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Abstract— Point cloud registration is a classical problem
in advanced robot perception. Despite having been widely
studied, the registration of large-scale point clouds still remains
challenging in terms of both efficiency and accuracy. In this
paper, aiming at the registration in large-scale structural scenes
that contains numerous line-features, we propose a line-based
efficient and robust registration algorithm for robot perception.
Concretely, we first extract lines from point clouds and use
the line-features to perform the registration, which decreases
the scale of algorithm’s input and decouples the rotation
and the translation sub-problems. Consequently, it reduces
the complexity of registration problem. We then solve the
rotation and translation sub-problems using the branch-and-
bound algorithm, which ensures the accuracy and robustness of
registration. In translation sub-problem, we propose two strate-
gies to adapt to the registration problem in different scenes, the
one is universal algorithm, the other is decoupled algorithm.
Extensive experiments are performed on both synthetic and
real-world data to demonstrate the advantages of our method.

I. INTRODUCTION

Point cloud registration has many applications in robot
and computer vision. Specifically, in robot navigation and
localization, given two LiDAR points clouds, it can be ap-
plied to obtain the robot’s odometry information [1]. Besides,
the real-time loop closure in SLAM system can be achieved
through matching the current scan points with the global map
or sub-map [2]. In addition, in computer vision application,
point cloud registration plays an important role in object
recognition [3] and 3D reconstruction [4].

In the past few years, point cloud registration has been
widely studied, and many algorithms have been proposed.
Existing methods can be categorized into two main groups:
non-feature-based algorithms and feature-based algorithms.

Non-feature-based algorithms, from the perspective of
optimization, can be divided into two categories: local and
global methods. Among them, Iterative Closest Point (ICP)
algorithm [5] is one of the best-known classical local reg-
istration algorithms. Given an initial transformation, ICP
algorithm alternates between finding the correspondence
under the current transformation and calculating the best
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transformation according to the current correspondence until
the algorithm converges to the optimal solution. On the basis
of ICP, several improved algorithms have been proposed for
the following years, such as LM-ICP [6] which widened the
basin of convergence and trimmed ICP [7] based on the Least
Trimmed Squares approach. Besides ICP and its improved
algorithms, Normal Distribution Transform (NDT) [8] [9]
and Gaussian Mixture Models (GMMs) [10] [11] [12] are
also effective local registration algorithms. These local algo-
rithms are widely used in solving the point cloud registration
problem, due to their low time complexity and excellent
performance. However, the accuracy of these approaches
cannot be guaranteed, especially when considerable outliers
exist in the input data, which is inevitable in many real
applications. This is because that the point cloud registration
problem is generally a non-convexity problem [13], and
these algorithms all perform local optimization to get the
transformation between two points sets. Therefore, the final
solution is probably one of the numerous and dangerous local
optimum, and the performance of the algorithms heavily rely
on the proper initialization.

To avoid being stuck in local optimum, a series of
global registration algorithms have been proposed. Most of
these global methods are based on the branch-and-bound
algorithm. Breuel et al. firstly apply the branch-and-bound
algorithm for point cloud registration and use a match-list-
based branch-and-bound algorithm to handle the geometric
matching [14]. In addition, some researches based on Hartley
and Kahl’s theory [15] calculate the geometric bound for the
branch-and-bound algorithm to achieve robust point cloud
registration. Yang et al. in [13] propose a nested branch-and-
bound algorithm, which is the first global 3D registration
algorithm in SE(3) space. Due to adopting global search,
it is more robust than the local algorithms. However, in this
algorithm, the dimensionality of searching space is six, while
the time complexity of the branch-and-bound grows expo-
nentially with the number of dimensions, which significantly
deteriorates the efficiency. Recently, several works focus on
speeding up the globally optimal registration method. Based
on the nested algorithms, Chin et al. [16] introduce stere-
ographic projection to increase the algorithm’s efficiency.
In [17], authors significantly reduce the fraction of outliers
to make further optimization perform more quickly. But
both of these algorithms do not decrease the dimensionality
of the searching space, so they are still time-consuming.
To decrease the dimensionality, Liu et al. use the rotation
invariant feature to decouple the rotation and translation,
which reduces the dimensionality of 3D points registration
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Fig. 1. The flow diagram of our proposed registration algorithm.

[18]. However, it increases the scale of input data and it
takes some time to calculate the invariant rotation feature.
Therefore, it cannot maintain the efficiency when solving
the large scale points registration problem. In conclusion, all
the aforementioned algorithms can not realize both efficient
and robust high- scale points registration.

