Mathematical Methods of Operations Research (1997) 46:309-333

Two Basic Problems in Reliability-Based Structural
Optimization

Norbert KuscHEL and Riidiger RAckwiTz

Technische Universitit Miinchen, Arcisstr. 21, 80290 Miinchen, Germany
e-mail: rackwitz@massivbau bauwesen.tu-muenchen.de

Abstract: Optimization of structures with respect to performance, weight or cost is a well-known
application of mathematical optimization theory. However optimization of structures with respect
to weight or cost under probabilistic reliability constraints or optimization with respect to reliability
under cost/weight constraints has been subject of only very few studies. The difficulty in using
probabilistic constraints or reliability targets lies in the fact that modern reliability methods them-
selves are formulated as a problem of optimization. In this paper two special formulations based on
the so-called first-order reliability method (FORM) are presented. It is demonstrated that both
problems can be solved by a one-level optimization problem, at least for problems in which struc-
tural failure is characterized by a single failure criterion. Three examples demonstrate the algorithm
indicating that the proposed formulations are comparable in numerical effort with an approach
based on semi-infinite programming but are definitely superior to a two-level formulation.

Key Words: Reliability-oriented optimization, structural reliability, reliability optimization, cost
optimization, one-level optimization.

1 Introduction

Optimization of structures with respect to weight or cost has been one of the
prominent applications and challenges of mathematical optimization. Observa-
tion of reliability constraints in terms of “‘safety factors” has always been a
natural part of many studies. More recently, optimization under reliability
constraints in terms of restrictions on stochastic quantities such as the variance
of some structural performance quantity or the failure probability itself has
been under study. Unfortunately, in most cases the reliability part was dealt
with on a somewhat elementary level. However, it is not more than about 20
years ago that the theory of structural reliability experienced a breakthrough in
that it could reduce the task of solving high dimensional volume integrals — still
a numerically rather impractical problem by standard methods — into an opti-
mization problem plus some simple algebra. That theory is of asymptotic
nature and based on so-called Laplace integrals (Hasofer/Lind (1974), Rack-
witz/Fiessler (1978), Breitung (1984), Hohenbichler et al. (1987)). It is known
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by Second-Order-Reliability-Method (SORM) and has a natural, significantly
more practical first order version, the First-Order-Reliability-Method (FORM).
Numerous developments in part making use of importance sampling methods
and response surface methods have turned the initial ideas into a powerful tool
for practical reliability analysis. Its use in structural optimization, however,
resulted in serious numerical problems. Therefore, whereas the reliability anal-
ysis of structures now is well known and computationally efficient the inverse
problem of optimal probabilistic design of structures is still under development.
Various attempts have been made by formulating a 2-step-algorithm, one for
the design parameters and a second for the reliability part and which is called
by the first (see, for example, Enevoldsen, Serensen (1993, 1994)). If, for
example, sequential quadratic programming methods are used on both opti-
mization levels second order derivatives, mostly evaluated numerically, are
required at the second level for FORM and even third order derivatives for
SORM. Moreover, a mathematical proof is still missing under which such
a two level approach is converging. The difficulty of proof lies in the fact
that the failure domains themselves depend on the design parameters. The
numerical difficulties lead some authors to develop interactive SQP-algorithms
(Pederson/Thoft-Christensen (1994, 1996)), apparently with some success.
Another promising approach in the framework of FORM making use of
semi-infinite programming was recently proposed by Kirjner, Polak and Der
Kiureghian (1995).

In the following yet another approach will be developed based on an idea
proposed by Madsen/Friis Hansen (1992) which is also based on FORM. Two
formulations will be developed. The first optimizes structural weight or cost
under reliability and performance constraints. As a generalization cost will be
understood asexpected cost, i.e. including the failure cost multiplied by the failure
probability. Hence, the objective itself contains reliability. The second formula-
tion will optimize structures for reliability under cost and performance con-
straints. Both types of formulations will be demonstrated at simple examples.

