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Abstract. For structural components under random loading, realistic fatigue life predictions require a damage
accumulation law together with a cycle counting method. If the classical, linear and memory-less summation rule
according to Palmgren /Miner is adopted and the underlying stress process is ergodic substantial simplifications can
be reached. From experiments and certain theoretical considerations, so-called rainflow range or local range
counting appears most appropriate. Even if the underlying is a Gaussian process, easy analytical solutions are at
most available for special types of processes. Therefore, counting usually must be done numerically at observed or
artificial stress histories which is extremely time consuming. But a number of approximations exist. Several of them
are reviewed and tested against simulations for a variety of bandwidths and shapes of stress spectra. While most of
the prediction equations overestimate the moments of the two selected types of ranges, the equation provided by
Dirlik is shown to have the best fit with respect to the simulated rainflow ranges. Naboishikov's formula proves to be
the most accurate predictor for local ranges whenever the irregularity factor « is larger than 0.6.
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1. Introduction

The assessment of fatigue damage under random loading requires essentially two concepts,
one for the accumulation of damage and one for the counting of the damage relevant cycles. At
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present, fatigue damage accumulation is mostly described by using the Palmgren—Miner [1,2]
rule for both initiation and propagation of a crack. This linear law can formally be expressed as

dD 1 o )
dn K
where K and m are deterministic material constants and § denotes some function of the stress
process. In most cases S is a function of the stress range and, possibly, the maximum stress or,
equivalently, the range mean. Integration of eqn. (1) yields
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dD=D(N)=— AP dn = — §m ~ —NE[S™ 5
[P =D - & 57 an = $ 57~ s .

i=1

where N is the number of cycles up to the accumulated damage D(N). The stress ranges are
assumed to form an ergodic sequence, which allows to replace the time integration by N-times
the expected value of §™. The ergodicity assumption also implies that the right-hand side of
this equation is linear in N and that E[S™] becomes constant for sufficiently large N. Thus, no
variability consideration for the damage indicator NE[S™] is needed.

Even if the underlving process is supposed to be Gaussian, no simple definition of the
guantity S exists. Moreover, no general analytical method is available to estimate the damage
relevant number N of cycles and especially the damage indicator E[S™] from the stress
time-history. But several approximate counting methods based on different concepts exist (see
Madsen et al. [3] for a review). At present, the “rainflow” counting method is considered to
best reflect the mechanics of fatigue damage accumulation for metals whenever substantial
non-local plastic strains arise. It provides the rainflow range and its associated moments. The
stress cycles are defined as a series of closed hysteresis loops in the stress-strain response.
Fatigue damage is related to the area enclosed by these loops. Empirically, the material
constant m is found to be between 2 and 8. The rainflow range moments might also be the
most accurate local damage indicators for crack propagation in metals whenever the crack
advance in a cycle can be related to the work done in the crack tip plastic zone. As shown, for
example, by Paris [4] and Rice [5], the crack growth rate is then proportional to the fourth
power of the stress intensity factor range. However, the crack growth rate appears to be only
proportional to the second power of the stress intensity factor range (see, for example,
Weertman [6]) for intrinsically ductile metals. By considering the associated mechanism of
crack propagation, the rainflow range moments appear in this case less suitable than the
moments of the local range. Also, the rainflow range moments do not necessarily appear to be
the most accurate local damage indicators for the propagation of cracks in relatively brittle
materials and for crack initiation in ductile materials. In the last case, the local stress intensity
maximum together with the associated local range may be considered as the best damage
indicator. In summary, the suitability of the rainflow range or of the local range strongly
depends on the specific characteristics of the material and on its damage state (Manson [7]

]

Short / Hoeppner [8]). The use of either quantity must be justified on empirical grounds. Both
methods lead to the same result for pure narrow band process. For broad band processes
rainflow ranges lead to an upper bound for the accumulated damage while local ranges lead to
a lower bound. Therefore, both types of damage indicators will be studied in the following.
Analytical results for NE[S™] are available for the special case of an ideally narrow band
stationary Gaussian process, only. A proposal to analytically predict the rainflow ranges was
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made by Rychlik [9,10]. Unfortunately, this approach is rather time consuming and is thus not
yet practical. Most frequently, the rainflow ranges are determined by first simulating the stress
process time-history and then by analyzing this process statistically. Simulation and statistical
analysis can be extremely laborious. A number of approximations were therefore proposed. The
purpose of the following study is to review some of the suggested approximations and to EC."it
them against simulated rainflow and local range countings. A critical comparison of thlezr
performance using several load spectra is presented and some recommendations for practical
applications are given.

