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Design for optimal reliability
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ABSTRACT: The calculation of reliability indices for given sets of basic variables, limit state functions and
deterministic parameters is a well investigated problem. The inverse problem of finding optimal designs with
respect to reliability or cost has been subject of only a few studies. Reliability oriented optimization can be
classified into two different tasks. The first problem is the minimization of total cost under reliability and other
constraints. It has been investigated repeatedly and in part successfully. The second task is the dual optimiza-
tion problem of maximization of reliability subject to maximum cost and other restrictions. It is formulated in
an exact way in case of a single limit state function as a one-level optimization problem using the first order
reliability method (FORM) and properties of so-called design- or -point. Some mathematical theorems about
the asymptotic behavior of reliability indices are presented and can be used to support the validity of the FORM
approach. Three numerical examples demonstrate the one-level approach of reliability optimization.

1. INTRODUCTION

Effective technigues have been developed during the
last 20 years to calculate approximately the reliability
of structures. The evaluation of structural reliability
is well known for given sets of limit state functions,
basic uncertainty variables and deterministic parame-
ters. Its numerically expensive part typically is opti-
mization, at least if First or Second Order Reliability
Methods (FORM/SORM) are used. Also, the inverse
reliability problem, i.e. the determination of a free pa-
rameter in the limit state function for a given reliabil-
ity, has found some solutions (see, for example, Der
Kiureghian, 1994). Further, deterministic optimiza-
tion with respect to cost or weight or certain perfor-
mance criteria has been one of the prominent applica-
tions of mathematical optimization. The combination
of optimization and reliability analysis can be used

as a decision tool in view of the conflicting aims of

safety and economy. Reliability oriented optimization
of structures can be classified into two tasks:

a) Minimization of cost subject to reliability and
other constraints,
b) Maximization of reliability subject to cost and
other constraints,
In both cases (total) cost can include or do not include
expected failure cost
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The first task has been investigated repeatedly and in
partsuccessfully. Forexample, Enevoldsen and Seren-
sen (1993, 1994) defined the top-level (optimization
of design variables) and the sub-level (reliability es-
timation). However, a proof for general convergence
of the two-level approach is still missing. The fact,
that the failure domain depends on design parameters,
leads to mathematical difficulties of proof. The de-
velopment of interactive SQP-algorithms by Peterson
and Thoft-Christensen (1994, 1996) leads to an aca-
demic tool of handling numerical trouble inside the
algorithm. Kirjner, Polak and Der Kiureghian (1995)
proposed a promising approach in the frame work of
FORM. The algorithm essentially makes use of semi-
infinite programming techniques.

The second problem has found very little interest in
the past although it may be practically very interest-
ing, especially for certain critical components in tech-
nical systems. It turned out that this problem is a no-
toriously difficult problem from a numerical point of
view. In the following an approach for the reliabil-
ity maximization with (total) cost constraints will be
developed using a one-level approach. This optimiza-
tion problem based on an idea by Friis Hansen and
Madsen (1992) uses FORM only which is shown to
be asymptotically correct. The total cost are bounded
by maximum cost and include the initial cost and the
product of failure probability and failure cost. The



one-level optimization will be demonstrated at three
examples. The reliability optimization subject to cost
and other constraints are solved by Schittkowski’s non-
linear optimization algorithm NLPQL

2. STRUCTURAL RELIABILITY

Given is a n-dimensional vector X = (X,,..., X, )"
of random variables with continuously differentiable
distribution function Fx(x). Let further G(x,p) be
the so-called limit state function and #, the failure
domain, with .3-‘-,, = {x :G{x,p) < 0}. It is assumed,
that G(x,p) is at least twice differentiable. The d-
dimensional vector p is the vector of design parame-
ters and can involve deterministic parameters but also
parameters of the distribution function Fx(x). Refer-
ence fo the parameter vector p is omitted in the follow-
ing whenever this is possible without loosing clarity.
The problem is to determine the time-invariant prob-
ability of failure:

