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Abstract 

The City of Munich provides more than 34,000 public bicycle racks at approximately 350 sites. 

For inventorying them in a geoinformation system, automatic detection is desirable. This thesis 

considers the approach of using deep learning to detect the unroofed bike parking facilities in 

aerial imagery. For this purpose, a Mask R-CNN deep learning model with ResNet-50 

backbone is trained using the ArcGIS API for Python. RGB, CIR (color-infrared), nDSM 

(normalized Digital Surface Model) and NDVI (Normalized Difference Vegetation Index) rasters 

from an image flight in winter 2019 are available, and ground truth data is derived from these. 

To evaluate, which of the band combinations gives the best result, the model is trained with 

RGB, CIR, RGB+nDSM, RGB+NDVI, and RGB+nDSM+NDVI, respectively. The trained 

models are then applied in ArcGIS Pro. It is shown that the best results are achieved when 

using the RGB imagery in combination with the nDSM raster. The detection reaches a 

precision of 83.2% and a recall of 77.3%. Limitations are in particular the shadows cast by 

buildings and trees. Since 74% of the bicycle racks in the training data are in the shadow, 

bicycle racks that are in the sun are more difficult to detect. In addition, dark shadows also 

prevent detection. Additionally, the analysis of the detected objects shows that parking facilities 

are recognized better when many bikes are parked there. The reason is the training data as it 

only contains a few empty bike parking facilities. Furthermore, this thesis investigates to what 

extent a classification of the bicycle rack types is possible. A detailed type differentiation is not 

attainable but a rough classification is achieved by the trained model. 
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Zusammenfassung 

Die Landeshauptstadt München stellt an etwa 350 Orten mehr als 34.000 öffentliche 

Fahrradständer bereit. Für die Verarbeitung dieser in einem Geoinformationssystem ist eine 

automatische Erfassung wünschenswert. Diese Arbeit betrachtet den Ansatz, mittels Deep 

Learning Fahrradständer in München, die nicht überdacht sind, in Luftbildern zu detektieren. 

Dazu wird ein Mask R-CNN Deep-Learning-Modell mit ResNet-50 Backbone mittels der 

ArcGIS API für Python trainiert. Zur Verfügung stehen die Raster RGB, CIR (color-infrared), 

nDOM (normalisiertes digitales Oberflächenmodell) und NDVI (Normalized Difference 

Vegetation Index) aus einer Winterbefliegung im Jahr 2019. Aus diesen werden Ground Truth 

Daten abgeleitet. Um zu testen, welche der Bandkombinationen das beste Ergebnis liefert, 

wird das Modell jeweils mit RGB, CIR, RGB+nDOM, RGB+NDVI bzw. RGB+nDOM+NDVI 

trainiert. Die Anwendung der trainierten Modelle erfolgt anschließend in ArcGIS Pro. Dabei 

zeigt sich, dass bei der Verwendung der RGB Bilddaten in Verbindung mit dem nDOM Raster 

die besten Ergebnisse erzielt werden. Die Detektion erreicht eine Precision von 83.2% und 

einen Recall von 77.3%. Einschränkungen stellen hierbei insbesondere der Schattenwurf 

durch Gebäude und Bäume dar. Da 74% der Fahrradständer in den Trainingsdaten im 

Schatten liegen, werden zum einen Fahrradständer, die in der Sonne stehen, schlechter 

detektiert. Zum anderen verhindern sehr dunkle Schatten ebenfalls eine Detektion. Die 

Analyse der detektierten Objekte zeigt zudem, dass Fahrradständer besser erkannt werden, 

wenn dort viele Fahrräder abgestellt sind. Der Grund ist auch hier in den Trainingsdaten zu 

finden, da diese nur wenige leere Fahrradständer enthalten. Des Weiteren untersucht diese 

Arbeit, inwiefern eine Klassifizierung der Fahrradständertypen möglich ist. Es wird deutlich, 

dass eine detaillierte Typunterscheidung nicht möglich ist, jedoch eine grobe Einordnung durch 

das trainierte Modell erreicht wird. 
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1 Introduction & Motivation 

Bicycles are a very important means of transport in Munich – every day hundreds of thousands 

residents choose their bike for an emission-free, fast, athletic and timetable-independent 

arrival at their desired destination (Schmidt 2019). In addition to safe bike paths, parking 

facilities at the destination are an important part of the bike infrastructure. The City of Munich 

(Landeshauptstadt München, LHM) provides at approximately 350 sites more than 34,000 bike 

parking racks. These are distributed over 2000 bike parking facilities. This way, many cyclists 

can safely and orderly park and lock their bikes at subway stations, bus stops, public buildings, 

universities, schools, etc. 

According to Allgemeiner Deutscher Fahrrad-Club e.V. (2011) (ADFC, German Cyclists 

Association) the supply of bicycle racks depends on several factors. One is the choice of the 

right type of rack. This should be easily visible to passers-by and not pose a risk of injury to 

users, as well as to children playing. For theft-proof parking, it must be possible to lock the 

frame and one of the wheels. In addition, the rack must prevent the bike from being damaged, 

for example by tipping over. This also includes a suitable distance to the neighboring rack to 

prevent the handlebars, cables, etc. from getting entangled. In addition, the choice of location 

is decisive. If the bicycle parking facilities are used for short periods, e.g., for shopping, or for 

several hours, e.g., during working hours, the racks must be easily and quickly accessible. For 

racks designed for long-term parking, e.g., at the train station, weather protection is desirable. 

