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Abstract

A train of intermittent rectangular load pulses with arrival times driven by an Erlang renewal process and with durations distributed
according to a truncated Erlang distribution is considered. Based on the phase approach of queueing theory the differential equations
governing the probabilities of the system being in different Markov states are derived. The differential equations for the coincidence
probabilities are also obtained for mutually independent loads arising from different sources. The non-stationary and stationary solution
for Markov states probabilities and coincidence probabilities is formulated and these probabilities are evaluated for different models. In
particular, the stationary coincidence probabilities are evaluated for the example problem of a steel column under bending and compression
caused by three independent intermittent loads. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problems of combinations of intermittent random loads
were the subject of research for many years. The technique
of evaluating the probability of structural failure in terms of
load coincidence probabilities was developed by Wen [16],
Winterstein [19] and Shinozuka [10—12]. Wen and Winter-
stein primarily considered coincidence probabilities for
sparse and short pulses, Shinozuka gave an exact solution
for trains of intermittent pulse loads with Poisson distributed
arrivals and both truncated exponential and truncated Erlang
distributed durations. Madsen/Ditlevsen [4] developed
results for simple alternating processes. More advanced
cluster processes models have also been developed for inter-
mittent load processes [9,17]. Many available techniques for
load combinations are covered in a book by Wen [18].
Recently coincidence probabilities were evaluated by the
authors of the present article in the case of independent
intermittent loads idealized as rectangular pulses with
Erlang distributed arrival times and with durations distrib-
uted according to a truncated exponential [5] and truncated
Erlang distribution [6]. Further, in Ref. [7] the problem of
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coincidence probabilities for alternating “on/off’-phases
with arbitrary distributed durations and time gaps between
pulses was studied with the result that the stationary coin-
cidence probabilities only depend on the mean times and
agree with the results in Ref. [10], however with a different
definition of the parameters for the “on”- and “off”-times.

In the present article the problem of coincidence prob-
abilities of independent intermittent loads idealized as
rectangular pulses with arrival times driven by an Erlang
renewal process and with durations distributed according to
a truncated Erlang distribution, with parameters »xk and p/,
respectively, is considered. Based on the phase approach of
queueing theory the equations governing the Markov state
probabilities of a single load are derived like in Ref. [12]. A
new formulation of the equations governing the coincidence
probabilities is given, based on the representation of the set
of coincidence probabilities as a tensor product of state
probabilities of different loads. The recursive formula for
constructing the matrix of coefficients of the governing
equations has also been provided. Both the non-stationary
and stationary solutions of the governing equations are
formulated.

The solutions for the probabilities of Markov states and
hence for the “off”” and “‘on” probabilities as well as for the
probabilities of coincidence of different states are given for
different example models. In particular, the sensitivity of
coincidence probabilities with respect to k and [ is studied
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and a comparison is made with the results of Shinozuka for
the case of Poisson arrivals and with previous results of the
a}nhors for the case of Erlang arrivals. The stationary coin-
«.ndence probabilities are also evaluated for a practically
important example problem of a steel column under bending
an'd compression caused by all three independent inter-
mittent loads.

2. Internfittenl rectangular pulse load process with
E‘I‘]al.lg distributed arrivals and truncated Erlang
distributed durations: statement of the problem

Co_ns@er a train of rectangular pulses whose arrival times
are dlsl.n‘buled according to an Erlang renewal process. The
probability density of interarrival times 7, is then given by

8,0 = Gt lexp(—akt)k — 1Y, 1> 0. e
The mean of 7, is
1

E[T,]= —

[7,] " )
and the variance of T, becomes

Carer

Var[7,] = poTs: (3)

Th-e pulses are assumed not to overlap, i.e. each pulse
duration completes before, or is truncated at, the moment
f)f the next pulse arrival. Hence the duration 7, of the load-
ing process (pulse) equals either the “primary” (“original”)
pulse duration 7’4 or the interarrival time T,. Thus the trun-
cated pulse duration is defined as

Tl
T, ={ g
T,

The primary pulse durations 7% are assumed to be identi-
cally, Erlang distributed with the probability density

(I
!

if Ty<T,,
T o

g (1) = (u)'t " exp(—pin)(1 — 1), +>0. (5)
again with mean
1
E[T)] = —
[74] o (6)
and variance
1
Var[Th] =
ar[Ty] I @)

The prol?ability density function gr,(x) of the truncated
pulse duration Ty is hence expressed as

8r,(x) dx = Pr{T; € (x,x + dx))}
=Pr{Ty € (x,x + dx)|T}y < T,)Pr{T} < T,)}
+Pr{Ty € (rx + dx)|Ty = T,}Pr{Ty = T,)
=Pr(Ty € (x,x + dx)}Pr{T, > x}
+ Pr{T, € (x,x + dx)}Pr{T} = x}. (8)
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with the result

gr,0 = gr, (1 = Fr) + gr (1 = Fym). )
The probability distribution function F,(x) is obtained as

P = || en(@de= [ g0 - Frna

x 10)
i Ja gr, (&1 - F7‘;(§))d§-

Integrating by parts yields

Fr,(x) = Fry (81 = Fy (8)[ + fo Fry(§)81,( d¢

+ PR ~ P [ Fr®sr 00
= Fr,(0) = Fry(0Fy,(x) + Fr,(x) = Fr,(0Fp, ()
+ Fr, ()Fp (x)
= Fpy (%) + Fr,(x) = Fpy (0)Fy, (x), (an
which is in agreement with the result given e.g. in Ref. [17].
Mean and variance of this distribution cannot be given
analytically except for » = p.

