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Combination of non-stationary rectangular wave renewal processes

R.Rackwitz
Technical University of Munich, Germany

ABSTRACT:

Suitable, widely asymptotic formulae for the failure probability under combined non-stationary

rectangular wave renewal processes are derived via the outcrossing approach. Non-stationari
can exist either in the limit state function or the parameters of

e stochastic models. An

importance sampling scheme for the treatment of non-ergodic variables is proposed. An

example illustrates some theoretical findings.

1 INTRODUCTION

Rectangular wave processes are frequently used to
model the time variations of occupancy loading.
Such processes can also approximate other loading
phenomena and, in particular, may be used to
model the main characteristics in so called
missions, e.g. the journey of a ship between two
places, the different sea states it experiences during
the journey or the loading environment of a
processing plant between the shut down periods. In
some cases another more rapidly fluctuating
loading process then is superimposed upon the
simple rectangular wave.

Stationary rectangular wave processes have been
studied repeatedly. The special case of constant
durations has been proposed first and has found the
earliest solutions (Ferry Borges/Castanheta, 1971;
Rackwitz/Fiebler, 1978). The more general model
of multivariate rectangular wave renewal process
and its combination has been studied by
Breitung/Rackwitz (1982) and (Rackwitz, 1985) via
the outcrossing approach. Interesting and
practically useful generalizations of the simple
rectangular wave model have been proposed by
Wen (1990), Shinozuka (1981) and
Schrupp/Rackwitz (1988) and others. Considerable
improvement and simplification was achieved by
applying asymptotic concepts, i.e. when failure
probabilities tend to zero (Breitung, 1984).

Breitung did not only show that computation of

outcrossing rates essentially reduces to simple
volume integral evaluations but also indicated that
under quite general conditions the optimal
asymptotic expansion point of the limit state
surface is, in fact, the same as in time-invariant
analysis. The asymptotic Poissonian nature of the
crossings into the failure domain has already been
shown earlier,
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2 GENERAL CONCEPTS FOR TIME
VARIANT RELIABILITY
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where R is a vector of random wvariab
independent of time, Q(7) is a slowly varying
stationary and ergodic random vector sequence and
S(7) is a vector of not necessarily st
sufficiently mixing random process va
having fast fluctuations as compared to Q{t).

Consider first the case where only S{7) is
present. If it can be assumed that the stream of
crossings of the vector S§(r) into the failure domain
V is Poissonian it is well known that the failure
probability P¢(t) can be estimated from

Pg(t) = 1 - exp( 'I{N.;m!! < HN;‘W! )
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for high reliability problems. E[Ng*(t)] is the
expected number of crossings of S(7) into the
failure domain V in the considered time interval
[04] and vg*(7) the outcrossing rate. It is assumed
that there is negligible probability of failure at
7=0 and 7 = t, respectively. The upper bound in
eq. (2) is a strict upper bound but close to the exact
result only for rather small Pg(t). The
approximation in eq.(2) has found many
applications in the past not only because of its
relative simplicity but also because there has been
no real practical alternative except in some special
cases. It is already worth noting that for the upper
bound solution there is no particular problem of
integration because one needs not to distinguish
between the different types of variables as
introduced above (see below).

When both process variables S(7) and time
invariant random variables R are present the
Poissonian nature of outcrossings is lost. Eq. (2)
can fumish only conditional probabilities. The total
failure probability must be obtained by integration
over the probabilities of all possible realizations of
R. Then the equivalent to eq. (2) is

= IR[E - exp(-1 [‘\IS‘ Dl
- 1 - Eglexp(- EINSCIR)D)]
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In the general case where all the different types of
random variables R, Q(7) and S(7) are present the
failure probability P(t) not only must be integrated
up over the time in-variant variables R but an
expectation operation must be performed over the
slowly wvarying variables Q(7). In Schall et al
(1991) the following formula has been established
in part by making use of the ergodicity theorem

