical ensembles of outputs of state preparation
procedures, if the parameters of the preparation are chosen
according to some (unknown) distribution. In that sense,
the form of classical-quantum training data assumed here
is both a straightforward generalization of classical training
data, given the standard probabilistic interpretation of mixed
states, and can (at least in the realizable scenario) be easily
imagined to be obtained as outcome of multiple runs of
a state preparation experiment with different parameter
settings.

A quantum learner for F with confidence 1 − δ and
accuracy ε from m = m(ε, δ) quantum examples has to
output, for every μ ∈ Prob(X × D), with probability
≥ 1− δ over the choice of training data of size m according
to μ, a hypothesis h ∈ DX s.t. Rμ(h) ≤ inf

f∈F
Rμ(f ) + ε.

As before, we can consider agnostic versus realizable and
proper versus improper variants of this learning model.

Here, we define the risk of a hypothesis h ∈ F w.r.t. a
distribution μ ∈ Prob(X ×D) as

Rμ(h) :=
∫

X ×D

1

2
‖ρ − h(x)‖1 dμ(x, ρ),

where ‖ρ − σ‖1 = tr[|ρ − σ |] = tr[√(ρ − σ)∗(ρ − σ)] is
the Schatten 1-norm.
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Note that our assumption on F implies that h(x) ∈
D ∀x ∈ X and therefore we can easily rewrite

Rμ(h) = ‖σ0 − σ1‖1

2
P(x,ρ)∼μ[h(x) �= ρ],

which is just the 0-1-risk multiplied by a constant. We
choose the slightly more complicated looking definition for
Rμ(h) for two reasons. On the one hand, ‖σ0−σ1‖1

2 is a
measure for the distinguishability of σ0 and σ1 and thus a
natural scale w.r.t. which to measure the prediction error.
(Note: If σ0, σ1 are orthogonal pure states and thus perfectly
distinguishable, the classical scenario is recovered.) On
the other hand, our definition of risk can be motivated
operationally as we discuss in Appendix 2.

Example 1 Here, we describe a physically motivated prob-
lem that is captured by our scenario. The idea is as follows:
Suppose we have available a (possibly complicated) ground
state preparation procedure. Using this, we want to pre-
pare a ground state |ϕ0〉 of a Hamiltonian H . However,
H is perturbed by noise about which we have only partial
information. We want to learn more about the noise and its
influence on the prepared ground state.

We make this idea more concrete. We consider a (self-
adjoint) Hamiltonian H ∈ C(d+2)×(d+2) of the form

, where , with (non-unique) ground

state |ϕ0〉 :=
(
0 1

)T ⊕ 0. Suppose that we have a ground
state preparation procedure that, if run with Hamiltonian
H , prepares |ϕ0〉. When implementing this procedure, we
have to fix values of a parameter vector x ∈ RD . (Think,
e.g., of D = 3 and x denoting the location at which the
experiment is set up.) But due to the laboratory being only
imperfectly shielded, there is an unknown region R ⊂ RD

in which the system is subject to noise. For simplicity, we
assume that only two types of noise can occur and lead to the
location-dependent Hamiltonian ,

with noise Hamiltonians H(0) =
(

1 0
0 −1

)
⊕ 0, H(1) =

(
0 1
1 0

)
⊕ 0.

The noise can lead to a perturbation of the ground state.
Namely:

– For x �∈ R, |ϕ0〉 is a ground state of H
(i)
x . (This is the

case of no effective noise.)
– For x ∈ R, |ϕ0〉 is the unique ground state of H

(0)
x .

Hence, the noise H(0) is benign from the perspective of
ground state preparation.

– For x ∈ R, |ϕ1〉 := 1√
2

(
1 −1

)T ⊕ 0 is the unique

ground state of H
(1)
x . Hence, the noise H(1) is malicious

from the perspective of ground state preparation.

Thus, we describe the ground state preparation by
a function f

(i)
R : RD → {|ϕ0〉〈ϕ0|, |ϕ1〉〈ϕ1|},

. With this
formulation, gaining information about the noise region R

and the noise type i can be phrased as the problem of
(PAC-)learning an unknown element of the (known) func-

tion class F =
{
f

(i)
R

}
i=0,1, R∈R

⊆ {|ϕ0〉〈ϕ0|, |ϕ1〉〈ϕ1|}RD
,

where R is the class of possible error regions.
Note that |ϕ0〉 and |ϕ1〉 are not orthogonal and thus

cannot be perfectly distinguished. Therefore, we cannot
phrase the learning problem as one of binary classification
with classical labels.

We return to this setting in Examples 2 and 3 to illustrate
our learning strategies.

We want to conclude this section by discussing a drawback
of our model. We assume F ⊂ DX , i.e., outputs of
any f ∈ F are either σ0 or σ1. Considering the convex
structure of the set of quantum states, which is intimately
tied to the probabilistic interpretation of quantum theory,
this restriction can be considered unnatural. We nevertheless
make it, for two reasons: First, it is easy to show using a
Bayesian predictor that, under the assumption of μ being
supported on D (which could, of course, also be contested),
the optimal choice of predictors among all functions (S
(Cd))X is actually a function in DX . Second, it is the most
direct analog of the classical scenario with binary labels and
we consider it a sensible first step that, as demonstrated in
Example 1, can already be of physical relevance.

4 Sample complexity upper bounds

4.1 The agnostic case

Our learning strategy is motivated by interpreting the clas-
sical training data arising from performing a measurement
on the label states as noisy version of the true training
data. Before describing the learning strategy, we recall our
assumption that classical descriptions of the label states σ0,
σ1 are known to the learner. Based on this knowledge, the
learner can derive the optimal measurement {E0, E1} for
minimum error distinction between the two states, the so-
called Holevo-Helstrom measurement (see Watrous 2018,
Theorem 3.4), by choosing E0 to be the orthogonal projector
onto the eigenspaces of σ0 − σ1 corresponding to nonnega-
tive eigenvalues. This step is where knowledge of the states
σ0 and σ1 is used.

The learning strategy is now the following, in which we
use the Holevo-Helstrom measurement to produce classical
training data and thus obtain a classical learning problem:

Quantum Machine Intelligence (2021) 3: 18Page 6 of 2418



Note that the only non-classical step in the strategy is step
(1), which consists only of performing local two-outcome
measurements.

The modification of the loss function in step (3) gives an
unbiased estimate of the true risk:

Lemma 1 (see Natarajan et al. 2013, Lemma 1)
Fix x ∈ X . With the notation introduced above, for every

z ∈ {0, 1} it holds that

We can use a standard generalization bound in terms
of Rademacher complexities (see, e.g., Theorem 26.5 of
Shalev-Shwartz and Ben-David (2014)) to obtain: With
probability ≥ 1 − δ over the choice of training data S =

{(xi, yi)}mi=1 according to ν, we have that for all f̃ ∗ ∈ F̃
E(x,y)∼ν[	̃(ĝ(x), y)] − E(x,y)∼ν[	̃(f̃ ∗(x), y)]

≤ 2R̂(G̃)+ 5

1− η0 − η1

√
2 ln 8/δ

m
,

where we used that |	̃(y1, y2)| ≤ 1
1−η0−η1

and defined the
function class

G̃ := {X × {0, 1} � (x, y) �→ 	̃(f̃ (x), y) | f̃ ∈ F̃ }.
Next, we relate the empirical Rademacher complexity of

G̃ to that of F̃ .

Lemma 2 For any training data set S = {(xi, yi)}mi=1,
viewed as an element of (X × {0, 1})m, we have
R̂(G̃) ≤ 2

1− η0 − η1
R̂(F̃ ).

Proof (Sketch) The proof uses some standard steps that
are typically used for example in proving the Lipschitz
contraction property of the Rademacher complexity and
in studying the Rademacher complexity in a binary
classification scenario.

See Appendix 1 for a detailed proof.

With this, we now reformulate the above result in terms
of the VC-dimension. Suppose VCdim(F̃ ) = d < ∞.

Then R̂(F̃ ) ≤ 31
√

d
m

(see, e.g., Vershynin 2018, Theorem
8.3.23). Therefore, we obtain that, with probability ≥ 1− δ

over the choice of training data S = {(xi, yi)}mi=1 according
to ν,

E(x,y)∼ν[	̃(ĝ(x), y)] − inf
f̃∈F̃

E(x,y)∼ν[	̃(f̃ (x), y)]

≤ 124

1− η0 − η1

√
d

m
+ 5

1− η0 − η1

√
2 ln 8/δ

m
.

Note that, using Lemma 1, we can now bound

Now we can set this equal to ε and rearrange to conclude
that a sample size of

m ≥ ‖σ0 − σ1‖2
1

4ε2

(
124

1− η0 − η1

√
d + 5

1− η0 − η1

√
2 ln 8/δ

)2
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suffices to guarantee that, with probability≥ 1−δ, Rμ(ĥ)−
inf

f∈F
Rμ(f ) ≤ ε.

If we now observe that 1
1−η0−η1

≤ 4
‖σ0−σ1‖1

, we obtain
the sample complexity upper bound

m = m(ε, δ) = O

(
d

ε2
+ log 1/δ

ε2

)
.

Remark 1 The naive version of our learning strategy
would be to perform Holevo-Helstrom measurements and
then apply a classical learning strategy, like empirical
risk minimization, without correcting for the noise in the
resulting classical labels. Actually, this learning strategy
already performs reasonably well and, in certain special
cases, even allows to reduce the quantum learning problem
to a fully classical one. For a detailed analysis of the
performance of this simpler strategy, the reader is referred
to Appendix 3.

Example 2 We illustrate our agnostic learning strat-
egy for the scenario of Example 1. As discussed in
Appendix 3, as both label states |ϕ0〉〈ϕ0| and |ϕ1〉〈ϕ1|
are pure, we can actually dispense with the modifi-
cation of the classical loss function and simply take
the 0-1-loss. Therefore, the Holevo-Helstrom strategy
will look as follows: We first perform local Holevo-
Helstrom measurements with measurement operators E0 ∝(−1+√

2 1
)T (−1+√

2 1
) ⊕ 0, . This

gives rise to classical training data. With that data, we then
perform (classical) empirical risk minimization over the

class F̃ =
{
f̃

(i)
R

}
i=0,1, R∈R

, where f̃
(i)
R : RD → {0, 1},

. Note that f
(0)
R is

the zero-function for every R ∈ R.
Both the optimization procedure and the generalization

capability depend on the class R of possible noise regions.
Concerning the generalization performance, observerve
that, if ∅ ∈ R, then VCdim(F̃ ) = VCdim(F̃R), where we
take to be the class
of indicator functions of sets from R. The VC-dimension of
such classes is well known for different geometric classes
R. E.g., if R is the class of axis-aligned rectangles or that
of Euclidean balls in RD , then VCdim(F̃R) scales linearly
in D and thus the dependence of the sample complexity
upper bound on the number of parameters D is linear. If,
however, we take R to be the class of compact and convex
subsets of RD , then VCdim(F̃R) = ∞ and the sample
complexity upper bound becomes void. This is congruent
with the intuition that without prior assumptions on the
structure of the regions that can be influenced by noise,
learning the noise (in particular its region) will be hard and
maybe infeasible.

4.2 The realizable case

The strategy from the previous subsection uses a general-
ization bound via the Rademacher complexity and yields a
sample complexity bound depending quadratically on 1/ε.
In the classical binary classification problem it is known
(see Theorem 1) that under the realizability assumption this
can be improved to 1/ε, but this typically requires a differ-
ent kind of reasoning via ε-nets. (Compare section 28.3 of
Shalev-Shwartz and Ben-David (2014)). In Theorem 6 we
show how the reasoning by Hanneke (2016) can be com-
bined with results by Laird (1988) to achieve the 1/ε-scaling
also in the case of two-sided classification noise. This sam-
ple complexity upper bound is seen to be optimal in its
dependence on the VC-dimension d , the error rate bound
η, the confidence δ and the accuracy ε by a comparison
to the lower bound in Theorem 27 of Arunachalam and de
Wolf (2018).

If, as in the previous subsection, we consider the classical
training data obtained by measuring the quantum training
data as noisy version of a true sample, we can exchange
step 3 in the Holevo-Helstrom strategy by the minimum
disagreement-based classical learning strategy achieving the
optimal sample complexity bound of Theorem D.2. This
directly yields the following

Theorem 2 Let σ0, σ1 ∈ S (Cn) be (distinct) quantum
states. Let ε ∈ (0, 1), δ ∈ (0, 2 · ( 2e

d
)d), where d is the

VC-dimension of F ⊂ {0, 1}X . Then

m=O

(
1

ε(1−2 max{tr[E0σ1], tr[E1σ0]})2 (d + log 1/δ)

)

quantum examples of a function in F are sufficient for
binary classification with classical instances and quantum
labels σ0, σ1 with accuracy ε and confidence 1− δ.

Example 3 When considering this learning strategy in the
setting of Example 1, we first perform the Holevo-Helstrom
measurements as in Example 2 to obtain classical data.
Again, this is followed by a classical learning procedure for

the class F̃ =
{
f̃

(i)
R

}
i=0,1, R∈R

.

Whereas the sample complexity bound derived for the
agnostic case in Section 4.1 applies to any (noise-corrected)
classical empirical risk minimization, the procedure leading
to the bound in Theorem 2 is a specific one, presented in the
proof of Theorem D.2. First, the classical data is processed,
using the subsampling algorithm of Hanneke (2016) (see
Algorithm 2), to generate a collection of subsamples. For
each of those subsamples, we then apply Algorithm 1: We
use a first part of the subsample to group the elements of
F̃ into equivalence classes (according how they act on that
part of the subsample), and the remainder is used to test
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the performance of each equivalence class. Afterwards, we
output as hypothesis for that subsample a representative of
the equivalence class that performs best in that test, i.e.,
that minimizes the number of disagreements with the part
of the subsample used for testing. Whether and how the
grouping into equivalence classes and finding minimum
disagreement strategies can be done (efficiently) depends on
F̃ , and thus on R. Finally, we take a majority vote over all
the subsample hypotheses to get the output hypothesis of the
classical learning procedure.

The dependence of the sample complexity on F̃ via the
VC-dimension of the class of indicator functions of sets
from R is analogous to Example 2.

Remark 2 From the description of our noise-corrected
Holevo-Helstrom strategy (either in the form of Section 4.1
or that of this subsection), we can directly see that whether
it is a proper or an improper learner depends on whether
the classical learning algorithm in step (3) is. As the
classical learning algorithm used in Section 4.1 is a simple
Empirical Risk Minimization, it is in particular proper.
So our noise-corrected Holevo-Helstrom strategy for the
agnostic case is proper as well. The classical learner used in
this subsection, however, is in general improper. So also the
noise-corrected Holevo-Helstrom strategy for the realizable
case is in general improper.

5 Sample complexity lower bounds

Whereas the goal of the previous section was to give strate-
gies for solving the binary classification problem with clas-
sical instances and quantum labels and to prove upper bounds
on the sufficient number of classical-quantum examples, we
now turn to the complementary question of lower bounds on
the number of required examples. In this section, we derive
lower bounds that match the respective upper bounds from
the previous section, and therefore, we conclude that the
procedures described in Section 4 are optimal w.r.t. sample
size in terms of the dependence on ε, δ, and d .

5.1 The agnostic case

We prove the sample complexity lower bounds in two parts,
the first depending on the confidence parameter δ but not on
the VC-dimension of the function class and conversely for
the second.

We establish the VC-dimension-independent sample
complexity lower bound in the following

Lemma 3 Let σ0, σ1 ∈ S (Cn), let ε ∈ (0,
‖σ0−σ1‖1

2
√

2
),

δ ∈ (0, 1). Let F ⊂ DX be a non-trivial concept class.

Suppose A is a learning algorithm that solves the binary
classification task with classical instances and (distinct)
label states σ0, σ1 and concept class F with confidence
1 − δ and accuracy ε using m = m(ε, δ) examples. Then

m ≥ Ω
(
‖σ0 − σ1‖2

1
log 1/δ

ε2

)
.

Proof (Sketch) As F is non-trivial, there exist concepts
f, g ∈ F and a point x ∈ X s.t. f (x) = σ0 and g(x) = σ1.
Let λ = ε

2‖σ0−σ1‖1
∈ (0, 1). Define probability distributions

μ± on X ×D via

μ±(x, f (x)) = 1± λ

2
, μ±(x, g(x)) = 1∓ λ

2
.

By explicitly evaluating the risk R±(h), we see that
achieving an excess risk ≤ ε with probability ≥ 1 − δ,
requires the learner to distinguish between the underlying
distributions μ±, and thus the corresponding training data
states ρ⊗m± , with probability ≥ 1− δ.

It is well known (see, e.g., Nielsen and Chuang 2009,
chapter 9) that the optimal success probability of this
quantum distinguishing task is given by

popt = 1

2
(1+ 1

2

∥∥ρ⊗m+ − ρ⊗m−
∥∥

1).

Via the Fuchs-van de Graaf inequalities, which state that

1

2

∥∥ρ⊗m
1 − ρ⊗m

2

∥∥
1 ≤

√
1− F(ρ⊗m

1 , ρ⊗m
2 )2 =

√
1− F(ρ1, ρ2)2m,

this can be upper bounded using lower bounds on
the fidelity F(ρ⊗m+ , ρ⊗m− ) = F(ρ+, ρ−)m. The fidelity
F(ρ+, ρ−) can be lower-bounded using its strong concavity
and the explicit expressions for ρ±. The result then follows
by comparing the obtained upper bound with the required
lower bound popt ≥ 1− δ.

See Appendix 1 for a detailed proof.

For the proof of the VC-dimension-dependent part of the
lower bound we need a well known observation about the
eigenvalues of a statistical mixture of two pure quantum
states, which is the content of the following

Lemma 4 Let |ψ〉, |φ〉 ∈ Cn be distinct pure quantum
states. Let α, β ≥ 0 be real numbers. Then the non-zero
eigenvalues of the mixture ρ := α|ψ〉〈ψ | + β|φ〉〈φ| are
given by

λ1/2(ρ) = α + β ±√
(α − β)2 + 4αβ|〈ψ |φ〉|2

2
.

With this we can now prove a sample complexity lower
bound for the case of pure label states.

Theorem 3 Let σ0 = |ψ0〉〈ψ0|, σ1 = |ψ1〉〈ψ1| ∈ S (Cn)

be (distinct) pure quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8 ),
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δ ∈ (0, 1 − H
(

1
4

)
). Let F ⊂ DX be a non-trivial

concept class s.t. F̃ has VC-dimension d . Suppose A is a
learning algorithm that solves the binary classification task
with classical instances and (distinct) label states σ0, σ1 and
concept class F with confidence 1−δ and accuracy ε using

m = m(ε, δ) examples. Then m ≥ Ω
(

d

ε2

)
.

Proof (Sketch) We follow the information-theoretic proof
strategy from Arunachalam and de Wolf (2018). Let S =
(s1, . . . , sd) ∈ X be a set shattered by F̃ , for each a ∈
{0, 1}d define the distribution μa on {1, . . . , d} × {0, 1} via

μa(i, b) := 1

2d

(
1+ (−1)ai+b 8ε

‖σ0 − σ1‖1

)
.

Note that ∀a ∈ {0, 1}d ∃fa ∈ F̃ : fa(si) = ai by
shattering and that fa is a minimum error concept w.r.t. μa .
By evaluating the excess error of an fã compared to fa , we
see that solving the learning problem with confidence 1− δ

requires the learner to output, with probability ≥ 1 − δ, a
hypothesis described by a string whose Hamming distance
to the true underlying string is ≤ d

4 . We can use this
observation to obtain the lower bound I (A : B) ≥ Ω(d) on
the mutual information between underlying string A (drawn
uniformly at random) and corresponding quantum training
data B.

We can also upper bound the mutual information. A
standard argument shows I (A : B) ≤ m · I (A : B1), where
m is the number of copies of the quantum example state
and B1 describes a single quantum example state. Using
Lemma 4 and the explicit expression for a quantum example
state, we can compute I (A : B1) and use Taylor expansion
to see that I (A : B1) ≤ O(ε2). Comparing the lower and

upper bounds on I (A : B) now gives m ≥ Ω
(

d

ε2

)
.

See Appendix 1 for a detailed proof.

If we now combine Lemma 3 and Theorem 3 with the
result of Section 4.1 we obtain

Corollary 1 Let σ0, σ1 ∈ S (Cn) be (distinct) pure

quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8 ), δ ∈ (0, 1 − H
(

1
4

)
).

Let F ⊂ DX be a non-trivial concept class s.t. F̃ has

VC-dimension d . Then a sample size of Θ
(

d

ε2 + log 1/δ

ε2

)
is

necessary and sufficient for solving the binary classification
task with classical instances and quantum labels σ0, σ1 and
hypothesis class F with confidence 1− δ and accuracy ε.

Therefore, we have shown that the strategy from Section 4.1
is, for pure states, optimal in sample complexity w.r.t. its
dependence the VC-dimension, the accuracy and the con-
fidence. But we do not make a statement on optimality
w.r.t. the dependence on the distinguishability of the label

states, because the parameter ‖σ0 − σ1‖1 is lacking from
our lower bound.

5.2 The realizable case

We now show analogous lower bounds for the sample
complexity in the realizable scenario with the same proof
strategy.

Lemma 5 Let σ0, σ1 ∈ S (Cn), let ε ∈ (0,
‖σ0−σ1‖1

2 ),

δ ∈ (0, 1
2 ). Let F ⊂ DX be a non-trivial concept class.

Suppose A is a learning algorithm which solves the binary
classification task with classical instances and (distinct)
label states σ0, σ1 and concept class F with confidence
1 − δ and accuracy ε using m = m(ε, δ) examples in the

realizable scenario. Then m ≥ Ω
(

log 1/δ
ε

)
.

Proof This can be proved similarly to Lemma 3. See
Appendix 1 for a detailed proof.

We now provide the analog of Theorem 3 for the realiz-
able case.

Theorem 4 Let σ0 = |ψ0〉〈ψ0|, σ1 = |ψ1〉〈ψ1| ∈ S (Cn)

be (distinct) pure quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8 ), δ ∈
(0, 1

2 ). Let F ⊂ DX be a non-trivial concept class s.t. F̃
has VC-dimension d+1. SupposeA is a learning algorithm
which solves the binary classification task with classical
instances and (distinct) label states σ0, σ1 and concept class
F with confidence 1− δ and accuracy ε using m = m(ε, δ)

examples in the realizable case. Then m ≥ Ω
(

d
ε

)
.

Proof This can be proved similarly to Theorem 3. See
Appendix 1 for a detailed proof.

Thus, we have obtained a sample complexity lower bound
that matches the upper bound proved in Section 4.2 in the
dependence on the VC-dimension, the confidence and the
accuracy, but we do not make a statement about optimality
w.r.t. the dependence on ‖σ0 − σ1‖1.

Remark 3 As already discussed in Section 2.1, in prov-
ing the sample complexity lower bounds we resort to the
Heisenberg picture, which allows us to absorb the inter-
mediate quantum channels performed by a learner into the
measurement. These lower bounds therefore even hold for
quantum learning algorithms that perform coherent and
adaptive measurements on the training data. In particular,
the information-theoretic complexity of our learning prob-
lem does not change if we restrict the quantum learner
to only performing two-outcome POVMs locally (i.e., on
one subsystem only). This is maybe not too much of a
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surprise, since the optimal measurement for distinguishing
states drawn uniformly at random from {⊗m

i=1 σxi
}x∈{0,1}m

can, using the Holevo-Yuen-Kennedy-Lax optimality crite-
rion (Holevo 1973; Yuen et al. 1975), be seen to be exactly
given by local Holevo-Helstrom measurements.

6 Conclusion and outlook

We have proposed a novel way of modifying the classical
binary classification problem to obtain a quantum counter-
part. The conceptual difference to the framework of quan-
tum PAC learning as discussed in Arunachalam and de Wolf
(2017) is that we work with maps whose outputs are them-
selves quantum states, not classical labels. This naturally
gives rise to training data given by quantum states, which
is one aspect in which our setting differs from Aaronson
(2007).

Using results from classical learning theory on dealing
with classification noise in the training data, we exhibited
learning strategies (based on the Holevo-Helstrom mea-
surement) for binary classification with classical instances
and quantum labels. The learning strategies consist of two
main steps: First, classical information is extracted from
the training data by performing a (localized) measurement.
Second, classical learning strategies are applied. We com-
plemented these procedures by sample complexity lower
bounds thereby establishing the information-theoretic opti-
mality of these strategies for pure label states w.r.t. the
dependence on VC-dimension, confidence and accuracy.

We conclude with some open questions that we leave
open for further research:

– Can we derive sample complexity lower bounds which
explicitly incorporate factors related to the hardness of
distinguishing σ0 and σ1, e.g., in terms of ‖σ0 − σ1‖1
or max{tr[E0σ1], tr[E1σ0]}? Or can the corresponding
factors in the upper bounds be eliminated? Could this
be related to another complexity measure from classical
learning theory, the “fat-shattering dimension” of the
class

{X × E (Cd) � (x, E) �→ tr[Ef (x)] | f ∈ F }?
– Our analysis is focused on the information-theoretic

part of the learning problem, i.e., the sample complex-
ity. Can we improve the computational complexity?

– For deriving our sample complexity upper bounds, we
used specific classical learning procedures applied to
the post-measurement training data. In the agnostic
case, we use empirical risk minimization, in the
realizable case we use a combination of a minimum
disagreement approach with a subsampling procedure.
In both cases, we decided for these algorithms to

achieve the (essentially) optimal sample complexity
characterized via the VC-dimension.

However, we could use other classical learning
procedures for “post-processing”. Can we identify
situations in which procedures like structural risk
minimization, compression schemes, or stable learning
procedures yield useful sample complexity bounds?

– We considered the case of classical instances. Can
this be extended to a scenario of quantum instances
with classical (or even quantum) labels? Whereas we
were able to study the case of classical instances and
quantum labels with methods from learning with label
noise, once the instances themselves are quantum, we
might have to employ ideas from learning models
with restricted access to the instances such as that of
“learning with restricted focus of attention” proposed in
Ben-David and Dichterman (1998).

– Our strategy uses the Holevo-Helstrom measurement
which can be understood as inducing the minimum
amount of noise. However, in classical learning theory it
is well known that adding noise to the training data can
be helpful in preventing overfitting. In this spirit, can we
justify other measurements than the Holevo-Helstrom
measurement?

– We assumed throughout our analysis that the learning
algorithm has to output a hypothesis that maps into
{σ0, σ1}. What if we allow for hypotheses that map into
conv ({σ0, σ1}) or S (Cd)?

– Finally, we assume throughout that the label states
σ0, σ1 are known in advance. Can this assumption be
removed? Here, it might be helpful that Theorem 6 does
not need explicit knowledge of the error rates η0, η1, but
merely of an upper bound ηb on them.

Appendix 1. Proofs

Proof of Lemma 2 Let z = ((xi, yi))
m
i=1 ∈ (X ×

{0, 1})m. If we use and

, then we can rewrite

R̂(G̃) = Eσ [ sup
f̃∈F̃

1

m

m∑
i=1

σi 	̃(f̃ (xi), yi)]

= Eσ

⎡
⎣ sup

f̃∈F̃

1

m

m∑
i=1

σi

1

1− η0 − η1

×
(

(1− η1⊕yi
)
1− (1− 2f̃ (xi))(1− 2yi)

2

− ηyi

1+ (1− 2f̃ (xi))(1− 2yi)

2

)]
.
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Next, we use that Eσ [σi] = 0 and that σi and (1− 2yi)σi

have the same distribution for all i. With this we obtain from
the above

R̂(G̃) = 1

1− η0 − η1
Eσ

⎡
⎣ sup

f̃∈F̃

1

m

m∑
i=1

σi(1− η1⊕yi
+ ηyi

)f̃ (xi)

⎤
⎦

= 1

2(1− η0 − η1)
Eσ2,...,σm

⎡
⎢⎢⎣ sup

f̃ ,f̃ ′∈F̃

1

m
(1− η1⊕y1 + ηy1)(f̃ (x1)− f̃ ′(x1))︸ ︷︷ ︸

≤2|f̃ (x1)−f̃ ′(x1)|

+ 1

m

m∑
i=2

σi(1− η1⊕yi
+ ηyi

)(f̃ (xi)+ f̃ ′(xi))

]

≤ 1

1− η0 − η1
Eσ

⎡
⎣ sup

f̃∈F̃

2

m
σ1f̃ (x1)+ 1

m

m∑
i=2

σi(1− η1⊕yi
+ ηyi

)f̃ (xi)

⎤
⎦ ,

where the last step used that the expression is invariant
w.r.t. interchanging f̃ and f̃ ′, so we can drop the absolute
value. Now we can iterate this reasoning for i = 2, . . . , m

and obtain

R̂ ( G̃ ≤ 2

1− η0 − η1
Eσ

⎡
⎣ sup

f̃∈F̃

1

m

m∑
i=1

σif̃ (xi)

⎤
⎦

= 2

1− η0 − η1
R̂(F̃ ),

the desired inequality.

Proof of Lemma 3 As F is non-trivial, there exist concepts
f, g ∈ F and a point x ∈ X s.t. f (x) = σ0 and g(x) = σ1.
Let λ ∈ (0, 1) (to be chosen appropriately later in the proof).
Define probability distributions μ± on X ×D via

μ±(x, f (x)) = 1± λ

2
, μ±(x, g(x)) = 1∓ λ

2
.

The risk of a hypothesis h ∈ DX w.r.t. these probability
measures is given by

R±(h) = 1± λ

4
‖σ0 − h(x)‖1 + 1∓ λ

4
‖σ1 − h(x)‖1

=
{

1±λ
4 ‖σ0 − σ1‖1 if h(x) = σ1

1∓λ
4 ‖σ0 − σ1‖1 if h(x) = σ0

,

in particular the optimal achievable risk is 1−λ
4 ‖σ0 − σ1‖1.

Note that a hypothesis which predicts the suboptimal label
state for x has an excess risk of

1+ λ

4
‖σ0 − σ1‖ − 1− λ

4
‖σ0 − σ1‖1 = λ

2
‖σ0 − σ1‖1 .

So if we pick λ = ε
2‖σ0−σ1‖1

< 1, then in order to
achieve an excess risk ≤ ε with probability ≥ 1 − δ, the

learning algorithm has to be able to distinguish between the
underlying distributions μ± with probability ≥ 1− δ.

As the algorithm has access to the underlying distribution
only via the training data, this means that the algorithm
has to be able to distinguish the corresponding training data
ensembles with probability ≥ 1 − δ. Here, we observe
that the training data being drawn i.i.d. according to μ±
is equivalent to the learning algorithm having access to m

copies of the state

ρ± := μ±(x, f (x))|x〉〈x| ⊗ σ0 + μ±(x, g(x))|x〉〈x| ⊗ σ1,

because this mixed state simply describes the statistical
mixture. The optimal success probability for distinguishing
between two quantum states is a well-studied object in
quantum information theory. It can be characterized by the
trace distance between the two states and is given (in our
case) by (see, e.g., Nielsen and Chuang 2009)

popt = 1

2
(1+ 1

2

∥∥ρ⊗m+ − ρ⊗m−
∥∥

1).

As the trace distance of tensor products is not that easy to
deal with, we will instead work with the fidelity defined as

F(ρ, σ ) := tr[
√

ρ
1
2 σρ

1
2 ].

According to the Fuchs-van de Graaf inequalities we have

1

2

∥∥ρ⊗m+ − ρ⊗m−
∥∥

1 ≤
√

1− F(ρ⊗m+ , ρ⊗m− )2

=
√

1− F(ρ+, ρ−)2m,

where the last steps uses multiplicativity of the fidelity
under tensor products. Now we require popt ≥ 1 − δ and
rearrange to obtain

F(ρ+, ρ−)2m ≤ 4δ(1− δ)
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or equivalently after taking logarithms

m ≥ log(4δ(1− δ))

log(F (ρ+, ρ−)2)
.

By strong concavity of the fidelity, we have

F(ρ+, ρ−) ≥
√

1+ λ

2

1− λ

2
F(|x〉〈x| ⊗ f (x), |x〉〈x| ⊗ f (x))

+
√

1− λ

2

1+ λ

2
F(|x〉〈x| ⊗ g(x), |x〉〈x| ⊗ g(x))

=
√

1− λ2.

This now implies

m≥ log(4δ(1− δ))

log(F (ρ+, ρ−)2)
=

log
(

1
4δ(1−δ)

)

log
(

1
F(ρ+,ρ−)2

) ≥
log

(
1

4δ(1−δ)

)

log
(

1
1−λ2

) .

Thus, we obtain (after Taylor-expanding the logarithm in the
denominator)

m ≥ Ω

⎛
⎝‖σ0 − σ1‖2

1

log
(

1
δ

)

ε2

⎞
⎠ ,

as desired.

Proof of Lemma 4 Pick an orthonormal basis {|k〉}k=1,...,n

of Cn s.t. |ψ〉 = |0〉 and |φ〉 = cos(ϕ)|0〉 + sin(ϕ)|1〉 for an
angle 0 ≤ ϕ < 2π . Then, when restricting to the relevant
subspace spanned by |0〉 and |1〉, we get

ρ|span{|0〉,|1〉} =
(

α + β cos2(ϕ) β cos(ϕ) sin(ϕ)

β cos(ϕ) sin(ϕ) β sin2(ϕ)

)
=: A.

We now easily see that

det(A) = αβ sin2(ϕ)
!= λ1λ2 and tr[A] = α + β

!= λ1 + λ2,

where λ1, λ2 are the two non-zero eigenvalues of ρ. We can
solve the second of these two equations for λ2 and plug this
back into the first equation to obtain

λ2
1 − λ1(α + β)+ αβ sin2(ϕ) = 0.

We now solve this quadratic equation and obtain the two
eigenvalues

λ1/2 = α + β ±√
α2 + β2 + 2αβ(2 cos2(ϕ)− 1)

2

= α + β ±√
(α − β)2 + 4αβ|〈ψ |φ〉|2

2
,

where we used that | cos(ϕ)| = |〈ψ |φ〉|.

Detailed Proof of Theorem 3 Let S = (s1, . . . , sd) ∈ X
be a set shattered by F̃ , for each a ∈ {0, 1}d define the
distribution μa on {1, . . . , d} × {0, 1} via

μa(i, b) := 1

2d

(
1+ (−1)ai+b 8ε

‖σ0 − σ1‖1

)
.

Note that ∀a ∈ {0, 1}d ∃fa ∈ F̃ : fa(si) = ai by shattering
and that for each a ∈ {0, 1}d , fa is a minimum error concept
w.r.t. μa and a concept fã has additional error

dH (a, ã)
8ε

d ‖σ0 − σ1‖1
· ‖σ0 − σ1‖1

2
= dH (a, ã)

4ε

d

compared to fa . Hence, in order to solve the learning
problem with confidence 1 − δ and accuracy ε the
algorithm A has to output, with probability ≥ 1 − δ, a
hypothesis (generated from the training data arising from
the underlying string) that when evaluated on S yields a
vector that is d

4 -close to the underlying string in Hamming
distance.

Let A be a random variable distributed uniformly on
{0, 1}d (corresponding to the unknown underlying string a).
Let B = B1 . . . Bm be the training data with each example
generated independently from μa described by the quantum
ensemble

Ea = {μa(i, b), |si〉〈si | ⊗ σb}i=1,...,d, b=0,1,

or, equivalently, by the quantum state

ρa =
d∑

i=1

|si〉〈si | ⊗ (μa(i, 0)σ0 + μa(i, 1)σ1) .

In particular, the composite system of underlying string and
corresponding training data is described by the quantum
state

σAB = 1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρ⊗m

a .

We follow the information-theoretic proof strategy from
Arunachalam and de Wolf (2018), i.e., we first show a lower
bound on the mutual information I (A : B) which arises
from the learning requirement, then observe that I (A :
B) ≤ m · I (A : B1) and finally upper bound the mutual
information I (A : B1).

First for the mutual information lower bound. Let h(B) ∈
{0, 1}d denote the label vector assigned to S by the
hypothesis produced by the learner upon input of training

data B. Let . If Z = 1, then
by the above deliberations we conclude dH (A, h(B)) ≤
d
4 and thus, given h(B), A ranges over a set of size
d
4∑

i=0

(
n
i

) ≤ 2
H

(
1
4

)
d
. Thus, we get (using data processing and

the definition of conditional entropy)

I (A : B) ≥ I (A : h(B)) = H(A)−H(A|h(B))

≥ H(A)−H(A|h(B), Z)−H(Z)
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= H(A)− P[Z = 1]︸ ︷︷ ︸
≤1

H(A|h(B), Z = 1)︸ ︷︷ ︸
≤H

(
1
4

)
d

−P[Z = 0]︸ ︷︷ ︸
≤δ

H(A|h(B), Z = 0)︸ ︷︷ ︸
≤d

−H(Z)︸ ︷︷ ︸
≤H(δ)

≥ d −H

(
1

4

)
d − δd −H(δ)

=
(

1−H

(
1

4

)
− δ

)
d −H(δ),

in particular I (A : B) ≥ Ω(d). (Here we use our assump-
tion on δ.)

Now we show I (A : B) ≤ m · I (A : B1). We reproduce
the reasoning provided in Arunachalam and de Wolf (2018)
for completeness:

I (A : B) = S(B)− S(B|A)

= S(B)−
m∑

i=1
S(Bi |A)

≤
m∑

i=1
S(Bi)− S(Bi |A)

=
m∑

i=1
I (A : B1).

Here, the first step is by definition, the second uses the
product structure of the subsystem B, the third follows
from subadditivity of the entropy and the last is again by
definition.

And finally, we prove an upper bound on I (A : B1). To
this end, we have to study the reduced state

σAB1 =
1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρa .

More precisely, we have

I (A : B1) = S(A)+ S(B1)− S(AB1),

and thus have to study the entropies of σAB1 as well
as those of the reduced states σA and σB1 . As A ∼
Uniform

({0, 1}d), we have S(A) = d . Now we consider the
reduced state

σB1 =
1

2d

∑

a∈{0,1}d
ρa

=
d∑

i=1

|si〉〈si | ⊗
⎛
⎝
⎛
⎝ 1

2d

∑

a∈{0,1}d
μa(i, 0)

⎞
⎠ |ψ0〉〈ψ0|

+
⎛
⎝ 1

2d

∑

a∈{0,1}d
μa(i, 1)

⎞
⎠ |ψ1〉〈ψ1|

⎞
⎠ .

Here, we have

1

2d

∑

a∈{0,1}d
μa(i, 0) = 1

2d
= 1

2d

∑

a∈{0,1}d
μa(i, 1).

By Lemma 4 we know that 1
2d
|ψ0〉〈ψ0| + 1

2d
|ψ1〉〈ψ1| has

non-zero eigenvalues μ1/2 = 1
2d

(1 ± |〈ψ0|ψ1〉|) and due
to the block-diagonal structure of σB1 we conclude that
the non-zero eigenvalues of σB1 are also μ1/2, each of
multiplicity d . In particular, we have

S(σB1) = d · (−μ1 log(μ1)− λ2 log(μ2))

= log(2d)− 1

2

(
log(1− |〈ψ0|ψ1〉|2)

+ |〈ψ0|ψ1〉| log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))
.

Similarly, we see that the non-zero eigenvalues of σAB1

are

1

2d
λ1/2 = 1

2d
· 1

2d

(
1± |〈ψ0|ψ1〉|

√
1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

)
,

each of multiplicity d · 2d and that therefore

S(σAB1) = d + log(2d)− 1

2

⎛
⎜⎜⎝ log

(
1− |〈ψ0|ψ1〉|2

(
1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

))

+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 log

⎛
⎜⎜⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

If we combine these expressions for the different entropies,
we obtain
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I (A : B1) = S(A)+ S(B1)− S(AB1)

= 1

2

(
log

(
1− |〈ψ0|ψ1〉|2 − 64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)
)
− log

(
1− |〈ψ0|ψ1〉|2

))

+|〈ψ0|ψ1〉|
2

⎛
⎜⎜⎝
√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 log

⎛
⎜⎜⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

⎞
⎟⎟⎠

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)
⎞
⎟⎟⎠ .

We now use Taylor’s theorem to understand the scaling
of the different terms with ε. First, we have (by Taylor-
expanding log(1− |〈ψ0|ψ1〉|2 − x) around x = 0)

log

(
1− |〈ψ0|ψ1〉|2 − 64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)
)

− log
(

1− |〈ψ0|ψ1〉|2
)

= 1

1− |〈ψ0|ψ1〉|2 ·
64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)+ O(ε4)

= − 64ε2

‖σ0 − σ1‖2
1

+ O(ε4).

Moreover, using the Taylor expansions

log

(
1+ a

√
1+ x

1− a
√

1+ x

)
= log

(
1+ a

1− a

)
+ ax

1− a2
+ O(x2)

around x = 0 (with a > 0) and
√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

= 1+ 1

2
· 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 + O(ε4)

we now obtain

√
1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 log

⎛
⎜⎜⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1
· 1−|〈ψ0|ψ1〉|2

|〈ψ0|ψ1〉|2

⎞
⎟⎟⎠

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

=
(

1+ 1

2
· 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 + O(ε4)

)

·
(

log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)
+ |〈ψ0|ψ1〉|

1− |〈ψ0|ψ1〉|2 ·
64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2 + O(ε4)

)

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

= 64ε2

‖σ0 − σ1‖2
1

(
1

|〈ψ0|ψ1〉| +
1− |〈ψ0|ψ1〉|2

2|〈ψ0|ψ1〉| log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))
+ O(ε4).

Plugging these approximations back in gives us

I (A : B1) = 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
4|〈ψ0|ψ1〉|

× log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)
+ O(ε4) = O(ε2).

Now combining our mutual information lower and upper
bounds yields

Ω(d) ≤ I (A : B) ≤ m · I (A : B1) ≤ m · O(ε2),

which after rearranging becomes

m ≥ Ω

(
d

ε2

)
,
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as desired.

Detailed Proof of Lemma 5 As F is non-trivial, there exist
f1, f2 ∈ F and x1, x2 ∈ X s.t. f1(x1) = f2(x1) = σ0 and
f1(x2) = σ0 �= σ1 = f2(x2). Now consider the distribution
μ on X defined by

μ(x1) = 1− λ, μ(x2) = λ,

where λ ∈ (0, 1) is to be chosen later in the proof.
The risk of a hypothesis h ∈ DX w.r.t. μ if the target

concept is fi is given by

Rμ,fi
(h) = 1− λ

2
‖h(x1)− fi(x1)‖1+

λ

2
‖h(x2)− fi(x2)‖1 ,

so in particular we have

Rμ,fi
(fj ) =

{
0 if i = j
λ
2 ‖σ0 − σ1‖1 if i �= j

.

So if we choose λ = 2ε
‖σ0−σ1‖1

< 1, then the learning
requirement for A implies that with probability≥ 1− δ, A
correctly identifies whether the target concept is f1 or f2.
As the algorithm has access to the underlying distribution
only via the training data, this means that the algorithm
has to be able to distinguish the corresponding training data
ensembles with probability ≥ 1 − δ. Here, we observe
that the training data being drawn i.i.d. according to μ±
is equivalent to the learning algorithm having access to m

copies of the state

ρi = (1− λ)|x1〉〈x1| ⊗ σ0 + λ|x2〉〈x2| ⊗ fi(x2), i = 1, 2.

The optimal success probability for distinguishing between
two quantum states is a well-studied object in quantum
information theory. It can be characterized by the trace
distance between the two states and is given (in our case) by
(see Nielsen and Chuang 2009)

popt = 1

2
(1+ 1

2

∥∥ρ⊗m
1 − ρ⊗m

2

∥∥
1).

As the trace distance of tensor products is not that easy to
deal with, we will instead work with the fidelity defined as

F(ρ, σ ) := tr[
√

ρ
1
2 σρ

1
2 ]. According to the Fuchs-van de

Graaf inequalities (see Nielsen and Chuang 2009, Section
9.2.3) we have

1

2

∥∥ρ⊗m
1 − ρ⊗m

2

∥∥
1 ≤

√
1− F(ρ⊗m

1 , ρ⊗m
2 )2

=
√

1− F(ρ1, ρ2)2m,

where the last steps uses multiplicativity of the fidelity
under tensor products. Now we require popt ≥ 1 − δ and
rearrange to obtain

F(ρ1, ρ2)
2m ≤ 4δ(1− δ)

or equivalently after taking logarithms

m ≥ log(4δ(1− δ))

log(F (ρ1, ρ2)2)
.

Now we use again the Fuchs-van de Graaf inequalities
which tell us (after rearranging)

1− 1

2
‖ρ1 − ρ2‖1 ≤ F(ρ1, ρ2) ≤

√
1− 1

4
‖ρ1 − ρ2‖2

1

to obtain that

m ≥ log(4δ(1− δ))

log(F (ρ1, ρ2)2)
=

log
(

1
4δ(1−δ)

)

log
(

1
F(ρ1,ρ2)

2

)

≥
log

(
1

4δ(1−δ)

)

log

(
1

(1− 1
2 ‖ρ1−ρ2‖1)

2

) ≥ log(4δ(1− δ))

2 log(1− 1
2 ‖ρ1 − ρ2‖1)

.

It is easy to see that ‖ρ1 − ρ2‖1 = λ ‖σ0 − σ1‖1 = 2ε. Now
Taylor expansion of the logarithm gives

m ≥ Ω

⎛
⎝ log

(
1
δ

)

ε

⎞
⎠ ,

as desired.

Detailed Proof of Theorem 4 Let S = (s0, . . . , sd) ∈ X be
a set shattered by F̃ , define

μ(s0) = 1− λ, μ(si) = λ

d
∀1 ≤ i ≤ d,

with λ ∈ (0, 1) to be chosen later. By shattering, ∀a ∈
{0, 1}d ∃fa ∈ F̃ s.t.

fa(s0) = 0 and fa(si) = ai ∀1 ≤ i ≤ d .

Observe that w.r.t. a distribution μ and target concept fa ,
another concept fb has error

dH (a, b) · λ

d
· ‖σ0 − σ1‖1

2
.

So if we pick λ = 8ε
‖σ0−σ1‖1

, then by the learning
requirement, with probability ≥ 1 − δ, A has to output a
hypothesis h that when evaluated on S yields a label vector
that is d

4 -close to the true underlying string in Hamming
distance.

Denote by A ∼ Uniform
({0, 1}d) a random variable

describing the unknown underlying string, let B =
B1 . . . Bm be the corresponding quantum training data
system. We want to repeat the three-step reasoning from the
proof of Theorem 3. The first two steps work exactly as
before. Step 3 will be slightly different. Again we have

I (A : B1) = S(A)+ S(B1)− S(AB1), and S(A) = d .
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In this case, the relevant composite state is

σAB1 =
1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρa,

where ρa =
d∑

j=0
μ(sj )|sj 〉〈sj | ⊗ fa(sj ) = (1− λ)|s0〉〈s0| ⊗

σ0 + λ
d

d∑
j=1

|sj 〉〈sj | ⊗ σaj
.

We now again use Lemma 4 to compute eigenvalues and
thus entropies. (Here our assumption that σ0 and σ1 are pure
enters the proof.) We obtain

– Each ρa has non-zero eigenvalues 1− λ of multiplicity
1 and λ

d
of multiplicity d .

– σB1 = 1
2d

∑
a∈{0,1}d(

(1− λ)|s0〉〈s0| ⊗ σ0 + λ
d

d∑
j=1

|sj 〉〈sj | ⊗ σaj

)
= (1 −

λ)|s0〉〈s0|⊗σ0+ λ
d

d∑
j=1

|sj 〉〈sj |⊗
(

1
2σ0 + 1

2σ1

)
has non-

zero eigenvalues 1 − λ of multiplicity 1 and λ
d
λ1/2 of

multiplicity d , where λ1/2 = 1±|〈ψ0|ψ1〉|
2 .

– σAB1 has non-zero eigenvalues 1
2d (1−λ) of multiplicity

2d and λ
d·2d of multiplicity d · 2d .

With this we can now compute the relevant entropies and
obtain

S(B1) = S(σB1)

= −(1− λ) log(1− λ)+ d

(
−λ

d
λ1 log

(
λ

d
λ1

)

− λ

d
λ2 log

(
λ

d
λ2

))

= −(1− λ) log(1− λ)− λ

(
λ1 log

(
λ

d
λ1

)

+λ2 log

(
λ

d
λ2

))
,

as well as

S(AB1) = S(σAB1)

= 2d

(
− 1

2d
(1− λ) log

(
1

2d
(1− λ)

)

− d · λ

d · 2d
log

(
λ

d · 2d

))

= −(1− λ) log

(
1− λ

2d

)
− λ log

(
λ

d · 2d

)
.

Hence, we now have

I (A : B1) = S(A)+ S(B1)− S(AB1)

= −λ

2

(
log

(
1− |〈ψ0|ψ1〉|2

4

)
+ |〈ψ0|ψ1〉| log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))

︸ ︷︷ ︸
≤0 because |〈ψ0|ψ1〉|∈[0,1]

= O(ε).

Now we can finish the proof by combining steps 1, 2 and 3
as before.

Appendix 2. A physical motivation
for our notion of risk

In our definition of the risk Rμ we use the trace distance. As
the latter is a well-established measure of distinguishability
of quantum states, it presents itself as a natural candidate
loss function. Here, we give a more explicit operational
reasoning as to why we choose to use the trace distance.

Imagine the learning task as a competition between two
parties, a learner and a teacher. We assume that both parties
obey the laws of quantum physics. The teacher knows (a
classical description of) the probability distribution μ ∈
Prob(X ×D) and will provide corresponding training data
to the learner during a training phase. The learner’s goal is

to persuade the teacher in a test phase that she has managed
to learn the distribution μ, which was unknown to her in
advance, i.e., that she has produced a good hypothesis h :
X → D .

We first give an informal description of the test phase:
The teacher prepares another (independent) example (x, ρ)

drawn from μ. She then sends x to the learner. The latter
applies her hypothesis h to prepare the quantum state h(x)

which she then sends back to the teacher. The teacher now
uses this one copy of h(x) and her knowledge of μ to
evaluate whether the learner made a good prediction. As
also the teacher is restricted by quantum theory, she can only
do so by performing a measurement.

We now discuss the choice of measurement of the teacher
in more detail. On the one hand, the teacher wants to
maximize the probability of detecting a wrong prediction.
On the other hand, she does not want to be unfair, so at the
same time she tries to maximize the probability of detecting
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a correct prediction. In summary, the teacher wants to
choose a 2-outcome measurement {Eaccept , Ereject } that
maximizes

tr[Eacceptσi] + tr[Erejectσj ],
where σi = ρ and σj ∈ D \ {ρ}. As she knows (a
classical description of) the state ρ ∈ D and that h(x) ∈ D ,
she can achieve this by picking {Eaccept , Ereject } to be the
optimal measurement for minimum error discrimination of
D (where the states are taken with equal prior probabilities
(see Watrous 2018, Theorem 3.4)). The measurement is
basically the same independently of whether ρ = σ1 or
ρ = σ2, only the outcome labels are interchanged.

Now the expected probability of the trainer rejecting the
learner’s prediction is
∫

X×D

tr[Ereject (ρ)h(x)] dμ(x, ρ).

The optimal measurement satisfies

tr[Eacceptσi] + tr[Erejectσj ] = 1

2

(
1+ 1

2
‖σ0 − σ1‖1

)
.

It is easy to see that under the additional assumption that
σ0 and σ1 have the same purity, i.e., tr[σ 2

0 ] = tr[σ 2
1 ], the

rejection probabilities are symmetric, namely

tr[Eacceptσj ] = tr[Erejectσi] = 1

2

(
1− 1

2
‖σ0 − σ1‖1

)

and similarly

tr[Eacceptσi] = tr[Erejectσj ] = 1

2

(
1+ 1

2
‖σ0 − σ1‖1

)
.

With this we now obtain when comparing the achieved with
the optimal expected rejection probability

∫

X×D

tr[Ereject (ρ)h(x)] dμ(x, ρ)

− inf
g:X →D

∫

X×D

tr[Ereject (ρ)g(x)] dμ(x, ρ)

=
∫

X×D

‖ρ − h(x)‖1

4
dμ(x, ρ) = 1

2
Rμ(h).

So we have recovered our notion of risk, at least in the case
of states of equal purity, from a more basic analysis of the
test phase.

Note that a similar analysis could be performed also in
the case of more than two quantum labels. There, the
teacher’s measurement would be the optimal measure-
ment for minimum error discrimination of ρ and 1

|D |−1∑
σ∈D\{ρ} σ . Unfortunately, no closed-form expressions for

the corresponding success probabilities are known. We do,
however, see that in this scenario, using the trace distance as

loss function would be too pessimistic from the perspective
of the learner. As the teacher does not know the predic-
tion state prepared by the learner, the teacher has to solve a
state discrimination problem taking into account all possible
label states.

Appendix 3. The Holevo-Helstrom strategy

The naive learning strategy based on the Holevo-Helstrom
measurement is the following:

The remainder of this section is devoted to studying the
performance of this simple learning procedure. Note that
we leave open for now the classical learning algorithm to
be used, we first work towards characterizing the true risk
Rμ(h) in terms of the intermediate classical risk R̃ν(g).

In the following we will often make use of the fact that
when identifying i ↔ σi , the probability measure μ on
X × D gives rise to a probability measure on X × {0, 1}.
We will abuse notation and also denote the latter measure
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by μ, however, which measure is meant will always be clear
from the context.

Recall that Rμ(h) = ‖σ0−σ1‖
2 P(x,ρ)∼μ[h(x) �= ρ]. We

now derive a similar expression for R̃ν(g).

Lemma C.1 With the notation as in the Holevo-Helstrom
strategy (in particular h(x) = σg(x)) it holds that

R̃ν(g) = ‖σ0 − σ1‖1

2
P(x,ρ)∼μ[h(x) �= ρ] + tr[σ0E1]

+(tr[σ1E0] − tr[σ0E1])Eμ1 [g].

Proof This can be shown by direct computation using the
definition of ν:

R̃ν(g) =
∫

X ×{0,1}
|y − g(x)|dν(x, y)

=
∫

X

⎛
⎜⎝

∫

{0,1}
|y − g(x)|dν(y|x)

⎞
⎟⎠ dν1(x)

=
∫

X

(|1− g(x)|(μ(σ1|x)tr[σ1E1] + μ(σ0|x)tr[σ0E1])

+ |g(x)|(μ(σ1|x)tr[σ1E0] + μ(σ0|x)tr[σ0E0])) dμ1(x)

Now we use the specific property of the Holevo-Helstrom
measurement that tr[(σ1 − σ0)E1] = ‖σ0−σ1‖

2 . Moreover,
as g(x) ∈ {0, 1}, we have |1 − g(x)| = 1 − g(x) and
|g(x)| = g(x). Thus, we obtain

R̃ν(g) = ‖σ0 − σ1‖
2

∫

X

((1− g(x))μ(σ1|x)+ g(x)μ(σ0|x)) dμ1(x)

+
∫

X

((1− g(x))tr[σ0E1] + g(x)tr[σ1E0]) dμ1(x)

= ‖σ0 − σ1‖
2

P(x,ρ)∼μ[h(x) �= ρ] + tr[σ0E1]
+(tr[σ1E0] − tr[σ0E1])Eμ1 [g],

where the last step uses h(x) = σg(x).

This allows us to easily compare the true and the inter-
mediate risk and obtain

R̃ν(g)− Rμ(h) = tr[σ0E1](1− 2Eμ1[g])
+

(
1− ‖σ0 − σ1‖

2

)
Eμ1[g].

As g(x) ∈ {0, 1} ∀x ∈ X and in particular 0 ≤ Eμ1[g] ≤ 1,
this gives rise to the following

Corollary 2 With the notation as in the Holevo-Helstrom
strategy it holds that

R̃ν(g)−max{tr[σ0E1], tr[σ1E0]} ≤ Rμ(h) ≤ R̃ν(g)

−min{tr[σ0E1], tr[σ1E0]}.

We can extend this to a comparison between the excess
risks

Rμ(h)−R∗
μ,F := Rμ(h)− inf

η∈F
Rμ(η) and R̃ν(g)− R̃∗

ν,F̃

:= R̃ν(g)− inf
γ∈F̃

R̃ν(γ )

which are the quantities of interest for agnostic learning
scenarios.

Corollary 3 With the notation as in the Holevo-Helstrom
strategy it holds that

R̃ν(g)−R̃∗
ν,F̃

−|tr[σ0E1] − tr[σ1E0]|≤Rμ(h)−R∗
μ,F

≤ R̃ν(g)− R̃∗
ν,F̃

+ |tr[σ0E1] − tr[σ1E0]|

So we see that solving the classical learning task in step 3
of the Holevo-Helstrom strategy does not necessarily imply
success at the overall learning task if the target accuracy is
ε < |tr[σ0E1] − tr[σ1E0]|. This problem is addressed by
the noise-corrected Holevo-Helstrom strategy presented in
Section 4.

Remark 4 We want to shortly discuss a special case in
which the connection between Rμ(h) and R̃ν(g) takes
a particularly appealing form. Namely, assume that σ0

and σ1 are such that the corresponding Holevo-Helstrom
measurement produces equal probabilities of error, i.e.,
tr[E0σ1] = tr[E1σ0]. This is clearly not true in general,
take, e.g., σ0 = |0〉〈0| and σ1 = 1

2 (|0〉〈0| + |1〉〈1|). It does,
however, hold true in certain special cases, e.g., if both σ0

and σ1 are pure or if σ0 and σ1 have the same (non-trivial)
purity and tr[E0] = tr[E1]. (The latter is, e.g., satisfied if σ0

and σ1 are qubit states of the same (non-zero) purity.)
In this simple case our previous discussion yields

Rμ(h) = R̃ν(g), in particular, if we succeed at the classical
binary classification task in step 3, then we also succeed
at the overall classification task with quantum labels, so
the quantum learning task is reduced to a classical learning
problem.

Appendix 4. Sample complexity of binary
classification with two-sided classification
noise

Here, we discuss the sample complexity of the PAC learning
task of binary classification in the presence of (two-sided)
classification noise in the realizable scenario. To be in
congruence with the literature on this and related problems,
we will use a slightly different notation than in the main
body of the paper. Namely, we will consider classical input
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space X and classical target space {0, 1}, a concept class
F ⊂ {0, 1}X , a probability measure μ ∈ Prob(X ), and
noise probabilities 0 ≤ η0, η1 < 1

2 , with which labels are
flipped. Moreover, we will work with the 0-1-loss function
and denote the corresponding risk of a hypothesis h w.r.t. a
target concept f by errμ(h; f ) = μ[h(x) �= f (x)]. Finally,
any training data sample S splits the concept class F into
so-called S-equivalence classes, where f1, f c ∈ F are

equivalent if and only if f1(x) = f2(x) ∀x ∈ X s.t.
∃y ∈ {0, 1} with (x, y) ∈ S.

The basic learning strategy underlying our discussion
is Algorithm 1. It is the natural analog of searching for
a consistent function in the case of noisy labels. Namely,
as such a consistent function will in general not exist, it
searches for a function that disagrees with the training data
on as few examples as possible.

Theorem 4.1 (see Laird 1988, Theorems 5.7 and 5.33)
The output hypothesis h of Algorithm 1 satisfies

errμ(h; f ) ≤ ε.

Laird’s original proof that this algorithm solves the PAC
learning problem is for the case η0 = η1. It is, however,
easily generalized to our case because we still assume the
same noise bound on both error rates. (We only have to
adapt the expression for the error rate and the corresponding
Hoeffding bounds.)

In order to apply the reasoning by Hanneke (2016) we
need to slightly reformulate the result of this algorithm
s.t. we obtain a bound on the error in terms of the sample
size. When following the proof of Theorem 5.7 in Laird
(1988) we see that m1 is used to ensure that there is a
hypothesis which performs better than some given error
threshold and m2 is used to ensure that such a hypothesis is
actually chosen. In particular, if we use the error bound by
Blumer et al. (1989) in terms of the sample size, we see that
m2 depends on m1 as follows:

m2 = 2

1− exp(− 1
2 (1− 2ηb)2)

· m1

2
· 1

d log
(

2em1
d

)
+ log

(
2
δ

)

· ln
(

1

δ
(md

1 + 1)

)
.

Remark 5 Note that we cannot directly use the tighter
error bound in terms of the sample complexity proved by
Hanneke (2016) here because Laird’s proof explicitly makes
use of the strategy employed by Blumer et al. (1989) which
works via consistency with a given training sample.

We can now easily bound

m = m1 +m2 ≤ m1 ·

⎛
⎜⎜⎜⎜⎝

1+ 1

1− exp(− 1
2 (1− 2ηb)2)

· 1

log(e)
· 1

1− d log
(

d
2e

)

d log(m1)+log
(

2
δ

)

⎞
⎟⎟⎟⎟⎠

.

If we now further assume that δ > 0 is chosen
s.t. log

(
2
δ

)
> 2d log

(
d
2e

)
, then we can continue upper

bounding this and obtain

m = m1 +m2 ≤ (1+ C(ηb))m1,
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where we defined C(ηb) := 2
1−exp(− 1

2 (1−2ηb)
2)

. It is easy to

check that for 0 ≤ ηb < 1
2 , C(ηb) ≤ 4

(1−2ηb)
2 , which well

be used later on.
Hence, using a sample of size m ≥ 2(1 + C(ηb)) for

the minimum disagreement strategy with m2 = � C(ηb)
1+C(ηb)

m�
and m1 = m − m2 gives - using m

2(1+C(ηb))
≤ m1 ≤

m
1+C(ηb)

≤ m2
C(ηb)

—an error guarantee of

errμ(h; f ∗) ≤ 4

m1

(
d log

(
2em1

d

)
+ log

(
2

δ

))
(4.1)

≤ 8 · (1+ C(ηb))

m

(
d log

(
2em

d · (1+ C(ηb))

)

+ log

(
2

δ

))
. (4.2)

With this suboptimal base learner we will now follow
the strategy by Hanneke (2016) in order to build a better
learner from it. Note that Hanneke’s proof includes several
steps in which the existence of a function consistent with
the respective subsample is ensured. This is not necessary in
our case because the minimum disagreement strategy does
not require a consistent function to exist.

We recall the algorithm for preprocessing the training
data to generate subsamples as introduced in Hanneke
(2016) in our Algorithm 2.

Theorem 4.2 Let ε ∈ (0, 1), δ ∈ (0, 2 · ( 2e
d

)d)

and ηb ∈ (0, 1
2 ). Let F ⊂ {0, 1}X be a func-

tion class of VC-dimension d . Then m = m(ε, δ) =
O

(
1

ε(1−2ηb)
2

(
d + log

(
1
δ

)))
noisy examples from a func-

tion in F are sufficient for binary classification in the

presence of two-sided classification noise with error prob-
abilities 0 ≤ η0, η1 < ηb with accuracy ε and confidence
1− δ.

Proof This proof is analogous to the proof of Theorem
2 in Hanneke (2016) with some minor simplifications
and adaptations and is given here only for the sake of
completeness.

Fix an f ∗ ∈ F and a probability measure μ over X .
Denote by S = S1:m the corresponding noisy training data.
For any classifier h denote by ER(h) = {x ∈ X |h(x) �=
f ∗(x)} the set of instances on which h errs.

Fix c = 7200. We will show by strong induction that
∀m′ ∈ N, ∀δ′ ∈ (0, . . .) and for all finite sequences T ′ with
probability ≥ 1− δ′ the classifier

ĥm′,T ′ = Majority
(
L(A(S1:m′ ; T ′))

)

satisfies the error bound

errμ(ĥm′,T ′ , f
∗) ≤ cC(ηb)

1+m′

(
d + ln

(
18

δ′

))
. (4.3)

As base case consider m′ ≤ C(ηb)c · ln(18e) − 1. In this
case, for any δ′ ∈ (0, 1) and for any finite sequence T ′, we
trivially have

errμ(ĥm′,T ′ , f
∗) ≤ 1

≤ c · C(ηb)

1+m′ (d + ln(18))

≤ c · C(ηb)

1+m′

(
d + ln

(
18

δ′

))
,

as desired.
For the induction step, assume that for some m >

C(ηb)c · ln(18e) − 1 for all m′ ∈ N with m′ < m,
for all δ′(0, 2 · ( 2e

d
)d) and for all finite sequences T ′ with

probability ≥ 1− δ′, (4.3) holds.
Note that by our choice of c we have C(ηb)c · ln(18e)−

1 ≥ 3. Thus, |S1:m| ≥ 4 and therefore A (S1:m; T ) returns
in step 3. Let S0, S1, S2, S3 be as in A(S; T ). Denote T1 =
S2 ∪ S3 ∪ T , T2 = S1 ∪ S3 ∪ T , T3 = S1 ∪ S2 ∪ T and
hi = Majority (L(A(S0; Ti))) for each i ∈ {1, 2, 3}.

Note that S0 = S1:(m−3"m
4 #). As m ≥ 4, 1 ≤ m−3"m

4 # <

m. Also, hi = ĥ(m−3"m
4 #),Ti

. So by the induction hypothesis
applied under the conditional distribution given S1, S2, S3,
which are independent of S0, combined with the law of total
probability, for every i ∈ {1, 2, 3} there exists an event Ei

of probability ≥ 1− δ
9 on which

μ[ER(hi)] ≤ cC(ηb)

1+ |S0|
(

d + ln

(
9 · 18

δ

))

≤ 4cC(ηb)

m

(
d + ln

(
9 · 18

δ

))
. (4.4)
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Next, fix an i ∈ {1, 2, 3} and write {(X̃i,1, Ỹi,1), . . . ,

(X̃i,Ni
, Ỹi,Ni

)} := Si ∩ (ER(hi) × Y ). As hi and Si are
independent, X̃i,1, . . . , X̃i,Ni

are conditionally independent
given hi and Ni . Therefore, we can apply the error bound
(4.2) for our base learner L under the conditional distribu-
tion given hi and Ni to conclude: There exists an event E′

i

of probability ≥ 1 − δ
9 s.t., if Ni > 0, then the output h of

the base learner L upon input of Si∩(ER(hi)×Y ) satisfies

errμ(·|ER(hi))(h, f ∗) ≤ 8(1+ C(ηb))

Ni

(d log

×
(

2eNi

d(1+ C(ηb))

)
+ log

(
18

δ

))
.

In particular, on E′
i (if Ni > 0) every h ∈ ⋃

j∈{1,2,3}\{i}
L

(
A(S0; Tj )

)
satisfies

μ[ER(h) ∩ ER(hi)]
= μ[ER(hi)]μ[ER(h)|ER(hi)] (4.5)

= μ[ER(hi)]errμ(·|ER(hi))(h, f ∗) (4.6)

≤ μ[ER(hi)]8(1+ C(ηb))

Ni

×
(

d log

(
2eNi

d(1+ C(ηb))

)

+ log

(
18

δ

))
. (4.7)

Using Chernoff bounds we get that there exists an event E′′
i

of probability ≥ 1 − δ
9 s.t., if μ[ER(hi)] ≥ 2( 10

3 )2

"m
4 # ln

(
9
δ

)
,

then Ni ≥ 7
10μ[ER(hi)]"m

4 #. In particular, on E′′
i we have

the implication

μ[ER(hi)] ≥ 2( 10
3 )2

"m
4 #

ln

(
9

δ

)
⇒ Ni > 0.

If we now combine this with (4.4) and (4.7), then we see:

On Ei ∩E′
i ∩E′′

i , if μ[ER(hi)] ≥ 2( 10
3 )2

"m
4 # ln

(
9
δ

)
, then every

h ∈ ⋃
j∈{1,2,3}\{i}

L
(
A(S0; Tj )

)
satisfies

μ[ER(h) ∩ ER(hi)]

≤ 80 · C(ηb)

7"m
4 #

(
d log

(
2e · 7

10 · μ[ER(hi)]"m
4 #

dC(ηb)

)
+ log

(
18

δ

))

≤ 80 · C(ηb)

7"m
4 #

⎛
⎝d log

⎛
⎝

7e
5 · c

(
d + ln

(
9·18
δ

))

d

⎞
⎠+ log

(
18

δ

)⎞
⎠

≤ 80 · C(ηb)

7"m
4 #

(
d log

(
2

5
c

(
7

2
e + 7e

d
ln

(
18

δ

)))
+ log

(
18

δ

))

≤ 80 · C(ηb)

7 ln(2)"m
4 #

(
d ln

(
9ec

5

)
+ 8 ln

(
18

δ

))
,

where the last step uses the technical Lemma 5 from the
Appendix of Hanneke (2016). As m > C(ηb)c · ln(18e) −

1 > 3200, we have "m
4 # > m−4

4 > 799
800

m
4 > 799

800
3200
3201

m+1
4 .

We use this relaxation and compute the logarithmic factors
to obtain from the above that

μ[ER(h) ∩ ER(hi)] ≤ 600 · C(ηb)

m+ 1

(
d + ln

(
18

δ

))
.

Moreover, if μ[ER(hi)] < 23
"m

4 # ln
(

9
δ

)
, then simply

because μ is a probability measure, we conclude

μ[ER(h) ∩ ER(hi)] ≤ μ[ER(hi)] <
23

"m
4 #

ln

(
9

δ

)

<
600 · C(ηb)

m+ 1

(
d + ln

(
18

δ

))
.

Hence, no matter what value μ[ER(hi)] takes, on the event
Ei ∩ E′

i ∩ E′′
i we have for all h ∈ ⋃

j∈{1,2,3}\{i}
L
(
A(S0; Tj )

)

that

μ[ER(h) ∩ ER(hi)] ≤ 600 · C(ηb)

m+ 1

(
d + ln

(
18

δ

))
.

Now denote hmaj = ĥm,T = Majority(L(A(S; T ))) for
S = S1:m. By definition of the majority function, for any
x ∈ X at least 1

2 of the classifiers h in the sequence
L(A(S; T )) satisfy h(x) = hmaj(x). So by the strong form
of the pigeon hole principle, there exists an i ∈ {1, 2, 3} s.t.
hi(x) = hmaj(x). Also, since each A(S0; Tj ) contributes an
equal number of entries to A(S; T ), for each i ∈ {1, 2, 3},
at least 1

4 of the classifiers h ∈ ⋃
j∈{1,2,3}\{i}

L
(
A(S0; Tj )

)

satisfy h(x) = hmaj(x).
In particular, if I is a random variable independent of the

training data and distributed uniformly on {1, 2, 3} and if h̃

is a random variable conditionally given I and S uniformly
distributed on

⋃
j∈{1,2,3}\{I }

L
(
A(S0; Tj )

)
, then for any fixed

x ∈ ER(hmaj), with conditional probability ≥ 1
12 , hI (x) =

h̃(x) = hmaj(x) and thus x ∈ ER(hI ) ∩ ER(h̃).
Hence, for a random variable X ∼ μ independent of the

data, of I and of h̃ we can now conclude
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So on the event
⋂

i∈{1,2,3}
Ei ∩ E′

i ∩ E′′
i it holds that

errμ(hmaj; f ∗) ≤ 12E[μ[ER(hi) ∩ ER(h̃)]|S]
≤ 12 max

i∈{1,2,3} max
j∈{1,2,3}\{i} max

h∈L(A(S0;Tj ))

×μ[ER(hi) ∩ ER(h)]
<

7200 · C(ηb)

m+ 1

(
d + ln

(
18

δ

))

= c · C(ηb)

m+ 1

(
d + ln

(
18

δ

))
.

Since by the union bound the event
⋂

i∈{1,2,3}
Ei ∩E′

i ∩E′′
i has

probability ≥ 1− δ, the induction step is complete.
It remains to use the claim just proven by induction to

derive the desired sample complexity upper bound. For this,

take T = ∅ and note that for m ≥ " cC(η)
ε

(
d + ln

(
18
δ

))
#

the right-hand side of (4.3) is ≤ ε. Therefore, such
a sample size suffices for successful learning using
Majority(L(A(·; ∅))). Now recall the discussion before the
Theorem, where we observed that C(ηb) ≤ 4

(1−2ηb)
2 , to

finish the proof.
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When using parametrized quantum circuits (PQCs) for variational quantum machine learning

(QML) with classical data, the classical input has to be encoded into the PQC. Much of the prior

work on variational QML has resolved this issue by �rst using a quantum feature map to encode

the classical input into a quantum state, and then processing this state with trainable quantum

gates. However, recent work has demonstrated that distributing data-encoding gates throughout

the PQC, instead of just placing them at the initial layer, can have a signi�cant e�ect on the

approximation capabilities of a PQC-based QML model. In this article, we study the in�uence of

such more �exible classical-to-quantum data-encoding strategies on the generalization behaviour

of the QML model implemented by the PQC. We prove the �st generalization bounds for PQC-

based variational QML that depend explicitly on the data-encoding strategy.

After introducing and motivating our work in Section 1, we recall generalization bounds as a

central topic in the classical theory of machine learning in Section 2, with an emphasis on its

relevance to model selection. We use Section 3 to introduce the function classes implemented

by PQCs that are the main object of study in our work (Eq. (14)). Moreover, we observe

that we can represent these functions in terms of generalized trigonometric polynomials (GTPs),

in which the achievable frequency spectrum is determined by the classical-to-quantum data-

encoding Hamiltonians appearing in the PQC (Eqs. (16) and (30)). We prove this by successively

expanding the relevant quantum states in the eigenbases of the encoding Hamiltonians.

Section 4 gives a detailed review of prior work on generalization guarantees for variational QML.

With both the relation between PQCs and GTPs and the context provided by prior work es-

tablished, Section 5 contains our main technical results, namely generalization bounds for GTP

function classes. We present two proof strategies towards this goal. First, in Subsection 5.1, we

show how to derive upper bounds on the Rademacher complexity of a class of GTPs in terms of

the accessible frequency spectrum from known Rademacher complexity bounds for classical feed-

forward neural networks (Lemmas 4 and 5). Employing known results from statistical learning

theory, these Rademacher complexity bounds imply generalization bounds (Theorem 6). Second,

in Subsection 5.2, we use that the size of the accessible frequency spectrum bounds the e�ective

dimensionality of a class of GTPs to prove upper bounds on the covering numbers of such a class

(Lemma 9). Through Dudley's entropy integral, these imply Rademacher complexity bounds,

which again yield generalization bounds (Theorem 10).

In Section 6, we combine the insights of Sections 3 and 5 to conclude that we can prove gen-

eralization bounds for PQC-based QML models by bounding the number of frequency vectors

accessible by the encoding strategy. We show how to understand the latter task as a combi-

natorial question about the spectra of the encoding Hamiltonians. We explore the implications

of this reframing of the problem in detail for di�erent practically relevant encoding strategies,

which allows us to derive explicitly encoding-dependent generalization bounds for PQC-based

models employing these encoding strategies (Corollary 13).
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We conclude our paper with Sections 7 and 8, in which we discuss implications of our results.

In particular, we emphasize that our results are complementary to much of the prior work on

generalization in variational QML, suggest multi-dimensional structural risk minimization as a

way of combining these two complementary perspectives for the design of PQCs, and outline

questions for future research.

I was signi�cantly involved in �nding the ideas and carrying out the scienti�c work of all parts

of this article. The idea for this project arose in discussions between Elies Gil-Fuster, Johannes

Jakob Meyer, Jens Eisert, Ryan Sweke, and myself. I developed the proof strategies for our main

technical results in Section 5, I was in charge of writing Sections 4 and 5, and I signi�cantly

contributed to writing Sections 2 and 7, based on �rst drafts by Ryan Sweke. Section 1 was

written mainly by Elies Gil-Fuster and Jens Eisert. Sections 3 and 6 were mainly written by

Johannes Jakob Meyer and Ryan Sweke.
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A large body of recent work has begun to explore the potential of parametrized
quantum circuits (PQCs) as machine learning models, within the framework of hybrid
quantum-classical optimization. In particular, theoretical guarantees on the out-of-
sample performance of such models, in terms of generalization bounds, have emerged.
However, none of these generalization bounds depend explicitly on how the classical
input data is encoded into the PQC. We derive generalization bounds for PQC-based
models that depend explicitly on the strategy used for data-encoding. These imply
bounds on the performance of trained PQC-based models on unseen data. Moreover,
our results facilitate the selection of optimal data-encoding strategies via structural
risk minimization, a mathematically rigorous framework for model selection. We ob-
tain our generalization bounds by bounding the complexity of PQC-based models as
measured by the Rademacher complexity and the metric entropy, two complexity mea-
sures from statistical learning theory. To achieve this, we rely on a representation of
PQC-based models via trigonometric functions. Our generalization bounds emphasize
the importance of well-considered data-encoding strategies for PQC-based models.