2. Review of prediction equations

For convenience of notation we assume that the underlying Gaussian process X(r) has zero
mean and unit variance. If the standard deviation of the original process is o, the damage
indicator for this process is simply No™E[S%] with NE[S%] the damage indicator for the
standardized process. In the following, reference to the process X(t) will be omitted. The
process X(t) can to some extent be characterized by a few parameters such as the sequence of
spectral moments

m.{-=f 0'G(w) do
0
where G(w) is the one-sided power spectral density. In general, only the first few spectral

moments can be determined. Higher moments imply increasing requirements on the diff;ren-
tiability of the process and may not exist. The following bandwidth parameters can be defined.

sl Zabirt (4)
f(mnmz)
L m, 5)

y(mom,)

e2=1-a?

with their limit values given in Table 1. _ o
The earliest approximation for NE[S™] is due to Miles [11] and is valid for pure narrow band

stationary Gaussian processes (see below). If this formula is applied to processes with larger

bandwidth, the damage can be considerably overestimated, especially for larger m. Many of the

more recent approximations set out from this result by introducing additional parameters

TABLE 1

Limit values of bandwith parameters e, 8 and e

@ 3 €
Ideally narrow band process 1.0 1.0 0.0
Ideally broad band process 0.0 0.0 1.0
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describing the correlation structure of the underlying process. Those parameters are cither
derived from theoretical considerations or are determined empirically.

2.1. Narrow-band processes

The local peaks Y or Y~ of a pure narrow band process are Rayleigh distributed. Adjacent
peaks are supposed to be perfectly correlated. which means that all positive peaks are matched
with corresponding troughs of the same magnitude. The stress range then is Rayleigh dis-
tributed, too, and the damage indicator is calculated as (Miles [11D

m)
1+ —| (7)

NE[S™] =N(2V2)'T

The number N of stress cycles in a given time interval [0, ¢] is equal to the expected number of
local maxima in [0, 7] given by

N=n/2 - (8)

which in this particular case also corresponds to the expected number of positive zero crossings
in [0, ]
[, 1

[ my 2w

Yang [12] generalized Miles’ result to not perfectly correlated local peaks. The local range is
derived from the bivariate Rayleigh distribution. The equation providing the m-th moment
involves the hypergeometric function. The correlation coefficient between adjacent peaks or
the local minimum and its consecutive local maximum must be known. Yang [12] provided an
approximation for this correlation coefficient for narrow band processes. In particular, the
expected value of the m-th power of the stress range is derived as

E[Sm] =E[( ‘Y_ “!‘}H)m] =E[ i {"’:_7 ‘]|Y— |rnz(Y‘)i] i {i (?;1 )E“}’P |m_’(}"")i]
i=0 : 0
with
E[1¥- 1"-(v*Y] =E[1¥~ 14v*)*] = (v2)" (1 + iz.]r‘juz,}f’:'(“% _g; . k;:
(10)

where ,F,( ) denotes the hypergeometric function and k is a correlation parameter. As k
tends to 1, the hypergeometric function converges to

F‘=.—%’ “%; 1: 1‘, =r{'1+ “;b)/(;(1+%’;(1+’;))

and Miles’ result is recovered.
Another similar derivation is based on the definition of a so-called double envelope process
(Krenk [13]). The corresponding damage indicator is

E[S™] :a'"'l(zﬁ)’"r(l 4 %] (11)
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The correction factor to Miles’ result A, = a™ ! tends to 1 as « approaches 1. The concept of a
double envelope implies that the resulting predictions are only accurate for nearly narrow band
processes. For the particular case of unimodal load spectra, Winterstein / Cornell [14] derived
another empirical correction factor with a wider range of applicability by using a different
envelope concept. It is not presented herein.

2.2, Broad band processes

Various attempts have been made in order to extend these analytical results to broad band
processes with moderate success. The only exact analytical solution is for the mean of the stress
range derived first by Rice / Beer [15].