The .remainin.g “off” time T, between the consecutive
pulses, i.e. the time gap between them, defined as
T, =T7,— Ty, Tz, (12)
may be expressed as
: T T OiT, >
I, = : : (13)
0 if T,=T) ’

The probability density function gr.(x) of the remaining
time 7, is expressed as

g7, (x) dx =Pr{T; € (x,x + dx)}
=Pi{T, ~ Ty E Wx+d0) AT, — T; >0}

+Pr{T,— Ty E ,x +d) AT, — Ty = 0)
=Pr{T, — T € (x,x + dx)}

+ Pr(T, = Ty € (5, x + dv) | T, = Ty = 0}Pr(T, — T; = 0}
=Pr(T, € (Th +x,T) + x + dx)}

+Pr{T, € (T, + x, T, + x + dv)}Pr{T, = T}}, (14)
which yields
000 = [ an e+ Dery(@ e+ oo [y D@ 08

1s)

where 8(x) is the Dirac delta function.
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The probability distribution function Fr(x) is then
obtained as

P = [ en@dt= [ P+ Ber 0 o€
+ 1 [ Fr@en @ 00

where H(x) is the Heaviside’s (unit step) function.

If the observation period is sufficiently long, the prob-
ability of the load “being on” (“being observed”) attains
the stationary value, given by [11]

_ ET]
on — EITJ] (17)

The probability of the load being “off” is

_ET) _ BT -ET) _
Poit = E(T,) - EIT‘,&] =1 Pon- (1s)

It should be noted that the load model presented before is
not on a Herating Erlane process due to the truncation of the

durations.

3. Probabilities of Markov states for a single load process

3.1. Governing differential equations

As the arrival and loading processes are Erlang distribu-
ted with integer parameters k and [, respectively, the so-
called “phase approach” will be used [2,14]. Thus the arri-
vals of phases are Poisson distributed with parameter %K.
Hence a new phase of the arrival process occurs in the time
interval (1, + Ar) with probability »kAr. A phase of the
loading process is completed in the time interval (t,
{+ Ar) with probability w/Az. There may be k “empty”
phases of no load and each of k phases of the arrival process
may coincide with each of [ phases of the loading process.
Thus the total number of different states is k(I + 1). Let us
enumerate the states as i=12,..k(+ 1). These are
Markov states, because the probability Pi(r + Ai) that at a
later time f + Af the system is in state i, i.e., Pt + Ar) =
Pr{S(t + Ar) = i} merely depends on the states at an earlier
time 7. These probabilities are evaluated according to the

general scheme
K+ 1)

PatAn= 3 PrlSe+A)=i|SO=/1P, (19
j=1

where the conditional probabilities are the transition prob-
abilities of a Markov chain. In the present problem the
following equations are obtained:

Pi(1 + Aty = Pi(0)(1 — xkAr) + Py (DplAt, i=1,
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Pyt + Af) = P (DxkAt + P(0)(1 — xkAn) + Py y(Dulds,

1 <i=k,

Py (t + A = Py(D)kAt + Py (01 = kA1 — plAr)
1=1

+ > Prgen-H0kAL,

r=0

Pi(t + A = Py (DIt + P(t)(1 — sekAn)(1 — plAD),
k+1<isk+]
Pyt + A = Py (t)xkAt + P (plAt
+ P(O(1 — xkAr)(1 — plAD),
iSk+l iFk+sl+1, s=1.,k—1,

Pi(t + Aty = Pi_y(DakAr + Pi(0)(1 — xkAr)(1 — uiAL,

iSk+1l i=k+sl+1, s=1..,k-1 (20)

As the matrix of coefficients of the set of equations (Eq.
(20)) is the matrix of transition probabilities, it follows that
the sum of elements in each column equals one. The corre-
sponding differential equations obtained by retaining the
terms of first order in At are