2 Structural Reliability Methods-Optimality Conditions for #-Points

Let X = (X;,...,X,)" be a n-dimensional vector of random variables with
continuously differentiable distribution function Fx(x). Let further G(X,p) <0
be the failure domain and G(X, p) = 0 the so-called limit state which is assumed
to be at least twice differentiable. p is a d-dimensional vector of design param-
eters. It can involve deterministic parameters but also parameters of the distri-
bution function Fx(x). Then the time-invariant probability of failure is given by

Pp= | fx(x)dx (1)

G(x,p) <0
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where fx(x) is the probability density of X. Analytical results for this integral
are almost absent. However, let a probability distribution transformation
T:R” — IR” exist which maps an arbitrary n-dimensional random vector X =
(Xl,...,X,,)T into an independent standard normal vector U = (U, ..., U,,)T
(Hohenbichler/Rackwitz, 1981, Der Kiureghian/Liu, 1986, Winterstein/
Bjerager, 1987). With G(x,p) = G(T(u),p) = g(u,p) and the failure domain
Fp ={u:g(up) <0}, itis

Pr(p) = | Pu(du)

Ne—

= | gy(u)du 2)

where Py (.) is the standard normal distribution law and ¢ (u) is the standard
normal density. Now, if g(u,p)=a’u+f an exact result is Pr(p) =
&(—f).#(.) is the standard normal integral. If g(u, p) x a’u+f with
B = —a’u* and where u* is the solution of the following optimization problem

(BP) minimize [[ul|

subject to g(u,p) <0,

there is Pr(p) = @(—f,) (Rackwitz/Fiessler, 1978). The solution point u* of
the optimization problem (SP), the so called design point or B-point, defines
the reliability index

By = Iv'll (3)

@ is the vector of direction cosines of the solution point. Reference to the
parameter vector p is omitted here and in the following whenever this is possi-
ble without loosing clarity. Breitung (1984) established the following asymptotic
result. For §, — oo there is:
n—1 ~1/2
Prp) = [ ou(wdum (=) [T (- Fpe)™ @

g(u,p) <0

where x; are the main curvatures of the limit state function in the solution
point. This result indicates that Py(p) ~ @(—pf,) in fact is a first order approx-
imation which is sufficiently accurate for most practical cases. Note that, the
first-order approximation only requires simple differentiability of g(u,p) = 0.
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All subsequent considerations will be based on the first order theory. Hence,
reliability analysis involves a probability distribution transformation, the search
for the “f-poinr” and the evaluation of the standard normal integral. Hereby,
the search for the “f-poins” is the numerically most challenging task. Most
more recent applications use a SQP-algorithm specialized for the task in opti-
mization problem ($P) (see, for example Abdo/Rackwitz (1991)).

For FORM the first-order reliability index f, i.e. the minimum distance
from the origin to the limit state surface in standard normal space, can alter-
natively be used as a measure of reliability. If u* is an optimal point for (fP),
the fi-point is a Kuhn-Tucker-point.

Theorem 1: If w*, with w* # 0, is the solution point of optimization problem (fP),
then the following two statements hold for each p:

a) g(u,p) =0, ‘
b) u* Vug(u*, p) + [lu*[[[|Vug(u*, p)|| = 0. O

*

Proof: Because of the assumption, that u* is the solution point of the opti-
mization problem (fP), the Kuhn-Tucker-condition is fulfilled.
There exists 4 > 0 with:

i) Vu(lu[)) + AVug(u*,p) = 0,
ii) Ag(u*,p) =0.

Since u* # 0 it follows from 7) and i) with u* = —1|ju*||V,g(u*,p) and 4 # 0
that there is

g(u’,p) = 0.

Further from /) we have

[} = Affu’[[|Vug(u”, p)|

and

1

L (5)
[Vug(u, p)||

A
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With (5) it 1s easily verified that

Vag(u*,p) ”Mu* =0.
Jlu]]

Using simple vector multiplication with u* the final result follows:

" Vag(u', p) + [u'] [[Vag(u®, p)] = 0. u

3 Reliability-Oriented Structural Optimization

Many practical applications of structural optimization pursue at least three
conflicting aims:

¢ low cost or weight of the structure
e high reliability
e good structural performance

The third option will not be dealt with explicitely, however. The cost can or
cannot include the expected failure cost. Therefore two principally different
types of optimization can be defined, i.e. where cost (or weight) or reliability is
optimized:
(CRP) a constrained minimization problem where the total cost, possibly
including initial cost and expected cost of failure, are minimized subject to
a given minimum reliability and other structural performance requirements,
and
(RCP) a constrained maximization problem where the reliability of a
structure is maximized subject to a given maximum cost and other struc-
tural performance requirements.