1 Introduction
Recent years have witnessed a surge of interest in the question of whether and how quantum
computers can meaningfully address computational problems in machine learning [1, 2]. This
development has been largely driven by two factors. On the one hand, there is evidence that
some quantum machine learning algorithms may lead to an increased performance over classical
algorithms for the analysis of classical data with respect to important figures of merit [3–7]. On
the other hand, the increasing availability of quantum computational devices provides significant
stimulus. While these “noisy intermediate-scale quantum” (NISQ) devices are still a far cry from
full-scale fault-tolerant quantum computers, there exists growing evidence that they may be able to
out-perform classical computers on some highly-tailored tasks [8]. Given the inherent limitations
of NISQ devices, most current approaches to near-term quantum-enhanced machine learning fall
under the umbrella of hybrid quantum-classical algorithms [9]. Of particular prominence are
variational quantum algorithms in which a parametrized quantum circuit (PQC) is used to define
a machine learning model which is then updated via a classical optimizer [10–12].

There is a wealth of architectural choices for PQC-based machine learning models. These
include the width and depth of the quantum circuit, the precise layout and structure of trainable
gates, as well as the mechanism via which classical data is encoded into the quantum circuit. The
flexibility in design choices for PQCs is often only perceived strongly in terms of the structure
and layout of the trainable gates [13, 14]. However, when using a PQC to define a machine
learning model for classical data, the data-encoding strategy becomes a necessary architectural
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design choice, which has received comparably little attention. Despite this, it has recently been
shown that the data-encoding strategy is directly related to the expressive power of PQC-based
models [15–17]. In this work, we further the study of data-encoding strategies for PQC-based
supervised learning models by investigating the effect of data-encoding strategies on generalization
performance.

More specifically, we consider the following fundamental question: Given a PQC-based model
which has been trained on a specific data set, can we place any guarantees on its expected out-
of-sample performance, i.e., its expected accuracy on new data, drawn from the same distribution
as the training set? This question is motivated by the key insight that one should not choose the
model or architecture which performs best on the available training data, but rather the model
for which one expects the best out-of-sample performance. Typically, one refers to the difference
between the accuracy of a model on a given training set and its expected out-of-sample accuracy
as the generalization gap. We call a (probabilistic) upper bound on this generalization gap a
generalization bound. Historically, techniques for both proving generalization bounds and for using
generalization bounds for principled model selection have been developed under the umbrella of
statistical learning theory [18–20].

We start by presenting a selection of central notions in statistical learning theory. Of particular
interest is the relation between generalization bounds and complexity measures of different types.
Indeed, due to a large body of existing literature, bounding the generalization gap of a learning
model typically reduces to bounding some quantifiable property of the hypothesis class used for
learning. There are many examples of such complexity measures (also known as capacity metrics
or just expressivity measures), and based on their specifics they are used for different learning
models, either quantum or not. In this work, we employ generalization bounds based on the
Rademacher complexity and the metric entropy. However, we want to mention that there are also
other important approaches to generalization not taken here, such as stability [21], compression [22],
or the PAC-Bayesian framework [23].

Given the fundamental role of generalization bounds, there has recently been a strong and
steady stream of works contributing to the derivation of generalization bounds for PQC-based
models [24–32]. However, as discussed in detail in Section 4, these prior works all differ from our
results in a variety of ways. Firstly, they considered only “encoding-first” PQC architectures, in
which the PQC-based models are assumed to consist of an initial data-encoding block, mapping a
classical input to a data-dependent quantum state, followed by a circuit consisting only of fixed and
trainable gates. In contrast, we consider PQC-based models incorporating data re-uploading [17], in
which trainable circuit blocks are interleaved with data-encoding circuit blocks. This is particularly
relevant given the results of Refs. [15, 33], which have illuminated the significant effects of data
re-uploading on the expressive power of PQC-based models.

Additionally, our work is the first to provide a generalization bound from which it is immediately
clear how altering the data-encoding strategy influences the generalization performance of the
model. This is possible because our bound depends explicitly on architectural hyper-parameters
associated with the data-encoding strategy. This sets our results apart from prior art where the
data-encoding figured only implicitly, if at all. We discuss this difference between implicitly and
explicitly encoding-dependent generalization bounds more concretely in Section 4.

In order to obtain our generalization bounds, we rely strongly on a representation of PQC-based
models via generalized trigonometric polynomials (GTPs), which has been previously derived in
Refs. [15, 33]. In particular, we exploit the fact that the data-encoding strategy of the PQC-
based model directly determines the frequency spectrum of the corresponding GTPs. As such,
the number of accessible frequencies in the GTP representation provides a natural measure of the
complexity of a particular data-encoding strategy. Given this, we first derive generalization bounds
for GTPs, which exhibit a dependence on the square root of the number of accessible frequencies.
We then proceed to determine, for different data-encoding strategies, upper bounds on the number
of accessible frequencies in the GTP representation. We use these results to identify a variety
of natural data-encoding strategies for which the number of accessible frequencies, and therefore
the associated generalization bounds, scale polynomially with the number of data-encoding gates.
While one cannot use generalization bounds alone to recommend an optimal data-encoding strat-
egy, we discuss how these generalization bounds can be combined with empirical risk estimates,
via structural risk minimization, to facilitate the selection of an optimal data-encoding strategy
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Figure 1: A flowchart of the argument presented in this work.

for a given problem.

1.1 Structure of this work
This work is structured as follows: Section 2 gives a pedagogical introduction to statistical learning
theory, explains the importance of generalization bounds, and discusses the structural risk mini-
mization principle. After establishing these concepts, we formulate the main questions addressed
in this work. In Section 3, we begin by introducing the PQC-based learning models used in this
work. We then present a detailed discussion of the approach of Ref. [33], which demonstrates how
the functions implemented by a PQC-based model can be represented by generalized trigonometric
polynomials. In particular, we emphasize how the data encoding strategy of the PQC-based model
translates to the accessible frequencies of the generalized trigonometric polynomials. Section 4
then provides a detailed review of prior work on generalization in quantum machine learning. In
Section 5, we establish generalization bounds for classes of generalized trigonometric polynomials
in terms of the number of accessible frequencies. We present one approach via the Rademacher
complexity (Section 5.1) and another via covering numbers (Section 5.2). Section 6 then expands
upon Section 3 by deriving upper bounds on the number of accessible frequencies, in the general-
ized trigonometric polynomial representation of the PQC-based models associated with different
data-encoding strategies. This analysis allows us to use the results from Section 5 to state explic-
itly encoding-dependent generalization bounds for PQC-based models, and to compare different
encoding strategies from a generalization perspective. We discuss the implications of our results
in Section 7. In particular, we emphasize how our results are complementary to many prior works,
but also describe how the different approaches can be combined. Additionally, we sketch some
directions for future research. Section 8 contains a short summary of our work. The logical flow
of this manuscript is visualized in Figure 1.

2 Motivation: Generalization bounds, sample complexities and model
selection

To motivate the content of this work and to define the setting, we start with a brief and select
introduction to the framework of statistical learning theory. Interested readers are referred to
Refs. [20] and [34] for a more detailed presentation. Within this framework, any supervised learning
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problem is defined by a domain X , a co-domain Y, a probability distribution P over X × Y and a
loss function ` : Y ×Y → R. We assume that X ,Y and ` are known, while P is unknown. We will
denote the set of all functions from X to Y as YX . To gain intuition, it is useful to think of the
situation in which there exists a deterministic rule for assigning predictions to domain elements.
We can model this in the framework outlined above with an unknown target function f ∈ YX , as
well as some unknown probability distribution PX over X , such that samples from P are obtained
by first drawing a domain element x ∈ X from PX , and then outputting the tuple (x, f(x)), i.e.

P (x, y) =
{
PX (x) if y = f(x),
0 if y 6= f(x).

(1)

In general, however, it may be the case that there exists y1 6= y2 for which both P (x, y1) > 0 and
P (x, y2) > 0, i.e., that the underlying process for labeling data points is not deterministic.

Additionally, we are given a training data set

S = {(xi, yi) ∼ P | i ∈ {1, . . . ,m}} (2)

of m tuples drawn independently from (the unknown distribution) P , and our goal is to design
a learning algorithm A which, given S as input, outputs a hypothesis h ∈ YX that achieves a
sufficiently small risk

R(h) =
∫

X×Y
`(y, h(x)) dP (x, y). (3)

Informally, we often refer to the risk R(h) as characterizing the out-of-sample performance of the
hypothesis h, as it is this quantity which tells us how well we can expect the hypothesis h to
perform on (possibly previously unseen) future data drawn from P . It is critical to note, however,
that as the underlying probability distribution P is unknown, given a hypothesis h ∈ YX , one
cannot directly evaluate R(h). In light of this, a natural alternative is to evaluate the empirical
risk of h with respect to S, which is defined as the average loss over the training samples

R̂S(h) = 1
|S|

∑

(xi,yi)∈S
`(yi, h(xi)). (4)

In contrast to the risk R(h), the empirical risk R̂(h) characterizes the in-sample performance of h
with respect to the data set S, which has been sampled from P .

Naively, one might hope to be able to construct learning algorithms which could in principle
output any h ∈ YX . However, the “no-free-lunch” theorem rules out the possibility of meaningful
learning in this case [35], and therefore we typically consider learning algorithms whose range is
some subset F ⊆ YX . We then refer to F as the hypothesis class associated with the learning
algorithm which is, by assumption, also known to the learning algorithm. To gain some intuition,
one could think of F as the set of all functions realizable by neural networks of some fixed width
and depth, or, as we describe in Section 3, as the set of all functions realizable by a parametrized
quantum circuit model with some fixed architecture. With respect to this setting, the following
natural question arises: Suppose we have a learning algorithm A with hypothesis class F , which
has been run on a randomly drawn data set of m samples S ∼ Pm and outputs some hypothesis
h ∈ F , as well as some “training log” which we denote by hist(A, S)1. Given the achieved empirical
risk R̂S(h), can we put an upper bound on the true risk R(h), which holds with high probability
over the randomly drawn data set S? More specifically, can we make a statement of the form: For
all δ ∈ (0, 1), with probability 1− δ over S ∼ Pm, for all h ∈ F we have that

R(h) ≤ R̂S(h) + g(F , h,m, S,A,hist(A, S), δ). (5)

We refer to such a statement as a generalization bound, and note that the function g appearing
in Eq. (5) provides a (probabilistic) upper bound on the quantity R(h)− R̂S(h), which we call
generalization gap (of h with respect to S). Such bounds are desirable because they allow us to

1Such a training log could for example record the value of the empirical risk, or properties of the trial hypotheses
(such as weight matrices for neural networks), at each stage of an iterative optimization procedure.
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leverage the information we have access to – i.e., the empirical risk, and properties of the learning
algorithm, data set and optimization procedure – to upper bound R(h), which is the quantity
we do not have access to, but are ultimately interested in. In general, as indicated explicitly in
Eq. (5), the upper bound g on the generalization gap could depend on properties of the achieved
hypothesis h, properties of the data set S, properties of the learning algorithm A, and details of
the optimization that led to h. However, in this work we will focus on uniform generalization
bounds of the form: for all δ ∈ (0, 1), with probability 1 − δ over S ∼ Pm, we have for all h ∈ F
that

R(h) ≤ R̂S(h) + g(F ,m, δ). (6)
To be specific, we focus on generalization bounds for which the upper bound on the generalization
gap – i.e., the function g – depends only on properties of the hypothesis class F , the data set size
m and the desired probability δ. We note that the term “uniform” is used when describing such
generalization bounds to indicate that, with respect to a fixed data set size m and probability
threshold δ, the upper bound on the generalization gap will be the same – i.e., uniform – for all
h ∈ F . While it is known that there exist scenarios in which uniform generalization bounds are
not tight [36, 37], we postpone a discussion of these issues to Section 7.

As motivated above, given a uniform generalization bound for a hypothesis class F , one typical
application is as follows: Given a data set S sampled from P , with |S| = m, run some learning
algorithm to obtain a hypothesis h ∈ F , evaluate its empirical risk R̂S(h), and then use the
generalization bound to place a (probabilistic) upper bound on the true risk R(h). However, we
can also often straightforwardly use such a generalization bound to answer the following natural
question: Given some ε > 0 and some δ ∈ (0, 1), what is the minimum size of S sufficient to ensure
that, with probability 1 − δ, for all h ∈ F , the generalization gap satisfies R(h)− R̂S(h) ≤ ε? To
see this, note that if we have a uniform generalization bound, then by setting

g(F ,m, δ) ≤ ε (7)

and solving for m, it is often possible to find some function f(ε, δ,F) such that, with probability
1− δ over S ∼ Pm,

m ≥ f(ε, δ,F)⇒ ∀h ∈ F : R(h)− R̂S(h) ≤ g(F ,m, δ) ≤ ε. (8)

As the generalization bound may not be tight, we therefore see that f(ε, δ,F) provides an upper
bound on the minimum size of S sufficient to probabilistically guarantee a generalization gap less
than ε for all h ∈ F .

Finally, apart from the fundamental applications of allowing us to bound the out-of-sample
performance of a hypothesis, or upper bound the minimum sample-size sufficient to guarantee
a certain generalization gap, generalization bounds also allow us to address the issue of model
selection, via the framework of structural risk minimization [20]. Importantly, we note that one
cannot simply use only the function g(k,m, δ) for model selection: A trivial learning model, which
outputs the same hypothesis independently of the input data, has g(k,m, δ) = 0, but cannot achieve
good prediction performance on interesting tasks. Structural risk minimization thus suggests
combining a generalization bound with an empirical risk evaluation on a specific data-set to choose
the model with the smallest upper-bound on the true risk. More specifically, let us assume that our
hypothesis class depends on some “architectural hyper-parameter” k, with some notion of ordering
such that

k1 ≤ k2 =⇒ Fk1 ⊆ Fk2 . (9)
For example, Fk could be the set of all neural networks of fixed width and depth k. Given this,
how should we choose the hypothesis class – or model complexity – that we use for a given learning
problem? As illustrated in Figure 2, generalization bounds, when combined with empirical risk
evaluations, can allow us to answer this question. In particular, assume that we have a uniform
generalization bound of the form: For all δ ∈ (0, 1), with probability 1 − δ over S ∼ Pm, for all
h ∈ Fk,

R(h) ≤ R̂S(h) + g(k,m, δ), (10)
where g(k,m, δ) is non-decreasing with respect to k. Here, we have written g(k,m, δ) rather than
g(Fk,m, δ) to emphasize the assumption that the hyper-parameter k is the only property of Fk on
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Figure 2: Illustration of structural risk minimization (adapted from Ref. [20]). Increasing the complexity of a
hypothesis class typically allows one to obtain hypotheses with decreasing empirical risk. However, in many
cases increasing the complexity of a hypothesis class also leads to a larger upper bound on the generalization
gap. Structural risk minimization aims to identify a hypothesis with the smallest upper bound on the true risk
that quantifies the out-of-sample performance by combining an evaluation of the empirical risk of candidate
hypotheses with an upper bound on the generalization gap of the relevant hypothesis class.

which the generalization bound depends explicitly. While increasing k increases the expressivity
of the hypothesis class and therefore typically leads to smaller empirical risk, it also increases the
upper bound g(k,m, δ) on the generalization gap and may therefore lead to hypotheses with worse
out-of-sample performance. As such, a natural strategy to find an optimal hypothesis – in the
sense of having the smallest probabilistic upper bound on the true risk – is as follows:

1. For k in {k1, . . . , kn}, run the learning algorithm Ak, with hypothesis class Fk, and obtain
the hypothesis hk.

2. Calculate kopt = argmink[R̂S(hk) + g(k,m, δ)].

3. Output hkopt .

We refer to such a procedure as structural risk minimization2, and contrast this with empirical
risk minimization, which simply outputs the hypothesis minimizing the empirical risk. In light of
the above discussion, we note that, given a family of hypothesis classes {Fk}, each specified by
some architectural hyper-parameter k and satisfying the condition of Eq. (9), we would ideally like
to obtain an upper bound on the generalization gap g(k,m, δ) which grows slowly with respect to
k. In particular, we can now understand this from two different but complementary perspectives:

Firstly, from the structural risk minimization (or model selection) perspective, we see from
Figure 2 that slow growth of g(k,m, δ) is indicative of our ability to exploit the expressivity of more
complex hypothesis classes, i.e. those with larger k, without risking poor generalization performance
due to overfitting. More specifically, under the assumption of monotonically decreasing empirical
risk, the slower g(k,m, δ) grows, the longer we can expect the quantity R̂S(hk) + g(k,m, δ) to
decrease before reaching a minimum, and therefore the smaller we can expect our ultimate upper
bound on the true risk of the optimal hypothesis hkopt to be. In contrast, if g(k,m, δ) grows too
fast with respect to k, then even if we can achieve very small empirical risk by increasing model
complexity, we do not expect to be able to achieve a sufficiently small upper bound on the true
risk of the optimal hypothesis hkopt .

Secondly, from the sample complexity perspective, let us denote by f(ε, δ, k) the complemen-
tary upper bound on the minimum sample sample size m sufficient to probabilistically ensure a
generalization gap less than ε > 0, which typically follows from g(k,m, δ) (as we recall from the
discussion around Eqs. (7) and (8)). As we naturally expect g(k,m, δ) to be decreasing with in-
creasing m, slow growth of g(k,m, δ) with respect to k typically implies slow growth of f(ε, δ, k)

2We note that the term “structural risk minimization” is sometimes used to refer to the strategy of minimizing
a regularized empirical risk, with an additive regularization term which penalizes high model complexity. However,
we follow Ref. [20] in our definition and presentation.
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with respect to k. In other words, slow growth of g(k,m, δ) typically implies slow growth, with
respect to model complexity, of the minimum amount of data one has to use before being able to
probabilistically guarantee a certain generalization gap for all output hypotheses. As generating
data (i.e., sampling from the distribution P ) may be expensive or difficult, and as the run-time
of learning algorithms typically scales with respect to the data set size, slow growth of g(k,m, δ)
therefore facilitates the process of learning with models of higher complexity.

Given the above observations, we can finally understand the motivation of this work in an
informal way. In particular, in the following section we will see that parametrized quantum circuits
(PQCs) naturally give rise to hypothesis classes with multiple architectural hyper-parameters, each
reflecting a different aspect of the circuit architecture, such as circuit depth, circuit width, the total
number of gates or the total number of data-encoding gates of a particular type. In Section 4 we
will then see that a body of previous work has resulted in a collection of generalization bounds
for PQC-based models, each of which depend explicitly on some subset of architectural hyper-
parameters, but not on others. As of yet, however, there exist no generalization bounds which
depend explicitly on hyper-parameters associated with the data-encoding strategy, despite the
important role such strategies play in determining the expressive power of PQC-based hypothesis
classes [33]. As such, the questions which we address in this work are as follows:

(a) Can we derive generalization bounds for PQC-based hypothesis classes which depend explicitly
on hyper-parameters associated with the data-encoding strategy?

(b) Can we use such bounds to identify data-encoding strategies for which the upper bounds on
the generalization gap grow polynomially with respect to the architectural hyper-parameter
relevant to the encoding strategy?

As will be discussed in Section 7, apart from filling a gap in our understanding of the manner
in which the data-encoding influences generalization, such bounds would also complement existing
works, in that they would allow one to perform structural risk minimization with respect to multiple
architectural hyper-parameters simultaneously. With this motivation in mind, before proceeding it
is worth briefly mentioning how (uniform) generalization bounds are typically obtained. Intuitively,
one might expect that the generalization performance of a hypothesis class is related to how
complex (or how expressive) the hypothesis class is, and thus one might hope for the existence
of a complexity measure for hypothesis classes from which generalization bounds follow. This
intuition is indeed correct, and in fact a large amount of work in statistical learning theory has
resulted in a variety of suitable complexity measures – such as the VC dimension [38], Rademacher
complexity [39], pseudo-dimension [40] and metric-entropy amongst others – all of which directly
give rise to generalization bounds [20, 34, 35]. As a result, given a hypothesis class Fk, one typically
proves a uniform generalization bound for Fk, which depends explicitly on the architectural hyper-
parameter k, by first characterizing the dependence of a suitable complexity measure C on k
(i.e., by writing/bounding C(Fk) explicitly in terms of k), and then writing down the known
generalization bound which follows from C(Fk). We also follow such a strategy in this work by
first characterizing both the Rademacher complexity and metric-entropy of PQC-based models in
terms of architectural hyper-parameters related to the data-encoding strategy and then presenting
generalization bounds in terms of these complexity measures. At this stage it is hopefully clear,
both why generalization bounds are desirable, and how (at least intuitively) one might obtain such
bounds. Given this, we proceed in the following section to define more precisely the PQC-based
hypothesis classes considered in this work.

3 Parametrized quantum circuit based model classes
Parametrized quantum circuits (PQCs) are ubiquitous in the field of near-term quantum comput-
ing [9–11] and can be used to construct quantum machine learning models [12]. We will consider
qubit-based quantum systems. The focus of this work lies on variational quantum machine learning
models that are constructed from a PQC Uθ(x) that depends on trainable parameters θ ∈ Θ and
on data inputs x ∈ X . A prediction in the co-domain Y = R is then obtained by evaluating the
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Figure 3: Circuit model considered in this work. We assume that the circuit consists of gates which are
parametrized either by the data x (data-encoding gates), or the trainable parameters θ (trainable gates).
The data encoding gates are assumed to implement the time evolution of a data-encoding Hamiltonian, with
evolution time given by some data coordinate x(i) = e(i)x. The model output is then given by the expectation
value of an observable M .

expectation value of a fixed observable M , which can be efficiently evaluated, as

fθ(x) = 〈0|U†θ(x)MUθ(x)|0〉. (11)

In the following, we assume that the data inputs are d-dimensional real-valued vectors with entries
in the interval [0, 2π), i.e., X = [0, 2π)d. This choice is somewhat arbitrary, as data can always be
rescaled to fit into a particular interval. However, [0, 2π) is a natural choice because quantum gates
available on actual hardware are usually parametrized in terms of angles. As will become apparent
later, we need not make any assumptions on the nature of the trainable parameters, but in most
cases they will also be angles, i.e., Θ = [0, 2π)p, where p is the number of trainable parameters.

We also make some assumptions on the structure of the circuit Uθ(x). Our model is motivated
by the actual quantum circuits that can be executed on NISQ devices. These devices usually only
allow fixed gates and parametrized evolutions under device-specific Hamiltonians [41–43]. In our
model, the data inputs x and the trainable parameters θ enter the circuit through different gates.
The unitaries parametrized by θ, denoted by {Wi(θ)}, constitute the trainable part of the model.
Fixed unitaries can be absorbed into the trainable unitaries.

We assume that the gates through which the data enters the circuit are time evolutions under
some Hamiltonian, where the “evolution time” is given by one of the data coordinates x(i). We
denote the j-th gate that encodes the data coordinate x(i) as

S
(i)
j (x) = exp

(
−ix(i)H

(i)
j

)
= exp

(
−ie(i)xH

(i)
j

)
, (12)

where we rewrote the encoding gate in terms of the input data vectors by recognizing that
x(i) = e(i)x, where e(i) is a standard basis vector. It is of course possible to consider more gen-
eral dependencies of the evolution time on the input data, i.e. in terms of linear combinations
or even non-linear functions of the data coordinates. However, we choose not to include models
with such classical pre-processing of the data, in order to isolate the part of the model which is
truly quantum. Indeed, if one allowed for arbitrary pre-processing, then one could just use a very
complicated neural network to find suitable evolution times for good predictions, but that would
miss the point of using a quantum learning model at all. We note though that our definition still
encompasses such approaches after a suitable reparametrization of the inputs, which will usually
result in a larger number of input coordinates.

For our analysis, no restriction on the placement of the trainable gates and the data-encoding
gates in the circuit is necessary. Thus, we assume that they can be arranged arbitrarily, as depicted
in Figure 3. However, we will refer to the choice of data-encoding Hamiltonians per data coordinate
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as D(i) = {H(i)
j } and call the union of these sets over all data coordinates the data-encoding strategy

D =
(
D(1),D(2), . . . ,D(d)). (13)

The total number of encoding gates per data coordinate is N (i) = |D(i)| and the total number of

data-encoding gates is N =
∑d
i=1N

(i).
A data-encoding strategy D together with a fixed circuit structure and a choice of trainable

gates defines a parametrized quantum circuit Uθ(x). We denote the fact that this circuit uses the
encoding strategy D as Uθ(x) ∼ D. When we fix an observable M to generate the predictions,
this defines a function class

FΘ,D,M := {[0, 2π)d 3 x 7→ 〈0|U†θ(x)MUθ(x)|0〉 |θ ∈ Θ, Uθ(x) ∼ D}, (14)

which is obtained by considering all possible parametrizations θ ∈ Θ of the trainable gates. This
function class depends explicitly on the parametrization of the trainable parts of the circuit and on
the data-encoding strategy. As we ultimately want to obtain generalization bounds that depend
on the hyper-parameters associated with the encoding strategy – such as the number of encoding
gates N – it will be helpful for us to reformulate the function class in a way that makes it more
amenable to the analyses in the following sections. To this end, we draw on the results of Refs. [15,
33], which show that the nature of the data encoding gates as Hamiltonian evolutions allows us to
expand the model output as a generalized trigonometric polynomial (GTP). A GTP “generalizes”
the notion of a trigonometric polynomial by allowing arbitrary frequencies as in

fθ(x) =
∑

ω∈Ω(D)

cω(θ,M)e−iωx. (15)

While the GTP’s coefficients {cω} depend on the particular parametrization and observable, the
set of frequencies Ω(D) depends solely on the chosen data-encoding strategy D, in particular on the
spectra of the Hamiltonians {H(i)

j } that yield the data encoding evolutions {S(i)
j (x)}. We describe

the procedure for obtaining such a GTP representation in more detail below. The fact that the
expectation value is always real is reflected by cω = c∗−ω and by the observation that ω ∈ Ω(D)
implies that also −ω ∈ Ω(D). Additionally, we note that the absolute value of any expectation
value obtained from measuring M is upper bounded by its operator norm ‖M‖∞, and therefore,
if we assume that ‖M‖∞ ≤ B, then

FΘ,D,M ⊆ FBΩ :=
{

[0, 2π)d 3 x 7→ f(x) =
∑

ω∈Ω
cω exp(−iωx)

∣∣∣ (cω)ω∈Ω such that ‖f‖∞ ≤ B
}
,

(16)

where Ω = Ω(D). We have thus defined a function class that solely depends on the data-encoding
strategy. We stress that this function class subsumes all possible ways to parametrize the trainable
parts of a circuit with fixed data-encoding strategy D and fixed observable M , but also goes beyond
this by allowing all possible choices of observable M such that ‖M‖∞ ≤ B. Therefore, it also
contains models where not only the parameters of the trainable gates, but also the measurement
itself is subject to optimization. In going from FΘ,D,M to FBΩ , we effectively allow for a universal
trainable part and observable, which enables us to focus on the encoding strategy. Studying
intermediate classes between FΘ,D,M and FBΩ could constitute a path towards tighter generalization
bounds that depend on both the data-encoding and the trainable part of the PQC-based model.

In Section 5, we will first prove generalization bounds for FBΩ , which depend explicitly on
properties of Ω, before exploring in detail in Section 6 how these relevant properties of Ω depend
on the data-encoding strategyD. Exploiting the fact that, for a given B ≥ ‖M‖∞, FΘ,D,M ⊆ FBΩ(D)
then automatically yields explicitly encoding-dependent generalization bounds for FΘ,D,M .

As the connection between the data-encoding strategy D and the set Ω(D) plays a crucial role,
we illustrate this connection for a generic data-encoding strategy here. We first consider the action
of a single encoding evolution S(x) in the density matrix picture, where it acts via the quantum
channel

S(x)[ρ] = exp (−iexH) ρ exp (iexH) , (17)
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where the Hamiltonian H takes the role of any of the above Hamiltonian terms H
(i)
j and e can

be any basis vector. We can expand ρ in the eigenbasis of the Hamiltonian H|λk〉 = λk|λk〉 and
obtain

S(x)[ρ] = S(x)


∑

k,l

ρk,l |λk〉〈λl|


 (18)

=
∑

k,l

ρk,l S(x) [|λk〉〈λl|] (19)

=
∑

k,l

ρk,l exp(−i(λk − λl)ex)|λk〉〈λl|. (20)

We see that the differences of the eigenvalues λk of the Hamiltonian H determine the frequencies
with which the different elements of the expansion of ρ are multiplied. We can combine the different
frequencies with the weight vector e to obtain the set of all available frequencies

Ω(H) = {ωk,l = (λk − λl)e |λk, λl ∈ spec(H)}. (21)

With this notation, we can simplify our expression for S(x)[ρ] to obtain

S(x)[ρ] =
∑

ω∈Ω(H)

exp(−iωx)ρω, (22)

where the operators ρω are given by collecting the terms in the above sum for which the frequency
differences are the same, i.e.

ρω =
∑

(k,l)∈I(ω)

ρk,l|λk〉〈λl|, where I(ω) = {(k, l) | (λk − λl)e = ω}. (23)

As ρ is Hermitian, we have that ρω = ρ∗−ω. The frequency structure carries over if we measure the
expectation value of an arbitrary observable M for the state S(x)[ρ] to obtain a prediction

f(x) = Tr{S(x)[ρ]M} =
∑

ω∈Ω(H)

exp(−iωx) Tr{ρωM} =
∑

ω∈Ω(H)

cω exp(−iωx). (24)

As a result, we obtain a GTP with coefficients cω = Tr{ρωM}. Note that, as ρω = ρ∗−ω, we have
that cω = c∗−ω, which ensures that f(x) is real-valued as expected. The coefficients of this series
could depend intricately on the circuit that was used to construct ρ and on the specific observable
M , but a profound understanding of this relation is an open question. However, this does not pose
an obstacle for us, as only the set Ω is relevant for our study.

We have just derived the frequency structure for one encoding gate, but for more complicated
circuits we have to understand the action of multiple encoding gates, potentially interleaved with
some trainable unitaries. The intermediary unitaries, however, will only result in a basis change,
not affecting the set of combined frequencies. We can therefore ignore them and just consider the
repeated action of two distinct encoding gates with Hamiltonians H1 and H2, resulting in

S2(x)[S1(x)[ρ]] = S2(x)


 ∑

ω1∈Ω(H1)

exp(−iω1x)ρω1


 (25)

=
∑

ω1∈Ω(H1)

exp(−iω1x)
∑

ω2∈Ω(H2)

exp(−iω2x)ρω1,ω2 (26)

=
∑

ω1∈Ω(H1)

∑

ω2∈Ω(H2)

exp(−i[ω1 + ω2]x)ρω1,ω2 . (27)

At this point, we precisely understand that the application of the second gate results in new
frequencies that encompass all possible sums of the different frequencies. We can again consolidate
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this if we consider the sumset (or Minkowski sum) of the two sets of frequencies Ω(H1) and Ω(H2)
defined as

Ω({H1, H2}) := Ω(H1) + Ω(H2) := {ω1 + ω2 |ω1 ∈ Ω(H1),ω2 ∈ Ω(H2)}. (28)

With that we have

S2(x)[S1(x)[ρ]] =
∑

ω∈Ω(H1)+Ω(H2)

exp(−iωx)ρω. (29)

Note again that the values of specific components ρω depend on the specific initial state ρ and
possible intermediate unitaries, but, in this work, we are only interested in Ω itself. We can apply
the same logic recursively to see that the set of accessible frequencies for any encoding strategy D
is given by the sumset of all the individual sets of frequencies Ω(H(i)

j ) for each gate:

Ω(D) =
∑

D(i)∈D

∑

H∈D(i)

Ω(H) =
d∑

i=1

N(i)∑

j=1
{(λk − λl)e(i) |λk, λl ∈ spec(H(i)

j )}. (30)

4 Prior and related work
Before presenting our explicitly encoding-dependent generalization bounds for PQC-based models
in the next two sections, we discuss how our results compare to prior work. While there is a
massive amount of prior and ongoing work on the generalization capacity of classical models, see
for example the survey in Ref. [37], such results have only recently begun to emerge for PQC-
based models. Here, we focus on a comparison with these latter results. Additionally, while the
following paragraphs constitute a detailed review of existing generalization bounds for PQC-based
models, we stress that no knowledge of these prior works is necessary to understand our proofs
and results. In particular, the presentation here is intended to establish context for our work and
to place prior works in relation to each other, but the remainder of this manuscript can safely be
read independently of the review presented here.

Given the discussions in the previous two sections, we note that, at a high level, all prior work
on generalization bounds for PQC-based models can be classified via the following three criteria:

1. Which restrictions – if any – are placed on the architecture/structure of the PQCs generating
the model class considered?

2. In terms of which architectural hyper-parameters, or experimentally accessible quantities,
are the generalization bounds expressed?

3. Via which complexity measure are the generalization bounds derived?

Given this, we will use the above questions as guidelines for understanding and relating existing
results. Throughout this discussion, keep in mind that, as explained in Section 1, all prior works
are restricted to encoding-first models, whereas we allow for data re-uploading.

Additionally, while some of the following works study the same complexity measures as the
ones examined here – namely, Rademacher complexity and covering numbers – all of them differ
from ours in both the restriction to encoding-first PQC-based models and in a lack of explicit
dependence on the data-encoding strategy. Given this, we split our survey into two parts. First, in
Section 4.1, we discuss those prior works which derive encoding-independent generalization bounds.
In Section 4.2, we then discuss existing works deriving generalization bounds which depend on the
data-encoding strategy, but with a dependence which is implicit, and not necessarily clear a priori.

4.1 Encoding-independent complexity and generalization bounds
Ref. [24] is an early study of the complexity and generalization capacity of quantum circuit based
models, which presents encoding-independent bounds on the pseudo-dimension of function classes
associated with encoding-first 2-local (unitary or CPTP) PQCs, polynomial in the size (number of
gates) and depth of the trainable part of the circuit (in which all gates were considered trainable).
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Such pseudo-dimension bounds then yield generalization bounds, which also depend polynomially
on the size and depth of the trainable circuit. Ref. [44] has extended the generalization bounds
of Ref. [24] to the agnostic setting. In a similar vein, Ref. [29] has recently derived encoding-
independent covering number bounds for encoding-first PQC-based models, which depend explic-
itly on the number of gates in the PQC, and the operator norm of the measured observable. Once
again, using standard tools from statistical learning theory, the authors of Ref. [29] are then able
to use these covering number bounds to provide an encoding-independent generalization bound.

Working from the perspective of kernel methods, Ref. [32] has recently investigated the com-
plexity of encoding-first PQC-based models in terms of properties of the parametrized measure-
ment which follows data-encoding. More specifically, they interpret the entire parametrized circuit
following the data-encoding as a parametrized measurement, and provide bounds for the VC-
dimension of the model class in terms of the rank of the parametrized observable, and for the
fat-shattering dimension in terms of the Frobenius norm of the parametrized observable. These
bounds on standard complexity measures then allow them to prove generalization bounds which
depend explicitly on either the rank or the Frobenius norm of the accessible observables. However,
similarly the perspective we advocate in this work, the authors of Ref. [32] stress the application
of generalization bounds for model selection, via structural risk minimization.

Finally, Ref. [27] has recently initiated a resource-theoretic approach by providing encoding-
independent bounds on both the Rademacher and Gaussian complexity of encoding-first PQC-
based models, in terms of the number of repetitions of resource channels allowed in the PQC.
These Rademacher and Gaussian complexity bounds have then been used to derive generalization
bounds, which depend on the same quantities, and therefore provide an encoding-independent
resource-theoretic perspective on generalization in encoding-first PQC-based models.

4.2 Encoding-dependent complexity and generalization bounds
We proceed by discussing prior work deriving generalization bounds which do depend on the data-
encoding strategy. While the dependence on the data-encoding could take various forms, in this
manuscript we aim to derive generalization bounds which depend explicitly on architectural hyper-
parameters related to the data-encoding strategy (such as the number of encoding gates of a specific
type), and therefore facilitate the straightforward implementation of model selection via structural
risk minimization. This is in contrast to all of the prior encoding-dependent generalization bounds,
which are written in terms of some quantity which depends on the data-encoding strategy, but with
an implicit dependence which is not a priori clear, and needs to be assessed experimentally. Given
this fundamental difference between our generalization bounds and those of the prior works we
discuss here, a natural open question is whether the implicitly encoding-dependent quantities used
in the following works can be written explicitly in terms of architectural hyper-parameters related
to the data-encoding strategy. If possible, this would immediately provide explicitly encoding-
dependent generalization bounds comparable to those we derive in this work.

With this in mind, we begin our survey of implicitly encoding-dependent generalization bounds
with Ref. [25], which has suggested a complexity measure based on the classical Fisher information,
called the effective dimension, and demonstrated that one can indeed state generalization bounds
in terms of the effective dimension. Utilizing the empirical Fisher information as a tool for approx-
imating the effective dimension, Ref. [25] presented numerical experiments which demonstrate a
clear dependence of the effective dimension on the encoding-strategy. However, the explicit depen-
dence of the effective dimension on the encoding strategy is not clear and needs to be evaluated
experimentally. Additionally, Ref. [25] also provided a comparison between the effective dimension
of PQC-based models and comparable classical models, and demonstrated that PQC-based models
can exhibit a higher effective dimension. While not discussed explicitly in Ref. [25], we stress, how-
ever, that one should not use model complexity (e.g., effective dimension) as the sole criterion for
model selection, since model classes with higher effective dimension may have worse generalization
behavior than models with a lower effective dimension. Instead, as we advocate in this work, one
should ideally use a framework such as structural risk minimization to select a model with the
smallest upper bound on out-of-sample performance.

Also working from an information theoretic perspective, and with a focus on the role of data-
encoding, Ref. [31] has recently presented generalization bounds for PQC-based models in terms
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of information-theoretic quantities describing a notion of mutual information between the post-
encoding quantum state ρ(x) and the classical data. While these generalization bounds have a
strong implicit dependence on the data-encoding strategy, it is once again not immediately clear,
apart from in a few special cases, how to explicitly express the suggested complexity measure in
terms of architectural hyper-parameters related to the data-encoding strategy.

From a resource theoretic perspective, and complementing Ref. [27], the series of works [26, 28]
have further studied the Rademacher complexity of encoding-first PQC-based models. However,
unlike in Ref. [27], the Rademacher complexity bounds of Refs. [26, 28] are given in terms of
quantities that exhibit an implicit dependence on the data-encoding strategy. More specifically,
Ref. [28] provides Rademacher complexity bounds in terms of the size, depth and amount of magic
available as a resource. Additionally, Ref. [26] also studies noisy PQC-based models and provides
Rademacher complexity bounds in terms of either the Rademacher complexity of the associated
noiseless circuit or the free-robustness of the model.

Recently, Ref. [45] has studied generalization for PQC-based models using a hardware effi-
cient ansatz with a specific choice of data-encoding. For this setting, they proved VC-dimension
bounds that scale polynomially with the minimum of the number of qubits and the number of
trainable layers. In their proofs, they combine light cone arguments with a trigonometric function
representation for functions implemented by their ansatz.

Finally, we mention Ref. [30] which has developed techniques for evaluating the potential ad-
vantages of quantum kernels over classical kernels. These results are of relevance to this work due
to the close relationship between PQC-based models and kernel methods [16]. In a first step, the
authors of Ref. [30] suggest the evaluation of a geometric quantity which depends on the chosen
quantum feature map and the available training data instances. If the quantum machine learning
model passes this first test, a model complexity parameter, which now depends on the quantum
encoding and the training data (both instances and labels), should be computed. While these
complexity measures can be classically computed in time polynomial in the training data size,
analytically determining their exact dependence on the data-encoding can be challenging. This is
in contrast to our model complexity bounds, which depend straightforwardly on hyper-parameters
associated with the data-encoding strategy, such as the number of encoding gates of a specific type.

5 Generalization bounds for generalized trigonometric polynomials
We recall (from Section 3) that we can prove generalization bounds on FΘ,D,M , the hypothesis class
of interest for a given PQC-based model, by proving generalization bounds on FBΩ . Recall that FBΩ
has been defined as the class of generalized trigonometric polynomials (GTPs) with frequencies in
Ω and infinity-norm bounded by B as

FBΩ =
{

[0, 2π)d 3 x 7→ f(x) =
∑

ω∈Ω
cω exp(−iωx)

∣∣∣ (cω)ω∈Ω such that ‖f‖∞ ≤ B
}
. (31)

In order to prove generalization bounds for FBΩ , it will be convenient to work with the cosine and
sine representation of the complex exponential, and with the norm of the vector of coefficients
instead of the norm of the function. Note that, since we have observed in Section 3 that c−ω = c∗ω,
we can define, for every ω ∈ Ω

aω := cω + c−ω ∈ R, (32)

bω := 1
i
(cω − c−ω) ∈ R. (33)

With these, it further follows that

cωe
−iωx + c−ωe

iωx = aω cos(ωx) + bω sin(ωx), (34)

which allows us to rewrite the sum in Eq. (31) as a sum of real terms only. If we were only
considering frequencies given by real numbers, then it would suffice to sum over the non-negative
frequencies in the real sum representation. However, we are dealing with frequency vectors. As this
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is the case, we start by removing the zero vector from the set of frequencies to obtain Ω∗ := Ω\{0}.
Note that this is meaningful as 0 ∈ Ω for any Ω of the form introduced in Section 3. Next, we
divide Ω∗ into two disjoint parts Ω∗ = Ω+ ∪ Ω−, with Ω+ ∩ Ω− = ∅, such that for every ω ∈ Ω+
we have that −ω ∈ Ω−. We again note that this is possible due to the specific form of the sets
Ω discussed in Section 3. In particular, we then have |Ω| = 2|Ω+| + 1. Additionally, we make
use of a shorthand notation for the vectors (aω)ω∈Ω+ and (bω)ω∈Ω+ : We keep the indices outside
of the parentheses, but remove the indexing set. Namely we write (a0, (aω)ω, (bω)ω) in place of
(a0, (aω)ω∈Ω+ , (bω)ω∈Ω+). We only explicitly write the indexing set at certain points to avoid
confusion.

With these notational points in mind,we can rewrite the hypothesis class FBΩ as

FBΩ =
{

[0, 2π)d 3 x 7→ f(x) = a0
2 +

∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣∣∣∣∣ (a0, (aω)ω, (bω)ω) such that ‖f‖∞ ≤ B
}
,

(35)

and we define the class HBΩ via

HBΩ :=
{

[0, 2π)d 3 x 7→ a0
2 +

∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))

∣∣∣∣∣ ‖(a0, (aω)ω, (bω)ω)‖2 ≤ 2(2π)d/2B
}
,

(36)

where the 2-norm is given by

‖(a0, (aω)ω, (bω)ω)‖2 :=
√
a2

0 +
∑

ω∈Ω+

(a2
ω + b2ω). (37)

We note that, by construction, FBΩ ⊆ HBΩ holds true. To see this, note that for a function f ∈ FBΩ
given by f(x) =

∑
ω∈Ω exp(−iωx)cω = a0/2 +

∑
ω∈Ω+

(aω cos(ωx) + bω sin(ωx)), we obtain

∥∥(a0, (aω)ω∈Ω+ , (bω)ω∈Ω+)
∥∥

2 ≤ 2 ‖(c0, (cω)ω∈Ω)‖2 = 2 ‖f‖2 ≤ 2(2π)d/2 ‖f‖∞ = 2(2π)d/2B. (38)

As a consequence of the fact that FBΩ ⊆ HBΩ , generalization bounds uniform over HBΩ imply
generalization bounds uniform over FBΩ . Therefore, we focus on proving generalization bounds for
HBΩ .

Our bounds focus on the dependence of generalization on the frequency spectrum Ω. We obtain
these bounds from bounds on the complexity of HBΩ , measured in terms of two complexity measures
from classical learning theory, namely the Rademacher complexity and the metric entropy. We first
recall the definitions of these important quantities and then give an overview over our results and
proof strategy.

Definition 1 ((Empirical) Rademacher complexity). Let Z be some data space, F ⊆ RZ a function
class, and S = (z1, . . . ,zm) ∈ Zm. The empirical Rademacher complexity of F with respect to S
is defined as

R̂S(F) := E
σ∼U({−1,1}m)

[
sup
f∈F

1
m

m∑

i=1
σif(zi)

]
, (39)

where U({−1, 1}m) denotes the uniform distribution on {−1, 1}m. The i.i.d. random variables
σ1, . . . , σm are often called Rademacher random variables.

For later use, we note that, if F ⊆ G ⊆ RZ , then, for any S ∈ Zm we have R̂S(F) ≤ R̂S(G).
Next, we introduce our second complexity measure:
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Definition 2 (Covering nets, covering number, and metric entropy). Let (X, d) be a (pseudo-
)metric space. Let K ⊆ X and let ε > 0. We call N ⊆ K an (interior) ε-covering net of K if for
all x ∈ K there exists ay ∈ N such that d(x, y) ≤ ε. The covering number N (K, d, ε) is defined as
the smallest possible cardinality of an (interior) ε-covering net of K. Finally, we define the metric
entropy log2N (K, d, ε) via a logarithm of the covering number.

For our purposes, the relevant covering numbers are those of HBΩ with respect to the pseudo-
metrics induced by the data-dependent semi-norms ‖·‖2,S|x , which, given training data S =
{(xi, yi)}mi=1, are defined as

‖f‖2,S|x :=

√√√√ 1
m

m∑

i=1
|f(xi)|2. (40)

In Section 5.1, we prove Rademacher complexity bounds for HBΩ . We do so by understanding
HBΩ as (a subset of) a class of functions implemented by a simple classical neural network (NN)
with a single hidden layer and with sinusoidal activation functions in the hidden layer. For such
NN architectures, we can then apply already known Rademacher complexity bounds. This strategy
leads to

R̂S|x(FBΩ ) ≤ R̂S|x(HBΩ ) ≤ Õ
(√
|Ω|
m

)
(41)

for a training data set S of size m, with data instances S|x = {xi}mi=1. Here, the Õ refers to
the asymptotic behavior as |Ω|,m → ∞ and hides a logarithmic dependence on |Ω|. (As we are
most interested in the dependence on |Ω|, we also hide the dependence on B here.) With these
Rademacher complexity bounds at hand, we can then derive generalization guarantees for HBΩ ,
and thus FBΩ , using a standard generalization bound in terms of the Rademacher complexity. We
obtain that for a bounded Lipschitz loss function, with probability ≥ 1−δ, the generalization error
satisfies

R(f)− R̂S(f) ≤ Õ
(√
|Ω|
m

+
√

log(1/δ)
m

)
, (42)

uniformly over f ∈ HBΩ for training data S of size m. Again, we emphasize the leading-order
dependence on |Ω| and hide other parameters. We note that, without further assumptions, as in
classical agnostic learning scenarios, we do not expect a better scaling with respect to m than the
Hoeffding-like ∼ 1/

√
m.

In Section 5.2, we bound the covering number and metric entropy of HBΩ ,and thus of FBΩ .We
achieve this by constructing a covering net for HBΩ from a suitable (finer-grained) covering net of
the allowed vectors of Fourier coefficients. Here, we crucially use that |Ω| determines the dimension
of the space in which we have to take these covering nets. With this reasoning, we obtain a metric
entropy bound of

log2N (FBΩ , ‖·‖∞ , ε) ≤ log2N (HBΩ , ‖·‖∞ ,
ε

2) ≤ Õ (|Ω| log(1/ε)) , (43)

where the Õ hides logarithmic dependencies on B and |Ω|. Given these metric entropy bounds, we
then use the chaining method to derive empirical Rademacher complexity bounds. Again assuming
a bounded Lipschitz loss function, this method yields, with probability ≥ 1 − δ, a generalization
error bound of

R(f)− R̂S(f) ≤ Õ
(√
|Ω|
m

+
√

log(1/δ)
m

)
, (44)

simultaneously for all f ∈ FBΩ ⊆ HBΩ , assuming training data of size m and hiding both logarithmic
terms and dependencies on B, the Lipschitz constant, and the bound on the loss. While we see that,
with the above definition of FBΩ and HBΩ , the strategies of Sections 5.1 and 5.2 lead to the same
generalization bound in leading order, we nevertheless present both approaches because they yield
different results if the assumption on the Fourier coefficients appearing in FBΩ or HBΩ is changed
from a 2-norm bound to a general p-norm bound.
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In the light of the discussion in Section 3, these generalization bounds for classes of generalized
trigonometric polynomials imply generalization bounds for PQCs. As we have focused on the
dependence on the frequency spectrum in the former, we obtain a focus on the encoding-dependence
in the latter. We provide and discuss these results in Section 6.

5.1 Generalization bounds for generalized trigonometric polynomials via Rademacher
complexity

We begin our analysis by stating our Rademacher complexity bound for HBΩ . As we will see,
this bound is obtained by combining two partial results, and will lead directly to a generalization
bound. For ease of notation, we write Ki := maxω∈Ω+{|ωi|} for i ∈ {1, . . . , d} and K :=

∑
iKi.

Lemma 3 (Rademacher complexity bounds for GTPs). Let d,m ∈ N. Let S|x ∈ (Rd)m. Let
HBΩ be as defined in Eq. (36). The empirical Rademacher complexity of HBΩ with respect to S|x :=
(x1, . . . ,xm) can be upper-bounded as

R̂S|x(HBΩ ) ≤ O




min
{√

log(2d) max{K, (2π) d2B
√
|Ω|}, (2π) d2B

√
|Ω| log(|Ω|)

}

√
m


 . (45)

In order to prove Lemma 3 we state and show two partial results, namely Lemmas 4 and 5.
These two Lemmata have slightly different proof strategies, but both are motivated by thinking of
generalized trigonometric polynomials as being realized by certain neural network architectures.

Lemma 4 (Empirical Rademacher complexity of HBΩ —Version 1). Let d,m, S|x, and HBΩ be
as in Lemma 3. Then, the empirical Rademacher complexity of HBΩ with respect to S|x can be
upper-bounded as

R̂S|x(HBΩ ) ≤ O
(

1√
m

max{K, (2π) d2B
√
|Ω|}

√
log(2d)

)
. (46)

Proof. We prove this statement by constructing a function class that contains HBΩ and whose
empirical Rademacher complexity we are able to upper bound by viewing it as arising from a
simple layered neural network (NN) architecture. More specifically, we consider the following class
of functions

GBΩ :=
{

[0, 2π)d 3 x 7→ d0
2 +

∑

ω∈Ω+

dω sin(αωx+ γω)

∣∣∣∣∣ ‖(d0, (dω)ω)‖2 ≤ 2(2π) d2B, αω ∈
d∏

i=1
[−Ki,Ki], γω ∈ [−π, π)

}
,

(47)

which can be realized by a NN with a single hidden layer of neurons with sine activation functions,
and a linear activation at the output neuron. Here, again (dω)ω stands for the vector (dω)ω∈Ω+ .
Also, note that for every ω ∈ Ω+, αω is a d-dimensional vector and γω a real number.

We claim that HBΩ ⊆ GBΩ . We can prove this inclusion directly by finding the corresponding
parameters (d0, (dω)ω), (γω)ω and (αω)ω for each element f ∈ HBΩ , specified by the corresponding
(a0, (aω)ω, (bω)ω). We can find a valid assignment term by term. We start by noting d0 = a0.
Next, we spell out the term corresponding to the frequency vector ω with the well-known angle
sum trigonometric identity

dω sin(αωx+ γω) = dω cos(γω) sin(αωx) + dω sin(γω) cos(αωx). (48)

Now, for any given (aω)ω and (bω)ω, we can set

dω :=
√
a2
ω + b2ω, αω := ω, and γω := arctan(bω/aω). (49)

At this point, it is important to confirm that the assignment is valid within the restrictions imposed
in Eq. (47). To begin with, we note that the 2-norm bound from Eq. (38), i.e. ‖(a0, (aω)ω, (bω)ω)‖2 ≤
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2(2π) d2B, translates directly into ‖(d0, (dω)ω)‖2 ≤ 2(2π) d2B, since d2
ω = a2

ω + b2ω for all ω. Addi-
tionally, one can also see that the components of αω are nothing but the frequencies ωi for each
data coordinate, which fall in the interval [−Ki,Ki] by construction. Finally, as a function arctan
can output any angle, choosing the branch [−π, π) is valid. With these, we reach

dω sin(αωx+ γω) = aω sin(ωx) + bω cos(ωx), (50)

which has been our goal.
As GBΩ arises from a NN whose activation functions are 1-Lipschitz, continuous and anti-

symmetric, we can use Lemma 16 (stated in the Appendix). For that, we require upper bounds for
the 1-norm of the weight vector going into each neuron and for the moduli of the biases. For every
neuron in the hidden layer, there are d incoming weights, one for each data dimension, correspond-
ing to the d input neurons. Each component of those weight vectors (αω in Eq. (47)) takes values
in ∈ [−Ki,Ki] for some i ∈ {1, . . . , d}, so the 1-norm of such a weight vector is upper bounded by
K.

At the output neuron, there are |Ω+| incoming weights (dω in Eq. (47)) and we have a bound
on the 2-norm of this weight vector. Therefore, Hölder’s inequality applied to the 2-norm gives the
1-norm bound

‖(dω)ω‖1 ≤ 2(2π) d2B
√
|Ω+|. (51)

With that, we now know that the 1-norm of any weight vector in the NN is upper bounded by
max{K, 2(2π) d2B

√
|Ω+|}.

Next, we note that the modulus of the biases is at most π in the hidden layer, and 2(2π) d2B
in the output layer. As a result, we have that the moduli of the biases in the NN are upper
bounded by max{π, 2(2π) d2B}. Now that we have collected all the ingredients, we can plug them
into Lemma 16 and obtain the bound

R̂S|x(GBΩ ) ≤ 1√
m

(
2πmax{K, 2(2π) d2B

√
|Ω+|}

√
2 log(2d) + max{π, 2(2π) d2B}

)
(52)

≤ O
(

1√
m

max{K, (2π) d2B
√
|Ω|}

√
log(2d)

)
, (53)

where the O notation refers to the scaling in |Ω|. As GBΩ contains HBΩ as a subset, this bound
directly implies

R̂S|x(HBΩ ) ≤ O
(

1√
m

max{K, (2π) d2B
√
|Ω|}

√
log(2d)

)
, (54)

which completes the proof.

In the proof of Lemma 4, we do not bound the empirical Rademacher complexity ofHBΩ directly,
rather we embed it into a larger class GBΩ whose complexity we then bound. However, whereas
only a discrete set of frequencies is used in HBΩ , the class GBΩ allows for a continuum of frequencies.
In Lemma 5, we modify the idea of the previous proof to avoid this overcounting of frequencies.

Lemma 5 (Empirical Rademacher complexity of HBΩ —Version 2). Let d,m, S|x, and HBΩ be
as in Lemma 3. Then, the empirical Rademacher complexity of HBΩ with respect to S|x can be
upper-bounded as

R̂S|x(HBΩ ) ≤ O
(

(2π) d2B√
m

√
|Ω| log(|Ω|)

)
. (55)

Proof. Analogously to the proof of Lemma 4, we provide an empirical Rademacher complexity
upper bound for a larger function class H̃BΩ . Along the way, we see that the inclusion HBΩ ⊆ H̃BΩ
holds, so that the uniform bound we derive for the larger set is immediately inherited for the
smaller one. We start by defining an auxiliary set of functions: let MΩ be the set of generalized
trigonometric monomials over Rd with frequency values in Ω+, defined as

MΩ := {0} ∪
{

[0, 2π)d 3 x 7→ cos(ωx) |ω ∈ Ω+
}
∪
{

[0, 2π)d 3 x 7→ sin(ωx) |ω ∈ Ω+
}
. (56)
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Now, recalling that |Ω| = 2|Ω+|+ 1, we can define the function class of our current interest as

H̃BΩ :=
{

[0, 2π)d 3 x 7→ b0 +
〈
w,~h(x)

〉

∣∣∣∣∣
~h ∈ (MΩ)|Ω|, and b0 ∈ R, w ∈ R|Ω| such that ‖(b0,w)‖2 ≤ 2(2π) d2B

}
,

(57)

where we use the notation 〈·, ·〉 for the standard inner product. Notice how H̃BΩ can be seen as a
class of functions implemented by a single neuron with identity activation and 2-norm bounded
weights, where the input signals have been pre-processed by functions from the specified classMΩ.
With this, we note the inclusion HBΩ ⊆ H̃BΩ .

Next, we use Lemma 15 (stated in the Appendix). To use the result, we note that the activation
function of the neuron is the identity x 7→ x (which is a 1-Lipschitz, anti-symmetric function); that
MΩ contains the 0-function; that the modulus of the bias is upper bounded by 2(2π) d2B; and
that we can again use Hölder’s inequality applied to the 2-norm to upper bound the 1-norm of the
weight vector as ‖(b0,w)‖1 ≤

√
|Ω|‖(b0,w)‖2 ≤ 2(2π) d2B

√
|Ω|. With these, Lemma 15 gives us

the upper bound

R̂S|x(H̃BΩ ) ≤ 2(2π) d2B√
m

+ 2 · 2(2π) d2B
√
|Ω| R̂S|x(MΩ). (58)

Hence, in order to proceed we need to find an upper bound for the empirical Rademacher complexity
of MΩ.

We apply Massart’s Lemma (which we recall as Lemma 17 in the Appendix for completeness)
for this last step. Let A be the set of generalized trigonometric monomials with frequencies in Ω+,
evaluated on every element of S|x = (x1, . . . ,xm), i.e.,

A := {(0, . . . , 0)} ∪ {(cos(ωx1), . . . , cos(ωxm)) |ω ∈ Ω+} ∪ {(sin(ωx1), . . . , sin(ωxm)) |ω ∈ Ω+} ⊆ Rm.
(59)

Note that, by Hölder’s inequality, again applied to the 2-norm, and since sine and cosine take
values in [−1, 1], we have that A ⊆ B√m(0), where Br(c) is the ball of radius r in 2-norm centered
at c. Now, we can rewrite the empirical Rademacher complexity and apply Massart’s lemma
(Lemma 17) to get

R̂S|x(MΩ) := Eσ

[
sup
h∈MΩ

1
m

m∑

i=1
σi h(xi)

]
(60)

= Eσ
[

sup
a∈A

1
m
σa

]
(61)

≤
√
m

m

√
2 log(|A|) (62)

≤ 1√
m

√
2 log(|Ω|). (63)

Plugging this into Eq. (58), we obtain

R̂S|x(H̃BΩ ) ≤ 2(2π) d2B√
m

+ 2 · 2(2π) d2B
√
|Ω| · 1√

m

√
2 log(|Ω|) (64)

≤ O
(

(2π) d2B√
m

√
|Ω| log(|Ω|)

)
. (65)

Recalling again that HBΩ ⊆ H̃BΩ then yields the claimed bound.

Proof of Lemma 3. This follows directly from combining Lemmas 4 and 5.
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With this Rademacher complexity bound at hand, we can make use of standard tools from
classical statistical learning theory to derive a generalization bound.

Theorem 6 (Generalization bound for GTPs—Version 1). Let d,m ∈ N. Let HBΩ be as defined in
Eq. (36). Let ` : R×R→ [0, c] be a bounded loss function such that R 3 z 7→ `(y, z) is L-Lipschitz
for all y ∈ R. For any δ ∈ (0, 1) and for any probability measure P on [0, 2π)d×R, with probability
≥ 1 − δ over the choice of i.i.d. training data S = {(xi, yi)}mi=1 ∈ ([0, 2π)d × R)m of size m, for
every f ∈ HBΩ , the generalization error can be upper-bounded as

R(f)− R̂S(f) ≤ O



Lmin

{
max{K, (2π) d2B

√
|Ω|}

√
log(2d), (2π) d2B

√
|Ω| log(|Ω|)

}

√
m

+
√

log(1/δ)√
m


 .

(66)

Proof. The proof of this theorem consists in combining the standard generalization bound in terms
of Rademacher complexity with the Rademacher complexity bounds from Lemma 3. More precisely,
we define G ⊆ [0, c][0,2π)d×R to be the class of functions that can be obtained by post-composing
elements of HBΩ with the loss function ` – i.e. we define

G :=
{

[0, 2π)d × R 3 (x, y) 7→ `(y, f(x)) | f ∈ HBΩ
}
. (67)

We then have the following generalization bound (see, e.g., Theorem 3.3 in Ref. [20] or Theorem
1.15 in Ref. [35]): For any probability measure P on [0, 2π)d×R and for any δ > 0, with probability
≥ 1− δ over the choice of an i.i.d. training data set S = {(xi, yi)}mi=1 ∈ ([0, 2π)d × R)m of size m
drawn according to P , we have, for every g ∈ G,

E(x,y)∼P [g(x, y)]− 1
m

m∑

i=1
g(xi, yi) ≤ 2R̂S(G) + 3c

√
log(2/δ)

2m . (68)

Note that, when writing g ∈ G as g(x, y) = `(y, f(x)) for some f ∈ HBΩ , we directly have

E(x,y)∼P [g(x, y)]− 1
m

m∑

i=1
g(xi, yi) = R(f)− R̂S(f). (69)

That is, Eq. (68) indeed provides a high-probability bound on the generalization error. Therefore,
we now upper-bound the empirical Rademacher complexity R̂S(G). To this end, we use Talagrand’s
Lemma (going back to Ref. [46]) and our bounds for the empirical Rademacher complexity of HBΩ .
As we assume that R 3 z 7→ `(y, z) is L-Lipschitz for all y ∈ R, we can apply Talagrand’s Lemma
(Lemma 18) and Lemma 3 to obtain

R̂S(G) = 1
m
Eσ

[
sup
g∈G

m∑

i=1
σig(xi, yi)

]
(70)

= 1
m
Eσ

[
sup
f∈HBΩ

m∑

i=1
σi`(yi, f(xi))

]
(71)

≤ L

m
Eσ

[
sup
f∈HBΩ

m∑

i=1
σif(xi)

]
(72)

= LR̂S|x(HBΩ ) (73)

≤ O


L

min
{√

log(2d) max{K, (2π) d2B
√
|Ω|}, (2π) d2B

√
|Ω| log(|Ω|)

}

√
m


 , (74)

where we have denoted by S|x := {xi}mi=1 the set of unlabeled training data points. Inserting this
bound into Eq. (68) now gives the stated generalization error bound.

The generalization bound of Theorem 6 can be rewritten as an upper bound on the number of
labeled training examples that suffice to guarantee small generalization error.
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Corollary 7 (Number of labeled training examples sufficient for a small generalization error—Ver-
sion 1). For any ε, δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, a training data
size

m = m(ε, δ) ≤ O
(
L2 min

{
max{K2, (2π)dB2|Ω|} log(2d), (2π)dB2|Ω| log(|Ω|)

}

ε2 + c2 log(1/δ)
ε2

)

(75)

suffices to guarantee that, with probability ≥ 1 − δ over the choice of i.i.d. training data S ∈
([0, 2π)d × R)m of size m, R(f)− R̂S(f) ≤ ε holds for every f ∈ HBΩ .

Proof. We set the upper bound on the generalization error proven in Theorem 6 equal to ε and
solving for m.

Remark 8. The proof strategy for obtaining Rademacher complexity bounds of generalized
trigonometric polynomials presented here easily extends beyond the case in which the 2-norm of
the vector of Fourier coefficients is assumed to be bounded. Namely, if we consider, for 1 ≤ p ≤ ∞,
the class

HB̃,pΩ :=



[0, 2π)d 3 x 7→ a0

2 +
∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))
∣∣∣∣∣ ‖(a0, (aω)ω, (bω)ω)‖p ≤ B̃



 ,

(76)

with Fourier coefficients of a bounded p-norm, we obtain, with essentially the same proof, an
empirical Rademacher complexity bound of

R̂S|x(HB̃,pΩ ) ≤ Õ
(
B̃|Ω| 1q√

m

)
, (77)

where q ∈ [0, 1] is the Hölder conjugate of p, i.e., 1/p + 1/q = 1, and the Õ hides a logarithmic
dependence on |Ω|. This, in turn, leads (for c-bounded L-Lipschitz loss) to a generalization error
bound of

R(f)− R̂S(f) ≤ Õ
(
LB̃|Ω| 1q + c

√
log(1/δ)√

m

)
, (78)

which holds with probability ≥ 1−δ uniformly overHB,pΩ , for training data of size m. These bounds
based on p-norms might be of independent interest. For example, depending on the structure of
the trainable part of the PQC, a detailed analysis might lead to additional structural properties
(such as sparsity) of the set of admissible Fourier coefficients, which could then lend themselves to
an analysis in terms of p-norms for p 6= 2.

5.2 Generalization bounds for generalized trigonometric polynomials via covering num-
bers

Similarly to Section 5.1, we first prove a bound on a complexity measure for the hypothesisclass
FBΩ and then derive a generalization bound from it. This subsection differs from the previous one
in that we discuss a different complexity measure, covering numbers, and that we do not need to
resort to the larger hypothesis class HBΩ , but rather study FBΩ directly.

Lemma 9 (Covering number bound for GTPs). Let d ∈ N and ε > 0. Let FBΩ be as defined in
Eq. (16). The ε-covering number of FBΩ with respect to ‖·‖∞ can be upper-bounded as

N (FBΩ , ‖·‖∞ , ε) ≤ N (HBΩ , ‖·‖∞ , ε/2) ≤
(

2 · 3 · 2(2π) d2B
√
|Ω|

ε

)|Ω|
. (79)

Therefore, the corresponding metric entropy can be upper-bounded as

log2N (FBΩ , ‖·‖∞ , ε) ≤ O
(
|Ω|[log((2π) d2B) + log(|Ω|) + log(1/ε)]

)
. (80)
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Proof. As discussed after introducing the class HBΩ , we have FBΩ ⊆ HBΩ . Therefore, according to
the approximate monotonicity of covering numbers (see, e.g., Exercise 4.2.10 in [47]), we have, for
every ε > 0,

N (FBΩ , ‖·‖∞ , ε) ≤ N (HBΩ , ‖·‖∞ , ε/2). (81)

Thus, it remains to prove a covering number bound for HBΩ .
Let Nε̃ be an ε̃-covering net of the ball

B :=
{
ξ = (a0, (aω)ω∈Ω+ , (bω)ω∈Ω+) ∈ R|Ω|

∣∣∣ ‖ξ‖2 ≤ 2(2π) d2B
}

(82)

with respect to the metric induced by ‖·‖2 on R|Ω|. By definition of HBΩ , to every f ∈ HBΩ we can
associate a point (a0, (aω)ω∈Ω+ , (bω)ω∈Ω+) ∈ B such that

f(x) = a0
2 +

∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx)) . (83)

Given such a vector of coefficients (a0, (aω)ω∈Ω+ , (bω)ω∈Ω+) ∈ B – which, again, for the sake of
notational ease, we write as (a0, (aω)ω, (bω)ω)), omitting the Ω+ everywhere – we can find an
element (ã0, (ãω)ω∈Ω+ , (b̃ω)ω∈Ω+) ∈ Nε̃ of the cover that is ε̃ close in 2-norm to the coefficients of
f , i.e., such that

∥∥(a0, (aω)ω, (bω)ω)− (ã0, (ãω)ω, (b̃ω)ω)
∥∥

2 ≤ ε̃. (84)

Define f̃ as the function specified by these new coefficients,

f̃(x) = ã0
2 +

∑

ω∈Ω+

(
ãω cos(ωx) + b̃ω sin(ωx)

)
. (85)

We now bound the infinity norm distance between f and f̃ in terms of the 2-norm distance between
the corresponding coefficients as

∥∥f − f̃
∥∥
∞ := sup

x∈[0,2π)

∣∣f(x)− f̃(x)
∣∣ (86)

≤
∣∣∣∣
a0
2 −

ã0
2

∣∣∣∣+ sup
x

∑

ω∈Ω+

∣∣(aω − ãω) cos(ωx) + (bω − b̃ω) sin(ωx)
∣∣ (87)

≤ |a0 − ã0|+
∑

ω∈Ω+

(
|aω − ãω|+ |bω − b̃ω|

)
(88)

=
∥∥(a0, (aω)ω, (bω)ω)− (ã0, (ãω)ω, (b̃ω)ω)

∥∥
1 (89)

≤
√
|Ω| ε̃. (90)

Here, we have used the triangle inequality and the fact that sine and cosine can only take values
in [−1, 1], as well as (in the last step) Hölder’s inequality with respect to the 2-norm. That means,
if we denote by NF the set of GTPs whose coefficients come from the cover Nε̃, i.e.,

NF :=
{

[0, 2π)d 3 x 7→ ã0
2 +

∑

ω∈Ω+

(aω cos(ωx) + bω sin(ωx))
∣∣∣∣∣ (ã0, (ãω)ω, (b̃ω)ω) ∈ Nε̃

}
, (91)

and if we fix ε̃ to be ε̃ = ε/
√
|Ω|, then NF is an ε-covering net of HBΩ with respect to ‖·‖∞.

Thus, to finish the proof, it remains to upper bound the cardinality |NF | ≤ |Nε̃|. To obtain such
a bound, we recall that we only require Nε̃ to be an ε̃-cover of a 2-norm ball of radius 2(2π) d2B
in R|Ω| with respect to the 2-norm. A simple volumetric argument (presented, e.g., in section 4 of
Ref. [47]) shows that there exists such a ε̃-cover Nε̃ of B with cardinality

|Nε̃| ≤
(

3 · 2(2π) d2B
ε̃

)|Ω|
=
(

3 · 2(2π) d2B
√
|Ω|

ε

)|Ω|
. (92)
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All in all, we have proven that there exists an ε-covering net of HBΩ with respect to ‖·‖∞ whose
cardinality is bounded by

(
3 · 2(2π) d2B

√
|Ω|

ε

)|Ω|
. (93)

This is exactly the claimed upper bound on the ε-covering number of HBΩ , thus completing the
proof.

The covering number bound just established implies a generalization bound for GTPs.

Theorem 10 (Generalization bound for generalized trigonometric polynomials—Version 2). Let
d,m ∈ N. Let FBΩ be as defined in Eq. (16). Let ` : R×R→ [0, c] be a bounded loss function such
that R 3 z 7→ `(y, z) is L-Lipschitz for all y ∈ R. For any δ ∈ (0, 1) and for any probability measure
P on [0, 2π)d×R, with probability ≥ 1−δ over the choice of i.i.d. training data S ∈ ([0, 2π)d×R)m
of size m, for every f ∈ FBΩ , the generalization error can be upper-bounded as

R(f)− R̂S(f) ≤ O


BL

√
|Ω|(log(|Ω|) + log((2π) d2B))

m
+ c

√
log(1/δ)
m


 (94)

Proof. The proof consists of three steps. First, we use the chaining technique from random pro-
cess theory to upper bound the (empirical) Rademacher complexity in terms of an integral over
the square root of the uniform empirical metric entropy. Second, we show that the metric en-
tropy with respect to ‖·‖∞ upper-bounds the uniform empirical metric entropy, so we can use the
bound in Lemma 9 to upper-bound the (empirical) Rademacher complexity of generalized trigono-
metric polynomials. Third, we again use the standard generalization bound based on empirical
Rademacher complexities.

Similarly to the proof of Theorem 6, we define

G :=
{

[0, 2π)d × R 3 (x, y) 7→ `(y, f(x))
∣∣ f ∈ FBΩ

}
. (95)

Again, since we assume that R 3 z 7→ `(y, z) is L-Lipschitz for all y ∈ R, Talagrand’s Lemma
(Lemma 18 in the Appendix) tells us that

R̂S(G) ≤ LR̂S|x(FBΩ ), (96)

where we have denoted by S|x := {xi}mi=1 the unlabeled training data points. Next, Dudley’s
Theorem (which we recall as Theorem 19 in the Appendix), yields

R̂S|x(FBΩ ) ≤ 12√
m

γ0∫

0

√
logN (FBΩ , ‖·‖2,S|x , β) dβ, (97)

where ‖·‖2,S|x is the (data-dependent) semi-norm on RRd defined as ‖f‖2,S|x :=
( 1
m

∑m
i=1|f(xi)|2

)1/2,
and we have defined γ0 := supf∈FBΩ ‖f‖2,S .

Now, we note that, for every f ∈ FBΩ , ‖f‖2,S|x ≤ ‖f‖∞. Therefore, we have both that
γ0 ≤ supf∈FBΩ ‖f‖∞ ≤ B and, that for every β > 0, N (FBΩ , ‖·‖2,S|x , β) ≤ N (FBΩ , ‖·‖∞ , β). Hence,
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we can combine Eq. (97) with our covering number bound from Lemma 9 and further upper bound

R̂S|x(FBΩ ) ≤ 12√
m

γ0∫

0

√
|Ω|
(

log(3 · 2(2π) d2B) + log(
√
|Ω|) + log

(
2
β

))
dβ (98)

≤ 12√
m

√
|Ω|


γ0

√
log(3 · 2(2π) d2B) + 1

2 log(|Ω|) +
γ0∫

0

√
log
(

2
β

)
dβ


 (99)

≤ 12√
m

√
|Ω|
(
B

√
log(3 · 2(2π) d2B) + 1

2 log(|Ω|) (100)

+B

√√√√log
(

1
2(2π) d2B

)
−
√
π

2 erf



√√√√log

(
1

2(2π) d2B

)

)

(101)

≤ O


B

√
|Ω|(log((2π) d2B) + log(|Ω|))

m


 , (102)

where we have used the integral
∫ √

log 1/x dx = x
√

log 1/x− (
√
π/2) · erf(

√
log 1/x), (103)

with the error function defined as

erf(x) := 2√
π

∫ x

0
exp(−t2) dt. (104)

At this point, we again have a bound on the empirical Rademacher complexity at our disposal.
So, just like in the proof of Theorem 6, we can now apply the standard Rademacher complexity
generalization bound. This then tells us that, for any probability measure P on [0, 2π)d × R and
for any δ > 0, with probability ≥ 1− δ over the choice of an i.i.d. training data set S of size m, we
have, for every f ∈ FBΩ ,

R(f)− R̂S(f) ≤ 2R̂S(G) + 3c
√

log(2/δ)
2m (105)

≤ O


BL

√
|Ω|(log(|Ω|) + log((2π) d2B))

m
+ c

√
log(1/δ)
m


 , (106)

as claimed.

Also for this generalization bound, we provide the reformulation in terms of a bound on the
sample size sufficient to guarantee small generalization error.

Corollary 11 (Number of labeled training examples sufficient for a small generalization er-
ror—Version 2). Let d ∈ N. Let FBΩ Eq. (16).Let ` : R×R→ [0, c] be an L-Lipschitz loss function.
For any ε, δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, a training data size

m = m(ε, δ) ≤ O
(
B2L2 |Ω|(log(|Ω|) + log((2π) d2B))

ε2 + c2
log(1/δ)
ε2

)
, (107)

suffices to guarantee that, with probability ≥ 1 − δ over the choice of i.i.d. training data S ∈
(Rd × R)m of size m, R(f)− R̂S(f) ≤ ε holds for every f ∈ FBΩ .