Py = —Ppck + Prpl,

py=Pi_yxk— Pk + Ppypl,  1<i=k

-1
Proy = Purk — Py Gk + p) + > Pigrny—rck,
r=0

i=k+1,

P=Pul - Pk + ),  k+1<isk+l

P, = Pi_jsk + Pyl — Pilock + ),

i>k+LiFEk+sl+]1, s= Lwk—dy

P, =Pk — Pk + pl), P>k A+

@n
j=k+sl+1, s=1..k-1

The governing differential equations in matrix form are

d
= = 22
& P(r) = AP(1). e

Tt is worth noting that the sum of elements in each column of
the matrix A equals zero, which means that the rows are
linearly dependent. Hence the matrix A is singular. The
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probabilities P,(r) must satisfy the normalization condition

KU+ 1)

D Pin=1 23)
i=1

The probabilities of the load being “off” and “on” are given,
respectively, by

k
Poyr = P, (24)
=1
KI+1)
Puw= > P (25)
i=k+1

The differential equations must be associated with the initial
conditions

Pr{S(0) =i} = Py0) = Py; (26)
ie.
P0) =Py. (27)

If the initial conditions are deterministic, i.e. the start is
assumed with probability one at the phase j then

P;(0) = Pr{S(0) = i) = &, (28)

where 8; is a Kronecker delta.
If the start is assumed in “off” situation, the whole prob-
ability mass is only distributed over “off” states, and then

k
S PO =1 (29)
i=l

If the start is assumed in “on” situation, the whole probabil-
ity mass is distributed only over “on” states, then
Ki+ 1)

S P@=1 (30)
i=k+1
If the start is completely random, the whole probability mass
must be distributed over all possible states, then

k(i 1D

> PO=1 3D

=1

3.2. Non-stationary and stationary solution

Solving the eigenproblem for the k(! + 1) order matrix A
det(A — 61) = 0, (32)

where 1 is an identity matrix, we obtain k(/ + 1) eigenvalues
01, 02,.... By -

If all eigenvalues are distinct, then k(/ + 1) linearly inde-
pendent respective eigenvectors w;, i = 1,2,...,k(l + 1) can
be found, which make up a non-singular modal matrix W.
The non-stationary solution can be then represented as

P(r) = W{exp(6;))C, (33)

where {exp(6;1)} is the diagonal matrix of order k(I + 1),
with exp(6;1),i = 1,2,..., k(I + 1).

The constants C are evaluated by imposing the initial
condition (27) and the solution is arrived at in the form

P(1) = W{exp(#;)}W "' P, (34)

If all the eigenvalues are not distinct, i.e. if some of them are
multiple then the solution is formulated in a modified way.
For example if there is one eigenvalue, 6;, with multiplicity
m then the solution may be represented as

P(r) = [WyV]{e}C, (35)

where W, is the matrix made up of the eigenvectors corre-
sponding to k(I + 1) —m distinct eigenvalues and {e} is the
following diagonal, k(! + 1) order, matrix

{exp(6:0} 0 o 0 0
0 exp(6;t) 0 0 0
(e} = 0 0 rexp(6p 0 0 :
0 0 0 0
0 0 0 0 " lexp(60)

(36)

where {exp(0;7)} is the diagonal matrix of order k(/ + 1) —
m and 6; are the distinct eigenvalues. The m linearly inde-
pendent vectors V are found by inserting (35) into the
governing equation (22) and equating the coefficients of
the polynomial in ¢ at the right and lefi-hand side. The
constants C are, of course, determined from initial condi-
tions. Stationary probabilities P, may be obtained as

P, = lim P() 37

or as a nontrivial solution of the set of homogeneous alge-
braic equations

AP, =0, (38)

where det(A) = 0.

Hence the stationary probabilities P, are found as any
column of the matrix adjoint of A, subject to the normal-
ization condition. As the matrix A is singular, its first eigen-
value is equal to zero. Moreover as the rank of this matrix is
only by one lower than its order, the zero eigenvalue is
single, hence the corresponding eigenvector is unique and
it is just the stationary solution.

Alternatively, first the normalization condition can be
inserted into Eq. (38) and next the resulting set of non-
homogeneous equations can be solved.

An example of non-stationary and stationary solutions for
the probabilities of Markov states and on/off probabilities
for Poisson/exponential distributions with k=1 and /= 1 is
as follows. The differential equations governing the prob-
abilities of Markov states are

Py = —uP| + pPs,
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Fig. 1. Coincidence probabilities for two loads.

Py = —uPy — P,

where Py = Py and P, = Py,
The characteristic equation becomes

a6+ %+ p)=0,
hence the eigenvalues are
6, =0, 0, = —(x + ).

The modal matrix is obtained as

—u %
W= s
=% -
Upon imposing on the first eigenvector the normalization
condition the stationary solution becomes

I:P1\<:|7|:I-L/(%+/J-)]_[ 1 +p)]
Py, (% + ju) Wa+p ]
where p = »/u in agreement with Ref. [11].

The non-stationary solution, in the case of the start from
“off” situation, i.e. with initial conditions

(210

becomes (cf. Sniady and Sieniawska [13])

x

Py = —2— +

p(—(x +
P x+“e>\p( (% + ),

X
= exp(—(x + wi).