3.1 Cost Optimization with Reliability Constraints (CRP)

The structural optimization problem (CRP) is a problem where cost, including
Initial cost of design and expected cost of failure are minimized with constraints
on structural performance, design parameters, and on reliability. The reliability
is obtained using first-order reliability (FORM) techniques. In principle, the
solution is a problem with two levels of optimization. The first problem (top-
level) is cost optimization. The second problem (sub-level) determines the reli-
ability index which is needed in the objective function (failure cost) and in at
least one constraint. Instead of using a two-level approach the two optimiza-
tions can be combined into one optimization problem.
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The necessary first-order optimality condition for design points from Theo-
rem 1 are inserted into the cost optimization problem. More precisely, the
optimization problem (CRP) must fullfil the necessary optimality conditions for
the reliability index problem (BP):

CRP minimize C(p,8,)
subject to g(u,p) =0
u"Vaug(u,p) + [[u]|[Vug(u, p)[| = 0

constraints on design and cost parameter
constraint for reliability
simple bounds for design and cost parameter,

The constraint related to reliability in (CRP) is specified by ®(—f,) < PP,
where P is the maximum allowable failure probability.
The objective function C(p,f},) can be given as

Cl(pv u) = C(p»pp)
= Ci(p)(1 = Pr(p)) + G (P)Pr(p)
~ Ci(p) + G (p)P1(p) , (6)
where C,(-,-) is the objective function of total expected cost, C;(-) is the initial
cost of design and construction, Cy(-) is the cost of failure and Py(-) is the
failure of probability. The simplification is admissible because structural failure
probabilities should be small numbers.
Thus, the complete optimization problem for (CRP) is:
(CRP)  minimize  Ci(p,u) = C,(p) + C(p)B(~ul])
subject to g(u,p)=0
u'Vug(u,p) + [[u][Vag(u, p)|| = 0
hi(T(u)Yp):O) i:17""mI
]:;j(T(u)7p)S01 j:m'—|—l,...,m
D(—|jull) < PF

(x',p') < (T(w),p) < (x*,p") ,

Two Basic Problems in Reliability-Based Structural Optimization 315

where 4;(-, -) denote m' equality constraints and izj(-, -) denote m — m' inequality
constraints for the design vector and the parameters. (x, p’), (x*, p*) are simple
lower and upper bounds for the random vector x = T(u) and the parameter p.
The vector relation “ < is defined by the ordinary order relation for the com-
ponents of a vector.

3.2 Reliability Optimization with Cost Constraints (RCP)

The inverse optimization problem (RCP) is a problem where the reliability is
maximized, i.e. the failure probability is minimized under constraints on struc-
tural performance and design parameters. The total cost, including cost of
design and expected cost of failure, are bounded by maximum total cost.

The necessary optimality condition of the reliability index problem (fP) is
fulfilled by each solution point of the following problem (RCP):

(RCP) minimize Ps(p)
subjectto  g(u,p) =0
u’Vaug(u,p) + [[u][Vag(u, p)|| = 0

constraints on design and cost parameter
constraint for total costs

simple bounds for design and cost parameter,

where Ps(p) is defined by the FORM-approximation of the failure probability
given in section 2. Clearly, the following optimization problems

minimize Pr(p) and maximize 8, = [[u"||

are equivalent. It is then easy to verify that the following optimization problem
(RCP) will maximize the reliability of a structure subject to a given maximum
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cost:

(RCP) maximize [Jul|
subject to g(u,p) =0
u'Vug(u,p) + [u][Vag (u, p)l| = 0
hi(T(u),p) =0, i=1..n
h(Tu),p) <0, j=m+1....m
Ci(p) + Cr(P)P(—lull) < C

(x',p) < (T(u),p) < (x",p")

where C;(-) + Cr(-)@(—|| - ||) are the total expected cost defined by (6) and C}"*
is a maximum total cost.

4 Sensitivity Analysis for CRP and RCP

It is well known that sensitivity analysis of a structural optimization problem
can help to formulate it appropriately and collect information about suitable
starting values. It further can provide insight into the causes of possible non-
convergence.