In addition, the question of location requires an analysis of demand. 

With so many bike racks spread throughout the City of Munich, a good system for inventory 

and maintenance of the facilities is needed. For these purposes, LHM would like to achieve a 

geo-referenced data storage for the bike racks. The accounting asset management keeps 

information about the bike racks without the possibility for georeferenced evaluations. A 

manual recording and transfer into a geoinformation system (GIS), as well as keeping the 

parking facility footprints up to date is time-consuming and costly. Therefore, an automized 

process for detection and, if possible, classification of bike racks is desired. 

Within the administration, there is now the question of how changes in the bicycle rack 

distribution can be tracked directly in a GIS without detours via the used SAP system. Manual 

maintenance takes a lot of effort and an amount of 70-80% correct data through automated 

processes would be a great step forward.  

The idea is now to use deep learning on aerial images to find the footprints of bike parking 

facilities in Munich. In recent years, deep learning has become an important tool for the 
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automatic classification and detection of objects in images. It also enriches the processing of 

satellite and aerial imagery and has become an important research topic in the field of remote 

sensing (Ma et al. 2019). As a result, this project brings together methods from different 

disciplines: geoinformatics, computer vision and remote sensing. 

This results in the task and the research questions of this thesis:  

The task is to train a deep learning model on aerial images provided from 2019. It shall be 

examined whether the deployment of a deep learning model for object detection in aerial 

images trained only on RGB is sufficient. Or whether a model using additional data such as 

infrared data (CIR), a Normalized Difference Vegetation Index (NDVI) raster and a normalized 

digital surface model (nDSM/nDOM, difference between DSM and DTM) can support the 

detection. ArcGIS Pro supports the deep learning workflow by providing a “Deep Learning“ 

toolset including functions for preprocessing the data and a Detect Objects using Deep 

Learning tool (ESRI 2021e). Subsequently, postprocessing steps should be applied to store 

the position and size of the racks in the geodatabase in a meaningful way. A further task is to 

assess if it is possible to also identify the type of rack with the help of the trained deep learning 

model. Finally, a manual in German is to be written in order to make the steps for utilizing the 

model applicable for the administration. To summarize the individual steps of postprocessing, 

it is beneficial to aggregate them with an ArcGIS toolbox. Such an application can help the City 

of Munich to inventory their bike racks on a georeferenced basis whenever new true 

orthophotos are available. 

Ground truth data of the existing bike racks is necessary as the basis of the training. For this 

purpose, a linear geodataset with bicycle parking facilities of the LHM is available at the time 

of 2019. Before the training can be executed, this must be converted into polygons that exactly 

represent the footprints of the facilities. In addition, aerial imagery from 2017 is available, on 

which the found model can be tested (with the restriction that the trees are in leaf and will 

therefore cover some of the racks).  

This results in the following research questions for this thesis. On the one hand, it is a question 

of determining which bands of the raster data represent the best combination to achieve the 

highest precision in bike rack detection. For this, it is important to find optimal model 

parameters. On the other hand, it is about figuring out to what extent a classification of the 

different rack types is possible and which types can be distinguished. In addition, there is the 

question how shadows or empty bicycle racks and many bicycles in the facilities, respectively, 

influence the result. 
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2 Theoretical Background and Related Work 

2.1 Deep Learning and its Concepts 

2.1.1 Deep Learning Background 

Deep learning belongs to the field of machine learning and even more general to artificial 

intelligence. With its breakthrough in the last decade, deep learning has gained importance in 

the field of remote sensing. It has become a valuable tool for processing remote sensing data 

due to its strength in big data image analysis (Zhu et al. 2017). Once a deep learning model 

has been trained for a specific application, one can apply it to similar but new images. 

The concept of deep learning is based on artificial neural networks (ANNs). These relate to the 

functioning of the neural networks in the human brain. A single component of both the human 

and the artificial neural network is called a neuron. Figure 1 shows its simplified mathematical 

model. Each neuron receives its input signals 𝑥𝑖 either from the input data or the neurons of 

the previous layer. Each of the input signals is multiplied by a weight 𝑤𝑖. Inside the neuron, the 

weighted input signals are summarized together with a bias 𝑏. The weights and the biases are 

the elements of a neural network which are adjusted during the training. The result of the 

neuron is processed with an activation function (see 2.1.2 Activation Layer) and then passed 

on to the next neuron. Several of these neurons form together a layer of the neural network. 

The entire ANN consists of layers linked by the connections between the neurons. The final 

layer is called output layer and the outputs of its neurons present the predictions made on the 

input data. (Li et al. 2021) 

 

 

 

 

 

 

 
Figure 1: Mathematical model of a neuron (adapted from: Li et al. 2021) 
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The mathematical model of tensors is used to represent the input data and also the data that 

is passed on from neuron to neuron. For example, a 3D tensor is required to save an image 

with height, width, and multiple color channels. Each of the entries of the tensor represents 

one input signal 𝑥𝑖. (Chollet 2018) 

In addition to the parameters that are adapted during the training of a neural network, there 

are hyperparameters. These are parameters that the user must define before starting the 

training. In the next chapter 2.1.2, some of these hyperparameters are described. 