G{x,p}<0

Prip)= /.f-‘x;fx’x': e / fx(x) dx,

where P (-] is the probability law and fx(x) is the
probability density of X. Analytical results for this
integral are almost absent. However, let a probabil-
ity distribution transformation T : R" — R" exist
which maps an arbitrary n-dimensional random vec-
[»)* into a standard normal vec-
oel) — {1 - U)F with independent components
(Hohenbichler/Rackwitz, 1981; Der Kiureghian/Liu,
1986). With the new limit state function ¢(u,p) =
G(T(u),p) = G(x,p) and the new failure domain
Fpo=1{u:g{u p) <0}, itis:

Pi(p) = / i (dua) = / pulu) du, (2)

e ol{u,p)<o

where Py;{.) is the standard normal distribution law
and ¢y, (u) is the standard normal density. If the limit
state function g(u, p) isa linear function, i.e. g(u,p) =
o’ u + 3, the exact result for the failure probability is
Pi(p) = ®(—3) where ®(-) is the standard normal
distribution function.

If the limit state function is non-linear it will be ap-
proximated by a linear equation, ie. by g(u,p) =
a’u + A with § = —a’u’. The point u* out of the
standard normal distributed space is the solution point
of the nonlinear optimization problem (5P}

(BP)

minimize

subjectto  gl{u,p) < 0.

The solution u* of the constrained optimization prob-
lem (3F) is called design point or #-point and defines
the reliability index

By = B(Fy) = |lu] ()
The n-dimensional vector e is the vector of direction
cosines of the A-pointu*. Then, the failure probability
can be approximated by Fy(p) = ®(~/4,)
The following important asymptotic result holds for
large reliability indices. Breitung (1984) proved, that
for 8, — co s

j’;,“)] ~ ‘l‘k ""{p) i [}:‘ ]]U (4)
where the x; are the main curvatures of the limit state

function g(u, p) in the solution point u*

Boki)

3. PROPERTIES OF 3-POINTS

The equation (4) indicates that F;(p) ~ t]'(—--;‘ipj in
fact is a first order approximation which is sufficiently
accurate for most practical cases. Furthermore, the
first-order approximation only requires simple differ-
entiability of the limit state function ¢g(u, p). There-
fore, reliability analysis involves a probability distri-
bution transformation, the search for the #-point and
the evaluation of the standard normal integral. Hereby,
the search for the design point u* is the numerically
most challenging problem. Most more recent applica-
tions use a sequential quadratic programming (SQP)
algorithm specialized for the problem (SFP) (see, for
example Abdo/Rackwitz, 1991).

3.1 Optimality Conditions for [3-Points

The first-order reliability index 3, can alteratively be
used by FORM as a measure of reliability. By defini-
tion /3, is the minimum distance from the origin to the
limit state surface in standard normal space. The fol-
lowing [-point theorem is easy to prove, because the
B-point u* is a Karush-Kuhn-Tucker-point for (4F).

Theorem 1 (F-Point-Theorem) [fu’, withu® # 0,
is the solution point of optimization problem (SF),
then the following two statements hold for each p:

a) g(u',p)=0,

b) u?Vug(u',p)+ Ju ||| Vug(u’,p)|| =0.

The equations a) and b) are necessary first-order opti-
mality conditions for the design point. Later it will be

shown that the J-point theorem is the main utility for

one-level optimization algorithms in search of mini-
mal failure probability under constraints on total costs
and structural performance

1078

3.2 Sensitivity Analysis for Parameters in
[3-Points

The sensitivity analysis of a structural optimization
problem collects auxiliary information about the an-
alytical structure of solution points and can help to
transform the problems to a suitable formulation. It
further can collect information about suitable starting
values and provide insight into the cause of non-conver-
gence of optimization algorithms.

