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ABSTRACT: In 1971 Rosenblueth&Mendoza published a paper on structural optimization the concepts of
which have been refined later by Hasofer in 1974 and Rosenblueth in 1976 in the context of earthquake re-
sistant design. In essence, these authors proposed to distinguish between structures that can fail upon comple-
tion or never and structures that can fail under rare “disturbances”. Furthermore they distinguished between
“single mission structures” and structures which are systematically rebuilt after failure. With this concept it is
rather a yearly failure rate that has to be specified and verified and not a failure probability for an arbitrary
reference time. The paper reviews Rosenblueth’s and Hasofer’s developments and extends the concepts to
more general failure models. Some needed computational tools are addressed.

1 INTRODUCTION 2 THEORETICAL BASIS

As early as 1971 Rosenblueth/Mendoza (1971)  Assume that the objective function of a structural
proposed to use optimization for assessing reliabil-  component is
itytargets with special reference to earthquake resis-
tant design in a fundamental paper. The concepts
developed therein were later refined by Hasofer B(p) is the benefit from the existence of the struc-
(1974) and again by Rosenblueth (1976). In par- ture, C(p) are the construction cost and D(p} the ex-
ticular, a distinction was made whether failure pected damage cost. p generally is a design parame-
would occur upon construction or never and at ter vector. Without loss of generality all quantities

Z(p)=B(p)-C(p)- D(p) (1)

“large random disturbances” only. A second distinc- will be measured in monetary units. A discussion on
tion was made with respect to the reconstruction matters how and to what extent this is justified is
policy. In the extremes there are just two: no recon- beyond the scope of this paper. Statistical decision

struction after failure and systematic reconstruction theory dictates that the expected values for B(p),
or repair after failure, respectively. Whereas it is true C(p) and D@p) have to be taken (v. Neu-

that both types of failure should generally be consid- mann/Morgenstern, 1943). B(p), in general, will be
ered depending on the type of loading on the struc- unaffected or slightly decrease with each component
ture the matter of reconstruction policy was appar- of p but this will be neglected without substantial er-
ently overlooked in the past. In fact, for almost all ror so that B = B(p). C(p) increases with each com-
civil engineering structures systematic rebuilding ponent of p under normal circumstances. Frequently,
after failure, be it caused by extreme loading, bad it can be approximated by C(p) ~Cp + Ze;ps €y are
construction, fatigue, other deterioration, loss of those cost which do not depend on p. In general,
serviceability, or by demolition after obsolesce, is there is Cy > > X¢;pi Dip) decreases with p in some
mandatory, at least ideally because buildings serve a  faghion. For each involved party, i.e. the builder, the
certain need by the users and this almost always PEr=  user and the society, Z(p) should be positive. Other-
sist 1o exist. Optimization for one “mission” is wise one should not undertake the realization of the
thinkable for certain construction operations only. structure, This is illustrated in Figure 1. Benefits.

cost and damages are not necessarily the same for all
involved parties. Therefore, the intersection of the
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Figure. 1: Cost and benefit over design parameter p
(after Rosenblueth/Esteva, 1972)

domains where Z(p) is positive is the domain of P
which makes sense for all parties.

Furthermore, the decision about p has to be made at 1
= 0. This requires capitalization of all cost. In the
following a continuous capitalization function is
used.

(1) = exp(—y 1) 2)

with y the interest rate and 7 time in suitable time
units. Usually, a yearly interest rate is defined and
S(f)=(1+y')" with ¥’ the yearly interest rate and,
therefore, y =In(1+3'). It will further be assumed
that y is corrected for de- and inflation and averaged
over sufficiently long periods to account of fluctua-
tions in time. Also it is assumed that the time for
construction is negligible short as compared to the
average lifetime of the structure,

2.1 Failure upon construction

If the structure fails upon construction {or when it is
put into service) or never and is abandoned after first
failure eq. (1) specializes to

Z(p) = B'(1- P(p))- C(p) - H(p) P, (p)