If a network consists of many layers (dozens to hundreds), it is referred to as deep learning. 

The number of layers represents the depth of the network. Between the first layer, the input 

layer and the output layer are the so-called hidden layers. Convolutional neural networks 

(CNNs), a certain type of ANNs, are the typical method for processing images in the field of 

deep learning. Based on CNNs, the functionality of deep learning is explained in the following. 

(Chollet 2018) 

2.1.2 Convolutional Neural Networks (CNNs) 

The layers of a CNN perform different arithmetic operations and give each network its 

individual architecture. Figure 2 shows the working principle of a neural network. The data of 

an image (input X) is transformed by tensor operations in several layers and thus lead to 

predictions Y’. In the model training phase, prelabeled images (true targets Y) are available for 

each input image. With the help of a loss function, the predictions Y’ and Y are compared 

and feedback on the current performance of the model is obtained. Based on this feedback, 

Figure 2: Outlined functionality of a CNN (Source: Chollet 2018) 
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the weights of the layers can now be adjusted, so that in further runs, the predictions Y’ match 

the true targets Y even better, and the loss function improves iteratively. The training of a 

model is finished as soon as the loss function is minimal. Thus, the training can be described 

as an optimization problem. For the optimization, the chained derivatives of the tensor 

operations are needed. These derivatives are called gradients. With the iterative process of 

gradient descent the optimum is calculated. (Chollet 2018)  

The forward steps, when the input passes through the layers, is referred to as feedforward. 

The backward steps, which is the adjustment of the weights and biases, are carried out by 

means of backpropagation. The optimizer describes the backpropagation algorithm, which 

calculates the gradients going backwards from the last layer to the first, uses the chain rule for 

derivatives and applies the updates accordingly. An important hyperparameter is the learning 

rate of the optimization problem. The optimizer is responsible for improving the network step 

by step. The learning rate defines the size of the steps for the gradient descent. If it is too 

small, reaching the minimum takes a long time and training can get stuck in local minima. On 

the other hand, if it is too large, it can happen that the function skips the optimum. (Chollet 

2018) 

The training images fed into the network are split into two sets: a training set and a validation 

set. Only the training set passes through feedforward and backpropagation. The validation set 

is not involved in the backpropagation process. By this, two losses, the training loss and the 

validation loss, emerge. These are used to evaluate the model performance. The percentage 

distribution of the images between the two groups is a hyperparameter and therefore used to 

improve the model configuration. A common ratio is 80:20. (Chollet 2018) 

Supplementary, the training images are divided into batches. The batch size, another 

hyperparameter, describes the number of images that are processed before the weights of the 

model are updated. As soon as all images of the training and the validation set have been 

processed once, an epoch is complete. The number of epochs, like the other 

hyperparameters, must be set beforehand by the user. The number of epochs required varies 

depending on the architecture of the network, the amount of training data, and other 

hyperparameter settings. Too few epochs result in a model that is not yet optimally trained. 

The loss function has not yet reached its optimal value. Too many epochs can lead to 

overfitting. Therefore, it is essential to find an optimal number of epochs (see chapter 2.1.3). 

(Chollet 2018) 

As the architecture of a model is described by the sequence of different layer types, the most 

important and most frequently used layers of CNNs are explained briefly in the following: 
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Convolutional Layer 

Convolutional layers (often abbreviated to conv) make up the largest part of a CNN and give 

this type of network its name. The principle of such a layer is that a filter slides over the input 

tensor. Each value is replaced by the weighted average of the values surrounding it. A possible 

correlation between the filter and the input would be reflected in the result. Thus, features are 

recognized in the input data. The results of the convolution are written into so-called feature 

maps. (Dumoulin and Visin 2016) 

Important parameters are the size of the filter and the stride, i.e., how far the filter is moved 

after each calculation. A typical filter size is 3 x 3. The third dimension of the filter always 

corresponds to the depth of the input. For example, if it is an RGB-image with three bands, the 

filter is 3 x 3 x 3 in size. With a stride of 1, the filter is shifted to the neighboring value in the 

next step. With a stride of 2, one value is skipped. This also results in a feature map that is 

halved in width and height. Another parameter of a convolutional layer is padding. It specifies 

whether further numbers, often zeros, are inserted at the edges of the input. This means that 

the filter can also be applied at the edge and there is no reduction in the feature map size. 

(Dumoulin and Visin 2016) 

Figure 3 shows an example for a 3 x 3 filter in 2-dimensional space. The filter (gray) slides 

over the matrix (blue) with a stride of 1. The result of each filter operation is then saved in the 

feature map (green). Since no padding is used here, the size of the feature map is reduced to 

3 x 3 compared to the input (5 x 5).  

Activation Layer 

The activation of a layer can either be interpreted as part of the previous layer or as a separate 

layer. The activation function decides which results, often from the convolution, are passed 

on to the feature map. The activation function ensures that the linearity of the layers is 

supplemented by a non-linear function. One also speaks of a non-linearity. CNNs often 

implement ReLU (rectified linear unit) (formula (1)) as an activation function. Adding a bias can 

be used to shift the function. (Chollet 2018; Li et al. 2021) 

Figure 3: Convolution example: filter (gray) slides over matrix (blue), dot product is calculated at each position and written into the 
feature map (green) at the corresponding position (adapted from: Dumoulin and Visin 2016) 
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𝑓(𝑥) = max⁡(0, 𝑥) (1) 

Softmax Layer 

A network that implements classification needs a last layer that outputs the probability 

distribution for the classes. A softmax layer is used for normalizing a vector and for 

transforming it so that it contains values between 0 and 1 that sum up to 1 with formula (2). 