Atfirst the Lagrange function for the optimization prob-
lem (/3 P) is differentiated with respect to a parameter
element p;. Because the design-point u* is a solution
for (3 P), it follows from the Karush-Kuhn-Tucker op-
timality condition

d|u*

F[Vag(a®,p)) % -

dp;

¢ E_q!u"p‘]ﬂ)

(utpli
B IVag(, p)) = g(ut, p) 2L
7 r)p}

op;
It can be shown by the F-point theorem a), that the first
derivative of 3, with respect to a parameter element
p; can be written in the following form

1 dg(u*, p)
[Vug(u?, P}H
Use of equation (5) leads to the non-dimensional sen-
sitivities, so-called elasticities 52 j = 1, d, of
the reliability index with respect to an element of the
parameter:

ap;

,P)

dg(u*

(6)

Equation (6) can be calculated easily. The definition
of ._H';;, of course, makes sense only if the conditions
p; # 0, A, # 0 and V,g(u*,p) # 0 are fulfilled
The elasticities of the reliability index with respect to
an element of the cost vector can be used to investigate
the importance of the parameter elements in p.

3.3 Asymptotic Equivalence of ®(— Bp)
and Ps(p)

Breitung (1984) established the following theorem.
Theorem 2 (Breitung, 1984)

If0 < P(F,), then holds:

P(bFp) )

'J":-.«'rm,\.:‘,.i ]

lim -
broxs T
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It says that asymptotically a quadratic approximation
of failure surface is sufficient for failure probability
estimation.

Hohenbichler (1984) proved the following (weaker)
theorem by using the central scaling of the failure do-
main bF, u € F,} again.  The theorem
shows for the limit b — oo, that the reliability in-
dex 3, converges "relatively” to the exact reliability
index.

{hu

Theorem 3 (Hohenbichler, 1984)
If0 < B{F,) < oo, then holds:

: .1“}ﬁ.}j
M et

b 35 (bF,)

In other words:
For “large” reliability indices f; or for “small”
failure probabilities P;(p) the geometrical relia-
bility index A, computed by optimization prob-
lem (5P} is a good approximation of the (exact)
reliability index 32
In the following the cost function only depends on the
cost parameters, i.e. C; = C(p). The compact subset
Te =47 {p: G(p) < Crinvmal t of the p-space de-
fines the admissible set of cost parameters. This gives
the corollary of theorem 3

From corollary 4 follows for the reliability optimiza-
tion problem with a cost constraint:
For “small” failure probabilities P;(p) the op-
timal reliability index 3*, computed by maxi-
mization of reliability index subject to the cost
constraint C(p) < C™**™ {5 a good approxi-
mqgion of the ({if_.\;act‘l maximum reliability index
; peTg)

g~ = max(8;

4. DESIGN-BASED OPTIMIZA-
TION OF RELIABILITY

Many practical applications of structural optimization
pursue at least three conflicting aims:

 high reliability

e low cost or weight of the structure

» good structural performance




The third option will not be dealt with explicitly, how-
ever. The cost can or cannot include the expected fail-
Therefore, as mentioned above, two princi-
pally different types of optimization can be defined,
1.e. where cost (or weight, structural performance,
etc.) or reliability is optimized. The first is the op-
timization problem

(RCP):  a constrained maximization problem

where the reliability of a structure is maximized

subject to given maximum cost and other struc-

ure cost

tural performance requirements,
and the second is cost optimization problem
{CRP). a constrained minimization problem
where the total cost, possibly including initial
cost and expected cost of failure, are minimized
subject to a given minimum reliability and other
structural performance requirements
Here only reliability optimization with cost constraint
and other structural performance requirements (RCP)
will be performed

The reliability optimization problem (RCP) is a prob-
lem where the reliability of a structure is maximized
with constraints on cost including initial cost of design
and expected cost of failure, on structural performance
and on design parameters, e.g. simple bounds. The
reliability of the structure is obtained using first-order
reliability (FORM) techniques. The solution can be
viewed as a problem with two levels of optimization
The first problem (top-level) is optimization of reli-
ability The determination of the reliability index is
the second problem (sub-level) and it is needed in the
objective function (maximize reliability index) and in
calculation of total cost. Instead of using a two-level
approach the two optimizations can be combined into
one optimization problem by use of the statements of
section 3.1