4.1 Sensitivity Analysis for Parameters in the f-Points

In a first step the Lagrange function for the optimization problem (#P) is dif-
ferentiated with respect to a parameter element p;. From the Kuhn-Tucker
optimality condition of the problem (fP), especially equation (5), follows for
the optimal f-point u*:

By _ o’
ﬁpj i (7]9/

2

¥ (“’( Vagu, p)| —gu" ) - M)~||vug<u‘.p)n”--

=
opj Gy
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Because the f-point u* is the solution for the reliability index problem, it can be
shown by theorem la), that the first derivative of B, with respect to a parameter
element p; has the following form:

&Py _ I dg(u', p)
Ve p) o

(7)

The non-dimensional elasticities Sf/,j =1,...,d, of the reliability index with
respect to an element of the parameter are obtained by use of equation (7):

i %.ﬂ
b op B,

1 pi Og(u*,p)
= x| (8
Vag(ut, )|~ [lur]  ap )

Of course this definition makes sense only if p; # 0 and f, # 0. Equation (8)
can be calculated easily. It can be used to investigate the importance of the
parameter elements in p. Knowing the elasticities enables to determine a good
starting vector (u’,p’), which may be essential for convergence.

In particular, starting values u; # 0,i=1,...,n, can be selected such that
: 0g(0 dg(0
u? =g(0,p) +s- ¢ ‘t{;l{’[)) ith s > 0 depending on the value of (}(u .P)
U dad}

4.2 Sensitivity Analysis of the Cost Function and Importance of Sensitivities

The first derivative of the cost function C, with respect to the d cost parameter
elements p; and the » elements #; of the transformed vector u can be written as:

(7C[(p, u) ("C,( (C] )

ot (||} 9)
Op; °pj
and
0Ci(p,w) _ -~ i
o = =G () o (10)
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where ¢ is the 1-dimensional density function of standard normal distribution.

From equation (9) follow the elasticities S;*, j=1,...,d, of the total cost
function C, with respect to the parameter element p;:
aCi(p) 0G(p) pi
8¢ = ( + ®(—||u . 11
5 " (= luaf) - o ) Clow (11)

For values much less than zero the standard normal distribution converges
very quickly to zero, e.g. ®(—5) = 2.87 - 1077 or &(—7) = 1.29 - 102, There-
fore, for large reliability indices = ||u||, for example, [|u|| = 7.0, the two
products involving the failure probability P, or, more precisely, its FORM-
approximation ®(—||u|)) - Cr(p) and @(—|lu||) - 3Cs(p)/dp;, respectively, are
small. In this case the elasticities Slf' of the total cost function C, with respect to
the parameter elements p; from equation (11) can be approximated by:

SC ~ aci(p). Pj
H ap;  Ci(p)

The elasticities SC', i = 1, ..., n, of the total cost function C; with respect to the
n elements of the transfonned vector u follow from equation (10):

U;

s =G4l T47) gy 12

Again, the standard normal density ¢ decays rather rapidly to zero for values
far from zero, e.g. ¢(—5) = 1.49-107¢ or $(—7) =9.13- 10~ 12 Therefore, for
large values of reliability index § = ||u|| the standard normal density function ¢
can be set equal to zero and, therefore,

G
SS %0

Since the elasticities S,f_' can be approximated by zero, a change of an element
u; of the vector u leads to a “ZERO-change” of the total cost function including
initial cost and expected cost of failure.

4.3 Optimality Conditions for Solution Points

The Lagrange function for the optlmlzanon problem (CRP) can be written
with the Lagrange multipliers (v, ) € R” 2 x R""~ m+2n42d+1 iy the following
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form:

Le(u,p, v, 2) =Co(p,u) + vig(u, p) + v2(u"Vag(u, p) + [[ul|[[Vag(w, p)1)

m—nt'
e Z V1+ZhA Z

+ Amm1 (P(= ) — PF%)

+ 27 ((x,pl) = (T(u), p)) + AT((T(w),p) - (x*,p*)),  (13)

where the Lagrange-subvectors Mt e IR"M for simple bounds of demgn vector
and cost parameter are defined by M= (l,,, VT SRS +,,+d+1) and 1" =
(Am—mt+ntd+2s - « - s dime m+2,,+p_d+1) , respectively. The gradient of the Lagrange
function uses the gradient of the second equality term in (CRP) and (RCP). But
with Theorem 1b) it is easy to verify that this gradient is equal to zero in an
optimal point, i.e. a Kuhn-Tucker-point. Then:

V(" Vug(u,p) + [[u]|Vag (0, p)ID e pry =0 - (14)

where the operator V() defines the gradient vector of a function with respect to
the (n + d)-dimensional vector (u,p).