Py) =
2(1) = ey

The start from “on” situation, i.e. with intial conditions

Leo]-[Y]

yields

( = M —_ > — {5
P = i x+#uxp( (= + p)),
Py = —— + P exp(—(x+ .

x+u 2+

In the case of the random start, e.g. with initial conditions

[ra]-L1a)

the non-stationary solution becomes

_ M il
P = P Rilewr Mexp( (% + i),
Pty = —— — }L—exp(~(x + pn).

%+ u x+ u
Other cases are given in Appendix A. Fig. 1 shows the
convergence towards stationarity versus time for g = k =
1. It is seen that convergence is reached for about two-times
the mean interarrival time. Tt is clear that for p and « differ-
ent stationarity is reached more slowly.

4. Probabilities of coincidence of states of different load
processes

4.1. Governing differential equations

Consider an arbitrary number N of independent intermit-
tent pulse loads each of which is characterized by para-
meters .k, i, I, r = 1,2,...,N. The Markov states of
each load are governed by Eq. (20).

In order to derive the differential equations governing the
coincidence probabilities it is expedient to rewrite the Eq.
(20) for the rth load in the form of
P(r + Ar) = PO(1) + AVPY (AL, (39)
or
PO+ Ay = PP(1) + al) PO (DA,
=120 0,k0.+ 1),

where A is the matrix of order k,(; + 1) X k(/; + 1), with
diagonal elements

—s:ks; l=i<k +1,
—ul,, i=k 1, K=,

aj; = (40)
—(xk, + e, i=k +1, k> 1,

~(k, + pd), 12k +1
and with non-zero off-diagonal elements given by
ah-,ﬂr = el
aji—y = %k, 1<i=k,
u:,k,-le = el 1 <isk,

r —
14, = ek
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r — -
1y = ke,

j=k+ D) —q g=012,... -1, ¢#kl.—1,

T e+ 1 <i<k+I,

r For)
dij—y = by

ikl iFk s+l s=1k— 1,

ai’.i—[, = xrkrv i> kr + b

iFkk sk, s=1, k=1, L #1,

@iy, = %k, ikt d, =k Agl w1,

§=1,..k =1, I # 1. 1)

Let II; ; (1) denote the probability of coincidence of
different states of N loads, i.e. the probability that at time
t the rth load is in the state i,. Each state may coincide with
any other. The number of coincidence probabilities is thus
M= Hijj(/j + 1). As different load processes are mutually
independent, the coincidence probabilities are evaluated as
products of Markov states probabilities of different loads.
The differential equations governing the coincidence prob-
abilities are obtained from Eq. (39) by multiplying the left
and right sides of respective equations and by retaining the
terms of first order in At i.e.

I, . ¢+ Ay = PO + dOPO AP (1)
2y 1 uoJ 2 4 2)
+ aZPPAn- (P + a PV 1A
Let us represent the set of all possible coincidence probabil-
ities in form of a supervector IT*(7) obtained by performing
tensor products as

M@ = PO @ IV V)

o = P20 @ MV 2

H(N7i+l)(f) = P(i)(t) ® H(N—i)(t)

T2 = PY (@ MV = PY 1) @ PM(),  (43)

where @ denotes the tensor product, i.e. given vectors

a, b ab

a, by ab
a= and b=1 |, a@b=

Ay b, a,b

The differential equations governing the vector I1™(1) of
coincidence probabilities are then given in the form

d
dr
where the coefficient matrix C* is constructed by applying
the following recursive procedure

™M@ =PI, (@4

C(N—i+|) ik

N- () 10}
D+ {“1'1} {allz}
10} N=i) ol .. ()
{az'x} C e {azz} {az,,’}

%) et fand
(45)
where i =1,2,...,N — 1 and {a;,’()) denotes the diagonal
matrix formed of jkth element of the matrix AY and
CM=A™. The recursive procedure must begin with
evaluation of C @, for i = N — 1, which has the form

@ =
A+ fati 0}

-1
et}

N-1
o™}

™ (N-1)
AY +{a22 }

(N=1)
{aln, }
(N-1
{QZ:L )}

A(N)+<'[ (N-n}

an,n,
(46)

Next the procedure must be repeated with decreasing
index i. As the matrix C% 7" is constructed by successive
use of matrices A, it can be shown that the sum of all
elements in each of its column equals zero, hence the
rows are linearly dependent and each matrix C¥ ™" and
hence the matrix C™ is singular.

The non-stationary and stationary solutions for the coin-
cidence probabilities can be obtained in the same way as
described in the Section 3 for the Markov states probabilities.
In particular the stationary solution for the coincidence prob-
abilities II"") can be obtained with the help of a matrix
adjoint of C™, imposing the obvious normalization condition

(N=1) (N-1)
{a,,l] } {an,,?.