Existing feature-based algorithms mainly focus on non-
structural features [19] [20] [21]. These descriptors can
provide sparse correspondences which usually contains mis-
matches. After that, many robust correspondence-based
registration techniques, for example, RANSAC (RANdom
SAmple Consensus [22]), can be applied to remove out-
liers and estimate the transformation. The most commonly
used descriptors can be divided into two classes: spatial
distribution histogram-based descriptors and geometric at-
tributes histogram-based descriptors [23], which are both
non-structural features. These non-structural feature-based
algorithms do not rely on the prior knowledge of points set,
thus can be generally applied in many points registration
problems. However, there do exist lots of structured scenes
(e.g., Manhattan world [24] and Atlanta world [25]) that
contain many special structural features in real applications.

In this paper, inspired by researches [26] [27], we propose
an efficient and robust registration algorithm on the basis of
branch-and-bound. In our algorithm, we choose lines instead
of points as registration objects, aiming to study large-
scale structured scene containing rich line features, which is
commonly seen in urban environment. Firstly, we use the line
detection algorithm [28] to exact the lines from the points
sets, and then utilize these lines to implement registration.

Thanks to the line-features, we can decrease the input scale
of algorithms, since the number of the line-features is sig-
nificantly less than the number of points. More importantly,
registering two point sets using line-feature can decouple
estimating the rotation and estimating the translation, which
significantly reduces the dimensionality of 3D points regis-
tration. Thus, the line-feature based registration algorithm is
more efficient than non-feature based registration methods
which exhaustively search SE(3) space. Besides, compared
with general feature-based registration methods, we respec-

tively utilize the branch-and-bound optimizing the optimal
rotation and translation, which ensures the algorithm’s accu-
racy and increase the robustness to outliers.

It is worth noting that we propose two strategies for
solving the translation sub-problem, one is the universal
algorithm, and the other is the decoupled algorithm. The
universal algorithm performs translation search in three-
dimension space, and the decoupled algorithm performs
three translation searches in three one-dimension-spaces by
coordinate system transformation. The decoupled algorithm
is quite faster than the universal algorithm since its time
complexity is O(n), where n is the scale of the algorithm’s
input. Although, the application of the decoupled algorithm
is limited. If we want to use the decoupled algorithm to do
the translation search, there must be a certain number of
parallel lines in the lines set obtaining from the points set
and these parallel lines at least along with two directions.
But the universal algorithm does not have this limitation,
and it can be applied in every scene containing several lines.
Therefore, we can choose different algorithms for translation
searching according to the characteristic of the scenes.

The main contributions of our proposed method are as
follows:

• We propose a new registration algorithm based on
the line-based features, which can efficiently solve the
registration problem of large scale structured scene for
robust robot perception.

• We formulate a robust objective function for rota-
tion and translation sub-problems, and use branch-and-
bound to obtain the globally optimal solutions. Thus,
our methods are more robust than general-feature based
registration methods.

• We propose two strategies for solving the translator
problem to adapt to the registration problem in different
structured scenes.

II. METHOD

In this section, we introduce our proposed method (see
flow diagram Fig. 1) in detail.
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(a) (b)

Fig. 2. Rotation search space and translation search space. (a) is the rotation
space SO(3) which is parametrised by angle-axis vector in a solid ball whose
radius is π . (b) is the translation search space which is parametrised by 3-
vector in a cuboid whose half-widths are [[[λ1, λ2, λ3]]].

We exact lines using the algorithm in paper [28] from
the template points set X = {xxxi}|X |i=0 and target points set Y =

{yyy j}
|Y |
j=0, where |X | and |Y | respectively represent the number

of points in point set X and Y . We use a point and a unit
direction vector to represent a line. Let P = {pppi, ddd1

i }
|P|
i=0 and

Q = {qqq j, ddd2
j}
|Q|
j=0 be the lines set detecting from the points

set X and Y , where ddd1
i and ddd2

j represent the i-th and j-th
unit direction vector and pppi and qqq j represent the i-th and
j-th point.

A. Efficient Rotation Search

To obtain the optimal rotation, we define the maximum of
inliers as the objective function as Eq. (1)

Er(R) =
|P|

∑
i=0

max
j∈[0,|Q|]

b‖R ·ddd1
i −ddd2

j‖ ≤ εrc

R∗ = arg max
R∈SO(3)

Er(R)

(1)

where b·c is a binary function, if its inner condition is true, it
will return 1 and 0 otherwise, ‖ · ‖ represents the Euclidean
distance, εr is the inlier threshold, R∗ is the optimal rotation.
Our objective function Eq. (1) is robust to outliers because
the points out of a distance threshold will not be counted as
a inlier [16].