From the equations (13) and (14) the first order Kuhn-Tucker-conditions for
the reliability-based optimization problem (CRP) follow directly:

Theorem 2: (KUHN-TUCKER-condition for ( CRP)-formulation)

If the (n+ d)-dimensional vector (u*,p*) is a solution point of optimization
problem (CRP), then a Kuhn-Tucker-vector (v*,1") € R" R R
exists with:

ic) VLE (u*,p*,v*,4")
< —Cr ) ) g )
%c@)+m4mquw)

3 (Vug(u :;D +i vr‘"z(VTh Vb ()T(p*)) V)T(“*))

i=1
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(Ve (T(), p) - VuT) ) | . (—¢(Ilu*ll)-“31)
+Am7m’ ’
;’( Volt(T(u) p') ) o 0
*u *\T V“T(u*)
@ ( 1 )

=0

iic) Complementary Condition for (CRP) :
IR T, P =0 = diim =t

A 11 (P(=07]) — PF) =0

!

2 ((x, p) = (D), p7)) =
2T((T('),p) — (x*,p*)) = 0 0

The Lagrange function for the reliability optimization problem (RCP) is for-
mulated as:

Lg(u,p,v,2) = —ull + vig(u,p) + v2(u” Vag(u, p) + [u]|Vug(u, p)II)

m

m-, m
=+ Z vl+2hl Z

=1
+ Ap—nr+1 (Cl(]’, ) o C,ma,\)

+ 27 ((x,p") = (T(w), p)) + 27 ((T(u),p) — (x*,p*)) . (15)

where (v,4) e R”*2 x R™ " +242041 are the Lagrange multipliers of the

problem.
From the above formulation of the Lagrange-function for the reliability-

based optimization problem (CRP) the first order Kuhn-Tucker-conditions
give:

Theorem 3: (KUHN-TUCKER-condition for (RCP)-formulation)
If the (n+ d)-dimensional vector (w*,p*) is a solution point of optimization
problem (RCP), then a Kuhn-Tucker-vector (v*,1*) € R™*2 x R +2n+2d+1
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exists with:

iR) VLC(“*’ p*v V*7 ’l*)
T o (Vug(“’vp’))
0 Vag(u', p*)

ML Vahi(T(u),p) -V T(ur)
+Z"‘“( Vyhi(T(u"), p") )

i=l

2 [Vrhy (T, pY) - VT (u)
+Z< Vol (T(u), p*) )

. ( Gl ) iy >
"N 0, Cilpt) + SV Cr (p°)

e 2y (PTO)

=0
iir) Complementary Condition for (RCP) :
Ah(TW),p) =0, j=1,....m-m
Amm+1(Ce(p*,0") = C74%) =0
() = (T, ) =0

v 4

AT ('), p7) — (")) =0 O

5 Asymptotic Equivalence of @(—f,) and P/ (p)

The following theorem states that asymptotically a quadratic approximation of
failure surface is sufficient for failure probability estimation.
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Theorem 4: (Breitung, 1984)
If 0 < Z(Fy), then for each p:

lim ol YR
b—oo .‘?(bg’—so[g}w’p) S O

Hohenbichler (1984) proved the following (weaker)
the central scaling of the failure domain bF, = {b
theorem shows for b — oo, that the reliabilitp
to the exact reliability index ﬂf

asymptotic result by using
u:ue Fp}. The important
y index fi, converges “relatively”

By = B5(Fp) = 07! (Py(p)) .

Theorem 5: (Hohenbichler, 1984 )
If 0 < B(Fyp) < 0, then for each p:

BTy
) O

In other words:

For “large”' reliability indices ﬂf or for “small” fajlure probabilities P/ (p)
the geometrical reliability index B, computed by optimization problem (fP)
is a2 good approximation of the (exact) reliability index BE g
The following consideration will be bag t
on the cost parameters only, i.e. C=
{p: C(p) < C"™"™m} of the p-space defi
ters. Then the following corollary of the

ed on a cost function which depends
C(p). The (compact) subset T =
nes the admissible set of cost parame-
Hohenbichler-Theorem can be proved.