Proof. We set the upper bound on the generalization error proven in Theorem 10 equal to ε and
solving for m.
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Remark 12. Our metric entropy bounds of trigonometric polynomials presented here again extend
beyond the case of bounded 2-norm of the vector of Fourier coefficients to a general bounded p-
norm. However, if we again consider, for 1 ≤ p ≤ ∞, the class HB,pΩ defined in Remark 8, our
proof strategy here yields essentially – i.e., to leading order in |Ω| – the same metric entropy and
generalization bounds as for p = 2. The reason is that the dimension of the space in which we
take covering nets in the proof of Lemma 9 remains proportional to |Ω|, independently of p. We
only see improvements for 1 ≤ p < 2 in the terms depending logarithmically on |Ω|. Therefore,
while the proof strategies of Sections 5.1 and 5.2 give essentially the same generalization guarantees
for p = 2, the approach of Section 5.1 adapts nicely to the case p < 2, whereas the reasoning of
Section 5.2 is typically preferable for p > 2.
Remark 13. The proof of Theorem 10 extends beyond Lipschitz loss functions. For example,
suppose that R 3 z 7→ `(y, z) is α-Hölder continuous with Hölder coefficient A > 0 for all y ∈ R,
where α ∈ (0, 1). Then, with the notation of the above proof,

N (G, ‖·‖2,S , β) ≤ N
(
FBΩ , ‖·‖2α,S|x , (β/A)1/α

)
. (108)

We can thus apply Dudley’s Theorem to upper bound

R̂S(G) ≤ 12√
m

γ̃0∫

0

√
N
(
FBΩ , ‖·‖2α,S|x , (β/A)1/α

)
dβ. (109)

Now, we again observe that ‖·‖2α,S|x ≤ ‖·‖∞ and upper bound the covering number integral, using
our result from Lemma 9. The parameters of the Hölder continuity enter the final Rademacher
complexity bound via a term scaling with

√
log(A)/α.

6 Encoding-dependent generalization bounds for parametrized quantum
circuits

We are finally in a position to answer the questions posed in Section 2. Recall that our first goal
was to derive generalization bounds for PQC-based models which depend explicitly on architectural
hyper-parameters related to the data-encoding strategy. We showed in Section 3 how PQC-based
model classes can be viewed as a subset of generalized trigonometric polynomials (GTPs), whose set
of frequencies Ω is determined solely by the data-encoding strategy D. We then derived complexity
and generalization bounds for GTPs in terms of the number of different frequencies |Ω(D)|. In
order to provide explicitly encoding-dependent generalization bounds for PQC-based models, it
remains to express |Ω(D)| in terms of the relevant architectural hyper-parameters associated with
different data-encoding strategies.

To do so, we recall that the data-encoding strategy of a PQC-based model class is defined as
a collection of lists of data-encoding Hamiltonians D(i) = {H(i)

j } associated with each coordinate
x(i). We distinguish different data-encoding strategies according to the different assumptions made
on the structure of the data-encoding Hamiltonians H ∈ D(i). Given a particular assumption,
for example that all H are tensor products of Pauli operators or at most κ-local, the natural
hyper-parameter associated with the data encoding strategy is the number N =

∑d
i=1 |D(i)| of

data-encoding Hamiltonians of the assumed type. Hence, our goal in this section is to derive,
for different data-encoding strategies, upper bounds on |Ω(D)| that depend on N as well as as
on other relevant properties of the data-encoding Hamiltonians (such as, e.g., the locality κ).
By substituting these upper bounds on |Ω| into the GTP generalization bounds of the previous
section, we then obtain generalization bounds for PQC-based model classes which depend explicitly
on properties of the data-encoding strategy.

We first recall the definition of Ω from Eq. (30). If we denote the Hamiltonians of the data-
encoding strategy associated with x(i) as {H(i)

j }, we can group the frequencies associated with
each data coordinate into a separate sumset Ω(i):

Ω(D) =
d∑

i=1

N(i)∑

j=1
Ω
(
H

(i)
j

)
=

d∑

i=1
Ω(i). (110)
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The frequencies belonging to the different coordinates {x(i)} are linearly independent because
they were defined to be multiples of different standard basis vectors e(i). This implies that the
cardinality of the full set is equal to the product of the individual cardinalities,

|Ω| =
d∏

i=1
|Ω(i)|, (111)

thus allowing us to multiply bounds on the cardinalities obtained for the separate data-encoding
strategies, |Ω(i)|, to obtain a bound on |Ω|.

As the underlying frequencies in Ω(i) are all scalar multiples of the same basis vector e(i), the
analysis of Ω(i) comes down to the different frequencies generated by the Hamiltonians that are
used to encode x(i). For a given single Hamiltonian H, we denote this set by

∆(H) := {λi − λj |λi, λj ∈ spec(H)} (112)

so that

Ω(H) = {δe | δ ∈ ∆ (H)} , (113)

where e is the basis vector associated to the respective coordinate. Next, we derive some bounds
on |Ω(i)| for different assumptions on the underlying Hamiltonians.

Worst case upper bounds. We first derive the worst-case limits of |Ω(i)| for κ-local encod-
ing Hamiltonians. A κ-local Hamiltonian H has local dimension 2κ and the number of possible
differences of eigenvalues in the spectrum is thus upper bounded as

|∆(H)| ≤ 2κ(2κ − 1)
2 + 1 = O(22κ). (114)

One can in principle construct a Hamiltonian that saturates this bound by choosing spec(Hmax) =
{0, 3, 9, . . . , 32κ}, but this is a rather synthetic example that we do not expect to encounter on real
hardware. Eq. (114) implies that repeating N (i) κ-local Hamiltonians will, in the case where there
are no duplicates in the frequency set, imply a cardinality of at most

|Ω(i)| ≤
(

2κ(2κ − 1)
2 + 1

)N(i)

= O(22κN(i)
). (115)

Again, this bound can be saturated by choosing Hamiltonians with ever-larger spectra, namely by

choosing H
(i)
1 = Hmax and spec(H(i)

j+1) = max(spec(H(i)
j )) · spec(Hmax).

Repeated Hamiltonians. We now consider the case where the same Hamiltonian H(i) is used
N (i) times to encode the coordinate x(i). Due to the underlying symmetry of the definition of
∆(H(i)), we have that

∆(H(i)) = {0,±δ1, . . . ,±δT } (116)

for some T , and therefore |∆(H(i))| = 2T +1 = |Ω(i)
j | = |Ω

(i)
0 |, where we have denoted the repeated

set of frequencies common to all encoding gates as Ω(i)
0 . Using the results on the maximum size

of the spectrum of a κ-local Hamiltonian in Eq. (114), we can deduce that T ≤ 2κ−2(2κ − 1).
We now quantify the number of different frequencies in Ω(i) in terms of T . N (i) repetitions of

the fixed Hamiltonian with frequencies Ω(i)
0 result in a set of frequencies that contains all possible

combinations of N (i) vectors ωj from Ω(i)
0 :

Ω(i) =




N(i)∑

j=1
ωj

∣∣∣∣∣∣
ωj ∈ Ω(i)

0 for all j



 (117)

We can reformulate this by counting how often the 2T + 1 different elements of Ω(i)
0 are present in

a particular instance of the above sum, and get

Ω(i) =




∑

ω∈Ω(i)
0

Nωω

∣∣∣∣∣∣∣
Nω ≥ 0,

∑

ω∈Ω(i)
0

Nω = N (i)




. (118)
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To bound the size of this set, we exploit the symmetry of the underlying frequencies δj ∈ ∆(H(i)).
Let us outline the idea: We will first count how we can distribute the number N (i) of repetitions
over the different non-negative frequencies δj and then multiply this with the number of different
frequencies that can be created by repeating δj and −δj . To improve the scaling we get at the
end, we will resort to a small trick and actually group the frequency 0, which we know to always
be present in the spectrum, with the first other frequency, therefore considering the combinatoric
problem of distributing N (i) “balls” over T distinguishable “bins” where some bins can be empty.
The different possible ways to achieve this task are given by counting the weak compositions of
N (i) into T parts, C(N (i), T ). The number of such weak compositions is

|C(N (i), T )| =
(
N (i) + T − 1

N (i)

)
(119)

= (N (i) + T − 1)!
N (i)!(T − 1)! (120)

= (N (i) + T − 1)(N (i) + T − 2) . . . (N (i) + 1)
(T − 1)! (121)

= O((N (i))T−1). (122)

We will denote such a composition as (N (i)
j )Tj=1 ∈ C(N (i), T ). A simple counting argument reveals

that there are 2N (i)
1 + 1 possible sums with N

(i)
1 elements from the set {0, δ1,−δ1} and N

(i)
j + 1 ≤

2N (i)
j + 1 possible sums with N

(i)
j elements from the set {δj ,−δj}. We can therefore bound

|Ω(i)| ≤
∑

(N(i)
k

)∈C(N(i),T )

T∏

k=1

(
2N (i)

k + 1
)

(123)

≤
∑

(N(i)
k

)∈C(N(i),T )

(
2
∑T
k=1N

(i)
k

T
+ 1
)T

(124)

≤
∑

(N(i)
k

)∈C(N(i),T )

(
2N (i)

T
+ 1
)T

(125)

= |C(N (i), T )|
(

2N (i)

T
+ 1
)T

(126)

= O((N (i))2T−1), (127)

where we have used the arithmetic-geometric mean inequality to obtain the second inequality.
From this inequality, we see that by repeating the same Hamiltonian for an encoding, we obtain a
polynomial scaling in the number of repetitions whose exponent depends on the number of different
frequencies generated by the repeated Hamiltonian.

Pauli encodings. Encodings performed with Hamiltonians that are a tensor product of Pauli
operators, H =

⊗n
k=1 P

(k) where P (k) ∈ {I, X, Y, Z}, have been analyzed in Ref. [33]. Therein,
it was shown that N (i) repetitions of such encodings of arbitrary dimension will result in |Ω(i)| =
2N (i) + 1.

Summary. We can easily connect the different upper bounds on |Ω(i)| to upper bounds on |Ω|
via the arithmetic-geometric mean inequality, i.e.,

d∏

i=1
|Ω(i)| ≤

(
d∑

i=1

|Ω(i)|
d

)d
, (128)

and by noting that, for q ≥ 1,

d∑

i=1

(N (i))q
d

≤

(∑d
i=1N

(i)
)q

d
= Nq

d
. (129)
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Table 1: Scaling of the different upper bounds for the number of different frequencies for the encoding of a
single parameter |Ω(i)|, as well as the associated bounds for the scaling of the number of different frequencies
for the total data-encoding strategy, |Ω|. N (i) denotes the number of gates used for encoding the input x(i),
N denotes the total number of gates for all inputs.

Encoding strategy Upper bound on |Ω(i)| Upper bound on |Ω|

Repetition of arbitrary Pauli encodings O
(
N (i)

)
O
((

N

d

)d)

Repetition of the same encoding
with 2T + 1 frequencies

O
(

(N (i))2T−1
)

O
((

N2T−1

d

)d)

Repetition of the same κ-local encoding O
(

(N (i))2κ+1−1
)

O



(
N2κ+1−1

d

)d


Different κ-local encodings O
(

22κN(i)
)

O
(
22κN)

Table 1 summarizes the different upper bounds on |Ω(i)| for individual parameters x(i) derived in
this section as well as the associated bounds on |Ω|.

Given these results, we are finally in a position to provide a concrete answer to the first question
posed in Section 2. More specifically, by substituting the upper bounds on |Ω| given in Table 1 into
the generalization bounds for GTPs given in Section 5, we can obtain generalization bounds for
PQC-based model classes which depend explicitly on architectural hyper-parameters associated
with the data-encoding strategy. Recall that we denoted the function class associated with a
particular set of parameters Θ, an encoding strategy D and an observable M , as FΘ,D,M . We then
obtain from Theorems 6 and 10 the following Corollary:

Corollary 14 (Generalization bound for PQCs—From Theorems 6 and 10). Let d,m ∈ N. Let
` : R×R→ [0, c] be a bounded loss function such that R 3 z 7→ `(y, z) is L-Lipschitz for all y ∈ R.
For any δ ∈ (0, 1) and for any probability measure P on [0, 2π)d × R, with probability ≥ 1 − δ
over the choice of i.i.d. training data S = {(xi, yi)}mi=1 ∈ ([0, 2π)d × R)m of size m and every
f ∈ FΘ,D,M , where D is an encoding strategy with N gates in total, we have that,

(a) if D denotes any data-encoding strategy consisting of Hamiltonians that are tensor products
of Pauli operators,

R(f)− R̂S(f) ≤ Õ
(
L‖M‖∞√

m

(
N

d

) d
2

+ c

√
log 1/δ

m

)
, (130)

(b) if D denotes any data-encoding strategy consisting of the same single Hamiltonian per data
coordinate with T frequencies,

R(f)− R̂S(f) ≤ Õ
(
L‖M‖∞√

m

(
N2T−1

d

) d
2

+ c

√
log 1/δ

m

)
, (131)

(c) if D denotes any data-encoding strategy consisting of the same single κ-local Hamiltonian per
data coordinate,

R(f)− R̂S(f) ≤ Õ


L‖M‖∞√

m

(
N2κ+1−1

d

) d
2

+ c

√
log 1/δ

m


 , (132)

(d) if D denotes any data-encoding strategy consisting of possibly different κ-local Hamiltonians
per data coordinate,

R(f)− R̂S(f) ≤ Õ
(
L‖M‖∞√

m
2κN + c

√
log 1/δ

m

)
. (133)
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While we consider only four specific data-encoding strategies in this corollary, the generalization
bounds from Theorems 6 and 10 can in principle be applied to PQC-based models with any data-
encoding strategy. To use the bounds, the corresponding |Ω(D)| has to be identified, which can
then be readily combined with our generalization bounds for GTPs.

6.1 Comparison of data-encoding strategies from a generalization perspective
The results of the previous subsection give a concrete answer to the first question posed in Section 2,
namely explicitly encoding-dependent generalization bounds for PQC-based models. However,
recall from Section 2 that we also aimed to use such bounds to identify data-encoding strategies
which give rise to a slow (polynomial) growth of model complexity with respect to increasingly
complex data-encoding strategies, and therefore facilitate meaningful model selection via structural
risk minimization. The results of the previous section now allow us to address this additional goal.

Given an assumption or constraint on the structure of the data-encoding Hamiltonians in a
possible data-encoding strategy, the most natural data-encoding hyper-parameter for structural
risk minimization is the number N of encoding Hamiltonians. We see that using either repeated
Pauli Hamiltonians, a repeated (but fixed) κ-local Hamiltonian, or the repetition of a fixed Hamil-
tonian with 2T + 1 frequencies, leads to a complexity bound and generalization bound that scale
polynomially with N . However, using N different κ-local data-encoding Hamiltonians can lead, in
the worst case, to complexity upper bounds which scale exponentially with respect to N . In the
latter case we stress, however, that these worst-case bounds are constructed using Hamiltonians
designed to saturate the maximum possible number of frequency differences, and in many cases
the complexity scaling with respect to N may be much slower. Additionally, while the polynomial
generalization bounds we obtain for the first three data-encoding strategies give us hope in the
possibility of meaningful structural risk minimization with respect to the number of data-encoding
gates, our upper bounds on the generalization gap are not necessarily tight. Hence, we cannot rule
out the possibility of better bounds for strategies consisting of many different Hamiltonians, which
would facilitate the use of strucural risk minimization.

Additionally, while increasing the complexity of a data-encoding strategy by increasing N is
a natural (and experimentally feasible) strategy, in principle one might also consider increasing
either the locality κ or the number of frequencies T of the repeated data-encoding Hamiltonian.
This would be particularly relevant in the realistic scenario where experimental constraints severely
limit the number of data-encoding gates which can be used. However, apart from the potential
experimental obstacles one would face in doing so, we note that while our complexity bounds are
polynomial with respect to N (when keeping κ and T fixed), they are exponential (or doubly-
exponential) with respect to κ and T respectively (when keeping N fixed). As such, given the
generalization bounds we have obtained in this work, from the generalization and structural risk
minimization perspective it makes the most sense to systematically increase the complexity of
the data-encoding strategy by keeping κ and/or T constant, and increasing the number of data-
encoding gates.

7 Discussion
As discussed in Section 2, the results from the previous section can be applied in a variety of
ways. In particular, apart from the straightforward application of (probabilistically) bounding
the generalization gap of an output hypothesis, or bounding the number of data samples required
to guarantee an output hypothesis with a sufficiently small generalization gap, our results also
facilitate the use of structural risk minimization with respect to architectural hyper-parameters
related to the data-encoding strategy. We reiterate that the results obtained here should be
viewed as complementary to many of the prior results discussed in Section 4. In particular, our
results complement those which derive generalization bounds applicable to the same PQC-based
hypothesis classes, but with explicit dependencies on architectural hyper-parameters which do not
appear in our generalization bounds, such as depth, width, and total number of trainable gates.

More specifically, the generalization bounds of Section 6 allow one to use structural risk mini-
mization to find the optimal setting for data-encoding hyper-parameters (in the sense of yielding an
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output hypothesis with the smallest upper bound on true risk). However, they do not give any guid-
ance as to how one should choose the remaining architectural hyper-parameters, and in particular
those related to the trainable parts of the PQC. As such, a natural (and recommended) strategy
is to use different available and applicable generalization bounds to perform “multi-dimensional
structural risk minimization:” One can vary all architectural hyper-parameters for which one has a
generalization bound, and evaluate each hyper-parameter setting with respect to an upper bound
on the true risk obtained from a union bound over all existing applicable bounds. To make this
more concrete, assume that we have a family of hypothesis classes {F(k1,k2)}, parametrized by
two architectural hyper-parameters k1 and k2 (for example k1 could be the number of encoding
gates, and k2 could be the number of trainable gates in a PQC based model). Additionally, let us
assume that we have derived two different generalization bounds, one depending on k1, the other
depending on k2. More concretely, assume that we have a function g1(k1,m, δ) and a function
g2(k2,m, δ) such that, for all i ∈ {1, 2}, for all δ ∈ (0, 1), with probability 1− δ over S ∼ Pm, for
all h ∈ F(k1,k2) we have that

R(h) ≤ R̂S(h) + gi(ki,m, δ). (134)

Using a union bound, we can then straightforwardly combine these two results to obtain the
following generalization bound: For all δ ∈ (0, 1), with probability 1 − δ over S ∼ Pm, for all
h ∈ F(k1,k2) we have that

R(h) ≤ R̂S(h) + min
i

[gi(ki,m, δ/2)] . (135)

We see that we can perform structural risk minimization by varying both k1 and k2 and us-
ing mini [gi(ki,m, δ/2)] to calculate an upper bound on the true risk of the candidate hypoth-
esis. The above argument can clearly be generalized to an arbitrary number of architectural
hyper-parameters, and thereby yields a methodology for exploiting multiple existing generaliza-
tion bounds for “multi-dimensional structural risk minimization.”

While the approach we have just discussed certainly allows us to exploit existing complementary
generalization bounds depending on different architectural hyperparameters, it is an interesting
open question whether one can derive generalization bounds which depend simultaneously on mul-
tiple architectural hyper-parameters. In particular, it is of interest to understand whether one can
in this way obtain generalization bounds, depending on multiple architectural hyper-parameters,
which are tighter than the bounds obtained by taking a union bound over existing bounds, each of
which depends only on a single hyper-parameter. A potential strategy for obtaining such bounds
would be to better understand the effect of structural assumptions on the trainable part of a PQC
architecture on the structure of the coefficients of the associated GTP representation. More con-
cretely, while in this work we have focused on the frequency spectra of the GTPs, which are fully
determined by the data-encoding strategy, the coefficients of the GTPs are determined by both
the data-encoding strategy and the trainable part of the circuit. If one can characterize the impli-
cations of different circuit architectures on the structure of GTP coefficients, one could plausibly
use refinements of the techniques presented in Section 5 to derive generalization bounds for the
relevant GTPs that depend simultaneously on both the data-encoding strategy and complementary
parameters of the circuit architecture. For example, certain PQC architectures may lead to GTP
coefficients with a specific sparsity structure, or a constrained upper bound on a specific norm.
Such a norm-specific bound may allow us to exploit the general p-norm extensions of our GTP
bounds, mentioned in Remarks 8 and 12, to derive generalization bounds which also depend on
the trainable circuit architecture.

Finally, we recall the potential shortcomings of uniform generalization bounds. In particular,
in Ref. [36], the authors have shown both experimentally and analytically that sufficiently complex
neural networks can achieve zero empirical risk for classification tasks with randomly assigned
labels. As the true risk for such a learning problem can be no better than what would be achieved
by random guessing, any uniform generalization bound for such a hypothesis class cannot offer
any meaningful information in this complexity regime. More specifically, as uniform generalization
bounds hold, by definition, for all hypotheses in the hypothesis class, and as there exist hypotheses
which can achieve zero empirical risk even when generalization is not possible (i.e., when labels
are selected randomly), such uniform bounds must be trivial.
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It is, however, critical to emphasize that this finding applies only to sufficiently complex hypoth-
esis classes. More specifically, they apply to models capable of achieving zero empirical risk even
for completely unstructured data, which typically requires that the number of model parameters is
at least as large as the number of elements in the training data set. As the number of parameters
in a NISQ-regime PQC-based model is typically orders of magnitude less than the size of training
data sets associated with “real-world” learning problems, it is unlikely that these known issues
with uniform generalization bounds hinder the application of our uniform bounds to the analysis
of currently available and near-term PQC-based hypothesis classes.

Despite this, it is important to keep these concerns in mind as the complexity of available
PQC-based models increases. Consequently, there are a variety of natural open questions for
future research: Firstly, can one replicate both the experimental and analytical aspects of Ref. [36]
for PQC-based model classes? This would help to determine whether (or when) it is necessary
to move beyond uniform generalization bounds for PQC-based models. In particular, from an
experimental perspective, can one demonstrate the ability of a (sufficiently complex) PQC-based
model class to achieve zero risk for a randomly-relabeled real-world classification task? Secondly,
can one put an analytical bound on what is “sufficiently complex”, i.e., how many model parameters
are sufficient to ensure that for any training data set of size m, there always exists a hypothesis
in the hypothesis class which can achieve zero empirical risk? Additionally, the shortcomings of
uniform generalization bounds exposed in Ref. [36] have stimulated an explosion of research on
non-uniform generalization bounds for highly complex neural network models [37]. It would be
of interest to understand whether or how one can obtain non-uniform generalization bounds for
PQC-based models, which would tighten the bounds obtained in this work in the future regime of
high complexity.

8 Conclusion
In this work, we have derived Rademacher complexity and metric entropy bounds for PQC-based
model classes. These depend explicitly on architectural hyper-parameters associated with the data-
encoding strategy and are applicable to PQC-based models incorporating data re-uploading. By
exploiting tools and techniques from statistical learning theory, we have then used these complexity
bounds to obtain uniform generalization bounds, which allow to place a probabilistic upper-bound
on the out-of-sample performance of any hypothesis, given its performance on the data. Addi-
tionally, we have used the obtained generalization bounds to compare data-encoding strategies
from a generalization perspective and have discussed how, for certain data-encoding strategies,
our generalization bounds may be used for model selection via structural risk minimization. We
have stressed how the encoding-dependent generalization bounds obtained in this work should be
viewed as complementary to existing complexity and generalization bounds for PQC-based mod-
els, which depend explicitly on architectural hyper-parameters to which our bounds are insensitive.
More specifically, we have sketched in Section 7 how the combination of our bounds with existing
works facilitates model selection via multi-dimensional structural risk minimization. Finally, as
discussed in Section 7, it is important to acknowledge that the bounds we have obtained here are
expected to be useful for PQC-based models in the “moderate-complexity” regime, i.e., for models
parametrized by fewer parameters than the number of available data samples. However, in analogy
with known results for classical model classes, these bounds may cease to be meaningful as the
complexity of PQC-based models increases into an over-parametrized regime. Given this, we have
also sketched in Section 7 a variety of open questions and directions for future research.
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A Auxiliary results from statistical learning theory
In this appendix, we collect some well known results from classical statistical learning theory that
we make use of in our proofs.

Lemma 15 (Rademacher complexity progression (Theorem 2.15 in Ref. [35])). Let a, b ∈ R and
σ̃ : R → R an L-Lipschitz function and assume F0 ⊆ RX is a set of functions that includes the 0
function. Also, let F be the following function class

F :=
{
x 7→ σ̃


v +

m∑

j=1
ωjfj(x)



∣∣∣∣∣ |v| ≤ a, ‖ω‖1 ≤ b, and fj ∈ F0

}
. (136)

Then, the empirical Rademacher complexity of F with respect to any point ~x ∈ Xm can be bounded
in terms of the one of F0

R̂~x(F) ≤ L
(

a√
m

+ 2bR̂(F0)
)
. (137)

The 2 factor can be dropped if F0 = −F0.

Lemma 16 (Rademacher complexity of layered network (Corollary 2.11 in Ref. [35])). Let a, b > 0
and X :=

{
x ∈ Rd | ‖x‖∞ ≤ C

}
. Consider a neural network architecture with δ hidden layers that

implements F ⊆ RX , and such that

1. The activation function σ : R→ R is L-Lipschitz and anti-symmetric.

2. For every neuron, the vector of weights ω satisfies ‖ω‖1 ≤ b.

3. For every neuron, the modulus of the bias is upper-bounded by a.

Then, the empirical Rademacher complexity of F with respect to any point ~x ∈ Xm can be upper-
bounded as

R̂~x(F) ≤ 1√
m

(
Cbδ

√
2 log(2d) + a

δ−1∑

i=0
bi

)
. (138)

Lemma 17 (Massart’s Lemma [48]). Let N ∈ N. Let A ⊂ RN be a finite set contained in a
Euclidean ball of radius r > 0. Then

Eσ

[
sup
a∈A

1
n

N∑

i=1
σiai

]
≤ r

√
2 log|A|
N

, (139)

where the expectation is with respect to i.i.d. Rademacher random variables σ1, . . . , σN .

Lemma 18 (Talagrand’s Lemma (going back to [46]; see also Lemma 5.7 in Ref. [20])). Let
`1, . . . , `m : R → R be L-Lipschitz functions. Let F ⊂ RZ be a class of real-valued functions on
some data space Z. Then, for any z1, . . . ,zm ∈ Z,

1
m
Eσ

[
sup
f∈F

m∑

i=1
σi` ◦ f(zi)

]
≤ L

m
Eσ

[
sup
f∈FBΩ

m∑

i=1
σif(zi)

]
, (140)

where the expectations are over i.i.d. Rademacher random variables σ1, . . . , σm.
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Theorem 19 (Dudley’s Theorem ([49]; see also Theorem 8.1.2 in Ref. [47] or Theorem 1.19 in
Ref. [35])). For a fixed vector z ∈ Zm let G be a subset of the pseudo-metric space (RZ , ‖·‖2,z) and
let γ0 := supg∈G ‖g‖2,z. Then the empirical Rademacher complexity R̂z(G) of G with respect to z
can be upper-bounded as

R̂z(G) ≤ inf
ε∈[0, γ0

2 )



4ε+ 12√

m

γ0∫

ε

√
logN (G, ‖·‖2,z , β) dβ



 . (141)
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Killoran, “PennyLane: automatic differentiation of hybrid quantum-classical computations”,
arXiv:1811.04968 (2020).

[44] C. M. Popescu, “Learning bounds for quantum circuits in the agnostic setting”, Quantum
Information Processing 20, 1–24 (2021) doi: 10.1007/s11128-021-03225-7.

[45] C.-C. Chen, M. Watabe, K. Shiba, M. Sogabe, K. Sakamoto, and T. Sogabe, “On the ex-
pressibility and overfitting of quantum circuit learning”, ACM Transactions on Quantum
Computing 2, 1–24 (2021) doi: 10.1145/3466797.

[46] M. Ledoux and M. Talagrand, Probability in banach spaces: isoperimetry and processes
(Springer-Verlag, Berlin New York, 1991), doi: 10.1007/978-3-642-20212-4.

[47] R. Vershynin, High-dimensional probability: an introduction with applications in data science,
Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press,
2018), doi: 10.1017/9781108231596.

[48] P. Massart, “Some applications of concentration inequalities to statistics”, Annales de la Fac-
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Quantum Fourier sampling allows a quantum computer to sample from the probability distri-

bution given by the squares of the Fourier coe�cients of a Boolean function, assuming access

to quantum superposition examples for the function. This tool serves as a subroutine in several

quantum learning algorithms. However, the majority of Fourier-based quantum learning proce-

dures are designed speci�cally for learning from uniform superpositions. In this work, we inves-

tigate the task of learning Boolean linear functions from quantum examples with non-uniform

superposition weights, giving both sample complexity upper and lower bounds.

After the introductory Section 1, Section 2 contains the mathematical preliminaries for the

remainder of the paper. In particular, in addition to recalling fundamental notions from quantum

information and learning theory, respectively, there we also describe the basic concepts in classical

biased Fourier analysis of Boolean functions. Moreover, we discuss the extension of quantum

Fourier sampling to biased product distributions as well as the pretty good measurement as a

useful tool for analysing success probabilities in distinguishing quantum states.

In Section 3, we describe the quantum learning problem. The goal is to exactly learn an un-

known Boolean linear function f (a) : {−1, 1}n → {0, 1}, which is computed by taking the inner

product modulo 2 of an input n-bit string with an unknown n-bit string a. In our setting, a

quantum learner has access to quantum examples of the form
∑

x∈{−1,1}n
√
Dµ(x) |x, f (a)(x)⟩,

where Dµ(x) :=
∏n

i=1
(1+xiµi)/2 de�nes a product distribution with bias vector µ ∈ [−1, 1]n. As

a useful subroutine in solving this problem, we propose a generalized Bernstein-Vazirani algo-

rithm, Algorithm 2 in Section 4. By analyzing the biased Fourier coe�cients of a Boolean linear

function, we completely characterize the output distribution of biased quantum Fourier sampling

when performed on a correspondingly biased superposition state (Theorem 2).

Section 5 contains our upper bounds on the quantum sample complexity of learning Boolean

linear functions with respect to biased product distributions. On a high level, we obtain them by

�amplifying� the success probability in the generalized Bernstein-Vazirani algorithm. Algorithm

3 in Subsection 5.1 describes our �rst ampli�cation procedure, which is applicable for arbitrary

(except full) bias. Theorem 3 shows that Algorithm 3 can exactly learn a Boolean linear function

from O(ln(n)) biased superposition examples, with high success probability. In Subsection 5.2,

we present an alternative ampli�ed version of the generalized Bernstein-Vazirani algorithm as

Algorithm 4. In the case of small bias, we prove in Theorem 4 that this procedure leads to

an e�ectively n-independent sample complexity bound. In Appendix A, we prove analogues

of Theorem 4 for the cases of noisy quantum training data and a noisy implementation of the

involved quantum Fourier transforms. Moreover, Corollary 3 in Appendix A.3 gives a sample

complexity upper bound for the case in which only a bound on the bias, but not the exact bias

vector, is known in advance.

We complement these results with sample complexity lower bounds in Section 6. In Subsection

6.1, we demonstrate how to use an information-theoretic reasoning to recover the well-known

sample complexity lower bound of Ω(n) for exactly learning an unknown Boolean linear function
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from classical training data. Next, we turn to sample complexity lower bounds for the quantum

case in Subsection 6.2. In the case of strong bias, we prove in Theorem 6 that Ω(ln(n)) quantum

superposition examples are required to exactly learn an unknown Boolean linear function. For

our proofs, we relate the learning problem to a quantum state discrimination task and establish

lower bounds for the latter. We achieve this by bounding the success probability of the pretty

good measurement, which requires us to perform a detailed analysis of the Gram matrix for the

ensemble of possible quantum superposition examples.

I developed the idea for this project myself. I am solely responsible for the scienti�c content of

this article. As the single author of this article, I am solely responsible for writing this article.

Note: This article is based on results from my Master's thesis.
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Abstract
The problem of learning Boolean linear functions from quantum examples w.r.t. the
uniform distribution can be solved on a quantum computer using the Bernstein–
Vazirani algorithm (Bernstein and Vazirani, in: Kosaraju (ed) Proceedings of the
twenty-fifth annual ACM symposium on theory of computing, ACM,NewYork, 1993.
https://doi.org/10.1145/167088.167097). A similar strategy can be applied in the case
of noisy quantum training data, as was observed in Grilo et al. (Learning with errors is
easy with quantum samples, 2017). However, extensions of these learning algorithms
beyond the uniform distribution have not yet been studied. We employ the biased
quantum Fourier transform introduced in Kanade et al. (Learning dnfs under prod-
uct distributions via μ-biased quantum Fourier sampling, 2018) to develop efficient
quantum algorithms for learning Boolean linear functions on n bits from quantum
examples w.r.t. a biased product distribution. Our first procedure is applicable to any
(except full) bias and requires O(ln(n)) quantum examples. The number of quan-
tum examples used by our second algorithm is independent of n, but the strategy is
applicable only for small bias. Moreover, we show that the second procedure is stable
w.r.t. noisy training data and w.r.t. faulty quantum gates. This also enables us to solve
a version of the learning problem in which the underlying distribution is not known in
advance. Finally, we prove lower bounds on the classical and quantum sample com-
plexities of the learning problem. Whereas classically, Ω(n) examples are necessary
independently of the bias, we are able to establish a quantum sample complexity lower
bound of Ω(ln(n)) only under an assumption of large bias. Nevertheless, this allows
for a discussion of the performance of our suggested learning algorithms w.r.t. sample
complexity. With our analysis, we contribute to a more quantitative understanding of
the power and limitations of quantum training data for learning classical functions.

Keywords Computational learning theory · Exact learning · Quantum Fourier
learning

B Matthias C. Caro
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1 Introduction

The origins of the fields of machine learning as well as quantum information and com-
putation both lie in the 1980s. The arguably most influential learning model, namely
the PAC (“probably approximately correct”) model, was introduced byValiant in 1984
[26] with which the problem of learning was given a rigorous mathematical frame-
work. Around the same time, Benioff [7] and Feynman presented the idea of quantum
computers [12] to the public and thus gave the starting signal for important innova-
tions at the intersection of computer science, information theory and quantum theory.
Both learning theory and quantum computation promise new realms of computation in
which tasks that seem insurmountable from the perspective of classical computation
become feasible. The first has already proved its practical worth and is indispensable
for modern-world big data applications, the latter is not yet as practically relevant but
much work is invested to make the promises of quantum computation a reality. The
interested reader is referred to [20,25] for an introduction to statistical learning and
quantum computation and information, respectively.

Considering the increasing importance of machine learning and quantum compu-
tation, attempting a merger of the two seems a natural step to take and the first step
in this direction was taken already in [10]. The field of quantum learning has received
growing attention over the last few years and by now some settings are known in
which quantum training data and the ability to perform quantum computation can be
advantageous for learning problems from an information-theoretic as well as from
a computational perspective, in particular for learning problems with fixed underly-
ing distribution (see, e.g., [3] for an overview). It was, however, shown in [4] that no
such information-theoretic advantage can be obtained in the (distribution-independent)
quantum PACmodel (based on [10]) compared to the classical PACmodel (introduced
in [26]).

One of the early examples of the aptness of quantum computation for learning
problems is the task of learning Boolean linear functions w.r.t. the uniform distribution
via the Bernstein–Vazirani algorithm presented in [8].Whereas this task of identifying
an unknown n-bit string classically requires a number of examples growing (at least)
linearly with n, a bound on the sufficient number of copies of the quantum example
state independent of n can be established. This approachwas taken up in [13]where it is
shown that, essentially, the Bernstein–Vazirani-based learning method is also viable if
the training data is noisy. However, also this analysis is restricted to quantum training
data arising from the uniform distribution. The same limiting assumption was also
made in [10] for learning Disjunctive Normal Forms and in this context an extension
to product distributions was achieved in [17].

Hence, a next direction to go is building up on the reasoning of [17] to extend the
applicability of quantum learning procedures for linear functions to more general dis-
tributions. The analysis hereby differs from the one forDNFs because no concentration
results for the biased Fourier spectrum of a linear function are available. Moreover,
whereas many studies of specific quantum learning tasks focus on providing explicit
learning procedures yielding a better performance than known classical algorithms,
we complement our learning algorithms with lower bounds on the size of the training
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data for a comparison to the best classical procedure and for a discussion of optimality
among possible quantum strategies.

1.1 Overview over the results

The task of learning linear functions has already served as a toy model for quantum
speed-ups in the early days of quantum computing. We describe possible general-
izations of known results in different scenarios. First, in Theorem 3 we exhibit a
Fourier-sampling-based algorithm which learns Boolean linear functions on n inputs
from O(ln(n)) quantum examples arising from a c-bounded product distribution Dμ.
(Classically, it is known thatΩ(n) examples are required.) Moreover, for a bias vector

μ satisfying |μi | ≤ O
(

1√
n

)
for all i , this can be reduced to O(1) quantum exam-

ples (Theorem 4). We also show that this reduction to a constant number of quantum
examples is not possible for arbitrary product distributions by giving quantum sample
complexity lower bounds in Theorem 6.

In Theorem 8, we exhibit a noise bound for quantum examples arising from

a product distribution Dμ with |μi | ≤ O
(

1√
n

)
for all i but corrupted by noise

which guarantees that O(1) quantum examples still suffice for learning. Under milder
assumptions on the noise, a O(ln(n)) upper bound on the sample complexity is given.
Similarly, faulty quantum gates can be tolerated in our learning algorithm. Based on
this observation, we construct a quantum learning algorithm without prior knowl-
edge of the underlying distribution which requires O(n2) quantum examples by first
estimating the bias vector classically (Corollary 3).

1.2 Related work

The (classical) problem of learning linear functions from randomly drawn examples
in the presence of noise was studied in [9] (over the field F2) as well as in [22] (over
a field Fq for q prime). The latter of these two works also established the relevance
of this learning problem for cryptography by connecting it to certain lattice problems.
A different model for learning linear functions is studied in [16], where the training
data is not assumed to be noisy but instead only partial information about the function
values is revealed.

The quantum PAC model was introduced in [10], where it was employed for learn-
ing DNF formulae w.r.t. the uniform distribution using a quantum example oracle.
This was extended to product distributions by [17]. On the basis of this notion of
quantum examples, the known Bernstein–Vazirani algorithm [8] can be reinterpreted
as giving rise to a quantum learning algorithm for linear functions. This interpretation
is explicitly given and further elaborated upon for the case of noisy training data in
[11] (for q = 2) and in [13] (for general primes q). Cross et al. [11] established that,
whereas the learning parity problem without noise is feasible both for classical and
quantum computation, the learning parity with noise problem is widely believed to be
classically intractable but remains feasible for quantum computers, where the runtime
depends only logarithmically on the number of qubits. This quantum advantage for
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noisy systems was demonstrated experimentally in [23]. Grilo et al. [13] extends this
analysis to general fields and a broader class of noise models and obtains that also
for that scenario, learning linear functions from noisy data is feasible for quantum
computers; however, their runtime bound is polynomial in the number of subsystems.
In [5], the class of juntas is found to also allow for efficient quantum learning. The
framework of Fourier-based quantum exact learning is shown to be efficiently appli-
cable more generally also to Fourier-sparse functions in [1]. Limitations of the power
of quantum computation for learning have been studied in a series of papers culmi-
nating in [4] and more recently also in [2]. The former work shows that without prior
restrictions on the underlying probability distribution, quantum examples are not more
powerful than classical examples. The latter work demonstrates that, assuming quan-
tum hardness of the learning with errors problem from classical examples, the class
of shallow circuits is hard to learn from quantum examples.

Aside from the task of learning from examples, also the problem of learning from
membership queries, both classical and quantum, is well studied. For instance, [24]
established a polynomial relation between the number of required quantum versus
required classical queries, which was recently improved upon in [1]. Also, [19] uses
quantum membership queries for learning multilinear polynomials more efficiently
than is classically possible.

1.3 Structure of the paper

The paper is structured in the following way. In Sect. 2, we introduce the well-known
notions from classical learning, quantum computation and Boolean Fourier analysis
required for our purposes as well as the prototypic learning algorithm which moti-
vates our procedures. Section 3 consists of a description of the learning task to be
considered. This is followed by a generalization of the Bernstein–Vazirani algorithm
to product distributions in Sect. 4. In the next section, this is used to develop two quan-
tum algorithms for solving our problem. (“Appendix A” contains a stability analysis
of the second of the two procedures w.r.t. noise in training data and computation.)
In Sect. 6, we establish sample complexity lower bounds complementing the upper
bounds implied by the algorithms of Sect. 5. Finally, we conclude with some open
questions and the references.

2 Preliminaries

2.1 Basics of quantum information and computation

We first define some of the fundamental objects of quantum information theory, albeit
restricted to those required in our discussion. For the purpose of our presentation,
we will consider a pure n-qubit quantum state to be represented by a state vector
|ψ〉 ∈ C2n (in Dirac notation). Such a state encodes measurement probabilities in the
following way: If {|bi 〉}2ni=1 is an orthonormal basis of C2n , then there corresponds a
measurement to this basis and the probability of observing outcome i for a system in
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state |ψ〉 is given by |〈bi |ψ〉|2. Finally, when considering multiple subsystems we will
denote the composite state by the tensor product, i.e., if the first system is in state |ψ〉
and the second in state |φ〉, the composite system is in state |ψ, ϕ〉 := |ψ〉 ⊗ |φ〉.

Quantum computation now consists in evolution of quantum states. Performing a
computational step on an n-qubit state corresponds to applying an 2n × 2n unitary
transformation to the current quantum state. (The most relevant example of such
unitary gates in our context will be the (biased) quantum Fourier transform discussed
in more detail in Sect. 2.4.) As the outcome of a quantum computation is supposed to
be classical, as final step of our computation we perform a measurement such that the
final output will be a sample from the corresponding measurement statistics.

We will also use some standard notions from (quantum) information theory. For
example, we denote the Shannon entropy of a random variable X by H(X), the condi-
tional entropy of a random variable X given Y as H(X |Y ) and the mutual information
between random variables X and Y as I (X : Y ). Similarly, the von Neumann entropy
of a quantum state ρ will be denoted as S(ρ) and the mutual information for a bipartite
quantum state ρAB as I (ρAB) = I (A : B). Standard results on these quantities which
will enter our discussion can, e.g., be found in [20].

2.2 Basics of learning theory

Next we describe the model of exact learning. In classical exact learning for an input
space X , a target space {0, 1}, and a concept class F ⊂ {0, 1}X , a learning algo-
rithm receives as input labeled training data {(xi , f (xi ))}mi=1 for some (to the learner)
unknown f ∈ F , where the xi are drawn independently according to some probability
distribution D onX which is known to the learner. The goal of the learner is to exactly
reproduce the unknown function f from such training examples with high success
probability.

We can formalize this as follows: We call a concept class F exactly learnable
if there exists a learning algorithm A and a map mF : (0, 1) → N s.t. for every
D ∈ Prob(X) (where Prob(X) is the set of all probability measures on X ), f ∈ F and
δ ∈ (0, 1), running A on training data of size m ≥ mF (δ) drawn according to D and
f with probability ≥ 1− δ (w.r.t. the choice of training data) yields a hypothesis h s.t.
h(x) = f (x) for all x ∈ X . The smallest such map mF is called sample complexity
of exactly learning F .

Note that this definition of learning captures the information-theoretic challenge of
the learningproblem in the sample complexity, but it does not refer to the computational
complexity of learning. The focus on sample complexity is typical in statistical learning
theory. Hence, also our results will be formulated in terms of sample complexity
bounds. As we give explicit algorithms, these results directly imply bounds on the
computational complexity; however, we will not discuss them in any detail.

Note also that the exact learningmodel differs from thewell-knownPAC (“probably
approximately correct”), introduced by [26], in two ways. First, whereas the PAC
model only requires to approximate the unknown function with high probability, we
require to reproduce it exactly; in other words, we set the accuracy in PAC learning
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to 0. Second, whereas in the PAC scenario the learner does not know the underlying
distribution, we assume it to be fixed and known in advance. A short discussion on
how to relax this restriction can be found in Sect. A.3.

The quantum exact learning model differs from the classical model in the form
of the training data and the allowed form of computation. Namely, in quantum exact
learning, the training data consists of m copies of the quantum example state |ψ f 〉 =∑

x∈X
√
D(x)|x, f (x)〉, and this training data is processed by quantum computational

steps. With this small change, the above definition of exact learnability and sample
complexity now carry over analogously.

We conclude this introduction with a concentration result that has proven to be
useful throughout learning theory.

Lemma 1 (Hoeffding’s Inequality [15], compare also Theorem 2.2.6 in [27])
Let Z1, ..., Zn be real-valued independent random variables taking values in closed

and bounded intervals [ai , bi ], respectively. Then for every ε > 0

P

[
n∑

i=1

Zi − E[Zi ] ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1(ai − bi )2

)
.

This directly implies (after replacing Zi with −Zi ) that

P

[∣∣∣∣∣
n∑

i=1

Zi − E[Zi ]
∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2ε2∑n

i=1(ai − bi )2

)
.

2.3 �-biased Fourier analysis of Boolean functions

We now give the basic ingredients of μ-biased Fourier analysis over the Boolean cube
{−1, 1}n . For more details, the reader is referred to [21].
For a bias vector μ ∈ [−1, 1]n , define the μ-biased product distribution Dμ on
{−1, 1}n via

Dμ(x) :=
⎛
⎝ ∏

i :xi=1

1 + μi

2

⎞
⎠

⎛
⎝ ∏

i :xi=−1

1 − μi

2

⎞
⎠ =

∏
1≤i≤n

1 + xiμi

2
, x ∈ {−1, 1}n .

Thus, a positiveμi tells us that at the i th position the distribution is biased towards+1,
a negative μi tells us that at the i th position the distribution is biased towards −1. For
μ = 0 . . . 0, we simply obtain the uniform distribution on {−1, 1}n . The absolute value
of μi quantifies the strength of the bias in the i th component. We call Dμ c-bounded,
for c ∈ (0, 1], if μ ∈ [−1+ c, 1− c]n . Assuming the underlying product distribution
to be c-bounded thus corresponds to assuming that the bias is not arbitrarily strong.
Hence, we will in the following express notions of “small” or “large” bias either in
terms of the bias vector μ or in terms of the c-boundedness constant.
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For Fourier analysis, we now need an orthonormal basis for the function spaceR{−1,1}n

w.r.t. the inner product 〈., .〉μ defined by

〈 f , g〉μ = EDμ [ f g] =
∑

x∈{−1,1}n
f (x)g(x)Dμ(x).

One can show (using the product structure to reduce to the case n = 1) that such
an orthonormal basis is given by {φμ, j } j∈{0,1}n with φμ, j (x) = ∏

i : ji=1
xi−μi√
1−μ2

i

.

For a function f : {−1, 1}n → {−1, 1} this now gives a representation f (x) =∑
j∈{0,1}n f̂μ( j)φμ, j (x) with f̂μ( j) := 〈 f , φμ, j 〉μ. For μ = 0 . . . 0, we recover the

well-known orthonormal basis consisting of χ j (x) = (−1) j ·x from standard Fourier
analysis over the Boolean cube.

2.4 �-biased quantum Fourier sampling

Wenow turn to the description of the quantum algorithm forμ-biased quantumFourier
sampling which constitutes the basic ingredient of our learning algorithms and which,
to our knowledge, was first presented in [17]. There the authors demonstrate that the
μ-biased Fourier transform for a c-bounded Dμ with c ∈ (0, 1] can be implemented
on a quantum computer as the n-qubit μ-biased quantum Fourier transform: For x ∈
{−1, 1}n,

Hn
μ|x〉 = Hμ ⊗ . . . ⊗ Hμ|x1, . . . , xn〉 =

∑
j∈{0,1}n

√
Dμ(x)φμ, j (x)| j〉.

In the same way as the unbiased quantum Fourier transform can be used for quantum
Fourier sampling, this μ-biased version now yields a procedure to sample from the
μ-biased Fourier spectrum of a function using a quantum computer. We describe the
corresponding procedure in Algorithm 1.

Algorithm 1 μ-biased Quantum Fourier Sampling
Input: |ψ f 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x, f (x)〉 for a function f : {−1, 1}n → {0, 1}

Output: j ∈ {0, 1}n with probability
(
ĝμ( j)

)2, where the function g : {−1, 1}n → {−1, 1} is defined
as g(x) = (−1) f (x).

Success Probability: 1
2

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψ f 〉.
2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψ f 〉.
3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the sampling algorithm.
5: Output o ←⊥ and end computation.
6: else if jn+1 = 1 then � This corresponds to a success of the sampling algorithm.
7: Output o ← j1 . . . jn and end computation.
8: end if
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One can show that this algorithm indeed works as claimed by analyzing the trans-
formation of the quantum state throughout the steps algorithm and making use of the
orthonormality of the basis. This is the content of the following

Lemma 2 (Lemma 3 in [17])

Denote g : {−1, 1}n → {−1, 1}, g(x) = (−1) f (x). Then with probability (ĝμ( j))
2

2 ,
Algorithm 1 outputs the string j ∈ {0, 1}n .

Proof The proof can be found in [17], we reproducce it in “Appendix B.” ��

This result allows us to generalize results based on quantum Fourier sampling
w.r.t. the uniform distribution. In particular, we will apply it to obtain a generalization
of the Bernstein–Vazirani algorithm.

2.5 The pretty goodmeasurement

A basic problem in quantum information is that of distinguishing quantum states. We
now describe a useful tool in this context, namely a measurement that is guaranteed to
have a “pretty good” success probability to correctly identify an unknown state from
a known ensemble.

Suppose that Alice (A) chooses one among m pure states |ψi 〉 ∈ Cd according to
probabilities pi ∈ [0, 1], where pi ≥ 0 and

∑m
i=1 pi = 1 and then sends the state

to Bob (B). B wants to identify the state by performing a POVM measurement A.
Let E = {(pi , |ψi 〉)}i=1...,m be the ensemble describing A’s preparation procedure,
denote B’s optimal success probability by Popt := maxPOVM A PA, where PA :=∑m

i=1 pi 〈ψi |Ai |ψi 〉 for a POVM A = {Ai }i=1,...,m . Hausladen and Wootters [14]
suggested a canonical form for a measurement for state discrimination, which is now
usually referred to as the “pretty good measurement” (PGM) corresponding to the
ensemble E . It is defined in the following way:

First let |ψ ′
i 〉 := √

pi |ψi 〉 be the states renormalized according to their respective
probabilities. The density operator of the ensemble E is ρ := ∑m

i=1 pi |ψi 〉〈ψi | =∑m
i=1 |ψ ′

i 〉〈ψ ′
i |. Now define |ϕi 〉 := ρ− 1

2 |ψi 〉, where the inverse square root is taken
only over nonzero eigenvalues of ρ. Now the PGM is APGM = {|ϕi 〉〈ϕi |}i=1,...,m .
(Observe that this is indeed a valid POVM, even a projection-valued measure (PVM),

because
∑m

i=1 |ϕi 〉〈ϕi | = ρ− 1
2 ρρ− 1

2 = 1d .)
The “pretty good” performance of the PGM was proved in [6]:

Theorem 1 For the PGM measurement defined above it holds that

Popt (E)2 ≤ PPGM (E) ≤ Popt (E).

Another useful property of the PGM is that the corresponding success probability
can be computed from the Gram matrix of the ensemble as follows:
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Lemma 3 The success probability for the PGM measurement for an ensemble E =
{(pi , |ψi 〉)}i=1...,m can be written as

P PGM (E) =
m∑
i=1

√
G(i, i)2,

where G is the Gram matrix with entries G(i, j) = √
pi p j 〈ψi |ψ j 〉 for 1 ≤ i, j ≤ m.

Proof This result can be shown by direct computation using the definition of the PGM
and the uniqueness of the positive square root of a positive matrix. ��

3 The learning problem

We now describe the learning task which we aim to understand. For a ∈ {0, 1}n , define

f (a) : {−1, 1}n → {0, 1}, f (a)(x) :=
n∑

i=1

ai
1 − xi

2
(mod 2).

When we observe that 1−xi
2 is simply the bit-description of xi , it becomes clear that

f (a) computes the parity of the entries of the bit-description of xi at the positions at
which a has a 1-entry. To ease readability, we will write x̃i = 1−xi

2 .
The classical task which inspires our problem is the following: Given a set of m

labeled examples S = {(xi , f (a)(xi ))}mi=1, where the xi are drawn i.i.d. according
to Dμ, determine the string a with high success probability. Here, we assume prior
knowledge of the underlying distribution and that the underlying distribution is a
c-bounded product distribution as introduced in Sect. 2.4. This means that we are
considering a problem of exact learning from examples with instances drawn from a
distribution that is known to the learner in advance.

Classically, as we show in Sect. 6, successfully solving the task requires a number of
examples that grows at least linearly in n. If we consider a version of this problemwith
noisy training data, then known classical algorithms perform worse both w.r.t. sample
complexity and running time. For example, [18] exhibits an algorithmwith polynomial
(superlinear) sample complexity but barely subexponential runtime (both w.r.t. n).

The step to the quantum version of this problem now is the same as from classical
to quantum exact learning. This means that training data is given as m copies of the
quantum example state |ψa〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x, f (a)(x)〉 and the learner is

allowed to use quantum computation to process the training data. The goal of the
quantum learner remains that of outputting the unknown string a with high success
probability.
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4 A generalized Bernstein–Vazirani algorithm

To understand how μ-biased quantum Fourier sampling can help us with this learning
problem, we first compute the μ-biased Fourier coefficients of g(a) := (−1) f

(a)
, with

f (a) for a ∈ {0, 1}n the linear functions defined in Sect. 3.

Lemma 4 Let a ∈ {0, 1}n, g(a) := (−1) f
(a)

and μ ∈ (−1, 1)n. Then the μ-biased
Fourier coefficients of g(a) satisfy:

(i) If ∃ 1 ≤ i ≤ n s.t. ai = 0 �= ji , then ĝ(a)
μ ( j) = 0.

(ii) If for all 1 ≤ i ≤ n s.t. ai = 0 also ji = 0, then

ĝ(a)
μ ( j) =

⎛
⎝ ∏

l:al=1 �= jl

μl

⎞
⎠

⎛
⎝ ∏

l:al=1= jl

√
1 − μ2

l

⎞
⎠ .

We can reformulate this as

ĝ(a)
μ ( j) =

⎛
⎝ ∏

l:al=0

(1 − jl)

⎞
⎠

⎛
⎝ ∏

l:al=1

(
(1 − jl)μl + jl

√
1 − μ2

l

)⎞
⎠ , j ∈ {0, 1}n .

Proof We first observe that all the “objects of interest,” namely the probability distri-
bution Dμ, the basis functions φμ, j , and the target function ĝ(a)

μ , factorize. This now
implies that also the μ-biased Fourier coefficients factorize, i.e., we have

ĝ(a1...an)
μ ( j1 . . . jn) =

n∏
i=1

EDμi
[φμi , ji (xi ) · (−1)ai ·x̃i ].

Therefore we only have to study the case n = 1 in detail and the general result
then follows. In this case, we have f (a)(x) = ax̃ , g(a)(x) = (−1)ax̃ for x̃ = 1−x

2 ,
φμ,0(x) = 1, and φμ,1(x) = x−μ√

1−μ2
. (We leave out unnecessary indices to improve

readability.) We compute

ĝ(a)
μ ( j) = EDμ[(−1)ax̃φμ, j (x)] = 1 + μ

2
· 1 · φμ, j (1) + 1 − μ

2
· (−1)a · φμ, j (−1).

By plugging in we now obtain

ĝ(0)
μ (0) = 1, ĝ(0)

μ (1) = 0, ĝ(1)
μ (0) = μ, ĝ(1)

μ (1) =
√
1 − μ2,

which is exactly the claim for n = 1. ��
For clarity, we write down explicitly the algorithm which we obtain as a gener-

alization of the Bernstein–Vazirani algorithm to a μ-biased product distribution as
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Algorithm 2. The generalization compared to the standard Bernstein–Vazirani algo-
rithm consists only in going from the uniform to a more general product distribution,
which gives rise to different observation probabilities.

Algorithm 2 Generalized Bernstein–Vazirani algorithm

Input: |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , and μ ∈ [−1, 1]n

Output: o ∈ {0, 1}n with probability

⎛
⎝ ∏
l:al=0

(1 − ol )

⎞
⎠

⎛
⎝ ∏
l:al=1

(
(1 − ol )μ

2
l + ol (1 − μ2

l )
)⎞
⎠

Success Probability: 1
2

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψa〉.
2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψa〉.
3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the algorithm.
5: Output o =⊥.
6: else if jn+1 = 1 then � This corresponds to a success of the algorithm.
7: Output o = j1 . . . jn .
8: end if

We now show that the output probabilities of Algorithm 2 are as claimed in its
description. This follows directly by combining Lemma 2 on the workings of μ-
biased quantum Fourier sampling with Lemma 4 on the μ-biased Fourier coefficients
of our target functions and is the content of the following

Theorem 2 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 be a quantum example state,

with a ∈ {0, 1}n and μ ∈ (−1, 1)n. Then step 3 of Algorithm 2 provides an outcome
| j1 . . . jn+1〉 with the following properties:

(i) P[ jn+1 = 0] = 1
2 = P[ jn+1 = 1],

(ii) P[ j1 . . . jn = a| jn+1 = 1] = ∏
l:al=1

(1 − μ2
l ),

(iii) for o �= a:

P[ j1 . . . jn = o| jn+1 = 1] =
∏

l:al=0

(1 − ol) ·
∏

l:al=1

(
(1 − ol)μ

2
l + ol(1 − μ2

l )
)
,

(iv) P[∃1 ≤ i ≤ n : ai = 0 �= ji | jn+1 = 1] = 0, and

(v) P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤
n∑

i=1
μ2
i . In particular, if Dμ is

c-bounded, then P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤ n(1 − c)2.

Note that (v) can be trivial if the bias is too strong. This observation already hints
at why we later use different procedures for arbitrary and for small bias.

We also want to point out that in the case of no bias (i.e., μ = 0), Algorithm 2
simply reduces to the well-known Bernstein–Vazirani algorithm [8].
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5 Quantum sample complexity upper bounds

This section contains the description of two procedures for solving the task of learning
an unknown Boolean linear function from quantum examples w.r.t. a product distribu-
tion. (Here, we assume perfect quantum examples, noisy examples will be taken into
consideration in the next section.) It is subdivided into an approach which is applica-
ble for arbitrary (albeit not full) bias in the product distribution and a strategy which
produces better results but is only valid for small bias.

5.1 Arbitrary bias

As in the case of learning w.r.t. the uniform distribution, we intend to run the gen-
eralized Bernstein–Vazirani algorithm multiple times as a subroutine and then use
our knowledge of the outcome of the subroutine together with probability-theoretic
arguments. The main difficulty compared to the case of an example state arising from
the uniform distribution lies in the fact that whereas an observation of jn+1 = 1 when
performing the standard Bernstein–Vazirani algorithm guarantees that j1 . . . jn equals
the desired string, this is not true in the μ-biased case. Hence, we have to develop a
different procedure of learning from the outcomes of the subroutine. For this purpose,
we propose Algorithm 3.

Algorithm 3 Amplified Generalized Bernstein–Vazirani algorithm - Version 1

Input: m copies of |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , where the number of

copies is m ≥ C

⎛
⎝
⎡
⎢⎢⎢

(
2 ln

(
1

1−c+ c2
2

))−1 (
ln(n) + ln( 2δ )

)⎤⎥⎥⎥

⎞
⎠ for a suitable constant C > 0, and

μ ∈ (−1, 1)n and c ∈ (0, 1] s.t. Dμ is c-bounded.
Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 2 on the lth copy of |ψa〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi := max

l:o(l) �=⊥
o(l)
i .

7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

The amplification procedure in Algorithm 3 differs from the majority vote in the
standard Bernstein–Vazirani learning procedure (w.r.t. the uniform distribution) as
used in [11,13] in the following two ways: Instead of working on the level of the
whole string, we use a componentwise strategy. And instead of taking a majority
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vote over observed values, we take a maximum to account for the asymmetry in the
probability of an observation error (see Theorem 2).

We now show that the number of copies postulated in Algorithm 3 is actually
sufficient to achieve the desired success probability.

Theorem 3 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1]. Then

O

⎛
⎝
(
2 ln

(
1

1 − c + c2
2

))−1 (
ln(n) + ln(

2

δ
)

)⎞
⎠

copies of the quantum example state |ψa〉 are sufficient to guarantee that, with prob-
ability ≥ 1 − δ, Algorithm 3 outputs the string a.

Proof We want to show that P[Algorithm 3 does not output a] ≤ δ. We do so by
treating separately the cases in which Algorithm 3 does not output a.
The first such case occurs if o =⊥. The second such case would be that there exists
1 ≤ i ≤ n s.t. ai = 0 �= oi , but due to Theorem 2, this is an event of probability 0.
The third and last such case is that there exists 1 ≤ i ≤ n s.t. ai = 1 �= oi . Hence, we
can decompose the probability of Algorithm 3 producing a wrong output as

P[Algorithm 3 does not output a]
= P[Algorithm 3 outputs ⊥] + P[∃1 ≤ i ≤ n : ai = 1 �= oi ]. (5.1)

First, we bound the probability of the algorithm outputting ⊥ (i.e., of each subroutine
failing) as follows:

P[Algorithm 3 outputs ⊥]
= P[∀1 ≤ l ≤ m : Algorithm 2 applied to |ψa〉 outputs ⊥]
=

(
1

2

)m

,

where the last step uses Theorem 2 and that the training data consists of independent
copies of |ψa〉, i.e., is given as a product state. The choice of m now guarantees that
this last term is ≤ δ

2 (if we choose the constant C > 0 sufficiently large).
Now we bound the second term in Eq. (5.1). We make the following observation:

Suppose 1 ≤ i ≤ n is s.t. ai = 1. As the Fourier coefficients, and with them the output
probabilities, factorize, the probability of Algorithm 2 outputting a string j1 . . . jn with
ji = 1 = ai is simply the probability of Algorithm 2 applied to only the subsystem
state of |ψa〉 corresponding to the i th and the (n + 1)st subsystem outputting a 1. By
Theorem 2, this probability is

P[ ji = 1] = P[ jn+1 = 1] · P[ ji = 1| jn+1 = 1] = 1

2
· (1 − μ2

i ).
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Hence, assuming ai = 1, the probability of not observing a 1 at the i th position
in any of the m runs of Algorithm 2 is

(
1 − 1

2 · (1 − μ2
i )
)m = ( 1

2 (1 + μ2
i )
)m

. By
c-boundedness of the distribution Dμ we get

(
1

2
(1 + μ2

i )

)m

≤
(
1

2
+ 1

2
(1 − c)2

)m

=
(
1 − c + c2

2

)m

.

So using the union bound, we arrive at

P[∃1 ≤ i ≤ n : ai = 1 �= oi ]
= P[∃1 ≤ i ≤ n : ai = 1 and in m runs no 1 is observed at the i th entry]

≤
n∑

i=1

P[ai = 1 and in m runs no 1 is observed at the i th entry]

≤ n ·
(
1 − c + c2

2

)m

.

The choice ofm guarantees that this last term is≤ δ
2 (if we choose the constant C > 0

sufficiently large).
We now combine this with Eq. (5.1) and obtain

P[Algorithm 3 does not output a] ≤ δ

2
+ δ

2
= δ,

which finishes the proof. ��

Remark 1 We want to comment shortly on the dependence of the sample complexity
bound on the c-boundedness constant by considering extreme cases. As c → 0,
i.e., we allow more and more strongly biased distributions, the sample complexity
goes to infinity. This reflects the fact that in the case of a fully biased underlying
product distribution, only a single bit of information about a can be extracted, so
exactly learning the string a is (in general) not possible.
For c = 1, i.e., the case of no bias, we simply obtain that O

((
ln(n) + ln( 2

δ
)
))

copies
of the quantum example state are sufficient. Note that this does not coincide with the
bound obtained for the standard Bernstein–Vazirani procedure which is independent
of n. (This can easily be shown using Lemma 1.)

This discrepancy is due to the difference in “amplification procedures.” Namely,
in Algorithm 3 we do not explicitly make use of the knowledge that, given jn+1 =
1, we know the probability of j1 . . . jn = a1 . . . an because, whereas for μ = 0
this probability equals 1, for μ �= 0 it can become small. Hence, for μ �= 0 our
algorithm introduces an additional procedure to deal with the uncertainty of j1 . . . jn
even knowing jn+1 and we see in the proof that this yields the additional ln(n) term. In
the next subsection, we describe a way to get rid of exactly that ln(n) term for “small”
bias.
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5.2 Small bias

In this subsection, we want to study the case in which (v) of Theorem 3 gives a good
bound. Namely, throughout this subsection we will assume that the c-boundedness
constant is s.t. n(1 − c)2 < 1

2 or, equivalently, c > 1 − 1√
2n
. This assumption will

allow us to apply a different procedure to learn from the output of Algorithm 2 and
thus obtain a different bound on the sample complexity of the problem. Note, however,
that this requirement becomes more restrictive with growing n and can in the limit
n → ∞ only be satisfied by c = 1, i.e., for the underlying distributions being uniform.
Also, we will from now on refer to c as c-boundedness parameter because the name
“constant” would hide the n-dependence.

Our procedure for the case of small bias is given in Algorithm 4.

Algorithm 4 Amplified Generalized Bernstein–Vazirani algorithm - Version 2

Input: m copies of |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , where the number of

copies is m ≥ C
(

4
(1−2n(1−c)2)2

ln
(
2
δ

))
, as well as μ ∈ [−1, 1]n and c ∈ (0, 1] s.t. Dμ is c-bounded.

Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 2 on the lth copy of |ψa〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi = argmaxr∈{0,1}|{1 ≤ l ≤ m|o(l)

i = r}|.
7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

Theorem 4 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 − 1√
2n
. Then

O
(

1

(1 − 2n(1 − c)2)2
ln

(
1

δ

))

copies of the quantum example state |ψa〉 are sufficient to guarantee that, with prob-
ability ≥ 1 − δ, Algorithm 4 outputs the string a.

Note that due to the required lower bound on c the sample complexity upper bound
basically loses its n-dependence. This is different from the result of Theorem 3, where
n explicitly entered the upper bound.
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Proof By Theorem 2, we have P[ jn+1 = 1] = 1
2 . Hence, the probability of observing

jn+1 = 1 in at most k − 1 of the m runs of Algorithm 2 is given by

k−1∑
l=0

(
m

i

)(
1

2

)i (1

2

)m−i

= P
[
Bin(m,

1

2
) ≥ m − k

]
,

where Bin denotes a binomial distribution.
Next we assume k ≤ m

2 (this will be justified later in the proof) and use Hoeffding’s
inequality (Lemma 1) to obtain

P
[
Bin

(
m,

1

2

)
≥ m − k

]
= P

[
Bin

(
m,

1

2

)
− m

2
≥ m − k − m

2

]

≤ exp

(
−2

(m
2 − k

)2
m

)
. (5.2)

We will now search for the number of observations of jn+1 = 1 which is required
to guarantee that the majority string is correct with high probability. Assume that we
observe jn+1 = 1 in k runs of Algorithm 2, k ∈ 2N. (The latter assumption clearly
does not significantly change the number of copies.) Using (v) from Theorem 2, we
see that

P[∃1 ≤ i ≤ n : ai �= oi ] ≤ P[∃1 ≤ i ≤ n : ai = 0 �= oi ]
+ P[∃1 ≤ i ≤ n : ai = 1 �= oi ]

≤ 0 +
k∑

l=� k
2 �

(
k

l

)
· (1 − n(1 − c)2)k−l · (n(1 − c)2)l

= P
[
Bin(k, n(1 − c)2) ≥ k

2

]
,

where the second inequality uses that themajority string can only bewrong if in at least
half of the runs where we observed jn+1 = 1 there was some error in the remaining
string.

Nextwe useHoeffding’s inequality and obtain, using our assumption n(1−c)2 < 1
2 ,

that

P
[
Bin(k, n(1 − c)2) ≥ k

2

]

= P
[
Bin(k, n(1 − c)2) − kn(1 − c)2 ≥ k

2
− kn(1 − c)2

]

≤ exp

(
−k

(1 − 2n(1 − c)2)2

2

)
.
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We now set this last expression ≤ δ
2 for δ ∈ (0, 1) and rearrange the inequality to

k ≥ 2

(1 − 2n(1 − c)2)2
ln

(
2

δ

)
. (5.3)

Combining Eqs. (5.3) and (5.2) we now require

exp

⎛
⎜⎝−

2
(
m
2 − 2

(1−2n(1−c)2)2
ln

( 2
δ

))2

m

⎞
⎟⎠ !≤ δ

2
.

Rearranging this inequality gives

m2 − 2m

((
1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

) +
(
1−2n(1−c)2

2

)−4
ln2

( 2
δ

) ≥ 0.

By finding the zeros of this quadratic function, we get to the sufficient sample size

m ≥
((

1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

)

+
√(((

1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

))2

−
(
1−2n(1−c)2

2

)−4
ln2

( 2
δ

)
.

This is in particular guaranteed if

m ≥ 4

(1 − 2n(1 − c)2)2
ln

(
2

δ

)
.

Note that this lower bound in particular implies m ≥ 2k, as required earlier in the
proof. This proves the claim of the theorem thanks to the union bound. ��

Morally speaking, Theorem 4 shows that for product distributions which are close
enough to the uniform distribution the sample complexity upper bound is the same
as for the unbiased case. We conjecture that there is an explicit noise threshold above
which this sample complexity cannot be reached (see the discussion in Sect. 6), but
have not yet succeeded in identifying such a critical value.

In this section, we have discussed the case of quantum training data that perfectly
represents the target function in a superposition state. Similar results can be proved
in the case of noisy quantum training data. As the reasoning is analogous to the one
presented here, the details are deferred to “Appendix A.”

6 Sample complexity lower bounds

After proving upper bounds on the number of required quantum examples by exhibit-
ing explicit learning procedures in the previous section, we now study the converse
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question of sample complexity lower bounds. We will prove both classical and quan-
tum sample complexity lower bounds and then relate them to the above results. Our
proof strategy follows a state-discrimination-based strategy from [3].

6.1 Classical sample complexity lower bounds

Wefirst prove a sample complexity lower bound for the classical version of our learning
problem that upon comparison with our obtained quantum sample complexity upper
bounds shows the advantage of quantum examples over classical training data in this
setting. Neither the result nor the proof strategy are new, but we include them for
completeness.

Theorem 5 Let a ∈ {0, 1}n, μ ∈ (−1, 1)n s.t. μ is c-bounded for some c ∈ (0, 1].
Let A be a classical learning algorithm and let m ∈ N be such that upon input of
m examples of the form (xi , f (a)(xi )), with xi drawn i.i.d. according to Dμ, with
probability ≥ 1 − δ w.r.t. the choice of training data, A outputs the string a. Then
m ≥ Ω(n).

Proof Let A be a random variable uniformly distributed on {0, 1}n . (A describes the
underlying string from the initial perspective of the learner.) Let B = (B1, . . . , Bm) be
a random variable describing the training data corresponding to the underlying string.
Our proof will have three main steps: First, we prove a lower bound on I (A : B) from
the learning requirement. Second, we observe that I (A : B) ≤ m · I (A : B1). And
third, we prove an upper bound on I (A : B1). Then combining the three steps will
lead to a lower bound on m.

We start with the mutual information lower bound. Let h(B) ∈ {0, 1}n denote the
random variable describing the output hypothesis of the algorithm A upon input of
training data B. Let Z = 1{h(B)=A}. By the learning requirement we have P[Z = 1] ≥
1 − δ and thus H(Z) ≤ H(δ). Therefore we obtain

I (A : B) = H(A) − H(A|B)

≥ H(A) − H(A|B, Z) − H(Z)

= H(A) − P[Z = 1]H(A|B, Z = 1) − P[Z = 0]H(A|B, Z = 0) − H(Z)

≥ n − P[Z = 1] · 0 − δn − H(δ)

= (1 − δ)n − H(δ)

= Ω(n).

Wenowshow that fromm exampleswe cangather atmostm times asmuch information
as from a single example. Here we directly cite from [3]. Namely,

I (A : B) = H(B) − H(B|A) = H(B) −
m∑
i=1

H(Bi |A)

≤
m∑
i=1

H(Bi ) − H(Bi |A) =
m∑
i=1

I (A : Bi ) = m · I (A : B1).
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Here, the second step uses independence of the Bi conditioned on A, the third step
uses subadditivity of the Shannon entropy, and the final step uses that the distributions
of (A, Bi ) are the same for all 1 ≤ i ≤ m.

We come to the upper bound on the mutual information. Write B1 = (X , L)

for X ∈ {−1, 1}n and L ∈ {0, 1}, i.e., with probability Dμ(x) we have (X , L) =
(x, f (a)(x)). Note that I (A : X) = 0 because X and A are independent random
variables. Also, I (A : L|X = 1 . . . 1) = 0 because f (a)(1 . . . 1) = 0 ∀a ∈ {0, 1}n ,
and for x ∈ {−1, 1}n \ {1 . . . 1}

I (A : L|X = x) = I (A{i |Xi=−1} : L|X = x)

= H(A{i |Xi=−1}|X = x) − H(A{i |Xi=−1}|L, X = x)

= |{i |xi = −1}| − (|{i |xi = −1}| − 1)

= 1.

Here, the first step is due to the fact that f (a)(x) does not depend on the entries a j

with x j = 1, the third step follows because A{i |xi=−1} is uniformly distributed on a
set of size 2|{i |xi=−1}| and f (a) assigns the labels 0 and 1 to half of the elements of
that set, respectively.
This now implies

I (A : B1) = I (A : X) + I (A : L|X)

= 0 +
∑

x∈{−1,1}n
Dμ(x)I (A : L|X = x)

= 1.

Here, the first step is due to the chain rule for mutual information and the last step
simply uses the fact that Dμ defines a probability distribution.
Now we combine our upper and lower bounds on the mutual information and obtain

m ≥ (1 − δ)n − H(δ) = Ω(n),

as claimed. ��
Remark 2 The result of Theorem 5 is intuitively clear: In order to identify the under-
lying string the learning algorithm has to learn n bits of information. However, a
condition of the form f (a)(x) = l for x ∈ {0, 1}n, l ∈ {0, 1}, takes away at most one
degree of freedom from the initial space {0, 1}n for a and thus from such an equality
the algorithm can extract at most 1 bit of information. So at least n examples will be
required. This observation is thus neither new nor surprising. But we want to empha-
size that this analysis works independently of the product structure of the underlying
distribution Dμ.

If we compare the classical lower bound from Theorem 5 with our quantum upper
bounds from Theorems 3 and 4 , we conclude that quantum examples allow us to
strictly outperform the best possible classical algorithm w.r.t. the number of required
examples.
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6.2 Quantum sample complexity lower bounds

We can use a similar argument to prove quantum sample complexity lower bounds.
Note that steps 1 and 2 carry over with (almost) no changes. Only the analysis of step
3 changes significantly. Even though this proof strategy is possible, as in [3] it can be
improved upon by an argument based on state discrimination. We will thus follow this
same approach.

An n-independent quantum sample complexity lower bound is given in the follow-
ing

Lemma 5 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1]. Let A be a quantum learning algorithm
and let m ∈ N be such that upon input of m copies of |ψa〉, with probability ≥ 1 − δ,
A outputs the string a. Then m ≥ Ω( 1c ln(

1
δ
)).

Remark 3 Note that any quantum sample complexity lower bound will also lower
bound the classical sample complexity. Hence, Lemma 2 also holds in the scenario of
the previous subsection, which is why we did not discuss the δ-dependence there.

Proof Let a, b ∈ {0, 1}n s.t. there is exactly one 1 ≤ i ≤ n s.t. ai �= bi . AsA is able to
distinguish the quantum states |ψa〉⊗m and |ψb〉⊗m with success probability ≥ 1− δ,
we have |〈ψa |ψb〉m | ≤ 2

√
δ(1 − δ) (see subsection 3.2). We compute

〈ψa |ψb〉 =
∑

x,y∈{−1,1}n

√
Dμ(x)Dμ(y)〈x, f (a)(x)|y, f (b)(y)〉

=
∑

x∈{−1,1}n
Dμ(x)δ f (a)(x), f (b)(x).

By our assumption on a and b, δ f (a)(x), f (b)(x) ≥ δxi ,1. Therefore

〈ψa |ψb〉 ≥ PDμ [xi = 1] = 1 + μi

2
.