X il
E[S] =V2Ta (12)

Jiao /Moan [16] extended the approach for narrow band processes to the important case of a

process with two well separated spectral peaks. The damage correction factor is

o

b |
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where (m, ;, i=0,2, j=1,2) are the spectral moments in the two spectral bands. In the
particular case of a bimodal white noise spectrum, these moments are

my,=Cw; —w, il My, = Cy(wy — @,),

my;=3C(0%-wi), m,=1 Cy(wi— w3),

2
m,; =iC(03—w}), my,= 1C,(0} — @3),

where w, < <w, and w; <w <w, are the two representative frequency bands.

Other damage indicator formulae are based on the statistical study of local extrema of a
stationary Gaussian process. Assuming that this process is nearly narrow band, its local extrema
are nearly Rayleigh distributed and symmetric. Moreover, if local maxima and minima are
supposed to be matched in pairs of same magnitude, the damage relevant stress range is exactly
twice the amplitude of local maxima. A first result based on local peaks has been derived by
Hancock / Gall [17] by neglecting the broad band term in the probability distribution of local
maxima (see eqn. (16) below). Their result is

E[S™] = w(zv‘i)"’r(l .= (14)
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The correction factor to egn. (7) is then

Ay=a (15)

It differs from the double envelope results in eqn. (11) by the exponent of . Among others

Tunna [18] followed a similar approach also accounting for different slopes in the S-N curve.
Using earlier results from Chaudhury/ Dover (1982) and Hancock / Gall [17], Kam /Dover

[19] introduced an improvement based on the exact probability distribution of local maxima
whose density is

(16)

("')=;C\' ﬁli;) +ay X [—'(\")](h = “)
S V(27) = e T P~ 20

€

This density is the sum of a Gaussian density and a term which tends to the Rayleigh density
for large y~. The expectation of twice the amplitude of local maxima is taken. The following
approximate damage indicator is obtained

[ m)
al'(1+ = (17)

L rA

1 +erf(a, m)

—.mj] € . 1+m
E[s™] = (22)"| =T

|+

~
-

where erfla, m) is the error function (Kam/Dover [19]). The expectation in eqn. (17) can also
be taken analytically vielding (Abdo / Rackwitz [20])

m

__m{ 2 11+m)
E[s™] = (22)" {3 l[

\

]+aF|1+ 'T‘—v }} (18)

where 7,(-) is Student’s central ¢-distribution with » = m + 2 degrees of freedom. Furthermore,
Abdo/ Rackwitz [20] argued that the number of stress cycles should only correspond to the
number of positive local maxima since negative local maxima do not contribute to damage.
Therefore, these local maxima and the associated ranges should be neglected. The mean
number of positive local maxima of § exceeding u in the time interval [0, ] is given by

(|

‘7_‘.|

m,\'/?
— ‘]_(D(-z-“'

m,

m, um-, \ ]

E[M;(1)] = "f (19)

e

}) + y21m, 27m, & u}(h{ iz

where D =m, —m3 (Leadbetter et al. [21]). For a standardized process, the value u =0 is
taken and it follows that the total fatigue damage is

KD(N)=E[S™|E[M](1)] (20)

While the derivations based on peaks implicitly assume that the damage relevant stress range
can be taken twice the amplitude of local maxima and, thus, that the stress process is nearly
narrow band, Naboishikov [22] explicitly determined the joint probability distribution of stress
ranges S and their means Z. It can be proved that these quantities are uncorrelated and there
are good reasons to assume that they are also independent. The range midpoints Z follow a
normal distribution with zero mean and variance

o7 =307(1+a*)(1+p) (21)
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where the parameter p =p,,,, is the correlation coefficient between adjacent extrema. The
probability density of stress ranges § is found as

t"'rr{\‘ oy 1 I 5
! — - exp| — - —
Ps(s) 2 BT 22 2 2 22 !
Ox — 0z V2w \e‘ox— 07 <\ 2/e‘ox—0o7 |
; ( ]
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A crude empirical approximation for the correlation coefficient is p = 1 — 2a (see below). It
follows that the damage indicator is