Corollary 6. If 0 < B(F,) < oo, then Jor each p:

max(B(bZ,):pe Tc) =
b max(B (b )  pe Te) -

From corollary 6 follows for the reliabilit
constraint:

F Sgedsr;lall fa}lu.re pr obabilitie.s Iff’(p) the optimal reliability index f*, com-
p y maximization of reliability index subject to the cost constraint

C(p) < Cximum is a good approximati ili
al % 0 i i
e e f e n of the (exact) maximum reliability

Y optimization problem with a cost

Two Basic Problems in Reliability-Based Structural Optimization 323
Proof:

i) The reliability index f, = f(F) fulfills
B(bF ) = bB(F,) , (16)

because

BbFy) = min{llul : ue bF,)
= min{||bul| :ue {u: g(u,p) <0}}
= min{b|ju]| : ue Z,}
= bmin{|jul| :ue £,}
= bB(F,) .

ii) If the reliability index 8, exists for all p, i.e. 0 < f(#}) < 00, then the limit
lig} xpE (L #,) exists with:
X

. o1
Vp: 1;%1 xﬂE<; 30',,) = B(Fp) .

The reliability index g, fulfills the assumption 0 < f(#}) < co. It follows
from theorem 5

lim ————ﬂ;by") =1
bow B5(bF )

I

From equation (16) further follows

M_ lim bB(F)

b BE(bF,) b BE(BF)

. b
=) fm sl
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E
e FACORCE )

Lemma 7: Let A = RY be a compact subset of the d-dimensional real space.
The function f - (0,00) x A — (0, 0c) is continuous on [0,0). It holds for
eachpe A:

f,p) = l,i{{} J(x,p) .
and therefore
r;lca}{f( P} = 1;?3 r;lea}{f( xp)}- O

iii) Equation (18) follows with £ (x,p) = xf* (L #,) and £ (0,p) = B(F,)

max{ﬂ(fp)} = l;m max{xﬂ ()lc a_p)} : (18)

peT,

With the equations (18) and (16) it is easily verified that

max{A(F, )} max{f(#p)}
b hfn ;réaTx{xﬁ Lz p)} 11m i max{ﬂ (bF )}
ek f(#)}
=b1‘~"5-‘o%-g5x{/zf(b 72}
3 max{f(bFy}}
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Finally we get

max(B(b#,) :pe Ic)
b= max(B(bF,) :pe Tc)

=1. |

This means that the (RCP)-problem can be solved asymptotically exact,
whereas the (CRP)-problem can be solved only approximately in our for-
mulation.

6 Numerical Examples

In the following three examples for reliability-based optimization, which use the
solution of the problems (CRP) and (RCP), are presented.

The reliability-based structural optimization is carried out by a non-
commercial PC/DOS program package based on tools of SYSREL 9.0 routines
(see SYSREL 9.0, RCP GmbH, 1994), and the non-linear SQP-optimization
algorithm NLPQL by Schittkowski (1985) both written in the programming
language FORTRAN.

The first example compares our own results with an example using semi-
infinite programming which was outlined by Kirjner, Polak and Der Kiur-
eghian (1995). The problem is to determine the depth 4 and width b of a short
column with rectangular cross section with a minimal total mass bh. The
uncertain vector X = (P, M, Y), the stochastic parameters and the correlations
of the vector elements are given by:

Variable Symbol | Distribution | Mean/St. dev. | Unit | Corr. P | Corr. M | Corr. Y

Yield Stress P Normal 500/100 MPa 1 0.5 0

Bending M Normal 2000/400 MNm 0.5 1 0
Moments

Axial Force Y Lognormal 5/0.5 MPa 0 0 1

The limit state function in terms of the vector x = (P, M, Y') and the parameter
vector p = (b, h) is given by:

aM P?
bh’Y  (bhY)?

G(x,p)=1-
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The cost (or mass) function is
C(p)=b-h.

No constraints on parameters are given. The depth 4 and the width b of the
section had to satisfy 15 < & < 25 and 5 < b < 15. The allowable failure prob-
ability is 0.00621 or in other word a reliability index less than or equal to 2.5.
Starting from the initial point (u,p) =((1,1,-1),(5,15)) the NLPQL-
algorithm converged for the problem (CRP) to (b*,h) = (8.668,25.0). The
optimization algorithm took 6 iterations with 83 evaluations of the limit state
function and 56 evaluations of its gradient. Kirjner-Neto et al. report 14 itera-
tions with 98 limit state function evaluations and 77 gradient evaluations for
the semi-infinite method and 277 limit state evaluations for a nested optimiza-
tion algorithm. This shows that our algorithm is comparable in numerical effi-
ciency with semi-infinite programming having in mind the different formulation
but also the differences in the algorithms used in both cases.