. . 3)
=B -C(p)-(B" + H(p)P,(p) &
1- Pp) and Pqp) are reliability and failure probabil-
ity, respectively. Hip) is the direct failure cost. In
most cases Hip) will be constant and includes the di-
rect physical damage and the cost of demolition and
removal but also cost for human life and injury so
that H{p) = H. B’ is the benefit derived from the ex-
istence of the structure. If the failure probability de-
pends on an uncertain vector R an additional expec-
tation operation is necessary and Pqp) is to be
replaced by Ex[Pqp,R)]. If the structure fails upon
construction and is reconstructed immediatel y
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Z(p)= B = C(p)—(C(p)+ )Y nP,(p)"(1- P, (p)
2 ()
= B' - C(p) ~(C(p) + H) 4 2)
7 ¥ &~ 4 !“- (}n)
Rosenblueth/Mendoza (1971) discuss at length
what is meant by reconstruction for the same reli-
ability and independence of the failure events. Here.
it is just assumed that reliability is already optimal
s0 that there is no reason to modify the design rules
after failure although, practically, the new designs
themselves will almost certainly be different from
the previous ones. Some ambiguity exists how to
quantify the benefit B in egs. (3) and (4). We have
for constant & and given reference time 7°

;" r'l’ r +11 e
B(T) = | b(n)S(t)at =—[1 - exp[~y T]] 5)
andfor T >
sinb
B =— (6)

ar
!

Unless the asymptotic value is taken a reference
time has to be specified.

2.2 Failure due to time-variant loads and/or

resisiances

Assume that the failure process can be modeled as
an ordinary renewal process. According to renewal
theory (Cox, 1962) a renewal process has independ-
ent and identically distributed, positive times be-
tween failures and subsequent renewals. The density
function of the failure times is £(1). For structures
this means, for example; that each reconstruction re-
alizes a new structure with properties independent
from the previous ones. It is useful to distinguish
between ordinary renewal processes where all times
have density g(7). For a modified renewal process the
time to first failure is £2:(t) while all other failure
times have density g(1). For an equilibrium renewal
process the time to first failure has the special form
git) = (1 — G(1))/u where G(1) is the distribution
function corresponding to g(7) and H=FE(T] The
modified renewal process may be important when-
ever the (structural) component is not “new” at 1 = ()
and the hazard function is not constant, e.g. indicates
some deterioration with age or the likelihood of fail-
ure is influenced by the time which has elapsed since
the last observed failure. The equilibrium renewal
process should be used if it assumed that the renewal
process is running already for a long time and the
time origin is placed randomly between two succes-
sive renewals. For an ordinary renewal process the
renewal function is defined as

H(n) !f{;\'(f]'i llh"(,‘\f”} n)

nwl (7,
Y(:‘_,(J) (\._:J‘,::"(rylr J“:'[T(T)(l,f

n=l

Aot
n

|
where N1) is the number of renewals in [0,t] and
G, (1) = l’{X!; IJ

I=l

The renewal density as the derivative of the renewal
function, also denoted as unconditional failure rate
or failure intensity, is

Plone or more renewals in[t,t + A]) 2.
Mi)= i ot PR G
A-+0* A o
(8)
Let
g1 = j‘\ 1t -ngln)dn | n=23.: (9)

0

be the density function of the time to the n-th re-
newal written as a convolution integral. The Laplace
transform of g(1) is

g (0= J-cxp[—t?rlgu)d!

0

(10)

If g(1) is a probability density we have g'(0) =1 and
0<g (9 <1 forall 8> 0. For the important station-
ary Poisson process with intensity A it is simply

. : & : A
g@=¢g (9= J; exp[—ﬁr]/lexp[”-if]dr = riay

(11)

2 (0 =20 Just expresses the “lack of memory”
of the Poisson process. For convolutions we have

%0 =2 0)g,.(0) =g Oz O] (12)

Hence, for

£(0) = [ exp[-01]g, (1)dt -

2'(0) = L”L‘xp[-‘-()l]g(f)dr i

we have for the modified renewal processes
K@= 60)=Y O O] = £
=l n=l g (@

(14)