L G+ 1)

” =, 47

i=1 i
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K1=1, L1=1
0.500
—g—P00=P10, K2=1

0.450

0.400 —a—P01=P11, K2=1
% 0.350 — o- —P00=P10, K2=3
o
S 0300
a — o- —=P01=P11, K2=3
3 o0.250
5 - -0 - -P00=P10, K2=5
B o200
2
£ - -0- -P0O1=P11, K255
8 o150

0.100 — o— P00=P10, K2=10

0.050 e

— o— P01=P11 K=10
0.000
1 2 3 4 5 [ 8 9 10

L2

Fig. 2. Coincidence probabilities for two loads as a function of parameters k; and I, (k, =1, [, =1).

For an example of two loads with Poisson/exponential distri-
butions with k=1 and /=1 stationary and non-stationary
solution is as follows. If both loads have Poisson distributed
arrivals and truncated exponential durations, the differential

equations for coincidence probabilities are

&l
=

=0 + 29) 2 My 0
22 =0+ pg) 0 I
=y + ) M2

0 % % = + p2)

The characteristic equation is obtained as

00+ 2 + % + o + )07 + Goy + 2 + g + )0
+ O+ (g + o)) =0

and the eigenvalues are found to be

01 =0,0,=—(x; + 2, + u; + ), 05 = — (o + p1), 04

=~ + py).

The modal matrix is obtained as
(1 + pp(d + py) 1 1 1
pl(L+p)1+p)) -1 p -1
p/(+p)d+p)) -1 -1 p
(A +p)d+p)) 1 —py —p

where p; = »,/u; and p, = x,/p, and the stationary solu-
tion is

I, (A + p)(L + p2))
Iy p/((1 + p)(L + py))
I, || s+ o1+ p2)
1, pip /(1 + p )1+ )

which is the result given in Ref. [11]. The nonstationary
solution, in the case when both loads start from the “off”
situation, i.e. with initial conditions

I 1
1, 0
.| ol
my, 0

is obtained as

UAGES (1 + prpgexp(—(x) + 2

1
1+ p)(1 + p2)
+ g+ o)) + prexp(—(x + ut)

+ pexp(—( + up)1)),
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K1=3, L1=5
—o—P00 K2=1
—a—P01 K2=1
—— P10 K2=1
i,; P11 K2=1
-g - - o- -P00 K2=3
% - -a- -P01K2=3
c - -0- -P10K2=3
§ - - x - -P11K2=3
‘§ — o= —PO0OK2=5
(] — O —P01K2=5
— o -P10K2=5
— » —P11K2=5
Fig. 3. Coincidence probabilities for two loads as a function of parameters kyand I (ky =3, 4, =95).
IL(1) P2 (1-p sea states, 10 min wind regimes, etc. An upper bound for the

2T U+ )
Xexp(— (%) + 30 + puy + wo)t) + prexp(—(s; + pp)r)

—exp(—(x + o)),

11 (e MR TR
O T

Xexp(—( + 2 + py + po)t)
= exp(—(s; + p)t) + prexp(—(xy + po)t),

PP

II s Melld T PTE
O T

(1 + exp(—(2) + 2 + py + o))

—exp(—(x + u)t) —exp(—(e + ua)h).

Figs. 2 and 3 show examples for coincidence probabilities
for two loads for different ky, [, k3, h, and k = pu = 1. It is
seen that the coincidence probabilities soon approach limit-
ing values for growing i, I;, k, and/or I,. The effect of the
mean duration parameters x and g is much larger.

S. Probability of structural failure

For failure probability evaluations it is convenient to
distinguish between three types of variables. R-variables
denote simple random variables, possibly depending on
time in a deterministic manner, Q-variables denote random
stationary and ergodic sequences and S-variables are
random, not necessarily stationary process variables. The
Q-variables may conveniently be used to model sequences
of parameters for the S-variables, for example traffic states,

probability of the first excursion failure in the time interval
(0, T) under general loading is

T
PUT) = P(0) + L) S PAOE[Egly (RO dr  (48)
k

where P{0) is the initial failure probability, Py(t) is the
coincidence probability of the kth load combination and
V[ (T, R, Q) the mean outcrossing rate from the safe domain
into the failure domain. This equation is extremely laborious
to handle and will not be discussed further. Assuming the
system in a stationary state with respect to the “on/off”-
times but not necessarily with respect to the outcrossing
rates we have

P(T) = P(0) + ZPkER[EQ[EfN[ (T,R, Q)]]]dT 49)
%
with
5 i
BN (TR, Q) = [, # (R, 0, 50)

where E[N (T, R, Q)] is the mean number of outcrossings.
Simplifying further by assuming also stationary out-cross-
ing rates it is

PHT) = P(0) + T > PiEx[Eplyi (R, Q)]]dr. (1)
k

For example, in the case of one non-intermittent, stationary
load and two independent, stationary, intermittent loads of
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arbitrary type, Eq. (51) is given by
Pr(T) = Pr(0) + PyTy,