1 ‘14 m m u‘.'af il \

- m[ ~a
. -y f/ T v s —— — — 4

Els" =202¥2 ¥ {a/"Ci—7F|— + o al’ [ | = =1 (23)
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where
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A number of investigators took a less theoretical approach. One of the earliest empirical
formula is due to Wirsching [23,24]

m
E[S™] = Aw(2V2) T(1+ - (24)
where the correction factor A to Miles’ result (7) was empirically estimated as
/ b g
Aw=a+ (1=a)(l—¢€) (25)

with @ =0.926 — 0.033 m and b= 1.587 m — 2.323. In this model, the correction parameter
depends on the bandwidth parameter e and the exponent m. The formula was cu.libra‘lcd at
rainflow ranges obtained for simulated time-histories of several spectra occurring in the
offshore industry. Another empirical correction factor was proposed by Madsen et al. [25]

g m .! \
Ay = (0.93 +0.07 a®) (26)
Recently, a few similar correction factors derived via simulation studies were suggested. Here
we mention the proposal by Ortiz /Chen [26]

o
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with a suggested value of b =m /2 and the simpler one by Larsen/ Lutes [27]

m/2 (:S)
Al.l 7'”‘ m \

In the foregoing empirical formulae (25)—(28), the stress ranges are implicitly assumed to be
still approximately Rayleigh-distributed. In a part of the empirical studies this could not be
confirmed by distribution tests. In line with these observations, Hancock /Gall [17] incorporate
curve l'ittiné parameters in a Weibull distribution of ranges and obtained the following
correction factor (see also eqn. (15))

Ay=a (29)




Moreover, other authors suggested to use a mixture of distributions. For example, Dirlik [28]
proposed a combination of an exponential and two Rayleigh distributions for the rainflow
ranges § with a probability density written as

1 (D, g sD, S L b (e S 17532 l
Ps(5)=3‘1QCXD‘“:‘Q‘)"*“,,R:CXD(“:(q) Lt C-\'Pt*:;(':;”, (30)
where
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y mo\m,| ° o= 4D, = ~1-aD, +D?
The damage indicator is then calculated as

m | m el

E[S™] =D,I'(1 + m)(20) +r(1 + T)(2»’2) (D,R™ + D) (31)

It should be noticed that this model uses four spectral moments. Zhao/Baker [29] used a
similar concept for local ranges by assuming that the stress range probability distribution is a
combination of one Weibull and one Rayleigh distributions. The probability density function is
postulated as
- s\2-1 ' g6 5
ps(s)=3-\wab(;] e.\'p(watzj )+(1—w)5 exp

) P

1752 ]
=il )
The mean of the stress range given in egn. (12) is maintained and the weighting factor w is
found as
l—=a

A

FE et |
1-—=T|1+—]a"/?
= b J”

The Weibull parameters are determined from simulations on a wide range of spectra including
the spectra used by Wirsching but are also supported by some theoretical arguments. Specifi-
cally, they are

[1.1 for a <0.9

=87 =4
a=8—-7a and b |1.1+9(a—-09) fora=09

The parameter b is close to one as in Dirlik’s formula. The damage indicator is
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—
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3. Numerical analysis

Although some further models have been proposed in the literature, the equations reviewed
in Section 2 can be considered as being representative for the types of approaches. All
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Fig. 1(a). Offshore spectra. 1—T,=46.15, a=02;
2—T,=2791, a=03; 3—T, =21.33, a =04; 4—T,
=17.50, a = 0.5; 5-T, = 14.77, a = 0.6; 6—T, = 12.54,
a=077T—T,=1048, a = 0.8; 8—T,; = 08.18, a = 0.9.

Fig. 1(b). Bimodal spectra.

approximations appear to be derived for special purposes. It must be expected that they fail
outside of their range of calibration. Therefore, a numerical study has been designed covering a
wide range of spectral shapes and bandwidths. Trajectories of Gaussian processes were
simulated for several spectra. In order to avoid statistical uncertainties each trajectory con-
tained at least 20000 local maxima. Analysis showed that statistical errors in the empirical
damage indicators are then negligible even for exponents m as large as 8 and for arbitrary
spectra. Four types of spectra are considered

a. offshore double-peak spectra (see Fig. 1(a));

b. bimodal band limited white noise (see Fig. 1b));

¢. band limited white noise (see Fig. 1(c));

d. multimodal spectra (see Fig. 1(d)).
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Fig. 1{(d). Multimodal spectra. 1—8 = 0.500, a = 0.139;
2—B =0.135, a = 0.195; 3—B = 0.045, a = 0.300; 4—
B =020, a=0395 5—B =0.007, a =0.505; 6—8 =

Fig. 1(c). Unimodal spectra.
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Their analytical forms and the simulation algorithm used are described in the Appendix. The
multimodal spectrum is chosen because, for large a, it contains distinct spectral peaks which
can be interpreted as belonging to a process possessing deterministic components at given
frequencies. Such spectra are likely to occur, for example, in wind energy installations. The
above spectra allow to cover a wide range of possible spectra which is necessary because the
Spectrum shape of a Gaussian process is not fully characterized by its first few spectral
moments.

