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lable 1: Influence of the shift parameter 7 on the
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T 0 500 790 1000
w | 1540.0 | 1539.4 | 1538.7 | 1537.0

k 20.7 13.5 10.04
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‘Table 2: Mechanical properties of CFRP used for the example (left table) and set of basic variables for

the reliability analysis of the strut (right table).

Variable | Mean value | C.o.V.

= 170000 :
Exn 9000 p
My 0.28 =
ar, -3.0-10°° -
L O TR
R, 2000 | 0.04
R, 1620 0.08
RS, 60 0.10
R, 165 0.09
R 86 0.04

Variable Mean value | C.o.V. model
Tension 209000 0.1 Lognormal
Bending 3600 0.1 | Lognormal
Temperature -100 0.05 | Lognormal
R, 2000 0.04 | Weibull
R, 1620 0.08 Weibull
R, 60 0.10 Weibull
Hoy 86 0.04 Weibull
. 71 0.1 Weibull
TR 0.15 0.1 Lognormal
I 0.15 0.1 | Lognormal

Table 3: Probability of failure for one layer boundary, including both FF and IFF.

Meshsize (FEM) | Scaling | Failure components range of 3 Py
208 yes 3328 281 <3<281 | <0.0025
416 yes 6656 281 <A<281 | <£0.0025
208 no 3328 022<5<0.52 | <0.5854
416 no 6656 -36.62 < 5<0.40 | < 1.0000

Table 4: Results for the entire strut, including both FF and IFF.

Meshsize (FEA) 208 416
Failure components 19998 39936
Componential 3 431<f<1096 | 440<p<11.13
System bounds (all comp.) 233< <234 234< <234
System prob. of failure | 0.0096 <P, < 0.0098 | 0.0096 <P, < 0.0096
to show that there are different shape parameters A
in an appropriately modified theory. Fr(E)=P (}";;—_‘) =
As test results produced by the proposed S 1‘ (20)

method are not yet available, an individual scal-
ing of the test data can tentatively be employed
as an approximation of (9). For the special case of
a small stress gradient over the structure the size
effect can then be included in a different way. In-
stead of scaling the individual strength values to a
reference volume V;, and then integrating (9) over
the volume V of an element, the scaling for each
strength parameter is performed from test spec-
imen size to the volume V using (18). By this
method the interaction of 0., and the 7,; or 7,,
possibly is not scaled correctly.
For fiber failure F;; is then given by

Fr(S)=P

ALY ? <1
Ry) ~
and for interfiber failure by
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where I is the remote stress and the superscript *
indicates individually scaled resistances.

Fr (%) =P

F
I
t=3 mm

. —
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1 = 1300 mm

Figure 3: Example: a strut under longitudinal ten-
sion Iy, a bending force F}; in the middle and con-
stant temperature AT = —100°C.

4 ANALYSIS OF A STRUT UNDER RANDOM
LOADING

The method as proposed above is illustrated at
a strut under non-constant stress state. The ge-
ometry and the loads are shown in figure 3, the
stochastic model and the material properties of the
carbon fiber reinforced plastic (CFRP) are given in
table 2. The stacking sequence of the laminate is
(90°/0°/0° /90°) with 0° pointing in the longitu-
dinal direction of the strut, the thickness of the
layers is t; = (0.15/1.35/1.35/0.15) (all in [mm]).

One half of the strut is divided into 16 elements
in radial direction and into 13 elements in longi-
tudinal direction (208 in total). As a second case,
the strut is divided into 26 elements in longitudi-
nal direction (416 in total). To demonstrate the
effect of the Weibull-size-effect the structure is an-
alyzed with the two different meshes. The reliabil-
ity analysis has to be performed at each boundary
of a layer for every finite element and both FF and
IFF must be considered. As an example the influ-
ence of the Weibull size effect on the probability
of failure is demonstrated for one layer boundary.
The results for the outer boundary of the 0°-layer
are presented in table 3.

The first column shows the number of elements
of the FEM-model for the strut, the second indi-
cates whether the Weibull-scaling of the strength
variables has been taken into account. The third
column contains the number of failure components
for the series system, the fourth shows the bounds
of (3, and the last column gives the upper bound of
system-/. It should be mentioned that the inter-
section probabilities in (13) of at most the first 800
larger probability events had to be computed in or-
der to obtain the rather narrow reliability bounds.
It can be seen, that ignoring the scaling of resis-
tances produces severe errors.

To verify the assumption of constant stress in
the elements the probability of failure has been
evaluated for the entire strut. For 208 (416) ele-
ments having four A-points each (due to the ge-
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ometrical model of the shell-plate-element), eight
layer boundaries and two limit state functions (20)
and (21) the number of failure components in the
series system is 19968 (39936). The results are
given in table 4.

5 SUMMARY AND CONCLUSION

It has been shown that the size effect of brittle ma-
terials can easily be included in structural reliabil-
ity analysis by the use of a weakest link concept.
The theory of Poissonian non-interacting defects
is reviewed. Links to the theory of Weibull are
established. Applications to high strength fiber
reinforced plastics are then discussed. The impli-
cations of the assumption that a single defect is
responsible for all types of fiber and interfiber fail-
ure are discussed in detail. In particular, a suit-
able fracture criterion for fiber reinforced plastics
requires new types of tests for the determination
of material strength parameters. Some alterna-
tive concepts are outlined briefly. Application of
the theory in FEM-calculations is discussed and
the feasibility to account for the size effect over
the full structure is demonstrated using modern
FORM methods.
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