Pet) = 1 .R[exp(— }Q[:} ]NS'(téR._QJ]l)E
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Eq. (5) is a rather good approximation for the
stationary case but must be considered as a first
approximation whenever S(7) is non-stationary or
the limit state function exhibits strong dependence
on 7 as shown in the mentioned reference. The
approximation concerns the expectation operation
with respect to Q in the non-stationary case. The
bounds given in egs. (2, 4 and 5) again are strict
but close to the exact result only for even smaller
failure  probabilities. In fact, while the
approximation with respect to the expectation
operation inside the exponent in eq. (5) may be

accepted also for the non-stationary case in most
practical applications the expectation with respect
to R must be taken outside the exponent because,
depending on the relative magnitude of the
variabilities of the R- and the 8§, Q-variables, errors
up to several orders of magnitude can occur (see
Schall et al. 1990). An exact evaluation of eq. (5)
may also be necessary if the failure event in eq. (5)
has to be conditioned on some other event, e.g. in
inspection planning. Therefore, it is of particular
interest to design effective computations schemes
especially in view of the fact that the R-vector can
be high-dimensional (e.g. in stochastic finite
elements with hundreds of variables describing
random system properties). To be complete it
ought to be mentioned that consideration of the
initial and final conditions of the processes, i.e. at
=0 and 7 = t, respectively, sometimes can result
in noticeable improvements of the results
(Plantec/Rackwitz, 1988). In the following those
effects are not considered.

3 CONDITIONAL OUTCROSSING RATES
FOR NON-STATIONARY RECTANGULAR
WAVE RENEWAL PROCESSES

If the components of a stationary rectangular wave
renewal process are independent with marks Sy
with distribution function Fg(s;q;r) and renewal
rates A it has been shown that the mean number of
exits into the failure domain is (Breitung/Rackwitz,
1982)

E[N*(titz;q0)] =
n

= (t2- ty) _l‘!)\i P(S;E Viad N (S] € Vias))
e
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where V and V are the safe and failure domain,
respectively. 8i* is the total load vector when the
i-th component of the renewal process had a
renewal. S;- denotes the total load vector just
before the renewal, Therefore, S;- and S;* differ by
the vector S; which is to be introduced as an
independent vector in the second set. Applying
asymptotic concepts and using eq. (6) it can further
be shown that asymptotically (Breitung 1984)

n
E[N*(tytar.g)] ~ (tz -t) X )\1. P{S e V;q1) (7
i=1

with P({ S € V;r,g} ) computed as a volume integral
in the usual manner by SORM. Very rarely this
formula is noticeably improved for not small
probabilities P({S € V;r,q} ) by replacing the term
PiS € Virg ) by

P S;e Vign n{S{e Viqn =
=P{S€Vrg)-P{SieVirq}n{Ste V,qn)

as in eq. (6). Note that integration with respect to g
is performed simultaneously with the integration

with respect to s. If unconditional mean numbers of

exits need to be computed as in eq. (5) integration
is also over r (see below). If there is complete
dependence of jump events for subsets of wave
processes summation in eq. (6) or (7) is only over
the independent components.

The non-stationary case is not substantially
more difficult. The renewal rates Ay(7), k=1.2,...,
are assumed to vary slowly in time. The
distribution function of § may contain distribution
parameters r(r) varying in time and the failure
domain can be a function of time, ie.
V = {g(s.qr,7) < 0}. Then, eq.(6) needs to be
modified as
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The time-volume integral (8) can be approximated
using FORM/SORM concepts. For small
P({S € V|qr,7}) the integrand is dominated by the
probability term in the neighborhood of the most
likely failure point (s*,g*,7*) in {S € V|q,5,7} to be
determined by an appropriate algorithm. One such
algorithm has been proposed by Abdo/Rackwitz
(1991). Here and in the following integrations are
best performed in the standard space after applying
a suitable probability distribution transformation.
Because Ax(7) is slowly varying it is drawn in front
of the integral with value Ax(7*) by virtue of the
mean value theorem of integral theory. Classical
FORM/SORM algorithms can then be applied
according to (Hagen/Tvedt, 1991)  after
transforming the integral in eq. (8) into a simple
probability integral by introducing an additional
uniform density fr(r) = (t2 - t))-! into eq.(8) such
that

: m
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With the transformation 7 = (ta - t)) ®(u,) the
probability integral can be determined in the usual
manner. $(.) is the standard normal integral. The
results turn out to be quite accurate whenever 7
lies within a large interval {[1,{‘3} and the associated
norm |[uf| of the standard uncertainty vector is
large and thus the asymptotic conditions are met.