(Goodfellow et al. 2016) 

 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)𝑖 =
ezi

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 
(2) 

 
𝑧: input vector (

𝑧0
…
𝑧𝐾
), 𝐾 number of classes 

𝑧𝑖: value at position 𝑖 in 𝑧 

 

Fully-Connected Layer 

When all input signals of one layer are connected to all neurons of the following layer, it is 

called a fully-connected layer (FC). This type of layer is often used at the end of a CNN for 

classification. (Li et al. 2021) 

If a network is referred to as a Fully-Convolutional Network (FCN), it implies that it does not 

contain any fully-connected layer. Instead, it contains 1 x 1 convolutional layers that perform 

the classifier tasks towards the end of the network. 

Batch Normalization Layer 

Batch normalization (BN) layers are used to make learning easier and to normalize the values 

processed by the neural network, e.g., after convolution. The inputs are linearly transformed 

to obtain zero means and unit variances. The BN layers make the network more robust with 

regard to poor initialization and allow higher learning rates. They are usually used after 

convolutional and fully-connected layers. (Ioffe and Szegedy 2015) 

Pooling Layer 

The purpose of a pooling layer is to 

reduce the dimension of the feature 

map. By this downsampling, the 

number of parameters decreases, 

and the feature information is 

accentuated. The layer is often used 

after convolutional layers.  

 

Figure 4: Examples of Average and Max Pooling 
with a 2 x 2 filter and a stride of 2 (adapted from: Li et al. 2021) 
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It performs a special kind of convolution. Usually, a filter of the size 2 x 2 is slided over the 

raster with a stride of 2 to decrease the dimensions by a factor of 2. The operation applied by 

the filter is in most cases a max function that returns the largest of the four values (Max 

Pooling). Alternatively, the average can also be calculated (Average Pooling). Figure 4 gives 

examples of Average and Max Pooling with 2 x 2 filters and a stride of 2. The four red pixel 

values (5, 5, 3 and 3) are for example mapped to 4 when calculating the average and to 5 

when using the Max Pooling. (Li et al. 2021) 

Residual Connections 

When stacking many layers to get a deep network, the danger of gradient vanishing arises. To 

make stacking possible nevertheless, He et al. (2016) introduced residual connections. In 

addition to the block of layers that the 

input passes through, there is also an 

identity connection that concatenates the 

original input with the feature map at the 

end of the block (Figure 5). Thus, this 

“shortcut”, the residual connection, skips 

layers. This identity connection allows for 

a simplified and more stable update of 

the weights during backpropagation.  

Backbone & Head 

When describing a network architecture, layers are often summarized with the terms backbone 

and head. In the field of deep learning, the backbone of a neural network performs the feature 

extraction. It receives the input images and is the first part of the model. Commonly used 

backbones include AlexNet (Krizhevsky et al. 2012), VGGNet (Simonyan and Zisserman 

2015), or ResNet (He et al. 2016), which are pretrained on large image datasets such as 

ImageNet (Deng et al. 2009). The final part of the network is called head. It is possible for a 

network to have more than one head. The head or heads of a network include the layers that 

are used for finetuning and for special tasks such as class prediction. 

2.1.3 Optimal Model 

In the previous paragraphs, several hyperparameters were mentioned that the user has to set 

to initialize the network before training. Therefore, finding an optimal model requires trying 

different parameter combinations and iteratively improving the model by adjusting them.  

For this process, two values in particular are of great importance: the training loss and the 

validation loss. The first goal is to minimize the training loss. When training a model, however, 

Figure 5: Residual Connection Block (He et al. 2015) 
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it is important that neither underfitting nor overfitting occurs. For this purpose, the validation 

loss function is also considered. 

Underfitting occurs when the model has not yet been sufficiently trained. It is also possible that 

the model itself is not suitable for recognizing the features. As a result, the loss cannot be 

reduced sufficiently. Solutions for this are to increase the number of epochs or to increase the 

number of trainable parameters by improving the model's complexity. Figure 6 shows that up 

to the best fit (dashed line), both the validation and training loss decrease. Up to this point, 

therefore, underfitting is present. 

Overfitting occurs when the model has memorized the training data too well and can no longer 

be applied to unknown data. Figure 6 shows the point at which underfitting turns into overfitting. 

When overfitting, the difference between training and validation loss is large and the validation 

loss starts to increase. To avoid 

overfitting, it is necessary to adjust the 

hyperparameters accordingly. The 

training must be stopped as soon as the 

validation loss increases. In addition, the 

model can be regularized by dropout. 

This means a random exclusion of 

neurons in computation steps. Another 

possibility to extend the generality of the 

model is to increase the training data. 

This also includes data augmentation with 

which allows for the training data to be 

extended and modified to prevent overfitting. Data augmentation applies random 

transformations to copies of the input data and enlarges by these the amount of training data. 