We now combine this with our upper bound and rearrange to obtain

m ≥
(
ln

(
1 + μi

2

))−1 (
ln(2) + 1

2
ln(δ(1 − δ))

)

≥ Ω

(
1

μi − 1
ln(δ)

)

≥ Ω

(
1

c
ln

(
1

δ

))
,

where we used the elementary inequality 1
x−1 − (

ln
( 1+x

2

))−1 ≥ 0 for x ∈ [0, 1)
combined with ln(δ) ≤ 0. ��
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We will compare this lower bound with our upper bound(s) from Sect. 5 later on.
Now we turn to the n-dependent part of the sample complexity lower bound.

Theorem 6 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, and μ ∈ (−1, 1)

be such that μi = μ ≥ 1 − 1
ln(n)

for all 1 ≤ i ≤ n. Let A be a quantum learning
algorithm and let m ∈ N be such that upon input of m copies |ψa〉, with probability
≥ 1 − δ, A outputs the string a, for 0 < δ ≤ 1

3 . Then m ≥ Ω (ln(n)).

Before going into the detailed proof, we give an overview over its underlying idea.
The learning assumption implies that A is able to identify a state from the ensemble
E = {( 1

2n , |ψa〉⊗m
)}

a∈{0,1}n with success probability ≥ 1 − δ. Thus we will obtain a
lower bound on m by proving an upper bound on the optimal success probability for
this state identification task.

Recall that by Theorem 1, the optimal success probability can be upper bounded by
the square root of the PGM success probability. Moreover, by Lemma 3, the latter can
be computed via the Gram matrix of the ensemble. Thus, we now first study the Gram
matrix and its square root and then use these results to bound the optimal success
probability.

We first recall a well-known result on the diagonalization of matrices with a specific
structure, namely matrices whose entries can be written as Boolean function of the
sum of the indices.

Lemma 6 Let G ∈ R2n×2n be a matrix with entries given by G(a, b) = g(a + b) for
a, b ∈ {0, 1}n and a function g : {0, 1}n → R. Then

(HGH−1)(a, b) = 2n ĝ(a)δa,b,

with H ∈ R2n×2n given by H(a, b) = (−1)a·b√
2n

. In other words, the set of eigenvalues

of G is given by {2n ĝ(a) | a ∈ {0, 1}n} and G is unitarily diagonalized by H.

Proof The proof can be found in [3], we reproduce it in “Appendix B” ��
We will later apply this result for G being the Gram matrix corresponding to the

ensemble in our state identification task. Motivated by Lemma 3, we first use the
diagonalization of such a matrix to explicitly compute the diagonal entries of the
matrix square root.

Corollary 1 Let G ∈ R2n×2n be a matrix with entries given by G(a, b) = g(a+ b) for
a, b ∈ {0, 1}n and a function g : {0, 1}n → R. Then, for every a ∈ {0, 1}n

√
G(a, a) = 1√

2n

∑
j∈{0,1}n

√
ĝ( j).

Proof The proof can be found in [3], we reproduce it in “Appendix B.” ��
With this, we can now prove Theorem 6:
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Proof of Theorem 6 Asdiscussed above,we consider the problemof state identification
with the ensemble E = {( 1

2n , |ψa〉⊗m
)}

a∈{0,1}n . By Lemma 3, with the Gram matrix

Gm(a, b) := 1
2n 〈ψa |ψb〉m we can write the success probability as

PPGM (E) =
∑

a∈{0,1}n

√
Gm(a, a)2.

In our scenario, the Gram matrix has entries

Gm(a, b) = 1

2n
〈ψa |ψb〉m

= 1

2n+m

(
1 + μdH (a,b)

)m = 1

2n+m

(
1 + μdH (a+b,0)

)m
.

This can, e.g., be shown by induction on n when observing that

PDμ [ f (a)(x) = f (b)(x)]
= PDμ

[
f (a1:n−1)(x1:n−1) = f (b1:n−1)(x1:n−1) ∧ an

1 − xn
2

= bn
1 − xn

2

]

+ PDμ

[
f (a1:n−1)(x1:n−1) �= f (b1:n−1)(x1:n−1) ∧ an

1 − xn
2

�= bn
1 − xn

2

]
.

In particular, we can write Gm(a, b) = fm(a + b) for the function fm(x) =
1

2n+m

(
1 + μdH (x,0)

)m
. From now on, we will write |x | := dH (x, 0). By Corollary 1,

we can upper bound the diagonal entries of
√
Gm (and thus the PGM and the optimal

success probability) by upper bounding the (unbiased) Fourier coefficients of fm . To
this end, consider for j ∈ {0, 1}n

0 ≤ f̂m( j) = Ez∼U ({0,1}n)
[

1

2n+m

(
1 + μ|z|)m (−1) j ·z

]

= 1

2n+m

m∑
L=0

(
m

L

)
Ez∼U ({0,1}n)

[
μL|z|(−1) j ·z

]
.

We now rewrite the expectations on the right-hand side

Ez∼U ({0,1}n)
[
μL|z|(−1) j ·z

]

= 1

2n

n∑

=0

min{
,| j |}∑
k=max{0,
−(n−| j |)}

(| j |
k

)(
n − | j |

 − k

)
(−1)kμL·


= 1

2n

| j |∑
k=0

(| j |
k

)
(−1)k

k+n−| j |∑

=k

(
n − | j |

 − k

)
μL·
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= 1

2n

| j |∑
k=0

(| j |
k

)
(−1)kμL·k

n−| j |∑

=0

(
n − | j |




)
μL·


︸ ︷︷ ︸
=(1+μL)

n−| j |

=
(
1 + μL

)n−| j |

2n

| j |∑
k=0

(| j |
k

)
(−1)kμL·k

︸ ︷︷ ︸
=(1−μL)

| j |

=
(
1 + μL

)n−| j | (
1 − μL

)| j |
2n

.

This allows us to upper bound the Fourier coefficients of f as follows:

f̂m( j) = 1

2n+m

m∑
L=0

(
m

L

)(
1 + μL

2

)n−| j | (
1 − μL

2

)| j |

≤ 1

2n+m

m∑
L=0

(
m

L

)(
1 + μ

2

)n−| j | (1 − μm

2

)| j |

= 1

2n

(
1 + μ

2

)n−| j | (1 − μm

2

)| j |
.

According to Lemma 6, this now gives us the following upper bound on the diagonal
entries of the root of the Gram matrix

√
Gm(a, a) ≤ 1

2n
∑

j∈{0,1}n

√(
1 + μ

2

)n−| j | (1 − μm

2

)| j |

= 1

2n

n∑
k=0

(
n

k

)√(
1 + μ

2

)n−k (1 − μm

2

)k

= 1

2n

(√
1 + μ

2
+

√
1 − μm

2

)n

,

and this in turn allows us to bound the PGM success probability as

PPGM (E) =
∑

a∈{0,1}n

√
Gm(a, a)2

≤ 1

2n

(√
1 + μ

2
+

√
1 − μm

2

)2n

=
(
1

2

(√
1 + μ + √

1 − μm
))2n

.
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We combine this with our learning requirement and Theorem 1 to obtain

1 − δ ≤ Popt (E) ≤
√
PPGM (E) ≤

(
1

2

(√
1 + μ + √

1 − μm
))n

.

This can be rearranged (using δ < 1
3 ) to

m =
− log

(
1 − (

2 · n
√
1 − δ − √

1 + μ
)2)

log 1
μ

.

With log(1 + x) ≤ x we obtain 1
log 1

μ

≥ 1
1
μ

−1
= μ

1−μ
and

− log

(
1 −

(
2 · n

√
1 − δ − √

1 + μ
)2) ≥

(
2 · n

√
1 − δ − √

1 + μ
)2

.

For μ ≥ 1 − 1
ln(n)

we now obtain (for n large enough)

m ≥ (ln(n) − 1) ·
(
2

√
2

3
− √

2

)
= Ω (ln(n)) ,

and this finishes the proof. ��
Note that this proof strategy also yields for a strictly increasing function g : N →

R>0 with limn→∞ g(n) = ∞ and for a distribution Dμ with μi ≥ 1 − 1
g(n)

for all
1 ≤ i ≤ n the sample complexity lower bound Ω(g(n)) (for n large enough). This
is consistent with the intuition that solving the learner problem becomes harder when
the distribution is more strongly biased towards the uninformative instance with all
entries equal to 1.

We now compare this lower bound to our previously obtained upper bounds. First,
we consider the n-independent part of the bounds. When comparing Theorem 3 with
Lemma 5, we obtain

Ω

(
1

c
ln

(
1

δ

))
≤ m ≤ O

⎛
⎝
(
ln

(
1

1 − c + c2
2

))−1

ln

(
1

δ

)⎞
⎠ .

We study this for δ � 1 (high confidence) and c � 1 (high bias). Then Taylor
expansion shows

(
ln

(
1

1 − c + c2
2

))−1

= 1

c
+ c

6
+ O(c2) for c � 1.
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Fig. 1 A plot comparing the maximal bias allowed in Theorem 4 (depicted by the blue crosses) with the
minimal bias required in Theorem 6 (depicted by the red line) (Color figure online)

Hence, lower and upper bounds coincide in the relevant region for δ and c, so the
n-independent part of the sample complexity upper bound provided by Algorithm 3
is optimal.

However, in comparing Theorem 4 with Lemma 5 we see a discrepancy between
lower and upper bound for the relevant region δ � 1 and c−(1− 1√

2n
) � 1. Therefore

we conjecture that the c-dependence of the upper bound arising from Theorem 4 is
not optimal.

Now we compare the bounds w.r.t. the n-dependence, i.e., we compare Theorem 3
with Theorem 6, and obtain

Ω (ln(n)) ≤ m ≤ O
(
1

c
ln(n)

)
.

But in Theorem 6, we assumed thatμi ≥ 1− 1
ln(n)

for all 1 ≤ i ≤ n.When considering
values for μ lying on this threshold, we can rephrase this as condition on the (then n-
dependent) c-boundedness parameter, namely c ≤ 1

ln(n)
. So when honestly including

the n-dependence of c, our comparison becomes

Ω (ln(n)) ≤ m ≤ O
(
ln2(n)

)

and is thus not tight.
Finally, we want to point towards a second unsatisfactory aspect of our results.

We provide an n-dependent quantum sample complexity lower bound for “large”
noise and an n-independent quantum sample complexity upper bound for “small”
noise. However, there is a large discrepancy between the obtained characterizations
of “small” and “large” noise. That this already becomes relevant for moderate n can
be seen in Fig. 1.

Hence, we did not succeed in identifying a bias threshold beyond which the sample
complexity qualitatively differs from the unbiased case, butmerely provided a region in
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c = 0 c = 1
O(ln(n))

c =const 1 − 1√
2n

1
g(n)

Ω(g(n)) O(1)

learning not possible learning via Bernstein-Vazirani

Fig. 2 Overview of the quantum sample complexity upper and lower bounds from Theorems 3, 4 and 6
depending on the c-boundedness parameter (without noise in the training data). Here, g : N → R>0 is a
strictly increasing function with lim

n→∞ g(n) = ∞ (Color figure online)

which such a threshold would lie. To improve upon our results, it would be necessary
to modify either the proof of Theorem 4 to allow for stronger bias or the proof of
Theorem 6 to allow for weaker bias. In particular, it would be interesting to obtain a
non-trivial quantum sample complexity lower bound for constant bias, i.e., without
introducing n-dependence into the c-boundedness parameter. However, we currently
do not see whether our proof strategies admit such an improvement.

7 Conclusion and outlook

In this paper, we extended awell-known quantum learning strategy for linear functions
from the uniform distribution to biased product distributions. This approach naturally
led to a distinction between a procedure for arbitrary (not full) bias and a procedure
for small bias, the latter with a significantly better performance. Moreover, we showed
that the second procedure is (to a certain degree) stable w.r.t. noise in the training data
and in the performed quantum gates. Finally, we also provided lower bounds on the
size of the training data required for the learning problem, both in the classical and in
the quantum setting. The sample complexity upper and lower bounds in the case of
no noise are summarized in Fig. 2.

We want to conclude by outlining some open questions for future work:

– Can we identify a bias threshold s.t. the optimal sample complexity below the
threshold differs qualitatively from the one above it?

– Is our learning procedure for small bias also stable w.r.t. different types of noise
in the training data, e.g., malicious noise?

– Our explicit learning algorithms also give upper bounds on the computational
complexity of our learning problem. Can we find corresponding lower bounds to
facilitate a discussion of optimality w.r.t. runtime?

– Canwefindmore examples of learning tasks (i.e., function classes)where quantum
training data yields an advantage w.r.t. sample and/or time complexity?
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Appendix

A Stability w.r.t. noise

Both algorithms presented in Sect. 5 implicitly assume that the quantum example state
perfectly represents the underlying function and that all quantum gates performed dur-
ing the computation are perfectly accurate. In this section, we relax these assumptions.
We will do so separately, but our analysis shows that moderate noise in the training
data and moderately faulty quantum gates can be tolerated at the same time.

A.1 Noisy training data

One of themostwell-studied noisemodels in classical learning theory is that of random
classification noise. Here, the training data are assumed to be s.t. with probability 1−η,
the learning algorithm obtains a correct example, and with probability η, the examples
label is flipped. In [4], this is translated to a quantum example state which in our
notation has the form

|ϕnoisy
a 〉 = √

1 − η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x)〉

⎞
⎠

+ √
η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x) ⊕ 1〉

⎞
⎠ .

We will only shortly comment on how to battle this type of noise with our learning
strategy at the end of this subsection. Instead, our focus will be on a performance
analysis of our algorithm in the case of noisy training data similar to [13]. This means
that we now assume our quantum example state to be of the form
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|ψnoisy
a 〉 =

∑
x∈{−1,1}n

√
Dμ(x)|x,

n∑
i=1

ai
1 − xi

2
+ ξ ixi 〉,

where the ξ ixi , for 1 ≤ i ≤ n and xi ∈ {−1, 1}, are independent random variables
distributed according to Bernoulli distributions with parameters ηi (i.e., P[ξ ixi = 1] =
ηi = 1 − P[ξ ixi = 0] for all 1 ≤ i ≤ n) and addition is understood modulo 2.

Here, we choose a noise model that is rather general but we make an important
restriction. Namely, we do not allow a noise ξx that depends in an arbitrary way on x
but rather we require the noise to have a specific sum structure ξx = ∑n

i=1 ξ ixi . This
requirement will later imply that also the noisy Fourier coefficients factorize. As this
factorization is crucial for our analysis, with our strategy we cannot generalize the
results of [13] on that more general noise model.

We first examine the result of applying the same procedure as in Algorithm 2 to a
copy of a noisy quantum example state |ψnoisy

a 〉. To simplify referencing, we write this
down one more time as Algorithm 5 even though the procedure is exactly the same,
only the form of the input changes.

Algorithm 5 Generalized Bernstein–Vazirani algorithm with noisy training data

Input: |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉, as well as μ ∈ [−1, 1]

Output: See Theorem 7
Success Probability: 1

2 .

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψnoisy
a 〉.

2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψnoisy
a 〉.

3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the algorithm.
5: Output o =⊥.
6: else if jn+1 = 1 then � This corresponds to a success of the algorithm.
7: Output o = j1 . . . jn .
8: end if

Similarly to our previous analysis, we will first study the Fourier coefficients that
are relevant for the sampling process in Algorithm 5.

Lemma 7 Let a ∈ {0, 1}n. Let ξ ixi , for 1 ≤ i ≤ n and xi ∈ {−1, 1}, be independent

Bernoulli distributions, let g(a)(x) := (−1)

n∑
i=1

ai
1−xi
2 +ξ ixi

and let μ ∈ (−1, 1). Then
the μ-biased Fourier coefficients of g(a) satisfy: For y ∈ {0, 1}n, with probability

n∏
l=1

(
yl · 2ηl(1 − ηl) + (1 − yl) · (1 − 2ηl(1 − ηl))

)
,
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it holds that

ĝ(a)
μ ( j) =

∏
l:al=0

(
yl · (−1)bl

(
(1 − jl )μl + jl

√
1 − μ2

l

)
+ (1 − yl ) · (−1)bl (1 − jl )

)

·
∏

l:al=1

(
yl · (−1)bl (1 − jl ) + (1 − yl ) · (−1)bl

(
(1 − jl )μl + jl

√
1 − μ2

l

))
.

Proof The proof is analogous to the one of Lemma 4, see “Appendix B.” ��
We now make a step analogous to the one from Lemma 4 to Theorem 2 in order to

understand the output of Algorithm 5.

Theorem 7 Let |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉 be a noisy quantum

example state, a ∈ {0, 1}n, μ ∈ (−1, 1)n. Then Algorithm 5 provides an outcome
| j1 . . . jn+1〉 with the following properties:

(i) P[ jn+1 = 0] = 1
2 = P[ jn+1 = 1].

(ii) For any 1 ≤ i ≤ n, with probability 1 − 2ηi (1 − ηi ) it holds that

P[ai = 0 �= ji | jn+1 = 1] = 0, P[ai = 1 �= ji | jn+1 = 1] = μ2.

(iii) For any 1 ≤ i ≤ n, with probability 2ηi (1 − ηi ) it holds that

P[ai = 0 �= ji | jn+1 = 1] = 1 − μ2, P[ai = 1 �= ji | jn+1 = 1] = 1.

Note that in the scenario of Theorem 7 the underlying distribution Dμ is known to
the algorithm as μ is provided as part of the input (see Algorithm 5). Building on this
subroutine, we will now describe an amplified procedure for moderate noise (which is
made precise in Theorem 8) in Algorithm 6 analogous to the one described in Sect. 5.2.
Again, only the input changes, but we write the procedure down explicitly to simplify
referencing.

Theorem 8 Let |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,∑n

i=1 ai
1−xi
2 + ξ ixi 〉, with a ∈

{0, 1}n, μ ∈ (−1, 1)n s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c >

1 − 1
2
√
n
. Further assume that 2ηi (1 − ηi ) < 1

5n for all 1 ≤ i ≤ n, write

ρ := max1≤i≤n 2ηi (1 − ηi ) . Then O
(
max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

( 1
δ

))
copies

of the quantum example state |ψa〉 suffice to guarantee that with probability ≥ 1 − δ

Algorithm 6 outputs the string a.

As in Theorem 4, our restrictions on both the c-boundedness parameter and the
noise strength lead to a basically n-independent sample complexity upper bound.

Proof The proof is analogous to the one of Theorem 4, see “Appendix B.” ��
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Algorithm 6AmplifiedGeneralized Bernstein–Vazirani algorithmwith noisy training
data

Input: m copies of |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉 for a ∈ {0, 1}n , where the

number of copies is m ≥ C
(
max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

(
1
δ

))
, as well as μ ∈ [−1, 1]n and

c ∈ (0, 1] s.t. Dμ is c-bounded.
Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 5 on the lth copy of |ψnoisy

a 〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi = argmaxr∈{0,1}|{1 ≤ l ≤ m|o(l)

i = r}|.
7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

The previous Theorem shows that if the bias is not too strong and if the noise is
not too random (i.e., the probability of adding a random 1 is either very low or very
high), then learning is possible with essentially the same sample complexity as in the
case without noise (compare Theorem 4).
Note that the proof of Theorem 8 shows that the exact choices of the bounds (in our
formulation c > 1 − 1

2
√
n
and 2ηi (1 − ηi ) < 1

5n ) are flexible to some degree with a

trade-off. If we have a better bound on c, we can loosen our requirement on the ηi and
vice versa.

Also observe that the requirement of “not too random noise” is natural. If 2ηi (1−
ηi ) → 1

2 or, equivalently, ηi → 1
2 , then the label in the noisy quantum example state

becomes completely random and thus no information on the string a can be extracted
from it. Our bound gives a quantitative version of this intuition.

Nevertheless, the restriction which we put on the noise can be considered quite
strong because of its n-dependence. This can, however, be relaxed at the cost of a
looser sample complexity upper bound. Namely, similarly to the difference between
the proofs of Theorems 3 and 4 , if we, e.g., only assume 2ηi (1 − ηi ) < 1

5 for all
1 ≤ i ≤ n, we can first for each coordinate separately bound the probability of
the noise variables becoming relevant in at least k

5 runs using Hoeffding’s inequal-
ity and then use the union bound. This will yield a quantum sample complexity
upper bound with an n-dependent term of the form ln(n). Hence, if we assume a
c-boundedness parameter strongly restricted as in Theorems 4 or 8, but obtain faulty
training data states without an n-dependent noise bound as in Theorem 8, then we
can still obtain a sample complexity upper bound with the same n-dependence as in
Theorem 3.

Finally, as promised at the beginning of this subsection, we shortly describe how to
use the ideas presented in this subsection in the case of random classification noise as
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in [4]. If the quantum learning algorithm has access to copies of a quantum example
state

|ϕnoisy
a 〉 = √

1 − η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x)〉

⎞
⎠

+ √
η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x) ⊕ 1〉

⎞
⎠ ,

then we observe that applying the μ-biased Fourier transform to SSthe first n qubits
and the standard Fourier transform to the last qubit gives

(H⊗n
μ ⊗ H)

(
|ϕnoisy

a 〉
)

=
√
1 − η + √

η√
2

|0, . . . , 0〉

+
√
1 − η − √

η√
2

∑
j∈{0,1}

ĝμ( j)| j, 1〉.

Hence, compared to the scenario studied in section 5 the probabilities of observing a
certain string as measurement outcome are simply scaled by a factor of (

√
1 − η ±√

η)2 = 1 ± 2
√

η(1 − η). So our analysis carries over almost directly. We do not
give the detailed reasoning here but only mention that incorporating the now rescaled
probabilities basically changes the sample complexity upper bounds from the non-
noisy case by a factor of 1

(η− 1
2 )2

, which is again in accordance with the intuition that

the learning task becomes hard—and eventually impossible—for η → 1
2 .

A.2 Faulty quantum gates

Wenow turn to the (more realistic) settingwhere the quantum gates in our computation
(i.e., the μ-biased quantum Fourier transforms) are not implemented exactly but only
approximately. In this scenario, we obtain

Lemma 8 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 be a quantum example state,

with a ∈ {0, 1}n, μ ∈ (−1, 1)n. Then a version of Algorithm 2 with Hμ replaced
by Hμ̃ for

∥∥Hμ − Hμ̃

∥∥
2 ≤ ε provides an outcome | j1 . . . jn+1〉 with the following

properties:

(i) |P[ jn+1 = 0] − 1
2 | ≤ ε and |P[ jn+1 = 1] − 1

2 | ≤ ε,
(ii) |P[ j1 . . . jn = a| jn+1 = 1] − ∏

l:al=1
(1 − μ2

l )| ≤ ε,

(iii) for c �= a:

∣∣∣∣∣∣
P[ j1 . . . jn = c| jn+1 = 1] −

∏
l:al=0

(1 − cl) ·
∏

l:al=1

(
(1 − cl)μ

2
l + cl(1 − μ2

l )
)
∣∣∣∣∣∣
≤ ε,
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(iv) P[∃1 ≤ i ≤ n : ai = 0 �= ji | jn+1 = 1] ≤ ε, and

(v) P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤
n∑

i=1
μ2
i + ε. In particular, if Dμ is

c-bounded, then P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤ n(1 − c)2 + ε.

Proof This follows from Theorem 2 because the outcome probabilities are the squares
of the amplitudes, and thus, the difference in outcome probabilities can be bounded by
the 2-norm of the difference of the quantum states after applying the biased quantum
Fourier transform and its approximate version. ��

Now we can proceed analogously to the proof strategy employed in Theorem 8 to
derive

Theorem 9 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 −
√

1−2ε
2n . Then

O
(
max

{
1

(1 − 2ε)2
,

1

1 − 2(n(1 − c)2 + ε)2

}
ln

(
1

δ

)
+ ε

)

copies of the quantum example state |ψa〉 suffice to guarantee that, with probability
≥ 1 − δ, a version of Algorithm 4 with Hμ replaced by Hμ̃ for

∥∥Hμ − Hμ̃

∥∥
2 ≤ ε ∈

(0, 1
2 ) outputs the string a.

In particular, the sample complexity upper bound fromTheorem4 remains basically
untouched if quantum gates with small error are used.

A.3 The case of unknown underlying distributions

An interesting consequence of the result of the previous subsection is the possibility to
drop the assumption of prior knowledge of the underlying product distribution, as was
already observed in [17] for a similar scenario. The important observations towards
this end are given in this subsection.

Lemma 9 (Lemma 5 in [17])
Let A = An · · · A1 be a product of unitary operators A j . Assume that for every A j

there exists an approximation Ã j s.t.
∥∥∥A j − Ã j

∥∥∥ ≤ ε j . Then it holds that

∥∥∥An · · · A1 − Ãn · · · Ã1

∥∥∥ ≤
n∑
j=1

ε j ,

i.e., the operator Ã := Ãn · · · Ã1 is an ε-approximation to A w.r.t. the operator norm.

Proof This can be proven by induction using the triangle inequality and the fact that
a unitary operator has operator norm equal to 1. For details, the reader is referred to
[17]. ��
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This can be used to derive (compare again [17])

Corollary 2 Let μ ∈ (−1, 1)n be s.t. the distribution Dμ is c-bounded for c ∈ (0, 1].
Let μ̃ ∈ (−1, 1)n satisfy ‖μ − μ̃‖∞ ≤ ε. Then the corresponding biased quantum
Fourier transforms satisfy

∥∥Hμ − Hμ̃

∥∥ ≤ 2
√
2nγ ε,

where γ = 1
c2

(
(2 − c) 3

2
√
2c

+ 1
)
.

Proof This proof is given in “Appendix B.” ��

The next Lemma is on approximating the bias parameter of an unknown product
distribution from examples. (Compare the closing remark in Appendix A of [17].)

Lemma 10 Using m ≤ O(
8γ 2·n2

ε2
ln( n

δ
)) copies of the quantum example state |ψa〉 (or

of |ψnoisy
a 〉) for a product distribution Dμ with bias vector μ ∈ (−1, 1)n s.t. Dμ is

c-bounded for c ∈ (0, 1] one can, with probability ≥ 1 − δ, output μ̃ ∈ (−1, 1)n

s.t.
∥∥Hμ − Hμ̃

∥∥ ≤ ε.

Proof Recall that μi = EDμ [xi ]. Via a standard application of Hoeffding’s inequal-

ity we conclude that O(
8γ 2·n2

ε2
ln( 1

δ
)) examples drawn i.i.d. from Dμ (which can be

obtained from copies of the quantum example state by measuring the corresponding
subsystem) are sufficient to guarantee that, with probability ≥ 1 − δ, the empirical
estimate μ̂i satisfies |μi − μ̂i | ≤ ε

2
√
2γ ·n . As each component of a copy of the quan-

tum example state can be measured separately, we see —using the union bound, that

O(
8γ 2·n2

ε2
ln( n

δ
)) copies of the (possibly noisy) quantum example state suffice to guar-

antee that, with probability ≥ 1 − δ, it holds that
∥∥μ − μ̂

∥∥∞ ≤ ε

2
√
2γ ·n . Now we can

apply the previous Corollary to finish the proof. ��

If we now combine this result with Theorem 9, we obtain a sample complexity
upper bound for our learning problem without assuming the underlying distribution
to be known in advance.

Corollary 3 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 −
√

1−2ε
2n . Then there exists

a quantum algorithm which, given access to

O
(
8γ 2 · n2

ε2
ln

(n
δ

)
+ max

{
1

(1 − 2ε)2
,

1

1 − 2(n(1 − c)2 + ε)2

}
ln

(
1

δ

))

copies of the quantum example state |ψa〉, with probability ≥ 1− δ, outputs the string
a, without prior knowledge of the underlying distribution Dμ.
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Note, however, that the learning algorithm does need to obtain the c-boundedness
parameter c as input in advance, but this (in general) does not fix the underlying
distribution. Observe also that—since Lemma 10 remains valid for noisy quantum
examples—, even though we do not explicitly formulate the result of this subsection
for noisy quantum training data, such a generalization is possible by combining the
strategies presented in this and the previous subsections.

B Proofs

Proof of Lemma 2 We directly compute the state produced by the algorithm before the
measurement is performed:

(Hμ ⊗ H)|ψ f 〉 =
∑

x∈{−1,1}n

∑
j∈{0,1}n

1√
2
Dμ(x)φμ, j (x)

(
| j, 0〉 + (−1) f (x)| j, 1〉

)

= 1√
2

∑
j∈{0,1}n

EDμ[φμ, j ]︸ ︷︷ ︸
=δ j,0...0

| j, 0〉 + EDμ[gφμ, j ]︸ ︷︷ ︸
=ĝμ( j)

| j, 1〉.

Hence, the computational basis measurement from step 3 of Algorithm 1 on the last
qubit returns 1 with probability 1

2 and if that is the case, the computational basis

measurement on the first n qubits will return j with probability
(
ĝμ( j)

)2, as claimed.
��

Proof of Lemma 6 The proof is by direct computation using the Fourier expansion:

(HGH−1)(a, b) = 1

2n
∑

c,d∈{0,1}n
(−1)c·a+d·bg(c + d)

= 1

2n
∑

c,d, j∈{0,1}n
(−1)c·a+d·b+ j ·(c+d)ĝ( j)

= 1

2n
∑

j∈{0,1}n
ĝ( j)

∑
c∈{0,1}n

(−1)c·(a+ j)

︸ ︷︷ ︸
=2nδa, j

∑
d∈{0,1}n

(−1)d·(b+ j)

︸ ︷︷ ︸
=2nδb, j

= 2n ĝ(a)δa,b.

Unitarity of H can be checked easily by exploiting the same identity as in the second
to last line of the previous computation. ��
Proof of Corollary 1 Using Lemma 6 we can directly compute the diagonal entries of
the matrix root and obtain

√
G(a, a) =

(
H−1 · diag

({√
2n ĝ( j) | j ∈ {0, 1}n

})
· H

)
(a, a)
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= 1

2n
∑

j,k∈{0,1}n
(−1)c· j+d·k√2n ĝ( j)δ j,k

= 1√
2n

∑
j∈{0,1}n

√
ĝ( j)

for every a ∈ {0, 1}n . ��
Proof of Lemma 7 As in the proof of Lemma 4, due to the product structure of all the
relevant objects (here our assumption on the form of the noise enters), it suffices to con-
sider the case n = 1 in detail. In this case,we have f (a)(x) = ax̃ , g(a)(x) = (−1)ax̃+ξx

for x̃ = 1−x
2 , φμ,0(x) = 1, and φμ,1(x) = x−μ√

1−μ2
. (We leave out unnecessary indices

to improve readability.) We compute

ĝ(a)
μ ( j) = EDμ [(−1)ax̃+ξxφμ, j (x)]

= 1 + μ

2
· (−1)ξ1 · φμ, j (1) + 1 − μ

2
· (−1)a+ξ−1 · φμ, j (−1).

By plugging in we now obtain

ĝ(0)
μ (0) = 1 + μ

2
· (−1)ξ1 · 1 + 1 − μ

2
· (−1)ξ−1 · 1,

ĝ(0)
μ (1) = 1 + μ

2
· (−1)ξ1 · 1 − μ√

1 − μ2
+ 1 − μ

2
· (−1)ξ−1 · −1 − μ√

1 − μ2
,

ĝ(1)
μ (0) = 1 + μ

2
· (−1)ξ1 · 1 + 1 − μ

2
· (−1)1+ξ−1 · 1,

ĝ(1)
μ (1) = 1 + μ

2
· (−1)ξ1 · 1 − μ√

1 − μ2
+ 1 − μ

2
· (−1)1+ξ−1 · −1 − μ√

1 − μ2
.

So with probability (η1)2 + (1− η1)2 = 1− 2η1(1− η1), namely if ξ1 = ξ−1 = b ∈
{0, 1}, we obtain

ĝ(0)
μ (0) = (−1)b, ĝ(0)

μ (1) = 0, ĝ(1)
μ (0) = (−1)bμ, ĝ(1)

μ (1) = (−1)b
√
1 − μ2,

and with probability 2η1(1 − η1), namely if ξ1 = b �= ξ−1, we obtain

ĝ(0)
μ (0) = (−1)bμ, ĝ(0)

μ (1) = (−1)b
√
1 − μ2, ĝ(1)

μ (0) = (−1)b, ĝ(1)
μ (1) = 0.

Thereforewe obtain:With probability 1−2η1(1−η1) theμ-biased Fourier coefficients
satisfy

ĝ(a)
μ ( j) =

{
(−1)b(1 − j), for a = 0

(−1)b((1 − j)μ + j
√
1 − μ2) for a = 1

,
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and with probability 2η1(1 − η1) the μ-biased Fourier coefficients satisfy

ĝ(a)
μ ( j) =

{
(−1)b((1 − j)μ + j

√
1 − μ2) for a = 0

(−1)b(1 − j), for a = 1
,

which is exactly the claim for n = 1. ��
Proof of Theorem 8 We want to prove that P[Algorithm 6 does not output a] ≤ δ,

where the probability is w.r.t. both the internal randomness of the algorithm and the
random variables.

First observe that, due to (i) in Theorem 7, exactly the same reasoning as in the
proof of Theorem 4 shows that the probability of observing jn+1 = 1 in at most k − 1
of the m runs of Algorithm 5 (assuming k ≤ m

2 ) is bounded by

P
[
Bin

(
m,

1

2

)
≥ m − k

]
≤ exp

(
−2

(m
2 − k

)2
m

)
. (B.1)

We will now search for the number of observations of jn+1 = 1 which is required to
guarantee that the majority string is correct with high probability. Suppose we observe
jn+1 = 1 in k runs of Algorithm 5, k ∈ 2N. Again we see that

P[∃1 ≤ i ≤ n : ai �= oi ] ≤ P[∃1 ≤ i ≤ n : ai = 0 �= oi ]
+P[∃1 ≤ i ≤ n : ai = 1 �= oi ].

As “false 1’s” can only appear in the case where our noise variables have an influence
(compare Theorem 7), we will first find a lower bound on k which guarantees that
the probability of the noise variable influence becoming relevant for at least k

5 runs is
≤ δ

4 . Namely, we bound (again via Hoeffding)

P
[
Bin(k, nρ) ≥ k

5

]
= P

[
Bin(k, nρ) − knρ ≥ k

(
1

5
− nρ

)]

≤ exp

(
−2k

(
1 − 5nρ

5

)2
)

.

We now set this last expression ≤ δ
4 and rearrange the inequality to

k ≥ 25

2(1 − 5nρ)2
ln

(
4

δ

)
.

Now we will find a lower bound on k which guarantees that, if the noise variable
influence is relevant in at most k

5 of the runs, among the remaining 4k
5 runs with

probability ≥ 1− δ
4 we make at most k

5 “false 0” observations. To this end, we bound
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(again via Hoeffding)

P
[
Bin

(
4k

5
, n(1 − c)2

)
≥ k

5

]

= P
[
Bin

(
4k

5
, n(1 − c)2

)
− 4kn(1 − c)2

5
≥ k

5
− 4kn(1 − c)2

5

]

≤ exp

(
−2k

(
1

5
− 4n(1 − c)2

5

)2
)

.

We now set this last expression ≤ δ
4 and rearrange the inequality to

k ≥ 25

2(1 − 4n(1 − c)2)2
ln

(
4

δ

)
.

Hence, by the union bound a sufficient condition for P[∃1 ≤ i ≤ n : ai �= oi ] ≤ δ
2 to

hold is given by

k ≥ 25

2
max

{
1

(1 − 5nρ)2
,

1

(1 − 4n(1 − c)2)2

}
ln

(
4

δ

)
. (B.2)

Combining Eqs. (B.2) and (B.1) we now require

exp

⎛
⎜⎝−

2
(
25
2 max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

( 4
δ

) − m
2

)2

m

⎞
⎟⎠ !≤ δ

4
.

Rearranging gives the sufficient condition

m ≥ 25max

{
1

(1 − 5nρ)2
,

1

(1 − 4n(1 − c)2)2

}
ln

(
4

δ

)
.

This proves the claim of the theorem thanks to the union bound. ��

Proof of Corollary 2 According to the Lemma 9 it holds that

∥∥Hμ − Hμ̃

∥∥

≤
n∑

i=1

∥∥1⊗ . . . ⊗ 1⊗ Hμi ⊗ 1⊗ . . . ⊗ 1− 1⊗ . . . ⊗ 1⊗ Hμ̃i ⊗ 1⊗ . . . ⊗ 1
∥∥

=
n∑

i=1

∥∥Hμi − Hμ̃i

∥∥ .
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Thus it suffices to bound the operator norm of the difference of the 1-qubit biased
quantum Fourier transforms. So let |ϕ〉 = ∑

x∈{−1,1} αx |x〉 be a qubit state. Then

(Hμ j − Hμ̃ j )|ϕ〉 =
∑

x∈{−1,1}

∑
j∈{0,1}

(√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

)
αx | j〉.

We have to bound the (Euclidean) norm of this vector. To achieve this, we will bound
(for arbitrary x ∈ {−1, 1} and j ∈ {0, 1}) the expression

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣
2
.

This is done by direct computation using 1 − μ2
i ≥ 1 − (1 − c)2 ≥ c2, 1 − μ̃2

i ≥ c2

and |μi − μ̃i | ≤ ε as follows:

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣

=
∣∣∣∣∣∣
(xi − μi )

√
1 − μ̃2

i

√
Dμi (x) − (xi − μ̃i )

√
1 − μ2

i

√
Dμ̃i (x)√

1 − μ̃2
i

√
1 − μ2

i

∣∣∣∣∣∣

≤ 1

c2

∣∣∣∣(xi − μi )

√
1 − μ̃2

i

√
Dμi (x) − (xi − μ̃i )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣

= 1

c2

∣∣∣∣(xi − μi )

(√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

)

+ (μ̃i − μi )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣

≤ 1

c2

(∣∣∣∣(xi − μi )

(√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

)∣∣∣∣

+
∣∣∣∣(μ̃i − μi )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣
)

≤ 1

c2

(
(2 − c)

∣∣∣∣
√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣ + ε

)

≤ 1

c2

(
(2 − c)

(∣∣∣
√
Dμi (x) −

√
Dμ̃i (x)

∣∣∣ +
∣∣∣∣
√
1 − μ2

i −
√
1 − μ̃2

i

∣∣∣∣
)

+ ε

)
.

Now note that

∣∣∣
(√

Dμi (x) −
√
Dμ̃i (x)

) (√
Dμi (x) +

√
Dμ̃i (x)

)∣∣∣ = ∣∣Dμi (x) − Dμ̃i (x)
∣∣

=
∣∣∣∣
1 + x̃iμi

2
− 1 + x̃i μ̃i

2

∣∣∣∣

= 1

2
|μi − μ̃i |,
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which implies

∣∣∣
√
Dμi (x) −

√
Dμ̃i (x)

∣∣∣ =
∣∣∣∣∣

μi − μ̃i

2
(√

Dμi (x) + √
Dμ̃i (x)

)
∣∣∣∣∣

≤ ε

2

1

2
√

c
2

= ε

2
√
2c

,

and that moreover

∣∣∣∣
(√

1 − μ2
i −

√
1 − μ̃2

i

)(√
1 − μ2

i +
√
1 − μ̃2

i

)∣∣∣∣ =
∣∣∣1 − μ2

i − (1 − μ̃2
i )

∣∣∣

=
∣∣∣μ2

i − μ̃2
i

∣∣∣ ,

which in turn implies

∣∣∣∣
√
1 − μ2

i −
√
1 − μ̃2

i

∣∣∣∣ =
∣∣∣∣∣∣

μ2
i − μ̃2

i√
1 − μ2

i +
√
1 − μ̃2

i

∣∣∣∣∣∣

≤ |μi + μ̃i | · |μi − μ̃i |
2
√
1 − (1 − c)2

≤ 2ε

2
√
2c − c2

≤ ε√
2c

.

Hence, we obtain

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣ ≤ 1

c2

(
(2 − c)

(
ε

2
√
2c

+ ε√
2c

)
+ ε

)
≤ γ ε,

where we defined γ := 1
c2

(
(2 − c) 3

2
√
2c

+ 1
)
. This now implies

∥∥∥(Hμ j − Hμ̃ j )|ϕ〉
∥∥∥
2

≤
∑

x∈{−1,1}

∑
j∈{0,1}

∥∥∥
(√

Dμi (x)φμi , j (x) −
√
Dμ̃i (x)φμ̃i , j (x)

)
αx | j〉

∥∥∥
2

≤ γ ε
∑

x∈{−1,1}

∑
j∈{0,1}

|αx |

= 2γ ε
∑

x∈{−1,1}
|αx |

≤ 2
√
2γ ε.
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Finally, we get

∥∥Hμ − Hμ̃

∥∥ ≤
n∑

i=1

∥∥Hμi − Hμ̃i

∥∥ ≤ 2
√
2nγ ε,

as claimed. ��
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Whether variational quantum machine learning models (QMLMs) can serve as a relevant area

of application for quantum computing in the near term depends, among other things, crucially

on their training data requirements. In particular, it is important to understand how many

training data points su�ce to guarantee good generalization for QMLMs. This work proves

broadly applicable upper bounds on the training data size su�cient for a QMLM to generalize

from training data to new data. Moreover, we showcase our theoretical guarantees for two

applications of variational QML and con�rm them in numerical experiments.

After an introductory Section I, we present the main results of our paper in Section II. Subsection

II.A establishes our mathematical framework: We consider QMLMs as described by parametrized

CPTP maps EQMLM
α , where we allow for continuous parameters in trainable gates and for dis-

crete parameters for variable circuit structure. With such a QMLM, we act on a subsystem of an

input state and then measure a data-dependent loss observable to obtain a loss function given

as ℓ(α;xi, yi) = tr
[
Oloss

xi,yi(E
QMLM
α ⊗ id)(ρ(xi))

]
. In the spirit of probably approximately correct

(PAC) learning, the goal is now to achieve a small expected risk with respect to this loss and the

(unknown) data-generating probability measure. In Subsection II.B, we give informal statements

of our theoretical results, which are PAC generalization bounds for QMLMs, and discuss some

of their implications. This is followed by our numerical results in Section II.C. Here, Subsection

II.C.1 deals with quantum phase recognition using a speci�c QMLM, namely a quantum con-

volutional neural network (QCNN). And in Subsection II.C.2, we employ a variable-structure

QMLM for unitary compiling. Both of these numerical investigations con�rm our theoretical

generalization bounds and suggest an even more favorable generalization behavior for certain

cases.

We further discuss our results and �ndings in Section III. First, in Subsection III.A, we describe

potential further areas of application for our generalization guarantees. Next, we compare our

results to prior work in Subsection III.B. And in Subsection III.C, we elaborate the potential

relevance of our results to the quest for quantum advantage in machine learning and present

some open questions. Finally, Section IV gives an overview over our methods, where Subsection

III.A focuses on the theoretical results and Subsection III.B explains the numerical experiments

in more detail.

Appendix A contains a detailed review of related work, which subdivide into discussions of prior

work on generalization bounds for variational QML, on quantum phase recognition, and on

unitary compiling. In Appendix B, we collect some auxiliary Lemmata from statistical learning

theory and from quantum information theory that are important tools for proving our results.

Appendix C contains all the mathematical results and proofs of the paper. In Section C.1, we

prove covering number bounds for parametrized quantum circuits in terms of the number of

trainable local gates. More precisely, in Theorems 6 and 7, combining a basic covering number

bound for 2-qubit quantum gates and the subadditivity of the distance induced by the diamond
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norm, we bound the ε-metric entropy of the class of n-qubit CPTP maps that a QMLM with

T trainable local quantum gates can implement by O(T log(T/ε)), where distance is measured

using the diamond norm. Crucially, this upper bound is independent of n, the number of qubits,

and scales only slightly superlinearly in T , the number of trainable gates. Theorem 8 extends

our covering number bounds to QMLM architectures in which the same parametrized gates are

reused multiple times.

We present our main mathematical results in detail in Section C.2. Theorem 10 in Section C.2.1

provides a simple proof for a generalization bound derived from our covering number bounds,

combining Hoe�ding's inequality with a union bound over elements in a covering net. The

obtained generalization bound, however, has a suboptimal dependence on the training data size

N . In Subsection C.2.2, we show how to improve the N -dependence using Dudley's Theorem and

a generalization bound in terms of Rademacher complexities. This allows us to prove Theorem 11:

With high probability, the generalization error of a QMLM with T trainable local gates behaves

as O(
√

T log(T )/N), when training on data of size N . The next subsections deal with di�erent

extensions of this result. First, in Subsection C.2.3, we allow for QMLMs in which the same

trainable gates are used multiple times. As we show in Corollaries 1 and 2, the generalization error

scales at worst logarithmically with the number of uses per trainable gate. Next, Subsection C.2.4

considers QMLMs with variable circuit architecture, so that also the number and placement of

trainable gates can be optimized during training. Corollary 3 establishes that the generalization

performance depends at worst logarithmically on the number of di�erent architectures considered

during the optimization. Theorem 12 in Subsection C.2.5 provides an optimization-dependent

tightening of the generalization guarantee of Theorem 11, assuming that some of the trainable

gates do not change much during training. The proof of Theorem 12 is based on an extension of

the covering number bounds of Section C.1, which we give in Theorem 13. As our �nal extension,

we describe in Corollary 4 of Subsection C.2.6 how using an unbiased estimator for evaluating

the training error in�uences the generalization. Finally, in Subsection C.2.7, we summarize all

of these extensions in Theorem 9, the most general form of our results.

Appendices D and E contain a detailed explanation of how our theory applies to the two appli-

cations that we also investigate numerically. First, in Appendix D, we show how to phrase the

problem of quantum phase recognition in our framework. And we demonstrate that for QCNNs,

our results guarantee good generalization already from training data size growing only polylog-

arithmically with the system size. Second, Appendix E describes a variational QML approach

to unitary compiling. Here, our results imply that polynomial-size training data su�ces for

good generalization, assuming that the target unitary to be compiled can be implemented using

polynomially many local gates.

I was signi�cantly involved in �nding the ideas and carrying out the scienti�c work of all parts of

this article, with the exception of the numerical experiments. The idea for this project goes back

to a suggestion by Hsin-Yuan Huang and was further developed in discussions between Hsin-

Yuan Huang, M. Cerezo, Kunal Sharma, Andrew Sornborger, Lukasz Cincio, Patrick J. Coles,

and myself. I was signi�cantly involved in writing the main part of the paper, with the exception

of Section IV.B. I wrote the majority of the technical Appendix of the paper, with the exception

of Subsections A.2 and A.3.
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Generalization in quantummachine learning
from few training data

Matthias C. Caro1,2 , Hsin-Yuan Huang 3,4, M. Cerezo5,6, Kunal Sharma7,
Andrew Sornborger5,8, Lukasz Cincio9 & Patrick J. Coles 9

Modern quantum machine learning (QML) methods involve variationally
optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (i.e., generalizing). In this
work, we provide a comprehensive study of generalization performance in
QML after training on a limited numberN of training data points.We show that
the generalization error of a quantummachine learningmodel with T trainable
gates scales at worst as

ffiffiffiffiffiffiffiffiffiffi
T=N

p
. When only K≪ T gates have undergone sub-

stantial change in the optimization process, we prove that the generalization
error improves to

ffiffiffiffiffiffiffiffiffiffi
K=N

p
. Our results imply that the compiling of unitaries into

a polynomial number of native gates, a crucial application for the quantum
computing industry that typically uses exponential-size training data, can be
sped up significantly.Wealso show that classification of quantum states across
a phase transition with a quantum convolutional neural network requires only
a very small training data set. Other potential applications include learning
quantum error correcting codes or quantum dynamical simulation. Our work
injects new hope into the field of QML, as good generalization is guaranteed
from few training data.

The ultimate goal of machine learning (ML) is to make accurate pre-
dictions on unseen data. This is known as generalization, and sig-
nificant effort has been expended to understand the generalization
capabilities of classical ML models. For example, theoretical results
have been formulated asupper bounds on the generalization error as a
function of the training data size and the model complexity1–5. Such
bounds provide guidance as to how much training data is required
and/or sufficient to achieve accurate generalization.

Quantum machine learning (QML) is an emerging field that has
generated great excitement6–9.ModernQML typically involves training
a parameterized quantum circuit in order to analyze either classical or
quantum data sets10–16. Early results indicate that, for classical data
analysis, QMLmodels may offer some advantage over classical models

under certain circumstances17–19. It has also been proven that QML
models can provide an exponential advantage in sample complexity
for analyzing quantum data20,21.

However, little is known about the conditions needed for accurate
generalization in QML. Significant progress has been made in under-
standing the trainability of QML models18,22–36, but trainability is a
separate question from generalization18,37,38. Overfitting of training
data could be an issue for QML, just as it is for classical machine
learning. Moreover, the training data size required for QML general-
ization has yet to be fully studied. Naïvely, one could expect that an
exponential number of training points are needed when training a
function acting on an exponentially large Hilbert space. For instance,
some studies have found that, exponentially in n, the number of
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qubits, large amounts of training data would be needed, assuming that
one is trying to train an arbitrary unitary39,40. This is a concerning result,
since it would imply exponential scaling of the resources required for
QML, which is precisely what the field of quantum computation would
like to avoid.

In practice, a more relevant scenario to consider instead of arbi-
trary unitaries is learning a unitary that can be represented by a
polynomial-depth quantum circuit. This class of unitaries corresponds
to those that can be efficiently implemented on a quantum computer,
and it is exponentially smaller than that of arbitrary unitaries. More
generally, one could consider a QML model with T parameterized
gates and relate the training data sizeN needed for generalization to T.
Even more general would be to consider generalization error a
dynamic quantity that varies during the optimization.

In this work, we prove highly general theoretical bounds on the
generalization error in variational QML: The generalization error is
approximately upper bounded by

ffiffiffiffiffiffiffiffiffiffi
T=N

p
. In our proofs, we first

establish covering number bounds for the classof quantumoperations
that a variational QML model can implement. From these, we then
derive generalization error bounds using the chaining technique for
randomprocesses. A key implication of our results is that an efficiently
implementable QMLmodel, one such that T 2 OðpolynÞ, only requires
an efficient amount of training data, N 2 OðpolynÞ, to obtain good
generalization. This implication, by itself, will improve the efficiency
guarantees of variational quantum algorithms10,41,42 that employ train-
ing data, such as quantum autoencoders13, quantum generative
adversarial networks43, variational quantum error correction44,45, var-
iational quantum compiling46,47, and variational dynamical
simulation48–51. It also yields improved efficiency guarantees for clas-
sical algorithms that simulate QML models.

We furthermore refine our bounds to account for the optimiza-
tion process. We show that generalization improves if only some
parameters have undergone substantial change during the optimiza-
tion. Hence, even if we used a number of parameters T larger than the
training data size N, the QML model could still generalize well if only
some of the parameters have changed significantly. This suggests that
QML researchers should be careful not to overtrain their models
especially when the decrease in training error is insufficient.

To showcase our results, we consider quantum convolutional
neural networks (QCNNs)27,45, a QML model that has received sig-
nificant attention. QCNNs have only T =OðlognÞ parameters and yet
they are capable of classifying quantum states into distinct phases. Our
theory guarantees that QCNNs have good generalization error for
quantum phase recognition with only polylogarithmic training
resources, N 2 Oðlog2nÞ. We support this guarantee with a numerical
demonstration, which suggests that even constant-size training data
can suffice.

Finally, we highlight the task of quantum compiling, a crucial
application for the quantum computing industry. State-of-the-art
classical methods for approximate optimal compiling of unitaries
often employ exponentially large training data sets52–54. However, our
work indicates that only polynomial-sized data sets are needed, sug-
gesting that state-of-the-art compilers could be further improved.
Indeed, we numerically demonstrate the surprisingly low data cost of
compiling the quantum Fourier transform at relatively large scales.

Results
Framework
Let us first outline our theoretical framework. We consider a quantum
machine learning model (QMLM) as being a parameterized quantum
channel, i.e., a completely positive trace preserving (CPTP) map that is
parameterized. We denote a QMLM as EQMLM

α ð�Þ where α = (θ, k)
denotes the set of parameters, including continuous parameters θ
inside gates, as well as discrete parameters k that allow the gate
structure to vary. We make no further assumptions on the form of the

dependenceof theCPTPmap EQMLM
α ð�Þ on theparametersα. During the

training process, onewouldoptimize the continuous parametersθ and
potentially also the structure k of the QMLM.

A QMLM takes input data in the form of quantum states. For
classical data x, the input is first encoded in a quantum state via a map
x↦ ρ(x). This allows the data to be either classical or quantum in
nature, since regardless it is eventually encoded in aquantum state.We
assume that the data encoding is fixed in advance and not optimized
over. We remark here that our results also apply for more general
encoding strategies involving data re-uploading55, as we explain in
Supplementary Note 3.

For the sake of generality, we allow the QMLM to act on a sub-
system of the state ρ(x). Hence, the output state can be written as
ðEQMLM

α � idÞðρðxÞÞ. For a given data point (xi, yi), we can write the loss
function as

‘ðα; xi,yiÞ=Tr Oloss
xi ,yi

EQMLM
α � id

� �
ðρðxiÞÞ

h i
, ð1Þ

for some Hermitian observable Oloss
xi ,yi

. As is common in classical learn-
ing theory, the prediction error bounds will depend on the largest
(absolute) value that the loss function can attain. In our case, we

therefore assume Closs : = supx,y ∣∣O
loss
x,y ∣∣<1<?A3B2tal?>, i.e., the

spectral norm can be bounded uniformly over all possible loss
observables.

In Eq. (1), we take the measurement to act on a single copy of the
output of the QMLM EQMLM

α ð�Þ upon input of (a subsystem of) the data
encoding state ρ(xi). At first this looks like a restriction. However, note
that one can choose EQMLM

α ð�Þ to be a tensor product ofmultiple copies
of a QMLM, each with the same parameter setting, applied to multiple
copies of the input state. Hence our framework is general enough to
allow for global measurements on multiple copies. In this addition to
the aforementioned situation, we further study the case in which
trainable gates are more generally reused.

For a training dataset S= fðxi,yiÞgNi = 1 of size N, the average loss for
parameters α on the training data is

R̂SðαÞ=
1
N

∑
N

i= 1
‘ðα; xi,yiÞ, ð2Þ

which is often referred to as the training error. When we obtain a new
input x, the prediction error of a parameter setting α is taken to be the
expected loss

RðαÞ= E
ðx,yÞ ~P

‘ðα; x,yÞ½ �, ð3Þ

where the expectation is with respect to the distribution P from which
the training examples are generated.

Achieving small prediction error R(α) is the ultimate goal of
(quantum) machine learning. As P is generally not known, the training
error R̂SðαÞ is often taken as a proxy for R(α). This strategy can be
justified via bounds on the generalization error

gen ðαÞ=RðαÞ � R̂SðαÞ, ð4Þ

which is the key quantity that we bound in our theorems.

Analytical results
Weprove probabilistic bounds on the generalization error of a QMLM.
Our bounds guarantee that a good performance on a sufficiently large
training data set implies, with high probability, a good performance on
previously unseen data points. In particular, we provide a precise
meaning of "sufficiently large” in terms of properties of the QMLM and
the employed training procedure.
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Figure 1 gives an overview of the different scenarios considered in
this work. We begin with the basic form of our result. We consider a
QMLM that has arbitrarily many non-trainable global quantum gates
and T trainable local quantum gates. Here, by local wemean κ-local for
some n-independent locality parameter κ, and a local quantum gate
canbe a unitaryor a quantumchannel acting on κqubits. Thenwehave
the following bound on the generalization error for the QMLM with
final parameter setting α* after training:

Theorem 1. (Basic QMLM). For a QMLM with T parameterized local
quantum channels, with high probability over training data of size N,
we have that

gen ðα*Þ 2 O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T logT

N

r !
: ð5Þ

Remark 1. Theorem 1 directly implies sample complexity bounds: For
any ε > 0, we can, with high success probability, guarantee that
gen(α*)⩽ ε, already with training data of size N ~T logT=ε2, which
scales effectively linearly with T, the number of parameterized gates.

For efficiently implementable QMLMs with T 2 OðpolynÞ, a sam-
ple size of N 2 O polyn=ε2

� �
is already sufficient. More concretely, if

T 2 O nD
� �

for some degree D, then the corresponding sufficient
sample complexity obtained from Theorem 1 satisfies N 2 ~O nD=ε2

� �
,

where the ~O hides factors logarithmic in n. In the NISQ era56, we expect
thenumberTof trainablemaps toonly growmildlywith the number of
qubits, e.g., as in the architectures discussed in refs. 18, 45, 57. In this
case, Theorem 1 gives an especially strong guarantee.

In various QMLMs, such as QCNNs, the same parameterized local
gates are applied repeatedly. One could also consider running the
same QMLM multiple times to gather measurement data and then
post-processing that data. In both cases, one should consider the
QMLM as using the same parameterized local gates repeatedly. We
assume each gate to be repeated at mostM times. A direct application
of Theorem 1 would suggest that we need a training data size N of
roughly MT, the total number of parameterized gates. However, the
required number of training data actually is much smaller:

Theorem 2. (Gate-sharing QMLM). Consider a QMLM with T indepen-
dently parameterized local quantum channels, where each channel is

reused atmostM times.With high probability over training data of size
N, we have

gen ðα*Þ 2 O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T logðMTÞ

N

r !
: ð6Þ

Thus, good generalization, as in Remark 1, can already be guar-
anteed, with high probability, when the data size effectively scales
linearly in T (the number of independently parameterized gates) and
only logarithmically in M (the number of uses). In particular, applying
multiple copies of the QMLM in parallel does not significantly worsen
thegeneralizationperformancecompared to a single copy. Thus, aswe
discuss in Supplementary Note 3, Theorem 2 ensures that we can
increase the number of shots used to estimate expectation values at
the QMLM output without substantially harming the generalization
behavior.

The optimization process of the QMLM also plays an important
role in the generalization performance. Suppose that during the
optimization process, the tth local gate changed by a distance Δt. We
can bound the generalization error by a function of the changes fΔtgt .

Theorem 3. (Gate-sharing QMLM under optimization). Consider a
QMLM with T independently parameterized local quantum channels,
where the tth channel is reused at most M times and is changed by Δt

during the optimization. Assume Δ1≥…≥ΔT. With high probability over
training data of size N, we have

gen ðα*Þ 2 O min
K =0,...,T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K logðMTÞ

N

r
+ ∑

T

k =K + 1
MΔk

( ) !
: ð7Þ

When only K≪ T local quantum gates have undergone a sig-
nificant change, then the generalization error will scale at worst line-
arly with K and logarithmically in the total number of parameterized
gates MT. Given that recent numerical results suggest that the para-
meters in a deep parameterized quantum circuit only change by a
small amount during training58,59, Theorem 3 may find application in
studying the generalization behavior of deep QMLMs.

Finally, we consider a more advanced type of variable ansatz
optimization strategy that is also adopted in practice60–63. Instead of

Fig. 1 | Various types of QuantumMachine LearningModels (QMLMs). Panel (a)
depicts a basic QMLM with T = 6 independently parameterized gates. The gray
boxes illustrate some global evolutions that are not trainable. Panel (b) shows a
gate-sharing QMLM with T = 2 independently parameterized gates, each gate is
repeatedlyused forM = 3 times. In panel (c), wedepict amulti-copyQMLM.We take
measurement data fromM rounds of a basic QMLMwith T = 6 parameterized gates
and post-process the measurement outcomes to produce an output. Running M
copies of a basic QMLMwith T gates is equivalent to running a gate-sharing QMLM

with T = 6 parameterized gates, in which each gate is repeated M times. Panel (d)
describes a gate-sharingQMLMunder optimization. The parameterized gate to the
left undergoes a small change, while the one to the right undergoes a large change.
If we sort the changes Δ1,Δ2 from large to small, then Δ1≫Δ2 ≈0. Finally, panel (e)
illustrates gate-sharing QMLM with variable structure. The number T of para-
meterized gates changes throughout the optimization. The figure begins with T = 1
and ends with T = 2.
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fixing the structure of the QMLM, such as the number of para-
meterized gates and how the parameterized gates are interleaved with
the fixed gates, the optimization algorithm could vary the structure,
e.g., by adding or deleting parameterized gates. We assume that for
each number T of parameterized gates, there are GT different QMLM
architectures.

Theorem 4. (Gate-sharing QMLM with variable structure). Consider a
QMLM with an arbitrary number of parameterized local quantum
channels, where for each T >0, we have GT different QMLM archi-
tectures with T parameterized gates. Suppose that after optimizing on
the data, theQMLMhasT independently parameterized local quantum
channels, each repeated at most M times. Then, with high probability
over input training data of size N,

gen ðα*Þ 2 O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T logðMTÞ

N

r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðGT Þ

N

r !
: ð8Þ

Thus, even if the QMLM can in principle use exponentially many
parameterized gates, we can control the generalization error in terms
of the number of parameterized gates used in the QMLM after opti-
mization, and the dependence on the number of different archi-
tectures is only logarithmic. This logarithmic dependence is crucial as
even in the cases when GT grows exponentially with T, we
have logðGT Þ=N 2 OðT=NÞ.

Numerical results
In this section we present generalization error results obtained by
simulating the following two QML implementations: (1) using a QCNN
to classify states belonging to different quantum phases, and (2)
training a parameterized quantum circuit to compile a quantum
Fourier transform matrix.

We begin with the quantum phase classification application. The
QCNN architecture introduced in45 generalizes the model of (classical)
convolutional neural networks with the goal of performing pattern
recognition on quantum data. It is composed of so-called convolu-
tional and pooling layers, which alternate. In a convolutional layer, a
sequence of translationally invariant parameterized unitaries on
neighbouring qubits is applied in parallel, which works as a filter
between feature maps in different layers of the QCNN. Then, in the

pooling layers, a subset of the qubits are measured to reduce the
dimensionality of the state while preserving the relevant features of
the data. Conditioned on the corresponding measurement outcomes,
translationally invariant parameterized 1-qubit unitaries are applied.
The QCNN architecture has been employed for supervised QML tasks
of classification of phases of matter and to devise quantum error
correction schemes45. Moreover, QCNNs have been shown not to
exhibit barren plateaus, making them a generically trainable QML
architecture27.

The action of a QCNN can be considered as mapping an input
state ρin to an output state ρout given as ρout = EQCNN

α ðρinÞ. Then, given
ρout, one measures the expectation value of a task-specific Hermitian
operator.

In our implementation, we employ a QCNN to classify states
belonging to different symmetry protected topological phases. Spe-
cifically, we consider the generalized cluster Hamiltonian

H = ∑
n

j = 1
Zj � J1XjX j + 1 � J2Xj�1ZjX j + 1

� �
, ð9Þ

whereZi (Xi) denote thePauli z (x) operator actingonqubit i, andwhere
J1 and J2 are tunable coupling coefficients. As proved in64, and as
schematically shown in Fig. 2, the ground-state phase diagram of the
Hamiltonian of Eq. (9) has four different phases: symmetry-protected
topological (I), ferromagnetic (II), anti-ferromagnetic (III), and trivial
(IV). In the Methods section, we provide additional details regarding
the classical simulation of the ground states of H.

By samplingparameters in the (J1, J2) plane,we create a training set
fð∣ψi

�
,yiÞgNi= 1 composed of ground states ∣ψi

�
of H and their associated

labels yi. Here, the labels are in the form of length-two bit strings, i.e.,
yi∈ {0, 1}2, where each possible bit string corresponds to a phase that
∣ψi

�
can belong to. The QCNN maps the n-qubit input state ∣ψi

�
to a

2-qubit output state. We think of the information about the phase as
being encoded into the output state by which of the 4 computational
basis effect operators is assigned the smallest probability. Namely, we
define the loss function as ‘ðα; ∣ψi

�
,yiÞ : = yi

�
∣EQCNN

α ð∣ψi

�
ψi

�
∣Þ∣ yi

�
. This

Fig. 2 | Generalization performance of quantum phase recognition. We
employed the QCNN architecture for quantum phase recognition on ground states
of the generalized cluster Hamiltonian H of Eq. (9). We evaluated the phase
assigned by the QCNN to a point in the J1-J2-plane by sampling 8192 computational
basis measurement outcomes and taking the least frequent outcome as the pre-
dicted phase. Panel (a) visualizes the performance of the QCNN for 16-qubits,
trained with 30 data points, which were labelled according to the analytically
determined phase diagram. Blue crosses denote training data points (not all 30 are
shown). Blue (red) circles represent correctly (incorrectly) classified points. Panel

(b) shows that, as the training data size increases, the training accuracy quickly
becomes a good predictor for the testing accuracy on 10,000 randomly sampled
points, i.e., the dependence of testing accuracy on training accuracy is approxi-
mately linear with slope increasing with N. The different points in the plot corre-
spond to different parameter settings in the QCNN throughout the optimization.
The dotted gray line shows the baseline accuracy of 25% achieved by random
guessing. Panel (c) shows that the improvement in the slope with growing training
data size is similar for different numbers of qubits, reflecting the at-worst poly-
logarithmic dependence of N on n predicted by our bounds.
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leads to an empirical risk given by

R̂SðαÞ=
1
N

∑
N

i = 1
h yi∣EQCNN

α ð∣ψiihψi∣Þ∣yii: ð10Þ

In Fig. 2, we visualize the phase classification performance
achieved by our QCNN, trained according to this loss function, while
additionally taking the number of misclassified points into account.
Moreover, we show how the true risk, or rather the test accuracy as
proxy for it, correlates well with the achieved training accuracy,
already for small training data sizes. This is in agreement with our
theoretical predictions, discussed in more detail in Supplementary
Note 4, which for QCNNs gives a generalization error bound poly-
logarithmic in the number of qubits.We note that refs. 65, 66 observed
similarly favorable training data requirements for a related task of
learning phase diagrams.

Next, we turn our attention to the unitary compiling application.
Compiling is the task of transforming a high-level algorithm into a low-
level code that can be implemented on a device. Unitary compiling is a
paradigmatic task in the NISQ era where a target unitary is compiled
into a gate sequence that complies with NISQ device limitations, e.g.,
hardware-imposed connectivity and shallow depth to mitigate errors.
Unitary compiling is crucial to thequantumcomputing industry, as it is
essentially always performed prior to running an algorithm on a NISQ
device, and various companies have their own commercial
compilers67,68. Hence, any ability to accelerate unitary compiling could
have industrial impact.

Here we consider the task of compiling the unitary U of the n-
qubit Quantum Fourier Transform (QFT)69 into a short-depth para-
meterized quantum circuit V(α). For V(α) we employ the VAns (Vari-
able Ansatz) algorithm62,70, which uses a machine learning protocol to
iteratively grow a parameterized quantum circuit by placing and
removing gates in a way that empirically leads to lower loss function
values. Unlike traditional approaches that train just continuous para-
meters in a fixed structure circuit, VAns also trains discrete para-
meters, e.g., gateplacementor typeof gate, to explore the architecture
hyperspace. In Supplementary Note 5, we apply our theoretical results
in this compiling scenario.

The training set for compilation is of the form f∣ψi

�
,U∣ψi

�gNi= 1,
consisting of input states ∣ψi

�
and output states obtained through the

action ofU. The ∣ψi

�
are drawn independently fromanunderlyingdata-

generating distribution. In our numerics, we consider three such dis-
tributions: (1) random computational basis states, (2) random (non-
orthogonal) low-entangled states, and (3) Haar random n-qubit states.
Note that states in the first two distributions are easy to prepare on a
quantum computer, whereas states from the last distribution become
costly to prepare as n grows. As the goal is to train V(α) to match the
action of U on the training set, we define the loss function as the
squared trace distance between U∣ψi

�
and V ðαÞ∣ψi

�
, i.e.,

‘ðα; ∣ψi

�
,U∣ψi

�Þ : = ∣∣U∣ψi

�
ψi

�
∣Uy � V ðαÞ∣ψi

�
ψi

�
∣V ðαÞy∣∣21 . This leads to

the empirical risk

R̂SðαÞ=
1
N

∑
N

i = 1
∣∣U∣ψi

�
ψi

�
∣Uy � V ðαÞ∣ψi

�
ψi

�
∣V ðαÞy∣∣21 , ð11Þ

where ∣∣ ⋅ ∣∣1 indicates the trace norm.
Figure 3 shows our numerical results. As predicted by our analy-

tical results, we can, with high success probability, accurately compile
theQFTwhen trainingon adata set of size polynomial in thenumberof
qubits. Our numerical investigation shows a linear scaling of the
training requirements when training on random computational basis
states. This better than the quadratic scaling implied by a direct
application of our theory, which holds for any arbitrary data-
generating distribution. Approximate implementations of QFT with a
reduced number of gates71, combined with our results, could help to

further study this apparent gap theoretically. When training on Haar
random states, our numerics suggest that an even smaller number of
training data points is sufficient for good generalization: Up to n = 9
qubits, we generalize well from a constant number of training data
points, independent of the system size.

Even more striking are our results when initializing close to the
solution. In this case, as shown in Fig. 4, we find that two training data
points suffice to obtain accurate generalization, which holds even up
to a problem size of 40 qubits. Our theoretical results in Theorem 3 do
predict reduced training requirements when initializing near the
solution. Hence, the numerics are in agreement with the theory,
although they paint an even more optimistic picture and suggest that
further investigation is needed to understand why the training data
requirements are so low. While the assumption of initialization near
the solution is only viable assuming additional prior knowledge, it
could be justified in certain scenarios. For example, if the unitaries to
be compiled depend on a parameter, e.g., time, and if we have already
compiled the unitary for one parameter setting, we might use this as
initialization for unitaries with a similar parameter.

Discussion
We conclude by discussing the impact of our work on specific appli-
cations, a comparison to prior work, the interpretation of our results
from the perspective of quantum advantage, and some open
questions.

We begin with a discussion of the impact on specific applications.
Quantum phase classification is an exciting application of QML, to
which Ref. 45 has successfully applied QCNNs. However, Ref. 45 only
provided a heuristic explanation for the good generalization perfor-
mance of QCNNs. Here, we have presented a rigorous theory that
encompasses QCNNs and explains their performance, and we have
confirmed it numerically for a fairly complicated phase diagram and a
wide range of system sizes. In particular, our analysis allows us to go
beyond the specificmodel of QCNNs and extract general principles for
how to ensure goodgeneralization. As generating training data for this
problem asks an experimenter to prepare a variety of states from
different phases of matter, which will require careful tuning of differ-
ent parameters in the underlying Hamiltonian, good generalization
guarantees for small training data sizes are crucial to allow for the
implementation of phase classification throughQML in actual physical
experiments.

Several successful protocols for unitary compiling make use of
training data52–54. However, prior work has relied on training data sets
whose size scaledexponentiallywith thenumber of qubits. This scaling
is problematic, both because it suggests a similarly bad scaling of the
computational complexity of processing the data and because gen-
erating training data can be expensive in actual physical implementa-
tions. Our generalization bounds provide theoretical guarantees on
the performance that unitary compiling with only polynomial-size
training data can achieve, for the relevant case of efficiently imple-
mentable target unitaries. As we have numerically demonstrated in the
case of the Quantum Fourier Transform, this significant reduction in
training data size makes unitary compiling scalable beyond what pre-
vious approaches could achieve. Moreover, our results provide new
insight into why the VAns algorithm62 is successful for unitary com-
piling. We believe that the QML perspective on unitary compiling
advocated for in this work will lead to new and improved ansätze,
which could scale to even larger systems.

Recent methods for variational dynamical simulation rely on
quantum compiling to compile a Trotterized unitary into a structured
ansatz with the form of a diagonalization48,49,72,73. This technique allows
for quantum simulations of times longer than an iterated Trotteriza-
tion because parameters in the diagonalization may be changed by
hand to provide longer-time simulations with a fixed depth circuit. We
expect the quantum compiling results presented here to carry over to
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this application. This will allow these variational quantum simulation
methods to use fewer training resources (either input-output pairs, or
entangling auxiliary systems), yet still achieve good generalization and
scalability.

Discovering quantum error correcting codes can be viewed as an
optimization problem44,45,74–78. Furthermore, it can be thought of as a
machine learning problem, since computing the average fidelity of the
code involves training data (e.g., chosen from a 2-design44). Significant
effort has beenmade to solve this problem on classical computers74–78.
Such approaches can benefit from our generalization bounds, poten-
tially leading to faster classical discovery of quantum codes. More
recently, it was proposed to use near-termquantum computers to find

such codes44,45. Again our bounds imply good generalization perfor-
mance with small training data for this application, especially for
QCNNs45, due to their logarithmic number of parameters.

Finally, autoencoders and generative adversarial networks (GANs)
have recently been generalized to the quantum setting13,43,79,80. Both
employ training data, and hence our generalization bounds provide
quantitative guidance for how much training data to employ in these
applications. Moreover, our results can provide guidance for ansatz
design. While there is no standard ansatz yet for quantum auto-
encoders or quantum GANs, ansätze with a minimal number of para-
meters will likely lead to the best generalization performance.

Next, we give a comparison to previously known results. Some
prior works have studied the generalization capabilities of quantum
models, among them the classical learning-theoretic approaches
of81–89; the more geometric perspective of17,18; and the information-
theoretic technique of20,37. Independently of this work, Ref. 38 also
investigated covering numbers in QMLMs. However our bounds are
stronger, significantly more general, and broader in scope. We give a
detailed comparison of our results to related work in Supplemen-
tary Note 1.

To view our results in the context of the quest for quantum
advantage, it is important to note that we do not prove a quantum
advantage of quantum over classical machine learning. However,
generalization bounds for QMLMs are necessary to understand their
potential for quantum advantage. Namely, QMLMs can outperform
classical methods, assuming both achieve small training error, only in
scenarios in which QMLMs generalize well, but classical ML methods
do not. We therefore consider our results a guide in the search for
quantum advantage of QML: We need to identify a task in which
QMLMs with few trainable gates achieve small training error, but
classical models need substantially higher model complexity to
achieve the same goal. Then, our bounds guarantee that the QMLM
performs well also on unseen data, but we expect the classical model
to generalize poorly due to the high model complexity.

We conclude with some open questions. For QMLMs with expo-
nentially many independently trainable gates, our generalization error
bounds scale exponentially with n, and hence we do not make non-
trivial claims about this regime. However, this does not yet imply that
exponential-size QMLMs have bad generalization behavior. Whether
and under which circumstances this is indeed the case is an interesting

Fig. 3 | Generalization performance of variational unitary compiling. We
employed a variable structure QMLM (as discussed near Theorem 4). Panel (a)
shows the dependence of Nmin, the minimum training data size for accurate com-
pilation, on n, the number of qubits. Accurate compilation is defined as achieving
k U � V ðαÞk2F < 10�5 on 1 out of 8 (blue) or on 7 out of 8 (red) runs. For training data
with randomcomputational basis inputs (solid lines),Nmin scales linearly inn.When
trainingon exampleswithHaar randominputs (dashed lines),Nmin is constant up to
system size n = 9. In Panel (b), for n = 9 qubits, we plot the prediction error of

successfully trained (training cost < 10−8) runs for 8 training data sets withN = 16 to
N = 30 random computational basis inputs. Panel (c) shows the dependence of the
testing error on the reciprocal of the training error for different training data sizes,
in the case of 9 qubits. Here, the data consisted of random computational basis
states and the corresponding outputs. AsN increases, small training error becomes
a more reliable predictor for small testing error. Each subplot shows 8 different
training runs, trained on different training data sets.

Fig. 4 | Performance of variational unitary compilingwhen initializing near the
solution. Each panel shows the results of a single randomly initialized training run,
where we used randomly drawn low-entangled states for training. The testing error
on 20 test states, whichwe allow tobemore strongly entangled than the states used
during training, is plotted versus the reciprocal of the training error for training
data sizes N = 1, 2, for different system sizes n. A training data set of sizeN = 1 is not
sufficient to guarantee good generalization: Even with decreasing training error,
the testing error remains large. In contrast, assuming favorably initialized training,
N = 2 training data points suffice for good generalization, even for up to n = 40
qubits.
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open question (e.g., see17,37 for some initial results). More generally,
one can ask: Under what circumstances will a QMLM, even one of
polynomial size, outperform our general bound. For example, if we
have further prior knowledge about the loss, arising from specific
target applications, it might be possible to use this information to
tighten our generalization bounds. Moreover, as our generalization
bounds are valid for arbitrary data-generating distributions, they may
be overly pessimistic for favorable distributions. Concretely, in our
numerical experiments for unitary compiling, highly entangled states
were more favorable than especially efficiently preparable states from
the perspective of generalization. It may thus be interesting to inves-
tigate distribution-specific tightenings of our results. Finally, it may be
fruitful to combine the generalization bounds for QMLMs studied in
this work and the effect of data encodings in86 to yield a better picture
on generalization in quantum machine learning.