+ (P:TV()H + PiTyy,, + P{+2TV0+H2)
= Py(0) + T("ul”() + vy Pl + voaoP] + Vo+1~2pévz)

= PO) + Tywy + T vy + Tivger + T3P 00140,
(52)

where v is the outcrossing rate of the non-intermittent load
only, vy is the outcrossing rate given the non-intermittent
load and the first intermittent process are “on”, vy, is the
outcrossing rate given the non-intermittent load and the
second intermittent process are “on” and vgyj4; is the
outcrossing rate given the non-intermittent load and both
intermittent processes are “on”. Pg0) is the initial failure
probability, which is non-zero only if some of the load
processes are non-intermittent. In this case the outcrossing
rates for intermittent processes have to be computed under
the condition that the non-intermittent process is always
present. Making use of the ergodicity theorem the asympto-
tic, total duration of the various “on/off” events is T, =
TPy = TPy, T} = TP}, T} = TP} and T3 %% = TPL*2. This
observation is useful when handling the case described by
Eq. (49). There can be outcrossings of the non-intermittent
processes only during the time interval [0, Ty] and for the
intermittent processes only during their “on” periods.
In the general case of N loads it is [10]
N

P(T) = Pi(0) + T(qu’u + > P

=1

N N N N N
i+ ijtk
ADIPIL AL DD NP W I
=1 j=i+1 i=1 j=i+ 1 k=j+1
]
+ oo Uiy Pl ) (53)

where vy, is the mean up-crossing rate when the non-inter-
mittent load and only the ith intermittent load are “on”,
Vo+i+; is the mean upcrossing rate when the non-intermittent
load and only the two intermittent loads i and j are simulta-
neously “on”, ¥g;4j44 is the mean upcrossing rate when the
non-intermittent load and only the three intermittent loads i,
J and k are simultaneously “on”, and so forth. Finally,
Vo+i, +...+iy 18 the mean upcrossing rate when the non-inter-
mittent load and all N intermittent loads are simultaneously
“on”. The upcrossing rates can be evaluated with the help of
any techniques available in the literature, for example,
according to Refs. [1,8] for rectangular wave renewal
processes, Ref. [3] for processes with arbitrary pulse
shape or Ref. [15] for differentiable processes. Note that
the jump rates for independent components of a renewal
wave process can be different from the arrival rate of its

“on”-times. For differentiable vector processes all compo-
nents of the vector must have the same arrival/duration rate.

In Eq. (52) the probabilities Py that both intermittent loads
are “off”, that P% that the first load is “on” while the second
is “off™, Pf that the first load is “off” while the second is
“on” and P} that both loads are simultaneously “on” are
given, respectively, by

b ks

Po=3"> My 1yt (54)

i=1 j=1

O AD ke
1
Py = Z ZH(i—l)kg(l:+l)+j- (55)

=k +1 j=1

kol + 1)
Pi = Z Z vy 41940 (56)

i=1 j=ky + 1

>

kit + 1) kil + 1)
P = Y Y Mippgyenyy 67
i=ky 41 j=ky + 1
In Eq. (53) the probability Pi" that only the mth load is
“on” while all other loads are “off”” and the probability that
the mth and nth loads are simultaneously “on” while all
other loads are “off” are evaluated, respectively, as

ki kel + 1) kn

n
P = Z Z H(il—l)k:(lz-H)+---kN(lN+])

Fre IR D S = |
X (i = Dt et + Doy + 1D iy~ Dbty + D5y (58)

ki bl + 1)kl + D) ky

Frt=3

a=l =kt =kt iy=l

KL= 10t 4 1) b 14+ = Db 1)yl 1)
e iy Dby ey Dbyt D = Dbyt Dy (59)

and so on.
A trivial, lower probability bound can also be assessed.
Under stationary conditions there is

N 5
PHT) = (P/,U(O)Po + Y ProsiOP]

i=1

N
+3 5 ProwiOPS

jEiT

M=

i

+
M=
M=

N
S Provir@PTE £
1k=j+1

¥

1 j=i

+ Proti+ 134---+iN(0)P;'/+mﬁN), (60)

with Py (4 (0) the failure probability if the set {k} of loads is
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Table 1
Stochastic model for illustration example

Variable Symb. Distr, Type Mean/s.d. Unit A P
Yield stress F, LN R 500/35 MPa - =
Flange breadth B LN R 300/3 mm -

Flange thickn. D LN R 20/2 mm = -
Profile height H LN R 300/5 mm = =
Initial defiect. Fy HN R my,lay, mm - =
Youngs Modul. E We R 210 000/4200 MPa = -
Dead weight G N R 800 000740 000 N = -
Variable load P, N S 800 000/150 000 N 0.1 0.01
Variable load Py Gu N 800 0007150 000 N 10 1
Variable load P Ga s 800 0007200 000 N 1 100

“on”. Apparently, this is just the point-in-time failure prob-
ability. This lower bound is also identical with P{0) under
stationary conditions.