Examples of transformations are rotation, brightness changes, color modifications, cropping, 

etc. (Li et al. 2021; Chollet 2018; Goodfellow et al. 2016) 

  

 
Figure 6: Overfitting and underfitting indicated by training loss and 
validation loss  
(adapted from: Baeldung 2020) 
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2.1.4 Performance Evaluation 

The performance of the trained model after object detection can be evaluated using the 

following methods: 

Confusion Matrix 

Detected objects belong to either the group of correctly 

detected (true positive, TP) or the group of wrongly detected 

objects (false positive, FP). When comparing the outcome 

with the ground truth, two more groups are a possible result: 

objects that are present in the ground truth but are not 

detected (false negative, FN) and areas where both in ground 

truth and detection are no objects, which is a correct result 

(true negative, TN). The latter case is in terms of object 

detection not countable and is therefore not of interest. The 

numbers of the groups can be summarized in a so-called 

confusion matrix (Figure 7). (Tharwat 2021) 

With the values shown in the confusion matrix, further parameters can be calculated (Tharwat 

2021): 

Precision & Recall 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

Their counterparts are: 

False Discovery Rate (FDR) & False Negative Rate (FNR) 

 
𝐹𝐷𝑅 = 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

(5) 

 
𝐹𝑁𝑅 = 1 − 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

(6) 

The goal is to reach high values for precision and recall while FDR and FNR are to be 

minimized. 

A value for comparing the detected object area with the actual object area is the Intersection 

over Union (IoU). It represents the ratio of the area of overlap to the area of union (formula (7), 

Figure 8). The IoU is also an important indicator for the Non Maximum Suppression, for 

Figure 7: Confusion Matrix 

(P: positive; N: negative) 
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example. Non Maximum Suppression chooses the best fitting bounding box proposal by 

means of IoU and a confidence value that represents the probability of an object being correctly 

detected. (ESRI 2021d) 

 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎⁡𝑜𝑓⁡𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎⁡𝑜𝑓⁡𝑈𝑛𝑖𝑜𝑛
 

(7) 

2.1.5 Classification, Object Detection, Segmentation & Instance Segmentation 

In the area of image processing, deep learning is used for four main tasks (see Figure 9) 

(Garcia-Garcia et al.; ESRI 2021c): 

- Image Classification: the entire image is assigned to one class 

- Object Detection: bounding boxes highlight the location of object(s) on the image  

- Semantic Segmentation: every pixel in the image is assigned to a certain class 

- Instance Segmentation: combination of object detection and segmentation, in which 

the location of objects is determined; the positions of the objects are not only roughly 

indicated by a rectangular mask, but the pixel accurate shape is extracted 

Since the detection of bicycle racks in aerial imagery involves determining the exact position 

of the facilities, this is an object detection or an instance segmentation task. A segmentation 

of the imagery is not practical as the area of the bike racks is small compared to the rest of the 

city area and the objects are to be classified as a whole and not pixel by pixel.  

 

Figure 9: Image classification, object detection, segmentation, and instance segmentation examples 

(Source: Wu et al. 2020) 

Figure 8: Intersection over Union (IoU) 

(adapted from: ESRI 2021d) 



 

12 Detection of Bicycle Racks from Geodata Using Deep Learning 

2.2 Object Detection in ArcGIS Pro 

ArcGIS Pro and the ArcGIS API for Python (version 1.8.5), respectively, provide five different 

deep learning frameworks for object detection and instance segmentation. In the following, 

these are briefly described, and it is discussed which architecture is used for this work. 

For the descriptions of the network architectures the term bounding box regression needs 

to be described: To define the location of an object in an image, the bounding box of the object 

is defined by four coordinates: x and y (image coordinates) for the upper left corner and x and 

y for the lower right corner or x and y together with w and h for width and height. In a regression 

process, this bounding box is adapted to the object. The bounding box regression returns with 

the help of fully-connected layers and sigmoid activation, the bounding box, also called mask, 

of an object. 

SSD 

SSD, which is spelled out as Single Shot Detector, describes a one-stage Deep Learning 

model that detects objects in a single pass of the image. It consists of a backbone model 

(ResNet or VGGNet) and of convolutional layers added to the backbone, called SSD head 

(Figure 10). The images are divided using a grid. In each of the grid cells the class and location 

of the objects in that region are predicted. It uses the concept of anchor boxes with different 

aspect ratios and zoom levels for this. (Liu et al. 2016; ESRI 2021k) 

YOLOv3 

YOLOv3 (You Only Look Once) was presented by Redmon and Farhadi in 2018 as an 

improvement of the first two versions of YOLO from 2015 and 2016. It is also a one-shot object 

detector. The ArcGIS implementation uses Darknet-53, a CNN with 53 convolutional layers 

including residual connections, as a backbone. It adds upsampling and detection layers for 

detection at different zoom levels (Figure 11), which leads to a total number of layers of 106. 