Methods
This section gives an overview over our techniques. First, we outline
the proof strategy that leads to the different generalization bounds
stated above. Second, we present more details about our numerical
investigations.

Analytical methods
An established approach to generalization bounds in classical statis-
tical learning theory is to bound a complexity measure for the class
under consideration. Metric entropies, i.e., logarithms of covering
numbers, quantify complexity in exactly the way needed for general-
ization bounds, as one can showusing the chaining technique from the
theory of random processes90,91. Therefore, a high level view of our
proof strategy is: We establish novel metric entropy bounds for
QMLMs and then combine these with known generalization results
from classical learning theory. The strongest form of our general-
ization bounds is the following.

Theorem 5. (Mother theorem). Consider a QMLM with an arbitrary
number of parameterized local quantum channels, where for each
T > 0, we have GT different QMLM architectures with T trainable local
gates. Suppose that after optimizing on the training data, the QMLM
hasT independently parameterized local quantumchannels, where the
tth channel is reused at most M times and is changed by Δt during the
optimization. Without loss of generality, assume Δ1≥…≥ΔT. Then with
high probability over input training data of size N, we have

gen ðα*Þ 2 O min
K =0,...,T

f ðKÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðGT Þ

N

r !
, ð12Þ

where f ðKÞ : =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K logðMTÞ

N

q
+ ∑

T

k =K + 1
MΔk .

We give a detailed proof in Supplementary Note 3. There, we also
describe a variant in case the loss function cannotbe evaluated exactly,
but only estimated statistically. Here, we present only a sketch of how
to prove Theorem 5.

Before the proof sketch, however, we discuss how Theorem 5
relates to the generalization bounds stated above. In particular, we
demonstrate how to obtain Theorems 1, 2, 3, and 4 as special cases of
Theorem 5.

In the scenario of Theorem 1, the QMLM architecture is fixed in
advance, each trainable map is only used once, and we do not take
properties of theoptimizationprocedure into account. In the language
of Theorem 5, this means: There exists a single T >0withGT = 1 and we
haveG~T =0 for all ~T≠T . Also,M = 1. And insteadof taking theminimum
over K = 1,…, T, we consider the bound for K = T. Plugging this into the
generalization bound of Theorem 5, we recover Theorem 1.

Similarly, Theorem 5 implies Theorems 2, 3, and 4. Namely, if we
takeGT = 1 and G~T =0 for all ~T≠T , and evaluate the bound for K = T, we

recover Theorem 2. Choosing GT = 1 and G~T =0 for all ~T≠T , the bound
of Theorem 5 becomes that of Theorem 3. Finally, we can obtain
Theorem 4 by bounding the minimum in Theorem 5 in terms of the
expression evaluated at K = T.

Now that we have established that Theorem 5 indeed implies
generalization bounds for all the different scenarios depicted in Fig. 1,
we outline its proof. The first central ingredient to our reasoning are
metric entropy bounds for the class of all n-qubit CPTP maps that a
QMLM as described in Theorem 5 can implement, where the distance
between such maps is measured in terms of the diamond norm. Note:
The trivial metric entropy bound obtained by considering this class of
maps as compact subset of an Euclidean space of dimension expo-
nential in n is not sufficient for our purposes since it scales exponen-
tially in n. Instead, we exploit the layer structure of QMLMs to obtain a
better bound. More precisely, we show: If we fix a QMLM architecture
with T trainable 2-qubit maps and a number of maps 0⩽K⩽ T, and we
assume (data-dependent) optimization distances Δ1⩾…⩾ΔT, then it
suffices to take (ε/KM)-covering nets for each of the sets of admissible
2-qubit CPTP maps for the first K trainable maps to obtain a
ðε+ ∑T

k =K + 1 MΔkÞ-covering net for thewholeQMLM. The cardinality of
a covering net built in this way, crucially, is independent of n, but
depends instead on K,M, and T. In detail, its logarithm can effectively
be bounded as 2 O K log MT=ε

� �� �
. This argument directly extends

from the 2-local to the κ-local case, as we describe in Supplemen-
tary Note 3.

Now we employ the second core ingredient of our proof strat-
egy. Namely, we combine a knownupper boundon the generalization
error in terms of the expected supremum of a certain random pro-
cess with the so-called chaining technique. This leads to a general-
ization error bound in terms of a metric entropy integral. As we need
a non-standard version of this bound, we provide a complete deri-
vation for this strengthened form. This then tells us that, for each
fixed T, M, K, and Δ1⩾…⩾ΔT, using the covering net constructed
above, we can bound the generalization error as
gen ðα*Þ 2 Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K logðMTÞ=N

p
+ ∑T

k =K + 1 MΔkÞ, with high probability.
The last step of the proof consists of two applications of the union

bound. The first instance is a union bound over the possible values of
K. This leads to a generalization error bound in which we minimize
over K =0,…, T. So far, however, the bound still applies only to any
QMLM with fixed architecture. We extend it to variable QMLM archi-
tectures by taking a second union bound over all admissible numbers
of trainable gates T and the corresponding GT architectures. As this is,
in general, a union bound over countably many events, we have to
ensure that the corresponding failure probabilities are summable.
Thus, we invoke our fixed-architecture generalization error bound for
a success probability that is proportional to ðGTT

2Þ�1
. In that way, the

union bound over all possible architectures yields the logarithmic
dependence on GT in the final bound and completes the proof of
Theorem 5.

Numerical methods
This section discusses numerical methods used throughout the paper.
The subsections give details on computational techniques applied to
phase classification of the cluster Hamiltonian in Eq. (9) and Quantum
Fourier Transform compilation.

Phase classification. The training and testing sets consist of ground
states ∣ψi

�
of the cluster Hamiltonian in Eq. (9), computed for different

coupling strengths (J1, J2). The states ∣ψi

�
were obtained with the

translation invariant Density Matrix Renormalization Group92. The
states in the training set (represented by blue crosses in Fig. 2a) are
chosen to be away from phase transition lines, so accurate description
of the ground states is already achieved at small bond dimension χ.
That value determines the cost of further computation involving the
states ∣ψi

�
and we keep it small for efficient simulation.
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We use Matrix Product State techniques93 to compute and opti-
mize the empirical risk in Eq. (10). The main part of that calculation is
the simulationof the action of theQCNN EQCNN

α ona given ground state
∣ψi

�
. The map EQCNN

α consists of alternating convolutional and pooling
layers. In our implementation the layers are translationally invariant
and are represented by parameterized two-qubit gates. The action of a
convolutional layer on an MPS amounts to updating two nearest
neighbor MPS tensors in a way similar to the time-evolving block
decimation algorithm94. The pooling layer is simulated in two steps.
First, we simulate the action of all two-qubit gates on an MPS. This is
analogous to the action of a convolutional layer, but performed on a
different pair of nearest neighborMPS tensors. This step is followedby
a measurement of half of the qubits. We use the fact that the MPS can
be written as a unitary tensor network and hence allows for perfect
sampling techniques95. Themeasurement step results in a reduction of
the system size by a factor of two.

We repeat the application of convolutional and pooling layers
using the MPS as described above until the system size becomes small
enough to allow for an exact description. A few final layers are simu-
lated in a standard way and the empirical risk is given by a two-qubit
measurement according to the label yi, as in Eq. (10). The empirical risk
is optimized with the Simultaneous Perturbation Stochastic Approx-
imation algorithm96. We grow the number of shots used in pooling
layermeasurements as the empirical risk isminimized. This results in a
shot-frugal optimization97, as one can control the accuracy of the
gradient based on the current optimization landscape.

Unitary compiling. In the Numerical results section, we show that the
task of unitary compilation can be translated into minimization of
the empirical risk R̂SðαÞ defined in Eq. (11). Here, α = (θ, k) denotes a
set of parameters that specifies a trainable unitary V(α). The opti-
mization is performed in the space of all shallow circuits. It has dis-
crete and continuous components. The discrete parameters k
control the circuit layout, that is, the placement of all gates used in
the circuit. Those gates are described by the continuous parameters
θ. The optimization min

α
R̂SðαÞ is performed with the recently intro-

duced VAns algorithm62,70. The unitary V(α) is initialized with a circuit
that consists of a few randomly placed gates. In subsequent itera-
tions, VAns modifies the structure parameter k according to certain
rules that involve randomly placing a resolution of the identity and
removing gates that do not significantly contribute to the mini-
mization of the empirical risk R̂SðαÞ. The qFactor algorithm54, mod-
ified to work with a set of pairs of states as opposed to a target
unitary, is used to optimize over continuous parameters θ for fixed k.
This optimization is performed after each update to the structure
parameter k. In subsequent iterations, VAns makes a probabilistic
decision whether the new set of parameters α0 is kept or rejected.
This decision is based on the change in empirical risk R̂Sðα0Þ � R̂SðαÞ,
an artificial temperature T, and a factor Λ that sets the penalty for
growing the circuit too quickly. To that end, we employ a simulated
annealing technique, gradually decreasing T and Λ, and repeat the
iterations described above until R̂SðαÞ reaches a sufficiently
small value.

Let us now discuss the methods used to optimize the empirical
risk when V(α) is initialized close to the solution. Here, we start with a
textbook circuit for performing the QFT andmodify it in the following
way. First, the circuit is rewritten such that it consists of two-qubit
gates only. Next, each two-qubit gate u is replaced with u0 =ueiδh,
where h is a random Hermitian matrix and δ is chosen such that ∣∣u�
u0∣∣= ϵ for an initially specified ϵ. The results presented in the Numer-
ical results section are obtained with ϵ =0.1. The perturbation con-
sidered here does not affect the circuit layout and hence the
optimization over continuous parameters θ is sufficient to minimize
the empirical risk R̂SðαÞ. We use qFactor to perform that optimization.

The input states ∣ψi

�
in the training set f∣ψi

�
,UQFT∣ψi

�gNi= 1 are
random MPSs of bond dimension χ = 2. The QFT is efficiently
simulable98 for such input states, whichmeans thatUQFT∣ψi

�
admits an

efficientMPSdescription. Indeed,we find that a bonddimension χ < 20
is sufficient to accurately describe UQFT∣ψi

�
. In summary, the use of

MPS techniques allows us to construct the training set efficiently. Note
that the states V ðαÞ∣ψi

�
are in general more entangled than UQFT∣ψi

�
,

especially at the beginning of the optimization. Because of that, we
truncate the evolved MPS during the optimization. We find that a
maximal allowed bond dimension of 100 is large enough to perform
stable, successful minimization of the empirical risk with qFactor. The
testing is performed with 20 randomly chosen initial states. We test
with bond dimension χ = 10 MPSs, so the testing is done with more
strongly entangled states than the training. Additionally, for system
sizes up to 16 qubits, we verify that the trained unitary V is close (in the
trace norm) to UQFT, when training is performed with at least two
states.

Data availability
Thedata generated and analyzedduring the current study are available
from the authors upon request.

Code availability
Further implementation details are available from the authors upon
request.
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Supplementary Information for
“Generalization in quantum machine learning from few training data”

Supplementary Note 1. Related Work

1. Related Work on Generalization Bounds for Quantum Machine Learning

In statistical learning theory, a variety of techniques for obtaining generalization bounds are known. The clas-
sical approach is based on complexity measures for the class of functions describing the machine learning model
(MLM) under consideration. Among these complexity measures, the VC-dimension [1], the pseudo-dimension [2],
the Rademacher complexity [3, 4], and covering numbers (and the related metric entropies) [5] are particularly well
known. More recently, different approaches that take properties of the learning algorithm into account have been
investigated, such as stability (introduced by [6]), differential privacy (going back to [7]), sample compression (due to
[8]), and the PAC-Bayesian framework (described in [9]). The theory of generalization for quantum machine learning
(QML) is less developed. Nevertheless, there has been some prior work, of which we now give an overview.

Ref. [10] proved bounds on the pseudo-dimension of quantum circuits in which the local unitaries can be varied.
In particular, these pseudo-dimension bounds imply generalization bounds for learning polynomial-depth unitary
quantum circuits from data. While the data encoding considered in Ref. [10] was a simple product encoding, this can
be understood as an early investigation of the generalization behavior of variational quantum circuits. In particular,
the techniques of Ref. [10] can also be applied for more general quantum data encodings. Ref. [11] has recently
extended the generalization guarantees of Ref. [10] from the realizable to the agnostic setting, using covering number
arguments. We note that all our generalization bounds apply to the agnostic setting, but for more general QMLMs
than considered in [11].

Ref. [12] suggested the so-called effective dimension, derived from the (empirical) Fisher information matrix, as a
complexity measure for the parameter space of a QMLM. In particular, Ref. [12] showed how to derive generalization
bounds from bounds on the effective dimension and investigated this complexity measure numerically for different
QMLMs. Contrary to the conclusions drawn in Ref. [12], the recommendations for QMLMs which we deduce from
our generalization bounds are not unequivocably in favour of higher expressivity. Instead, we emphasize the ability
to fit training data and the ability to generalize have to be balanced carefully. See Section III. in the main text for a
discussion of implications of our results for a potential quantum advantage in QML.

Refs. [13–15] studied the Rademacher complexity of parameterized quantum circuits and thus QMLMs. They
proved bounds on this complexity measure that depend on the size and depth of the circuit as well as on a measure of
magic in the circuit. Ref. [14] provides a resource-theoretic perspective on the Rademacher complexity of a quantum
circuit and Ref. [15] investigated the effects of noise in the circuit.

We mention one more related work that approaches generalization in QML via complexity measures. Ref. [16]
provides bounds on covering numbers of QMLMs and, using these, deduces generalization bounds. We have developed
our approach independently from Ref. [16] and have obtained both stronger and more general results. In particular,
Theorem 6 shows that the generalization error bound scales as

√
T/N , where T is the number of trainable gates and

N is the number of training data, compared to T/
√
N in Theorem 2 in the first version of Ref. [16]. In addition,

and in contrast to Ref. [16], we also consider the practically relevant scenarios of CPTP (not just unitary) QMLMs,
of multiple uses/copies of trainable maps, and of variable QMLM structure. Moreover, our optimization-dependent
generalization bounds for QMLMs are the first bounds of this kind for QML and showcase a new way of using covering
numbers.

Ref. [17] has proposed an information-theoretic strategy towards studying the approximation and generalization
capabilities of QMLMs. In particular, Ref. [17] demonstrates how the approximation and generalization errors of a
QMLM can be bounded in terms of (Rényi) mutual informations between the quantum embedding achieved by the
QMLM (before the final measurement) and the label or instance marginals of the data, respectively.

Ref. [18] considered a class of QMLM (quantum kernels) that is equivalent to training arbitrarily deep quantum
circuits. The work also established generalization error bounds to study when quantum machine learning models
would predict more accurately than classical machine learning models. Ref. [18] showed that even if we are training
an arbitrarily deep quantum circuits, the generalization performance can still be good if a certain geometric criterion
is met. Ref. [19] provided generalization error bounds for quantum kernels in noisy quantum circuits, and Ref. [20]
studied the generalization performance of quantum kernels for some embeddings. Our work considers finite size
quantum circuits and the resulting generalization error bounds are very different.

Even more recently, Ref. [21] has proved bounds on the VC-dimension and the fat-shattering dimension of a QMLM,
by viewing the QMLM in terms of a parameterized measurement performed on the quantum data encoding. These
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complexity bounds lead to generalization bounds for QMLMs that depend on spectral properties (more precisely, rank
or Frobenius norm) of the parameterized measurement.

Shortly thereafter, Ref. [22] studied the generalization capabilities of QMLMs with a focus on the strategy used
to encode classical data into the quantum circuit. In particular, they considered data encodings via Hamiltonian
evolutions, where data re-uploading is allowed. For corresponding QMLMs, Ref. [22] established generalization bounds
that depend explicitly on properties of the Hamiltonians used for data-encoding. These results are complementary
to our work: The generalization guarantees of Ref. [22] depend only on the encoding strategy used in the QMLM,
whereas our results are in formulated in terms of properties of the trainable part of the QMLM only.

Ref. [23] investigated the expressibility and the generalization behavior of specific QMLMs. By combining light
cone arguments with insights into how a specific data-encoding leads to effective dimensionality limitations (see also
[22]), Ref. [23] obtained VC-dimension bounds for the hardware efficient ansatz. These bounds depend on the number
of qubits and on the number of trainable layers. Ref. [23] interpreted the overall limitation on the VC-dimension
imposed by the data-encoding as an automatic regularization, which is helpful in avoiding overfitting.

Lastly, Ref. [24] investigated a problem of learning parametrized unitary quantum circuits from training data
consisting of pairs of input and corresponding output states. They established generalization bounds, and thus sample
complexity bounds, by first identifying a universal family of variational quantum circuit architecture, then considering
a finite discretization of this family, and finally applying a standard generalization bound for finite hypothesis classes.
We note that the generalization guarantee obtained from Theorem 6 is tighter than that obtained in Ref. [24]: For
a variational n-qubit QMLM with at most nc gates, [24, Theorem 2] implies that a sample complexity of Õ(nc+1)

suffices for good generalization, whereas Theorem 6 tells us that already Õ(nc) samples suffice. Additionally, our
generalization guarantees apply for more general architectures than those considered in [24].

2. Related Work on Quantum Phase Recognition

Recognizing quantum phases of matter is an important question in physics. Recently, many works have considered
training machine learning models to classify quantum phases. The works include the use of quantum neural networks
[25] and classical machine learning models [26–29]. Most of the existing works do not come with rigorous guarantees.
Thus, it is not clear whether the respective machine learning models will predict well after training. Our work shows
that when a quantum neural network, such as a QCNN [25], can perform well on a training set with a moderate
amount of examples, the quantum neural network will also predict well on new data. This is particularly prominent
in QCNNs, for which the required training data size scales at most polylogarithmically in the system size. However,
in order for quantum neural networks to achieve a small training error, one still needs to address various challenges,
such as barren plateau in the training landscape [30, 31].

Recently, [32] has proposed provably efficient classical machine learning models that can classify a wide range of
quantum phases of matter, including symmetry-broken phases, topological phases, and symmetry-protected topologi-
cal phases. These classical machine learning models are efficient in both computational time and the required training
data [32]. Furthermore, the numerical experiments of [32] have shown that no labels of the different phases are needed
to train the classical machine learning models. The classical algorithm can automatically uncover the quantum phases
of matter in an unsupervised learning procedure.

It remains to be seen if QMLMs, such as QCNNs [25], can improve upon classical machine learning models in
classifying quantum phases of matter. For example, [32] shows that the prediction performance of classical machine
learning models sometimes degrades when the correlation length in the ground state wave function is high. It would
be interesting to understand whether QMLMs can still work well when classical machine learning models fail.

3. Related Work on Quantum Compiling

Compiling of quantum circuits is a broad field with many distinct approaches. For example, temporal planning [33,
34], reinforcement learning [35], and supervised learning [36, 37] are three alternative approaches that have been
applied to quantum compiling. Moreover, while classical methods for quantum compiling are the most common, it
has also been proposed to do quantum-assisted quantum compiling where a quantum computer is involved in the
compiling process [38–41].

While not all methods employ training data, it is worth noting that some state-of-the-art methods are in fact based
on training data [36, 37, 42]. It is also worth remarking that noise-aware quantum compiling methods can involve
training data [37]. For these methods, it has largely been assumed that one would need an amount of training data
that grows exponentially with the number of qubits. Naturally, this exponential scaling places a cutoff on the size of
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unitaries that one can compile. However, with our results in mind (allowing for only polynomial-sized training sets),
this cutoff can be significantly extended to larger unitary sizes.

For quantum compiling, the benefit of our work is two-fold, in that both classical methods and quantum methods can
potentially be sped-up. Classical methods for quantum compiling are currently being used in the quantum computing
industry to enhance the performance of cloud-based quantum computing (e.g., by companies such as Rigetti and IBM).
Therefore, speeding up classical methods for quantum compiling can potentially have a direct impact on cloud-based
quantum computing. Both standard compiling and noise-aware compiling are important for industrial near-term
quantum computing, and our work impacts both of these approaches.

In addition, quantum-assisted methods for quantum compiling can also reduce their resource costs based on our
results. Variational quantum algorithms for quantum compiling have been introduced [38–41]. Specifically, Refs. [38,
39, 43] discussed methods that employ an entangled state on 2n qubits to compile an n-qubit unitary. Due to our
work, this entangled state can apparently be reduced in size, namely only needing a Schmidt rank that is polynomial
in n (instead of a Schmidt rank that is exponential in n). Ref. [40] proposed a slightly different approach that did
not involve an auxiliary system, but simply used multiple training data points. Our work shows that the amount of
training data here does not need to grow exponentially in n, making the approach in Ref. [40] potentially scalable.

Finally, we note that variable ansatz methods (e.g., Ref. [44, 45]) for quantum compiling is a state-of-the-art
approach that is employed, e.g., in Refs. [36, 37]. As noted in the main text, our results are general enough to cover
the variable ansatz case (where the structure of the circuit changes during the optimization). Hence we provide
guidance for how much training data is needed for the variable ansatz case as well.

Supplementary Note 2. Auxiliary Lemmata

Before presenting our results, we use this section to recall some well known auxiliary results that enter our proofs.

1. Auxiliary Lemmata from Statistical Learning Theory

We use two standard concentration inequalities. The first is due to Wassily Hoeffding.

Lemma 1 (Hoeffding’s Concentration Inequality [46]). Let X1, . . . , XN be independent R-valued random variables.
Assume that, for every 1 6 i 6 N , Xi ∈ [ai, bi] almost surely, where ai, bi ∈ R, ai 6 bi. Then, for every ε > 0,

P

[
N∑

i=1

(Xi − E[Xi]) > ε

]
6 exp

(
−2ε2/

N∑
i=1

(bi−ai)2
)
, (1)

P

[∣∣∣∣∣
N∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ > ε

]
6 2 exp

(
−2ε2/

N∑
i=1

(bi−ai)2
)
. (2)

The second is the bounded differences inequality, originally due to Colin McDiarmid.

Lemma 2 (McDiarmid’s Concentration Inequality [47]). Let X1, . . . , XN be independent random variables, each with
values in Z. Let ϕ : ZN → R be a measurable function s.t., whenever z ∈ Zn and z′ ∈ Zn differ only in the ith entry,
then |ϕ(z)− ϕ(z′)| 6 bi. Then, for every ε > 0, we have

P [ϕ(Z)− E[ϕ(Z)] > ε] 6 exp
(
−2ε2/

N∑
i=1

b2i

)
. (3)

The third well known ingredient that we will employ in our reasoning without giving a proof is the following.

Lemma 3 (Massart’s Lemma [48]). Let N ∈ N. Let A ⊂ RN be a finite set contained in a Euclidean ball of radius
r > 0. Then

Eσ

[
sup
a∈A

1

N

N∑

i=1

σiai

]
6 r

√
2 log|A|
N

, (4)

where the expectation is w.r.t. i.i.d. Rademacher random variables σ1, . . . , σN .
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2. Auxiliary Lemmata from Quantum Information Theory

From quantum information theory, we crucially make use of the following lemma.

Lemma 4 (Subadditivity of diamond distance; see [49], Proposition 3.48). For any completely positive and trace-
preserving maps A,B, C,D, where B and D map from n-qubit to m-qubit systems and A and C map from m-qubit to
k-qubit systems, we have the following inequality

||AB − CD||� 6 ||A − C||� + ||B − D||�. (5)

Also, to translate between the spectral norm of unitaries and the diamond norm of the corresponding channels, we
employ the following result.

Lemma 5 (Spectral norm and diamond norm of unitary channels). Let U(ρ) = UρU† and V(ρ) = V ρV † be unitary
channels. Then, 1

2‖U(|ψ〉〈ψ|)− V(|ψ〉〈ψ|)‖1 6 ‖(U − V )|ψ〉‖`2 for any pure state |ψ〉. Therefore,
1
2‖U − V‖� 6 ‖U − V ‖. (6)

Proof. The proof is adapted from [50]. Fix an input |ψ〉 and denote the output state vectors by |u〉 = U |ψ〉 and
|v〉 = V |ψ〉, respectively. Normalization ensures that these state vectors obey |〈u, v〉| 6 1, as well as ‖|u〉 − |v〉‖`2 =√

2(1− Re(〈u, v〉)). Apply the Fuchs–van de Graaf relations [51] to convert the output trace distance into a (pure)
output fidelity:

1
2‖|u〉〈u| − |v〉〈v|‖1 =

√
1− |〈u, v〉|2 (7)

=
√

(1 + |〈u, v〉|)(1− |〈u, v〉|) (8)

6
√

2(1− Re(〈u, v〉)) (9)
= ‖|u〉 − |v〉‖`2 . (10)

The diamond distance bound then is a direct consequence of this relation. Using the fact that stabilization is not
necessary for computing the diamond distance of two unitary channels [49], we get

1
2‖U − V‖� = max

|ψ〉〈ψ|
1
2‖U(|ψ〉〈ψ|)− V(|ψ〉〈ψ|)‖1 (11)

6 max
|ψ〉
‖(U − V )|ψ〉‖`2 = ‖U − V ‖. (12)

Here, we have also used the definition of the operator norm.

Supplementary Note 3. Analytical Results: Details and Proofs

We first introduce some standard notation. Let D(H) denote the set of density operators (positive semi-definite
with unit trace) acting on the Hilbert space H. Let L(H) denote the space of square linear operators acting on
H. Let L(H,H′) denote the set of linear operators taking H to a Hilbert space H′ . The trace norm of a linear
operator A ∈ L(H,H′) is defined as ‖A‖1 := Tr[|A|], where |A| :=

√
A†A. The trace distance between any two

operators A,B ∈ L(H,H′) is ‖A − B‖1, and for two quantum states ρ, σ ∈ D(H) it is linearly related to the
maximum success probability of distinguishing ρ and σ in a quantum hypothesis testing experiment. A linear map
NA→B : L(HA) → L(HB) is called a completely positive (CP) map if (IR ⊗ NA→B)(XRA) is positive semi-definite
for all positive semi-definite XRA ∈ L(HRA), where HRA = HR ⊗HA and the reference system R can be of arbitrary
size. Moreover, a linear map NA→B : L(HA) → L(HB) is trace preserving (TP) if Tr(NA→B(XA)) = Tr(XA) for
all XA ∈ L(HA). A linear map NA→B is called a quantum channel if it is completely positive and trace preserving
(CPTP). Let NA→B andMA→B denote quantum channels. Then the diamond distance between NA→B andMA→B
is defined as

‖NA→B −MA→B‖� := sup
ρRA∈D(HRA)

‖(IR ⊗NA→B)(ρRA)− (IR ⊗MA→B)(ρRA)‖1, (13)

where IR is the identity map acting on HR.
As a consequence of the convexity of the trace norm and the Schmidt decomposition theorem, it suffices to optimize

Eq. (13) over pure states in HRA with dim(HR) = dim(HA).



5

With the notation in place, we now present our analytical results. Generalization performance depends crucially
on the metric entropy, which characterizes both classical and quantum machine learning models [52]. Metric entropy
is a measure of complexity or expressiveness for a set of objects endowed with a distance metric.

In Supplementary Note 3. 1., we take the diamond norm as the distance metric and prove metric entropy bounds for
two sets of interest. First, we examine the set UA of all unitaries that can be represented using a (fixed) variational
quantum circuit A with T parameterized 2-qubit unitary gates. More precisely, we consider the corresponding set
of unitary channels. Second, we study the set CPT PA of all CPTP maps that can be represented using a (fixed)
variational quantum circuit A with T parameterized 2-qubit CPTP maps. The latter scenario generalizes the former
and corresponds to the difference between perfect and noisy implementations. Note that, in both cases, the variational
quantum circuit itself could contain more than T gates. However, these additional gates would have to be fixed and
not trainable.

Using these metric entropy bounds and variants thereof, we establish prediction error bounds for variational quantum
machine learning models (QMLMs) in terms of the number of trainable elements in Supplementary Note 3. 2.. We
consider different scenarios of interest, among them that of using multiple copies of a quantum neural network (such
that parameters are reused over different copies), as well as both fixed and variable circuit architectures.

1. Covering Number Bounds for Variational Quantum Circuits

In this section, we provide bounds on the expressivity of the class of CPTP maps (or unitaries) that a quantum
machine learning model (QMLM) can implement in terms of the number of trainable elements used in the architecture.
As a measure of expressivity, we choose covering numbers and metric entropies w.r.t. (the metric induced by) the
diamond norm. We first recall the general definition of covering numbers and metric entropies.

Definition 1 (Covering nets, covering numbers, and metric entropies). Let (X, d) be a metric space. Let K ⊂ X be
a subset and let ε > 0.

• N ⊆ K is an ε-covering net of K if ∀x ∈ K ∃y ∈ N such that d(x, y) 6 ε. That is, N ⊆ K is an ε-covering net
of K if and only if K can be covered by ε-balls around the points in N .

• The covering number N (K, d, ε) is the smallest possible cardinality of an ε-covering net of K.

• The metric entropies log2N (K, d, ε) are the logarithm of the covering numbers.

In finite-dimensional real spaces, the covering numbers of norm balls, and thereby of norm-bounded sets, can be
bounded easily. We make use of this observation to provide basic covering number bounds for the classes of 2-qubit
unitaries and 2-qubit CPTP maps. We first state the bound for the unitary case.

Lemma 6 (Covering number bounds for 2-qubit unitaries). Let || · || be a unitarily invariant norm on complex 4× 4-
matrices. The covering number of the set of 2-qubit unitaries U

(
C2 ⊗ C2

)
w.r.t. the norm || · || can be bounded

as

N
(
U
(
C2 ⊗ C2

)
, || · ||, ε

)
6
(

6||1C4 ||
ε

)32

, for 0 < ε 6 ||1C4 ||. (14)

Proof. It is well known (see, e.g., Section 4.2 in [53]) that the covering numbers of a norm-ball of radius R > 0 around
some point x ∈ RK , for 0 < ε 6 R, can be bounded as

N (BR(x), || · ||, ε) 6
(

1 +
2R

ε

)K
6
(

3R

ε

)K
, (15)

where the ball and the coverings are taken w.r.t. the same norm.
In our scenario, we can apply this as follows: As || · || is assumed to be unitarily invariant, we have ||U || = ||1C4 || for

every unitary U ∈ U
(
C2 ⊗ C2

)
. In particular, we have, for R := ||1C4 || that U

(
C2 ⊗ C2

)
⊂ BR(0), where BR(0) is

the ball of matrices with 4× 4 = 16 complex entries around the 0-matrix is taken w.r.t. || · ||. Therefore, we have

N
(
U
(
C2 ⊗ C2

)
, || · ||, ε

)
6 N

(
BR(0), || · ||, ε

2

)
6
(

6||1C4 ||
ε

)2·16

, for 0 < ε 6 ||1C4 ||, (16)

where the first step uses the approximate monotonicity of (interior) covering numbers (see, e.g., Section 4.2 in [53]).



6

This covering number bound becomes particularly useful for the spectral norm, for which ||1C4 || = 1.
With an analogous reasoning, we can prove a covering number bound for 2-qubit CPTP maps.

Lemma 7 (Covering number bounds for 2-qubit CPTP maps). The covering number of the set of 2-qubit CPTP
maps CPT P

(
C2 ⊗ C2

)
w.r.t. the diamond distance can be bounded as

N
(
CPT P

(
C2 ⊗ C2

)
, || · ||�, ε

)
6
(

6

ε

)512

, for 0 < ε 6 1. (17)

Proof. As CPTP maps have diamond norm equal to 1, this follows (analogously to the previous Lemma) by upper-
bounding the covering number of the diamond-norm unit ball, which lives in a (24 × 24)-dimensional space over the
complex numbers. The latter can be achieved as in the previous Lemma.

We combine these basic upper bounds for single trainable elements with sub-additivity of the diamond norm
(Lemma 4) to obtain a covering number bound for the class of maps that can be implemented by a variational
QMLM, understood as a parametrized CPTP map as described in the main text. Again, we first state the bound for
the unitary case.

Theorem 1 (Metric entropy bounds for unitary QMLMs). Let EQMLM
θ (·) be an n-qubit QMLM with T parameterized

2-qubit unitary gates and an arbitrary number of non-trainable, global unitary gates. Let UQMLM ⊂ U(C2n) denote
the set of n-qubit unitaries that can be implemented by the QMLM EQMLM

θ (·).
Then, for every ε ∈ (0, 1], there exists an ε-covering net Nε of (the set of unitary channels corresponding to) UQMLM

w.r.t. the diamond distance such that the logarithm of its size can be upper bounded as

log(|Nε|) 6 32T log

(
12T

ε

)
. (18)

Proof. Let ε ∈ (0, 1], write ε̃ := ε
2T . By Lemma 6, there exists an ε̃-net Ñε̃ of U

(
C2 ⊗ C2

)
w.r.t. the spectral norm of

size |Ñε̃| 6 (6/ε̃)
32

= (12T/ε)
32.

Note that any U ∈ UQMLM is of the form U = VTUTVT−1UT−1VT−2 . . . V1U1V0, where Ut, 1 6 t 6 T , are a
particular choice of the trainable 2-qubit unitaries and Vs, 0 6 s 6 T + 1, are the non-trainable n-qubit unitaries
occurring in the QMLM. (For ease of readability, we have not written out the tensor factors of identities accompanying
the Ut.) We now consider the set of unitaries obtained by plugging the elements of Ñε̃ as trainable 2-qubit unitaries
into the QMLM. That is, we take

Nε :=
{
VTUTVT−1UT−1VT−2 . . . V1U1V0 | Ut ∈ Ñε̃, 1 6 t 6 T

}
. (19)

Let U ∈ UQMLM be an arbitrary n-qubit unitary that can be implemented by the QMLM, i.e., U =
VTUTVT−1UT−1VT−2 . . . V1U1V0 for some Ut ∈ U(C2 ⊗ C2), 1 6 t 6 T . Let U denote the corresponding unitary
channel. As Ñε̃ is an ε̃-net for the set of 2-qubit unitaries, we can find Ũt ∈ Ñε̃, 1 6 t 6 T , such that ||Ut − Ũt|| 6 ε̃

for all 1 6 t 6 T . Then, the unitary channel Ũ described by Ũ := VT ŨTVT−1ŨT−1VT−2 . . . V1Ũ1V0 ∈ Nε satisfies

||U − Ũ||� 6
T+1∑

s=0

||Vs − Ṽs||� +

T∑

t=1

||Ut − Ũt||� 6 2

T∑

t=1

||Ut − Ũt|| 6 ε, (20)

where we iteratively applied sub-additivity of the diamond distance (Lemma 4) in the first step, then used the relation
between the diamond distance of unitary channels to the spectral norm distance of the corresponding unitaries (Lemma
5), and in the final step plugged in the definition of ε̃.

Thus, we have shown that the set of unitary channels with unitaries in Nε is an ε-covering net of the set of unitary
channels with unitaries in UQMLM w.r.t. the diamond distance. As |Nε| = |Ñε̃|T (by definition of Nε), plugging in the
bound on the size of Ñε̃ then gives the desired bound on the cardinality of Nε and thereby of our covering net.

For variational quantum circuits consisting of CPTP maps, we obtain an analogous result upon replacing Lemma 6
by Lemma 7 in the previous proof:

Theorem 2 (Metric entropy bounds for QMLMs of CPTP maps). Let EQMLM
θ (·) be an n-qubit QMLM with T

parameterized 2-qubit CPTP maps and an arbitrary number of non-trainable, global CPTP maps. Let CPT PQMLM ⊂
CPT P

(
(C2)⊗n

)
denote the set of n-qubit CPTP maps that can be implemented by the circuit QMLM EQMLM

θ (·).
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For any ε ∈ (0, 1], there exists an ε-covering net Nε of CPT PQMLM w.r.t. the diamond distance such that the
logarithm of its size can be upper bounded as

log(|Nε|) 6 512T log

(
6T

ε

)
. (21)

In both scenarios, the metric entropy grows at worst slightly super-linearly with the number of parameterized (and
thus trainable) operations.

We also provide a generalization of these metric entropy bounds that is natural for the scenario in which trainable
gates are reused in the quantum machine learning model:

Theorem 3 (Metric entropy bounds for QMLMs of reused CPTP maps). Let EQMLM
θ (·) be an n-qubit QMLM with

T parameterized 2-qubit CPTP maps, in which the tth of these maps is used Mt times, and an arbitrary number of
non-trainable, global CPTP maps. Let CPT PQMLM ⊂ CPT P

(
(C2)⊗n

)
denote the set of n-qubit CPTP maps that

can be implemented by the QMLM EQMLM
θ (·).

For any ε ∈ (0, 1], there exists an ε-covering net Nε of CPT PQMLM w.r.t. the diamond distance such that the
logarithm of its size can be upper bounded as

log(|Nε|) 6 512

(
T log

(
6T

ε

)
+

T∑

t=1

log(Mt)

)
. (22)

Proof. We can use the same reasoning as in the proof of Theorems 1 and 2 to show that we can define an ε-covering
net Nε for CPT PQMLM (w.r.t. || · ||�) by plugging the elements of an ε̃t-net for CPT P(C2 ⊗ C2) into the positions
of the QMLM corresponding to the tth independently trainable 2-qubit map, where ε̃t := ε

T ·Mt
. When picking the

ε̃t-nets with cardinality bounded as in Lemma 7, the cardinality of Nε can be bounded as

|Nε| 6
T∏

t=1

(
6TMt

ε

)512

=

((
6T

ε

)T
·
(

T∏

t=1

Mt

))512

. (23)

Taking a logarithm gives the claimed metric entropy bound.

The growth of the metric entropies in terms of T , the number of independently trainable maps, is still at most
slightly super-linear. But the growth in terms of the numbers of times that the trainable maps are reused is only
logarithmic.

Note that we have formulated the metric entropy bounds for the qubit case only, but they can naturally be extended
to the qudit case. Then the upper bound will depend polynomially on the dimension d.

We provide one more metric entropy bound for QMLMs, which also takes the training procedure into account, in
Theorem 8. Formulating this bound, however, requires us to fix some (notational) assumptions on the optimization
procedure used for training. Therefore, we postpone this final metric entropy bound to Supplementary Note 3. 2. 5..

Remark 1. Both in this section and in the following ones, we formulate our results for QMLMs whose parametrized
gates act on (at most) 2 qubits. Our proofs and results straightforwardly extend to the case in which the parametrized
gates act on (at most) κ qubits. In particular, when going from 2- to κ-local, the T -dependence remains the same.
Only the constant prefactors in the metric entropy bounds (and thus the generalization bounds) change, namely from
2 · 24 to 2 · 22κ in the unitary case, and from 2 · 28 to 2 · 24κ in the CPTP case. Since κ is constant, then the latter is
just prefactor that does not change the scaling of our theorems.

2. Prediction error bounds for quantum machine learning models

Using well-established tools from statistical learning theory, we can derive prediction error bounds for QMLMs
from the covering number bounds established in Supplementary Note 3. 1.. Before doing so, we describe our setting
in detail.

During the training process, we optimize the parameters α in the (CPTP map implemented by the) quantum
machine learning model EQMLM

α (·) according to some criteria and depending on the training data. Here, we write
α = (θ,k) if we consider both discrete, structural parameters k and continuous parameters θ. If the QMLM structure
is fixed and only the continuous parameters are optimized, we write only θ (instead of α). Note that we do not make
any further assumptions on how the QMLM EQMLM

α (·) depends on the parameters α = (θ,k) other than that the
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discrete parameters only encode different choices of quantum circuit architectures. In particular, the dependence of
the trainable gates on the continuous parameters θ can be arbitrary.

We use an observable to quantify how good/bad the output state is, this will serve as our loss function. More
concretely, for an input xi and (classical or quantum) target output yi, we define the loss function of the parameter
setting α to be

`(α;xi, yi) = Tr
[
Oloss
xi,yi(EQMLM

α ⊗ id)(ρ(xi))
]
, (24)

for some Hermitian observables Oloss
xi,yi . Here, x 7→ ρ(x) is some encoding of the classical data into quantum states

that is fixed in advance.
As is common in classical learning theory, the prediction error bounds will depend on the largest (absolute) value

that the loss function can attain. In our case, we therefore assume Closs := supx,y ||Oloss
x,y || < ∞. That is, we assume

that the spectral norm can be bounded uniformly over all possible loss observables.
For a training dataset S = {(xi, yi)}Ni=1 of size N ∈ N, the average loss on the training data is given by

R̂S(α) :=
1

N

N∑

i=1

`(α;xi, yi) =
1

N

N∑

i=1

Tr
[
Oloss
xi,yi(EQMLM

α ⊗ id)(ρ(xi))
]
, (25)

which is often referred to as the training error or empirical risk. This quantity can (in principle) be evaluated, given
the parameter setting α and the training data.

When we obtain a new input x, the prediction error of a parameter setting α is taken to be the expected loss

R(α) := E
(x,y)∼P

[`(α;x, y)] = E
(x,y)∼P

Tr
[
Oloss
x,y (EQMLM

α ⊗ id)(ρ(x))
]
, (26)

where the expectation is w.r.t. the distribution P from which the training examples are generated. This quantity is
called the prediction error or expected risk. The goal of any (classical or quantum) machine learning procedure is to
achieve a small prediction error with high success probability.

As the underlying distribution P is usually unknown, we cannot directly evaluate the prediction error, even if we
know the parameters α. In practice, one therefore often takes the training error as a proxy for the prediction error.
However, this procedure can only succeed if the difference between the prediction and the training error, the so-called
generalization error, is small. Our covering number bounds allow us to prove rigorous bounds on the generalization
error incurred by a variational quantum machine learning method in the so-called “Probably Approximately Correct”
(PAC) sense. That is, we provide bounds on the generalization error in terms of the desired success probability and
the training data size. Thereby, our results provide guarantees on the prediction performance of a quantum machine
learning model on unseen data, if that model performs well on the training data.

Our main result is the following:

Theorem 4 (Mother Theorem). Let EQMLM
α (·) be a QMLM with a variable structure. Suppose that, for every

k ∈ N, there are at most Gτ ∈ N allowed structures with exactly τ parameterized 2-qubit CPTP maps, in which
the tth of these maps is taken from a set Mt and used Mt times, and an arbitrary number of non-trainable, global
CPTP maps. Also, for each t ∈ N, let E0

t ∈ CPT P
(
(C)⊗2

)
be a fixed reference CPTP map. Let P be a probability

distribution over input-output pairs. Suppose that, given training data S = {(xi, yi)}Ni=1 of size N , our optimization
of the QMLM over structures and parameters w.r.t. the loss function `(α;xi, yi) = Tr

[
Oloss
xi,yi(EQMLM

α ⊗ id)(ρ(xi))
]

yields a (data-dependent) structure with T = T (N) independently parameterized 2-qubit CPTP maps, in which the
tth of these maps is taken fromMt and used Mt times, as well as the parameter setting α∗ = α∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(α∗)− R̂S(α∗)

∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

√
K max

16t6T
ct log(Mt)

N
+

T∑

t=1
t 6=t1,...,tK

Mt∆t +

√
log(GT )

N
+

√
log(1/δ)

N






 ,

(27)

where ∆T
1 , . . . ,∆

T
T denote the (data-dependent) distance between the trainable maps in the output QMLM to the

respective reference maps E0
1 , . . . , E0

T , Closs = sup
x,y
||Oloss

x,y || is the maximum (absolute) value attainable by the loss

function, and the minimum is over all K ∈ {0, . . . , T} and choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}.
Moreover, if the loss is not evaluated exactly, but an unbiased estimator is built from σest subsampled training data

points (as in Supplementary Note 3. 2. 6.), we only incur an additional error of O
(√

log(1/δ)/σest

)
.
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Some of the important aspects of the upper bound on the generalization error of a QMLM provided by Theorem
4 are: a dependence on the square root of the inverse of the training data size (N); an at worst slightly superlinear
dependence on the number of trainable maps (T ), which can improve if only a smaller number (K) of gates experience
non-negligible changes during the optimization; a logarithmic dependence on the number of uses (Mt); a logarithmic
dependence on the number of different architectures (GT ); and a logarithmic dependence on the reciprocal of the
desired confidence level (δ).

We build up to the proof of Theorem 4 by first establishing our basic QML generalization error bound and then
extending it in different directions. More precisely, we structure our presentation as follows: We start with the
pedagogical Supplementary Note 3. 2. 1., in which we show a simple proof of how metric entropy bounds lead to
generalization bounds, albeit not yet to their strongest form. In Supplementary Note 3. 2. 2., we demonstrate how to
improve upon the simple proof strategy using a more involved technique. Then, we extend the basic generalization
error bounds in multiple directions, namely to multiple copies and reused trainable maps (Supplementary Note 3. 2. 3.),
variable architecture (Supplementary Note 3. 2. 4.), optimization-dependent guarantees (Supplementary Note 3. 2. 5.),
and to a scenario in which we can not evaluate the loss function exactly, but only indirectly through an unbiased
estimator (Supplementary Note 3. 2. 6.). Finally, we bring together all these extensions into the most general form of
our result (Supplementary Note 3. 2. 7.). Our line of reasoning is summarized in Supplementary Figure 1.

Subadditivity of
the �-distance

Covering number bound
for CPT P

(
C2 ⊗ C2

)

Metric entropy bounds
for QMLMs (Note 3.1)

ghost samples

chaining

Mother theorem (Note 3.2.7):
Generalization bounds for QMLMs

Fixed structure

(Note 3.2.2)

Gate sharing

(Note 3.2.3)

Variable

structure

(Note 3.2.4)

Optimization

dependence

(Note 3.2.5)

Estimated loss

(Note 3.2.6)

Application:
Quantum phase
recognition
(Note 4)

Application:
Unitary compiling

(Note 5)

Supplementary Figure 1. Visualization of the proof structure. We prove metric entropy bounds and use them to derive
generalization bounds for different QMLM settings. We then apply our theory to quantum phase recognition and unitary
compiling.

Remark 2. A loss function of the form of Eq. (24) automatically has a certain linear structure, namely, it depends lin-
early on the output state (EQMLM

α ⊗id)(ρ(xi)). Notice, however, that we can introduce also a certain type of nonlinear-
ity through the spectral decomposition of the loss observables Oloss

xi,yi . Namely, suppose that we obtain a classical output
from the QMLM by measuring an observable Oout with spectral decomposition Oout =

∑
j λj |j〉〈j |. That is, given an

input xi, we output λj with probability pj(α, xi) = Tr[|j〉〈j |(EQMLM
α ⊗ id)(ρ(xi))] = 〈j|(EQMLM

α ⊗ id)(ρ(xi))|j〉. Now,
we can, for example, define the loss observables as Oloss

xi,yi
:=
∑
j(yi−λj)2|j〉〈j |, so that `(α;xi, yi) = E[(yi−λj)2] be-

comes the expected square loss between the true label yi and our output λi. Here, the expectation is w.r.t. (pj(α, xi))j .
Clearly, here we can replace (yi − λj)2 by any nonlinear loss function ˜̀(yi, λj) of interest.

1. Prelude: Metric entropy bounds imply generalization error bounds

This section is intended to help readers not yet familiar with the theory of classical machine learning gain an
intuition for how we derive our analytical results. We present a technically simple proof of a generalization bound for
a fixed-architecture QMLM, which, however, is worse than that of Theorem 6 by a factor logarithmic in the training
data size. Therefore, readers already well versed in statistical learning theory, or readers who want to focus on the
results and not the proofs, can safely skip this pedagogical section.

We demonstrate how the metric entropy bound from Theorem 2 gives rise to a generalization bound for QMLMs
with a fixed architecture, in which each trainable 2-qubit CPTP map is used only once. The simplified proof given in
this section consists in combining Hoeffding’s concentration inequality (Lemma 1) with a union bound over a suitable
covering net. Informally, we show that it suffices to prove good generalization simultaneously for all elements in a
covering net, which we can obtain from a union bound over standard concentration guarantees for each single element
of the covering net.
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Theorem 5 (Prediction error bound for quantum machine learning - Fixed structure (Preliminary version)). Let
EQMLM
θ (·) be a QMLM with a fixed architecture consisting of T parameterized 2-qubit CPTP maps and an arbitrary

number of non-trainable, global CPTP maps. Let P be a probability distribution over input-output pairs. Suppose
that, given training data S = {(xi, yi)}Ni=1 of size N , our optimization yields the parameter setting θ∗ = θ∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(θ∗)− R̂S(θ∗) ∈ O
(
Closs

(√
T log (TN)

N
+

√
log(1/δ)

N

))
. (28)

Proof. For any parameter setting θ, fixed independently of the choice of training data, we see that
`(θ;x1, y1), . . . , `(θ;xN , yN ) are independent random variables taking values in [−Closs, Closs]. So Hoeffding’s Lemma
(Lemma 1) tells us that, ∀η > 0, have

PS
[
R(θ)− R̂S(θ) > η

]
6 exp

(
− Nη2

2C2
loss

)
. (29)

Here, PS [·] = PS∼PN [·] denotes the probability over training data sets S = {(xi, yi)}Ni=1 of size N , with the (xi, yi)

drawn i.i.d. from the probability measure P . Next, we let ε =
√
T/N > 0, take Nε to be an ε-covering net of the set

of CPTP maps that can be implemented by the QMLM, and we take a union bound over Nε, with which we obtain

PS
[
∃EQMLM

θ ∈ Nε : R(θ)− R̂S(θ) > η
]
6 |Nε| · exp

(
− Nη2

2C2
loss

)
. (30)

As we took Nε to be an ε-covering net (w.r.t. the diamond norm) of the class of CPTP maps that the QMLM can
implement, and since ||E − Ẽ||� 6 ε directly implies, for all x ∈ X , y ∈ Y,

∣∣∣Tr
[
Oloss
x,y (E ⊗ id)(ρ(x))

]
− Tr

[
Oloss
x,y (Ẽ ⊗ id)(ρ(x))

]∣∣∣ 6 ||Oloss
x,y || · ||E − Ẽ||� 6 Clossε, (31)

we conclude, because of the form of the loss function `, that

PS
[
R(θ∗)− R̂S(θ∗) > η + 2Clossε

]
6 PS

[
∃EQMLM

θ ∈ Nε : R̂S(θ) > R(θ) + η
]

(32)

6 |Nε| · exp

(
− Nη2

2C2
loss

)
(33)

Thus, for any δ ∈ (0, 1), by choosing η = Closs

√
2 log(|Nε|/δ)

N , we can guarantee that, with probability at least 1 − δ
over the choice of training data S of size N , we have

R(θ∗)− R̂S(θ∗) 6 Closs

√
2 log(|Nε|/δ)

N
+ 2Closs

√
T

N
. (34)

Now, we recall that, by Theorem 2, we can take Nε to satisfy log(|Nε|) 6 512T log(6T/ε). Plugging this into the
previous bound, we see that, with probability at least 1− δ over the choice of training data of size N , we have

R(θ∗)− R̂S(θ∗) 6 Closs

√
2 · (512T log(6T/ε) + log(1/δ))

N
+ 2Closs

√
T

N
(35)

6 Closs

√
2 · (512T log(6

√
TN) + log(1/δ))

N
+ 2Closs

√
T

N
(36)

∈ O
(
Closs

(√
T log(TN)

N
+

√
log(1/δ)

N

))
, (37)

which is the claimed generalization error bound.

Remark 3. At first glance, it might seem that simply plugging the parameter setting θ∗ into Eq. (29) would already
give us a good concentration bound for the parameter setting θ∗ obtained through training and that the union bound
over the covering net is not actually necessary in the above proof. However, as the parameter setting θ∗ = θ∗(S)
depends on the whole training data set S, the random variables `(θ∗;xi, yi), i = 1, . . . , N , are not statistically
independent. Thus, Hoeffding’s inequality alone cannot be used to obtain a version of Eq. (29) with θ replaced by
the data-dependent θ∗.
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The generalization bound established in Theorem 5 already shows the right behavior in terms of the dependence
on T , the number of trainable maps. However, the dependence on N , the sample size, still contains an undesirable
logarithmic term. In classical statistical learning theory, it is well known that a proof strategy as above, based on
combining Hoeffding’s concentration inequality with a union bound over a covering net, incurs such a log(N)-term.
Fortunately, a technique for removing this term is also known and we will use it to tighten the prediction error bound
in the next subsection.

2. Basic prediction error bound for fixed architecture

Our first prediction error bound is for the case of a variational QMLM with a fixed architecture. In particular,
while the parameters in the trainable 2-qubit CPTP maps can be optimized over, the structure of the QMLM, i.e.,
the arrangement of the different elements, and in particular the overall depth and size, remain fixed. (We provide a
generalization to variable circuit architectures in Supplementary Note 3. 2. 4..) In this scenario, we have the following
generalization error bound:

Theorem 6 (Prediction error bound for quantum machine learning - Fixed structure). Let EQMLM
θ (·) be a QMLM

with a fixed architecture consisting of T parameterized 2-qubit CPTP maps and an arbitrary number of non-trainable,
global CPTP maps. Let P be a probability distribution over input-output pairs. Suppose that, given training data
S = {(xi, yi)}Ni=1 of size N , our optimization yields the parameter setting θ∗ = θ∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(θ∗)− R̂S(θ∗) ∈ O
(
Closs

(√
T log (T )

N
+

√
log(1/δ)

N

))
. (38)

In case the training data contains quantum labels, we assume the training data states to be reproducible so that
we can use the data both for the optimization procedure and for evaluating the training error.

Proof. The proof proceeds in two steps: The first step is to upper-bound the generalization error in terms of the
expected supremum of a random process. (This well known technique is described, e.g., in Theorem 3.3 in [54].)
In the second step, we invoke the chaining technique to further upper-bound this expected supremum in terms of
covering numbers. (This method goes back to [5]. See, e.g., Section 8 of [53] for a pedagogical presentation.) At this
point, we apply our covering numbers bounds to finish the proof.

For ease of notation in the first step, we define ϕ : (X × Y)N → R as ϕ(S) := supθ

{
R(θ)− R̂S(θ)

}
, where the

supremum goes over all possible parameter settings in the QMLM. We first observe that, if S = {(xi, yi)}Ni=1 and
S̃ = {(x̃i, ỹi)}Ni=1 differ only in a single labelled example, then |ϕ(S) − ϕ(S̃)| 6 2Closs/N (because the loss function
has values in [−Closs, Closs]). Therefore, we can apply McDiarmid’s inequality (Lemma 2) and obtain that, for every
ε > 0, PS [ϕ(S) − ES̃ [ϕ(S̃)] > ε] 6 exp

(
−Nε2/2C2

loss

)
. Hence, for every δ ∈ (0, 1), with probability > 1 − δ/2 over the

choice of training data, we have , with θ∗ = θ∗(S) as in the statement of the Theorem,

R(θ∗)− R̂S(θ∗) 6 ϕ(S) 6 ES̃ [ϕ(S̃)] + Closs

√
2 log(2/δ)

N
. (39)

We now upper-bound ES̃ [ϕ(S̃)]. To this end, we introduce a so-called ghost sample. Namely, we take S′ = {(x′i, y′i)}Ni=1

to be an i.i.d. copy of S̃. Then, we can bound

ES̃ [ϕ(S̃)] = ES̃

[
sup
θ

{
1

N

N∑

i=1

(
E(x′i,y

′
i)∼P [`(θ;x′i, y

′
i)]− `(θ; x̃i, ỹi)

)
}]

(40)

6 ES̃,S′

[
sup
θ

{
1

N

N∑

i=1

(`(θ;x′i, y
′
i)− `(θ; x̃i, ỹi))

}]
. (41)

Now, we use a standard symmetrization argument with i.i.d. Rademacher random variables to further upper-bound
the right hand side. That is, we let σ1, . . . , σN be i.i.d. Rademacher random variables, each distributed uniformly on
{−1, 1}. As multiplying (`(θ;x′i, y

′
i)− `(θ; x̃i, ỹi)) by −1 is equivalent to interchanging the i.i.d. copies (x̃i, ỹi) and
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(x′i, y
′
i), which leaves the expectation invariant, we can introduce an additional expectation value over Rademacher

variables as follows:

ES̃,S′

[
sup
θ

{
1

N

N∑

i=1

(`(θ;x′i, y
′
i)− `(θ; x̃i, ỹi))

}]
= ES̃,S′Eσ

[
sup
θ

{
1

N

N∑

i=1

σi (`(θ;x′i, y
′
i)− `(θ; x̃i, ỹi))

}]
(42)

6 2ES̃Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ; x̃i, ỹi)

]
. (43)

The quantity on the right hand side is not an empirical quantity, i.e., it cannot be directly evaluated only from the
training data without knowledge of the underlying distribution P . However, another application of McDiarmid’s
inequality shows that, for every ε > 0,

PS

[
ES̃Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ; x̃i, ỹi)

]
− Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
> ε

]
6 exp

(
− Nε2

2C2
loss

)
, (44)

where we again used that the loss function has values in [−Closs, Closs]. In other words, for every δ ∈ (0, 1), with
probability > 1− δ/2 over the choice of training data, we have

ES̃Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ; x̃i, ỹi)

]
6 Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
+ Closs

√
2 log(2/δ)

N
. (45)

When applying a union bound, we can combine Eq. (39) and (45) to conclude: For every δ ∈ (0, 1), with probability
> 1− δ over the choice of training data of size N , we have

R(θ∗)− R̂(θ∗) 6 2Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
+ 3Closs

√
2 log(2/δ)

N
. (46)

This concludes the first step of the proof.
As a second step, we use chaining to upper-bound Eσ

[
supθ

1
N

∑N
i=1 σi`(θ;xi, yi)

]
in terms of covering numbers.

For j ∈ N0, define αj := 2−jCloss. By Theorem 2, for every j ∈ N0, there exists an 2−j-covering net Nj (w.r.t. the
diamond norm) of the set of CPTP maps that can be implemented by the QMLM, satisfying |Nj | = (6T/2−j)

512T
=(

6T · 2j
)512T . In particular, for every j ∈ N and for every parameter setting θ, there exists a CPTP map Eθ,j ∈ Nj

and ||EQMLM
θ − Eθ,j ||� 6 2−j . For j = 0, we can take the 1-covering net N0 = {0}.

With this observation at hand, we can bound, for any m ∈ N,

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
(47)

= Eσ

[
sup
θ

1

N

N∑

i=1

σiTr
[
Oloss
xi,yi(E

QMLM
θ ⊗ id)(ρ(xi))

]]
(48)

=
1

N
Eσ


sup

θ





N∑

i=1

σi


Tr

[
Oloss
xi,yi((E

QMLM
θ − Eθ,m)⊗ id)(ρ(xi))

]
+

m∑

j=1

Tr
[
Oloss
xi,yi((Eθ,j − Eθ,j−1)⊗ id)(ρ(xi))

]









(49)

6 1

N
Eσ

[
sup
θ

N∑

i=1

σiTr
[
Oloss
xi,yi((E

QMLM
θ − Eθ,m)⊗ id)(ρ(xi))

]]
(50)

+
1

N

m∑

j=1

Eσ

[
sup
θ

N∑

i=1

σiTr
[
Oloss
xi,yi((Eθ,j − Eθ,j−1)⊗ id)(ρ(xi))

]
]

(51)

where we used the telescopic sum representation EQMLM
θ = EQMLM

θ −Eθ,m +
∑m
j=1(Eθ,j −Eθ,j−1). We bound the two
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summands appearing in Eq. (51) separately. For the first term, we can apply Hölder’s inequality to obtain

1

N
Eσ

[
sup
θ

N∑

i=1

σiTr
[
Oloss
xi,yi((E

QMLM
θ − Eθ,m)⊗ id)(ρ(xi))

]]
(52)

6 1

N
Eσ

[
sup
θ

N∑

i=1

∣∣∣Tr
[
Oloss
xi,yi((E

QMLM
θ − Eθ,m)⊗ id)(ρ(xi))

]∣∣∣
]

(53)

6 1

N
Eσ

[
sup
θ

N∑

i=1

Closs||((EQMLM
θ − Eθ,m)⊗ id)(ρ(xi))||1

]
(54)

6 Closs

N
Eσ

[
sup
θ

N∑

i=1

||EQMLM
θ − Eθ,m||�

]
(55)

6 Closs · 2−m (56)
= αm. (57)

For the second term, we observe that, thanks to Minkowski’s inequality, for every parameter setting θ,
√√√√

N∑

i=1

∣∣Tr
[
Oloss
xi,yi((Eθ,j − Eθ,j−1)⊗ id)(ρ(xi))

]∣∣2 (58)

6

√√√√
N∑

i=1

∣∣∣Tr
[
Oloss
xi,yi((Eθ,j − E

QMLM
θ )⊗ id)(ρ(xi))

]∣∣∣
2

+

√√√√
N∑

i=1

∣∣∣Tr
[
Oloss
xi,yi((E

QMLM
θ − Eθ,j−1)⊗ id)(ρ(xi))

]∣∣∣
2

(59)

6
√
NCloss

(
||Eθ,j − EQMLM

θ ||� + ||EQMLM
θ − Eθ,j−1||�

)
(60)

6
√
N(αj + αj−1) (61)

6 3αj
√
N. (62)

Therefore, for each 1 6 j 6 m, we can apply Massart’s Lemma (Lemma 3) to the set

A :=
{(

(Tr
[
Oloss
xi,yi(Eθ,j − Eθ,j−1)(ρ(xi))

])N
i=1

}
Eθ,j∈Nj ,Eθ,j−1∈Nj−1

⊂ RN (63)

with radius 3αj
√
N and cardinality 6 |Nj | · |Nj−1| 6 |Nj |2 to obtain

1

N

m∑

j=1

Eσ

[
sup
θ

N∑

i=1

σiTr
[
Oloss
xi,yi(Eθ,j − Eθ,j−1)(ρ(xi))

]
]
6 3√

N

m∑

j=1

αj

√
2 log (|Nj |2) (64)

6 6√
N

m∑

j=1

αj
√

512T log (6T · 2j), (65)

where we used the bound on the sizes of the covering nets in the last step.
If we now use 2−j = 2

∫ 2−j

2−j−1 dα, we can rewrite the upper bound as

6√
N

m∑

j=1

αj
√

512T log (6T · 2j) =
12√
N

m∑

j=1

2−j∫

2−j−1

Closs

√
512T log (6T · 2j) dα (66)

6 12√
N

m∑

j=1

2−j∫

2−j−1

Closs

√
512T log

(
6T

α

)
dα (67)

=
12Closs√

N

2−1∫

2−(m+1)

√
512T log

(
6T

α

)
dα, (68)
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where, in the first inequality, we used that 2j 6 1/α holds inside the limits of the integral.
Combining Eq. (57) and (68), we have proved that, for every m ∈ N,

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
6 αm +

12Closs√
N

2−1∫

2−(m+1)

√
512T log

(
6T

α

)
dα. (69)

If we take the limit m→∞, this becomes

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
6 12Closs√

N

√
512T

1/2∫

0

√
log

(
6T

α

)
dα (70)

6 12Closs√
N

√
512T ·

1/2∫

0

√
log (6T ) + log

(
1

α

)
dα (71)

6 12Closs√
N

√
512T ·

1/2∫

0

√
log (6T ) +

√
log

(
1

α

)
dα (72)

=
12Closs√

N

√
512T ·


1

2

√
log (6T ) +

1/2∫

0

√
log

(
1

α

)
dα


 (73)

=
12Closs√

N

√
512T ·

(
1

2

√
log (6T ) +

1

2

√
log 2−

√
π

2
erf(

√
log 2)−

√
π

2

)
, (74)

where we used the integral
∫ √

log 1/x dx = x
√

log 1/x − (
√
π/2) · erf(

√
log 1/x), with the error function defined as

erf(x) = 2√
π

∫ x
0

exp(−t2) dt.
We can now combine Eq. (46) with (74) and obtain: With probability > 1 − δ over the choice of training data of

size N , we have

R(θ∗)− R̂(θ∗) 6 24Closs√
N

√
512T ·

(
1

2

√
log (6T ) +

1

2

√
log 2−

√
π

2
erf(

√
log 2)−

√
π

2

)
+ 3Closs

√
2 log(2/δ)

N
(75)

∈ O
(
Closs

(√
T log (T )

N
+

√
log(1/δ)

N

))
, (76)

which is the claimed prediction error bound.

Remark 4. For simplicity, throughout the proof of Theorem 6 we have treated θ∗(S) as a deterministic function of
S. However, the proof extends to the case in which the parameter setting θ∗(S) is a random variable depending on
S. Then, the generalization error bound would hold with high probability over the choice of the training data and
over the internal randomness of the optimization procedure. This is the case for all our prediction error bounds and
is important because quantum subroutines in QML procedures make them inherently probabilistic.

Remark 5. A conceptual difference between the proof of Theorem 5 and that of Theorem 6, which can also be
seen as an underlying reason for why the latter leads to a tighter bound than the former, is the following: To prove
Theorem 5, we used a

√
T/N-covering net for the set of CPTP maps that the QMLM can implement. This can be seen

as measuring the complexity of the QMLM at a single specific resolution, namely the resolution ε =
√
T/N. In contrast,

the proof of Theorem 6 considers a complexity measure for the QMLM obtained by averaging over complexities (here,
covering numbers) at multiple different resolutions. Thus, from a high-level view, the chaining-based proof strategy
for Theorem 6 improves upon the reasoning behind Theorem 5 by taking multiple resolutions into account.

Theorem 6 can be interpreted as follows: By taking the training data size N to effectively scale linearly in the
number of trainable elements T , we can ensure that a small training error also implies a small prediction error (with
high probability).

In the following, we describe extensions of Theorem 6 to different scenarios of interest, and then summarize these
in a general “mother theorem.”
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3. Extension to multiple copies and gate-sharing

In practice, one often employs quantum machine learning models that reuse the same parameterized gates multiple
times, such as quantum convolutional neural networks (QCNNs) [25]. In such a scenario, we speak of “gate-sharing”.
While the number of trainable elements in such models can still be large, only few of them can be trained independently.
As a first extension of Theorem 6, we show that the generalization performance of such a models is determined by
the effective number of independently trainable elements.

Corollary 1. Let EQMLM
θ (·) be a QMLM with a fixed architecture consisting of T independently parameterized

2-qubit CPTP maps, in which the tth of these maps is used Mt times, and an arbitrary number of non-trainable,
global CPTP maps. Let P be a probability distribution over input-output pairs. Suppose that, given training data
S = {(xi, yi)}Ni=1 of size N , our optimization yields the parameter setting θ∗ = θ∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(θ∗)− R̂S(θ∗) ∈ O


Closs



√
T log(T )

N
+

√∑T
t=1 log(Mt)

N
+

√
log(1/δ)

N




 . (77)

Proof. The proof strategy is the same as for Theorem 6, we only change the covering number bound to be applied.
Namely, instead of Theorem 2, we use Theorem 3.

More precisely, we recall Eq. (46), which tells us: For every δ ∈ (0, 1), with probability > 1 − δ over the choice of
training data of size N , we have

R(θ∗)− R̂(θ∗) 6 2Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
+ 3Closs

√
2 log(2/δ)

N
. (78)

And, with the same chaining technique as detailed in the proof of Theorem 6, we can bound the above expectation
over Rademacher random variables as

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
6 24Closs√

N

1/2∫

0

√
log
(
N (CPT PQMLM, || · ||�, α)

)
dα, (79)

where we used the notation from Theorem 3 for the set CPT PQMLM of n-qubit CPTP maps that can be implemented
by the QMLM. Now, we use the metric entropy bound proved in Theorem 3 to further upper bound the integral as

1/2∫

0

√
log (N (CPT PA, || · ||�, α)) dα 6

1/2∫

0

√√√√512

(
T log

(
6T

α

)
+

T∑

t=1

log(Mt)

)
dα (80)

6
√

512T log(6T )

1/2∫

0

√
log

(
1

α

)
dα+

√
512

2

√√√√
T∑

t=1

log(Mt). (81)

As x 7→ log(1/x) has an integrable singularity at x = 0, the integral in this expression is simply a multiplicative
constant. Therefore, after plugging in the bound of Eq. (81) into Eq. (79), and then plugging the resulting bound on
the Rademacher expectation into Eq. (78), we obtain: For every δ ∈ (0, 1), with probability > 1 − δ over the choice
of training data of size N , we have

R(θ∗)− R̂(θ∗) ∈ O


Closs



√
T log(T )

N
+

√∑T
t=1 log(Mt)

N
+

√
log(1/δ)

N




 , (82)

the claimed generalization bound.

A naive approach to the scenario of Corollary 1 would be to upper-bound the metric entropy, and thus the prediction
error, in terms of the total number of trainable elements in the QMLM. That, however, would lead to a significantly
worse dependence of the prediction error bound on Mt, the numbers of uses, namely, of the form

Closs

√√√√T
(∑T

t=1Mt

)
log
(
T
∑T
t=1Mt

)

N
. (83)
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Our more careful analysis shows the tighter bound in which the numbers of uses Mt only appear logarithmically,
which is crucial for our application of the bound to quantum phase recognition with QCNNs (see Supplementary Note
4.). This is possible because, even though there are in principle T

∑T
t=1Mt trainable elements in the quantum neural

network, they are not trained independently. Rather, the parameter setting for the tth parameterized 2-qubit CPTP
map is reused Mt times. This clearly shows that reusing parameters is, from a generalization perspective, preferable
to having more independent parameters.

As a special case of Corollary 1, we obtain a prediction error bound for the scenario in which multiple copies of a
QMLM (with the same parameter settings) are run in parallel:

Corollary 2. Let EQMLM
θ (·) be a QMLM with a fixed architecture consisting of T independently parameterized

2-qubit CPTP maps and an arbitrary number of non-trainable, global CPTP maps. By using M copies of this model
in parallel, we can consider loss functions of the form

`(θ;x, y) = Tr

[
Oloss
x,y

(
(EQMLM

θ ⊗ id)(ρ(x))
)⊗M]

, (84)

where Oloss
x,y are observables acting on the M -fold tensor product of an n-qubit system. Let P be a probability

distribution over input-output pairs. Suppose that, given training data S = {(xi, yi)}Ni=1 of size N , our optimization
yields the parameter setting θ∗ = θ∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(θ∗)− R̂S(θ∗) ∈ O
(
Closs

(√
T log(T )

N
+

√
T log(M)

N
+

√
log(1/δ)

N

))
. (85)

Once we observe that
√
a+ b 6 √a +

√
b 6

√
2(a+ b) holds for all a, b > 0, we see that the upper bound in

Corollary 2 can be rewritten as

R(θ∗)− R̂S(θ∗) ∈ O
(
Closs

(√
T log(TM)

N
+

√
log(1/δ)

N

))
. (86)

If δ is taken to be a fixed desired accuracy level and Closs is also considered to be a fixed constant, this becomes the
bound stated in Theorem 2 in the main text.

Corollary 2 tells us that, even when using many copies of the QMLM, as the expressiveness of the corresponding
function class grows at most logarithmically with the number of copies, we can still obtain a good prediction error.
Note that, as in Corollary 1, it is crucial that the same parameter setting is used for each copy.

We can also phrase the result as follows: We can upper-bound the prediction error incurred when using multiple
copies of a quantum machine learning model for evaluating the loss by an expression that depends crucially on the
number of trainable elements per copy, but only mildly on the number of copies.

Remark 6. Cases of interest that Corollary 2 describes are, e.g., the loss functions obtained by first performing
(independent) product measurements on each of the M copies, then taking an average (for a continuous target space)
or a majority vote (for a discrete target space) of the obtained measurement outcomes, and finally post-processing
this value by a classical loss function (such as the squared error loss). Such procedures arise naturally when taking
into account that multiple shots are needed to accurately estimate the expectation value of an observable measured
on the QMLM output. Note, however, that we cannot apply arbitrary procedures for post-processing single-copy
measurement outcomes and still hope for a good prediction error. If Closs, which here is the supremum over the
spectral norms of the M -copy observables Oloss

x,y , scales badly (e.g., linearly) with M , the prediction error bound does
so as well.

4. Extension to variable circuit architecture

For practical purposes, it might not be advantageous to fix the number of trainable elements in the QMLM, or
even its structure more generally, in advance. Rather, one might also want to optimize over a discrete set of possible
architectures, e.g., by growing or truncating the QMLM during the training phase. Therefore, in our second extension
of Theorem 6, we provide a prediction error bound for such a variable structure scenario.
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Corollary 3. Let EQMLM
α (·) be a QMLM with a variable structure. Suppose that, for every τ ∈ N, there are

at most Gτ ∈ N allowed structures with exactly τ parameterized 2-qubit CPTP maps and an arbitrary number
of non-trainable, global CPTP maps. Let P be a probability distribution over input-output pairs. Suppose that,
given training data S = {(xi, yi)}Ni=1 of size N , our optimization yields a (data-dependent) structure with T = T (S)
parameterized 2-qubit CPTP maps and the parameter setting α∗ = α∗(S).

Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(α∗)− R̂S(α∗) ∈ O
(
Closs

(√
T log (T )

N
+

√
logGT
N

+

√
log(1/δ)

N

))
. (87)

Proof. By Theorem 6, for every τ ∈ N, for every one of the Gτ allowed structures with exactly τ parameterized 2-qubit
CPTP maps, with probability > 1− δ/2Gττ2 over the choice of i.i.d. training data S of size N according to P , if θ∗τ is a
(continuous) parameter setting (for the τ parameterized maps) obtained through optimization upon input of training
data S, we have the generalization error bound

E
(x,y)∼P

[`(θ∗τ ;x, y)]− 1

N

N∑

i=1

`(θ∗τ ;xi, yi) ∈ O
(
Closs

(√
τ log (τ)

N
+

√
log(2Gττ

2
/δ)

N

))
. (88)

Thus, first taking a union bound over the Gτ structures with exactly τ parameterized 2-qubit CPTP maps, and then
a union bound over τ ∈ N, we see: With probability > 1 −∑τ

δ/2τ2 > 1 − δ over the choice of i.i.d. training data S
of size N according to P , if the optimization upon input of data S outputs a QMLM architecture with T = T (N)
parameterized 2-qubit CPTP maps and the (continuous and discrete) parameter setting α∗ = α∗(S)

R(α∗)− R̂S(α∗) ∈ O
(
Closs

(√
T log (T )

N
+

√
log(2GTT

2
/δ)

N

))
(89)

∈ O
(
Closs

(√
T log (T )

N
+

√
logGT
N

+

√
log(1/δ)

N

))
, (90)

as claimed.

We can understand Corollary 3 as saying that the prediction error of a QMLM with a variable structure depends
strongly (namely linearly) on T , the number of trainable elements that is used in the output structure of the opti-
mization procedure, but only mildly (namely logarithmically) on GT , the number of different possible structures with
the same number of gates as the output structure. Note that the bound does not depend on all structures potentially
considered during the optimization, but only on a subset of those. In particular, if the number T of trainable 2-qubit
maps is fixed in advance, optimizing not only over the parameter settings of the model but also over exponentially-in-T
many structures with T trainable elements does not worsen the asymptotic behavior of the generalization error.

5. Extension taking the optimization into account

In our previous results, we have provided bounds on the generalization error that depended on the QMLM, e.g., via
the number of trainable elements or the number of copies, or even on how many different architectures are admissible.
So far, however, the bounds are agnostic w.r.t. the procedure used to train the QMLM. In this section, we refine
our approach to prove optimization-dependent generalization bounds, that explicitly take properties of the training
process into account.

TakeM1, . . . ,MT to be sets of 2-qubit CPTP maps. Each setMt denotes the space of 2-qubit CPTP maps that
one permits for the tth trainable map during the training of the QMLM EQMLM

θ . Hence, eachMt should be seen as
the trainable space for a particular gate in the QMLM. For example, Mt could be the space of all 2-qubit unitary
channels, or the space of all tensor products of single-qubit CPTP maps.