We use the branch-and-bound algorithm to solve the
above problem obtaining the globally optimal rotation. The
rotation search space of the branch-and-bound algorithm is
parameterized with angle-axis vector rrr, where ‖rrr‖ is the
rotation angle and rrr/‖rrr‖ is the rotation axis. There is a
exponential map between rotation matrix R and rotation
vector rrr.

R = exp(rrr×) (2)

where rrr× is the skew-symmetric matrix induced by rrr. Thus,
we can use a solid ball shown in Fig.2 (a) whose radius is
π to represent all the 3D rotations. The sub-space of each
branch is a cube in it. We refer to the method in [16] to
calculate the bound of the objective function (1) and use the
stereographic projection to speed up the rotation search.

The upper bound is

Ē(B) =
|P|

∑
i=0

max
j∈[0,|Q|]

bSαB(Rcddd1
i )∩ lεr(ddd

2
j) 6= /0c (3)

Where B is the current branch, Rc is the rotation pa-
rameterized by the center of B, SαB(R · ddd

1
i ) = {ddd | ‖ddd‖ =

‖Rc · ddd1
i ‖ , ∠(ddd, Rc ·ddd1

i ) = αB}, αB is the half diagonal
length of the cube B and lεr(ddd

2
j) = {ddd | ‖ddd− ddd2

j‖ ≤ εr}.
The lower bound is

Er(B) =
|P|

∑
i=0

max
j∈[0,|Q|]

b‖Rc ·ddd1
i −ddd2

j‖ ≤ εrc (4)

For the rigorous mathematical proofs about the upper
bound and lower bound, please refer to [16].

B. Universal Translation Search

We introduce our universal translation search method in
this sub-section. After the rotation search process, we can
obtain the optimal rotation. Simultaneously, we can also
obtain line-to-line correspondence, which may include mis-
matches since only rotation is considered. We then introduce
that given the optimal rotation, how to obtain the optimal
translation.

First, we consider a simple case where there are no parallel
lines in the scene, which means each line has its own
unique direction. In this case, we can directly obtain the
lines correspondence only by rotation, since there are no two
lines that have the same direction. Let P1 = {pppi, dddi}K

i=0 be
the lines set transformed from P under the optimal rotation.
Let Q1 = {qqqi, dddi}K

i=0 be the correspondence lines set of
P1. The element {pppi, dddi} in P1 and the element {qqqi, dddi}
in Q1 are correspondence lines. Therefore, the equation
∠(pppi + ttt∗−qqqi, dddi)≤ εt holds as shown in Fig.3, where ttt∗ is
the optimal translation and εt is the t-inlier threshold. We can
get the optimal translation by solving the following problem:

Et(ttt) =
K

∑
i=0
b∠(pppi + ttt−qqqi, dddi)≤ εtc

ttt∗ = argmax
t∈R3

Et(ttt)
(5)

Fig. 3. ppp1 and qqq1 are the points falling on the same line whose direction
vector is ddd1, and ppp2 and qqq2 are the points falling on the same line whose
direction vector is ddd2. Let ttt∗ be the optimal translation, the vector from
point qqq1 to point ppp1 + ttt∗ is parallel to the direction ddd1. And ppp2, qqq2, ttt∗, ddd2
are also have this relationship

However, in the real applications, the simple scenes are
usually uncommon. In contrast, more complex scenes where
lines are parallel are more common. In these cases, there
may be mismatches caused by parallel line-features.

Let P2 = {Ui}M
i=0 be a line set containing the lines trans-

formed from P under the the motion of optimal rotation
R∗, where the i-th element Ui of P2 is a sub line-set
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whose elements have the same direction (parallel lines):
Ui , {pppi

k, dddi}|Ui|
k=1. Let Q2 = {Vi}M

i=0 be the correspondence
lines set of P2, and similarly, Vi , {qqqi

l , dddi}|Vi|
l=0. Obviously, in

theses scenes, the parallel lines lead to the ambiguity that
we cannot obtain the correct correspondences only by the
direction of lines. In other words, if two lines in P2 and
Q2 have the same direction, we can not determine if they
are the correspondence lines without translation. In these
cases, even given the optimal rotation, we still need to solve
the following chicken-and-egg problem to obtain the optimal
translation and exact correspondence simultaneously:

Et(ttt) =
M

∑
i=0

|Ui|

∑
k=0

max
l∈[0,|Vi|]

b∠(pppi
k + ttt−qqqi

l , dddi)≤ εtc

ttt∗ = argmax
t∈R3

Et(ttt)
(6)

Similarly, we use the branch-and-bound algorithm solving
Eq. (6). The translation space is parameterized with 3-dim
vector ttt. One of the differences between rotation search space
and translation search space is that translation search space is
not closed, so we should determine the maximum translations
along three dimensions according to the real applications,
which is practical. Given the translation domain, we can
represent all translations with a cuboid as shown in Fig.2
(b) and the sub-space of each branch is a cuboid in it.

(a) (b)

Fig. 4. (a) Given a sub-space cuboid, the translation of ppp j may be anywhere
within the cuboidal region. Let ttt be the random translation in the cuboid
and ttt0 is the center of cuboid. Given two vectors, one is the vector from
qqqi to ppp j + ttt and the other is the vector from qqqi to ppp j + ttt0. The maximum
angle between the two vector is δi j . (b) It demonstrates the triangle angle
relationship: γ ≤ α +β .

Given a current branch C that is a cuboid space, ttt0 is the
center of C and S is the surface of C. the upper bound of
objective function (6) can be:

Ēt(C) =
M

∑
i=0

|Ui|

∑
k=0

max
l∈[0,|Vi|]

b∠(pppi
k + ttt0−qqqi

l , dddi)≤ εt +δlkc (7)

δlk = max
ttt∈S

∠(pppi
k + ttt−qqqi

l , pppi
k + ttt0−qqqi

l) (8)

The lower bound of objective function Eq. (6) can be:

Et(C) =
M

∑
i=0

|Ui|

∑
k=0

max
l∈[0,|Vi|]

b∠(pppi
k + ttt0−qqqi

l , dddi)≤ εtc (9)

We then give the solid mathematical proof to confirm
Eq.(7) is the upper bound.

∠(pppi
k + ttt−qqqi

l , pppi
k + ttt0−qqqi

l)

≤max
ttt∈C

∠(pppi
k + ttt−qqqi

l , pppi
k + ttt0−qqqi

l)

=max
ttt∈S

∠(pppi
k + ttt−qqqi

l , pppi
k + ttt0−qqqi

l)

(10)

According to the triangle angle relationship, we have

∠(pppi
k + ttt0−qqqi

l , dddi)

≤∠(pppi
k + ttt−qqqi

l , dddi)+∠(pppi
k + ttt−qqqi

l , pppi
k + ttt0−qqqi

l)

=∠(pppi
k + ttt−qqqi

l , dddi)+δlk

(11)

From (11), we know that, given a branch sub-space C,
if pppi

k, qqqi
l , ttt ∈ C satisfy ∠(pppi

k + ttt−qqqi
l , dddi) ≤ εt , ∠(pppi

k + ttt0−
qqqi

l , dddi) ≤ εt + δlk must hold. Therefore, it can be deduced
Et(ttt)≤ Ēt(C), in other words, Ēt(C) is the upper bound of
the objective.

C. Efficiently Decoupled Translation Search

In this sub-section, aiming at the scenes that contain
several parallel lines and these parallel lines are along at
least two directions, we propose a fast decoupled translation
search algorithm based on branch-and-bound. In contrast
to universal translation search, the search space of this
algorithm is three one-dimension spaces.

(a) (b)

(c)

Fig. 5. (a) Illustrate the result of dbscan cluster. There are four cluster
centers, ddd1, ddd2, ddd3 and ddd4. (b) We select two directions ddd1 and ddd2 containing
the most lines from them and calculate the cross product of two vectors.
(c) Illustrate the basis transformation.

First, we use the dbscan cluster algorithm [29] to cluster
the direction vectors of the lines, as shown in Fig.5 (a). The
lines, along with the same direction, will be clustered in the
same class. We choose two directions which contain the most
lines from them, let ddd1 and ddd2 be the direction vectors. In
this case, ddd1, ddd2 and ddd3 = ddd1× ddd2 form a group of basis
in the vector space. We perform the basis transformation for
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the lines, as shown in Fig.5 (c) and make the lines along
with ddd1 and ddd2 as the registration objects.