In Figs. 2 to 7, the relative behavior of the moments of the rainflow and local ranges are
shown using the first three spectrum types. Two graphs were built for each type of stress
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Fig. 4. Rainflow ranges vs. local ranges for offshore
spectra,

Alfa
Fig. 5. Rainflow ranges vs. narrow band ranges for
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Fig. 6. Rainflow ranges vs. local ranges for unimodal Fig. 7. Rainflow ranges vs. narrow band ranges for
; spectra. unimodal spectra.
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spectrum. The ratios of the rainflow damage indicator to the loca‘l range and of‘tl.}e ram’ﬂc.}v;-:
damage indicator to the Miles damage indicator are plotted as functions of the irregularity
factor a. The large differences between the figures demonstrate that the local ranges cam_]ot be
used as a starting point for an analysis (or an approximation formula)l when¢:er the'ramﬁmv
ranges are considered as the best damage indicators from a mechanical point of view. The
discrepancies become larger for higher values of m. They decrease as a tends to 1.
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Fig. 8. Various models vs. simulated data for bimodal white noise spectra (m = 2).
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Fig. 11. Various models vs. simulated data for bimodal white noise spectra (m = 8).
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For each type of spectrum, a set of spectra with representative irregularity factors a were
considered. The equivalent stress ranges were calculated for some of the most significant
Egg-= = prediction models presented above. The ratios of equivalent ranges to the Miles damage
indicators
2 - — - § g =(E[S™ l/m =5 34
& f/ narrow-band ~ ( [ i ] ) /“S Miles (34)
O 2 e Tl e i are plotted as functions of « and for four different exponents m = 2, 4, 6 and 8 (see Figs. 8 to
O 1 M i 3 19). The empirical rainflow and local ranges counted on the simulated stress time-histories
: Al bt generated from the considered spectra are reported, too. The equations due to Wirsching,
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/ - 1 Wir ., it . - 5 : r FET
1 > 2 Wirsching Jiao/Moan’s formula was included, too. The unimodal spectra are not considered because the
E 4 A gMddSEn Y i i i i . 5 < o I
40 3 s 3 ﬁbdo/Rackwnz range of their irregularity factor is limited to a > 0.745.
o - ancock
oA 5 Zhao/Baker
i 6 Krenk
] e ‘// 7 Naboishikov ——
= 1 it 8 Dirlik
B . 4. Discussion
1 A simulated rainflow ranges
A simulated local ranges
AEaE For a > 0.9, all damage indicators vield fairly accurate results even for large m. As a tends
S I T T T T T T T T R T T T e P s .
0.00 T SASRALAARLSCH carhpans Ly to 1, they all converge to the narrow band result. The agreement between analytical approxima-
).10 20 ).30 ) A A ENT 8573, T G & &
rregularity factor ALFA 70 0.8 tions and the empirical estimates is always less satisfying as the parameter m grows. The
theoretically most convincing and simplest formula in this region is probably formula (11)

Fig. 18. Comparison for multim
odal spectra (m = : s ) ‘ |
spectra (m = 6), suggested by Krenk [13]. For a < 0.9, the moments of local ranges and rainflow ranges already
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Fig. 20. (a). Correlation coefficient between adjacent local extrema for various spectra. (b) Correlation coefficient
between adjacent local extrema for offshore spectra. (c) Correlation coefficient between: W adjacent local extrema:
O adjacent rainflow extrema: * model p=01-3a%)/(1+a"); - model p =1-2a, for multimodal spectra.

differ significantly. Therefore. local ranges and rainflow ranges must be discussed separately.
The accuracy of the various models for a < 0.9 depends essentially on the type of spectrum
which was used for their calibration.

Naboishikov’'s model provides the best predictions to all of the simulated local range
moments, whenever a > 0.6. For exponents m higher than 2, Krenk’s equation is equally
satisfactory. However, these two proposals suffer from the shortcoming that they sometimes fail
to provide conservative estimates. Furthermore, both equations strongly underestimate damage
for really broad band stress spectra. The worst case occurs for the offshore double-peak
spectrum. In Naboishikov’s equation the underestimates are probably due to the approximation
used for the correlation coefficient p between two adjacent local extrema. In fact, this
parameter depends on the loading process which is not fully characterized by its irregularity
factor a. The estimate Piiv1=1—2a was derived from Fig. 20. In this figure the upper line
represents the correlation coefficient estimated with Pii+1=(1-=3a%) /(1 +a?). The local
ranges follow a standard Rayleigh distribution (Madsen [30]) with parameters zero and 2a2.