For ordinary renewal processes the result holds with
£ (0 =g (6. For equilibrium renewal processes
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there is with the Laplace transform g, (6)=(1

8 (/01 of g1(1) = (1-G))/u

hy (6) =
‘ y2)

(15)

For structural facilities given up after first fail-
ure we then have with » = ¢ and where the failure
time density can be controlled by the design pa-
rameter vector p

B'(p)= ”ha‘{r) dr g,(t, p)dt

(16)
: ; b .
= | (1-exp[-7 {])g,(t. p)dt = =(1- g (7. p))
D(p) = Jggfl,pjé'(!‘)fldl =g, (y,p)H (17
and, therefore
Z(p)=—(1-2/(7.p))-C(p) - He(7.p)  (18)
; )

/

The present value of the expected failure cost for
systematic reconstruction after failure is for ordi-
nary renewal processes

D(p) =(C(p) + H}E ] o(t)g, (1, pdt

g (7.p)

(19)

=(C(p)+ H)

l-g'(7.p)
=(C(p)+ Hh (7,p)

The benefit B is as in eq. (6) in both cases. There-
fore,

26p) = e C(p)=(C(p)+ A (») (20)
For medified renewal processes f'z'z';.‘;;n is replaced
by ff_;r;a_::) and for equilibrium processes by
h 1e(¥.p), respectively.

For Poissonian failure processes with exponential
failure times with parameter A(p,R) which can be
controlled by p and depend on the random vector R
it is for structures given up after first failure

3 B s bl oo PR P
Z(p) =~ C(p) clenite Hea b gy
Y 7+A(p.R) |
; b : E [A(p,R)] o
ZAp)=—-Cp)-(C(p)+ HH)—/——=  (22)

¥ ¥
/ {

as pointed out by Hasofer (1974) and already used
by Rosenblueth/Mendoza (1971). If y - 0 and T —
e, the damage cost become finite in the first case but




infinite in the second. Hence, no optimal saluﬁnn ©
eq. (1) can be found in the latter case. Therefore, if
the second strategy is taken as the only reasonable
one, a discount rate > 0 must be assumed.

3 APPLICATIONS

3.1 General

The foregoing results can be used for general failure

processes. Let (Schall et al., 1991): ] ;

e R be a vector of random variables which are used
to model structural properties and possibly other
(non-ergodic) uncertain variables like parameters
of the loading vanables,

e () be a vector of stationary and ergodic random
sequences which are used to model long term
fluctuations in the parameters of Ilk kudmﬂ
variables, for example traffic state
wind states (10 min regimes), etc.,

» S be a vector of sufficiently mixing,
sarily stationary random processes

. .u,rr.‘; s(1),t) > 0 the safe state, g(r,q.s(1),1)=0 t_hc
limit state, g(r.g,s(1),1)< 0 the failure state of a
technical facility and ¥ = { g(r.q.5(1).1)<0 } the
failure domain.

The conditional outcrossing rate is

sea states,

noi{ neces-

vV, -

S
.‘r.gl=|amzi’| 1£(S8(r),7)>0]r, fjﬂ
(Ve(S(r+A),r+4)<0|r,q]

with V' = [fefr.q.s(1).0)< 0}
crossings is a regular process (see, for example,
Cramer/Leadbetter, 1967, or Cox/Isham, 1980), the
mean number of oufcrossing in a given time interval

[h.[:] is

£1\ 5 7 q}=

If the process of out-

[' v (V. 1r,q)dr (24)

Asymptotically for small failure probabilities the

first passage time distribution then is (Cra-
mer/Leadbetter, 1967)
P,{'{E,!:)::i—ﬁ[,“lc\p[ ﬁ[.x"ui.::gR.gﬂ"

(25)

<1-E 1:.)43[ £ L[\ (1, ,)IR.Q Um

In the stationary case eq. (25) simplifies to
Pr,t,)<1- E,,'Lc-xp'L—E{)[L,‘{[/);R, Q](r;, -1, )”(26)
It follows that the quantity A(p,R) in egs. (21) and

(22) can be replaced by the outcrossing rate and eq.
(22) can be written as

Z(p) = = - C(p) - (C(p) + H(p))

It is essential to recall that the failure process is a re-
newal process, i.e. must have independent failure
times. This means that at each renewal also the non-
ergodic vector R has independent realizations at each
renewal.