Let eee1, eee2 and eee3 be the unit orthogonal basis of initial
coordinate system. Let M1 = {ppp1

i , ddd1}|M1|
i=0 , M2 = {ppp2

j , ddd2}|M2|
j=0

be the two template line sets and N1 = {qqq1
k , ddd1}|N1|

k=0, N2 =

{qqq2
l , ddd2}|N2|

l=0 be the two target line sets.ddd1
ddd2
ddd3

=

dx
1 dy

1 dz
1

dx
2 dy

2 dz
2

dx
3 dy

3 dz
3

 ·
eee1

eee2
eee3

 (12)

Let [x1
i , y1

i , z1
i ] be the coordinate of ppp1

i in the coordinate
system [eee1, eee2, eee3], [u1

i , v1
i , w1

i ] be the coordinate of ppp1
i in the

coordinate system [ddd1, ddd2, ddd3], [x2
j , y2

j , z2
j ] be the coordinate

of ppp2
j in the coordinate system [eee1, eee2, eee3], [u2

j , v2
j , w2

j ] be
the coordinate of ppp2

j in the coordinate system [ddd1, ddd2, ddd3],
[a1

k , b1
k , c1

k ] be the coordinate of qqq1
k in the coordinate system

[eee1, eee2, eee3], [ f 1
k , g1

k , h1
k ] be the coordinate of qqq1

k in the
coordinate system [ddd1, ddd2, ddd3], [a2

l , b2
l , c2

l ] be the coordinate
of qqq2

l in the coordinate system [eee1, eee2, eee3], [ f 2
l , g2

l , h2
l ] be

the coordinate of ppp2
l in the coordinate system [ddd1, ddd2, ddd3],

[t1, t2, t3] be the coordinate of ttt∗ in the coordinate system
[eee1, eee2, eee3], [t ′1, t ′2, t ′3] be the coordinate of ttt∗ in the coordi-
nate system [ddd1, ddd2, ddd3].

There is the following relationship between the coordi-
nates. We use the coordinates of ppp1

i as the example.x1
i

y1
i

z1
i

=

dx
1 dy

1 dz
1

dx
2 dy

2 dz
2

dx
3 dy

3 dz
3

 ·
u1

i
v1

i
w1

i

 (13)

According to the above sub-section, we known that if ppp1
i

and qqq1
k fall on the same line, ppp1

i , qqq1
k , ddd1 and ttt∗ must satisfy

the following relationship.

ppp1
i + ttt∗−qqq1

k = λddd1 (14)

where λ is a constant. We can also write the above equation
as the following.

[
u1

i v1
i w1

i

]
·

ddd1
ddd2
ddd3

+
[
t ′1 t ′2 t ′3

]
·

ddd1
ddd2
ddd3


−
[

f 1
k g1

k h1
k

]
·

ddd1
ddd2
ddd3

=
[
λ 0 0

]
·

ddd1
ddd2
ddd3


(15)

Then, we can formulate the following equation. u1
i + t ′1−

f 1
k = λ , v1

i + t ′2−g1
k = 0, w1

i + t ′3−h1
k = 0. Similarly, for the

lines along with ddd2, we can determine similar equations.
u2

i + t ′1− f 2
k = 0, v2

i + t ′2− g2
k = γ , w2

i + t ′3− h2
k = 0. In this

case, we achieve decoupling the translation along the three
direction ddd1, ddd2 and ddd3 and we can respectively get the
optimal translations along three directions by solving the
following problems.

E1
t (t1) =

|M2|

∑
j=0

max
l∈[0,|N2|]

b|u2
j + t1− f 2

l | ≤ εt1c

t ′1 = argmax
t1∈R

E1
t (t1)

(16)

E2
t (t2) =

|M1|

∑
i=0

max
k∈[0,|N1|]

b|v1
i + t2−g1

k | ≤ εt2c

t ′2 = argmax
t2∈R

E2
t (t2)

(17)

E3
t (t3) =

|M1|

∑
i=0

max
k∈[0,|N1|]

b|w1
i + t3−h1

k | ≤ εt3c

+
|M2|

∑
j=0

max
l∈[0,|N2|]

b|w2
j + t3−h2

l | ≤ εt3c

t ′3 = argmax
t3∈R

E3
t (t3)

(18)

We can use the branch-and-bound algorithm to obtain the
optimal translations along three dimensions,respectively. The
search space of each sub-problem is a line segment.