As discussed in the proofs of Lemmas 6 and 7, as CPT P(C2 ⊗ C2) is compact, for every 1 6 t 6 T , there exists a
constant ct > 1, depending, e.g., on the diameter and on the effective ambient dimension ofMt, such that

log(N (Mt, || · ||�, ε)) 6 ct log

(
1 +

1

ε

)
. (91)

Note that, as a worst-case estimate, we have ct 6 1024. This can be seen by arguing as in the proofs of Lemmas 6
and 7, with ambient dimension 512 and diameter 2, and then applying Bernoulli’s inequality.
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Given a fixed choice of parameters θ, and thereby a fixed choice E1 ∈ M1, . . . , ET ∈ MT of the trainable 2-qubit
CPTP maps, the (fixed-architecture) QMLM implements the n-qubit CPTP map

EQMLM
θ = EQMLM(E1, . . . , ET ) :=

(
T∏

t=1

FtEt
)
F0, (92)

where the Ft, for 0 6 t 6 T , are fixed (potentially global) CPTP maps.
Suppose that we begin the optimization of the QMLM from an initial point independent of the training data

S = {(xi, yi)}Ni=1, described by a parameter setting θ0. We denote the choices for the T trainable maps appearing in
the initial CPTP map by

E0
1 ∈M1, . . . , E0

T ∈MT . (93)

After utilizing the training data for multiple rounds of optimization, the training of the QMLM finishes at a (data-
dependent) point in CPT P ((C)⊗n), described by a parameter vector θ∗, which we denote by the choice

E∗1 ∈M1, . . . , E∗T ∈MT , (94)

of trainable maps. Note that E∗1 , . . . , E∗T depend on the training data S. For each of the T trainable local CPTP maps
Mt, we denote the distance (measured w.r.t. || · ||� between the initial and the final point of the training procedure by

∆t = ||E∗t − E0
t ||� 6 2, for t = 1, . . . , T. (95)

In the following Theorem, we provide a generalization guarantee for the resulting QMLM defined by the choice of
trainable local maps E∗1 , . . . , E∗T in terms of the optimization distances ∆t, the number T of trainable maps, and the
number N of training data points.

Theorem 7 (Optimization-dependent prediction error bound for quantum machine learning). Let EQMLM
θ (·) be a

QMLM with a fixed architecture consisting of T parameterized 2-qubit CPTP maps, in which the tth of these maps
is taken fromMt, and an arbitrary number of non-trainable, global CPTP maps. Let P be a probability distribution
over input-output pairs. Suppose that, given training data S = {(xi, yi)}Ni=1 of size N , the optimization procedure
yields the parameter setting θ∗ = θ∗(S). As described above, denote by ∆t = ∆t(S) the optimization distance
(measured in diamond norm) of the tth trainable map.

Then, with probability > 1− δ over the choice of i.i.d. training data S of size N > 4 according to P ,

R(θ∗)− R̂S(θ∗) ∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

T∑

t=1
t6=t1,...,tK

∆t +

√
log(1/δ)

N






 , (96)

where the minimum is over all K ∈ {0, . . . , T} and choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}.
The proof of Theorem 7 again hinges on a metric entropy bound, this time for the class of CPTP maps that can

be reached by the QMLM under the optimization procedure. Hence, let us first prove the following theorem.

Theorem 8. Let EQMLM
θ (·) be a QMLM with a fixed architecture consisting of T parameterized 2-qubit CPTP

maps, in which the tth of these maps is taken from Mt, and an arbitrary number of non-trainable, global CPTP
maps. Let 0 6 ∆1, . . . ,∆T 6 2 be a sequence of distances for the trainable 2-qubit CPTP maps. Let CPT PQMLM

(∆t)t
⊂

CPT P
(
(C2)⊗n

)
denote the set of n-qubit CPTP maps that can be implemented by the QMLM, under the additional

restriction that the tth trainable gate is at most diamond-distance ∆t away from the fixed initial point E0
t .

Let K ∈ {0, . . . , T}. Let t1, . . . , tK ∈ {1, . . . , T} be pairwise distinct. Then, for any ε ∈ (0, 1], if we write

εK := ε+
T∑

t=1
t 6=t1,...,tK

∆t (97)

there exists an εK-covering net NεK of CPT PQMLM
(∆t)t

w.r.t. the diamond distance such that the logarithm of its size
can be upper bounded as

log(|NεK |) 6 K log(T ) +K max
16t6T

ct log

(
1 +

K

ε

)
. (98)
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Proof. By the assumptions on the structure of CPT PQMLM
(∆t)t

, there exist fixed, global CPTP maps F0, . . . ,FT ∈
CPT P

(
(C2)⊗n

)
such that any E ∈ CPT PQMLM

(∆t)t
can be written as E = FTETFT−1 . . .F1E1F0 for some 2-qubit CPTP

maps Et ∈Mt, 1 6 t 6 T such that ||Et − E0
t ||� 6 ∆t.

As discussed above, for each 1 6 t 6 T , we can take Nt to be an (ε/K)-covering net for Mt w.r.t. || · ||� whose
cardinality satisfies log(|Nt|) 6 ct log (1 + K/ε). We define NεK to be the set of CPTP maps that can be implemented
by A if exactly K of the trainable 2-qubit CPTP maps are taken from Nt1 , . . . ,NtK , respectively, and the last T −K
trainable maps are left at the initial point of the optimization. That is, we define

NεK :=

{
E(Ẽ1, . . . , ẼT ) =

(
T∏

t=1

FtẼt
)
F0

∣∣∣∣∣ |{1 6 t 6 T | Ẽt 6= M0
t }| = K and Ẽt ∈ Nt whenever Ẽt 6= E0

t

}
. (99)

Using the subadditivity of the distance induced by the diamond norm (Lemma 4), it is easy to see that, for every
E = E(E1, . . . , ET ) ∈ CPT PQMLM

(∆t)t
, there exists an Ẽ = E(Ẽ1, . . . , ẼT ) ∈ NεK s.t.

||E − Ẽ||� 6 K · ε
K

+
T∑

t=1
t 6=t1,...,tK

∆t = εK . (100)

Thus, NεK is indeed an εK-covering net for CPT PQMLM
(∆t)t

, as claimed.
It remains to observe that, by definition of NεK , we have

log(|NεK |) = log

((
T

K

)
·
K∏

k=1

|Nt|
)

(101)

6 K log(T ) +

(
K∑

k=1

ct

)
log

(
1 +

K

ε

)
(102)

6 K log(T ) +K max
16t6T

ct log

(
1 +

K

ε

)
, (103)

as claimed.

Armed with this metric entropy bound, we can now prove Theorem 7.

Proof of Theorem 7. Starting from the metric entropy bound of Theorem 8, we again argue as in the proof of Theorem
6. Recall that the first step of said proof was to establish Eq. (46). This was then followed in a second step by upper-
bounding the obtained expression using a covering number integral. The first step, leading to Eq. (46), is also valid
in the scenario of this Theorem. That is, we again have that, with probability > 1− δ over the choice of training data
of size N ,

R(θ∗)− R̂(θ∗) 6 2Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
+ 3Closs

√
2 log(2/δ)

N
. (104)

However, we have to change the second step. To this end, we first observe that, by a reasoning completely analogous
the one leading up to Eq. (69), for every m ∈ N0,

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
6 Closs · 2−m +

12Closs√
N

2−1∫

2−(m+1)

√
log
(
N (CPT PQMLM

(∆t)t
, || · ||�, α

)
dα, (105)

where we used the notation from Theorem 8. Fix a K ∈ {0, . . . , T} and pairwise distinct t1, . . . , tK ∈ {1, . . . , T} such
that

∆̃ :=

T∑

t=1
t6=t1,...,tK

∆t <
1

2
(106)
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and take m ∈ N0 such that ∆̃ < 2−(m+1) < 2∆̃. Then in particular 2−m 6 4∆̃ and we can further upper bound the
expression in Eq. (105) as

Eσ

[
sup
θ

1

N

N∑

i=1

σi`(θ;xi, yi)

]
(107)

6 4Closs∆̃ +
12Closs√

N

2−1∫

∆̃

√
log
(
N (CPT PQMLM

(∆t)t
, || · ||�, α

)
dα (108)

= 4Closs∆̃ +
12Closs√

N

2−1−∆̃∫

0

√
log
(
N (CPT PQMLM

(∆t)t
, || · ||�, α+ ∆̃

)
dα. (109)

At this point, we can apply the metric entropy bound from Theorem 8 to obtain

2−1−∆̃∫

0

√
log
(
N (CPT PQMLM

(∆t)t
, || · ||�, α+ ∆̃

)
dα 6

2−1−∆̃∫

0

√
K max

16t6T
ct log

(
1 +

K

α

)
dα (110)

6
√
K max

16t6T
ct

2−1−∆̃∫

0

√
log

(
2K

α

)
dα (111)

6 O
(√

K max
16t6T

ct log(K)

)
. (112)

Altogether, so far we have shown that, for any fixed choice of K ∈ {0, . . . , T} and of pairwise distinct t1, . . . , tK ∈
{1, . . . , T} such that

T∑
t=1

t 6=t1,...,tK

∆t <
1
2 , with probability > 1− δ over the choice of training data of size N , we have

R(θ∗)− R̂(θ∗) ∈ O


Closs




√
K max

16t6T
ct log(K)

N
+

T∑

t=1
t6=t1,...,tK

∆t +

√
2 log(1/δ)

N





 . (113)

After a union bound over the at most
(
T
K

)
6 TK different choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T} (with

T∑
t=1

t 6=t1,...,tK

∆t <
1
2 ), we see that, with probability > 1− δ over the choice of training data of size N , we have

R(θ∗)− R̂(θ∗) ∈ O


Closs




√
K max

16t6T
ct log(K)

N
+

T∑

t=1
t6=t1,...,tK

∆t +

√
2 log(T

K
/δ)

N





 (114)

∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

T∑

t=1
t 6=t1,...,tK

∆t +

√
2 log(1/δ)

N






 , (115)

where K ∈ {0, . . . , T} is still fixed and the minimum is over all choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}.
Finally, we can take a union bound over at most T + 1 different values of K and obtain that, with probability

> 1− δ over the choice of training data of size N , we have

R(θ∗)− R̂(θ∗) ∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

T∑

t=1
t 6=t1,...,tK

∆t +

√
2 log(T/δ)

N
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∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

T∑

t=1
t 6=t1,...,tK

∆t +

√
2 log(1/δ)

N






 , (117)
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where the minimum is over all values of K and over all choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}.
If, in the generalization error bound of Theorem 7, we disregard the potential improvements gained from theMt-

dependent constants ct and instead replace all of them by their worst-case value 1024, we can simplify the bound
to

R(θ∗)− R̂S(θ∗) ∈ O


Closs min





√
K log(T )

N
+

T∑

t=1
t 6=t1,...,tK

∆t +

√
log(1/δ)

N






 , (118)

because K log(K) 6 K log(T ) for all K = 1, . . . , T . Moreover, instead of taking a minimum over all such K and
over all choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}, we can take the minimum only over K, and fix the choice
tk = k to obtain

R(θ∗)− R̂S(θ∗) ∈ O
(
Closs min

K=1,...,T

{√
K log(T )

N
+

T∑

t=K+1

∆t +

√
log(1/δ)

N

})
. (119)

If we again fix a confidence level δ and consider Closs as a fixed constant of the problem, this becomes the bound given
in Theorem 3 for the case M = 1. (The case for general M follows from our “mother theorem,” see Supplementary
Note 3. 2. 7..)

We can clearly see that, if the optimization has only made substantial changes to few trainable maps, then the
generalization error bound in Theorem 7 is dominated by the maps that have undergone more significant changes
during optimization. The number of such parameterized maps could be much smaller than the overall number of
the trainable CPTP maps T . Therefore, this optimization-dependent generalization error bound can significantly
outperform the previous bounds, which did not take the optimization procedure into account, w.r.t. the dependence
on T .

One consequence of this theorem is that a good choice of initialization for the optimization of a QMLM can not
only serve to improve the cost of the optimization itself, but it can also help the generalization behavior. Namely, a
particularly good choice of initialization, potentially found through pretraining on an independent data set, can lead
to an optimization procedure that does not have to deviate too far from the initialization w.r.t. some of the trainable
maps, which, according to our bound, will be advantageous for generalization.

A second implication of this result for what to take into account in designing an optimization procedure for training
a QMLM is the following: Making large steps only on few trainable gates and only negligibly small steps on the
remaining ones is, from a generalization perspective, preferable to making steps of comparable, non-negligible sizes
on many (or even all) of the trainable gates.

Remark 7. We note that in the proof of Theorem 7, it was not necessary that the fixed CPTP maps E0
1 ∈

M1, . . . , E0
T ∈ MT were given as the initialization of the optimization procedure. In fact, we can take these maps to

be any fixed “reference points” w.r.t. which we measure distances. Th proof then works without changes, as long as
the reference maps are indeed fixed in advance, independently of the training data.

6. Extension to unbiased estimates of measurement statistics

In practice, we cannot obtain the exact value of Tr
[
Oloss
xi,yi(E

QMLM
θ ⊗ id)(ρ(xi))

]
for a training example (xi, yi) if

we only perform finitely many measurements. Instead, as a proxy for the training error, we consider an unbiased
estimator: For 1 6 σ 6 σest, with σest ∈ N fixed, we independently pick iσ uniformly at random from {1, . . . , N}
and measure the observable Oloss

xiσ ,yiσ
on the output state EQMLM

θ (ρ(xiσ )) to yield a single measurement outcome

oloss
θ,σ ∈

[
−||Oloss

xiσ ,yiσ
||, ||Oloss

xiσ ,yiσ
||
]
. As E

[
oloss
θ,σ

]
= 1

N

∑N
i=1 Tr

[
Oloss
xi,yi(E

QMLM
θ ⊗ id)(ρ(xi))

]
, where the expectation is

taken w.r.t. the sampling of iσ and the randomness in obtaining the measurement outcome. This yields a finite
sequence of observations

oloss
θ,1 , . . . , o

loss
θ,σest

, with
1

σest

σest∑

σ=1

oloss
θ,σ ≈

1

N

N∑

i=1

Tr
[
Oloss
xi,yi(E

QMLM
θ ⊗ id)(ρ(xi))

]
. (120)

In this scenario, where we only obtain a noisy estimate of the training error from σest measurements, the prediction
performance guarantee takes the following form:
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Corollary 4. Let EQMLM
θ (·) be a quantum machine learning model with a fixed architecture consisting of T parame-

terized 2-qubit CPTP maps. Let P be a probability distribution over input-output pairs. Suppose that, given training
data S = {(xi, yi)}Ni=1 of size N , our optimization yields the parameter setting θ∗ = θ∗(S).

Then, with probability at least 1 − δ over the choice of i.i.d. training data S of size N according to P , over the
sampling of i1, . . . , iσest

, and over the σest obtained measurement outcomes,

E
x,y
`(θ∗;x, y)− 1

σest

σest∑

σ=1

oloss
θ∗,σ ∈ O


Closs



√
T log(T )

N
+

√
log(1/δ)

N
+

√
log(1/δ)

σest




 . (121)

Proof. We first insert a zero in terms of the empirical risk as follows:

E
x,y
`(θ∗;x, y)− 1

σest

σest∑

σ=1

oloss
θ∗,σ =

(
E
x,y
`(θ∗;x, y)− 1

N

N∑

i=1

`(θ∗;xi, yi)

)
+

(
1

N

N∑

i=1

`(θ∗;xi, yi)−
1

σest

σest∑

σ=1

oloss
θ∗,σ

)
. (122)

By Theorem 6, with probability at least 1 − δ
2 over the choice of the training data, the first term on the right-

hand side (which is independent of the subsampling and of the obtained measurement outcomes) is bounded as

∈ O
(
Closs

(√
T log(T )

N +
√

log(1/δ)
N

))
. By Hoeffding’s inequality, for any fixed S and θ∗, with probability at least

1 − δ
2 over the sampling of i1, . . . , iσest

and over the σest obtained measurement outcomes, the second term on the

right-hand side is 6 Closs

√
2 log(2/δ)
σest

. Therefore, we also have

P


 1

N

N∑

i=1

`(θ∗;xi, yi)−
1

σest

σest∑

σ=1

oloss
θ∗,σ > Closs

√
2 log(2/δ)

σest


 (123)

= ES,θ∗


P


 1

N

N∑

i=1

`(θ∗;xi, yi)−
1

σest

σest∑

σ=1

oloss
θ∗,σ > Closs

√
2 log(2/δ)

σest

∣∣∣ S,θ∗



 (124)

6 ES,θ∗
[
δ

2

]
(125)

=
δ

2
. (126)

Now, the statement of the Corollary follows via a union bound.

This shows that we do not need to perform a disproportionately large number of measurements to guarantee that
the estimated training error is indeed a good proxy for the prediction error. It suffices to choose σest to be roughly
N/T log(T ), along with N being sufficiently larger than T log(T ), to guarantee that the prediction error will not be
much higher than the approximate (observed) training error.

7. Mother theorem

We can summarize all the previously discussed extensions of Theorem 6 in Theorem 4, which we restate here for
convenience:

Theorem 4 (Mother Theorem). Let EQMLM
α (·) be a QMLM with a variable structure. Suppose that, for every k ∈ N,

there are at most Gτ ∈ N allowed structures with exactly τ parameterized 2-qubit CPTP maps, in which the tth of
these maps is taken fromMt and usedMt times, and an arbitrary number of non-trainable, global CPTP maps. Also,
for each t ∈ N, let E0

t ∈ CPT P
(
(C)⊗2

)
be a fixed reference CPTP map. Let P be a probability distribution over

input-output pairs. Suppose that, given training data S = {(xi, yi)}Ni=1 of size N , our optimization of the QMLM
over structures and parameters w.r.t. the loss function `(α;xi, yi) = Tr

[
Oloss
xi,yi(EQMLM

α ⊗ id)(ρ(xi))
]
yields a (data-

dependent) structure with T = T (N) independently parameterized 2-qubit CPTP maps, in which the tth of these
maps is taken fromMt and used Mt times, as well as the parameter setting α∗ = α∗(S).
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Then, with probability at least 1− δ over the choice of i.i.d. training data S of size N according to P ,

R(α∗)− R̂S(α∗)

∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

√
K max

16t6T
ct log(Mt)

N
+

T∑

t=1
t 6=t1,...,tK

Mt∆t +

√
log(GT )

N
+

√
log(1/δ)

N






 ,

(127)

where ∆T
1 , . . . ,∆

T
T denote the (data-dependent) distance between the trainable maps in the output QMLM to the

respective reference maps E0
1 , . . . , E0

T , Closs = supx,y ||Oloss
x,y || is the maximum (absolute) value attainable by the loss

function, and the minimum is over all K ∈ {0, . . . , T} and choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , T}.
Moreover, if the loss is not evaluated exactly, but an unbiased estimator is built from σest subsampled training data

points (as in Supplementary Note 3. 2. 6.), we only incur an additional error of O
(√

log(1/δ)/σest

)
.

Proof. To prove this most general version of our results, we combine the previous results and proof strategies. First,
fix τ ∈ N and one of the Gτ admissible QMLM architectures with exactly τ trainable 2-qubit CPTP maps, in which
the tth of these maps is taken from Mt and used Mt times. With the same strategy as in the proof of Theorem 8,
if we take Nt to be a (ε/KMt)-covering net forMt w.r.t. || · ||�, and consider the set of n-qubit CPTP maps obtained
from the QMLM if exactly K of the τ independently trainable 2-qubit CPTP maps are taken from the respective Nt,
and the remaining τ −K maps are left at the corresponding reference map, this gives us an εK-covering net Nε of
the class of n-qubit CPTP maps that the QMLM architecture can implement, where

εK := ε+

T∑

t=1
t 6=t1,...,tK

Mt∆t. (128)

This εK-covering net can be taken to have cardinality bounded as

log(|Nε|) 6 K log(τ) +K max
16t6τ

ct log (1 + KMt/ε) . (129)

If we use this metric entropy bound for the chaining argument presented in the proof of Theorem 7, we can show that,
with probability > 1 − δ/2Gττ2 over the choice of i.i.d. training data S of size N , if θ∗τ is a (continuous) parameter
setting for the τ parameterized maps obtained through optimization upon data S, we have

R(θ∗τ )− R̂S(θ∗τ ) ∈ O


Closs min





√
K max

16t6τ
ct log(KMt)

N
+

√
K log(τ)

N
+

T∑

t=1
t6=t1,...,tK

Mt∆t +

√
log(2Gττ

2
/δ)

N






 ,

(130)
where the minimum is over K ∈ {0, . . . , τ} and over choices of pairwise distinct t1, . . . , tK ∈ {1, . . . , τ}.

We now first take a union bound over the Gτ admissible structures and then another union bound over τ ∈ N to
obtain: With probability > 1−δ over the choice of i.i.d. training data S of size N , if the optimization upon input of S
outputs a QMLM architecture with T = T (N) parameterized 2-qubit CPTP maps and the (discrete and continuous)
parameter setting α∗ = α∗(S), then we have the generalization error bound

R(α∗)− R̂S(α∗) (131)

∈ O


Closs min





√
K max

16t6T
ct log(KMt)

N
+

√
K log(T )

N
+

T∑

t=1
t6=t1,...,tK

Mt∆t +

√
log(2GT T

2
/δ)

N
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∈ O


Closs min





√
K max

16t6T
ct log(K)

N
+

√
K log(T )

N
+

√
K max

16t6T
ct log(Mt)

N
+

T∑

t=1
t 6=t1,...,tK

Mt∆t +

√
log(GT )

N
+

√
log(1/δ)

N






 ,

(133)

with the minimum as claimed.
To understand the added error in the case in which an unbiased estimate of the empirical risk is used, we now

repeat the analysis given in Supplementary Note 3. 2. 6., but use the generalization bound just established instead of
the one from Theorem 6, and obtain the claimed bound.
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Also for Theorem 4, we shortly explain how this leads to the result stated as Theorem 5 in the main text. First,
Theorem 5 only considers the case Mt = M for all t. Second, just like presented in Supplementary Note 3. 2. 5., we
can bound the constants ct by their worst-case upper bound of 1024, and then take a minimum not over all K and
all choices of t1, . . . , tT , but only over all K with the fixed choice tk = k. With these two simplifications, the bound
becomes

R(α∗)− R̂S(α∗) ∈ O


Closs min





√
K log(MT )

N
+

T∑

t=1
t6=t1,...,tK

M∆t +

√
log(GT )

N
+

√
log(1/δ)

N






 .

Finally, once we plug in a constant confidence level δ and also consider Closs as a constant dictated by the problem,
we end up with the bound of Theorem 5 from the main text.

Remark 8. In Theorem 4, we have chosen a fixed reference map E0
t ∈ CPT P

(
(C)⊗2

)
for every t ∈ N. One could

even choose different reference maps for each k and for each of the Gk allowed structures with exactly k parameterized
maps.

In Supplementary Note 3. 2. 5., we have taken the initial point of the optimization procedure as reference point for
evaluating distances. A similar interpretation is possible in Theorem 4, however, the reference points can be more
abstract. In principle, the reference maps can be chosen freely, as long as the choice is independent of the training
data sample w.r.t. which the empirical risk is evaluated.

Remark 9. We present our results for the case of a QMLM EQMLM
α (·) acting on a quantum input state ρ(x). If

x describes classical data, this presumes an “encoding-first” architecture, in which the classical-to-quantum data-
encoding x 7→ ρ(x) is applied first, followed by a trainable quantum circuit. As observed in [22, 55, 56], the expressive
power of a QMLM for processing classical data can significantly benefit from allowing for data re-uploading [57].
This is achieved by allowing for a more flexible form of QMLM, in which data-encoding and trainable gates can be
interleaved. Our results, which focus on the trainable part of the QMLM circuit, directly extend to QMLMs with
data re-uploading.

This can be seen as follows: In our proofs of the metric entropy bounds from Subsection 3. 1., we already allowed
for an interleaving of the trainable gates with arbitrary fixed gates. The same reasoning applies if we replace the fixed
gates by encoding gates depending on the classical input data x, as long as they are still independent of the trainable
parameters.

Supplementary Note 4. Application to quantum phase recognition

As a second application of our prediction error bounds, we demonstrate their implications for quantum phase
recognition (QPR) with quantum convolutional neural networks (QCNNs). Here, for each training example (|ψi〉, yi),
the encoded input is simply ρ(xi) = |ψi〉〈ψi |, a pure n-qubit quantum state that belongs to one of four possible
quantum phases of matter. The corresponding output label yi ∈ {0, 1}2 tells us to which of the four phases ρ(xi)
belongs. The goal of a quantum machine learning model for this scenario is to accurately predict, given a new input
x, the corresponding label, and thus the phase, of the state ψi.

In our language, a QCNN acting on n-qubit states, as introduced in [25], is a QMLM EQCNN
θ (·) with a particular fixed

structure, explained in more detail in Section II.C of the main text, consisting of log(n) independently parameterized
2-qubit maps, each of which is used at most n times. By measuring some of the qubits and then discarding them in
pooling layers, the QCNN maps an n-qubit input to a 2-qubit output, on which it then performs a computational basis
measurement. The phase prediction that the QCNN makes for an n-qubit input state is the one corresponding to the
smallest of the four outcome probabilities in the computational basis measurement on the output state. This can be
well approximated by running multiple gate-sharing copies of the QCNN in parallel and appropriately post-processing
the single measurement outcomes. For simplicity of presentation, we showcase our bounds in the scenario of only one
copy of the QCNN. However, this extends to multiple gate-sharing copies according to Corollary 2. Thus, we consider
the loss function characterized by the loss observables

Oloss
xi,yi = Oloss

yi = |yi〉〈yi |, (134)

which is independent of xi. This means the loss function is given by

`(θ;ψi, yi) := 〈yi|EQCNN
θ (|ψi〉〈ψi |)|yi〉. (135)
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That is, the QMLM achieves a small value of the loss function on the example (|ψi〉, yi) if the probability observing yi
when performing a computational basis measurement on the output state, upon input |ψi〉, is small. Correspondingly,
the true risk is

R(θ) = E(ψi,yi)∼P [〈y|EQCNN
θ (|ψ〉〈ψ |)|y〉] (136)

and the empirical risk on training data S = {(|ψi〉, yi)}Ni=1 is

R̂S(θ) =
1

N

N∑

i=1

〈yi|EQCNN
θ (|ψi〉〈ψi |)|yi〉. (137)

With the scenario established, we can now apply the prediction error bound proved in Corollary 2. Here, it takes
the form: Suppose that, given training data S of size N , our optimization of the parameters in the QCNN yields a
parameter setting θ∗ = θ∗(S). Then, with probability > 1− δ over the choice of training data,

E(ψi,yi)∼P [〈y|EQCNN
θ (|ψ〉〈ψ |)|y〉] 6 1

N

N∑

i=1

〈yi|EQCNN
θ (|ψi〉〈ψi |)|yi〉+O

(√
log(n)2 + log(1/δ)

N

)
. (138)

Therefore, a small training error guarantees a small prediction error already for training data sizeN ∈ O(poly(log(n))).
In other words, when using a QCNN for QPR, a good generalization error is already guaranteed for training data of
size poly-logarithmic in n, the number of qubits. Thereby, our results provide a rigorous explanation for the good
generalization behavior of QCNNs even for small training data size that was observed numerically in [25].

Supplementary Note 5. Application to unitary compiling

The second application of our generalization guarantees to be presented here is that of learning unitaries in the
sense of (quantum-assisted) unitary compiling [38]. Unitary compiling is the task of finding a circuit representation
of a target unitary, given black-box access to that unitary.

From a learning perspective, this motivates the following problem: For each training example (xi, yi), the input is
a pure n-qubit state ρ(xi) = |ψi〉〈ψi |, and the corresponding label is the pure n-qubit state |φi〉〈φi | = U |ψi〉〈ψi |U†
obtained by unitarily evolving the input state according to the (unknown) target unitary U . We consider the loss
function given induced by the trace distance via

`(α; |ψ〉, |φ〉) := |||φ〉〈φ | − UQMLM
α (|ψ〉〈ψ |)||21. (139)

where UQMLM
α (·) = Uα(·)U†α is a (unitary) quantum machine learning model, and we take |φ〉 = U |ψ〉.

As we are considering a trace distance between pure states, we can rewrite the loss function in terms of the fidelity
(i.e., the overlap) as

`(α; |ψ〉, |φ〉) = 1− |〈φ |Uαψ〉|2 = 1− Tr
[
|φ〉〈φ | · UQMLM

α (|ψ〉〈ψ |)
]
. (140)

Hence, we see that this loss function is encompassed by our scenario, because we can write

`(α; |ψ〉, |φ〉) = Tr
[
Oloss
ψ,φ · UQMLM

α (|ψ〉〈ψ |)
]
, (141)

with loss observables Oloss
ψ,φ = 1− |φ〉〈φ | (depending only on the quantum output, but not on the input).

With (the above rewriting of) this loss function, the expected loss, when the expectation is w.r.t. drawing the input
states independently at random from the Haar measure, becomes connected to the Hilbert-Schmidt inner product
between the target unitary and the unitary implemented by the circuit. This, in turn, can be given an operational
interpretation, as detailed in [38].

We solve this learning problem using a QMLM with a variable structure. (See Sections II.C and IV. of the main
text for more details on how this is implemented.) In this scenario, Corollary 3 implies that, if we optimize over both
(discrete) structures and (continuous) parameters and obtain an output structure k∗ with T parameterized gates with
a parameter setting α∗ = (θ∗,k∗), then, with probability > 1− δ over the choice of training data of size N , which is
drawn i.i.d. from some distribution P over pure n-qubit states, we are guaranteed that

E|ψ〉∼P
[
||U |ψ〉〈ψ |U† − Uα∗ |ψ〉〈ψ |U†α∗ ||21

]
6 1

N

N∑

i=1

||U |ψi〉〈ψi |U† − Uα∗ |ψi〉〈ψi |U†α∗ ||21 + Õ
(√

T

N
+

√
log(1/δ)

N

)
,

(142)
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assuming that the number of allowed structures with T gates scales at most exponentially in T . Here, the Õ hides
terms logarithmic in T .

Consequently, we know that, with high probability, the trace distance between the state obtained by applying the
learned unitary on a new unseen input state (drawn at random from the data-generating distribution) and the true
output state will be small if we can achieve a small average trace distance over the N randomly sampled states, where
N scales roughly linearly in T . For many unitary gates of interest, namely those that can be efficiently implemented,
we thus expect T , and thereby also N , to scale polynomially in n, the number of qubits. This is a substantial
improvement over the training data sizes used in previous approaches to unitary compiling, which were often taken to
be exponential in n such as to uniquely determine the unknown target unitary [36, 37, 42]. This improvement comes at
the cost of not compiling the target unitary exactly, but only with a certain (small) accuracy and success probability.
Nevertheless, for many applications, paying this cost is worthwhile, given the significant savings in training data size
guaranteed by our results.

As a concrete example, the QFT discussed in Section II.C of the main text can be exactly implemented with
T ∈ O(n2) gates. In this case, our theory implies that N ∈ O(n2) training data points are, with high probability,
sufficient for good generalization. As discussed in [58], approximate implementations of the QFT are possible with
a lower number of gates, namely with T ∈ O(n log(n)). Potentially, one can combine this insight with our result to
obtain a similar improvement in the upper bound on the sufficient training data size.
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Undecidability of Learnability

Matthias C. Caro

In many classical learning scenarios, we know characterizations of learnability in terms of com-

binatorial properties of the hypothesis class. These results already give important insights into

learnability because they allow us to translate abstract questions of learnability to concrete com-

binatorial properties. This, however, now raises the question: How challenging is it to determine

these combinatorial properties? In this work, we answer this question from the perspective of

formal logic and computability.

We begin the article by motivating our work, summarizing our main results, and putting them

into the context of prior work. This is followed by our results on the undecidability of �niteness of

the VC dimension, and thus of probably approximately correct learnability in binary classi�cation

tasks, in Section 2. Namely, in Subsection 2.2, we show how to construct, given a recursively

enumerable and consistent formal system F , a function class GF that has �nite VC dimension,

but for which F cannot prove this �niteness. In this work, we call such a true but unprovable

statement Gödel undecidable. In a similar spirit, in Subsection 2.3 we show Turing undecidability

of �niteness of the VC dimension. That is, we show that there is no algorithm that, given the

code of a computable hypothesis class, decides whether that class has �nite VC dimension. We

achieve this by constructing in a computable way, given the code of a Turing machine M , a

computable function class HM that has �nite VC dimension if and only if M halts on the empty

input.

In Section 3, we establish analogous undecidability results for scenarios modelling teacher-learner

interactions. Here, the relevant combinatorial parameter is the so-called teaching dimension. In

Subsection 3.3, we show Gödel undecidability for �niteness of the teaching dimension of GF .

We follow this in Subsection 3.4 by proving Turing undecidability for �niteness of the teaching

dimension, again using the computable mapping M 7→ HM . In addition to these two results, we

also show in Subsection 3.2 that a related problem, namely that of deciding whether a function

admits a �nite teaching set, is undecidable in the same two senses.

Section 4 extends our discussion to also include online learning. More precisely, we show that both

uniform and universal online learnability are Gödel and Turing undecidable. For uniform online

learning, we achieve this by proving undecidability of �niteness of the Littlestone dimension. In

the case of universal online learning, we argue via the (non-)existence of in�nite Littlestone trees.

The idea for this project was motivated by discussions between my doctoral advisor, Michael

M. Wolf, and myself. In particular, he suggested the construction used in Subsection 3.2 of the

article. Also, since making the �rst version of the work available on the arXiv, I have included

some comments suggested by other researchers, as detailed in the acknowledgements of the

paper. I am solely responsible for the scienti�c content of this article, with the two restrictions

just mentioned. As the single author of this article, I am solely responsible for writing this

article.
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Abstract

Machine learning researchers and practitioners steadily enlarge the multitude of success-

ful learning models. They achieve this through in-depth theoretical analyses and experiential

heuristics. However, there is no known general-purpose procedure for rigorously evaluating

whether newly proposed models indeed successfully learn from data.

We show that such a procedure cannot exist. For PAC binary classification, uniform and

universal online learning, and exact learning through teacher-learner interactions, learnability is

in general undecidable, both in the sense of independence of the axioms in a formal system and

in the sense of uncomputability. Our proofs proceed via computable constructions of function

classes that encode the consistency problem for formal systems and the halting problem for

Turing machines into complexity measures that characterize learnability. Our work shows that

undecidability appears in the theoretical foundations of machine learning: There is no one-size-

fits-all algorithm for deciding whether a machine learning model can be successful. We cannot

in general automatize the process of assessing new learning models.

∗ORCiD: 0000-0001-9009-2372
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1 Introduction

One of the foundational questions in machine learning theory is “When is learning possible?”

This is the question for necessary and sufficient conditions for learnability. Such conditions have

been identified for different learning models. They can take the form of requiring a certain, often

combinatorial, complexity measure to be finite. Well known examples of such complexity measures

include the VC-dimension for binary classification in the PAC model, the Littlestone dimension for

online learning, or different notions of teaching dimensions for teacher-learner interactions.

We consider a question that is slightly different from, but arguably just as important as the one

above. Namely, we ask “Can we decide whether learning is possible?” At first glance, the ability

to answer the first question might also seem to allow to resolve this second one. If, e.g., you know

a complexity measure whose finiteness is equivalent to learnability, that gives you a criterion to

decide learnability. However, whether this is indeed a satisfactory criterion strongly depends on

the exact meaning of “decide” in the second question.

We consider two such meanings and thereby obtain two variants of the second question. The

first is natural from a mathematician’s perspective, namely “If a class is learnable, can we prove

that this is the case?” The second is intimately familiar to computer scientists, namely “Does there

exist an algorithm that decides learnability?” After specifying in either of these two ways what

it means to “decide whether learning is possible,” we see that the answer to the second question

is not trivially positiveEven given the definition of a complexity parameter that is finite if and

only if learning is possible, answering the second question still requires a proof of finiteness of that

complexity measure or an algorithm that decides whether the complexity measure is finite or not.

In fact, we show that the answer to the question “Can we decide whether learning is possible?”

is, in general, negative for both of the variants introduced above and for different learning scenarios.

In particular, we demonstrate this for learning models in which criteria for learnability in terms of

complexity measures are known. More concretely, we consider binary classification, uniform and

universal online learning, and the task of exactly identifying a function through teacher-learner

interactions. We show in all these scenarios: On the one hand, there is a function class that is

learnable but whose learnability cannot be proved. On the other hand, there is no general-purpose

algorithm that, upon input of a class, decides whether it is learnable.

1.1 Overview Over the Results

Our undecidability results come in two flavours, one about provability in a formal system, the other

about computability via Turing machines. We summarize our line of reasoning in Figure 1 and

explain it in more detail in the following paragraphs.

We first study binary classification in Probably Approximately Correct (PAC) learning. The

relevant complexity measure for this learning scenario is the VC-dimension due to [VC71]. On

the one hand, given a recursively enumerable formal system F , we define a class GF ⊆ {0, 1}N

2
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Figure 1: A depiction of our line of reasoning. “Complexity” is to be understood in terms of
VC-dimension, teaching dimension, Littlestone dimension, or Littlestone trees, depending on the
learning model. To conclude undecidability, we use Gödel’s second incompleteness theorem and
the uncomputability of the halting problem, respectively.

(Definition 2.4) that is PAC learnable if and only if F is consistent (Corollary 2.9). If Gödel’s second

incompleteness theorem applies to F , we conclude that the function class GF is PAC learnable, but

its PAC learnability cannot be proved in F (Corollary 2.11). On the other hand, given a Turing

machine M , we define a class HM ⊆ {0, 1}N (Definition 2.15) that is PAC learnable if and only

if M halts on the empty input (Lemma 2.16). By reduction to the halting problem, there is no

general-purpose algorithm that decides whether a computable binary-valued function class is PAC

learnable (Corollary 2.20).

Our constructions start from the recursively enumerable set cc({0, 1}) of functions with compact

support in N. Depending on the underlying object, i.e., the formal system or the Turing machine,

we then further restrict the function class. We implement these restrictions based on consistency of

finitely many provable theorems and halting after finitely many steps. Thereby, we ensure that they

are computable from the underlying object (see Corollaries 2.14 and 2.19). For the Gödel scenario,

3



this translates the assumption of the existence of a recursive enumeration of the provable theorems

to a property of the function class. For the Turing scenario, this computability is necessary for a

reduction to the halting problem.

We also consider GF and HM in the following scenario: A teacher can provide examples of a

target function to help a learner identify that function. Here, the basic complexity measure is the

teaching dimension [GK95], which is finite if and only if the teaching problem can be solved with

finitely many examples. We show that GF has finite teaching dimension if and only if F is consistent

(Proposition 3.5). In this case, the teaching problem can be solved but this cannot proved in F

(Corollary 3.6), assuming again that Gödel’s second incompleteness theorem applies. Similarly, we

show that HM has finite teaching dimension if and only if the underlying Turing machine M halts

on the empty input (Proposition 3.8). So, there is no algorithm for deciding whether a function

class can be taught/learned (Corollary 3.9).

We demonstrate the undecidability of one more decision problem motivated by teacher-learner

interactions. Namely, in general, one cannot decide whether a given function in a known class can be

taught/learned from finitely many examples. Again, this is true both in the sense of independence

of the axioms of a formal system (Corollary 3.3) and in the sense of uncomputability (Remark 3.4).

Finally, our constructions also yield undecidability results for uniform and universal online

learning. For online learning with uniform mistake bounds, the Littlestone dimension [Lit88] is

the corresponding complexity parameter. For universal online learning, the relevant complexity

condition is whether there exist infinite Littlestone trees [Bou+20]. After showing (in Propositions

4.5, 4.7, 4.9, and 4.11) that whether these complexity conditions are satisfied by GF and HM is

again determined by whether F is consistent and whether M halts on the empty input, respectively,

we conclude: Both uniform and universal online learnability are, in general, both Gödel and Turing

undecidable (Corollaries 4.6, 4.8, 4.10, and 4.12).

Compared to prior work on undecidability in learning theory, which we review in Subsection

1.2, our approach is at the same time more direct and is the first that simultaneously proves unde-

cidability results for multiple established learning models both in the sense of formal independence

and in the sense of uncomputability. Our main technical contribution consists in constructing and

studying the function classes GF and HM , which we base on a careful elaboration of the compu-

tational model. Conceptually, we show that many of the established learnability criteria in terms

of complexity measures are undecidable, thus demonstrating a limitation of the approach towards

learnability and model selection via such complexity measures.

1.2 Related Work

[Lat96] made an early investigation into the relationship between computability and learnability.

The main question in [Lat96] is whether and under which notions of “learnability” one can consider

an uncomputable problem to be learnable. More precisely, [Lat96] considered the task of learning

the halting problem relative to an oracle.

4



Both [Sch99] and [Zha18] studied the computability of finiteness of the VC-dimension. In

particular, Theorem 1 in [Zha18] and Theorem 4.1 in [Sch99] state: Deciding finiteness of the

VC-dimension of a computable concept class is Σ2-complete. This implies our Corollary 2.20, the

Turing undecidability of finiteness of the VC-dimension. The proofs of [Sch99] and [Zha18] used

that deciding finiteness of the domain of a computable function is Σ2-complete (see, e.g., Theorem

IV.3.2 in [Soa78]). [Zha18] additionally invoked a result by [Las92]: A function class uniformly

definable via a first-order formula has finite VC-dimension if and only if the defining formula is an

NIP formula. While one of our results is already implied by [Sch99] and [Zha18], we consider our

work to be a significant extension in two directions: On the one hand, we consider both Turing and

Gödel undecidability. On the other hand, our proof strategies are at the same time more direct,

using no results from logic beyond Gödel’s incompleteness theorems and the Turing undecidability

of the halting problem, and flexibly applicable to other complexity measures and learning scenarios.

[Ben+19] proposed the “estimating-the-maximum” (EMX) problem and proved that learnability

in this model is independent of the ZFC axioms. While this already indicates that learning can

be undecidable, our results add new insight in at least two ways. First, our results are for already

established learning models. In particular, whereas [Ben+19] showed that, assuming consistency of

ZFC, there is no dimension-like quantity of finite character that characterizes EMX learnability, our

results include scenarios in which such dimensions for learning exist. Second, whereas [Ben+19]

used the continuum, the continuum hypothesis, and the axiom of choice, we only use natural

numbers and computable objects. This allows us to prove uncomputability results, which cannot

be derived from the results of [Ben+19]. Some implications and limitations of the approach of

[Ben+19] have been discussed, e.g., in [Har19; Tay19; Gan20].

[Aga+20] initiated a study of computable learners, which then truly deserve to be called “learn-

ing algorithms.” In particular, [Aga+20] showed that not every PAC learnable class admits a com-

putable learner and also identified conditions under which PAC learnability implies copmutable

PAC learnability. Thereby, [Aga+20] extended considerations from [Sol08], which studied the task

of non-uniform learning over all computable functions by a computable learner. As the underly-

ing questions of [Aga+20] and our work differ, the results are not comparable. However, as we

show the function classes GF and HM to be computable, the results of [Aga+20] imply that our

undecidability results hold not only for PAC learning, but also for computable PAC learning.

[SFM21] took yet another perspective on undecidabity in learning theory. Namely, [SFM21]

considered the problem of deciding, given an algorithm A and a dataset d, whether A is a learning

algorithm and the output model of A underfits d. Here, [SFM21] used an information-theoretic

notion of underfitting. The main result of [SFM21]: This decision problem can be reduced to the

halting problem and is thus Turing undecidable.

[Han+21] recently identified a further potential source of undecidability in learning theory. They

studied the existence of universally Bayes consistent learners for countable multiclass classification,

i.e., of learners whose classification error almost surely converges to the optimal Bayes risk (over all
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Borel measurable classifiers) as the sample size goes to infinity. Theorem 4.1 in [Han+21] states: A

universally Bayes consistent classifier can only exist if the metric space from which the instances are

drawn is essentially separable. The existence of metric spaces that are not essentially separable,

however, is believed to be independent of the ZFC axioms. Hence, whether all metric instance

spaces admit a universally Bayes consistent classifier might turn out to be a learning-theoretic

question independent of ZFC.

Combinatorial complexity measures for learning have also been studied from in computational

complexity theory. [PY96], motivated by [LMR91], determined the complexity of computing the

VC-dimension of a finite concept class over a finite domain. While they argue that this problem

is probably not NP-complete, [PY96] proved its completeness for the complexity class LOGNP,

a logarithmically-restricted version of NP. [Shi93] obtained a similar completeness result. [FL98]

then, by reduction to computing the VC-dimension, established the LOGNP-hardness of computing

the Littlestone dimension. [Sch99] later showed that a variant of the above problem, namely that

of computing the VC-dimension of a class described by a polynomial-sized circuit, is Σp
3-complete.

Computing the Littlestone dimension from a circuit description is PSPACE-complete [Sch00]. Ex-

tending a result by [Sch99], [MU02] determined the complexity of a promise version of approximat-

ing the VC-dimension of a class associated to a polynomial-size circuit. More recently, [MR17] has

proved nearly tight quasi-polynomial time lower bounds for approximating the VC-dimension and

the Littlestone dimension, assuming the randomized Exponential Time Hypothesis.

1.3 Structure of the Paper

Section 2 contains our main constructions and results leading to undecidability of finiteness of the

VC-dimension. In Section 3, we demonstrate that our constructions also yield undecidability results

for teaching problems. In Section 4, we exhibit analogous results for both uniform and universal

online learning. We conclude with an outlook and open questions in Section 5. Full proofs appear

either directly in the text or in Appendix A. Appendices B and C contain standard definitions and

results related to formal systems and computability that are used in the main text.

2 Undecidability of Finiteness of the VC-Dimension

2.1 Preliminaries: PAC Binary Classification and the VC-Dimension

We start by recalling one of the most influential learning models for binary classification:

Definition 2.1 (Probably approximately correct binary classification [Val84]). Let X be some

space, write Z = X × {0, 1}. Let G ⊂ {0, 1}X , and let D be a probability distribution on Z. A

map A :
⋃∞

m=1 Zm → {0, 1}X , S 7→ hS, is a probably approximately correct (PAC) learner for G
if there exists a function m : (0, 1)2 → N≥1 such that, given ε, δ ∈ (0, 1), if m ≥ m(ε, δ), then, with
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probability ≥ 1 − δ with respect to repeated sampling of S ∼ Dm, it holds that

P(x,y)∼D[hS(x) 6= y] ≤ ε+ inf
g∈G

P(x,y)∼D[g(x) 6= y].

The PAC learners of interest are polynomial PAC learners, for which the sample size m(ε, δ) can

be chosen to depend polynomially on 1/ε and log (1/δ). Here, the “polynomial” refers to the sample

size only, not to the runtime. If G admits a polynomial PAC learner, we call G PAC learnable.

For the scenario of binary classification, whether there exists a polynomial PAC learner can be

understood in terms of a combinatorial quantity of the function class under consideration.

Definition 2.2 (VC-dimension [VC71]). Let G ⊆ {0, 1}X . The Vapnik-Chervonenkis dimension,

abbreviated as VC-dimension, of G is defined to be

VCdim(G) := sup{n ∈ N0 | ∃S ⊆ X : |S| = n ∧ |G|S | = 2n}.

If S ⊆ X is a set such that |G|S | = 2|S|, we say that S is shattered by G.

Under suitable measurability assumptions on the function class G, we have the following

Theorem 2.3 (Fundamental theorem of binary classification (see, e.g., [SB19])). Let G ⊂ {0, 1}X .

G is PAC learnable if and only if VCdim(G) < ∞.

Among the assumptions on G that guarantee the equivalence of Theorem 2.3 are that G be

image admissible Suslin, universally separable, well behaved, or countable [Dud78; Pol84; Blu+89;

Pes11]. The function classes considered in this paper are all countable, so Theorem 2.3 applies.

Therefore, when studying PAC learnability, we focus on studying finiteness of the VC-dimension.

Interestingly, [AW18] found the VC-dimension to characterize quantum PAC learnability in the

same way. Therefore, our undecidability results carry over to quantum PAC learnability as well.

2.2 Gödel Undecidability

For the purpose of this subsection, let F denote a recursively enumerable formal system in which

infinitely many different theorems can be proved. (See Definition B.3 for a definition of “recursively

enumerable.”) Let ϕ be a primitive recursive enumeration of the theorems provable in F . Here, we

think of theorems being “different” in a symbolic way. I.e., two theorems are the same if and only

if they are the exact same sequence of symbols from the alphabet available in F . This, in turn, is

equivalent to the two theorems having the same Gödel number in a fixed Gödel numbering.

Also, we will denote by E2 : N → N × N a primitive recursive enumeration of N2. I.e., E2 is

a total bijective function such that both component functions E2
i : N → N, i = 1, 2, are primitive

recursive and such that the inverse (E2)−1 : N × N → N is primitive recursive. The existence of

such an E2 can, e.g., be proved using so-called pairing functions.

We begin by defining our main object of study for this subsection.
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Definition 2.4. Let F , ϕ, E2 be as above. For a compactly supported sequence a = (a(k))k∈N ∈
cc({0, 1}), define the function ga : N → {0, 1} via

ga(n) =




a(n) if ϕ(E2

1(n)) = ¬ϕ(E2
2(n))

0 else
,

and the function class GF := {ga}a∈cc({0,1}).

Here, the equality ϕ(E2
1 (n)) = ¬ϕ(E2

2(n)) is to be understood as the symbolic equality between

the theorem with Gödel number ϕ(E2
1(n)) and the negation of the theorem with Gödel number

ϕ(E2
2 (n)). Equivalently, we require equality of the corresponding Gödel numbers.

We first observe that the class GF “collapses” to a single function, the zero function, if and only

if the underlying formal system F is consistent.

Proposition 2.5. F is consistent iff GF = {0}.

Proof. This follows from the construction of the function class because E2
1 and E2

2 are surjective

and the range of ϕ consists exactly of all Gödel numbers of theorems provable in F .

For later reference, we note a direct consequence of this observation.

Corollary 2.6. If F is consistent, then VCdim(GF ) = 0.

We now make two more observations about the class G. The first concerns its VC-dimension

for the case in which the underlying formal system is inconsistent. In that case, the restriction

“ϕ(E2
1 (n)) = ¬ϕ(E2

2(n))” is satisfied infinitely often and the VC-dimension of the function class G
is infinite. This is the content of the following

Theorem 2.7. If F is inconsistent, then VCdim(G) = ∞.

For the proof, we first recall that “anything can be deduced from a contradiction,” sometimes

also known as “ex falso quodlibet.”

Proposition 2.8. Let F be an inconsistent formal system. Let q be a theorem in F . Then both q

and ¬q can be proved in F .

Proof. See Appendix A.

With this we can now prove Theorem 2.7.

Proof of Theorem 2.7. As F is inconsistent and infinitely many different theorems can be proved

in F , by “ex falso quodlibet” there are infinitely many n ∈ N such that ϕ(E2
1 (n)) = ¬ϕ(E2

2(n)),

because E2
1 and E2

2 are surjective and the range of ϕ consists exactly of all Gödel numbers of

theorems provable in F .
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Let N ∈ N. Then, by the above, there exist pairwise distinct n1, . . . , nN ∈ N such that

ϕ(E2
1 (ni)) = ¬ϕ(E2

2(ni)) for all 1 ≤ i ≤ N . Let b ∈ {0, 1}N be arbitrary. Define ab ∈ cc({0, 1}) as

ab(ni) = bi for 1 ≤ i ≤ N, ab(n) = 0 for n ∈ N \ {n1, . . . , nN}.

Then we clearly have gab
(ni) = bi for all 1 ≤ i ≤ N . So, {n1, . . . , nN} is shattered by GF . As

N ∈ N was arbitrary, we conclude VCdim(GF ) = ∞.

If we now combine the statements of Corollary 2.6 and Theorem 2.7, we obtain the following

Corollary 2.9. F is consistent iff VCdim(GF ) < ∞.

Remark 2.10. There is a näıve way of constructing a function class that satisfies the same property

as the one just established for GF . Namely, given F , we could efine

G̃F :=





{0} if F is consistent

cc({0, 1}) else
.

Whereas we can understand F 7→ GF as a computable mapping (see Corollary 2.14), the same is

not the case for F 7→ G̃F . Hence, our procedure for constructing GF from F has a desirable property

that the assignment F 7→ G̃F would not guarantee.

If the formal system F is capable of expressing both the class GF and the finiteness of its

VC-dimension, we can combine Corollary 2.9 with Gödel’s second incompleteness theorem.

Corollary 2.11. Assume that F is a recursively enumerable and consistent formal system that

contains elementary arithmetic such that infinitely many different theorems can be proved in F .

Then VCdim(GF ) < ∞, but the finiteness of VCdim(GF ) cannot be proved in F .

Proof. Assume for contradiction that the statement VCdim(GF ) < ∞ can be proved in F . In

Corollary 2.9, we have given a proof that this implies consistency of F . If this proof can be

expressed in the formal system F , F proves its own consistency. This contradicts Gödel’s second

incompleteness theorem.

Now we come to the second relevant observation about the class GF : Not only is it a computable

function class, but even the mapping F 7→ GF is computable. We first prove the slightly weaker

result that GF is a computable function class in the sense of Definition C.3:

Theorem 2.12. Assume that F is a recursively enumerable formal system. Then the class GF is

computable.

As a first step towards proving this result, we observe that the sequence space cc({0, 1}) used

for indexing the class can be recursively enumerated.
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Lemma 2.13. There exists a primitive recursive function C : N × N → {0, 1} that enumerates

cc({0, 1}), i.e., such that cc({0, 1}) = {n 7→ C(m,n) | m ∈ N}.

Proof. See Appendix A.

With this ingredient at hand, we can prove Theorem 2.12.

Proof of Theorem 2.12. According to Definition C.3, we want to find a total computable function

GF : N × N → {0, 1} such that GF = {n 7→ GF (m,n) | m ∈ N}. We define

GF (m,n) :=




C(m,n) if ϕ(E2

1 (n)) = ¬ϕ(E2
2(n))

0 else
.

Since C recursively enumerates cc({0, 1}), we indeed have GF = {n 7→ GF (m,n) | m ∈ N}. It

remains to show that GF is a total computable function. As C is total computable, even primitive

recursive by Lemma 2.13, it suffices to show that the predicate ϕ(E2
1 (n)) = ¬ϕ(E2

2 (n)) is total

computable.

To this end, recall that E2
1 , E

2
2 and ϕ are primitive recursive. Thus, we only have to show

that, given the Gödel numbers of two theorems, checking whether the theorem corresponding to

the first number is the negation of the theorem corresponding to the second number can be done in

a computable manner. This is even possible in a primitive recursive manner simply by how Gödel

numbers are constructed.

Note that our proof of Theorem 2.12 even shows that GF is primitive recursive if we define a

primitive recursive class of functions analogously to Definition C.3. The proof tells us more about

the construction of GF with respect to computability. Not only is the function class GF computable

for every formal system F . (This is also true for G̃F .) But we even see that the assignment F 7→ GF

is computable in the following sense:

Corollary 2.14. There exists a partial computable function G : N3 → N such that GF = {N ∋
n 7→ G(ϕ,m, n) | m ∈ N} for any recursively enumerable formal system F whose theorems are

enumerated by the primitive recursive function ϕ : N → N.

Proof sketch. As ϕ is primitive recursive, it is in particular computable. Thus, we can represent

it via its code with respect to our universal Turing machine. With this code, we can compute the

predicate ϕ(E2
1 (n)) = ¬ϕ(E2

2(n)) and the Corollary is proved just like Theorem 2.12.

Here, the “partial” is only with respect to the first argument, G is total with respect to the

second and third input. Together, Theorem 2.12 and Corollary 2.14 provide an advantage of our

construction over the “trivial” G̃F in Remark 2.10. Given a recursively enumerable system in

terms of an explicit primitive recursive enumeration ϕ of theorems, they provide us with an explicit

algorithmic procedure for evaluating elements of the function class GF and thereby with an explicit

description of GF obtained by fixing certain inputs of the concrete function G.
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2.3 Turing Undecidability

We now change the perspective and ask whether there is a general-purpose algorithmic procedure for

deciding whether a binary-valued function class has finite VC-dimension. We begin by describing

what such a hypothetical algorithm should do: It would take as input the code of an arbitrary

computable binary-valued function class G. It should output 0 if VCdim(G) is infinite and 1 if

VCdim(G) is finite. Note that such an algorithm would decide finiteness of the VC-dimension

“only” for computable function classes since it is exactly the computability which allows us to

provide their code as input.

We show that such an algorithm does not exist by reduction to the halting problem. The

“encoding” of the halting problem into the finiteness of the VC-dimension of a function class is

achieved by the following construction.

Definition 2.15. Let M be a finite-state Turing machine. For a compactly supported sequence

a = (a(k))k∈N ∈ cc({0, 1}), define the function ha : N → {0, 1} via

ha(n) =




a(n) if M does not halt after ≤ n steps on the empty input

0 else
,

and the function class HM := {ha}a∈cc({0,1}).

From this definition, we immediately see that whether VCdim(HM ) is finite or infinite is deter-

mined by whether the underlying Turing machine M halts on the empty input or not.

Lemma 2.16. Let M be a Turing machine. The binary-valued function class HM satisfies

VCdim(HM ) =




K if M halts after exactly K steps on the empty input

∞ else
.

Proof. First suppose that M halts after exactly K ∈ N>0 steps on the empty input. Then the set

{0, . . . ,K−1} ⊂ N is shattered by HM . Namely, if b : {0, . . . ,K−1} → {0, 1}, then we can append

zeros to b to define ab ∈ cc({0, 1}) via

ab(n) =




b(n) if n ≤ K − 1

0 else
, for n ∈ N.

Clearly hab
(k) = b(k) for all k ∈ {0, . . . ,K − 1}. So VCdim(HM ) ≥ K. As ha(n) = 0 for all

n ≥ K and for all a ∈ cc({0, 1}), no set of cardinality ≥ K + 1 is shattered by HM . Thus, also

VCdim(HM ) ≤ K.

Now suppose that M does not halt on the empty input. Then, using the same reasoning that

gave us the VC-dimension lower bound above, we see that the set {0, . . . , N} is shattered by HM

for every N ∈ N. Hence, VCdim(HM ) = ∞.
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Remark 2.17. As in Subsection 2.2, there is a näıve way of constructing a function class with

property just established for HM . Namely, for a Turing machine M , we could define

H̃M :=





{0, 1}{0,...,K−1} if M halts after exactly K steps on the empty input

cc({0, 1}) else
,

where we think of {0, 1}{0,...,K−1} as being embedded into {0, 1}N as the first K sequence elements,

to which we append zeros. Actually, we have HM = H̃M , the two function classes are equal.

But whereas it might not be obvious from the definition of H̃M that the mapping M 7→ H̃M is

computable, based on Lemma 2.13 it is relatively easy to prove computability of M 7→ HM (see

Corollary 2.19). This is why we start from the possibly less intuitive definition of HM = H̃M .

To use Lemma 2.16 for a reduction to the halting problem, we need to establish two claims.

First, we need to show that HM is computable according to Definition C.3, so that is makes sense

to talk about HM as input to a hypothetical algorithm that decides finiteness of the VC-dimension.

Only then will HM , or more precisely the corresponding function HM , have a code that we can use

as input for our hypothetical decision algorithm. Second, we need to show that constructing the

class HM from the Turing machine M can be done in a computable way. I.e., we need to prove

that the mapping M 7→ HM is computable. We begin by establishing computability of HM .

Theorem 2.18. Let M be a Turing machine. The function class HM is computable.

Proof. We have already seen in Lemma 2.13 that there exists a primitive recursive function C :

N × N → {0, 1}such that cc({0, 1}) = {m 7→ C(m,n) | m ∈ N}. Therefore, if we define

HM(m,n) =




C(m,n) if M does not halt after ≤ n steps on the empty input

0 else
,

then HM = {n 7→ HM (m,n) | m ∈ N}. Moreover, HM is a computable function because is defined

from computable functions and a case distinction with a computable predicate. Hence, HM is a

computable function class according to Definition C.3.

Computability of HM can be seen more easily: HM is either finite and thus trivially computable

or it is equal to cc({0, 1}) and thus computable by Lemma 2.13. We present the proof above because,

similarly to our reasoning in Subsection 2.2, it already gives us the computability of M 7→ HM :

Corollary 2.19. There exists a partial computable function H : N3 → N such that HM = {N ∋
n 7→ H(M,m,n) | m ∈ N} for any Turing machine M .

Again, H is total with respect to the second and third input. The computability of M 7→ HM

is crucial for the final step in our proof of Turing undecidability. And it provides an explicit

description of the class HM obtained by fixing “input parameters” of the function H.
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Now we have everything we need to finish the reduction to the halting problem and thereby our

proof of Turing undecidability.

Corollary 2.20. There is no Turing machine that, upon input of the code of an arbitrary com-

putable binary-valued function class, decides whether that class has finite VC-dimension. In other

words, finiteness of the VC-dimension is Turing undecidable.

Proof. Assume for contradiction that there is such a Turing machineMVC. Then we could construct

a Turing machine for solving the halting problem on the empty input as follows:

Given as input the code of a Turing machine M , compute the code of the corresponding class

HM , or, more precisely, the function HM . This step is possible because the code of a concatenation

of Turing machines is a primitive recursive function of their respective codes and because the

mapping M 7→ HM is computable by Corollary 2.19. Now feed that code to the Turing machine

MVC. If it outputs 1 output, “yes, halts,” otherwise output “no, doesn’t halt.”

As the halting problem is Turing undecidable, we have reached a contradiction. Therefore, the

assumed Turing machine does not exist.

Remark 2.21. We can imitate the construction of HM for formal systems. Namely, with F and

ϕ as in Subsection 2.2, we can define, for a ∈ cc({0, 1}),

g̃a(n) =




a(n) if ϕ(1), . . . , ϕ(n) are consistent

0 else
,

and the function class G̃F := {g̃a}a∈cc({0,1}). Then, VCdim(G̃F ) < ∞ if and only if F is inconsistent.

And the mapping F 7→ G̃F is computable. We see that, for a suitable F , the infiniteness of

VCdim(G̃F ) is Gödel undecidable.

Remark 2.22. Both GF and HM have a finite VC-dimension if and only if they consist only of

finitely many distinct functions. Hence, our reasoning implies that, unsurprisingly, (in-)finiteness

of a function class is in general Gödel/Turing undecidable. However, as there are infinite function

classes with finite VC-dimension, undecidability of the (in-)finiteness of function classes does not

yet imply undecidability of the (in-)finiteness of the VC-dimension.

Remark 2.23. One could attempt to derive our Turing undecidability result from Rice’s theorem.

Informally, Rice’s theorem states that any non-trivial semantic property of Turing machines is

Turing undecidable [Ric53]. The property “M is a (2-input) Turing machine implementing a class

of {0, 1}-valued functions on N that has finite VC-dimension” is non-trivial and semantic, thus

it is Turing undecidable. However, whether a Turing machine implements a class of {0, 1}-valued
functions on N according to Definition C.3 is basically equivalent to whether it halts on every input.

Thus, we have found a well known Turing undecidable property hiding in the one above, which

makes its undecidability less surprising.
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Note the contrast to our result: We only require our hypothetical decision algorithm to work

on inputs that describe valid computable function classes. In particular, the algorithm can operate

under the premise that it will only receive codes as input that describe total computable functions.

Thus, our Turing undecidability result cannot be obtained directly from Rice’s theorem.

Remark 2.24. There is a standard way, explained, e.g, in Section 2 of [Poo14], of deriving a Gödel

undecidability result from a Turing undecidability result. This allows us to derive from Corollary

2.20: For any recursively enumerable formal system F , there exists a class of {0, 1}-valued functions

on N such that neither finiteness nor infiniteness of its VC-dimension can be proved in F .

The advantage of our reasoning in Subsection 2.2 over this result: Corollary 2.11 provides us

with a concrete example of a function class for which finiteness of the VC-dimension is Gödel

undecidable. In that sense, the relationship between Corollary 2.11 and the Gödel undecidability

result just derived from Corollary 2.20 is analogous to the relationship between Gödel’s second and

Rosser’s [Ros36] strengthening of the first incompleteness theorem.

In fact, starting from a Turing undecidability result, one can derive a Gödel undecidabiltiy result

akin to the second incompleteness theorem, compare the essays [Obe19; Cub21]. In our case, start-

ing from Corollary 2.20, given a recursively enumerable formal system F , one can explicitly describe

a Turing machine M , depending on F , such that neither VCdim(HM ) < ∞ nor VCdim(HM ) = ∞
can be proved in F . This HM is then a concrete function class for which finiteness of VCdim(HM )

is Gödel undecidable in F and thus gives a result comparable to Corollary 2.11. We have presented

our results on independence of the axioms of a formal system and on uncomputability separately,

so that these parts of the paper can be read independently from one another.

3 Undecidability in Teaching Problems

In this section, we demonstrate that the function classes constructed in Section 2 are useful beyond

the scenario of PAC binary classification, namely also for teaching problems.

3.1 Preliminaries: Teaching Problems and the Teaching Dimension

We now turn our attention to a different learning problem. The differences to the PAC model

are two-fold. The source of the training data is now a benevolent teacher who knows the function

to be learned. And, instead of requiring the learner to approximate the unknown function with

high probability, the unknown function must be exactly identified. To help the learner identify the

target function, the teacher has to provide a training data set that uniquely characterizes it. The

difficulty of the learning/teaching problem is then captured by the worst case size of a smallest

such training data set. This is made formal in the following

Definition 3.1 (Teaching sets and the teaching dimension [GK95]). Let G ⊂ {0, 1}X , g ∈ G. A

set S = {(xi, yi)}N
i=1 ⊂ X × {0, 1}, N ∈ N ∪ {∞}, is a teaching set for g in G if g(xi) = yi for all
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(xi, yi) ∈ S and for every g̃ ∈ G \ {g} there exists (xj , yj) ∈ S such that g̃(xj) 6= yj. I.e., g is the

unique concept in G that is consistent with the labelled data S.

The teaching dimension of G is the worst case size of a minimal teaching set, i.e.,

Tdim(G) := sup
g∈G

inf{|S| | S is a teaching set for g}.

We consider a learning/teaching problem for a class G to be solvable if Tdim(G) < ∞. Note

that we will use this notion specifically for X = N. This is non-standard. Usually, X is assumed to

be finite so that the teaching dimension is automatically finite.

If the teacher and the learner are allowed to make additional assumptions about the respectively

other party’s strategy, more refined notions of teaching dimensions should be used (see [Zil+11] for

an overview). We, however, restrict our attention to the simplest complexity measure for teaching

tasks, namely the one in Definition 3.1.

3.2 Gödel Undecidability of the Existence of Finite Teaching Sets

Before coming to the teaching dimension itself, we discuss a different problem in teaching. Namely,

we ask whether, given a function that can be taught to a learner by a teacher using finitely many

examples, we can always prove that this is the case. The answer will turn out to be no, in general.

For this and the next subsection, we take F and ϕ as in Subsection 2.2. We consider the class of

threshold functions on N and allow for the possibility of a “threshold at infinity.” I.e., we consider

Fstep := {N ∋ n 7→ sgn(n − k) | k ∈ N} ∪ {0},

where we use the convention sgn(x) =




1 if x ≥ 0

0 if x < 0
. Note that Fstep consists of computable

functions and is a computable class in the sense introduced in Definition C.3.

We consider the function

fF : N 7→ {0, 1}, fF (n) =




0 if ϕ(1), . . . , ϕ(n) are consistent

1 else
.

Here, ϕ(1), . . . , ϕ(n) are said to be inconsistent if and only if for some 1 ≤ i, j ≤ n we have

ϕ(i) = ¬ϕ(j), and consistent otherwise.

Note that the mapping F 7→ fF , where we think of F as given via the code of the corresponding

ϕ, is computable. Clearly, fF ∈ Fstep for any formal system F . Therefore we can study whether

fF admits a finite teaching set in the class Fstep.

Proposition 3.2. fF admits a finite teaching set in Fstep iff F is inconsistent.
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Proof. If F is inconsistent, then there exists k ∈ N such that fF (n) = sgn(n − k) for all n ∈ N.

So fF is the only element of Fstep that is consistent with the training data set {(k − 1, 0), (k, 1)}.
Thus, we have found a teaching set of size 2 for fF .

If F is consistent, then fF ≡ 0 is the zero-function. So any finite training data set consistent

with fF is of the form {(ni, 0)}N
i=1 for ni ∈ N, 1 ≤ i ≤ N , N ∈ N. But also the function

N ∋ n 7→ sgn(n− k∗) with k∗ = max1≤i≤N ni +1 is an element of Fstep that is consistent with such

a training data set. So fF cannot be uniquely identified in Fstep by a finite training data set. I.e.,

fF does not have a teaching set of finite size.

We see that the teaching dimension of Fstep is infinite. The formal system determines which

element of Fstep we consider and Proposition 3.2 states that, if F is consistent, this “filters out”

precisely the one concept in Fstep that does not have a finite teaching set.

If F is capable of expressing the function fF , the class Fstep, and the (non-)existence of finite

teaching sets, we are again in the position to apply Gödel’s second incompleteness theorem.

Corollary 3.3. Assume that F is a recursively enumerable and consistent formal system that

contains elementary arithmetic. The function fF defined above does not have a finite teaching set

in Fstep, but this statement is not provable in F .

Remark 3.4. We can use a similar construction to establish an analogous Turing undecidability

result. Namely, given a Turing machine M , we can define

fM : N 7→ {0, 1}, fM (n) =




0 if M does not halt after ≤ n steps on the empty input

1 else
.

fM admits a finite teaching set in Fstep if and only if M halts on the empty input. Hence, as the

mapping M 7→ fM is computable, we conclude that there cannot be a general-purpose algorithm

that, upon input of a computable function class and a function in that class, decides whether the

function admits a finite teaching set in the class.

3.3 Gödel Undecidability of Finiteness of the Teaching Dimension

Next, we study GF from the perspective of the teaching dimension. For the purpose of this discus-

sion, F , ϕ and E2 are again as in Subsection 2.2. Our first observation is that also finiteness of the

teaching dimension of GF can be related to consistency of underlying formal system.

Proposition 3.5. F is consistent iff Tdim(GF ) < ∞.

Proof. The proof is similar to that of Corollary 2.9. See Appendix A for details.

The proof of Proposition 3.5 shows that, if F is inconsistent, then in fact no element of GF

has a finite teaching set. This is different from our result of the previous subsection, where a
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single function in Fstep required teaching sets of infinite size and whether this function was the one

characterized by F depended on (in-)consistency.

Again, if F can reason about GF and the finiteness of its teaching dimension, we can combine

Proposition 3.5 with Gödel’s second incompleteness theorem:

Corollary 3.6. Assume that F is a recursively enumerable and consistent formal system that

contains elementary arithmetic. Then GF has finite teaching dimension, but this statement cannot

be proved in F .

Thus, we have shown that also the teaching dimension captures the contrast between the “col-

lapse” of GF in the consistent case and the “richness” of GF in the inconsistent case. Therefore,

finiteness of the teaching dimension is also Gödel undecidable.

Remark 3.7. If we leave aside questions of computability, we could also consider the following

construction: Take F̃step ⊆ {0, 1}N to be the class of proper step functions and consider the class

{fF } ∪ F̃step. This class has finite teaching dimension if and only if F is inconsistent.

3.4 Turing Undecidability of Finiteness of the Teaching Dimension

We can also view HM through the lens of teacher-learner interactions. As before, the first step in

our approach consists in relating whether the underlying Turing machine M halts to whether the

teaching dimension of HM is finite.

Proposition 3.8. Let M be a Turing machine. The binary-valued function class HM satisfies

Tdim(HM) =




K if M halts after exactly K ∈ N steps on the empty input

∞ else
.

Proof. This follows from the equality HM = H̃M (Remark 2.17). See Appendix A for details.

As we already know from Corollary 2.19 that HM can be computed from the underlying Turing

machine M , we can again reduce to the halting problem and obtain

Corollary 3.9. There is no Turing machine that, upon input of the code of an arbitrary computable

binary-valued function class, decides whether that class has finite teaching dimension. In other

words, finiteness of the teaching dimension is Turing undecidable.

4 Undecidability in Online Learning Problems

As a final demonstration of the applicability of our constructions to different learning models, we

show that universal and uniform online learning are undecidable in the by now familiar two senses.
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4.1 Preliminaries: Online Learning and Littelstone Trees and Dimension

In online learning, we consider a game between two players, a learner L and an adversary A, both

of which know the function class G ⊆ {0, 1}X . The game consists of infinitely many rounds. Round

t ∈ N≥1 consists of three steps: First, A chooses a “question” xt ∈ X . Second, L guesses a label

ŷt ∈ {0, 1}. Third, A reveals the true label yt ∈ {0, 1} to L. Crucially, A must ensure that the

sequence of true labels can actually be realized within G. I.e., the produced sequence ((xt, yt))
∞
t=1

must be such that, for every t ∈ N≥1, there exists a function g ∈ G with g(xs) = ys for all 1 ≤ s ≤ t.

Note: A does not have to pick a fixed g ∈ G in advance. Instead A can choose the true labels

adaptively, based on the actions of L and A in previous rounds.

The goal of L is to make as few mistakes as possible, where we say that L makes a mistake in

round t ∈ N≥1 if ŷt 6= yt. Conversely, A wants to make the number of mistakes made by L as large

as possible. Note that, while we can also interpret teaching problems as two-player games, the role

of the second player is quite different. A teacher is seen as benevolent and has the same goal as

the learner. In contrast, an adversary’s goal is exactly opposite to that of the learner.

We consider two variants of the online learning problem. On the one hand, we work in the

scenario of universal online learning, recently introduced in [Bou+20]. We say that G ⊆ {0, 1}X

is universally online learnable if there exists an adaptive strategy ŷt = ŷt(x1, y1, . . . , xt−1, yt−1, xt)

for L such that, for any adversary A, L makes only finitely many mistakes in the above game. On

the other hand, we also formulate results in the uniform mistake bound model of online learning,

which we refer to as uniform online learning. We say that G ⊆ {0, 1}X is uniformly online learnable

if there exist a d ∈ N and an (adaptive) strategy ŷt = ŷt(x1, y1, . . . , xt−1, yt−1, xt) for L such that,

for any adversary A, L makes at most d mistakes in the above game.

Both whether a class is universally or uniformly online learnable can be understood in terms of

so-called Littlestone trees.

Definition 4.1 (Littlestone trees [Lit88; Bou+20]). A set of points {xv}v∈{0,1}k ,1≤k<d ⊂ X is a

Littlestone tree of depth d ≤ ∞ of a binary-valued function class G ⊆ {0, 1}X if, for every y1, . . . , yd

and for every 0 ≤ n < d, there exists g ∈ G such that g(xy1...yk
) = yk+1 holds for all 0 ≤ k ≤ n.

We say that G has an infinite Littlestone tree if there exists a Littlestone tree of depth ∞ of G.

A Littlestone tree of G is a complete binary tree in which the nodes are labelled by points in

X and the edges are labelled by 0 or 1 in such a way that for every path of finite length, starting

from the root of the tree, there is a function in G that labels all nodes along the path according to

the respectively outgoing edges. Note that the definition is only concerned with finite paths, even

for an infinite Littlestone tree.

The relation between universal online learnability and the (non-)existence of infinite Littlestone

trees is summarized in the following

Theorem 4.2 (Theorem 3.1 in [Bou+20]). G ⊆ {0, 1}X is universally online learnable iff G does

not have an infinite Littlestone tree.
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Going from “universal” to “uniform” on the level of Littlestone trees corresponds to requiring

a uniform bound on the depth of all Littlestone trees of a class. This gives rise to

Definition 4.3 (Littlestone dimension [Lit88]). Let G ⊆ {0, 1}X . The Littlestone dimension of G
is defined to be

Ldim(G) := sup {d ∈ N0 | G has a Littlestone tree of depth d} .

Note that, if G has an infinite Littlestone tree, then Ldim(G) = ∞. The converse, however, is

not true, as Ldim(G) = ∞ also holds if G has Littlestone trees of arbitrarily large depth but no

infinite Littlestone tree.