6. Ilustration: steel column under three different
stationary and intermittent loads

As a numerical example a centrally loaded steel column
with initial deflection is considered with approximate limit
state function in terms of the random vector X, the para-
meter (b,d,h) and auxiliary functions </, #, M ;, &y P =
G + P| + P, + Pj is defined by:

i By, 5
x,p=F-2?— + . 4

8(x,p) =F, (ds A 4”;)—»”/’) (61)
where
of ¢ =2BD, (area of section),
A = BDH, (modulus of section),

1 2 1T
M= EBDH : (moment of inertia),

TEM,;
&y = ~T—'- (Euler buckling load).

The steel column has a constant length of 4000 mm. The
anticipated lifetime is 50y. The independent uncertain

Table 2
Results of illustration example

vector X = (F, Py, P2, P3,B,D,H, Fy, E) and its stochastic
characteristics are given in Table 1 where my =
JIMAN20 + 5/500 and o, = 0.3my,.

All time-variant loads are modeled as rectangular wave
processes with different jump rate A[1/year] and different
duration parameter p. The load P, may represent long dura-
tion occupancy loading, P, some climatic loading and P,
short term occupancy loading. This limit state function is
highly non-linear. The outcrossing rates are determined by
somewhat improved SORM in standard space, i.c., by

=l

3
Vi(gxup) = 0)= > A=) [ 1 = Br) "
i=1 J=1

x[l _ P(=B.-Bip) ] ©2)
d-p)
where B is the geometrical safety index and the last factor
often is negligible because &(—p, —B;p;) < Y—F). In
this formula there is p; = 1 — o, i=1,2,3 with @, the
normalized mean value sensitivities (or direction cosines
of the B-point) and «; are the main curvatures in the j-
point. This yields Table 2, where for Py, the notation
ky/ly, kylly, kally is used. For the case 1/1, 1/1, 1/1 the second
last load case clearly dominates the total failure probability
because of the large coincidence probability. The initial
failure probability, assuming stationary conditions, is
largest for the last load case, however. The lower failure
probability bound is in this case 6.37 X 107° and, thus,

Load case Py P{0) Puy 11,111, 111 Pyy 10/1, 1071, 1/1 Py 511, 213, 412
000 0 490x107? 378x 107} 420x107°
100 155% 1072 1.55% 1072 4.90%107° 3.80%107° 425% 1077
010 2.64x 107" 7.65x107% 4.90%107° 6.02%107° 7.69%107°
001 128x 107" 501%107" 4.90% 107" 378%107" 342x107!
110 1.65x 107 1.61x107° 490x107* 6.10%107° 8.04% 1077
101 886x107"° 7.02x 1071 490x107° 3.82x107° 346%107°
o1 146 X 1076 544x107° 490% 107! 6.02x107" 6.48x107"
11 2,09%107° 6.40%107° 490x107° 6.08% 107 6.54%107°
Total = 1.00 1.00 1.00

Pi{0) + ZP 1y Pr i 1.61x107° 1.99x10°° 208%107°
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there is a factor of approximately two between the bounds.
Two other combinations of parameters are computed. It is
seen that the total failure probabilities differ only insignif-
icantly in this case. Larger relative differences are observed
for the dominating load case. Essentially the same findings
can be demonstrated for other combinations k, 41, ka, b, k3
and /5.

7. Concluding remarks

Based on queueing theory a technique is devised for eval-
uating the probabilities of coincidence of independent inter-
mittent loads idealized as rectangular pulses with Erlang
distributed arrivals and with durations distributed according
to a truncated Erlang distribution. Equations governing the
coincidence of different states of load processes are derived,
which constitute a set of first order ordinary differential
equations. The recursive formula for constructing the coef-
ficient matrix is provided, which allows to construct the
matrix for an arbitrary number of loads. Several closed
form non-stationary and stationary solutions (for small &
and /) are given for the Markov state probabilities and states
coincidence probabilities. It is found that the “on” probabil-
ities and the coincidence probabilities differ only insignif-
icantly for k and / a little larger than one, confirming the
earlier results of Shinozuka [10,11] and Iwankiewicz and
Rackwitz [5]. It can be found that this conclusion also holds
for larger k and [ and a larger number of contributing loads.
However, the coincidence probabilities do vary significantly
as the mean arrival time and mean durations change. It is
thus concluded that the simplest model, i.e., with Poissonian
arrivals and exponential durations may be recommended for
practical use as a conservative one. The results discussed so
far concern load processes where the “on” phases are inde-
pendent. It remains to be shown that similar conclusions
also hold when clustering of “on” phases occurs.
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Appendix A. Analytical results for Erlang distributions
A.l. Poisson/Erlang distributions: k=1 and | =2

The differential equations governing the probabilities
Markov states are

Pi=—xP| +2u P,
Py =P, —2u P, + xP;,

Py=2u Py — (% +2u )Py, (A1)