The upper bound of (16) is

Ē1
t (L) =

|M2|

∑
j=0

max
l∈[0,|N2|]

b|u2
j + t̄1− f 2

l | ≤ εt1 +δtc (19)

where δt is the half length of L and t̄1 is the center of L.
The lower bound of (16) is

E1
t (L) =

|M2|

∑
j=0

max
l∈[0,|N2|]

b|u2
j + t̄1− f 2

l | ≤ εt1c (20)

The upper bound and lower bound of Eq. (17) and
Eq. (18) are calculated in the same way as Eq. (19) and
Eq. (20).

III. EXPERIMENTS

To validate the performance of the proposed algorithm, we
conduct experiments using both synthetic data and real data.
And in real data experiments, we compare our algorithm
with the state-of-the-art approaches, ICP, NDT, FPFH [30],
GOICP [13] and GORE [17]. Since the synthetic data are
random lines and the registration object of these state-of-art
approaches is point, we only verify the performance of our
algorithm in the synthetic experiments and don’t compare
with these approaches. Our algorithm is implemented in
C++, ICP, NDT and FPFH use the functions in PCL and
GOICP, GORE use the code released by the authors. All the
experiment are performed on the notebook with intel i5 2.8
GHz CPU and 4G RAM.
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Fig. 6. RS+TS+RF represent the algorithm utilizing rotation search, universal translation search and local refinement. RS+DTS+RF represent the
algorithm using rotation search, decoupled translation search and local refinement. From the first row to the third row, they are respective the number of
lines experiments, the number of directions experiments and outlier fraction experiments. The box charts illustrate rotation error and translation error. The
line charts illustrate the mediums of total runtime and translation search runtime. The unit of rotation error is degree, the unit of translation error is meter
and the unit of runtime is second.

A. Synthetic Data

In this sub-section, we use synthetic data to verify the
performance of our method. We mainly concern three ex-
periment terms, the accuracy and efficiency concerning the
number of directions, the accuracy and efficiency concerning
the number of lines, the accuracy and efficiency concerning
the outlier fraction. In number of directions experiment, we
create five directions groups, the number of directions in
these group are 10, 15, 20, 25, 30. And in each direction,
there are ten different lines. For every number of direction,
we perform fifty Monte Carlo experiments, where the trans-
formation in each experiment are randomly generated from
the space SE(3) = SO(3)× [−5, 5]3, directions and lines
are randomly created. In number of experiments, given the
number of directions is ten, we successively create five lines
groups, in each lines group, we create the same number of
lines for each direction. The number of lines successively are
10, 15, 20, 25, 30. For each number of lines, we also do fifty
Monte Carlo experiments. In outlier fraction experiments,
given ten directions and thirty lines in each direction, the
outlier fractions are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The outliers

randomly distribute in the lines set. We perform fifty Monte
Carlo experiments for each fraction. Besides, we add noises
with σ = 0.02 for all the direction vectors.

The result is shown in Fig.6. It is worth noting that
all the synthetic data satisfy the condition using the de-
coupled translation search. In the view of accuracy, both
methods proposed in this paper, RS+TS+RF(using rotation
search, universal translation search and local refinement) and
RS+DTS+RF(using rotation search, decoupled translation
search), have excellent accuracy and robustness to outliers. In
the view of efficiency, decoupled translation search method
is faster than universal translation search method. The time
complexity of universal translation search method is O(kn3),
where k is the number of directions and n is the number
of lines. The time complexity of the decoupled translation
search method is O(kn). The trend of the line charts illus-
trating the translation search runtime Fig. 6 (d) (h) verify
this.

B. Real Data
In this sub-section, we compare our method with the

state-of-art approaches using real data. We select 5 scenes
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TABLE I
RE, TE, RT REPRESENT ROTATION ERROR, TRANSLATION ERROR, AND

THE RUNTIME OF REGISTRATION.

Scene Metric ICP NDT FPFH Our

Marketsquarefeldkirch4
RE (◦) 20.22 41.13 0.57 0.29
TE (m) 5.07 4.82 0.31 0.06
RT (s) 26.15 136.91 63.42 3.05

Marketsquarefeldkirch7
RE (◦) 17.16 43.58 0.48 0.31
TE (m) 4.10 4.67 0.32 0.13
RT (s) 17.04 116.99 61.21 1.36

Stgallencathedral1
RE (◦) 11.81 40.69 0.58 0.31
TE (m) 3.48 4.65 0.54 0.19
RT (s) 25.46 41.57 58.93 2.05

Stgallencathedral3
RE (◦) 17.37 40.24 0.71 0.35
TE (m) 3.51 4.19 0.49 0.18
RT (s) 18.37 36.12 59.69 1.78