The Littlestone dimension characterizes uniform online learnability according to the following

Theorem 4.4 (Theorem 3 in [Lit88]). G ⊆ {0, 1}X is uniformly online learnable with at most

d ∈ N mistakes iff Ldim(G) ≤ d. In particular, G ⊆ {0, 1}X is uniformly online learnable iff

Ldim(G) < ∞.

4.2 Gödel Undecidability of Finiteness of the Littlestone Dimension

We have seen in Theorem 4.4 that uniform online learnability is equivalent to the Littlestone

dimension being finite. Therefore, we again start by relating consistency of the formal system F

underlying GF to finiteness of the Littlestone dimension of GF . For both this subsection and for

Subsection 4.4, we use the notation and classes introduced in Subsection 2.2.

Proposition 4.5. F is consistent iff Ldim(GF ) < ∞.

Proof. This follows from our results on the VC-dimension and the inequality VCdim ≤ Ldim. See

Appendix A for details.

The Gödel undecidability of uniform online learnability now follows as in Subsection 2.2:

Corollary 4.6. Assume that F is a recursively enumerable and consistent formal system that

contains elementary arithmetic. Then GF has finite Littlestone dimension, but this statement cannot

be proved in F .

4.3 Turing Undecidability of Finiteness of the Littlestone Dimension

This subsection as well as Subsection 4.5 use the notation and constructions from Subsection 2.3.

With Theorem 4.4 and the results from Subsection 2.3 in place, the only step left is to observe that

HM has finite Littlestone dimension iff M halts.

Proposition 4.7. Let M be a Turing machine. The binary-valued function class HM satisfies

Ldim(HM ) =




K if M halts after exactly K steps on the empty input

∞ else
.
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Proof. This follows from our results on the VC-dimension and the inequalities VCdim(HM ) ≤
Ldim(HM ) ≤ log2|HM |. See Appendix A for details.

Now, the line of reasoning presented in Subsection 2.3 implies the Turing undecidability of

uniform online learnability:

Corollary 4.8. There is no Turing machine that, upon input of the code of an arbitrary computable

binary-valued function class, decides whether that class has finite Littlestone dimension. In other

words, finiteness of the Littlestone dimension is Turing undecidable.

4.4 Gödel Undecidability of the Existence of Infinite Littlestone Trees

Because of Theorem 4.2, we first establish an equivalence between the formal system F underlying

the class GF being consistent and GF having no infinite Littlestone tree.

Proposition 4.9. F is consistent iff GF does not have an infinite Littlestone tree.

Proof. The proof is similar to that of Corollary 2.9. See Appendix A.

With this observation, the same reasoning, using Gödel’s second incompleteness theorem, as in

Subsection 2.2 yields:

Corollary 4.10. Assume that F is a recursively enumerable and consistent formal system that con-

tains elementary arithmetic. Then GF does not have an infinite Littlestone tree, but this statement

cannot be proved in F .

4.5 Turing Undecidability of the Existence of Infinite Littlestone Trees

Analogously to the other scenarios, we want to connect the (non-)existence of infinite Littlestone

trees for HM to whether or not M halts.

Proposition 4.11. Let M be a Turing machine. The binary-valued function class HM has an

infinite Littlestone tree iff M does not halt on the empty input.

Proof. The proof is similar to that of Lemma 2.16. See Appendix A for details.

As before, because of the computability of M 7→ HM , through Theorem 4.2, this implies that

universal online learnability is Turing undecidable:

Corollary 4.12. There is no Turing machine that, upon input of the code of an arbitrary com-

putable binary-valued function class, decides whether that class has an infinite Littlestone tree. In

other words, the existence of infinite Littlestone trees is Turing undecidable.
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5 Conclusion

In this work, we have shown that in the standard model of binary classification, in two models of

online learning, and in a basic model describing teacher-learner interactions, it is in general un-

decidable whether the learning task can be completed. We have established this for two different

meanings of “undecidable,” the first being “true, but not provable in a formal system” and the

second being “not computable.” In both cases, our results follow by providing computable con-

structions that allow for a reduction of the problem of deciding finiteness of the complexity measure

for the respective learning task to the prototypic undecidable problem, i.e., to proving consistency

of a formal system or to deciding whether a Turing machine halts.

It was already known, due to [Ben+19], that learnability can be independent of the axioms of

ZFC. We have proved a similar-in-spirit result for the arguably most influential learning model,

the PAC model of binary classification. By discussing our proof strategy also for a teacher-learner

model and for online learning, we have demonstrated that it is not specific to the PAC setting.

Moreover, learnability can be undecidable also in other formal systems and in the terminology of

computer science. A crucial feature of our constructions, especially for establishing undecidability

in the latter sense, is that we are only dealing with computable objects. This is to be contrasted

with [Ben+19], where the continuum is used. In particular, the arguments of [Ben+19] do not

give uncomputability results. Note that, because our constructions are computable, instead of

PAC learnability, equivalently we could have considered computable PAC learnability, because of

Theorem 10 of [Aga+20], when restricting our attention to the realizable scenario.

We hope that our work adds to the ongoing research aiming towards a better understanding

of the theoretical prospects and limits of machine learning. Our results indicate that potential

problems for applications of machine learning do not only arise on the level of algorithmic design,

which in itself is an extremely challenging task. Rather, already when faced with a task, we

encounter a fundamental difficulty: It is in general not possible to decide whether that task is, from

the information-theoretic perspective of sample complexity, leaving questions of computational

complexity aside, learnable, i.e., in principle amenable to a solution via machine learning.

From a more practical perspective, our results can be interpreted as follows: When faced with

a learning task, one can usually choose which hypothesis class to use. This choice will be guided

by different considerations, such as prior knowledge about the problem, potential issues for opti-

mization, and questions of learnability. In particular, one usually chooses a class that is known

to be learnable. Thereby, the “library” of candidate function classes is restricted to those whose

learnability has already been established. Our results say that there is no generic way of enlarging

this library: Every time one faces a learning problem for which all classes from the current library

perform poorly, identifying a new suitable candidate class, even leaving questions of optimization

aside, presents a new challenge because of learnability alone.

Finally, we mention some questions raised by our work:
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• We have approached learnability through criteria based on complexity measures of the func-

tion class under consideration. Can (un-)decidability be established for learnability via algo-

rithmic properties, e.g., stability or compression-based schemes?

• For our PAC learning scenario, we require a sample complexity bound that is uniform over

the function class. Can our results be extended to non-uniform learning models in which

the sample size is allowed to depend on the function to be learned, e.g., via some “weight

parameter”?

• As discussed in Remark 2.22, it would be interesting to see whether the finiteness of the VC-,

teaching or Littlestone dimension remains undecidable also when restricting the potential

inputs to codes of infinite function classes.

• As observed in [Bou+20], universal online learning is closely connected to Gale-Stewart games.

Do undecidability results in one of these two scenarios translate to the respectively other one?

For example, can we recover the undecidability results for Gale-Stewart games due to [Rab58]

and [Jon82] from our results in Section 4? Or can we these works to gain further insight into

undecidability in online learning?
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Appendix

A Proofs

Proof of Proposition 2.8. As F is inconsistent, there exists a theorem p such that both p and ¬p
can be proved in F . As p can be proved in F , we have q → p (which is our notation for “q implies

p”). By negation we then have ¬p → ¬q. As ¬p can be proved in F , also ¬q can be proved in F .

If we now exchange q by ¬q in the above reasoning, we see that also q can be proved in F .

Proof of Lemma 2.13. We define C : N × N → {0, 1} via

C(m,n) =




nth bit in the binary representation of m if m > 0 and 2n ≤ m

0 else
.

As exponentiation and finding the binary representation of a natural number can be done in a

primitive recursive manner, the function C is defined in terms of primitive recursive functions and

a case distinction via a primitive recursive predicate Thus, C is itself primitive recursive.

Clearly, the function n 7→ C(m,n) has finite support and is thus an element of cc({0, 1}).
Conversely, if a ∈ cc({0, 1}), then there exists K ∈ N such that a(n) = 0 for all n > K. Hence, if we

take ma to be the natural number with binary representation a(0) . . . a(K), then a(n) = C(ma, n)

for all n ∈ N.

Proof of Proposition 3.5. If F is consistent, GF = {0} and the claim is trivial. If F is inconsistent,

then uniquely identifying a function ga ∈ GF requires one to uniquely identify the subsequence

(akl
)l∈N of a ∈ cc({0, 1}) chosen such that kl+1 > kl and such that ϕ(E2

1(k)) = ¬ϕ(E2
2(k)) iff k = kl

for some l ∈ N. As ϕ(E2
1(k)) = ¬ϕ(E2

2(k)) is satisfied for infinitely many k ∈ N (see Proposition

2.8) and the size of the support of an element of cc({0, 1}) can be arbitrarily large, any training

data set that uniquely identifies ga has to consist of infinitely many labelled examples.

Proof of Proposition 4.5. If F is consistent, GF = {0} and clearly Ldim(GF ) = 0. If F is inconsis-

tent, we can use the well known inequality VCdim ≤ Ldim together with Theorem 2.7 to obtain

Ldim(GF ) = ∞.

Proof of Proposition 4.7. This follows quite directly the well known fact that, for any function class

G ⊂ {0, 1}X , VCdim(G) ≤ Ldim(G) ≤ log2|G|.
Namely, if M halts on the empty input, these two inequalities, due to Lemma 2.16 and Remark

2.17, become K ≤ Ldim(G) ≤ log2|H| = K. And if M does not halt on the empty input, the lower

bound via the VC-dimension, together with Remark 2.17, implies Ldim(G) = ∞.

Proof of Proposition 4.9. If F is consistent, then Ldim(GF ) < ∞ by Proposition 4.5. In particular,

GF does not have an infinite Littlestone tree.
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If F is inconsistent, then, as we have seen in the proof of Theorem 2.7, there exists a sequence

(nk)
∞
k=1 ⊂ N such that {n1, . . . , nN} is shattered by GF for every N ∈ N≥1. Therefore, we obtain

an infinite Littlestone tree of HM by labelling every node in the kth layer by nk+1, for k ∈ N0.

Proof of Proposition 4.11. If M halts on the empty input, then Ldim(HM ) < ∞ by Proposition

4.7. In particular, HM does not have an infinite Littlestone tree.

If M does not halt on the empty input, then {0, . . . , N} is shattered by HM for every N ∈ N,

as we have seen in the proof of Lemma 2.16. Therefore, we obtain an infinite Littlestone tree of

HM by labelling every node in the kth layer by k, for k ∈ N0.

B Gödel and Incompleteness of Formal Systems

Here, we compile standard notions connected to formal systems which appear in the main body of

the paper. However, some notions will only be introduced informally and the interested reader is

referred to other sources for the formal definitions.

We denote by N the natural numbers including 0. We call a function f : Nk → N primitive

recursive if it can be built from the zero function, the successor function, and the coordinate

projection functions via composition and primitive recursion. From a modern perspective, the

primitive recursive functions are those that can be implemented using basic arithmetic as well as

IF THEN ELSE, AND, OR, NOT, =, >, and FOR loops. WHILE loops are not allowed here.

Next, we recall, albeit only informally, the notion of a formal system.

Definition B.1 (Formal systems - Informal). A formal system F consists of a finite alphabet of

symbols, a language of statements that can be well-formed from the alphabet, a distinguished set of

statements called axioms, and rules for how to derive/prove new theorems from these axioms.

A formal system F is called consistent if there is no well-formed statement such that both it and

its negation can be proved in F . Otherwise, we call F inconsistent.

We will be interested in a particular kind of formal systems in which the provable theorems,

i.e., the statements that can be deduced from the axioms according to the derivation rules, can be

recursively enumerated. To make this assumption more rigorous, we first recall

Definition B.2 (Gödel numbering - Informal). A Gödel numbering for a formal system F is an

injective function that maps each symbol in the alphabet and each well-formed statement to an

element of N.

For our purposes, it does not matter which Gödel numbering is used. We only use that Gödel

numberings exist for which “translating” between a string of Gödel numbers of symbols describing

a statement and the actual Gödel number of that statement can be done primitive recursively

in both directions. Gödel’s original construction has this property. From now on, we fix such a

Gödel numbering. This allows us to identify statements in a formal system with elements of N and
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“manipulations” of statements with primitive recursive maps between natural numbers. Both of

these identifications will sometimes be implicit throughout the paper.

From this perspective, we can describe the type of formal systems used in this work.

Definition B.3 (Recursively enumerable formal systems). A formal system F is called recursively

enumerable (or effectively axiomatized) if there exists a primitive recursive function ϕ : N → N
such that {ϕ(n) | n ∈ N} is exactly the set of all Gödel numbers in a fixed Gödel numbering of

statements that can be proved in F .

Given such a primitive recursive enumeration ϕ of provable theorems, we will sometimes abuse

notation and take ϕ(n) to denote both a theorem and its Gödel number. The exact meaning, if

not made explicit, will be clear from the context.

Gödel’s second incompleteness theorem provides, for any recursively enumerable and consistent

formal system that contains elementary arithmetic, an explicit statement that is true but cannot

be proved in that formal system.

Theorem B.4 (Gödel’s second incompleteness theorem [Göd31]). Assume that F is a recursively

enumerable and consistent formal system that contains elementary arithmetic. Then the consistency

of F is not provable in F .

We call a statement that is true but not provable in a formal system F Gödel undecidable in

F . This is not standard terminology, we merely use it to shorten some formulations.

For a more formal presentation of these and other notions from mathematical logic, the reader

is referred to textbooks such as [Bar93; Kle02; End13].

C Turing and Uncomputability

This section recalls standard definitions and results related to Turing machines and computability.

Again, sometimes we give only an informal presentation and refer to textbooks for details.

In [Tur37], Turing introduced what are now known as a Turing machines. We do not give a

formal definition, but instead describe the workings of a Turing machine informally. For a more

rigorous presentation, see, e.g., [Dav82; Soa16].

Definition C.1 (Turing machines - Informal). A Turing machine M consists of

• a 1-dimensional tape with infinitely many cells extending in both directions, each of which

contains a symbol from a finite alphabet Σ,

• a head that can read and write symbols in a single cell and move to the left or to the right by

one cell,

• a finite set of states Q containing an initial state and a halting state,
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• and an instruction function I : Σ × Q → Σ × {L,R} × Q describing the write-, move- and

state-update-behaviour of M upon reading a given symbol while in a given state.

The two distinguished states are the initial state, in which the Turing machine begins any of

its computations, and the halting state, that causes the Turing machine to halt when it is reached.

According to the Church-Turing thesis, which could be considered a “law of nature” for the

world of computing, everything that can be reasonably considered computable is computable by a

Turing machine. Hence, we take Turing machines as our model for defining computability.

Definition C.2 ((Turing) Computable functions). A partial function f : Nk → N, for k ∈ N≥1, is

(Turing) computable if there exists a finite-state Turing machine M such that, whenever we run M

on a tape with an encoding of x ∈ dom(f) written on it, M eventually halts with the tape containing

an encoding of f(x), and whenever we run M on a tape with an encoding of x 6∈ dom(f) written

on it, M does not halt.

One possible choice of encoding is the unary encoding. I.e., x ∈ N is represented by x + 1

consecutive ones on the tape. The remaining tape is left blank. An element of Nk can be represented

by k blocks of unary encodings of the components, separated by single zeros.

It is useful to note at this point that any primitive recursive function is computable. However,

there are computable functions that are not primitive recursive.

We call a decision problem whose corresponding function, mapping instances of the problem to

a binary “yes-or-no” output, is not computable Turing undecidable. The prototypic example of a

Turing undecidable decision problem is the halting problem, i.e., the problem of deciding whether

a given Turing machine halts on the empty input. Already [Tur37] observed that this cannot be

achieved in a computable way.

We will also use a notion of computability of function classes.

Definition C.3. We say that a class G ⊆ NN is computable if there exists a total computable

function G : N × N → N such that G = {n 7→ G(m,n) | m ∈ N}.

We recall one last fact related to Turing machines. Namely, there exist universal Turing ma-

chines capable of simulating any Turing machine [Tur37]. From now on, for each k ∈ N≥1, we

fix such a universal Turing machine understood as a partial computable function M : Nk+1 → N.

Then, for any Turing machine M and corresponding partial computable function fM : Nk → N,

there exists a natural number, also denoted by M , such that fM (x) = M(M,x) for every x ∈ N.

The natural number M is called the code of the Turing machine M with respect to M. This allows

us to think of Turing machines, or, equivalently, computable functions, as input when representing

them by their code with respect to our fixed universal Turing machine.
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Quantum and classical dynamical semigroups of superchannels and

semicausal channels

Markus Hasenöhrl and Matthias C. Caro

Quantum superchannels describe transformations from quantum channels to quantum channels.

In particular, a quantum circuit board with a free slot, which a quantum channel can be plugged

in, constitutes a physical realization of such a quantum superchannel. Actual implementations

of such quantum circuit boards will be subject to decay, leading to a change of the corresponding

superchannel over time. For many cases of interest, the resulting family of superchannels for

di�erent times will be Markovian and form a continuous one-parameter semigroup. In this work,

we completely characterize the generators giving rise to such semigroups of superchannels, both

in the classical and the quantum case.

We begin this work in Section I with an example motivating our focus on continuous one-

parameter semigroups of quantum superchannels, which we refer to as quantum dynamical semi-

groups of superchannels. The introductory Section also contains an overview over the structure of

the paper and a short review of related work. This is followed by Section II, in which we present

and discuss informal versions of our results. Section III contains mathematical preliminaries, in

preparation for the remainder of the paper.

In Section IV, we prove our results for continuous one-parameter semigroups of classical super-

channels. After introducing the classical analogues of superchannels and semicausal channels,

we state and prove two classical analogues of known results from quantum information theory

in Subsections IV.A and IV.B: First, classical superchannels correspond to certain semicausal

nonnegative maps (Theorem IV.3). And second, classical semicausality is equivalent to semilo-

calizability (Theorem IV.4). We exploit the latter equivalence in Subsection IV.C to establish

a normal form for all possible generators of continuous one-parameter semigroups of semicausal

nonnegative maps (Theorem IV.7). Namely, we identify two basic building blocks such that all

admissible generators can be obtained as convex combinations thereof. The results of Subsection

IV.A now allow us to translate this to a normal form for the generators continuous one-parameter

semigroups of classical superchannels in Subsection IV.D (Theorem IV.10). For our proofs in

Section IV, we use vectorization as a classical version of the Choi-Jamiolkowski isomorphism,

the known characterization of generators of general semigroups of nonnegative matrices, and

linear-algebraic techniques.

Armed with the intuition from the classical case, we turn to the quantum setting in Section V.

The overall line of reasoning here mirrors that of Section IV. First, in Subsection V.A, we recall

the known correspondence between quantum superchannels and certain quantum operations

(Theorem V.3), and then extend the equivalence between quantum semicausality and quantum

semilocalizability to in�nite dimensions (Theorem V.4). Subsection V.B now contains our main

technical contributions: We give an e�ciently checkable criterion for a linear map to be a valid

generator giving rise to a semigroup of semicausal completely positive maps (Lemma V.5). And

we characterize such generators in terms of a constructive normal form (Theorem V.6). As

central insight in our proof of the latter, we use a technique based on Haar integration to



Quantum and classical dynamical semigroups of superchannels and semicausal

channels

translate the semicausality property of a Lindblad generator to its completely positive part.

After translating our results from semigroups of semicausal quantum operations to semigroups

of quantum superchannel in Subsection V.C, we conclude our work in Section VI with an outlook

on potential future research.

The idea of this project goes back to a suggestion by Michael M. Wolf and was further developed

in discussions between Markus Hasenöhrl and myself. Markus Hasenöhrl is the main author

of this work. In particular, he had the idea of combining Haar integration with the map ΨM

featuring in the proof of our main result. He also developed the details of the proof strategies for

Theorems IV.4, IV.10, Lemmas V.5, V.8, V.10, V.12, V.16, and Theorem V.17 in the paper, and

he wrote the majority of the �rst draft. I was involved in all parts of the work, both regarding

the mathematical content and the writing of the paper, except of the parts mentioned above.
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ABSTRACT
Quantum devices are subject to natural decay. We propose to study these decay processes as the Markovian evolution of quantum chan-
nels, which leads us to dynamical semigroups of superchannels. A superchannel is a linear map that maps quantum channels to quantum
channels while satisfying suitable consistency relations. If the input and output quantum channels act on the same space, then we can con-
sider dynamical semigroups of superchannels. No useful constructive characterization of the generators of such semigroups is known. We
characterize these generators in two ways: First, we give an efficiently checkable criterion for whether a given map generates a dynamical
semigroup of superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the
Gorini-Kossakowski-Lindblad-Sudarshan form in the case of quantum channels. To derive the normal form, we exploit the relation between
superchannels and semicausal completely positive maps, reducing the problem to finding a normal form for the generators of semigroups
of semicausal completely positive maps. We derive a normal for these generators using a novel technique, which applies also to infinite-
dimensional systems. Our work paves the way for a thorough investigation of semigroups of superchannels: Numerical studies become feasible
because admissible generators can now be explicitly generated and checked. Analytic properties of the corresponding evolution equations are
now accessible via our normal form.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0070635

I. INTRODUCTION AND MOTIVATION
Anybody who has ever owned an electronic device knows that these devices have a finite lifespan after which they stop working properly.

At least from a consumer perspective, a long lifespan is a desirable property for such devices. Thus, it is important for an engineer to know
which kind of decay processes can affect a device in order to suppress them by an appropriate design. Certainly, these considerations will
also become important for the design of quantum devices. We, therefore, propose to systematically study the decay processes that quantum
devices can be subject to.

In this work, we take a first step in this direction by deriving the general form of linear time-homogeneous master equations that govern
how quantum channels behave when inserted into a circuit board at different points in time. This leads to the study of dynamical semigroups
of superchannels. Here, superchannels are linear transformations between quantum channels.1

Let us consider a concrete example (see Fig. 1). Suppose we are trying to estimate the optical transmissivity of some material (M), which
we assume to depend on the polarization of the incident light. A simple approach is to send photons from a light source (S) through the
material and to count how many photons arrive at the detector (D). We model the material by a quantum channel TM , acting on the states of
photons described as three-level systems, with the levels corresponding to vacuum, horizontal, and vertical polarization. In an idealized world,
with a perfect vacuum in the regions between the source, the material, and the detector, we can infer the transmissivity from the measurement
statistics of the state TM(σ), where σ is the state of the photon emitted from the source. However, in a more realistic scenario, even though we
might have created an (almost) perfect vacuum between the devices at construction time, some particles are leaked into that region over time.
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FIG. 1. Estimating the transmissivity of a material under the influence of an influx of particles into the regions between the components.

FIG. 2. If the particle density is low, then the incident photon interacts with the particles in the region sequentially and independently. The effect of a single interaction can
be described by a channel ΔQ. Hence, the state after the first interaction is ΔQ(σ), the state after the second interaction is ΔQ(ΔQ(σ)), and so forth. The number of
interactions is given by the product of the particle density δ and the volume V . Hence, the effect of an region with fixed volume is described by the channel Qδ = (ΔQ)δV . It
follows that if δ = δ1 + δ2, then Qδ1+δ2

= (ΔQ)δ1V(ΔQ)δ2V = Qδ1
○ Qδ2

. The semigroup property for real δ can then be obtained in the continuum limit.

Then, interactions between the photons and these particles might occur, causing absorption or a change in polarization. Hence, the situation
is no longer described accurately by TM alone but also requires a description of the particle-filled regions.

To find such a description, we argue that the effect of particles in some region (here, either between S and M, or M and D) can be
modeled by a quantum dynamical semigroup, parameterized by the particle density δ. If the particle density is reasonably low and Qδ is the
quantum channel describing the effect of the particles on the incident light at a given δ, then, as explained in Fig. 2, Qδ satisfies the semigroup
property Qδ1+δ2 = Qδ1 ○Qδ2 . Furthermore, if there are no particles, then there should be no effect. Hence, Q0 = id. After adding continuity in
the parameter δ as a further natural assumption, the family {Qδ}δ≥0 forms a quantum dynamical semigroup. That is, we can write Qδ = eLδ

for some generator L in Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)-form.
If we assume in our example that particles of type A are leaked into the region between S and M at a rate γA and that particles of type

B are leaked into the region between M and D at a rate γB, then the overall channel describing the transformation that emitted photons
undergo at time t is given by

Ŝt(TM) = eγBLBt ○ TM ○ eγALAt ,

where LA and LB are the generators of the dynamical semigroups describing the effect of the particles in the respective regions.
We note that at any fixed time, Ŝt interpreted as a map on quantum channels is a superchannel written in “circuit”-form. This means

that Ŝt describes a transformation of quantum channels implemented via pre- and post-processing. Furthermore, Ŝt(TM) can be determined
by solving the time-homogenous master equation

d
dt

T(t) = L̂(T(t)),

where L̂(T) = γALA ○ T + γBT ○ LB, with the initial condition T(0) = TM . In other words, we have

Ŝt = eL̂ t ,

and thus, the family {Ŝt}t≥0 forms a dynamical semigroup of superchannels.
By inductive reasoning, we, thus, arrive at our central physical hypothesis: Decay-processes of quantum devices with some sort of influx

are well described by dynamical semigroups of superchannels. It follows that such decay-processes can be understood by characterizing
dynamical semigroups of superchannels. Such a characterization is the main goal of our work.

In particular, we aim to understand dynamical semigroups of superchannels in terms of their generators. We characterize these genera-
tors fully by providing two results: First, we give an efficiently checkable criterion for whether a given map generates a dynamical semigroup of
superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the GKLS form
in the case of quantum channels. Interestingly, we find that the most general form of dynamical semigroups of superchannels goes beyond the
simple introductory example above.

We arrive at these results through a path (see Fig. 3) that also illuminates the connection to the classical case. We start by studying dynam-
ical semigroups of classical superchannels, which (analogously to quantum superchannels being transformations between quantum channels)
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FIG. 3. Schematic of the concepts studied in this work.

are transformations between stochastic matrices. We do so by establishing a one-to-one correspondence between classical superchannels and
certain classical semicausal channels, that is, stochastic matrices on a bipartite system (AB) that do not allow for communication from B to A
(see Definition IV.2). We can then obtain a full characterization of the generators of semigroups of classical superchannels by characterizing
generators of semigroups of classical semicausal maps first and then translating the results back to the level of superchannels. The study of
(dynamical semigroups of) classical superchannels and classical semicausal channels is the content of Sec. IV.

Armed with the intuition obtained from the classical case, we then go on to study the quantum case. We start by characterizing the
generators of semigroups of semicausal2 completely positive maps (CP-maps)—our main technical result and one of independent inter-
est. This characterization can be obtained from the classical case by a “quantization”-procedure that allows us to see exactly which features
of semigroups of semicausal CP-maps are “fully quantum.” Dynamical semigroups of semicausal CP-maps are discussed Sec. V B. Finally,
in Sec. V C, we use the one-to-one correspondence (via the quantum Choi–Jamiołkowski isomorphism) between certain semicausal CP-
maps and quantum superchannels to obtain a full characterization of the generators of semigroups of quantum superchannels. While
the classical section (Sec. IV) and the quantum section (Sec. V) are heuristically related, they are logically independent and can be read
independently.

This work is structured as follows: In the remainder of this section, we discuss results related to ours. Section II contains an overview
over our main results. In Sec. III, we recall relevant notions from functional analysis and quantum information, as well as some notation. The
(logically) independent sections (Secs. IV and V) comprise the main body of our paper, containing complete statements and proofs of our
results on dynamical semigroups of superchannels and semicausal channels. We study the classical case in Sec. IV and the quantum case in
Sec. V. Finally, we conclude with a summary and an outlook to future research in Sec. VI.

A. Related work
The study of quantum superchannels goes back to Ref. 1 and has since evolved to the study of higher-order quantum maps.3–5 A peculiar

feature of higher-order quantum theory is that it allows for indefinite causal order.6,7 However, it was recently discovered that the causal order
is preserved under (certain) continuous evolutions.8,9 It, therefore, seems interesting to study continuous evolutions of higher-order quantum
maps systematically. Our work can be seen as an initial step into his direction.

The study of (semi-)causal and (semi-)localizable quantum channels goes back to Ref. 2. By proving the equivalence of semicausality and
semilocalizability for quantum channels, the authors of Ref. 10 resolved a conjecture raised in Ref. 2 (and attributed to DiVincenzo). Later,
the authors of Ref. 11 provided an alternative proof for this equivalence and further investigated causal and local quantum operations.

II. RESULTS
We give an overview over our answers to the questions identified in Sec. I. In our first result, we identify a set of constraints that a linear

map satisfies if and only if it generates a semigroup of quantum superchannels.

Result 1.1 (Lemma V.17—informal). Checking whether a linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semi-
group of quantum superchannels can be phrased as a semidefinite constraint satisfaction problem.

Therefore, we can efficiently check whether a given linear map is a valid generator of a semigroup of quantum superchannels. We can
even solve optimization problems over such generators in terms of semidefinite programs. Thereby, this first characterization of generators
of semigroups of quantum superchannels facilitates working with them computationally.

As our second result, we determine a normal form for generators of semigroups of quantum superchannels. Similar to the GKLS-form, we
decompose the generator into a “dissipative part” and a “Hamiltonian part,” where the latter generates a semigroup of invertible superchannels
such that the inverse is a superchannel as well.
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Result 1.2 (Theorem V.18—informal). A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of quantum
superchannels if and only if it can be written as L̂(T) = D̂(T) + Ĥ(T), where the “Hamiltonian part” is of the form

Ĥ(T)(ρ) = −i[HB, T(ρ)] − iT([HA, ρ]),

with local Hamiltonians HB and HA, and where the “dissipative part” is of the form D̂(T)(ρ) = trE[D̂ ′(T)(ρ)], where

D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (1a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (1b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)), B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†], (1c)

with unitary U and arbitrary A and B.

The “dissipative part” consists of three terms: Term (1a) itself generates a semigroup of superchannels (for B = 0), with the interpretation
that the transformed channel [Ŝt(T)] arises due to the stochastic application of T ↦ trE[U(T ⊗ idE)(A(ρ⊗ σ)A†)U†] at different points in
time (Dyson series expansion). Term (1b) itself generates a semigroup of superchannels (for A = 0) of the form Ŝt(T) = eLBt ○ T, where LB is
a generator of a quantum dynamical semigroup (and hence in GKLS-form). Term (1c) is a “superposition” term, which is harder to interpret.
It will become apparent from the path taken via the “quantization” of semicausal semigroups that this term is a pure quantum feature with
no classical analog. Therefore, the presence of (1c) can be regarded as one of our main findings. It is also worth noting that the normal form
in Result 1.2 is more general than the form of the generator we found in our introductory example. Hence, nature allows for more general
decay-processes than the simple ones with an independent influx of particles before and after the target object. We also complement this
structural result by an algorithm that determines the operators U, A, B, HA, and HB if the conditions in Result 1.1 are met.

The proof of these results relies on the relation (via the Choi–Jamiołkowski isomorphism) between superchannels and semicausal
CP-maps. Our next findings—and from a technical standpoint our main contributions—are the corresponding results for semigroups of
semicausal CP-maps.

Result 2.1 (Lemma V.5—informal). Checking whether a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A
semicausal CP-maps can be phrased as a semidefinite constraint satisfaction problem for its Choi-matrix.

Based on this insight, we can efficiently check whether a given linear map is a valid generator of a semigroup of semicausal CP-maps.
Since semigroups of semicausal CP-maps are, in particular, semigroups of CP-maps, our normal form for generators giving rise to

semigroups of semicausal CP-maps is a refining of the GKLS-form.

Result 2.2 (Theorem V.6—informal). A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) generates a semigroup of B→/ A semicausal CP-
maps (in the Heisenberg picture) if and only if it can be written as L(X) = Φ(X) − K†X − XK, where the CP part Φ is of the form

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),

with a unitary U ∈ B(HE ⊗HB;HB ⊗HE) and arbitrary A ∈ B(HA;HA ⊗HE) and B ∈ B(HB;HB ⊗HE), and the K in the non-CP part is of
the form

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) +
1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB,

with a self-adjoint HB and an arbitrary KA.

This characterization has both computational and analytical implications: On the one hand, it provides a recipe for describing semicausal
GKLS generators in numerical implementations. On the other hand, the constructive characterization of semicausal GKLS generators makes
a more detailed analysis of their (e.g., spectral) properties tractable. It is also worth noting that in Result 2.2, we can allow for (separable)
infinite-dimensional spaces. In the finite-dimensional case, we also provide an algorithm to compute the operators U, A, B, KA, and HB, if the
conditions of Result 2.1 are met.

Let us now turn to the corresponding results in the classical case. Here, instead of looking at (semigroups of) CP-maps and quantum
channels, we look at (entry-wise) non-negative matrices and row-stochastic matrices (see Secs. III and IV for details) that we assume to act on
RX for (finite) alphabets X ∈ {A,B,E}.
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The following result is the classical analog of Result 2.2:

Result 3 (Corollary IV.8—informal). A linear map Q : RA ⊗RB → RA ⊗RB generates a semigroup of (Heisenberg) B→/ A semicausal
non-negative matrices if and only if it can be written as

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i),

with a row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA, and maps B(i) ∈ B(RB)
that generate semigroups of row-stochastic matrices.

We will discuss in detail how Result 2.2 arises as the “quantization” of Result 3 in the paragraph following the Proof of Lemma V.5.
Here, we highlight that in both the quantum and the classical case, the generators of semicausal semigroups are constructed from two basic
building blocks. In the quantum case, these are a B→/ A semicausal CP-map Φsc, with Φsc(X) = V†

sc(X ⊗ 𝟙E)Vsc and Vsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and a GKLS generator of the form idA ⊗ B̂. In the classical case, they are a B→/ A semicausal non-negative map Φsc = (𝟙A ⊗U)(A⊗ 𝟙B)
and operators of the form ∣ai⟩⟨ai∣⊗ B(i), where B(i) generates a semigroup of row-stochastic maps. The difference between the quantum
case and the classical case then lies in the way the general form is constructed from the building blocks. While we simply take convex combi-
nations of the building-blocks in the classical case, we have to take superpositions of the building-blocks, by which we mean that we need to
combine the corresponding Strinespring operators, in the quantum case.

As our last result, we present the normal form for generators of semigroups of classical superchannels.

Result 4. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical superchannels if and only if it can be written as

Q̂(M) = U(M ⊗ 𝟙E)A −
∣A∣

∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ +

∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣,

with a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA, and a collection of
generators of semigroups of column-stochastic matrices B(i) ∈ B(RB).

As in the quantum case, we have two kinds of evolutions: a stochastic application of M ↦ U(M ⊗ 𝟙E)A at different points in time and a
conditioned post-processing evolution of the form∑ie

B(i)tM∣ai⟩⟨ai∣. Note that there are no “superposition” terms, such as (1c).

III. NOTATION AND PRELIMINARIES
In this section, we review basic notions from functional analysis, quantum information theory, and the theory of dynamical semigroups.

We also fix our notation for these settings as well as for a classical counterpart of the quantum setting.

A. Functional analysis
Throughout this paper, H (with some subscript) denotes a (in general, infinite-dimensional) separable complex Hilbert space. Whenever

H is assumed to be finite-dimensional, we explicitly state this assumption. We denote the Banach space of bounded linear operators with
domain HA and codomain HB, equipped with the operator norm, by B(HA;HB) and write B(H) for B(H;H). For X ∈ B(HA;HB), the
adjoint X† ∈ B(HB;HA) of X is the unique linear operator such that ⟨ψB∣XψA⟩ = ⟨X†ψB∣ψA⟩ for all ∣ψA⟩ ∈ HA and all ∣ψB⟩ ∈ HB. Here, and
throughout this paper, we use the standard Dirac notation.

An operator Y ∈ B(H) is called self-adjoint if Y† = Y . A self-adjoint Y ∈ B(H) is called positive semidefinite, denoted by Y ≥ 0, if there
exists an operator Z ∈ B(H) such that Y = Z†Z. If Y is positive semidefinite, then there exists a unique positive semidefinite operator

√
Y

such that Y =
√

Y
√

Y (Ref. 12, p. 196). The operator
√

Y is called the square-root of Y . The absolute value ∣Y ∣ ∈ B(H) of Y is defined by
∣Y ∣ =

√
Y†Y .

We define the set of trace-class operators S1(HA;HB) = {ρ ∈ B(HA;HB) ∣ tr[∣ρ∣] <∞}, which becomes a Banach space when endowed
with the norm ∥ρ∥1 ∶= tr[∣ρ∣]. We write S1(H) for S1(H;H). The set S1(HA;HB) satisfies the two-sided∗-ideal property: If ρ ∈ S1(HA;HB)
and Y ∈ B(HA;HB), then ρ† ∈ S1(HB;HA), ρ†Y ∈ S1(HA), and Yρ† ∈ S1(HB).

Besides the norm topology, we will use the strong operator topology and the ultraweak topology. The strong operator topology is the
smallest topology on B(HA;HB) such that for all ∣ψA⟩ ∈ HA, the map B(HA;HB) ∋ Y ↦ Y ∣ψA⟩ ∈ HB is continuous, where HB is equipped
with the norm topology. The ultraweak topology on B(HA;HB) is the smallest topology such that the map B(HA;HB) ∋ Y ↦ tr[ρ†Y] ∈ C is
continuous for all ρ ∈ S1(HA;HB). Since HA and HB are separable, so is S1(HB;HA). Hence, the sequential Banach Alaoglu theorem implies
that every bounded sequence in B(HA;HB) has an ultraweakly convergent subsequence. Here, we view B(HA;HB) as the continuous dual of
S1(HB;HA). The aforementioned results can be found in many books, e.g., Ref. 12 (ch. VI.6), however, usually only for the case HA = HB.
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The general results stated above can be obtained from this case by considering B(HA;HB) and S1(HA;HB) as subspaces of B(HA ⊕HB) and
S1(HA ⊕HB), respectively.

An operator V ∈ B(HA;HB) is called an isometry if ∥V ∣ψA⟩∥ = ∥∣ψA⟩∥ for all ∣ψA⟩ ∈ HA. The (possibly empty) set of unitaries, the
surjective isometries, is denoted by U(HA;HB), and we write U(H) for U(H;H). As a special notation, if H ′

A and H ′
B are closed linear

subspaces of HA and HB, with (canonical) isometric embeddings 𝟙A′→A ∈ B(H ′
A;HA) and 𝟙B′→B ∈ B(H ′

B;HB), respectively, then we will
write UP(H ′

A;H ′
B) = {𝟙B′→BU𝟙†

A′→A ∈ B(HA;HB) ∣U ∈ U(H ′
A;H ′

B)} and UP(H) for UP(H;H). That is, this is the set of partial isometries.

B. Flip operator, partial trace, complete positivity, and duality
The flip operator FA;B ∈ B(HA ⊗HB;HB ⊗HA) is the unique operator satisfying FA;B(∣ψA⟩⊗ ∣ψB⟩) = ∣ψB⟩⊗ ∣ψA⟩ for all ∣ψA⟩ ∈ HA and

all ∣ψB⟩ ∈ HB.
The partial trace with respect to the space HA is the unique linear map trA : S1(HA ⊗HB;HA ⊗HC)→ S1(HB;HC) that satisfies

tr[XtrA[ρ]] = tr[(𝟙A ⊗ X)ρ] for all ρ ∈ S1(HA ⊗HB) and all X ∈ B(HC;HB). If the spaces involved have subscripts, the partial trace will
always be denoted with the corresponding subscript. The partial trace with respect to ρ ∈ S1(HA) is the unique linear map trρ : B(HA
⊗HB;HA ⊗HC)→ B(HB;HC) that satisfies tr[σtrρ[X]] = tr[(ρ⊗ σ)X] for all σ ∈ S1(HC;HB) and all X ∈ B(HA ⊗HB;HA ⊗HC). Proofs
of existence and uniqueness can be found in Ref. 13 (Theorem 2.28 and Theorem 2.30), where we used again the observation that the results
above follow from the usual ones for HB = HC, by looking at the operators on HA ⊗ (HB ⊕HC).

Let T ∈ B(B(HB);B(HA)). The map T is called positive if T(XB) is positive semidefinite whenever XB ∈ B(HB) is positive semidefi-
nite. For n ∈ N0, the map Tn : B(Cn ⊗HB)→ B(Cn ⊗HA) is uniquely defined by the requirement that Tn(Xn ⊗ XB) = Xn ⊗ T(XB) for all
Xn ∈ B(Cn) and all XB ∈ B(HB). The map T is completely positive (CP) if the map Tn is positive for all n ∈ N0. A CP-map T is called nor-
mal if T is continuous when B(HA) and B(HB) are both equipped with the ultraweak topology. We denote the set of normal CP-maps by
CPσ(HB;HA) and write CPσ(H) for CPσ(H;H). By the Stinespring dilation theorem (in its form for normal CP-maps), T is a normal CP-
map if and only if there exist a (separable) Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that for all XB ∈ B(HB), we have
T(XB) = V†(XB ⊗ 𝟙E)V . Furthermore, the Stinespring dilation can be chosen to be minimal, that is, the pair (V ,HE) can be chosen such that
span{(XB ⊗ 𝟙E)V ∣ψA⟩ ∣XB ∈ B(HB), ∣ψA⟩ ∈ HA} is norm-dense in HB ⊗HE. Furthermore, if (V′,H ′

E) is another Stinespring dilation, then
there exists an isometry U ∈ B(HE;H ′

E) such that V′ = (𝟙B ⊗U)V . Another equivalent characterization is the so-called Kraus form: T is a
normal CP-map if and only if there exists a countable set of operators {Li}i ⊂ B(HA;HB), the Kraus operators, such that for all XB ∈ B(HB),
we have T(XB) = ∑iL

†
i XBLi, where the series converges in the strong operator topology. One can obtain Kraus operators from a Stinespring

dilation (V ,HE) by choosing an orthonormal basis {∣ei⟩}i of HE and defining Li = (𝟙B ⊗ ⟨ei∣)V . A map T is unital if T(𝟙B) = 𝟙A, and a unital
normal CP-map is called a Heisenberg (quantum) channel.

Let S ∈ B(S1(HA);S1(HB)). The dual map S∗ ∈ B(B(HB);B(HA)) is the unique linear map that satisfies tr[X†
BS(ρ)] = tr[(S∗(XB))

†ρ]
for all XB ∈ B(HB) and all ρ ∈ S1(HA). We call S the Schrödinger picture map and S∗ the Heisenberg picture map. The map S is called com-
pletely positive if S∗ is completely positive in the sense defined above. In that case, S∗ is automatically normal. In fact, T is a normal CP-map
if and only if there exists S ∈ B(B(HA);B(HB)) such that S∗ = T. It follows that S is completely positive if and only if there exist a separable
Hilbert space HE and an operator V ∈ B(HA;HB ⊗HE) such that S(ρ) = trE[VρV†] for all ρ ∈ S1(HA). Furthermore, S is completely positive
if and only if there exist a countable set of operators {Li}i ⊂ B(HA;HB) such that S(ρ) = ∑iLiρL†

i and the series converges in trace-norm. A
map S is trace-preserving if tr[S(ρA)] = tr[ρA] for all ρA ∈ S1(HA). A trace-preserving CP-map is called a (quantum) channel. The facts in
this section are contained or follow directly from the results in Refs. 14 and 15.

C. Choi–Jamiołkowski isomorphism, partial transposition
In this section, let HA, HB, and HC be finite-dimensional Hilbert spaces with fixed orthonormal bases {∣ai⟩}i, {∣bj⟩}j, and {∣ck⟩}k,

respectively. The transpose (with respect to {∣ai⟩}i and {∣bj⟩}j) of an operator X ∈ B(HA;HB) is the unique linear operator XT ∈ B(HB;HA)
such that ⟨bj∣Xai⟩ = ⟨ai∣XTbj⟩ for all elements of the orthonormal bases. The partial transposition (with respect to {∣ai⟩}i) of an
operator X ∈ B(HA ⊗HB;HA ⊗HC) is the unique linear operator XTA ∈ B(HA ⊗HB;HA ⊗HC) such that (⟨ai∣⊗ 𝟙C)X(∣aj⟩⊗ 𝟙B)
= (⟨aj∣⊗ 𝟙C)XTA(∣ai⟩⊗ 𝟙B) for all elements of the orthonormal basis.

The (quantum) Choi–Jamiołkowski isomorphism,16,17 defined with respect to an orthonormal basis {∣ai⟩}i of HA, is the bijective lin-
ear map CA;B : B(B(HA);B(HB))→ B(HA ⊗HB), CA;B(T) = (idA ⊗ T)(∣Ω⟩⟨Ω∣), and its inverse is given by C−1

A;B(τ)(ρ) = trA[(ρT ⊗ 𝟙)τ],
where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. A map S ∈ B(B(HA);B(HB)) is completely positive if and only if CA;B(S) ≥ 0; S is trace-preserving if and
only if trB[CA;B(S)] = 𝟙A, and we have the identity trA[CA;B(S)] = S(𝟙A). We will occasionally call elements of the image of CA;B
Choi matrices.

D. Non-negative matrices and duality
As we provide characterizations for both the quantum and the classical case, we now also introduce the notation and definitions required

for the latter. With a classical system A, we associate a finite alphabet A = {a1, a2, . . . , a∣A∣} and a “state-space” RA, with the orthonormal basis

J. Math. Phys. 63, 072204 (2022); doi: 10.1063/5.0070635 63, 072204-6

© Author(s) 2022



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

{∣ai⟩}∣A∣i=1. We define by ∣1A⟩ ∶= ∑ i∣ai⟩ the all-one-vector. A vector ∣x⟩ ∈ RA is called non-negative if ⟨a∣x⟩ ≥ 0 for all a ∈ A. A linear operator
M ∈ B(RA;RB) is called non-negative if M∣x⟩ is non-negative whenever ∣x⟩ is non-negative (equivalently, all matrix elements are non-
negative). A non-negative M is called column-stochastic if ⟨1B∣M = ⟨1A∣, column-sub-stochastic if there exists a non-negative P such that
M + P is column-stochastic, row-stochastic if M∣1A⟩ = ∣1B⟩, and row-sub-stochastic if there exists a non-negative P such that M + P is row-
stochastic. Given ∣x⟩ or ⟨x∣, we denote by diag(∣x⟩) = diag(⟨x∣) the diagonal matrix with the components of x on the diagonal. Finally, we
will use the “classical Choi–Jamiołkowski isomorphism” (also known as vectorization), which is a convenient notation to make the con-
nection to the quantum case more transparent. The classical Choi–Jamiołkowski isomorphism, defined with respect to {∣ai⟩}i, is the linear
map CC

A;B : B(RA;RB)→ B(RA ⊗RB) defined by CC
A;B(M) = (𝟙A ⊗M)∣Ω⟩, where ∣Ω⟩ ∶= ∑ i∣ai⟩⊗ ∣ai⟩. The inverse (CC

A;B)−1 is then given by
(CC

A;B)−1(∣x⟩) = (⟨Ω∣⊗ 𝟙B)(𝟙A ⊗ ∣x⟩)We will sometimes refer to elements of the range of CC
A;B as Choi vectors.

E. Dynamical semigroups
Let X be a Banach space. A family of operators {Tt}t≥0, with Tt ∈ B(X) for all t ≥ 0, is called a norm-continuous one-parameter

semigroup on X or, short, dynamical semigroup if T0 = 𝟙, Ts+t = TsTt for all t, s ≥ 0 and the map R≥0 ∋ t ↦ Tt is norm-continuous. Norm-
continuous dynamical semigroups are automatically differentiable and have bounded generators, that is, there exists L ∈ B(X) such that
Tt = etL for all t ≥ 0 and L = d

dt ∣t=0+
Tt (Ref. 18, Theorem I.3.7).

Lindblad19 proved that Tt ∈ CPσ(H) for all t ≥ 0 if and only if there exist Φ ∈ CPσ(H) and K ∈ B(H) such that Tt = etL, with L(X)
= Φ(X) − K†X − XK. In this case, we refer to {Tt}t≥0 as a CP semigroup. We call the corresponding form of the generator L the GKLS form19,20

and Φ its CP part. If H is finite-dimensional, then Tt = etL ∈ CPσ(H) for all t ≥ 0 if and only if the operator L ∶= CA;B = (id⊗ L)(∣Ω⟩⟨Ω∣) is
self-adjoint and P�LP� ≥ 0, where ∣Ω⟩ = ∑ i∣ai⟩⊗ ∣ai⟩ for some orthonormal basis {ai} of H and P� ∈ B(H⊗H) is the orthogonal projection
onto the orthogonal complement of {∣Ω⟩}.21,22 The corresponding classical result is as follows: {Tt}t≥0 ⊆ B(RA) is a dynamical semigroup of
non-negative linear maps if and only if there exist a non-negative linear map Φ ∈ B(RA) and a diagonal map K ∈ B(RA) (with respect to the
basis orthogonal basis {∣ai⟩}i) such that the generator L has the form Φ − K.23

IV. THE CLASSICAL CASE
Before studying the quantum scenario, we consider the classical version of our main question. That is, we study continuous semigroups

of classical superchannels and their generators. On the one hand, this allows us to develop an intuition that we can build upon for the quantum
case. On the other hand, a comparison between the classical and the quantum case elucidates which features of the latter are actually quantum.
For the purpose of this section, A, B, and E denote finite alphabets as in Subsection III D.

A classical superchannel is a map that maps classical channels, i.e., stochastic matrices, to classical channels while preserving the prob-
abilistic structure of the classical theory. To achieve the latter requirement, we require that a classical superchannel is a linear map and that
probabilistic transformations, i.e., sub-stochastic matrices, are mapped to probabilistic transformations. Expressed more formally, we have
the following definition:

Definition IV.1 (classical superchannels). A linear map Ŝ : B(RA;RB)→ B(RA;RB) is called a classical superchannel if Ŝ(M)
∈ B(RA;RB) is column sub-stochastic whenever M ∈ B(RA;RB) is column sub-stochastic and Ŝ(M) ∈ B(RA;RB) is column stochastic
whenever M ∈ B(RA;RB) is column stochastic.

A related concept is that of a classical semicausal channel, which is a stochastic matrix on a bipartite space A × B such that no
communication from B to A is allowed. We formalize this as follows:

Definition IV.2 (classical semicausality). An operator M ∈ B(RA ⊗RB) is called column B→/ A semicausal if there exists MA ∈ B(RA)
such that (𝟙A ⊗ ⟨1B∣)M =MA(𝟙A ⊗ ⟨1B∣).

Similarly, N ∈ B(RA ⊗RB) is called row B→/ A semicausal if there exists NA ∈ B(RA) such that N(𝟙A ⊗ ∣1B⟩) = NA ⊗ ∣1B⟩.

Clearly, M is column B→/ A semicausal if and only if MT is row B→/ A semicausal. To emphasize the analogy to the quantum case, we will
often refer to a column B→/ A semicausal map as a Schrödinger B→/ A semicausal map and to a row B→/ A semicausal map as a Heisenberg
B→/ A semicausal map. In both cases, the maps MA and NA will be called the reduced maps.

The structure of this section is as follows: We start by establishing the connection between classical superchannels and classical non-
negative semicausal maps, followed by a characterization of classical non-negative semicausal maps as a composition of known objects; such
a characterization is known in the quantum case as the equivalence between semicausality and semilocalizability. We then turn to the study of
the generators of semigroups of semicausal and non-negative maps and finally use the correspondence between superchannels and semicausal
channels to obtain the corresponding results for the generators of semigroups of superchannels.

A. Correspondence between classical superchannels and semicausal non-negative linear maps
We first show, with a proof inspired by the one given in Ref. 1 for the analogous correspondence in the quantum case, that we can

understand classical superchannels in terms of classical semicausal channels. To concisely state this correspondence, we use the classical
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version of the Choi–Jamiołkowski isomorphism. Let us mention here once again that we assume all alphabets (A,B, . . . ) to be finite for our
treatment of the classical case.

Theorem IV.3. Let Ŝ : B(RA;RB)→ B(RA;RB) be a linear map and define S ∈ B(RA ⊗RB) via S = CC
A;B ○ Ŝ ○ (CC

A;B)−1. Then, Ŝ is a
classical superchannel if and only if S is non-negative and (Schrödinger B→/ A) semicausal such that the reduced map SA satisfies SA∣1A⟩ = ∣1A⟩.
In this case, SA is automatically non-negative.

Proof. We first show the “if”-direction, i.e., that if S is non-negative and (Schrödinger B→/ A) semicausal, then Ŝ = (CC
A;B)−1 ○ S ○ CC

A;B
is a superchannel. Suppose M is a non-negative matrix. Then, Ŝ(M) is non-negative, since CC

A;B maps non-negative matrices to non-negative
vectors, S maps non-negative vectors to non-negative vectors, and (CC

A;B)−1 maps non-negative vectors to non-negative matrices.
Furthermore, if M is column stochastic, then

⟨1B∣Ŝ(M) = ⟨1B∣(CC
A;B)

−1 ○ S ○ CC
A;B(M)

= (⟨Ω∣⊗ ⟨1B∣)(𝟙A ⊗ S(CC
A;B(M)))

= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ ⟨1B∣)CC
A;B(M)))

= ⟨Ω∣(𝟙A ⊗ SA((𝟙A ⊗ (⟨1B∣M))∣Ω⟩))
= ⟨Ω∣(𝟙A ⊗ SA∣1A⟩)
= ⟨Ω∣(𝟙A ⊗ ∣1A⟩)
= ⟨1A∣,

so Ŝ(M) is stochastic. In the preceding calculation, we used that S is semicausal in the third line, that M is stochastic in the fifth line, and that
SA∣1A⟩ = ∣1A⟩ in the sixth line.

Now suppose that M is sub-stochastic such that M +Q is stochastic, with Q being non-negative. Then, Ŝ(M +Q) = Ŝ(M) + Ŝ(Q) is
stochastic, and since Ŝ(Q) is non-negative, Ŝ(M) is sub-stochastic. This proves that Ŝ is a superchannel. The claim about the non-negativity
of SA now follows directly from the semicausality condition.

For the converse, suppose Ŝ is a superchannel. Since for all a ∈ A and all b ∈ B, the matrix ∣b⟩⟨a∣ is sub-stochastic, it follows by linearity
of Ŝ that Ŝ(M) is non-negative whenever M is non-negative. Thus, since (CC

A;B)−1 maps non-negative vectors to non-negative matrices, Ŝ
maps non-negative matrices to non-negative matrices, and CC

A;B maps non-negative matrices to non-negative vectors, it follows that S is
non-negative.

Next, we want to show that S is Schrödinger B→/ A semicausal. Since Ŝ is a superchannel, S maps Choi vectors of stochastic matrices to
Choi vectors of stochastic matrices, that is, (𝟙A ⊗ ⟨1B∣)S∣x⟩ = ∣1A⟩ for all non-negative vectors ∣x⟩ ∈ RA ⊗RB that satisfy (𝟙A ⊗ ⟨1B∣)∣x⟩ = ∣1A⟩.
As a tool, we define the set of scaled differences of Choi vectors of stochastic matrices by

C0 ∶= {λ(∣p⟩ − ∣n⟩) ∣ λ ∈ R; ∣p⟩, ∣n⟩ ∈ RA ⊗RB non − negative, with (𝟙A ⊗ ⟨1B∣)∣p⟩ = (𝟙A ⊗ ⟨1B∣)∣n⟩ = ∣1A⟩}. (2)

We claim that
C0 = C′0 ∶= {∣x′⟩ ∈ RA ⊗RB ∣ (𝟙A ⊗ ⟨1B∣)∣x′⟩ = 0}.

To see this, first note that C0 ⊆ C′0 follows directly from the definition. For the other inclusion, C0 ⊇ C′0, we decompose ∣x′⟩ ∈ C′0 as ∣x′⟩
= ∣p′⟩ − ∣n′⟩ for two non-negative vectors ∣p′⟩, ∣n′⟩ ∈ RA ⊗RB. It follows that (𝟙A ⊗ ⟨1B∣)∣p′⟩ = (𝟙A ⊗ ⟨1B∣)∣n′⟩. Furthermore, for ε > 0 small
enough, we have that ∣y′⟩ ∶= ∣1A⟩ − ε(𝟙A ⊗ ⟨1B∣)∣p′⟩ is non-negative. However, for any non-negative unit ∣v⟩ ∈ RB, with ⟨1B∣v⟩ = 1, the vectors
∣p⟩ ∶= ε∣p′⟩ + ∣y′⟩⊗ ∣v⟩ and ∣n⟩ ∶= ε∣n′⟩ + ∣y′⟩⊗ ∣v⟩ are Choi vectors of stochastic matrices. Hence, ∣x′⟩ = 1

ε (∣p⟩ − ∣n⟩) ∈ C0.
We define P� ∈ B(RA ⊗RB) by P�∣x⟩ = 1

∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩ and P ∶= 𝟙AB − P�. Then, since (𝟙A ⊗ ⟨1B∣)P∣x⟩ = (𝟙A ⊗ ⟨1B∣)∣x⟩
− (𝟙A ⊗ ⟨1B∣)∣x⟩ = 0, we have that P∣x⟩ ∈ C0 for all ∣x⟩ ∈ RA ⊗RB. We define SA ∈ B(RA) by SA∣xA⟩ = 1

∣B∣(𝟙A ⊗ ⟨1B∣)P�S(∣xA⟩⊗ ∣1B⟩)
= 1
∣B∣(𝟙A ⊗ ⟨1B∣)S(∣xA⟩⊗ ∣1B⟩) and calculate

(𝟙A ⊗ ⟨1B∣)S∣x⟩ = (𝟙A ⊗ ⟨1B∣)S(P∣x⟩) + (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)
= (𝟙A ⊗ ⟨1B∣)S(P�∣x⟩)

= (𝟙A ⊗ ⟨1B∣)S(
1
∣B∣ [(𝟙A ⊗ ⟨1B∣)∣x⟩]⊗ ∣1B⟩)

= SA((𝟙A ⊗ ⟨1B∣)∣x⟩),

where we used in the second line that C0 is invariant under S, a fact that follows directly from (2). This calculation exactly shows that S is
Schödinger A→/ B semicausal.
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It remains to show that SA∣1A⟩ = ∣1A⟩. This follows easily, since

SA∣1A⟩ =
1
∣B∣ (𝟙A ⊗ ⟨1B∣)S(∣1A⟩⊗ ∣1B⟩)

= 1
∣B∣ (𝟙A ⊗ ⟨1B∣)CC

A;B ○ Ŝ ○ (CC
A;B)−1(∣1A⟩⊗ ∣1B⟩)

= 𝟙A ⊗ [⟨1B∣Ŝ(
1
∣B∣ ∣1B⟩⟨1A∣)]∣Ω⟩

= (𝟙A ⊗ ⟨1A∣)∣Ω⟩
= ∣1A⟩,

where we used that 1
∣B∣ ∣1B⟩⟨1A∣ is stochastic and that thus Ŝ( 1

∣B∣ ∣1B⟩⟨1A∣) is stochastic. ◻

In summary, Theorem IV.3 tells us that, via the classical Choi–Jamiołkowski isomorphism, we can view classical superchannels
equivalently also as suitably normalized semicausal non-negative maps.

B. Relation between classical semicausality and semilocalizability
The goal of this section is to get a better understanding of the structure of semicausal maps. For non-negative semicausal maps, we have

the following structure theorem:

Theorem IV.4. A non-negative map N ∈ B(RA ⊗RB) is row B→/ A semicausal if and only if there exist a (finite) alphabet E, a (non-
negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), and a non-negative matrix A ∈ B(RA ⊗RE;RA) such that

N = (A⊗ 𝟙B)(𝟙A ⊗U). (3)

In that case, we can choose ∣E∣ = ∣A∣2.

Borrowing the terminology from the quantum case,2,10 the preceding theorem tells us that non-negative semicausal maps are
semilocalizable. We formally define the latter notion for the classical case as follows:

Definition IV.5. A non-negative map N ∈ B(RA ⊗RB) is called Heisenberg B→/ A semilocalizable if it can be written in the form of
Eq. (3).

Similarly, a non-negative map M ∈ B(RA ⊗RB) is called Schrödinger B→/ A semilocalizable if it can be written as M = (𝟙A ⊗U)(A⊗ 𝟙B)
for a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB) and a non-negative matrix A ∈ B(RA;RA ⊗RE).

The requirement that U is stochastic and A is non-negative in the decomposition above is essential. In fact, if one drops these
requirements, then a decomposition M = (𝟙A ⊗U)(A⊗ 𝟙B) can be found for any matrix M ∈ B(RA ⊗RB).

Due to Theorem IV.4, a non-negative Schrödinger B→/ A semicausal and column-stochastic map M admits an operational interpretation.
First, note that if M is not only semicausal but also stochastic, then also the matrix A in Eq. (3) is stochastic. Thus, the interpretation of the
decomposition is as follows: First, Alice applies some probabilistic operation (A) to the composite system A × E. Then, she transmits the
E-part to Bob, who now applies a stochastic operation (U) to his part of the system.

Given this interpretation, the idea behind the construction in the Proof of Theorem IV.4 is that Alice first looks the input of system A
and generates the output of system A according to the distribution given by the matrix NA. Then, she copies the input as well as her generated
output and sends this information to Bob, who is then able to complete the operation by generating an output conditional on his input and
the information he got from Alice. Given that this construction requires copying, it might be considered surprising that a quantum analog is
true nevertheless.10

Proof (Theorem IV.4). If N is Schrödinger B→/ A semilocalizable, then

N(𝟙A ⊗ ∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗U∣1B⟩) = (A⊗ 𝟙B)(𝟙A ⊗ ∣1EB⟩) = (A(𝟙A ⊗ ∣1E⟩))⊗ ∣1B⟩.

Hence, N is row B→/ A semicausal.

J. Math. Phys. 63, 072204 (2022); doi: 10.1063/5.0070635 63, 072204-9

© Author(s) 2022



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Conversely, if N is row B→/ A semicausal, we choose E ∶= A ×A and define

A ∶=∑
i,j,k
⟨aj∣NAak⟩ ∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣,

U ∶= ∑
m,n,r,s

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩⟨bs∣ +

⎡⎢⎢⎢⎢⎢⎢⎣
∑
m,n

⟨an ∣NAam⟩=0

∣am ⊗ an⟩

⎤⎥⎥⎥⎥⎥⎥⎦

⊗ 𝟙B.
(4)

To show that N = (A⊗ 𝟙B)(𝟙A ⊗U), we calculate

(A⊗ 𝟙B)(𝟙A ⊗U) = ∑
i,j,k

m,n,r,s
⟨an ∣NAam⟩≠0

⟨aj∣NAak⟩⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

[(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an ⊗ br⟩⟨bs∣)]

+ ∑
i,j,k
m,n

⟨an ∣NAam⟩=0

⟨aj∣NAak⟩(∣aj⟩⟨ak∣⊗ ⟨ak ⊗ aj∣⊗ 𝟙B)(𝟙A ⊗ ∣am ⊗ an⟩⊗ 𝟙B)

= ∑
i,j,k,r,s

⟨aj ∣NAak⟩≠0

⟨aj∣NAak⟩⟨aj ⊗ br ∣N ak ⊗ bs⟩
⟨aj∣NAak⟩

∣aj⟩⟨ak∣⊗ ∣br⟩⟨bs∣

+ ∑
i,j,k

⟨aj ∣NAak⟩=0

⟨aj∣NAak⟩∣aj⟩⟨ak∣⊗ 𝟙B

= N.

For the last step, observe that the second sum vanishes and that one can drop the constraint that ⟨aj∣NAak⟩ ≠ 0 in the first sum (after
cancellation) because ⟨aj ⊗ br ∣N ak ⊗ bs⟩ = 0 if ⟨aj∣NAak⟩ = 0. To see this last claim, note that, since N is non-negative and semicausal, we
have

0 ≤ ⟨aj ⊗ br ∣N ak ⊗ bs⟩ ≤ ⟨aj ⊗ br ∣N ak ⊗ 1B⟩ = ⟨aj∣NAak⟩⟨br ∣1B⟩ = 0.

It is clear that A and U are non-negative since N and, thus, also NA are non-negative by assumption. It remains to show that U is row-
stochastic. We have

U∣1B⟩ = ∑
m,n,r,s

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ bs⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∑
m,n,r

⟨an ∣NAam⟩≠0

⟨an ⊗ br ∣N am ⊗ 1B⟩
⟨an∣NAam⟩

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∑
m,n,r

⟨an ∣NAam⟩≠0

∣am ⊗ an ⊗ br⟩ + ∑
m,n,s

⟨an ∣NAam⟩=0

∣am ⊗ an ⊗ bs⟩

= ∣1EB⟩,

where we used the condition that N is semicausal to obtain the third line. This finishes the proof. ◻

Remark IV.6. Theorem IV.4 can be extended to weak − ∗ continuous non-negative maps on the Banach space of bounded real sequences,
but this requires extra care and does not yield additional insight beyond the previous proof.

C. Generators of semigroups of classical semicausal non-negative maps
The main goal of this section is to establish a structure theorem for the generators of semigroups of non-negative semicausal maps. First,

recall that a (norm)-continuous semigroup {Nt}t≥0 ⊆ B(RA ⊗RB) has a generator Q ∈ B(RA ⊗RB) such that Nt = etQ. A classical result states
that Nt is non-negative for all t ≥ 0 if and only if the generator Q can be written in the form Q = Φ − K, where Φ is non-negative and K is
a diagonal matrix with respect to the canonical basis.24 A second, crucial observation is that Nt is Heisenberg B→/ A semicausal for all t ≥ 0
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if and only if Q is Heisenberg B→/ A semicausal. To see this, let us first show that the reduced maps {NA
t }t≥0

also form a norm-continuous
semigroup of non-negative maps. Since non-negativity is clear, we derive the semigroup properties (NA

0 = 𝟙A, NA
t+s = NA

t NA
s , and continuity)

from the corresponding ones of {Nt}t≥0,

NA
0 = (𝟙A ⊗ ⟨b1∣)(NA

0 ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)N0(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩) = 𝟙A,

NA
t+s = (𝟙A ⊗ ⟨b1∣)(NA

t+s ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)Nt+s(𝟙A ⊗ ∣1B⟩) = (𝟙A ⊗ ⟨b1∣)NtNs(𝟙A ⊗ ∣1B⟩)
= (𝟙A ⊗ ⟨b1∣)Nt(𝟙A ⊗ ∣1B⟩)NA

s = (𝟙A ⊗ ⟨b1∣)(𝟙A ⊗ ∣1B⟩)NA
t NA

s = NA
t NA

s ,

∥NA
t −NA

s ∥ = sup
∥x∥∞=1

∥(NA
t −NA

s )∣x⟩∥∞ = sup
∥x∥∞=1

∥((NA
t −NA

s )∣x⟩)⊗ ∣1B⟩∥
∞
= sup
∥x∥∞=1

∥(Nt −Ns)(∣x⟩⊗ ∣1B⟩)∥∞

≤ sup
∥y∥∞=1

∥(Nt −Ns)∣y⟩∥ = ∥Nt −Ns∥.

Thus, we conclude that NA
t = etQA

for some generator QA ∈ B(RA). We further have

Q(𝟙A ⊗ ∣1B⟩) =
d
dt
∣
t=0

Nt(𝟙A ⊗ ∣1B⟩)

= d
dt
∣
t=0
(𝟙A ⊗ ∣1B⟩)NA

t

= (𝟙A ⊗ ∣1B⟩)QA.

Thus, Q is semicausal if Nt is semicausal for all t ≥ 0. Conversely, if Q is semicausal, then Nt is semicausal, since

Nt(𝟙A ⊗ ∣1B⟩) = etQ(𝟙A ⊗ ∣1B⟩)

=
∞

∑
k=0

tk

k!
Qk(𝟙A ⊗ ∣1B⟩)

=
∞

∑
k=0

tk

k!
(𝟙A ⊗ ∣1B⟩)(QA)k

= (𝟙A ⊗ ∣1B⟩)etQA

.

Therefore, our task reduces to characterizing semicausal maps of the form Q = Φ − K. Let us first remark that it is straight-forward to check
(numerically) whether a given map satisfies these two conditions: We just need to check for non-negativity of the off-diagonal elements
and whether (𝟙A ⊗ ⟨b∣)Q∣ai ⊗ 1B⟩ = 0 for all ai ∈ A and all b ∈ {∣1B⟩}�. That is, semicausality can be checked in terms of ∣A∣(∣B∣ − 1) linear
equations and ∣A∣∣B∣(∣A∣∣B∣ − 1) linear inequalities. Thus, a desirable result would be a normal form for all Heisenberg B→/ A semicausal
generators Q, which allows for generating such maps rather than checking whether a given maps is of the desired form. The main result of
this section is exactly such a normal form.

To understand our normal form below, note that there are two natural ways of constructing a generator (remember that the matrix
elements are interpreted as transition rates) that does not transmit information from system B to system A. First, we can leave system A
unchanged and have transitions only on system B. The most basic form of such a map is ∣ai⟩⟨ai∣⊗ B(i) for some 1 ≤ i ≤ ∣A∣ and for some
B(i) ∈ B(RB) that is itself a valid generator of a semigroup of row-stochastic maps. That means that B(i) = Φ(i) − diag(Φ(i)∣1B⟩) for some non-
negative matrix Φ(i) ∈ B(RB). Second, if we want to act non-trivially on system A, we can make both the two parts of a generator Q = Φ − K,
the non-negative partΦ ∈ B(RA ⊗RB) and the diagonal part K ∈ B(RA ⊗RB), semicausal separately. Such a map has the formΦsc − KA ⊗ 𝟙B,
where Φsc is semicausal non-negative and KA ∈ B(RA) is diagonal. The fact that (convex) combinations of these basic building blocks already
give rise to the most general form of semicausal generators for semigroups of non-negative bounded linear maps is the content of our next
theorem, which establishes the desired normal form.

Theorem IV.7 (generators of classical semigroups of semicausal non-negative maps). A map Q ∈ B(RA ⊗RB) is the generator of a
(norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative linear maps if and only if there exist a non-negative Heisenberg
B→/ A semicausal map Φsc ∈ B(RA ⊗RB), a diagonal map KA ∈ B(RA ⊗RB), and linear maps B(i) ∈ B(RB) that generate (norm-continuous)
semigroups of row-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = Φsc − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, Φsc can be chosen “block-off-diagonal,” i.e., Φsc = ∑i≠j∣ai⟩⟨aj∣⊗Φ(ij)sc for some collection of (non-negative) maps Φ(ij)sc ∈ B(RB).
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Proof. It is straight-forward to check that a generator Q of the given form has non-negative off-diagonal entries with respect to the
standard basis and is Heisenberg B→/ A semicausal. By the above discussion, this means that such a generator indeed gives rise to a semigroup
of semicausal non-negative maps.

We prove the converse. Suppose Q is the generator of a semigroup of non-negative linear maps. Then, we can expand it as
Q = ∑∣A∣i, j=1∣ai⟩⟨aj∣⊗Q(ij), where the operators Q(ij) ∈ B(RB) are non-negative for i ≠ j and of the form of a generator of a non-negative
semigroup (i.e., non-negative minus diagonal) for i = j. This decomposition, together with semicausality, implies that for all 1 ≤ i, j ≤ ∣A∣,

Q(ij)∣1B⟩ = (⟨ai∣⊗ 1B)Q(∣aj⟩⊗ ∣1B⟩) = ⟨ai∣QA∣aj⟩ ⋅ ∣1B⟩.

In other words, ∣1B⟩ is an eigenvector of every Q(ij), with the corresponding eigenvalue λ(ij) = ⟨ai∣QA∣aj⟩. Hence, if we define B(i) ∈ B(RB)
as B(i) ∶= Q(ii) − λ(ii)𝟙B, then Bi generates a semigroup of non-negative maps (since Q(ij) does and λ(ii)𝟙B is diagonal) and satisfies (by
construction) B(i)∣1B⟩ = 0. Hence, B(i) generates a semigroup of row-stochastic maps.

With this notation, we can rewrite Q as

Q =∑
i≠j
∣ai⟩⟨aj∣⊗Q(ij)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:Φsc

−
∣A∣

∑
i=1
− λ(ii)∣ai⟩⟨ai∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:KA

⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

Note that Φsc is semicausal, since it can be written as the linear combination of the three semicausal maps Q, KA ⊗ 𝟙B, and ∑ i∣ai⟩⟨ai∣⊗ B(i).
Thus, we have reached the claimed form. ◻

By applying Theorem IV.4, we can further expand the Φ part.

Corollary IV.8. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Heisenberg B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) row-stochastic matrix U ∈ B(RB;RE ⊗RB), a non-negative
matrix A ∈ B(RA ⊗RE;RA), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
(row-)stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (A⊗ 𝟙B)(𝟙A ⊗U) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

One should also note that with the notation of Corollary IV.8, the reduced map is given by QA = (A(𝟙A ⊗ ∣1B⟩)) − KA. Hence, the reduced
dynamics only depends on the operators A and KA. Further note that if we require the semigroup to consist of non-negative semicausal
maps that are also row-stochastic, then we obtain the additional requirement that KA∣1A⟩ = A∣1AE⟩, which completely determines KA. For
completeness and later use, we write down the form of the generators non-negative semigroups that are Schrödinger B→/ A semicausal.

Corollary IV.9. A map Q ∈ B(RA ⊗RB) is the generator of a (norm-continuous) semigroup of Schrödinger B→/ A semicausal non-negative
linear maps if and only if there exist a (finite) alphabet E, a (non-negative) column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative
matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix KA ∈ B(RA ⊗RB), and maps B(i) ∈ B(RB) that generate (norm-continuous) semigroups of
column-stochastic maps, for 1 ≤ i ≤ ∣A∣, such that

Q = (𝟙A ⊗U)(A⊗ 𝟙B) − KA ⊗ 𝟙B +
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ B(i).

In that case, we can choose ∣E∣ = ∣A∣2.

Similar to the row-stochastic case, B(i) generates a semigroup of column-stochastic maps if and only if B(i) = Φ(i) − diag(⟨1B∣Φ(i)) for
some non-negative matrix Φ(i) ∈ B(RB).

D. Generators of semigroups of classical superchannels
We finally turn to semigroups of classical superchannels, that is, a collection of classical superchannels {Ŝt}t≥0

, such that Ŝ0 = id,
Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous (with respect to any and, thus, all of the equivalent norms in finite dimensions). To formu-
late a technically slightly stronger result, we call a linear map Ŝ a preselecting supermap if CC

A;B ○ Ŝ ○ (CC
A;B)−1 is a non-negative Schrödinger
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B→/ A semicausal map. Theorem IV.3 then tells us that a superchannel is a special preselecting supermap. The result of this section is the
following theorem:

Theorem IV.10. A linear map Q̂ : B(RA;RB)→ B(RA;RB) generates a semigroup of classical preselecting supermaps if and only if there
exist a (finite) alphabet E, a column-stochastic matrix U ∈ B(RE ⊗RB;RB), a non-negative matrix A ∈ B(RA;RA ⊗RE), a diagonal matrix
KA ∈ B(RA), and a collection of generators of semigroups of column-stochastic matrices B(i) ∈ B(RB) such that

Q̂(M) = U(M ⊗ 𝟙E)A −MKA +
∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣. (5)

Furthermore, Q̂ generates a semigroup of classical superchannels if and only if Q̂ generates a semigroup of preselecting supermaps and ⟨ai∣KAai⟩
= ⟨1AE∣Aai⟩ for all 1 ≤ i ≤ ∣A∣. In this case, Q̂ is given by

Q̂(M) = U(M ⊗ 𝟙E)A −
∣A∣

∑
i=1
⟨1AE∣Aai⟩M∣ai⟩⟨ai∣ +

∣A∣

∑
i=1

B(i)M∣ai⟩⟨ai∣. (6)

Proof. The main idea is to relate the generators of superchannels to those of semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem IV.3 for superchannels. For a generator Q̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

Q̂ = d
dt
∣
t=0

Ŝt = (CC
A;B)−1 d

dt
∣
t=0
[CC

A;B ○ Ŝt ○ (CC
A;B)−1]CC

A;B.