The characteristic equation becomes

66+ x+2u )Y =0 (A2)
hence the eigenvalues are

6,=0, 003 =—(x+2u). (A.3)

The stationary solution obtained via the matrix adjoint of
Ais

Py, 1(1 + p)?
Py | =] (o1 + o)1 + o) |, (A4
Psy /(1 + p)?

where p = %/2p.
Two linearly independent vectors corresponding to the
double eigenvalue are

-1 =1+ (1/2u8)
v=| 0 a+qruw) (A.5)
1 1

and the non-stationary solution obtained upon imposing the
initial conditions

Pio 1
Py |=1]0]| (A.6)
Pso 0
becomes
1
Py(n) = m(l + p((1 +p)2ut +1) + 1)
Xexp(—(x + 2 1)), (A7)
P+ p)
Pyt) = W(l — exp(—(x + 2w)1)), (A.8)
L, T ) i =
Bl= moy (1= @ut(1 + p) + Dexp(— (¢ + 2p)1))-

(A9)

Here Pz = P, and Py, = P> + Ps.
A.2. Erlang/exponential distributions: k=2 and =1

The governing differential equations are
P1 ==2uP; +p P,
Py = 2xPy — 2xP; + pPy,
Py = 2xPy — (2% + )Py + 2xPy,
Py =2xP3 — (2% + w)Py. (A.10)
The characteristic equation becomes

000 + 2% + w)(6® + (1 + 6%)8 + s + 8a7) = 0. (A.11)
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Hence the eigenvalues are

6, =0, th=—dx, O, =—CQx+p) (A.12)

The stationary solution obtained via the matrix adjoint of

Ais
1+
P = E—Lz
(1 +p)
+
Py, = lh%
- 2(1 + p)?
p. = K110
2= e,
21+ p)
Bye il (A13)
2(1 + p)*

where p = 2x/p.
The eigenvector w, corresponding to the single eigen-
value 8, is

IL—p
20— 1
w, = & ) (A.14)
plp—1)
—

Two linearly independent vectors corresponding to the
double eigenvalue are

0 =12
-1 =i
V= (A.15)
0 12t
1 1

and the non-stationary solution obtained upon imposing the
initial conditions

Pio 1
P 0
ol (A.16)
Pso 0
Pyo 0
is obtained as
1+p 1
Pi(y= —F5— + ——exp(—4xt)
S g =
i (A.1T)
- exp(— (2% + p)t), .
A+tpi—-p P

1+2p 201

= — A i—— _4
Py(1) W+ AP exp(—4xt)
,o2 ( p l) " 2aep’t
A+pP\(=p* 2/ d+p(l-p
Xexp(—(2x + ), (A.18)
p(l + p) p
= —— - _4
PO = v 31 = p )
7
S A— S’}
Gl g exp(—(2x + i), (A.19)
pl pZ
=t - exp(-4
PO= s "= M

) 2
(e —3) =)
Xexp(—(2x + w)t). (A.20)
Here Pyz= P, + P, and P,, = P3 + Py,

A.3. Erlang distributions with k=2 and 1= 2

In the case of Erlang distributions with A = 2 and { = 2 the
stationary solutions are

1+p 1+3p
= oy P A2
P =50+ op W +pr (A2l
where p = %/p.

The probability of the load being “off”” Pyy= P, + P,,
and “on” are, respectively

1+2p _p3+3p2+p
Por = RETUk T (A22)

A.4. Erlang distributions with k =3 and | =2

In the case of Erlang distributions withk =3 and ! = 2 the
stationary solutions are

b 1+2p° P:(]+p)(1+3p)
T 2 31+ ppt

(A.23)
yo e 1+4p+6p°
3T T30+ pf

where p = 3x/2.
The probabilities of the load being “off” Py = P, + P, +

P; and “on” are, respectively
_2p+ 8" + 12p° + 3p°

5
3+ 10p + 10p° -
= on 3(] +p)4

off = 30+ p)

(A24)
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A.5. Erlang distributions with k=2 and | = 3

In the case of Erlang distributions with k = 2 and / = 3 the
stationary solutions are
1+p 1+4p

Tawer T EEe )

1

where p = 2x%/3.
The probabilities of the load being “off” Pyz= P, + P,
and “on” are respectively

2+5p

- . 3p+ 12p2+8p3+2p4
2(1 + p)4 ’ g

off 2(1 = P)4

(A.26)
A.6. Erlang distributions with k=3 and | = 3

In the case of Erlang distributions with k = 3 and / = 3 the
stationary solutions are

B SR L _U+p0+4p
T30+ 9 3 ERET
(A.27)
(1 + 5p+ 10p)?
py=——"r—
31+ p)
where p = %/

The probabilities of the load being “off” Pog= P, + P, +
P and “on” are, respectively

5o LE%p50
off = (1 + P)S )
(A.28)
5 - p+502 +10g° +50° + p°
on 1+ py y
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