The second example compares our the results of reliability optimization with
several maximum cost. The example is a steel column with cost parameter
p=(bd,h):

Variable Symbol Unit

Mean of Flange Breadth b mm
Mean of Flange Thickness d mm
Mean of Height of Steel Profile h mm

The steel column has a constant length of 7500 mm. The function of total cost
C,(p,u) includes no failure cost, i.e. C; = 0, and has the following form:

Ci(p,u) = Ci(p) = (bd + 5[mm] - &) - [CU/mm?] (CU = currency unit).

The independent uncertain vector X = (Fy, Py, Py, P3,B,D,H,Fy, E) and its
stochastic characteristics are given by:

Variable Symbol Distribution Mean/Standard derivation Unit
Yield Stress F; LogN 400/35 MPa
Dead Weight Load Py N 500000/50000 N
Variable Load P Gumbel 600000/90000 N
Variable Load P Gumbel 600000/90000 N
Flange Breadth B LogN b/3 N
Flange Thickness D LogN dj2 mm
Height of Profile H LogN h/5 mm
Initial Deflection 1o N 30/10 mm
Youngs Modulus E Weibull 2100074200 MPa
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The limit state function in terms of the random vector X, the parameter (b, d, /)
and auxiliary functions ;, #;, #;, &b, P = Py + P, + P; is defined by:

1 Fy &h
G(x,p) = F, — 2| — .
(x.p) (ﬂﬁ )

%; ' Ep— P
where
Ay =2BD, (area of section)

My =BDH , (modulus of section)

Mi= %BDH2 , (moment of iteria)
2EM;
L 5~ (Buler buckling load)

No other constraints on cost and design parameters are given in the example.
The elements of the transformed standard normal vector must be within the
interval (—30.00,30.00). The means of flange breadth b and flange thickness d
have the lower bounds 200 mm resp. 10 mm and the upper bounds 400 rm resp.
30 mm. The interval (100[mm], 500[mm]) defines the admissible mean height A
of the T-shaped steel profile.

The results of the reliability optimization of steel column with various
maximal permitted (total) cost are given in the following table.

Maximal cost Optimal cost vector p* Reliability index
Cmuximum b* d* h* ﬂ;
4000.00 200.00 17.50 100.00 3.132
5000.00 200.00 22.50 100.00 4.961
6 000.00 200.00 27.50 100.00 6.369
7000.00 216.67 30.00 100.00 7427
8000.00 250.00 30.00 100.00 8.249
9000.00 283.33 30.00 100.00 8.967
10 000.00 316.67 30.00 100.00 9.605
11 000.00 350.00 30.00 100.00 10.180
12 000.00 383.33 30.00 100.00 10.709
13000.00 400.00 30.00 200.00 11.065

The increase of the parameters b, & and h depends on the maximum cost
cmaximum and the importance of the individual parameters for the reliability of
the structure.
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Fig. 6.1. Dependence of optimal cost vector elements b, s and h from maximal total cost of the steel
column
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Fig. 6.2. Dependence of reliability index on maximum admissible total cost of the steel column

It is seen, that at first the mean of flange thickness and only subsequently the
mean of flange breadth increases to the upper bounds 30.00 and 400.00,
respectively. The mean height of the steel column remains at the lower limit up
to a maximum cost of 12 500 CU. This is illustrate in figure 6.1.

It is further seen that higher maximum cost C™4*"“" Jead to an increase of
the maximum reliability index. Figure 6.2 shows also that the reliability in-
dices ﬂ; from the (RCP)-problem decrease exponentially for lower maximum
cost.

In the third example a rectangular reinforced concrete beam with parameters,
p = (w,d, ay), is considered (see Madsen/Friis Hansen, 1992, but with modified

Two Basic Problems in Reliability-Based Structural Optimization 329

parameters), different cost parameters and two constraints on the parameters w,
d and a;:

Variable Symbol Unit
Width of concrete beam w m
Effective depth of concrete beam d m
Reinforcement area of beam a, m?