If fatigue or other
treated by the outcrossing
general formulation in eq. (20). The
fmss.lgc time distribution (all conditions and condi-
tion for failure at 7 = ! dropped) is

deterioration phenomena are

pproach one can use the
asymptotic first

G(t) =1-exp| —| v* (r)dr (28)
with density
g(1) = v' (1)exp v (r)dt (29)

This corresponds to a non-homogeneous Poissonian
failure process.

raies

19

.J']L'[‘.’E[.’I for maximum nn’H"“:‘-”'L lu" ’ re

The renewal density of a Poisson process is A(f) = A
as can easily be shown. If the
ditionally a stationary Poisson process it is now easy
to émpoéc some maxi admissible failure rate,

for example,

failure process is con-

E, _-r'(I':ﬁ.’.Q..\._:v_a‘1 Vo (30)
For non-exponential failure times this condition
must be modified. The failure rate then is not neces-
sarily constant over time. In the limit it becomes in-
finitely large for deterministic failure times. Unfor-
tunately, the relation between non-exponential
failure time distributions and the corresponding out-
crossing rates is not yet known unless the outcross-
ing approach is used as in eq. (29). Even then, it is
not obvious how and at which quantity to set reli-
ability constraints. Let G(1) be the non-exponential
distribution function of failure times and g(7) its den-
sity. In renewal theory the following important result
is proven (see Cox, 1962)

i ] %
lim A(1) = - » 0 for t = x(31)
i P

provided that (1)

with g = E[T] the mean time between failures. It is
valid for both ordinary and modified renewal proc-
esses. The condition for f{1) in eq. (31) is fulfilled for
all failure time models of practical interest. The lim-
iting operation simply says that the renewal process
is active already for a long time. This is in agree-
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ment with our basic assumptions, at least ideally

Ihe unconditional failure rate or renewal density is

asymptotically inversely proportional to the mean
time between failures that must exist. No other detail
of the particular distribution function of failure times
1s used. For the equilibrium renewal process the re-
newal density is independent of ¢ and equals exactly
h(t) I/u which follows from eq. (15). Conse-
quently, for reliability verification the mean failure
time must be computed and the corresponding as-
ymptotic renewal density must be checked against
the admissible failure rate

5 l

limh(f) = ——— v (32)
e E[T(R, rn]]

with E/T(R,0Q)] the mean time to failure. The same
concept should be followed if fatigue or other dete-
rioration is investigated by the outcrossing approach.
Then, for eq. (29) the limiting condition is, for ex-
ample

Sl 1
lim A(r) —_— = e

[ v (1, R.Q.p)dr ‘
i dt

of | 1V (0, R,Q, pleh J\

V. i sible

T'his comdition is difficult to verify.

It is interesting to study the speed with which the
renewal density approaches its asymptotic, station-
ary value. For non-exponential failure times the re-
newal density has a characteristic, damped oscillat-
ing graph around the asymptotic value with period
approximately equal to twice the mean failure time L
for failure times with smaller coefficient of varia-

tion.. The maxima occur at y 2u 3u...where the
first maximum is largest. Damping will increase
with increasing standard deviation o. For realisti-

cally large variability of failure times, say with coef-
ficient of variation > 0.2, the renewal density will
reach its asymptotic value after a few oscillations.
For example, for a gamma distribution with density
and 4 = k/A and o= /A one finds

ank . nk~] A:_\,/:H-'\! -
xpl-Atlh() =S —exXp| —4
['(nk) i '[ ] <5 T'(nk) 3

(34)

f.(1)=

showing the described behavior. For the gamma
distribution the infinite sum can be simplified for
integer k > /|

h(t) = = Lmﬂ exp| At(&(k)! ~1) (35)

with &(k) =cos(2x/ k) +isin(27/ k). With this
model (integer k) only coefficients of variation of ¥

I/vk can be obtained. The renewal density is
shown in Fig. 2 for three typical coefficients of
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(33

X
3

variation, The renewal density overshoots the as-
ymptotic value by a factor of 2 to 4 for coefficients
of variation between 0.2 to 0.1, respectively,
much less for larger coefficients of variation.