More precisely, the necessary first-order optimality con-
dition for design points from F-point theorem are in-
serted into the reliability optimization problem. The
necessary optimality conditions for the reliability in-
dex problem (/) must be guaranteed by the con-
straints of the reliability optimization problem (RCP)
minimize F;(p)
subjectto  g(u,p) =0

u' Vug(u, p) + Jull|Vug(u,p)| =0
constraints on design / cost parameter
constraint for total costs

simple bounds for design parameter

simple bounds for cost parameter

The first order approximation of the failure probabil-

ity Pr(p) = ®(—/3,) is outlined in section 3. The
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following optimization problems are equivalent

minimize ', (p) and maximize 1 = |lu*|
The constraint related to total cost in (RCP) can be
specified by Cy(p,u) crermal - The function of
total expected cost C'y(p, u) includes the initial cost of
design and the cost of a possible failure of the struc.

ture. The cost function can be given as

Ce(p,u) = Ci(p)(1 — Fr(p)) + C;(p) P (p),

where C;(:) is the initial cost of design and construc-
tion, Cy(+) 1s the cost of failure and P (.) is the prab-
ability of failure, which can approximated by FORM,
i.e. the probability of failure is P;(p) = & 4.). Be-

s . F
cause structural failure probabilities are usually small.

the simplification 1 — P;(p) = 1 is admissible. The
total cost function can then be written as
Ci(p,u) = Ci(p) + Cr(p)P(—||ul). N

Itis easy to verify that the following optimization prob-
lem (RCP) will maximize the reliability of a structure
subject to a given maximum cost: Thus, the complete
optimization problem for (RCP) is

maximize u

subjectto  g{u.p 0
u'Vyg(u,p) + lull|Veg(u pll=0
LX), p)=0 "i=1..,m
};T\’E’ill} P <0 ,3=m +1,.,m

Ci(p) + Cr(p)2(—lul]) < C;

x,p) < (T(u),p) < (x*,p"

where h;(-,-), | -) are . equality and m—m are
inequality constraints for the design vector and the pa-
rameters, e.g. structural performance requirements on
parameters p. The (n+d)-dimensional vectors (x', p')
{(x*,p¥) e R" are simple lower and upper bounds
for the random vector x = T'(u) and the cost parame-
ter p. The relation ” for the simple bounds in the
optimization problem is a vector relation and is de-
fined by the ordinary order relation for the individual
components of a vector

Therefore, the inverse reliability optimization prob-
lem can completely be solved using FORM concepts
and a special generalization of the inverse reliability
problem max(3”(bF,) : p € 1) is the optimization
problem (RCP). The first-order approximation of the
failure probability, i.e. Fy(p) ~ ®(—/3,), in the cost
optimization problem (CRP), however, can only lead
to rough approximations which has to be observed
taken into account when judging the approaches by,
for example, Der Kiureghian et al. (1995) (see also
theorem 2)

5. NUMERICAL EXAMPLES

In the following section three examples for reliability
optimization (RCP) are presented. The maximization
of reliability index is carried out by a non-commercial
PC/DOS program package based on the non-linear op-
timization algorithm NLPQL by Schittkowski (1985)
and on tools of STRUREL, especially the probability
distribution transformation and distribution routines
(see SYSREL 9.0, RCP GmbH, 1997)
a main program and various tools, e.g.. for sensitivity
analysis, pre-evaluation of active/ inactive constraints
and suitable choice of starting points. The main pro-
gram and the routines mentioned above are written in
FORTRAN

5.1 Reinforced Concrete Beam

A rectangular reinforced concrete beam with parame-
ters, p = (w,d, a,) is considered in the first example
(see Friis Hansen/Madsen, 1992, but with modified
parameters) with some other cost parameters and two
constraints on parameters w, d and a

lable 5.1: Cost parameter of reinforced concrete beam

Variable
Width \"\7 C n::\lz-'c Beam [ :::_
Effective Depth of Concrete Beam d m

i Ri'l\lld.l.'. ment Area of Beam | a, | m?