Thus, Q̂ generates a semigroup of preselecting supermaps if and only if Q̂ can be written as Q̂ = (CC
A;B)−1 ○Q ○ CC

A;B for some generator Q of a
semigroup of non-negative Schrödinger B→/ A semicausal maps. Thus, to prove the first part of our theorem, we simply take the normal form
in Corollary IV.9 and compute the similarity transformation above.

For ∣Ω⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ RA ⊗RA and an operator XA ∈ B(RA), the well-known identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A ⊗ XT
A)∣Ω⟩ can be proven

by a direct calculation. Similarly, it is easy to show that for XA ∈ B(RA;RA ⊗RE), the slightly more general identity (XA ⊗ 𝟙A)∣Ω⟩ = (𝟙A

⊗ FA;EXTA
A )∣Ω⟩ holds, where FA;E is the flip operator that exchanges systems A and E. We use these two identities in the following calculations.

For Ã ∈ B(RA;RA ⊗RE) and Ũ ∈ B(RE ⊗RB;RB), we have, for any M ∈ B(RA;RB),

(CC
A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)CC

A;B(M) = (CC
A;B)−1(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(Ã⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)))(𝟙A ⊗ FA;EÃ TA)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ (Ũ(𝟙E ⊗M)FA;EÃ TA))∣Ω⟩

= (CC
A;B)−1

C
C
A;B(Ũ(𝟙E ⊗M)FA;EÃ TA)

= Ũ(𝟙E ⊗M)FA;EÃ TA

= (ŨFB;E)(M ⊗ 𝟙E)Ã TA.

For K̃A ∈ B(RA), we get, for any M ∈ B(RA;RB),

(CC
A;B)−1(KA ⊗ 𝟙B)CC

A;B(M) = (CC
A;B)−1(K̃A ⊗ 𝟙B)(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗M)(K̃A ⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗M)(𝟙A ⊗ K̃T

A)∣Ω⟩
= (CC

A;B)−1(𝟙A ⊗MK̃T
A)∣Ω⟩

= (CC
A;B)−1

C
C
A;B(MK̃T

A)
=MK̃T

A.

Finally, for an operator B̃ (i) ∈ B(RB) and for any 1 ≤ i ≤ ∣A∣, we have, for any M ∈ B(RA;RB),
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(CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))CC

A;B(M) = (CC
A;B)−1(∣ai⟩⟨ai∣⊗ B(i))(𝟙A ⊗M)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(∣ai⟩⟨ai∣⊗ 𝟙A)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M)(𝟙A ⊗ ∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1(𝟙A ⊗ B(i)M∣ai⟩⟨ai∣)∣Ω⟩

= (CC
A;B)−1

C
C
A;B(B(i)M∣ai⟩⟨ai∣)

= B(i)M∣ai⟩⟨ai∣.

Applying the results of these calculations term by term to the normal form in Corollary IV.9 yields the first claim, where we defined A = Ã TA ,
U = ŨFB;E, KA = K̃T

A, and B(i) = B̃ (i).
If the semigroup {Ŝt}t≥0 consists of superchannels, that is, preselecting maps such that (by Theorem IV.3) the reduced maps SA

t of the
semigroup of semicausal maps St ∶= CC

A;B ○ Ŝt ○ (CC
A;B)−1 (which are defined by the requirement that (𝟙A ⊗ ∣1B⟩)St = SA

t (𝟙A ⊗ ∣1B⟩)) satisfy
SA

t ∣1A⟩ = ∣1A⟩, then differentiating this relation yields

QA∣1A⟩ =
d
dt
∣
t=0

SA
t ∣1A⟩ =

d
dt
∣
t=0
∣1A⟩ = 0.

We conclude that Q̂ generates a semigroup of superchannels if and only if Q generates a semigroup of semicausal maps and QA∣1A⟩ = 0. We
obtain directly from Corollary IV.9 that QA = (𝟙A ⊗ ∣1E⟩)Ã − K̃A. It follows that

⟨ai1E∣Ã1A⟩ = ⟨ai1E∣ATA 1A⟩ = ⟨1AE∣Aai⟩ = ⟨ai∣K̃A1A⟩ = ⟨ai∣KAai⟩, (7)

where we used that K̃A = KA is diagonal in the last step. This is the condition claimed in the theorem. Finally, (6) is obtained by combining
this condition with (5). ◻

V. THE QUANTUM CASE
We now turn to the quantum case. As introduced and described in more detail in Ref. 1, a quantum superchannel is a map that maps

quantum channels to quantum channels while preserving the probabilistic structure of the theory. To achieve the latter, it is usually required
that a quantum superchannel is a linear map and that probabilistic transformations, i.e., trace non-increasing CP-maps, should be mapped
to probabilistic transformations even if we add an innocent bystander. When dealing with superchannels, we will restrict ourselves to the
finite-dimensional case and leave the infinite-dimensional case25 for future work. We follow1 and define superchannels as follows:

Definition V.1 (superchannels). A linear map Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) is called a superchannel if for all n ∈ N the
map Ŝn = idB(S1(Cn)) ⊗ Ŝ satisfies that Ŝn(T) is a probabilistic transformation whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a probabilistic
transformation and that Ŝn(T) is a quantum channel whenever T ∈ B(S1(Cn ⊗HA);S1(Cn ⊗HB)) is a quantum channel.

A related concept is that of a semicausal quantum channel, which is a quantum channel on a bipartite space HA ⊗HB such that no
communication from B to A is allowed. Following Refs 2 and 10, we formalize this as follows:

Definition V.2 (semicausality). A bounded linear map L∗ : S1(HA ⊗HB)→ S1(HA ⊗HB) is called Schrödinger B→/ A semicausal if
there exists LA

∗ : S1(HA)→ S1(HA) such that trB[L∗(ρ)] = LA
∗(trB[ρ]), for all ρ ∈ S1(HA ⊗HB). Similarly, L : B(HA ⊗HB)→ B(HA ⊗HB)

is called Heisenberg B→/ A semicausal if there exists LA : B(HA)→ B(HA) such that L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B for all XA ∈ B(HA).

The map L∗ is Schrödinger B→/ A semicausal if and only if the dual map L ∶= L∗∗ is normal and Heisenberg B→/ A semicausal. We will
often omit the Schrödinger or Heisenberg attribute if it is clear from the context. This section is structured analogously to the section about
the classical case. In particular, we will start by reminding the reader of the connection between semicausal maps and superchannels as well
as the characterization of semicausal CP-maps in terms of semilocalizable maps, as schematically shown in Fig. 4. We then turn to the study
of the generators of semigroups of semicausal CP-maps and finally use the correspondence between superchannels and semicausal channels
to obtain the corresponding results of the generators of semigroups of superchannels.

A. Superchannels, semicausal channels, and semilocalizable channels
We first state the characterization of superchannels in terms of semicausal maps, obtained in Ref. 1.

Theorem V.3. For finite-dimensional spaces HA and HB, let Ŝ : B(S1(HA);S1(HB))→ B(S1(HA);S1(HB)) be a linear map and define
S = CA;B ○ Ŝ ○ C−1

A;B. Then, Ŝ is a superchannel if and only if S is CP and Schrödinger B→/ A semicausal such that the reduced map SA satisfies
SA(𝟙A) = 𝟙A.
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FIG. 4. Visualization of the relation between the notions of superchannels, semicausal maps, and semilocalizable maps. Superchannels and semicausal maps are related
via a similarity transform with the Choi–Jamiołkowski isomorphism. Schrödinger B→/ A semicausal maps are those maps whose output, after tracing out system 4, does not
depend on input 2 (ρ or ρ̃). Semicausal maps are precisely those maps that allow for one-way communication only. This is called semilocalizability.

The next result is due to Eggeling, Schlingemann, and Werner,10 who proved it in the finite-dimensional setting. The following form,
which is a generalization of Ref. 10 to the infinite-dimensional case and which has previously been shown in (Ref. 26, Theorem 4), can be
obtained from our main result (Theorem V.6) by setting K = 0.

Theorem V.4. A map Φ ∈ CPσ(HA ⊗HB) is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a
unitary operator U ∈ U(HE ⊗HB;HB ⊗HE), and an arbitrary operator A ∈ B(HA;HA ⊗HE) such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B). (8)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

We call a normal CP-map Φ ∈ CPσ(HA ⊗HB) semilocalizable if its Stinespring dilation can be written in the form of Eq. (8). With that
nomenclature, the above theorem is exactly the quantum analog of Theorem IV.4.

B. Generators of semigroups of semicausal CP maps
The main goal of this section is to establish a structure theorem for the generators of semigroups of semicausal CP-maps, the proof-

structure of which is highlighted in Fig. 5. This is our main technical contribution. To get started, recall that a generator L ∈ B(B(HA ⊗HB))
generates a norm-continuous semigroup {Tt}t≥0 ⊆ CPσ(HA ⊗HB) of CP-maps (i.e., Tt = etL) if and only if L can be written in GKLS-form,
i.e., if and only if there exist Φ ∈ CPσ(HA ⊗HB) and K ∈ B(HA ⊗HB) such that

L(X) = Φ(X) − K†X − XK, X ∈ B(HA ⊗HB). (9)

As in the classical case, we continue by showing that Tt is Heisenberg B→/ A semicausal for all t ≥ 0 if and only if L is Heisenberg B→/ A
semicausal. We start by showing that the family of reduced maps {TA

t }t≥0 also forms a norm-continuous semigroup of normal CP-maps. That
TA

t is normal and CP follows, since for any density operator ρB ∈ S1(HB), we have

TA
t = trρB ○ Tt ○D,

where D ∈ CPσ(HA;HA ⊗HB) is defined by D(XA) = XA ⊗ 𝟙B. Hence, TA
t is a normal CP-map as composition of normal CP-maps. It remains

to check the semigroup properties (TA
0 = idA, TA

t+s = TA
t TA

s , and norm-continuity). We have

TA
0 (XA) = trρB[T0(XA ⊗ 𝟙B)] = trρB[XA ⊗ 𝟙B] = XA,

TA
t+s(XA) = trρB[Tt+s(XA ⊗ 𝟙B)] = trρB[Tt(Ts(XA ⊗ 𝟙B))] = trρB[Tt(TA

s (XA)⊗ 𝟙B)] = trρB[(TA
t TA

s (XA))⊗ 𝟙B] = TA
t TA

s (XA),
∥TA

t − TA
s ∥ = sup

∥XA∥B(HA)=1
∥TA

t (XA) − TA
s (XA)∥B(HA)

= sup
∥XA∥B(HA)=1

∥(TA
t (XA) − TA

s (XA))⊗ 𝟙B∥B(HA⊗HB)

= sup
∥XA∥B(HA)=1

∥Tt(XA ⊗ 𝟙B) − Ts(XA ⊗ 𝟙B)∥B(HA⊗HB)
≤ sup
∥X∥B(HA⊗HB)=1

∥Tt(X) − Ts(X)∥B(HA⊗HB)
= ∥Tt − Ts∥.
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FIG. 5. Overview of the proof structure leading to the normal form for semicausal Lindblad generators (Theorem V.6). We first observe that semicausality of the CP semigroup
is equivalent to semicausality of the corresponding GKLS generator L. The insight is then that we can construct a CP-map Φ0 that is closely related to the CP-part of L
and that is semicausal (Lemma V.13). From the semilocalizable form of Φ0, we then obtain an explicit form for the CP-part of L. This, together with the observation that a
semicausal non-CP part has to have a local form, yields the desired normal form.

Thus, we conclude that TA
t = etLA

for some generator LA ∈ B(B(HA)) of normal CP-maps. We further have

L(XA ⊗ 𝟙B) =
d
dt
∣
t=0

Tt(XA ⊗ 𝟙B) =
d
dt
∣
t=0

TA
t (XA)⊗ 𝟙B = LA(XA)⊗ 𝟙B.

Thus, L is semicausal if Tt is semicausal for all t ≥ 0. Conversely, if L is semicausal, then Tt is semicausal for all t ≥ 0, since

Tt(XA ⊗ 𝟙B) = etL(XA ⊗ 𝟙B)

=
∞

∑
k=0

tk

k!
Lk(XA ⊗ 𝟙B)

=
∞

∑
k=0

tk

k!
(LA)k(XA)⊗ 𝟙B

= etLA

(XA)⊗ 𝟙B.

Therefore, our task reduces to characterizing semicausal maps in the GKLS-form, i.e., we want to determine the corresponding Φ and K. Our
main result (Theorem V.6) is a normal form, which allows us to list all semicausal generators L.

Before we delve into this, we treat the inverse question: Given some L ∈ B(B(HA ⊗HB)), is it a semicausal generator? A computa-
tionally efficiently chackable criterion can be constructed via the Choi–Jamiołkowski isomorphism. If HA and HB are finite-dimensional
and L ∈ B(B(HA ⊗HB)) is given, then we define L = CAB;AB(L) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where the Choi–Jamiołkowski isomor-
phism is defined with respect to the orthogonal bases {∣ai⟩}dim(H A)

i=1 and {∣bj⟩}dim(H B)

j=1 of HA and HB, respectively, and where the spaces
HA1 = HA2 = HA and HB1 = HB2 = HB are introduced for notational convenience. Furthermore, define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) to
be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩.

Lemma V.5. A linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Heisenberg B→/ A semicausal CP-maps if
and only if

● L is self-adjoint and P�LP� ≥ 0, and
● trB1[L] = LA ⊗ 𝟙B2 for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).

The generated semigroup is unital (i.e., Tt(𝟙AB) = 𝟙AB for t ≥ 0) if and only if trA1[LA] = 0.
Furthermore, a linear map L : B(HA ⊗HB)→ B(HA ⊗HB) is the generator of a semigroup of Schrödinger B→/ A semicausal CP-maps if

and only if
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● L is self-adjoint and P�LP� ≥ 0 and
● (FA1 ;B1 ⊗ 𝟙A2)trB2[L](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ LA for some (then necessarily self-adjoint) LA ∈ B(HA1 ⊗HA2).

The generated semigroup is trace-preserving (i.e., tr[Tt(ρ)] = tr[ρ] for ρ ∈ B(HA ⊗HB) and t ≥ 0) if and only if trA2[LA] = 0.

Thus, checking whether a map L is the generator of a semigroup of semicausal CP-maps reduces to checking several semidefinite
constraints. In particular, the problem to optimize over all semicausal generators is a semidefinite program.

Proof. It is known (see, e.g., the appendix in Ref. 21) that L generates a semigroup of CP-maps if and only if L is self-adjoint and
P�LP� ≥ 0. This criterion goes by the name of conditional complete positivity.22 Thus, it remains to translate the other criteria to the level of
Choi–Jamiołkowski operators. If L is Heisenberg B→/ A semicausal, then

trB1[L] = trB1[(idA1B1 ⊗ L)(∣Ω⟩⟨Ω∣)]
= (idA1 ⊗ L)(∣ΩA⟩⟨ΩA∣⊗ 𝟙B2)
= (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣)⊗ 𝟙B2

= LA ⊗ 𝟙B2 ,

where we defined ∣ΩA⟩ = ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and LA = (idA1 ⊗ LA)(∣ΩA⟩⟨ΩA∣). Conversely, if trB1[L] = LA ⊗ 𝟙B2 , define LA

= C−1
A;A(LA). Then,

L(XA ⊗ 𝟙B1) = trA1B1[((XT
A ⊗ 𝟙B1)⊗ 𝟙A2B2)L]

= trA1[(XT
A ⊗ 𝟙A2B2)trB1[L]]

= trA1[(XT
A ⊗ 𝟙A2B2)(LA ⊗ 𝟙B2)]

= trA1[(XT
A ⊗ 𝟙A2)LA]⊗ 𝟙B2

= C−1
A;A(LA)(XA)⊗ 𝟙B2

= LA(XA)⊗ 𝟙B.

Finally, it is known that a semigroup of CP-maps is unital if and only if L(𝟙A2B2) = 0. However, this is equivalent to our criterion, since a
simple calculation shows that

trA1B1[L] = L(𝟙A2B2).

This finishes the proof for the Heisenberg picture case. The Schrödinger case can be proven along similar lines or be obtained directly from
the Heisenberg case via the identity CAB;AB(L∗) = FA1B1 ;A2B2[CAB;AB(L)]TFA1B1 ;A2B2 . ◻

Let us now return to the main goal of this section: finding a normal form for semicausal generators in GKLS-form. We motivate (and
interpret) our normal form as the “quantization” of the normal form for generators of classical semicausal semigroups (Theorem IV.7). In the
classical case, the normal form had two building blocks: an operator of the form Q1 = Φsc − KA ⊗ 𝟙B, whereΦsc is non-negative and semicausal,
and an operator of the form Q2 = ∑∣A∣i=1∣ai⟩⟨ai∣⊗ B(i), where the B(i)’s are generators of row-stochastic maps, (i.e., B(i) generates a non-negative
semigroup and B(i)∣1B⟩ = 0). It is straightforward to guess a quantum analog for the first building block: a generator L1 ∈ B(B(HA ⊗HB))
defined by

L1(X) = Φsc(X) − (KA ⊗ 𝟙B)†X − X(KA ⊗ 𝟙B), (10)

where Φsc ∈ CPσ(HA ⊗HB), given in the Stinespring form by Φsc(X) = V†
sc(X ⊗ 𝟙E)Vsc, is semicausal. One readily verifies that L1 defines a

semicausal generator. To “quantize” the second building block, note that Q2 does not induce any change on system A. Indeed, since

etQ2(𝟙A ⊗ ∣1B⟩) =
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ (etB(i)

∣1B⟩) =
∣A∣

∑
i=1
∣ai⟩⟨ai∣⊗ ∣1B⟩ = 𝟙A ⊗ ∣1B⟩, (11)

the generated semigroup looks like the identity on system A. In the quantum case, semigroups that do not induce any change on system A are
more restricted, since any information-gain about system A inevitably disturbs system A—so there can be no conditioning as in the classical
case. Indeed, if one requires that Tt ∈ CPσ(HA ⊗HB) satisfies the quantum analog of Eq. (11), namely,
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Tt(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (12)

for all XA ∈ B(HA), then Tt = idA ⊗Θt for some unital map Θt ∈ CPσ(HB) (see Appendix B for a proof). Differentiation of Tt = idA ⊗Θt at
t = 0 now implies that the generator of a semigroup of CP-maps that satisfy (12) are of the form idA ⊗ B̂, where B̂ generates a semigroup of
unital CP-maps [i.e., B̂(𝟙B) = 0]. To conclude, the two building blocks are operators of the form of L1 in Eq. (10) and maps L2 of the form

L2(X) = (𝟙A ⊗ B)†(X ⊗ 𝟙E)(𝟙A ⊗ B) − 1
2
{𝟙A ⊗ B†B , X} + i[𝟙A ⊗HB , X],

with B ∈ B(HB;HB ⊗HE) and a self-adjoint HB ∈ B(HB).
In the classical case, we obtained the normal form (Theorem IV.7) by taking a convex combination of the basic building blocks. This

corresponds to probabilistically choosing one or the other. In quantum theory, there is a more general concept: superposition. To account for
this, we construct our normal form not as a convex combination of the maps L1 and L2 but by taking a linear combination (superposition) of
the Stinespring operators V sc and 𝟙A ⊗ B as the Stinespring operator of the CP-part of the GKLS-form (note here that the coefficients can be
absorbed into V sc and 𝟙A ⊗ B, respectively). This means that if L is given by Eq. (9) withΦ(X) = V†(X ⊗ 𝟙E)V , then we take V = Vsc + 𝟙A ⊗ B.
It turns out that K can then be chosen such that L becomes semicausal. Also note that we can further decompose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), as
in Theorem V.4.

Our main technical result is that the heuristics employed in the “quantization” procedure above is sound, i.e., that the generators
constructed in that way are the only semicausal generators in the GKLS-form.

Theorem V.6. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) = Φ(X) − K†X − XK, with Φ ∈ CPσ(HA ⊗HB) and K
∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semicausal if and only if there exist a (separable) Hilbert space HE, a unitary U ∈ U(HE
⊗HB;HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary operators A ∈ B(HA;HA ⊗HE), B ∈ B(HB;HB ⊗HE), and KA ∈ B(HA)
such that

Φ(X) = V†(X ⊗ 𝟙E)V , with V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B), (13a)

K = (𝟙A ⊗ B†U)(A⊗ 𝟙B) +
1
2
𝟙A ⊗ B†B + KA ⊗ 𝟙B + 𝟙A ⊗ iHB. (13b)

If HA and HB are finite-dimensional, with dimensions dA and dB, then HE can be chosen such that dim(HE) ≤ (dAdB)2.

Remark V.7. Note that the characterization in Theorem V.6 is for generators of Heisenberg B→/ A semicausal dynamical semigroups. There
are two special cases of interest: First, if we want the dynamical semigroup to be unital, then we need to further impose L(𝟙A ⊗ 𝟙B) = 0 in the
normal form above, which is equivalent to A†A = KA + K†

A—a constraint that also appears in the usual Linblad form. Second, if the dynamical
semigroup corresponds (in the sense of Theorem V.3) to a semigroup of superchannels, then we additionally require that the reduced generator
satisfies LA

∗(𝟙A) = 0. We will use this in the “translation step” in Theorem V.18.

Remark V.8. In the finite-dimensional case, the Proof of Theorem V.6 is constructive. In Appendix C, we discuss in detail how to obtain the
operators A, U, KA, B, and HB starting from the conditions in Lemma V.5.

The remainder of this section is devoted to the Proof of Theorem V.6, whose structure is highlighted in Fig. 5.
We begin with a technical observation about certain Haar integrals.

Lemma V.9. Let Hn be an n-dimensional subspace of HA with orthogonal projection Pn ∈ B(HA), and let V ∈ B(HA ⊗HB;HA ⊗HC).
Then,

∫
UP(Hn)

(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU = Pn ⊗
1
n

trPn[V], (14)

where the integration is with respect to the Haar measure on UP(Hn). It follows that ∥Pn ⊗ 1
n trPn[V]∥ ≤ ∥V∥. Furthermore, if H is separable

infinite-dimensional, with orthonormal basis {∣ei⟩}i∈N and Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}, then there exist B ∈ B(HB;HC) and an ultraweakly
convergent subsequence of (Pn ⊗ 1

n trPn[V])n∈N
with the limit 𝟙A ⊗ B.

Proof. To calculate the integral, we employ the Weingarten formula,27–29 which for the relevant case reads

∫
UP(Hn)

Ui jU†
j ′ i′ dU = 1

n
δi i′δj j ′ ,
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where U ij = ⟨ fi∣Uf j⟩ and U†
j ′ i′ = ⟨ fj ′ ∣U† fi′⟩ for some orthonormal basis {∣ f1⟩, ∣ f2⟩, . . . , ∣ fn⟩} of Hn. A basis expansion then yields

∫
UP(Hn)

(U ⊗ 𝟙C)V (U† ⊗ 𝟙B) dU =
n

∑
i,j,i′ ,j ′=1

[∣ fi⟩⟨ fi′ ∣⊗ ((⟨ fj∣⊗ 𝟙C)V (∣ fj ′⟩⊗ 𝟙B))∫
UP(Hn)

Ui jU†
j ′ i′ dU] = Pn ⊗

1
n

trPn[V].

For the second claim, we note that a standard estimate of the integral yields ∥ 1
n trPn[V]∥ = ∥Pn ⊗ 1

n trPn[V]∥ ≤ ∥V∥. Thus, the sequence
( 1

n trPn[V])n∈N
is bounded and hence, by Banach–Alaoglu, has an ultraweakly convergent subsequence, whose limit we call B. The claim

then follows by observing that under the separability assumption, (Pn)n∈N converges ultraweakly to 𝟙A and that the tensor product of two
ultraweakly convergent sequences converges ultraweakly. ◻

As a first step toward our main result, we provide a characterization of those semicausal Lindblad generators that can be written with the
vanishing CP part.

Lemma V.10. Let L : B(HA ⊗HB)→ B(HA ⊗HB), L(X) ∶= −K†X − XK, with K ∈ B(HA ⊗HB). Then, L is Heisenberg B→/ A semi-
causal if and only if there exist KA ∈ B(HA) and a self-adjoint HB ∈ B(HB), with K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB.

Proof. If K = KA ⊗ 𝟙B + 𝟙A ⊗ iHB, then L(XA ⊗ 𝟙B) = (−K†
AXA − KAXA)⊗ 𝟙B + XA ⊗ (iHB − iHB) = (−K†

AXA − XAKA)⊗ 𝟙B. Hence, L
is semicausal. Conversely, suppose L is semicausal with L(XA ⊗ 𝟙B) = LA(XA)⊗ 𝟙B. Let Hn be an n-dimensional subspace of HA and
U∈ UP(Hn). Then,

(L(U ⊗ 𝟙B))(U† ⊗ 𝟙B) = −K†(Pn ⊗ 𝟙B) − (U ⊗ 𝟙B)K(U† ⊗ 𝟙B) = (LA(U)U†)⊗ 𝟙B,

where Pn ∈ B(HA) is the orthogonal projection onto Hn. We integrate both sides with respect to the Haar measure on UP(Hn). Lemma V.9
and some rearrangement and taking the conjugate yields

(Pn ⊗ 𝟙B)K = −Pn ⊗
1
n

trPn[K†] − LA
n ⊗ 𝟙B (15)

for some operator LA
n ∈ B(HA). If HA is finite-dimensional, we can take Hn = HA so that Pn = 𝟙A. Hence, K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B, with

B = 1
n trA[K†] and K̃A = LA

n . If HA is separable infinite-dimensional, we obtain the same result via a limiting procedure n→∞ as follows:
Let {∣ei⟩}i∈N be an orthonormal basis of HA and set Hn = span{∣e1⟩, ∣e2⟩, . . . , ∣en⟩}. Then, the second part of Lemma V.9 allows us to pass to
a subsequence of (Pn ⊗ 1

n trPn[K†])
n∈N

that converges ultraweakly to a limit 𝟙A ⊗ B. The corresponding subsequence of ((Pn ⊗ 𝟙B)K)n∈N

converges ultraweakly to K, and hence, that subsequence of (LA
n ⊗ 𝟙B)n∈N

converges ultraweakly to a limit K̃A ⊗ 𝟙B. That is, we get
K = −K̃A ⊗ 𝟙B − 𝟙A ⊗ B. Therefore,

0 = L(XA ⊗ 𝟙B) − L(XA ⊗ 𝟙B) = (LA(XA) − K̃†
AXA − XAK̃A)⊗ 𝟙B − XA ⊗ (B + B†),

which can only be true for all XA if B + B† is proportional to 𝟙B. Since B + B† is self-adjoint, we have B + B† = 2r𝟙B for some r ∈ R. We can
then set iHB ∶= r𝟙B − B and KA ∶= −K̃A − r𝟙 so that HB is self-adjoint and K = KA ⊗ 𝟙 + 𝟙⊗ iHB. ◻

If we had restricted our attention to Hamiltonian generators and unitary groups in finite dimensions, an analog of this lemma would
have already followed from the fact that semicausal unitaries are tensor products, which was proved in Ref. 2 (and reproved in Ref. 11).

As another technical ingredient, the following lemma establishes a closedness property of the set of semicausal maps:

Lemma V.11. Let (Vm)m∈N and (Wn)n∈N be ultraweakly convergent sequences in B(HA ⊗HB;HA ⊗HB ⊗HE), with limits V and W.
Suppose that for all m, n ∈ N, the map Φm,n : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm,n(X) = V†

m(X ⊗ 𝟙E)Wn, is Heisenberg B→/ A
semicausal. Then, the map Φ : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φ(V) = V†(X ⊗ 𝟙E)W, is also Heisenberg B→/ A semicausal.

Proof. For XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), we have that ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB), since the trace-class

operators are an ideal in the bounded operators. Hence, by definition of the ultraweak topology,

tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W] = lim

n→∞
tr[ρV†

m(XA ⊗ 𝟙B ⊗ 𝟙E)Wn] = lim
n→∞

tr[ρ (ΦA
m,n(XA)⊗ 𝟙B)].

Since tr[ρΦA
m,n(XA)⊗ 𝟙B] converges as n→∞ for every ρ ∈ S1(HA ⊗HB), the sequence (ΦA

m,n(XA)⊗ 𝟙B)n∈N
converges ultraweakly.30 We

call the limit ΦA
m(XA)⊗ 𝟙B. It is then easy to see that ΦA

m(XA), viewed as a map on B(HA), is linear and continuous. This tells us that
the map Φm : B(HA ⊗HB)→ B(HA ⊗HB), defined by Φm(X) = V†

m(X ⊗ 𝟙E)W, is semicausal for all m ∈ N. Furthermore, we have that
ρ† W†(X†

A ⊗ 𝟙B ⊗ 𝟙E) ∈ S1(HA ⊗HB ⊗HE;HA ⊗HB) for all XA ∈ B(HA) and ρ ∈ S1(HA ⊗HB), and thus,
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tr[ρV†(XA ⊗ 𝟙B ⊗ 𝟙E)W] = tr[ρ†W†(X†
A ⊗ 𝟙B ⊗ 𝟙E)V] = lim

m→∞
tr[ρ†W†(X†

A ⊗ 𝟙B ⊗ 𝟙E)Vm] = lim
m→∞

tr[ρV†
m(XA ⊗ 𝟙B ⊗ 𝟙E)W]

= lim
m→∞

tr[ρ (ΦA
m(XA)⊗ 𝟙E)].

Repeating the argument above then shows that Φ is semicausal. ◻

As a final preparatory step, we observe that, given a semicausal Lindblad generator, we can use its CP part to define a family of semicausal
CP-maps.

Lemma V.12. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB
⊗HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then the map SY ,Z : B(HA ⊗HB)→ B(HA ⊗HB), defined by

SY ,Z(X) = [V(Z ⊗ 𝟙B) − (Z ⊗ 𝟙B ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [V(Y ⊗ 𝟙B) − (Y ⊗ 𝟙B ⊗ 𝟙E)V],

is Heisenberg B→/ A semicausal for every Y , Z ∈ B(HA).

Proof. For every M ∈ B(HA ⊗HB), we define the map ΨM : B(HA ⊗HB)→ B(HA ⊗HB) by

ΨM(X) = L(M†XM) −M†L(XM) − L(M†X)M +M†L(X)M
= [(M ⊗ 𝟙E)V − VM]†(X ⊗ 𝟙E)[(M ⊗ 𝟙E)V − VM].

This map has already been used, for a different purpose, in Lindblad’s original work [Ref. 19, Eq. (5.1)]. It follows from the semicausality of L
that if we choose M =MA ⊗ 𝟙B for some MA ∈ B(HA), then ΨM is semicausal. Furthermore, a calculation shows that

1
4

3

∑
k=0

ikΨM+ikN(X) = [VN − (N ⊗ 𝟙E)V]† (X ⊗ 𝟙E) [VM − (M ⊗ 𝟙E)V].

By choosing N = Z ⊗ 𝟙B and M = Y ⊗ 𝟙B, it follows that SY ,Z is the linear combination of four semicausal maps and, hence, is itself
semicausal. ◻

We now combine this lemma with an integration over the Haar measure to obtain the key lemma in our proof.

Lemma V.13. Let L : B(HA ⊗HB)→ B(HA ⊗HB) be defined by L(X) ∶= V†(X ⊗ 𝟙E)V − K†X − XK, with V ∈ B(HA ⊗HB;HA ⊗HB ⊗
HE) and K ∈ B(HA ⊗HB). If L is Heisenberg B→/ A semicausal, then there exists B ∈ B(HB;HB ⊗HE) such that the map S : B(HA ⊗HB)
→ B(HA ⊗HB), defined by

S(X) = [V − 𝟙A ⊗ B]†(X ⊗ 𝟙E)[V − 𝟙A ⊗ B],

is also Heisenberg B→/ A semicausal.
Furthermore, if HA is finite-dimensional, then we can choose B = trA[V]/dim(HA).

Proof. Let Hn and Hm be n and m dimensional subspaces of HA with respective orthogonal projections Pn ∈ B(HA) and Pm ∈ B(HA).
Since for every U∈ UP(Hn) and W∈ UP(Hm), the map SU,W , defined in Lemma V.12, is semicausal and also the map S : B(HA ⊗HB)
→ B(HA ⊗HB), defined by

S(X) ∶= ∫
UP(Hn)

∫
UP(Hm)

(U ⊗ 𝟙B)SU,W(X)(W† ⊗ 𝟙B) dWdU,

is semicausal. Writing out the definition of SU,W yields

S(X) = [V(Pn ⊗ 𝟙B) − ∫
U P(H n)

(U ⊗ 𝟙B ⊗ 𝟙E)V(U† ⊗ 𝟙E)dU]
†
(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − ∫

UP(Hm)
(W ⊗ 𝟙B ⊗ 𝟙E)V(W† ⊗ 𝟙B)dW]

= [V(Pn ⊗ 𝟙B) − Pn ⊗
1
n

trPn[V]]
†
(X ⊗ 𝟙E)[V(Pm ⊗ 𝟙B) − Pm ⊗

1
m

trPm[V]],

where the last line was obtained by using Lemma V.9. If HA is finite-dimensional, we can choose Hn = Hm = HA so that
Pn = Pm = 𝟙A and obtain the desired result immediately. If HA is separable infinite-dimensional and {∣ei⟩}i∈N is an orthonormal basis
and Hk ∶= span{∣e1⟩, ∣e2⟩, . . . , ∣ek⟩}, then by Lemma V.9, the sequence (Pk ⊗ 1

k trPk[V])k∈N
has an ultraweakly convergent subsequence

with a limit 𝟙A ⊗ B, where B ∈ B(HB;HB ⊗HE). Furthermore, since (Pk)k∈N converges ultraweakly to 𝟙A, we have that the sequence
(V(Pk ⊗ 𝟙B) − Pk ⊗ 1

k trPk[V])k∈N
has a subsequence that converges ultraweakly to V − 𝟙A ⊗ B. Hence, by passing to subsequences, we can

apply Lemma V.11, which yields that S is semicausal. ◻
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Remark V.14. The previous two lemmas are at the heart of our result. They illustrate a (to the best of our knowledge) novel technique that
allows to characterize GKLS generators with a certain constraint if this constraint is well understood for completely positive maps. It seems useful
to develop this method more generally, but this is beyond the scope of the present work.

With these tools at hand, we can now prove our main result.

Proof (Theorem V.6). A straightforward calculation shows that L, defined via (22a) and (22b), is semicausal. To prove the converse,
note that by the Stinespring dilation theorem, there exist a separable Hilbert space H̃E and Ṽ ∈ B(HA ⊗HB;HA ⊗HB ⊗ H̃E) such that
Φ(X) = Ṽ †(X ⊗ 𝟙E)Ṽ . It is well known [see, e.g., Ref. 31 (Theorems 2.1 and 2.2)] that if HA and HB are finite-dimensional with dimen-
sions dA and dB, then H̃E can be chosen such that dim(H̃E) ≤ (dAdB)2. By Lemma V.13, there exists B̃ ∈ B(HB;HB ⊗ H̃E) such that the map
Φ0 ∈ CPσ(HA ⊗HB), defined by Φ0(X) = [Ṽ − 𝟙A ⊗ B̃]†(X ⊗ 𝟙E)[Ṽ − 𝟙A ⊗ B̃], is semicausal. We define Vsc = Ṽ − 𝟙⊗ B̃ and obtain

Φ(XA ⊗ 𝟙B) = Φ0(XA ⊗ 𝟙B) + κ†(XA ⊗ 𝟙B) + (XA ⊗ 𝟙B)κ,

where κ = (𝟙A ⊗ B̃ †)Vsc + 1
2(𝟙A ⊗ B̃ †B̃). Since L and Φ0 are semicausal, we can write L(XA ⊗ 𝟙) = LA(XA)⊗ 𝟙B and Φ0(XA ⊗ 𝟙B)

= ΦA
0 (XA)⊗ 𝟙B for all XA ∈ B(HA). Hence,

L(XA ⊗ 𝟙B) −Φ0(XA ⊗ 𝟙B) = (LA(XA) −ΦA
0 (XA))⊗ 𝟙B = −(K − κ)†(XA ⊗ 𝟙B) − (XA ⊗ 𝟙B)(K − κ). (16)

It follows that the map defined by X ↦ −(K − κ)†X − X(K − κ) is semicausal. Thus, Lemma V.10 implies that there exist KA ∈ B(HA) and a
self-adjoint HB ∈ B(HB) such that K − κ = KA ⊗ 𝟙 + 𝟙⊗ iHB.

What we have achieved so far is that Ṽ = Vsc + 𝟙⊗ B̃ and K = (𝟙A ⊗ B̃ †)Vsc + 1
2𝟙⊗ B̃ †B̃ + KA ⊗ 𝟙 + 𝟙⊗ iHB. Hence, if we can decom-

pose Vsc = (𝟙A ⊗U)(A⊗ 𝟙B), then we are basically done. However, this decomposition is given (up to details) by the equivalence between
semicausal and semilocalizable channels.10 Since the conclusion in Ref. 10 was in the finite-dimensional setting, we will repeat the argu-
ment here, showing that it goes through also for infinite-dimensional spaces while paying special attention to the dimensions of the spaces
involved. Since Φ0 ∈ CPσ(HA ⊗HB) and Φ0(XA ⊗ 𝟙B) = ΦA

0 (XA)⊗ 𝟙B, we also have ΦA
0 ∈ CPσ(HA). By the Stinespring dilation theorem

(for normal CP-maps), there exist a separable Hilbert space HF and W ∈ B(HA;HA ⊗HF) such that ΦA
0 (XA) =W†(XA ⊗ 𝟙F)W and such

that span{(XA ⊗ 𝟙F)W∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA} is dense in HA ⊗HF . The last condition is called the minimality condition. We then get

V†
sc(XA ⊗ 𝟙B ⊗ 𝟙Ẽ)Vsc = (W ⊗ 𝟙B)†(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B).

Clearly, span{(XA ⊗ 𝟙F ⊗ 𝟙B)(W ⊗ 𝟙B)∣ψ⟩∣XA ∈ B(HA), ∣ψ⟩ ∈ HA ⊗HB} is dense in HA ⊗HF ⊗HB. Thus, by minimality, there exists an
isometry Ũ ∈ B(HF ⊗HB;HB ⊗ H̃E) such that Vsc = (𝟙A ⊗ Ũ)(W ⊗ 𝟙B). In the finite-dimensional case, the fact that Ũ is an isometry then
implies that dim(HF) ≤ dim(H̃E) such that we can think of HF as a subspace of H̃E. Thus, Ũ can be extended to a unitary operator
ˆ̃U ∈ U(H̃E ⊗HB;HB ⊗ H̃E). Then, defining HE = H̃E, U = ˆ̃U, B = B̃, and A =W proves the claim in this case. In the infinite-dimensional
case, we can take HE = HF ⊕ H̃E. We can now view both H̃E ⊗HB and HF ⊗HB as closed subspaces of HE ⊗HB. Then, (Ũ (H F ⊗H B))

�

and (H F ⊗H B)� are isomorphic. Hence, Ũ can be extended to a unitary operator ˆ̃U ∈ U(HE ⊗HB;HB ⊗HE). We finish the proof by defin-
ing U = ˆ̃U, B = (𝟙B ⊗ 𝟙Ẽ→E)B̃, and A = (𝟙A ⊗ 𝟙F→E)W, where 𝟙Ẽ→E and 𝟙F→E denote the isometric embeddings of H̃E and HF into HE,
respectively. ◻

As a first consequence, we obtain the analogous theorem for semigroups of Schrödinger B→/ A semicausal CP-maps.

Corollary V.15. Let L : S1(HA ⊗HB)→ S1(HA ⊗HB) be defined by L(ρ) = ΦS(ρ) − Kρ − ρK†, where ΦS ∈ CPS(HA ⊗HB), with
ΦS(ρ) = trE[VρV†] and K ∈ B(HA ⊗HB). Then, L is Schrödinger B→/ A semicausal if and only if K, V , and HE can be chosen as in (22a)
and (22b).

As a further corollary, we translate the results above to the familiar representation in terms of jump-operators (by going from Stinespring
to Kraus).

Corollary V.16. A map L : S1(HA ⊗HB)→ S1(HA ⊗HB) generates a (trace-)norm-continuous semigroup of trace-preserving
Schrödinger B→/ A semicausal CP-maps if and only if there exist {ϕj}j ⊂ B(HA ⊗HB), {Bj}j ⊂ B(HB), HA ∈ B(HA), and HB ∈ B(HB) such
that {ϕj}j is a set of Kraus operators of a Schrödinger B→/ A semicausal CP-map and {Bj}j is a set of Kraus operators of some CP-map such that

L(ρ) = −i[HA ⊗ 𝟙B + 𝟙A ⊗HB , ρ]

+∑
j
(ϕj + 𝟙A ⊗ Bj)ρ(ϕj + 𝟙A ⊗ Bj)† −

1
2
{𝟙A ⊗ B†

j Bj + ϕ†
j ϕj , ρ} − (𝟙A ⊗ B†

j )ϕjρ − ρϕ†
j (𝟙A ⊗ Bj).
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Proof. A simple calculation by defining the Kraus operators as (𝟙AB ⊗ ∣ei⟩)V , with {∣ej⟩}j being an orthonormal basis of HE and V given
by Theorem V.6. ◻

We conclude this section about semicausal semigroups with an example that uses our normal form in full generality.

Example. We consider the scenario of two 2-level atoms that can interact according to the processes specified in Fig. 6. We can describe
this process either via a dilation (as in Theorem V.6) or via the Kraus operators (as in Corollary V.16). In the dilation picture, we introduce an
auxiliary Hilbert space HE ∶= H1 ⊗H2, where Hi is for the ith photon. Then, the process is described by V = (𝟙A ⊗U)(A⊗ 𝟙B) + (𝟙A ⊗ B),
with

A ∈ B(HA;HA ⊗HE), A = ∣0⟩⟨1∣A ⊗ ∣11⟩E,
B ∈ B(HB;HB ⊗HE), B = ∣10⟩E ⊗ ∣0⟩⟨1∣B,

U ∈ U(HE ⊗HB;HB ⊗HE), U = FE;B(𝟙H1 ⊗ Ũ),

where Ũ ∈ U(H2 ⊗HB) is determined by

Ũ∣00⟩H2B = ∣00⟩H2B, Ũ∣10⟩H2B = ∣01⟩H2B, Ũ∣11⟩H2B = ∣11⟩H2B.

The crucial feature of this example is that the CP-part of the generator (trE[V ⋅ V†]) cannot be written as a convex combination of the two
building blocks (Φsc and idA ⊗ B̂). As mentioned also in the quantization procedure before, this is a pure quantum feature and stems from the
fact that it cannot be determined if a photon arriving at the detector D1 came from B or A. Hence, the system remains in a superposition state.

We can also look at the usual representation via jump operators. This can be achieved by switching from dilations to Kraus operators.
We obtain the two jump-operators

L1 ∶= Le ⊗ La
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=:ϕ1

+ 𝟙A ⊗ Le
®
B1

, L2 ∶= Le ⊗ ∣1⟩⟨1∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:ϕ2

,

where Le = ∣0⟩⟨1∣ and La = L†
e describe emission and absorption of a photon, respectively. Thus, the usual Lindblad equation reads

dρ
dt
= (Le ⊗ La + 𝟙A ⊗ Le)ρ(Le ⊗ La + 𝟙A ⊗ Le) + (𝟙A ⊗ Le)ρ(𝟙A ⊗ Le) −

1
2
{𝟙A ⊗ L†

e Le + L†
e Le ⊗ 𝟙B , ρ}.

It is also possible and instructive to consider the reduced dynamics on system A, which can also be described by a Lindblad equation, since B
does not communicate to A (this is not true otherwise),

dρA

dt
= LeρAL†

e −
1
2
{L†

e Le , ρA},

where ρA(t) = trB[ρ(t)]. Not surprisingly (given our model), this describes an atom emitting photons.

C. Generators of semigroups of quantum superchannels
We finally turn to semigroups of quantum superchannels (on finite-dimensional spaces), that is, a collection of quantum superchannels

{Ŝt}t≥0 ⊆ B(B(B(HA);B(HB))), such that Ŝ0 = id, Ŝt+s = Ŝt Ŝs, and the map t ↦ Ŝt is continuous [with respect to any and, thus, all of the
equivalent norms on the finite-dimensional space B(B(B(HA);B(HB)))]. To formulate a technically slightly stronger result, we call a map
Ŝ ∈ B(B(B(HA);B(HB))) a preselecting supermap if CA;B ○ Ŝ ○ C−1

A;B is a Schrödinger B→/ A semicausal CP-map. Theorem V.3 then tells us
that a superchannel is a special preselecting supermap. Again, as for semicausal CP-maps, we characterize the generators of semigroups of
preselecting supermaps and superchannels in two ways: First, we answer how to determine if a given map L̂ ∈ B(B(B(HA);B(HB))) is such
a generator. Second, we provide a normal form for all generators.

The answer to the first question is really a corollary of Lemma V.5 together with Theorem V.3. To this end, define
L̂ ∶= CAB;AB(CA;B ○ L̂ ○ C−1

A;B) ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2), where we fix some orthonormal bases {∣ai⟩}dim(H A)

i=1 and {∣bj⟩}dim(H B)

j=1 of HA and

HB such that CA;B is defined with respect to {∣ai⟩}dim(H A)

i=1 and CAB;AB is defined with respect to the product of the two bases. Furthermore, we
introduced the spaces HA1 = HA2 = HA and HB1 = HB2 = HA for notational convenience. Finally, we define P� ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2)
to be the orthogonal projection onto the orthogonal complement of {∣Ω⟩}, where ∣Ω⟩ = ∑ i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩. We then have the following
lemma:

Lemma V.17. A linear map L̂ ∈ B(B(B(HA);B(HB))) generates a semigroup of quantum superchannels if and only if

● L̂ is self-adjoint and P�L̂P� ≥ 0,
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FIG. 6. Systems A and B describe 2-level systems, respectively. The allowed interactions are infinitesimally described as follows: If A is in its excited state, it can emit a
photon. Through parametric down-conversion, the photon is converted into two photons (of lower energy). One of those two photons, k1, is sent to a detector D1. The other,
k2, is sent to B. If B is in its ground state, it absorbs k2. If B is in its excited state, it cannot absorb k2, so k2 passes through B and travels to a detector D2. Additionally, in this
case, B can emit a photon, indistinguishable from k1, to D1.

● (FA1 ;B1 ⊗ 𝟙A2)trB2[L̂](FA1 ;B1 ⊗ 𝟙A2) = 𝟙B1 ⊗ L̂A for some (then necessarily self-adjoint) L̂A ∈ B(HA1 ⊗HA2), and
● trA1[L̂A] = 0.L̂ is preselecting if and only if the first two conditions hold.

Proof. Theorem V.3 tells us that {Ŝt}t≥0 forming a semigroup of superchannels is eqiuvalent to St = CA;B ○ Ŝt ○ C−1
A;B forming a semigroup

of Schrödinger B→/ A semicausal CP-maps and that the reduced map SA
t satisfies SA

t (𝟙A) = 𝟙A. By Lemma V.5, the semicausal semigroup
property is equivalent to the first two conditions in the statement. This proves the claim about preselecting L̂.

By differentiation, it follows that SA
t (𝟙A) = 𝟙A is satisfied if and only if LA, the generator of {SA

t }t≥0, satisfies LA(𝟙A) = 0. However, since
trA1[L̂A] = LA(𝟙A), the claim follows. ◻

We finally turn to a normal form for generators of semigroups of preselecting supermaps and superchannels.

Theorem V.18. A linear map L̂ : B(B(HA);B(HB))→ B(B(HA);B(HB)) generates a semigroup of hyper-preselecting supermaps if and
only if there exist a Hilbert space HE, a state σ ∈ B(HE), a unitary U ∈ U(HB ⊗HE), a self-adjoint operator HB ∈ B(HB), and arbitrary opera-
tors A ∈ B(HA ⊗HE), B ∈ B(HB ⊗HE), and KA ∈ B(HA) such that L̂ acts on T ∈ B(B(HA);B(HB)) as L̂(T) = Φ̂(T) − κ̂L(T) − κ̂R(T) with

Φ̂(T)(ρ) = trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]

+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†],
(17)

κ̂L(T)(ρ) = trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] +
1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ), (18a)

κ̂R(T)(ρ) = trE[(T ⊗ idE)((ρ⊗ σ)A†) U†B] + 1
2

trE[(T ⊗ idE)(ρ⊗ σ)B†B] + T(ρK†
A) − T(ρ) iHB. (18b)

We can choose σ to be pure and HE with dim(HE) ≤ (dAdB)2, where dA and dB are the dimensions of HA and HB, respectively. Furthermore, L̂
generates a semigroup of superchannels if and only if L̂ generates a semigroup of preselecting supermaps and trσ[A†A] = KA + K†

A. In that case,
we can split L̂ into a dissipative part D̂ and a “Hamiltonian” part Ĥ, i.e., a part that generates a (semi-)group of invertible superchannels whose
inverses are superchannels as well. We have L̂(T) = D̂(T) + Ĥ(T), with

D̂(T)(ρ) = trE[D̂ ′(T)(ρ)] and Ĥ(T)(ρ) = −i[HB , T(ρ)] − iT([HA , ρ]),

where HA is the imaginary part of KA, where
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D̂ ′(T)(ρ) = U(T ⊗ idE)(A(ρ⊗ σ)A†)U† − 1
2
(T ⊗ idE)({A†A , ρ⊗ σ}) (19a)

+ B(T ⊗ idE)(ρ⊗ σ)B† − 1
2
{B†B , (T ⊗ idE)(ρ⊗ σ)} (19b)

+ [U(T ⊗ idE)(A(ρ⊗ σ)) , B†] + [B , (T ⊗ idE)((ρ⊗ σ)A†)U†] (19c)

and where [⋅, ⋅] and {⋅, ⋅} denote the commutator and anticommutator, respectively.

Remark V.19. Similar to Theorem V.6, the Proof of Theorem V.18 is constructive. In Appendix D, we discuss in detail how to obtain the
operators A, U, KA, B, HA, and HB starting from the conditions in Theorem V.17.

As in the classical case, the proof strategy is to use the relation between superchannels and semicausal channels and Theorem V.6. As
this translation process is more involved than in the classical case, we need two auxiliary lemmas.

Lemma V.20. Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)], (20)

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V
†
R], (21)

with VL = LBFB;C, VR = RBFB;C, and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻

Lemma V.21. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].

Proof. The proof is a direct calculation. We present it in detail in Appendix A. ◻

We are finally ready to prove Theorem V.18

Proof (Theorem V.18). The idea is to relate the generators of superchannels to semicausal maps. This relation is given by definition for
preselecting supermaps and by Theorem V.3 for superchannels. For a generator L̂ of a semigroup of preselecting supermaps {Ŝt}t≥0, we have

L̂ = C−1
A;B ○

d
dt
∣
t=0
[CA;B ○ Ŝt ○ C−1

A;B] ○ CA;B.

Thus, L̂ generates a semigroup of preselecting supermaps if and only if L̂ can be written as L̂ = C−1
A;B ○ L ○ CA;B for some generator L of a semi-

group of Schrödinger B→/ A semicausal CP-maps. Thus, to prove the first part of our theorem, we can take the normal form in Corollary
V.15 and compute the similarity transformation above. We now execute this in detail. To start with, Corollary V.15 tells us that L(ρ)
= ΦS(ρ) − Kρ − ρK†, where

ΦS(ρ) = trE[VρV†], with V = (𝟙A ⊗ Ũ)(Ã⊗ 𝟙B) + (𝟙A ⊗ B̃), (22a)

K = (𝟙A ⊗ B̃ †Ũ)(Ã⊗ 𝟙B) +
1
2
𝟙A ⊗ B̃ †B̃ + K̃A ⊗ 𝟙B + 𝟙A ⊗ iH̃B, (22b)

for some unitary Ũ ∈ U(HE ⊗HB;HB ⊗HE), some self-adjoint H̃B ∈ B(HB), and some operators Ã ∈ B(HA;HA ⊗HE), B̃ ∈ B(HB;HB
⊗HE), and K̃A ∈ B(HA). In order to apply Lemma V.20, we fix a unit vector ∣ξ⟩ ∈ HE and define ΞA ∶= 𝟙A ⊗ ∣ξ⟩ ∈ B(HA;HA ⊗HE) and
ΞB ∶= ∣ξ⟩⊗ 𝟙B ∈ B(HB;HE ⊗HB) so that 𝟙A ⊗ B̃ = (𝟙A ⊗ B̃Ξ†

B)(ΞA ⊗ 𝟙B). We can then write

ΦS(ρ) = trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)] + trE[(𝟙A ⊗ B̃Ξ†
B)(ΞA ⊗ 𝟙B)ρ(Ξ†

A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)]

+ trE[(𝟙A ⊗ Ũ)(Ã⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ ΞBB̃ †)] + trE[(𝟙A ⊗ B̃Ξ†

B)(ΞA ⊗ 𝟙B)ρ(Ã † ⊗ 𝟙B)(𝟙A ⊗U†)],
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which is an expression suitable for a term by term application of Lemma V.20. Doing so yields

Φ̂(T)(ρ) ∶= (C−1
A;B ○ΦS ○ CA;B)(T)(ρ)

= trE[U (T ⊗ idE)(A(ρ⊗ σ)A†) U†] + trE[B (T ⊗ idE)((ρ⊗ σ)A†) U†]

+ trE[U (T ⊗ idE)(A(ρ⊗ σ)) B†] + trE[B (T ⊗ idE)((ρ⊗ σ)) B†],

where we defined U ∶= ŨFB;E, B ∶= B̃Ξ†
BFB;E, A ∶= Ã TAΞ†

A, and σ ∶= ∣ξ⟩⟨ξ∣. This proves Eq. (17). Similarly, upon defining κL(ρ) ∶= Kρ, we can
write32

κL(ρ) = trE[(𝟙A ⊗ FE;BΞBB̃ †Ũ)(Ã⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)] + trE[(𝟙A ⊗ FE;BΞBB̃ †B̃Ξ†

B)(ΞA ⊗ 𝟙B)ρ(Ξ†
A ⊗ 𝟙B)(𝟙A ⊗ FB;E)]

+ trC[(𝟙A ⊗ 𝟙B)(K̃A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)] + trC[(𝟙A ⊗ iHB)(𝟙A ⊗ 𝟙B)ρ(𝟙A ⊗ 𝟙B)(𝟙A ⊗ 𝟙B)]

and apply Lemma V.20 term by term, which yields

κ̂L(T)(ρ) ∶= (C−1
A;B ○ κL ○ CA;B)(T)(ρ)

= trE[B†U (T ⊗ idE)(A(ρ⊗ σ))] +
1
2

trE[B†B(T ⊗ idE)(ρ⊗ σ)] + T(KA ρ) + iHB T(ρ),

where U, A, and B are defined as above and KA ∶= (K̃ A)T and HB ∶= H̃B. An analogous calculation with κR(ρ) ∶= ρK† and κ̂R(T) ∶= (C−1
A;B ○

κR ○ CA;B)(T) finishes the proof of the first part, since the claim about the dimension of HE follows form the corresponding statements in
Theorem V.6.

To prove the second part, first remember that we have observed above that Theorem V.3 implies that L is Schrödinger B→/ A semi-
causal, with trB[L(ρ)] = LA(trB[ρ]). Furthermore, if we write St = CA;B ○ Ŝt ○ C−1

A;B, then Theorem V.3 implies that St is Schrödinger B→/ A
semicausal for all t ≥ 0, with trB[St(ρ)] = SA

t (trB[ρ]), and also SA
t (𝟙A) = 𝟙A holds. Differentiating that expression at t = 0 yields the equivalent

condition LA(𝟙A) = 0. Hence, our goal is to incorporate the last condition into the form of (22). To do so, we determine LA by calculating
trB[L(ρ)], where L is in the form of (22). We obtain trB[L(ρ)] = trE[Ã trB[ρ] Ã †] − K̃AtrB[ρ] − trB[ρ]K̃†

A. Thus, the condition LA(𝟙) = 0 holds
if and only if trE[ÃÃ †] = K̃A + K̃†

A. Transposing both sides of this equation and using that the definition of A implies that Ã = ATAΞA yield

(trE[ATA(𝟙A ⊗ σ)(A†)TA])T = KA + K†
A. However, the left-hand side is, by Lemma V.21, equal to trσ[A†A]. This proves the claim that L̂ gen-

erates a semigroup of superchannels if and only if L̂ is hyper-preselecting and trσ[A†A] = KA + K†
A. Finally, defining HA ∶= 1

2i(KA − K†
A) and a

few rearrangements lead to (19). ◻

VI. CONCLUSION
A. Summary

The underlying question of this work is as follows: How can we mathematically characterize the processes that describe the aging of
quantum devices? We have argued that, under a Markovianity assumption, such processes can be modeled by continuous semigroups of
quantum superchannels. Therefore, the goal of this work was to provide a full characterization of such semigroups of superchannels.

We have derived such a general characterization in terms of the generators of these semigroups. Crucially, we have exploited that super-
channels correspond to certain semicausal maps and that, therefore, it suffices to characterize generators of semigroups of semicausal maps.
We have demonstrated both an efficient procedure for checking whether a given generator is indeed a valid semicausal GKLS generator and
a complete characterization of such valid semicausal GKLS generators. The latter is constructive in the sense that it can be used to describe
parametrizations of these generators. Aside from the theoretical relevance of these results, they will be valuable in studying properties of these
generators numerically. Finally, we have translated these results back to the level of superchannels, thus answering our initial question.

We have also posed and answered the classical counterpart of the above question. That is, we have characterized the generators semi-
groups of classical superchannels and of semicausal non-negative maps. These results for the classical case might be of independent interest.
From the perspective of quantum information theory, they provide a comparison helpful to understand and interpret the characterizations in
the quantum case.

B. Outlook and open questions
We conclude by presenting some open questions raised by our work. First, in our proof of the characterization of semicausal GKLS

generators, we have described a procedure for constructing a semicausal CP-map associated with such a generator. We believe that this
method can be applied to a wide range of problems. Determining the exact scope of this method is currently work in progress.

Second, there is a wealth of results on the spectral properties of quantum channels and, in particular, semigroups of quantum channels.
With the explicit form of generators of semigroups of superchannels now known, we can conduct analogous studies for semigroups of quan-
tum superchannels. Understanding such spectral properties, and potentially how they differ from the properties in the scenario of quantum
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channels, would, in particular, lead to a better understanding of the asymptotic behavior of semigroups of superchannels, e.g., with respect to
entropy production,33,34 the thermodynamics of quantum channels,35 or entanglement-breaking properties.36

A further natural question would be a quantum superchannel analog of the Markovianity problem: When can a quantum superchannel
Ŝ be written as eL̂ for some L̂ that generates a semigroup of superchannels? Several works have investigated the Markovianity problem for
quantum channels21,37–39 and a divisibility variant of this question, both for quantum channels and for stochastic matrices.40–42 It would be
interesting to see how these results translate to quantum or classical superchannels. Similarly, we can now ask questions of reachability along
Markovian paths. Yet another question aiming at understanding Markovianity is as follows: If we consider master equations arising from a
Markovianity assumption on the underlying process formalized not via semigroups of channels but instead via semigroups of superchannels,
what are the associated classes of (time-dependent) generators and corresponding CPTP evolutions?

Two related directions, both of which will lead to a better understanding of Markovian structures in higher order quantum operations,
are as follows: support our mathematical characterization of the generators of semigroups of superchannels by a physical interpretation,
similar to the Monte Carlo wave function interpretation of Lindblad generators of quantum channels, and extend our characterization from
superchannels to general higher order maps.

This work has focused on generators of general semigroups of superchannels, without further restrictions. For quantum channels and
their Lindblad generators, there exists a well-developed theory of locality, at the center of which are Lieb–Robinson bounds.43 If we put locality
restrictions on generators of superchannels, how do these translate to the generated superchannels?

Finally, an important conceptual direction for future work is to identify further applications of our theory of dynamical semigroups
of superchannels. In the Introduction, we gave a physical meaning to semigroups of superchannels by relating them to the decay process
of quantum devices. This, however, is only one possible interpretation. For example, semigroups of superchannels might also describe a
manufacturing process, where a quantum device is created layer-by-layer. We hope that other use-cases will be found in the future.
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APPENDIX A: PROOF OF LEMMAS V.20 AND V.21

In this appendix, we provide a complete proof of Lemmas V.20 and V.21.

Lemma A.1 (restatement of Lemma V.20). Let S : B(HA ⊗HB)→ B(HA ⊗HB) be given by

S(X) = trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)X(R†
A ⊗ 𝟙B)(𝟙A ⊗ R†

B)],

with Hilbert spaces HC and HE, operators LA, RA ∈ B(HA;HA ⊗HC), and LB, RB ∈ B(HC ⊗HB;HB ⊗HE). Then, for T ∈ B(B(HA);B(HB))
and ρ ∈ B(HA),

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trE[VL(T ⊗ idC)(WLρW†

R)V
†
R],

with VL = LBFB;C, VR = RBFB;C and WL = LTA
A , WR = RTA

A . Here, the partial transpose on HA is taken with respect to the basis used to define the
Choi–Jamiołkowski isomorphism.

Proof. Let {∣ei⟩}i be the orthonormal basis of HA with respet to which the Choi–Jamiołkowski isomorphism is defined. Let {∣cn⟩}n be an
orthonormal basis of HC. Then, the formal calculation, which is an algebraic version of drawing the corresponding tensor-network pictures,
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can be executed as follows:

[C−1
A;B ○ S ○ CA;B](T)(ρ) = trA[(ρT ⊗ 𝟙B) trE[(𝟙A ⊗ LB)(LA ⊗ 𝟙B)CA;B(T)(R†

A ⊗ 𝟙B)(𝟙A ⊗ R†
B)]]

= trE[LB trA[(ρT ⊗ 𝟙C ⊗ 𝟙B)(LA ⊗ 𝟙B)CA;B(T)(R†
A ⊗ 𝟙B)]R†

B]

=∑
i,j

trE[LB (trA[(ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†
A]⊗ T( ∣ei⟩⟨ej∣)R†

B]

= ∑
i,j,k,m,n

⟨ek cn∣((ρT ⊗ 𝟙C)LA∣ei⟩⟨ej∣R†
A) ek cm⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†

B]

= ∑
i,j,m,n
⟨ei∣(LT

A(ρ⊗ ∣cn⟩⟨cm∣)RA) ej⟩ trE[LB (∣cn⟩⟨cm∣⊗ T(∣ei⟩⟨ej∣))R†
B]

=∑
m,n

trE[LB (∣cn⟩⟨cm∣⊗ T(LT
A(ρ⊗ ∣cn⟩⟨cm∣)RA))R†

B]

= trE

⎡⎢⎢⎢⎢⎣
LBFB;C(T ⊗ idC)

⎛
⎝
[∑

n
(𝟙A ⊗ ∣cn⟩)LT

A(𝟙A ⊗ ∣cn⟩)] ρ [∑
m
(𝟙A ⊗ ∣cm⟩)RT

A(𝟙A ⊗ ∣cm⟩)]
†⎞
⎠
FB;CR†

B

⎤⎥⎥⎥⎥⎦
= trE[VL(T ⊗ idC)(WLρW†

R)V
†
R].

◻

Lemma A.2. Let X ∈ B(HA ⊗HC;HA ⊗HB), Y ∈ B(HA ⊗HB;HA ⊗HC), ρ ∈ S1(HB). Then, trρ[XY]T = trC[YTA(𝟙A ⊗ ρ)XTA].

Proof. Let {∣ai⟩}i be the orthonormal basis with respect to which the transposition is taken. Using the general identity tr[MT] = tr[M],
the definition of the trace with respect to a trace-class operator, and the cyclicity of the trace, we obtain, for every σ ∈ S1(HA),

tr[σtrρ[XY]T] = tr[σT trρ[XY]]

= tr[(σT ⊗ ρ)XY]

=∑
i,j,k

tr[(⟨ai∣⊗ 𝟙B)(σT ⊗ ρ)(∣aj⟩⟨aj∣⊗ 𝟙B)X(∣ak⟩⟨ak∣⊗ 𝟙C)Y(∣ai⟩⊗ 𝟙B)]

=∑
i,j,k

tr[(⟨aj∣⊗ 𝟙B)(σ ⊗ ρ)(∣ai⟩⟨ak∣⊗ 𝟙B)XTA(∣aj⟩⟨ai∣⊗ 𝟙C)YTA(∣ak⟩⊗ 𝟙B)]

=∑
k

tr
⎡⎢⎢⎢⎢⎣
ρ(⟨ak∣⊗ 𝟙B)XTA

⎛
⎝
⎛
⎝∑i,j
⟨aj∣σ ai⟩∣ai⟩⟨aj∣

⎞
⎠
⊗ 𝟙C
⎞
⎠

YTA(∣ak⟩⊗ 𝟙B)
⎤⎥⎥⎥⎥⎦

= tr[(𝟙A ⊗ ρ)XTA(σ ⊗ 𝟙C)YTA]

= tr[σtrC[YTA(𝟙A ⊗ ρ)XTA]].

This proves the claim. ◻

APPENDIX B: NO INFORMATION WITHOUT DISTURBANCE

Here, we prove a “no information without disturbance”-like lemma that yielded a useful interpretation in the main text.

Lemma B.1. Let T ∈ CPσ(HA ⊗HB) be such that

T(XA ⊗ 𝟙B) = XA ⊗ 𝟙B (B1)

for all XA ∈ B(HA). Then, T(X) = (𝟙A ⊗W†)(X ⊗ 𝟙E)(𝟙A ⊗W) for all X ∈ B(HA ⊗HB) and some isometry W ∈ B(HB;HB ⊗HE), where
HE is some Hilbert space.

Proof. This claim follows from the uniqueness of the minimal Stinespring dilation in the same way as the “semicausal = semilocalizable”
theorem. Write Eq. (B1) in the Stinespring form as

V†(XA ⊗ 𝟙B ⊗ 𝟙E)V = XA ⊗ 𝟙B
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for some V ∈ B(HA ⊗HB;HA ⊗HB ⊗HC). Then, V and 𝟙AB are the Stinespring operators of the same CP-map (XA ↦ XA ⊗ 𝟙B) and the
latter clearly belongs to a minimal dilation. Thus, there exists an isometry W ∈ B(HB;HB ⊗HE) such that V = (𝟙A ⊗W)𝟙AB. This is the
claim. ◻

Note that the lemma above is just a formulation of the “obvious” fact that if system A undergoes a closed system evolution (idA), then
there is no interaction with an external system B.

APPENDIX C: CONSTRUCTIVE APPROACH TO THEOREM V.6

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, KA, and HB in Theorem
V.6 if the conditions of Lemma V.5 are met.

Since it is important for an actual implementation on a computer, let us be very precise about notation. We introduce indexed copies
of HA and HB, i.e., HA0 = HA1 = HA2 = HA and HB0 = HB1 = HB2 = HB. Furthermore, we fix orthonormal bases {∣ai⟩}dA

i=1 and {∣bi⟩}dB
i=1 of

HA and HB, respectively. We use the symbol Ω with some subscript to denote the maximally entangled state on various systems. For
example, ∣ΩA1 ;A2⟩ ∶= ∑i∣ai⟩⊗ ∣ai⟩ ∈ HA1 ⊗HA2 and ∣ΩA1B1 ;A2B2⟩ = ∑i,j∣ai⟩⊗ ∣bj⟩⊗ ∣ai⟩⊗ ∣bj⟩ ∈ HA1 ⊗HB1 ⊗HA2 ⊗HB2 . We further reserve
P ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) for the orthogonal projection onto span{∣ΩA1B1 ;A2B2⟩} (i.e., P = (dAdB)−1∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣) and take
P� = 𝟙A1B1A2B2 − P.

Now, let L ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) be given as in Lemma V.5, then we can compute the operators A, U, B, KA, and HB via the
following 15 steps:

1. Compute τ = P�LP�.
2. Compute V = (𝟙A0B0 ⊗

√
τ)(∣ΩA0B0 ;A1B1⟩⊗ 𝟙A2B2).

3. Define HE ∶= HA1 ⊗HB1 ⊗HA2 ⊗HB2 so that V ∈ B(HA ⊗HB;HA ⊗HB ⊗HE) (identification).
4. Compute B = 1

dA
trA[V].

5. Compute Vsc = V − 𝟙A ⊗ B.
6. Compute τsc = (𝟙A1B1 ⊗ Vsc)†(∣ΩA1B1 ;AB⟩⟨ΩA1B1 ;AB∣⊗ 𝟙E)(𝟙A1B1 ⊗ Vsc) ∈ B(HA1 ⊗HB1 ⊗HA ⊗HB).
7. Choose any unit vector ∣β⟩ ∈ HB.
8. Compute τA

sc = (𝟙A1A2 ⊗ ⟨β∣)trB1[τsc](𝟙A1A2 ⊗ ∣β⟩).
9. Compute HF = range(

√
τA

sc) so that
√
τA

sc ∈ B(HA1 ⊗HA2 ;HF) is surjective.
10. Compute A = (𝟙A0 ⊗

√
τA

sc)(∣ΩA0 ;A1⟩⊗ 𝟙A2).
11. Compute U as the solution of the system of linear equations M(U) = Vsc, where the d2

Ad2
BdE × dFd2

BdE-matrix M : B(HF ⊗HB;HB
⊗HE)→ B(HA ⊗HB;HA ⊗HB ⊗HE) is defined by M(U) = (𝟙A ⊗U)(A⊗ 𝟙B). Clearly, we must first represent M with respect to
some basis.

12. Compute K = −trA1B1[PLP� + 1
2 tr[PL]P], where we identify HA2 ⊗HB2 = HA ⊗HB so that K ∈ B(HA ⊗HB).

13. Compute Ksc = K − (𝟙A ⊗ B†)Vsc − 1
2𝟙A ⊗ B†B.

14. Compute KA = 1
dB

trB[Ksc].
15. Compute HB = −i

dA
trA[Ksc − KA ⊗ 𝟙B].

Note that the procedure above computes an isometry U ∈ B(HF ⊗HB;HB ⊗HE), which can then be extended to a unitary, if necessary. In
that case, we also have to embed HF into HE and redefine A accordingly. More precisely, we need to execute the following additional steps:

16. Compute 𝟙F→E = 𝟙A1 ⊗ ∣β⟩B1 ⊗ 𝟙A2 ⊗ ∣β⟩B2 .
17. Redefine A← (𝟙A0 ⊗ 𝟙F→E)A.
18. Extend U via the following steps:

(a) Compute Û = U(𝟙†
F→E ⊗ 𝟙B).

(b) Compute an orthonormal basis {∣ f �i ⟩}N
i=1 of range(𝟙EB − Û †Û).

(c) Compute an orthonormal basis {∣r�i ⟩}N
i=1 of range(𝟙BE − ÛÛ †).

(d) Redefine U ← Û +∑N
i=1∣r�i ⟩⟨ f �i ∣.

Let us comment on why the steps above give the right result. In general, we have

L = P�LP� + PLP� + P�LP + PLP = τ + (PLP� + 1
2

tr[PL]P) + (P�LP + 1
2

tr[PL]P).

Thus, the maps Φ and K appearing in the GKLS-form in Theorem V.6 can be extracted from the previous equation by applying the inverse of
the Choi–Jamiołkowski isomorphism. One readily obtains Φ = C−1

AB;AB ○ τ and K = −trA1B1[PLP� + 1
2 tr[PL]P].
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● Step 2 computes the Stinespring dilation of a CP-map whose Choi–Jamiołkowski operator is τ. A direct computation shows that
τ = (𝟙A1B1 ⊗ V)†(∣ΩA1B1 ;A2B2⟩⟨ΩA1B1 ;A2B2 ∣⊗ 𝟙E)(𝟙A1B1 ⊗ V).

● Step 4 computes the operator B in the representation. In the Proof of Theorem V.6, B was obtained from B̃, which, in turn, was
obtained from V and Lemma V.13. In the finite-dimensional setting, Lemma V.13 constructs B exactly as is written down above.

● Steps 6, 7, and 8 define τsc as the Choi–Jamiołkowski operator of a CP-map with the Stinespring operator V sc. Thus, according to the
Proof of Theorem V.6, τ is the Choi–Jamiołkowski of a Heisenberg B→/ A semicausal map. Semicausality is expressed on the level
of Choi–Jamiołkowski operators by the existence of an operator τA

sc such that trB1[τsc] = τA
sc ⊗ 𝟙B2 (compare with the Proof of Lemma

V.5). Using this relation makes clear that step 8 extracts τA
sc from τsc and that the result is independent of the choice of ∣β⟩.

● Step 10 defines A as the Stinespring dilation of the (reduced) map whose Choi–Jamiołkowski operator is τA
sc. The dilation constructed

in this way is minimal. This is exactly the way in which the operator W = A was constructed in the Proof of Theorem V.6.
● Step 11 obtains U by solving the defining relation (for Ũ) in the Proof of Theorem V.6. One might wonder why the solution to

this system of equations is unique (even though M is not a square matrix). Uniqueness follows from the minimality of A⊗ 𝟙B,
that is, vectors of the form (XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩ span HA ⊗HB ⊗HE. In detail, if U and U′ satisfy M(U) =M(U′), then
0 = (𝟙A ⊗ (U −U′))(A⊗ 𝟙B) and hence 0 = (𝟙A ⊗ (U −U′))(XA ⊗ 𝟙FB)(A⊗ 𝟙B)∣ψ⟩. By linearity, this implies U −U′ = 0.

● Step 12 computes the operator K in the GKLS-form according to the discussion above.
● Step 13 defines an operator Ksc, which according the statement of Theorem V.6 and also due to the discussion below Eq. (16) is of the

form KA ⊗ 𝟙B + 𝟙A ⊗ iHB.
● Steps 14 and 15 extract KA and HB from Ksc. Note that such a decomposition is not unique, since for any λ ∈ R, the transformation

KA → KA + iλ𝟙A, HB → HB − λ𝟙B leaves Ksc invariant. This transformation, however, allows us to choose HB traceless. In that case,
steps 14 and 15 determine KA and HB.

APPENDIX D: CONSTRUCTIVE APPROACH TO THEOREM V.18

In this appendix, we are going to describe in detail how one can computationally construct the operators A, U, B, HA, and HB in Theorem
V.18 if the conditions of Lemma V.17 are met. We use the notation from Appendix C.

Given the operator L̂ ∈ B(HA1 ⊗HB1 ⊗HA2 ⊗HB2) as in Lemma V.17, then we can compute the operators A, U, B, HA, and HB via the
following eight steps:

1. Apply steps 1–18 in the protocol in Appendix C to L̂. This yields HE = HA1 ⊗HB1 ⊗HA2 ⊗HB2 , Ã ∈ B(HA2 ;HA0 ⊗HE), Ũ ∈ B(HE
⊗HB;HB ⊗HE), K̃A ∈ B(HA), and H̃B ∈ B(HB).

2. Choose any unit vector ∣ξ⟩ ∈ HE.
3. Compute σ = ∣ξ⟩⟨ξ∣.
4. Compute A = (𝟙A−1 ⊗ 𝟙E ⊗ ⟨ΩA0 ;A3 ∣)(𝟙A−1 ⊗ FA0 ;EÃ⊗ 𝟙A3)(∣ΩA−1 ;A2⟩⊗ 𝟙A3 ⊗ ⟨ξ∣).
5. Compute B = B̃(𝟙B ⊗ ⟨ξ∣).
6. Compute U = ŨFB;E.
7. Set HB = H̃B.
8. Calculate HA = 1

2i(K̃
T
A − K̃†T

A ), where the transposition is with respect to the {∣ai⟩} basis defined in Appendix C.

Let us comment on why the steps above yield the right result:

● Step 1 can be executed, since the assumptions of Lemma V.5 are the first two assumptions in Lemma V.17.
● Steps 2 and 3 define σ as in the Proof of Theorem V.18.
● Step 4 is a more explicit expression for Ã TAΞ†

A in the Proof of Theorem V.18.
● Steps 5, 6, and 7 are exactly the definitions of B, U, and HB, respectively, in the Proof of Theorem V.18.
● For step 8, we note that the condition trA1[L̂A] = 0 implies LA(𝟙) = 0 so that we can follow the last few sentences in the Proof of

Theorem V.18.
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