Wirsching’s and Madsen’s models do not properly reflect the dependence of the equivalent
stress range on the irregularity factor a but are conservative with respect to rainflow and local
range countings. For not too small a, the proposals by Ortiz /Chen and Larsen / Lutes can also
be used. What is less satisfying with these models is that they retain the Rayleigh distribution
for the ranges as a starting point for any value of the irregularity factor «. The derived
correction factors also contain the parameter m. Additional information about the underlying
spectrum in terms of spectral moments other than mg, m, and m, is used. The indicates again
that knowledge of m,, m, and m, is not sufficient.
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e case of a bimodal white noise spcctrLlfn, the a.ppr()ximatrio'p Lue%-%\?::i;ln h:
ceptable for not too small a despite 'thc ta.ct thdlhtif,:lztical ju“iﬁca;

el 2 mixture of range distributions (Weibull and Ruyﬁlugh-) w.nhn'ut theo ; < ,:hand
o Heq? i f the range distribution from the Rayleigh distribution, on t ’c,‘n.t. c. ]
e “‘. Lthy a number of other proposals also fail for smaller a. T'his aspccpt is
w5 a0 /Baker’s proposal can be slightly unconscrvanvf: for ncar!y
e hors calibrated their

Apart from th
Zhao /Baker is also ac

might just be the re: o
iscussed further below. Z . al can be sl bl
df\ﬁ yw band process. This can be cxplalnc(_i by the fd('.[ thdl.“;u", a e
o t rainflow ranges only occurring in offshore apphcau()ns.hntcrcs. Ib . i L
fou \ ivation is quite convincing for the special case
s derivation is quite convincing case . ‘
: In the particular case of the offshore doi pIogs]
a (oboas] pA

model ¢ .
- 1 ¥ 1
Jiao /Moan which from : 2
is rather inaccurate for a R : i .
~trum, the approaches based on the probability dlstrlbuttf.)ii .()t I.ocal r:a::T e i
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Fig. 22. (a) Histogram of the rainflow RF ranges for offshore spectra with a

ranges for offshore spectra with a = 0.5. (c) Histogram of the rainflow RF ranges for offshore spectra with a = 0.9,

better results than Kam /Dover’s. If compared with formulae setting out from Miles formula
(without empirical corrections). the range of validity of the formulae based on local maxima is
slightly enlarged.

As concerns rainflow ranges it is first stated that the number of rainflow ranges equals the
number of local maxima. The analysis of the rainflow cycle counting method shows that the
distribution of the rainflow ranges must be different from the distribution of local ranges for
broad band spectra. The distribution of rainflow ranges must have slightly larger spread. The
difference between rainflow ranges and corresponding local ranges appears to be a random
variable with a distribution function whose parameters depend at least on « but most likely on
the spectral shape, too. However, details about this distribution are not known. As an e
the histograms of the normalized difference between rainflow and local ranges simul
three different offshore spectra are shown in Fig. 21. The corresponding rainflow range
histograms are also presented in Fig. 22. They are similar to those obtained by Zhao /Baker
[29]. From such studies it can be reasonably concluded that the distribution of rainflow ranges
is a mixed distribution similar to eqn. (16), (30) or (32) but of a different type. In this sense
Dirlik [28] took the right approach. This author even introduced a mixture of three distribu-
tions. From the above discussion a mixture of two distributions might have been sufficient.

xample,
ated for

= 0.2. (b) Histogram of the rainflow RF
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Nevertheless, Dirlik’s model appears to be the best over the full range of spectra, exponent
eve >1C8S, s §

- reoularity factors a when measured against empirical ra‘inﬂnw rangcs.. This ﬁnot
e l'n"%u‘f”* 5' . theoretical formulation includes various empirical corrections and since it
SUFDI‘l_Smg‘hl"lftnlllh oments. Dirlik’s predictions are also in good agreement vgn?h the numerical
i tuuvr hp.u-.“-d : rri]ncludir.l‘g .dctcrministic components. Therefore, this cmplrlcal formula can
bt ?P_L‘L‘lfd mended for practical use as a substitute for the exact rainflow cyc%c counting
%C“C"i:]ll): itlrt:iog]r simulated stress/strain histories or to 1h[c]<,omcw}}1}at compllllcz;tz;,)dir;;si
rom mea: . ‘ ; : broye _
: 1ous srical integration approach proposed by Rychlik [9]. Note howev
I:Rt:tll(::: sT)l;?l‘E:;fi ;:'ofidcs non-conservative estimates for small exponents m.