For smaller intervals [t,t5] the results become less
accurate. They are no more acceptable in general
when 7* is a boundary point.

Therefore, a slightly different scheme is
advantageous in all cases. In the critical point
(s*.4",7*) the probability PGS € V|qr7) is
estimated as :

PUSeVigrm) = &(- A(r) = Cis"a* ) 10)
with C(s*q"7™) the well known curvature
correction term (in the s-g-space) in SORM. Then,
one can write
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where f(7) = In[®(- B(r))]. The time integral in
eq. (11) is perfectly suited for application of
Laplace's integral approximation. Expanding f{7) to
first and second order with derivatives

(- B(n) 88(7) . A7
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yields integrals which have analytical solutions.
While 3f/dr is directly obtained as a parametric
sensitivity the second derivative 828(7)/dr? must
be determined numerically by a simple difference
scheme. The results are

88(7)
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If the conditions for eq. (12¢) are met but the
critical point is at one of the boundaries the mean
number of outcrossings is just one half of the value
in eq. (12c) (see Bleistein/Handelsman, 1986). The
modifications in egs. (12) result in more accurate
exit means than eq. (9) especially for smaller time
distances t; - t; although the interaction between 7
and the other variables is neglected. A genuine first
order result does not exist because time integration
always is an approximation in the second order
sense. In many applications the computation of the
correction factor C(s*,g*,7*|1) involving the second
order derivatives in the s, g-space will yield only
small improvements, however. Of course, some
conditions must be met for the validity of the
approach. In particular, there should be £(7) > 1
and E[N*(t,,tz[1)] € 1.

4 INTEGRATION WITH RESPECT TO
TIME-INVARIANT VARIABLES R

If there are time-invariant random vectors R several
possibilities exist the most straightforward being
numerical integration. However, even for small
dimensions of R the computational effort can be
considerable. So called nested FORM/SORM has
been proposed as an altemnative. Unfortunately, it
tumed out to be rather time consuming and not
reliable in the non-stationary case. Also a simple
first order Taylor expansion of the exponent in
eq. (1) or application of a standard (inner point)
result of Laplace's integral approximation method
has been found to be not sufficiently accurate at
least if the expansion point r* is not exactly the
critical point. A first approximation for this point
can be obtained from one of the upper bound
solutions as in eq. (5). The exact location would

1454

require some iteration which now is quite involved
as the egs. (12) must be solved in each iteration
step. Even then Laplace’ s solution still contains an
error which has been found to become quite large
in extreme cases.

Alternatively and arbitrarily exact at increasing
numerical effort, the expectation operation in
eq. (5) can be performed either by crude Monte
Carlo integration or, more efficiently, by
importance sampling. For convenience it is
assumed that R is an uncorrelated standardized
Gaussian vector which can always be achieved by a
suitable probability distribution transformation,
There is

Egll - exp{- EQ[EING(t| QROTI}]

~ [ WR") !
- f [1-exp{-I Q”I INS*(I|Q.r)||} il'R_("r-i hR(_r) dr
R

iy -
(13)
where hg(r) is the sampling density. Then,
- axni_ ] + )
ERll - exp(- EQlEING(| QROID]
1 : 1 RS
YN - exp{ IQ|||NS(I|Q_ri)]]}J W
(14)
The sampling density (standard space) can

conveniently be chosen as the standard normal
density with mean r* from the upper bound
solution eq. (5) and covariance matrix I A crude
conservative estimate is already obtained for
r; = r. From extensive testing of examples it is
concluded that the scheme according to eq. (14) is
rather robust provided that an efficient and reliable
algorithm is available to locate the critical point
(s*.q*,7) for every simulated r.

5 HAZARD RATES

The hazard function as an additional useful
reliability characteristic for time-variant reliability
problems can also be computed. By FORM/SORM
the hazard function is computed simply from
parametric sensitivities. It is

N B I R ()
h(t) R 7 g 0 e
- p(BL) 9p(L)
?ﬁ{ffm) at (15)

by assuming that the considered time interval is
[0t]. A(t) is to be interpreted as the equivalent
reliability index A(t) = ®-1(P¢(t)). The foregoing
theory allows to compute these hazard rates
rigorously if the parametric sensitivities AA(t)a

are available. Unfortunately, this can be done only
at the expense of some additional numerical effort.