I'he distributions and stochastic characteristics of un-
correlated variables of the uncertain design vector
x = (T, T, My, K) are given by

‘Table 5.2: Design parameter of reinforced concrete beam

T

“m\Imf: Stand-

Sym

ol Distri- dard derivation

‘ [Unit] bution (Parameters)

| Steel Yield Stress . T Et\ii’.jg N T 360.0/36.0

| Cone, Com. Strength | 77, [MPa] | LogN 400760
Appl. Bend. Moment | M} [MNm] | Gumbel 105 10.003
Model Uncertainty K9 Rex 0.667)

The limit state function in terms of the random vec-
tor (15, T,, My, K) and of the parameter (w,d, a,) is
given by

G(x,p) l - K —— )' I, — M

T'he failure cost C; is estimated as
Cyp = 50000CU (CU = currency unit)

I'he reinforced concrete beam has a fixed span of 5 m
and the initial cost is given by
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It consists of

Cilp) Biml (B00cwmsy - wd + 20001cum « a,)
Two constraints are given, a maximum admissible area
of reinforcement in relation to the total area of the con-
crete section and a lower bound for the area of the

beam
il - —)/ F]'f{
and

0.01 wd,

The maximal permitted total cost of the reinforced
beam is 145.00 CU . The transformed standard nor-
mal vector elements are bounded by —30.00 and 30.00
The width w and the effective depth d of the beam
have the lower bound 0.15 m and the upper bound
The area of the steel reinforce-
ment a, must be within the interval (10°*,10°2

The results of the optimization algorithm NLPQL are
for the (RCP)-problem

0.50 m respectiv f.}‘

Eable 5.3: Opis

5.2 Steel Column

T'he second example is a steel column with cost para-
meter p )

0,a,nj

Mean of Flang
Mean of Flange Thickness d mm

Mean of Height of Steel Px

T'he steel column has a constant span of 7500 mn
The function of total cost C;(p, u) includes no failure
cost, i.e. Uy = 0, and has the following form

Ci(p,u)

Ci(p) = (bd




The two by two uncorrelated design variables of the
uncertain vector x = (F,, Py, P, Py, B, D, H, Fy  E)
and the stochastic characteristics are given by

Table 5.5: Design parameter of steel column

Symbol | |‘i.\-f-ﬂ‘

[Unit] butior

[ F,[MPa] | LogN | 400735

Dead WeightLoad | PypN] | N |

Variabie Load Py N] - | Gumbel | 600000 / 90000

PyN] | Gumbel | 600000 /90000
B [mm} LogN b
Dimm) | 1 ogN ! d
| H [mm] LogN | h
Folmm} | N | 30

| E'MPa] | Weibull [

Mean

Stand-

dard derivation

500000 / 50000
Variable Load |
Flange Breadth

i Flange Thickness
Height of Profile
Initial Deflection \

Youngs Modulus

21000 7 4200

The limit state function in terms of the random vec-
tor x , the parameter (b,d, h) and auxiliary functions

A M, M, &P = P, + P, + P; is defined by
Gi{x;p) =

where
= P =

BD, (area of section)

{modulus of section)

I
iy P

i

= =BDH*® (moment of iteria)

(Euler buckling load)

of steel column with

maximum Cost 14 000,00 CU to 13 000,00 CU

[ Maximal Optimal cost
cost vector p

h*
100.00

4000.00 200.00 |

S5000.00 | 200.00 | 100,00 |

6006600 200.00 100.00

700000 i 30.00 | 100.00 |

§ 1 |
i(3.00 0.00 | 30.00 | 100.00

9000.00 | 30.00 100.00

1000000 | 31667 | 30.00 | 100,00 9.605

10.180
16.709

11.065

11 00000 100.060
100.60

200.00

350.00 | 30.00
18333

400.00 30.00 i

12 600.00 30,00 |

No other constraints on cost and design parameters
are given in the example. The nine elements of the
transformed standard normal vector u must be within
the interval (—30.00, 30.00). The means of flange
breadth b and flange thickness d have the lower bounds
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400.00