Figure 10: Simplified representation of the Single Shot Detector architecture (Source: ESRI 2021f; adapted from 
Liu et al. 2016) 
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YOLO particularly stands out due to its real-time detection capability, e.g., for videos. (Redmon 

and Farhadi 2018; ESRI 2021l)  

 

Figure 11: YOLOv3 architecture (Source: Kathuria 2018) 

 

RetinaNet 

Lin et al. introduced RetinaNet in 2017b – likewise a one-stage architecture for object 

detection. It consists of a Feature Pyramid Network (see chapter 2.3.1) based on a ResNet 

backbone that produces a convolutional feature map over the entire input image. Two 

subnetworks follow the backbone layers (Figure 12): the first subnetwork performs the object 

classification being an FCN, while the second subnetwork, also an FCN, determines the 

location of the object with reference to the anchor box. In order to handle class imbalances, 

they introduced the new Focal Loss function. (Lin et al. 2017b; ESRI 2021j)  

Figure 12: RetinaNet architecture (Source: Lin et al. 2017) 
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Faster R-CNN 

Faster R-CNN, presented by Ren et al. (2017), is a successor of R-CNN (Girshick et al. 2014) 

and Fast R-CNN (Girshick 2015). It belongs to the group of two-step models as it has an extra 

region proposal network. This is implemented after the convolutional backbone (ResNet) to 

determine regions of interest (RoIs). After the step of RoI Pooling, which matches the feature 

maps of the CNN with the RoIs, the classifier follows. It is a fully connected layer with two 

heads, a softmax classifier, and a bounding box regressor (Figure 13). (Ren et al. 2017; ESRI 

2021h) 

Mask R-CNN 

He et al. presented the region proposal network Mask R-CNN in 2017. It stands for Mask 

region-based convolutional neural network, and it extends Faster R-CNN (Ren et al. 2017) and 

is therefore also successor of Fast R-CNN (Girshick 2015). The network adopts the basic 

structure of the two successive stages. It is an architecture for object instance segmentation 

as it predicts objects and its class at the same time as predicting a pixel wise segmentation 

mask. It implements two parallel head networks: one for classification and bounding box 

regression and the other one for the exact calculation of the segmentation mask (Figure 14). 

More details on this architecture in chapter 2.3. (He et al. 2017; ESRI 2021i) 

Figure 13: Simplified representation of the Faster R-CNN architecture including 

Region Proposal Network (Source: Ren et al. 2015) 
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Comparing these five models, the one-stage detectors are faster than Faster R-CNN and Mask 

R-CNN as they do not have a region proposal network. However, in this work, speed does not 

play an important role, as the detection of bike parking facilities in the aerial imagery is not a 

real-time application. Liu et al. (2020) found that the two-stage detectors were superior to the 

one-stage models in terms of accuracy. Furthermore, Mask R-CNN achieves better results 

than Faster R-CNN. In addition, Mask R-CNN has the decisive advantage that it is an instance 

segmentation network. Thereby, the objects are segmented with pixel accuracy and the 

position is not only shown approximately with a rectangular mask. Therefore, Mask R-CNN is 

the chosen model for the purpose of this thesis. 

  

Figure 14: Simplified representation of the Mask R-CNN architecture (Source: He et al. 2017) 
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2.3 Implementation Details of Mask R-CNN 

In order to get a precise idea of the functionality of the model used, the 

components of Mask R-CNN are described in detail below. 

Accompanying this, Figure 17 shows the network structure with focus 

on the most important layers and relationships between the individual 

components.  

In order for the input images to be optimally processed by the network, 

they must be adjusted beforehand. First of all, the mean value of all 

pixel values of the entire training dataset is calculated for each band 

and then subtracted from each pixel, in order to achieve a distribution 

of the values around zero. Then the image matrix is converted into a 

tensor and its dimensions are adjusted with rescaling and padding so 

that the image height and width are multiples of 32. This is necessary 

when using Feature Pyramid Networks (FPNs). The resulting tensors 

are then ready to be put in the network. (Fractal AI@Scale Research 

Group 2019) 

2.3.1 Backbone ResNet and Feature Pyramid Network (FPN) 

The backbone of Mask R-CNN is a Residual Network / ResNet 

introduced in 2016 by He et al. It exists in different versions and is 

named after the respective number of layers: ResNet-18, ResNet-34, 

ResNet-50, ResNet-101, Resnet-152, etc. ResNet-50 is the most 

widely used, as it has a good average in terms of weights to train and 

therefore run time and performance compared to the other ResNets. 

Residual connections including convolutional and batch normalization 

layers characterize this network. The residual connections facilitate a 

higher number of layers, as they prevent the gradient from vanishing 

as mentioned before. ResNet-50 (Figure 15) can be described as a 

network consisting of four stages (C2, C3, C4, C5), which are made 

up of residual blocks. Layers at the beginning and at the end frame 

this. Within each stage, the number of feature maps doubles, while the 

height and width of each raster halve.  

 

  

 

Figure 15: ResNet-50 
convolutional layers (with filter 
size) grouped in blocks by 
residual connections and 
arranged into four stages (C2 - 
C5), numbers in black give the 
size of the output after each 
stage (adapted from He et al. 
2016; Ankit 2019) 
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The ResNet backbone is connected with layers that form a FPN (Lin et al. 2017a) depicted in 

Figure 16 (simplified in Figure 17a)). An FPN has a bottom-up network, here ResNet-50. The 

ResNet is connected with horizontal connections to a top-down network. The connections 

perform 1 x 1 convolutions to adapt the third dimension of the feature maps to 256, so that all 

have the same depth. The top-down pathway adds the upsampled feature map to the output 

feature map of the previous stage. Each of the feature maps in the top-down part of the model 

is processed with a 3 x 3 convolution. This results in four feature maps of different sizes. A fifth 

feature map is created by Max Pooling. (Fractal AI@Scale Research Group 2019) 

The resulting feature maps can then be passed on to the next layer of the network. In this case, 

the Region Proposal Network. 