However, good approximations are possible if
the computation is for the critical point 7* only.
For a critical inner point the hazard rate then

remains essentially constant even if there are
parameter variations. Rewriting eq. (5) as
Ps(t) = rll - exp(- fQ[‘lle';ft{().RJIIJI
3 f l’tpRm g '11__7_2
R™ 2x) "
« exp(- EQIEING(t| Q)] ér'l}f &t (16)

J

and formal application eq. (15) yields

c>:p[ - E
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An estimate of the (critical) conditional outcrossing
rate, of course, is
vH(r*|1*) = Eq[vH(*|19)] (18)

and the unconditional outcrossing rate can be
obtained from

5 r’r]-r‘l E . [v*(T9)]

ol (19)

vH(T) = ex

Egs. (17) to (19) rest on the assumption that the
r-variables have only small variability as compared
with the g- and s-variables. Therefore, the hazard
rate as computed by eq. (17) or (19) must be
considered as a crude approximation whenever the
r-variables dominate. According to
Krzykacs/Kersken-Bradley (1976) the hazard rate
should decrease in the stationary case.

6 DISCUSSION

It should be noted first that the rectangular wave
renewal process model always yields slightly larger
failure probabilities than the simpler model of
rectangular waves with constant durations and
integer ratios between the so called repetition
numbers. This is due to the partial or complete
removal of jump dependencies in the latter case.
The above developments concentrated on
various bounds and then on certain approximations.
The motivation for the approximations was to keep
the numerical effort as small as possible especially
in high dimensional spaces. All approximations are
based on some information from an upper bound
solution. Its accuracy is practically always
sufficient if the resulting failure probability is

1455

small, say, smaller than 10-? the reason simply
being the fact that then 1 -exp[-x]=x in very
good approximation. This is true even when the
non-ergodic variables dominate. It should be clear
that any upper bound solution is an upper bound
solution only under the condition that the mean
number of upcrossings can be computed exactly.
This is, in principle, possible by adding to FORM
or even SORM a suitable importance sampling
scheme in the usual manner, ie. the scheme
proposed by Hohenbichler/Rackwitz (1988). For
small failure probabilities very accurate results are
thus obtained. For larger failure probabilities an
“exact” computation of the upper bound makes
hardly sense. If the mean number of upcrossings is
found only by FORM (and sometimes also by
SORM) the upper bound is no more strict.
Remember that the time integration is always a
SORM solution according to the approximate
scheme followed for the derivation of egs. (12).
Whenever the dimension of the r-vector is large a
complete SORM solution may be out of reach due
to the considerable effort required for
determination of the full Hessian matrix. Therefore,
it must be recommended to compute the “upper
bound solution” with the simplest method possible
in this case.

Egs. (12) can be evaluated strictly by FORM or
SORM in the qs-space but it should be noted that
asymptotic concepts are applied in both cases when
time-variant jump rates are involved (see transition
from eq. (8) to (9)).

In applications with large non-ergodic
uncertainties the integration over r is most critical
for the accuracy of the final result. Surprisingly,
the point r* obtained for the upper bound solution
according to eq. (5) can be remarkably away from

the correct one in extreme cases (i.e. for large
failure probabilities). It may, therefore, be
advisable to wuse some adaptive importance

sampling scheme in those cases. Experience with
such schemes showed, however, that the gain in
required sampling points is rather modest in the
cases investigated. The reason appears to be a
rather large domain in the r-space where
considerable contributions to the integral are
obtained. In this case it is clear that a sampling
distribution with relatively large spread can also
account for the inaccuracy in the central point.