5. Conclusion

All available prediction models to bypass_thc. cumhersom_e tlme h‘lsto’ry ge:f;a;t:ﬁ:;n;gféz
: ing have a rather limited range of application. Eor arbitrary spcctr'd, m(?. . e
u)uﬂtm'&, e estimates for the moments of both rainflow and local ranges. The mo_ments
S?r[c‘:iin;ztri\;::c:n bck significantly overestimated for large exponents rtr)"l an&/%re;vlg: E;l:li
s l rainflow i its he ranges can be obtai
T e S ?()Untl'n‘iaf(;g?mz;z tt)? E)irlik is found to be the most satisfac-
Cmpirllli?l:eaijfu:}'i??r]l:l'ygle; ?zrrnninflzleplrrelvicwed above is capable to provide good p{'ﬁdlCIlOI[]'S oi
:izrr?rlllagc indicators based on local ranges. Although Nabozsht}l](ml- sa:nioﬁzngosn-igﬁ;lg;
appear to be the most accurate for nearly narrow band spectra, they can p

tive approximations for broad band processes.
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Appendix: simulation of Gaussian processes

The numerical modeling of Gaussian stress process realizations is carried out with four
extremely different shapes of the spectral density
a) double-peak stress spectrum in joints of offshore structures (F ig. 1(a))

exp| - 1050/ (wT,)']

Glw) =
OTH{[1 - (w/1.797] + (0.041/1.797)")
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b) bimodal white noise spectrum (Fig. 1(b))

A foro,<w<w,and v, €w <w,;

Glw)= {
¢) clipped white noise (Fig. 1(c))
Glw)= {
d) multimodal spectrum (Fig. 1(d))
G(w)=Gy(w)Gr(w)

0 for other w

B forw, <w<w,;
0 for other w

with

el ok ) aK,
Goul - ,ZJ 2 (w—w}-)2+af‘ 2 (w-i—wj)‘-i—af
and

Ng ¢
GR(“)) = Z )
i=1 (0® —]) + (2B,0w,)
where a; and K, are suitable load parameters and B, is a damping ratio tor'some respo‘r;se
transferjfunctionj. w; and w; are the corresponding modal frequencies. C; is a parameter

i eIy -th mode.
governing the energy output of the I- _ o
For each spectrum a stress time-history X(¢) is generated by (Yang [31])

i

o

N -
X)) = [2G(w;)Aw;] s cos(w; + ¢;)

i=1 .
where N is the number of frequency intervals, ¢, is the rapdom phase fmdﬁ Aws\ 1:};111;
frequency interval. Up to N = 1000 frequency intervals are cm_mdered: Each. tX{fLﬂ;ehib (mlm
with an absolute precision of 10~5 with respect to the theoretical extreme: Fof c._a;.fgt‘:fr o
40,000 extrema (minima and maxima) are generated. In order to avoid periodicities,
representative w; in each interval is calculated as

where the spectral moments m,, and m,, correspond to th‘e.E-m.i amcf. ihi s‘ﬂf-(tiht %p)e{t_t:fj
moments in the frequency interval Aw;, respectively. A-ny periodicity of the simu gti friut. ~nc§
can be avoided in this way. In fact, even when o, is sclect;d at randumﬁ t? th," dnl'iq(_}k:tigﬁ
interval Aw,, periodicities can be obscrvcd._ln order toitictcrmmc exactly the size and locs
[ the loc: >ma the derivative process is generated too. ; D

% K] t‘rllj];ic:t]l ?::;zn:\jlhingsimuiuting tp he trajectories of random processes is I}-lc‘ rfhab;h‘nf ?f t‘k:f:?
random number generator. Several random number generators were subjenm‘j n:o ;zt(;.‘n:; 5
testing by the run-test (test for independence), a trend test and the Kolfm’)'g?né);—‘itx'l‘lmqm [q_;)
(test for uniform distribution). The YRAN32 generator proposed by Ddlga:v‘ }ns 1.{. 13; ._e
proved to be the best available producing almost ideal random numbers even for larg

sequences and all their segments.