 

Figure 16: Feature Pyramid Network (FPN) based on ResNet-50 as 
Bottom-Up Backbone and Top-Down Upsamling for generating feature 
maps of different size (adapted from: Lin et al. 2017a; Hui 2018; Fractal 
AI@Scale Research Group 2019) 
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Figure 17: Architecture of Mask R-CNN; a) Backbone and FPN; b) RPN; c) RoI Align; d) Box Head; e) Mask Head  
(adapted from: He et al. 2017; Hui 2018; Fractal AI@Scale Research Group 2019) 



 

Detection of Bicycle Racks from Geodata Using Deep Learning 19 

2.3.2 Region Proposal Network (RPN) 

The Region Proposal Network (RPN) was introduced by Ren et al. (2017) for Faster R-CNN. 

It returns rectangular object proposals for each input image. Each of the proposals receives 

an objectness score that measures the probability of object presence.  

The RPN starts with a 3 x 3 convolutional layer (see Figure 17b)). At 

each filter location, 𝑘 = 9 anchors are generated with three different 

scales and three different aspect ratios. Each anchor is centered at the 

filter’s center point (Figure 18). This results in 𝑊 ∗ 𝐻 ∗ 𝑘 anchors (𝑊 x 

𝐻: width x height of feature map). This anchor method makes the 

proposal generation translation-invariant. (Mohan 2018) 

After this convolutional layer and ReLU, two branches follow: the classifier and the regressor. 

The classifier consists of a 1 x 1 convolutional layer, followed by a softmax layer, and gives for 

each anchor the probability of being foreground or background. This results in 2 ∗ 𝑘 objectness 

scores. The regressor computes 4 ∗ 𝑘 coordinates giving the offset between anchor box and 

the object’s position in the ground truth also with a 1 x 1 convolutional layer. 

The loss of the regressor is dependent on the IoU overlap of the anchor boxes and each 

respective ground truth. An anchor is assigned positive when the IoU ratio is greater than 0.7. 

When no anchor reaches this ratio, the one with the highest value is chosen. It gets a negative 

label when the IoU ratio is lower than 0.3. Anchors with a IoU overlap in between are dropped. 

Simplified, the loss can now be described as in formula (8)1. Whenever an anchor is assigned 

negative, the regression loss is deactivated by 𝑝𝑖
∗ being 0. 

 
𝐿 =

1

𝑁𝑐𝑙𝑠
∑𝐿𝑐𝑙𝑠
𝑖

+ 𝜆
1

𝑁𝑟𝑒𝑔
∑𝑝𝑖

∗𝐿𝑟𝑒𝑔
𝑖

 
(8) 

 

𝐿𝑐𝑙𝑠: classification loss (log loss over two classes object / no object) 

𝐿𝑟𝑒𝑔: regression loss (smooth 𝐿1) 

𝑖: index of an anchor in a mini-batch 

𝑝𝑖
∗ = 1: when anchor is positive; 𝑝𝑖

∗ = 0: when anchor is negative  

𝑁𝑐𝑙𝑠, 𝑁𝑟𝑒𝑔: normalization 

𝜆: weighting (default: 10) 

 

 

1 for detailed loss function see Ren et al. (2015) 

Figure 18: Anchor Generation  

(adapted from: Mohan 2021) 
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2.3.3 RoI Align 

The next step (Figure 17c)) is to match the proposals, also called RoIs, with the computed 

feature maps. 

The precursors of Mask R-CNN use RoI Pool for obtaining small feature maps from RoIs. As 

Mask R-CNN is a model for instance segmentation, it requires good alignments between each 

RoI and the extracted features. RoI Pool uses quantizations that are sufficient for object 

detection but introduce inaccuracies in terms of pixel-precise detection of segmentation masks. 

For this reason, He et al. (2017) introduce RoI Align to properly align the RoI and the extracted 

features. 

Figure 19 describes the functionality 

of RoI align. The RoI’s boundaries do 

not fit the pixel arrangement of the 

feature map. The first step is to divide 

the RoI into m x n bins, where m and 

n are width and height representing 

the desired size of the aligned output 

feature maps. Each bin is assigned 

four regularly sampled locations. The 

value for each of the points is 

calculated with bilinear interpolation 

of the four closest feature map pixel 

values. The final value of each bin is 

obtained by average pooling of the 

four values in each bin. This method 

is used for all RoIs and the 

corresponding feature maps. This 

results in aligned output feature 

maps, all of which are m x n in size. 

2.3.4 Heads 

The aligned feature maps are now forwarded to the network’s heads. The bounding box and 

class prediction head works in parallel with the mask head that produces the segmentation 

masks. 

 

Figure 19: RoI Align 
each bin has four regularly sampled points (green), the value of each point is 
calculated with bilinear interpolation of the closest pixels‘ values (blue), the 
value of each bin is obtained by average pooling (adapted from: Hui 2018; 
Fractal AI@Scale Research Group 2019) 
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Box Head 

In the box head, ROI-Align is followed by two FC layers. Next, one FC layer is provided for 

bounding box prediction. It outputs bounding box regression values. Likewise, an FC layer is 

supplied for the class prediction (see Figure 17d)). 