One could argue that the maximum val
max{h(t)} =~ h(u), must be used as a constraint in-
stead of the asymptotic value //u For the us
structure this requirement can make
only if he/she knows its age and knows that failures
do not occur totally at random. He/she then might
not wish to be exposed to higher risk when the
structures reaches ages of multiples of its mean fail-
ure time. If the conditions for a modified renewal
process are fulfilled, possibly in regions with seis-
mic activity where many str will be affec
by the same disturbance, the maximum renewal den-
sity may also be limi with some justification, also
from a societal point of view
would be

and by

er of a

sense if and

For society this policy
somewhat doubtful. A steady, random
stream of failures and subsequent reconstructions of
many structures should be considered. But this cor-
responds precisely t«

) the conq 1s of an equilib-
rium renewal process at any point in time lmd a con-
stant limiting value should }
1/u

The determination of max
densities known only pointwise can involve heay y
numerics. It is first necessary to take the Laplace
transform numerically and then its inverse which is a
notoriously difficult problem. It is mentioned that
not only the Laplace integral needs to be performed
but also the expectations with respect to the R- and
(-variables have to be taken. Relevant, more recent
algorithms for computing the inverse Laplace trans-
form are described in de Hoog et. al. (1982), Gar-
bow et al. (1988) and Murli/Rizzardi (1990). All of
the algorithms proposed in these references have
been found to work sufficiently well and reliably but
more experience is needed.

be used which is exactly

(h(t}} for failure time

3 3

Summary and Conclusions

The foregoing developments are based on more
than 25 years old, but apparently
looked Imdmg.\ by Rosenblueth
is really new. It is, however, believed that far
reaching comclusions should be drawn. To a certain
extent they will affect the whole safety philosophy
and methodology for structural fac They
should, at least, che inge the pl ulmnpn\ for setting up
reliability targets in codes and other
and, consequently,
verification.

First of all, the optimal solution for building fa-
cilities with or without a systematic rebuilding pol-
icy is based on failure intensities and not on time-
dependent failure probabilities. It is neither neces
sary to define arbitrary reference times of intended
use nor is it necessary to undertake the complicated

since tl over-

and Hasofer. Little

1€S.

.lpll‘hk itions

also the principles of reliability
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Fig. 2: Renewal density divided by asymptotic value
versus time divided by mean failure time

task to compute first passage time distributions. No
table of recommended reference times of usage of
structures is needed. The same targets, in terms of
failure rates, can be set for temporary structures and
monumental buildings, given the same marginal cost
for reliability and failure consequences. Neverthe-
less, it is necessary to define a time unit. For civil
engineering facilities this is no doubt one year in
consideration of the length of their life cycles. Other
choices are possible provided that the failure inten-
sities are small and much smaller than the interest
rate. Also, the optimum design parameters are inde-
pendent of assumed, highly variable lifetimes. This
does not mean that lifetime aspects, especially in
case of fatigue and other deterioration, are ignored.
Here, design must be directly for mean failure times
which are sufficient to derive the corresponding as-
ymptotic renewal densities to be checked against
target failure rates. It is proposed that for almost all
civil engineering facilities the only reasonable re-
construction policy is systematic rebuilding or re-
pair. A number of new, primarily computational
problems evolve. A few of them are mentioned.

Structures should be optimal. A suitable objective
function has been formulated. Appropriate optimi-
zation schemes are proposed in Kuschel/Rackwitz
(1998). Actual optimization may not be practical in
every day engineering work, however. For codes
failure rates may still be assessed by optimization
and, in parallel, by calibration at present practice
using Lind’s postulate that present practice is al-
ready “almost” optimal (Lind, 1977). A more de-
tailed analysis of the subject is given in Rackwitz
(1999).
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