7 ILLUSTRATION

For the purpose of illustration we take the

following simple function of structural states.
2. r 2
gtpRQS) = pi(l +pat + p3t?) z R4 R3
- (P4 Si+ Ps Sa + Pr Rj)
with the p; certain deterministic constants and a

fixed time window of [0, 2]. The stochastic model
and the parameters are summarized in table 1.
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It is seen that this example includes almost all
types of non-stationarities and dependencies which
one can imagine to occur in practice. By variation
of the parameters any kind degree of non-stationar-
ity can be produced. Letting p; running between
-0.35 and + 0.25 will change the nature of the
solution at p; # 0.0 from an interior point solution
to a boundary point solution. It should be clear
from the theoretical developments that there can be
correlations between r-variables and q-variables,
respectively, but no cross correlations. Also, there
may be dependencies of each of the s-variable via
its distribution parameters on q- and possibly r-
variables (e.g. for taking account of statistical un-
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First order upper bound solution and
simulation versus parameter p,

Figure 3:

certainties) but all g-variables must be conditional-
ly independent of each other. Figure 1 gives an
impression of the convergence of the simulations
for the r-variables towards the correct solution for
various p;. It is seen that roughly 50 simulations
are already sufficient in this case. Figure 2 with
only N =20 illustrates what happens when the
interior point solution switches over to a boundary
point solution for running parameter p,. Typically,
the failure probability jumps by roughly a factor of
two near ps # 0.0. Around this point both solutions
are not very reliable. Figure 3 finally compares the
first order and second order upper bound solution
with the second order solution in the q,s-space and
with number of
N = 500, which brings the coefficient of variation
for the resulting failure probability down to less
than 3 %. It is seen that the differences are quite
small. The first order upper bound is not a strict
upper bound over the whole parameter domain.

8 SUMMARY AND CONCLUSIONS

Conditional non- stationary crossing rates for
rectangular renewal wave processes are computed
in part making use of asymptotic concepts. Hereby,
the parameters of the wave processes may depend
on slowly fluctuating random and ergodic
sequences. Numerical analysis is p(‘tlonnud by
applying  classical FORM/SORM concepts. For
time lII[L‘E.,!"d{lOI] a sq)dmh computational step is
proposed. Some effort is spent to remove the con-
hhomm1 by simple random variables by appro-
prmte numerical schemes. It is found that a
importance sampling scheme is the by far most
satisfying numerical method in the stationary as
well as the non-stationary case whenever failure
probabilities are not small. For small failure
probabilities the upper bound solution always is
sufficiently accurate for practical purposes. It,
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samples for the r-integration of

Table 1: Stochastic Model for Example

Std. Deviation Jump Rates

Name Distribution Mean Value
R, Lognormal 2.0
R, Lognormal 3.0
Rj Gumbel 6.0
Qq Lognormal 5.0
Si Normal 100
Sy Gumbel 8.0
P1 2.000

P2 0.100

P3 0.100

P4 0.330

ps 0010

0.2 -
03 -
0.6 -
0.5 -
Qi (1 + pst) 10.0
30 pa(l +pgt)

Ultimate resistance multiplier

Time multiplier for linear term

Time multiplier for quadratic term
Load rmﬂupl' et for first life load
Time multiplier for standard deviation
| function ¢ = Qq (1 + pst) for Q

Ps 0.330 Load multiplier for second life load

P 0.330 Load multiplier for dead load

Ps 0.100 Constant pammcw' of jump rate function
Ar=pa(l *D-')ror()

Po 1.000 Linear parameter of jump rate function
A paiI +pot) for Q2

nevertheless, must be admitted that time-variant
reliabilities can be considerably more difficult and
laborious to determine by FORM/SORM than
time-invariant reliabilities.
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sented. Author: Indian Institute of Technology, Madras.

Mukhopadhyay, Madhujit 9054102349
Structures: Matrix and finite element - 3rd edition
1993, 25 cm. 440 pp.. Hf1.105 /$60.00/ £39 (Norights India)

Presents ‘matrix’, “finite element’, ‘computer’ and *structural analy-
sis” in a unified and integrated manner. Conrents: Matrices related to
structural analysis: Fundamentals of computer programming; Basic
concepts of structural analysis; Energy principles: Introduction to
the flexibility and suffness matrix methods:; Displacement method:
Another approach: Direct stiffness method; Substructure rechnique
for the analysis of structural systems: The flexibility matrix method;
Elements of elasticity; Finite element analysis of plane elasticity
problems: Finite element analysis of plate bending problems; Finite
element analysis of shells; Semianalytical and spline finite strip
method of analysis of plate bending; etc.Author: Indian Inst Tech-
nology. Kharagpur.