Stgallencathedral6
RE (◦) 11.71 40.45 0.57 0.28
TE (m) 5.47 4.41 0.45 0.13
RT (s) 13.11 39.81 50.13 1.86

from semantic 3D dataset [31]. We downsample the initial
points cloud, and make the number of points in each scene
be one million. For each scene, we perform fifty Mento
Carlo experiments and the transformation are generated from
the space SE(3) = SO(3)× [−5,5]3. From the synthetic
experiments, we know the accuracy and robustness of de-
coupled translation search and universal translation search
method are similar, and these scenes satisfy the application
conditions of the decoupled translation search method. In
these experiments, we utilize the decoupled translation search
method, and we stipulate that if an algorithm can’t obtain
the solution within thirty minutes, we will terminate the
algorithm earlier. We select the best parameters for the start-
of-art approaches considering both accuracy and efficiency.

The results are shown in Table I and the data processing
method is that we remove the five best results and the
five worst results then calculate the mean of the following
results. Both global algorithms, GOICP and GORE, didn’t
get the solution within thirty minutes. They are unpractical in
solving the large scale points registration problem. Thus we
don’t write the result of both algorithms. From the tables,
we can know that our method performs better than other
algorithms in all scenes. . The errors of ICP and NDT are so
large that it is considered that they are failed. FPFH achieved
similar results to those of our method, but our method is
faster and more accurate than it. To further compare the
performance of our algorithm and FPFH, we choose 8 scenes
from bremen city dataset [32]. The registration results are
shown in Table II, table III and Fig.7

IV. CONCLUSION

In this paper, we introduce a line-based efficient and robust
algorithm for the registration of large-scale point clouds.
This method uses the lines detected from the point clouds
as registration objects, which decouples the rotation and
translation sub-problems. We sequentially use branch-and-
bound algorithm to solve both sub-problems. In the transla-
tion sub-problem, we propose two strategies. The first one is

TABLE II
RE, TE, RTE, RT REPRESENT ROTATION ERROR, TRANSLATION

ERROR, RELATIVE TRANSLATION ERROR AND THE RUNTIME OF

REGISTRATION.

Algorithm Metric Scene1 Scene2 Scene3 Scene4

EPFH

RE (◦) 2.75 16.94 2.01 14.33
TE (m) 2.04 1.72 1.54 1.05

RTE 0.11 0.09 0.05 0.04
RT (s) 80.11 79.83 149.23 158.02

Our

RE (◦) 0.32 1.19 1.18 1.61
TE (m) 0.43 0.07 0.95 0.35

RTE 0.03 0.004 0.03 0.01
RT (s) 14.77 11.18 35.91 44.54

TABLE III
RE, TE, RTE, RT REPRESENT ROTATION ERROR, TRANSLATION

ERROR, RELATIVE TRANSLATION ERROR AND THE RUNTIME OF

REGISTRATION.

Algorithm Metric Scene5 Scene6 Scene7 Scene8

FPFH

RE (◦) 42.97 5.66 6.19 13.76
TE (m) 3.11 2.16 4.43 9.87

RTE 0.19 0.11 0.19 0.24
RT (s) 106.03 75.27 71.34 79.19

Our

RE (◦) 0.43 0.57 2.64 0.92
TE (m) 0.05 0.31 1.26 0.54

RTE 0.003 0.01 0.05 .001
RT (s) 100.28 11.84 44.54 70.78

a universal method without any limitations, and the second
one is a fast decoupled method that can only be applied in the
scenes containing a certain number of parallel lines, extend
along with at least two directions. The proposed algorithm
outperforms state-of-the-art local and global methods, while
finds the robust pose solutions more reliably.

REFERENCES

[1] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Proceedings of Robotics: Science and Systems Conference,
July 2014.

[2] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), May 2016, pp. 1271–1278.

[3] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433–449, May
1999.

[4] A. S. Mian, M. Bennamoun, and R. A. Owens, “From unordered range
images to 3d models: a fully automatic multiview correspondence al-
gorithm,” in Proceedings Theory and Practice of Computer Graphics,
2004., June 2004, pp. 162–166.

[5] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, Feb 1992.

[6] A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image
& Vision Computing, vol. 21, no. 13, pp. 1145–1153, 2001.

[7] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in International Conference on
Pattern Recognition, 2002.

[8] M. Magnusson, A. J. Lilienthal, and T. Duckett, Scan registration for
autonomous mining vehicles using 3D-NDT, 2007.