350,00 4

300004

250.00 +

200.00 4

150.00 4

100.00

Optimal cost parameters

50.00 4 |

: |
0.00 I ] i e e |

\) \] \ \] \] \] \] \] \}
N @ D o o o KA

Maximum total cost

Figure 5.1: Dependence of optimal cost vector elements ,ij‘ h and h on

maximal admissible total cost of the steel column

1 I ] 1 1 1 I 1
\} o0 b ) \) R ) D b
G A o P Rl \(‘J‘ AR AP
> y N \ \?
Maximum total cost
Figure5.2: Dependence of reliability index on maximal admissible total

cost of the steel column

200 mm resp. 10 mm and the upper bounds 400 mm
resp. 30 mm. The interval (100[mm], 500[mm]) de-
fines the admissible mean height 4 of the T-shaped
steel profile.

T'he results of the reliability optimization of steel col-
umn with various maximal permitted (total) cost are
given by table 5.6.

The increase of the parameters b, h and h depends
on the maximum cost and the importance of the in-
dividual parameters for the reliability of the structure,
i.e. the value of gradients of limit state function. It
is easy to see, that at first the mean of flange thick-
ness and only subsequently the mean of flange breadth
increases to the upper bonds 30,00 and 400.00. The
mean of height of steel column remains at the lower
bound up to maximum cost from 12 500 C'U Figure
5.1 illustrates this,

It is further seen that higher maximal cost ("maximal
lead to an increase of the maximum reliability index.
But figure 5.2 shows also that the reliability indices
[, from the (RCP)-problem decrease exponentially
for lower maximum cost.

Pile Sheet Wall Stability

The stability of a pile sheet wall with the deterministic
cost parameter p =(a,, eps, ¢, i, 1, hot, h,,A,,‘ 1S con-
sidered in the last example. The parameters are given
by table 5.7.

Table 5.7: Cost parameter of pile sheet wall stability

Variable [ Symbol | Unit
oL

Bounds
kN/m

Ist Anchor Force Ir g (275, 325)
| (0.1, 1.0)

| Anchor angle | eps rad
‘ (2.5, 3.0)

Depth of sheet wall | |
(10, 20)

(10, 20)

| Horizo. Length of st Anchor 1
i Horizo. Length of 2nd Anchor | v [ |
Depth of 1st Anchor Head 1 3.5
Depth of 2nd Anchor Head (7, 10)

| Excavation Depth m 14

For simplicity of illustration the function of total cost
Ci(p, 1) includes no failure cost, i.e. Cy(p, u)=C;(p).
It can be written in the following form:

Ci(p,u) = (2t + I3 + 4hg) - B < 47.00CU.
B is a coefficient close to one. The uncertain vector
x = (Phi, G, C, Q) and the stochastic characteristics
of design variables are given in table 5.8. The fric-
tion angle Phi and the cohesion C' are correlated by
p(Phi,C) = —0.5. All other uncertain parameters are
uncorrelated. The depth of the foot of the second an-
chor is defined by hy = hgy + Iy sin(eps)

Table 5.8: Design

ameter of pile sheet wall stability

Symbol ‘ Distri- Mean / Stand-

ihnit] -
Fht [rad]

bution dard der

LogN

Variable

| Friction Angle | 0.52/0.039

Specific Weight
| of Seil
|
| Cohesion

la
Service Load | |

G |I\N‘:n‘1| | N
C' kN m-"| LogN

| .
on ground | € [kN u!"ll

Gumbel |

T'he limit state function can be assessed by the limit
equilibrium method and is given below in terms of the
uncertain vector (Phi, G, €, Q), the deterministic pa-
rameters (hg, h) and the cost parameters (ay, eps, ¢, I;,
ly, hoy, hgs ) in the following form:

f,'Fx\p_l Fg - cos( Phi/2-Cy3)
+F, (cos( Phi-Cy-eps)