Melchers, R.E. & M.G.Stewart (eds.) 9054103493
Probabilistic risk and hazard assessment Proceedings of the con-
ference, Newcastle, NSW, Australia, 22-23 September 1993

1993, 25 cm, 262 pp., H. 150 /$80.00/ £55

Hazard scenario analyses (e.g. HAZOP, FMEA); probabilistic risk
assessments; consequence modelling; structural reliability: human
ermor; uncertainty analyses; and risk assessment. Topics are related to
the design, construction & operation of chemical & process plants;
nuclear facilities: bridges & buildings; offshore structures & dams.
Editors: Univ. Newcastle, NSW, Australia.

Singh, Jagman 9054102128
Heavy construction - Planning, equipment and methods
1993.25cm, 1092 pp.. Hfl. 135/875.00/£50 (Norights India)
Management, construction organisation, planning and scheduling;
Earthmoving machines; Dewatering equipment; Air compressors;
Tunnelling; Drilling and blasting; Vibratory compaction; Treatment
of rock foundations; Concrete production and placement: Cost
analysis; Safety programme: Bibliography; Index.

All books available from your bookseller or directly from the publisher:

Teodosiu, C.. J.L.Raphanel & F.Sidoroff (eds.) 9054103175
Large plastic deformations - Fundamental aspects and applica-
tions to metal forming / Proceedings of the intemational seminar
MECAMAT 91, Fontainebleau, France, 7-9 August 1991

1993, 25 cm. 484 pp., HL.185/599.00/ £69

Topics covered, involve large plastic deformations of metallic mate-
rials, A view on the synergism achieved by combining microstruc-
tural characterization & understanding, mechanical modelling & ex-
periments, numerical analysis & computation. The volume contains
96 keynote lectures & 45 contributed papers.

Chenot. J.-L.. R.D.Wood & O.C Zienkiewicz (eds.) m:.”[}ﬂ 17
Numerical methods in industrial forming process
ings of the 4rh international conference, NUMIFORA
Valbonne, France, 14-18 September 1992 H|LG COULTILE
1992, 25 ¢cm. 928 pp.. H1.235/$130.00/£73 Ny B g v
Papers on numerical or physical problems & on exam, AIS2qe
puter code simulation of specific processes: rolling, L',:IL ol ;‘mbm-v !
forming, forging & casting of metals, polymer formir, f‘cme'nmnu;
cessing for other materials. The papers illustrate diﬂt.‘lru : %

: 2 joL jmBe
view including the improvement of numenical mulhqu fur Jage
deformation processes. the more physical approach for constitutive
modelling & the development of specific codes & their use for prac- i
tical industrial design applications. Editors: Ecole des Mines de
Paris, Sophia-Antipolis, France & Univ. College, Swansea, UK.
Shroff, A.V. & D.L.Shah 9054102101
Grouting technology in tunnelling and dam construction
1993.24 ¢cm. 618 pp.. Hf.135/575.00/ £50 (Norights India)
A systematic presentation of the essentials of grouting technology
without going into the unnecessary details of any grouting project.
Some of the important topics covered are grout mix design prin-
ciples, rheological and strength aspects, theoretical and experimental
developments, grouting plants and their specifications, geological in-
vestigations. drilling, monitoring of grouting, case studies on tunnel-
ling. dam grouting and alternative applications of grouting. For bet-
ter understanding of grouting principles. illustrative examples
derived mainly from field studies have been given. Authors: MLS.
Univ. of Baroda, Vadodara. India.

Madhava Rao, A.G. & T.V.S.R.Appa Rao (eds.) 9054102055
Fatigue and fracture in steel and concrete structures — Proceed-
ings of the international symposium, 19-21 December 1991, Ma-
dras, India (Norights India)
1992.24 cm, 1900 pp.. 3 vols., Hf1.365/$210.00/£135

110 papers from researchers and experts all over the world on: Frac-
ture mechanics; Crack growth; Fatigue and fracture of steel; Fatigue
and fracture of concrete; Fatigue behaviour and testing — Joints:
Fatigue behaviour and testing — Structural members: Life prediction;
Condition monitoring and damage assessment: Design: Reliability:
Additional papers. Editors: Structural Engn. Research Centre. Ma-
dras, India.

i

—

AA.Balkema Publishers, P.O.Box 1675, Rotterdam, Netherlands

For USA & Canada: A.A. Balkema Publishers, Old Post Rd, Brookfield, VT, USA