The independent uncertain design vector X = (T, Ty, My, K) and its sto-
chastic characteristics are given in the following table:

Variable Symbol | Distribution | Mean/Standard derivation Unit
(Parameters)

Steel yield stress T Normal 360.0/36.0 MPa

Concrete comp. strength Te Lognormal 40.0/6.0 MPa

Applied bending moment M, Gumbel 0.01/0.003 MNm

Model uncertainty K Rectangular (0.5, 0.667) -

The limit state function dependent on the random vector (T, T, M, K) and
on the parameter (w,d, a;) is:

T,
G(x,p) = (1 £ K:;T )asde -M,.

The reinforced concrete beam has a fixed span of S m. The initial cost is given
by

Ci(p) = 5[m](800 [CU/m?] - wd + 2000 [CU/m?] - a;) .

The failure cost is estimated as:

C; = 50000 CU .
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Two constraints on parameters are given, a lower bound for the area of the
beam and a maximum admissible area of reinforcement in relation to the total
area of the concrete section.

0.01 < wd

ag < 5% - wd

The maximal total cost of the beam is 55.00 CU and the allowable failure
probability is 1075

The transformed standard normal vector elements are bounded by —30.0 and
30.0. The width w and the effective depth 4 of the beam have the lower bound
0.05 m and the upper bound 0.5 m. The area of the steel reinforcement a, must
be within the interval (1074,1072). : o

The results of the optimization of the cost minimization and the reliability
maximization are:

Total cost minimization (CRP) Reliability maximization (RCP)

Starting values

0
(u%,:“orr:“‘bbyuk)
(w0,d° ay)

(~0.25,-0.25,1.00,0.25)
(0.050, 0.172, 0.0001)

(~0.25,-0.25,1.00,0.25)
(0.050, 0.172, 0.0001)

Optimization results
Final total cost

Final Failure Probab.
Final Reliability Index
(W5, 7, W3 )
(w*,d*,a})

54.39 CU
103
4.265
(~0.89,-0.80,4.06,0.51)
(0.050, 0.239, 0.00060)

55.00 CU
6.60 1076
4357
(~0.90, —0.85,4.14,0.53)
(0.050, 0.243, 0.00061)

Number of calls
Function-calls
Gradient-calls

11
11

76
44

It is seen that the (RCP) problem requires considerably more numerical effort
which is expected. It should also be mentioned that in both cases convergence
could not be reached for all admissible starting values. In fact, sensitivity anal-
ysis is necessary to select suitable values. Also, some suitable transformations of
the constraints which made their gradients more homogeneous have made

Two Basic Problems in Reliability-Based Structural Optimization 331

convergence much faster. Other, in part more complicated examples confirmed
the conclusions from this example.

7 Summary and Conclusion

Two one-level structural optimization algorithms, (CRP) and (RCP), respec-
tively, based on reliability and expected total cost were derived. The advantages
of our formulations and their numerical implementation are (see also Madsen
and Friis Hansen, 1992):

* a well-known standard non-linear optimization algorithm, e.g. a SQP-
algorithm, can be used,

* scaling problems for complicated problems are handled by standard
optimization routines,

* the methods appear locally stable and robust.

The disadvantages of our formulation of the two structural optimization
problems (CRP) and (RCP) are:

the usnally numerical calculation of second derivatives of the limit state
function is required,

the transformation from the standard normal u-variables to the physical
variables x and vice versa must be included explicitly. Those probability dis-
tribution transformations may require some additional numerical effort and
can cause numerical problems in extreme cases (numerical inversion of dis-
tribution functions).

» for both problems good starting values usually are required

¢ monotonic transformations of both objectives and constraints sometimes may
be necessary in order to achieve convergence.

The one-level formulations proposed here are limited to FORM as the reli-
ability part is concerned. The asymptotic correctness of reliability optimization
with cost constraints is proved by a corollary showing the asymptotic equiva-
lence of first-order and exact reliability indices for small failure probabilities.
Extension to SORM does not seem to be straightforward. Only one algorithm,
preferably a SQP-algorithm is necessary. However, several tricks (trans-
formations and/or good starting values) must be applied in order to achieve
convergence, because both optimization problems can have objectives and/or
constraints with widely varying gradients or objectives and/or constraints with
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numerically zero gradients in extreme cases. With these tricks it can be stated
that the algorithms work quite efficiently. Further substantial improvements of

the numerics are still possible.

The formulations are restricted to one state function only and thus to one
failure mode so far. It appears possible to generalize the approach to multiple
failure modes (unions of failure modes) but not necessarily to the case where
intersections of failure modes form system failure.
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