(Cy+1Cy) cos( Phi) + Cyz sin( Phi/2-0-n [4)

+(G1+ P ) sin( Phi-9d) + (Go+Ps) sin( Phi-x /4)

v cos( Phi-J-eps))

where Fg, Fo,v,Pi,Ps, Gi,Ga2,Cy,Ca,Cys are aux-
iliary functions of the geometrical and stochastic vari-
ables not given herein. The anchor lengths are subject
to optimization and there is [, Asinthe last
example the interval (—30.00, 30.00) is the admissible
domain of the n standard normal elements

The numerical results for the best stability of the pile
sheet wall given the cost constraint and the other con-
straints are :

Table 5.9; Optimization results for pile s

Optimization results

ilure Probability

(-4.09, 035, -0.50, 0.06)

Itis seen that all design variables are either at the lower
or upper bound except [;. Because uncertainty in the
friction angle dominates the problem, the parameter I
is the parameter which is least sensitive to variations
in the friction angle.

6. SUMMARY AND CONCLUSION

A one-level reliability optimization (RCP) based on
FORM given maximum expected total cost and, pos-
sibly, some other constraints is derived.

I'he great advantages of a ene-level optimization prob-

lem (RCP) are:

e a well-known standard non-linear optimization al-
gorithm, e.g. a SQP-algorithm, can be used to solve
the problem,
scaling problems for complicated problems are han-
dled by standard optimization routines,
the methods appear locally stable and robust
the formulation of the optimization task is espe-
cially simple

The formulation has, no doubt, some disadvantages
(see also Madsen and Friis Hansen, 1992):
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* a standard space formulation is required in order
to perform the FORM analysis. A probability dis-
tribution transformation from the standard normal
u-space to the original space x must be included ex-
plicitly. Those probability distribution transforma-
tions may require additional numerical effort and
can cause numerical problems in extreme cases (nu-
merical inversion of distribution functions).

o the numerical calculation of second derivatives of

the limit state function is required,

monotonic transformations of the objective func-

tion and the cost constraints sometimes are neces-

sary in order to achieve convergence.

good starting values sometimes are required to

achieve convergence.

If the cost constraint is a simple function of p only
the algorithm turns out to be very robust and efficient.
I'he cost function Ci(p, u), however, is strongly non-
smooth for very small reliability indices B,
failure cost. In this case suitable monotonic transfor-
mations can improve efficiency and reliability of the
For small failure probabili-
ties cost constraints including the expected failure cost
should also be transformed so that the cost constraint
Cyrezimal _ ¢ (p, u) possesses numerically non-zero
gradients in the entire parameter domain. A sensitiv-
ity analysis of the cost function and an investigation
of importance measures or of elasticities can help to
retain numerically non-zero gradients: For very large
reliability indices, say ||u 10, the total expected
cost are approximated simply by the initial cost C;(p).

and large

algorithm considerably.

In summary, the one-level formulations for reliabil-
ity optimization proposed in the paper is limited to
FORM formulations. However, the asymptotic cor-

rectness of reliability optimization with cost constraints

is proved by a corollary showing the asymptotic equiv-
first-order and exact reliability indices for
small failure probabilities. The structure of the result-
ing optimization problem is rather simple. An exten-
sion to SORM formulations appears to be not straight-
forward. Only one optimization algorithm, preferably
a SQP-algorithm, is necessary for the solution of the
design-oriented problem (RCP). Nevertheless, the
problem can have constraints with widely varying gra-
dients and even zero gradients in extreme cases. There-
“tricks”, e.p. transformations
of constraint functions or determination of "good”
starting values, must be applied in order to achieve
convergence of the numerical optimization algorithm.
With these auxiliary tools it can be stated that the used
NLPQL-algorithm works quite efficiently.

The maximum reliability problem is formulated for
one state function only. Hence the (RCP)-formulation

alence of

fore, several numerical
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is restricted to one failure mode only. The generaliza-
tion to multiple failure modes (unions of failure modes)
appears possible and will be investigated.,
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