[9] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and
J. Hertzberg, “Evaluation of 3d registration reliability and speed - a
comparison of icp and ndt,” in 2009 IEEE International Conference
on Robotics and Automation, May 2009, pp. 3907–3912.

60

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:42:21 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7. Schematic diagrams of the registration results. (a) (c) (e) (g) (i) (k) are the point clouds before registration. And (b) (d) (f) (h) (j) (l) are the point
clouds after registration.

[10] B. Jian and B. C. Vemuri, “A robust algorithm for point set registration
using mixture of gaussians,” Proceedings. IEEE International
Conference on Computer Vision, vol. 2, p. 1246—1251, October
2005. [Online]. Available: http://europepmc.org/articles/PMC2630186

[11] ——, “Robust point set registration using gaussian mixture models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 8, pp. 1633–1645, 2011.

[12] M. Andriy and S. Xubo, “Point set registration: coherent point drift,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2262–2275, 2010.

[13] J. Yang, H. Li, and Y. Jia, “Go-icp: Solving 3d registration efficiently
and globally optimally,” in 2013 IEEE International Conference on
Computer Vision, Dec 2013, pp. 1457–1464.

[14] T. Breuel, “Implementation techniques for geometric branch-and-
bound matching methods,” Computer Vision and Image Understand-
ing, vol. 90, no. 3, pp. 258–294, 2003.

[15] R. I. Hartley and F. Kahl, “Global optimization through rotation space
search,” International Journal of Computer Vision, vol. 82, no. 1, pp.
64–79, 2009.

[16] A. P. Bustos, T.-J. Chin, A. Eriksson, H. Li, and D. Suter, “Fast
rotation search with stereographic projections for 3d registration,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 11,
pp. 2227–2240, 2016.

[17] A. P. Bustos and T.-J. Chin, “Guaranteed outlier removal for point
cloud registration with correspondences,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2868–
2882, 2018.

[18] Y. Liu, C. Wang, Z. Song, and M. Wang, “Efficient global point cloud
registration by matching rotation invariant features through translation
search,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert,
C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer International
Publishing, 2018, pp. 460–474.

[19] A. L. Kleppe, L. Tingelstad, and O. Egeland, “Coarse alignment for
model fitting of point clouds using a curvature-based descriptor,” IEEE
Transactions on Automation Science and Engineering, vol. 16, no. 2,
pp. 811–824, 2019.

[20] SALTI, Samuele, TOMBARI, Federico, D. I. Stefano, and Luigi,

“Shot: Unique signatures of histograms for surface and texture de-
scription,” Computer Vision and Image Understanding, vol. 125, no. 8,
pp. 251–264, 2014.

[21] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape context for 3d
data description,” 01 2010.

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Readings in Computer Vision, pp. 726–740,
1987.

[23] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M. Kwok, “A
comprehensive performance evaluation of 3d local feature descriptors,”
International Journal of Computer Vision, vol. 116, no. 1, pp. 66–89,
2016.

[24] J. Straub, O. Freifeld, G. Rosman, J. J. Leonard, and J. W. Fisher, “The
manhattan frame model—manhattan world inference in the space of
surface normals,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 1, pp. 235–249, 2017.

[25] K. Joo, T.-H. Oh, I. S. Kweon, and J.-C. Bazin, “Globally optimal
inlier set maximization for atlanta world understanding,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2019.

[26] S. Chen, L. Nan, R. Xia, J. Zhao, and P. Wonka, “Plade: A plane-
based descriptor for point cloud registration with small overlap,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 58, no. 4, pp.
2530–2540, 2020.

[27] W. Forstner and K. Khoshelham, “Efficient and accurate registration
of point clouds with plane to plane correspondences,” in The IEEE
International Conference on Computer Vision (ICCV) Workshops, Oct
2017.

[28] X. Lu, Y. Liu, and K. Li, “Fast 3d line segment detection from
unorganized point cloud,” 2019.

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD), vol. 96, no. 34, 1996,
pp. 226–231.

[30] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms

61

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:42:21 UTC from IEEE Xplore.  Restrictions apply. 



(fpfh) for 3d registration,” in 2009 IEEE International Conference on
Robotics and Automation, May 2009, pp. 3212–3217.

[31] http://semantic3d.net/ .
[32] http://kos.informatik.uni-osnabrueck.de/3Dscans/ .

62

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 11,2022 at 08:42:21 UTC from IEEE Xplore.  Restrictions apply. 


		2021-09-13T15:50:40-0400
	Preflight Ticket Signature