Mask Head 

Finally, the mask head is responsible for the binary segmentation masks on each RoI. It is a 

small FCN consisting of four 3 x 3 convolutional layers followed by ReLU, one 2 x 2 

deconvolutional layer with stride 2 and one 1 x 1 convolutional layer (see Figure 17e)).  

2.3.5 Loss Function 

The total loss of Mask R-CNN is the sum of three values: the loss of the class prediction 𝐿𝑐𝑙𝑠, 

the loss of the bounding box regression 𝐿𝑏𝑜𝑥 and the loss of the mask head 𝐿𝑚𝑎𝑠𝑘: 

 
𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (9) 

𝐿𝑐𝑙𝑠 and 𝐿𝑏𝑜𝑥 are the same as of Fast R-CNN (Girshick 2015): 

 
𝐿𝑐𝑙𝑠(𝑝, 𝑢) = − log 𝑝𝑢 (10) 

 

𝑝 = (𝑝0, … , 𝑝𝐾): discrete probability distribution (per RoI) over 𝐾 + 1 classes 

𝑢: true class 

 

 

𝐿𝑏𝑜𝑥(𝑡
𝑢, 𝑣) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖

𝑢 − 𝑣𝑖)

𝑖⁡∈{𝑥,𝑦,𝑤,ℎ}

 (11) 

 
𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = ⁡ {

0.5𝑥2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡|𝑥| < 1
|𝑥| − 0.5⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(12) 

 

𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑤, 𝑣ℎ): true bounding box regression 

𝑡𝑢 = (𝑡𝑥
𝑢, 𝑡𝑦

𝑢, 𝑡𝑤
𝑢 , 𝑡ℎ

𝑢): predicted bounding box regression 

 

𝐿𝑚𝑎𝑠𝑘 is the average binary cross-entropy loss (formula (13)). To avoid competition between 

classes and to separate mask and class prediction, this loss is defined only for an RoI that is 

linked to the ground truth class 𝑘. The branch generates a mask with size 𝑚⁡𝑥⁡𝑚 for each RoI 
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and each class 𝐾. This results in 𝐾 ∗𝑚2 outputs. 𝑦𝑖𝑗 describes the ground truth label of a cell 

at the position 𝑖, 𝑗. �̂�𝑖𝑗 is the predicted label at the same position. (He et al. 2017; Zhou 2021) 

 
𝐿𝑚𝑎𝑠𝑘 = −

1

𝑚2 2

∑ [𝑦
𝑖𝑗
∗ log �̂�

𝑖𝑗

𝑘
+ (1 − 𝑦

𝑖𝑗
) ∗ log(1 − �̂�

𝑖𝑗

𝑘
)]

1≤𝑖,𝑗≤𝑚

 (13) 

2.4 Localization and Inventory of Bike Racks 

The approach of using areal images and deep learning for detecting bike racks is not present 

in the literature, although many cities are pushing the expansion of the cycling infrastructure. 

The cities have progressed to different degrees. While Amsterdam (Gemeente Amsterdam 

2017) and Copenhagen (City of Copenhagen 2012), for example, have made considerable 

progress with their cycling strategies, other cities such as Rome (Roma Capitale 2020) or 

Vancouver (City of Vancouver 2021) are not that advanced yet. Apart from the expansion of 

cycle paths, planners view the availability of public cycle parking facilities as a crucial point. 

Individual cities rely on different strategies – for example bicycle parking garages, the 

promotion of private but publicly accessible bicycle racks, long-time parking bike lockers or 

after analysis of the needs, the setting up of city-owned racks. The inventory is carried out, as 

far as documents on this can be viewed, manually (e.g. Berlin (GB infraVelo GmbH 2021), 

Gothenburg (Kajsa Rosén 2021), Stockholm (Stockholms stad 2015)) or occasionally via 

crowd-sourcing projects (e.g. London (CycleStreets Ltd. 2021), Yakima, WA (City of Yakima 

Bicycle Committee 2021)). Some cities also offer cyclists the opportunity to view the location 

and number of racks in a web-based map application, sometimes even with a photo and 

additional layers with information on bicycle pumps, bicycle paths, etc. (e.g. Oslo 

(Bymiljøetaten Oslo Kommune 2020), Paris (Ville de Paris 2021), Wien (Stadt Wien 2011)). 

Figure 20 shows an example of a webmap that provides information including location, 

capacity, and picture on parking facilities in London. 

The aerial photography and deep learning approach to localize the bicycle racks is therefore 

new. Also, other street furniture of a similar type, such as benches and rubbish bins, have not 

yet been associated with deep learning and aerial imaging in the literature. In contrast, 

publications on vehicle or airplane detection are more common. What is certain, however, is 

that many cities are thinking about how good and safe bicycle racks in appropriate numbers 

and in suitable places can promote bicycle traffic.  
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Figure 20: Webmap for, inter alia, bike parking facilities in London (Source: Active Things 2021) 

Remote sensing poses special challenges to object detection and instance segmentation. This 

is due to the special nature of the data, which is acquired from a bird's eye view and not in 

profile like most imagery datasets. This results in 360° object rotations, complex and cluttered 

backgrounds (Li et al. 2018), different imaging conditions such as weather, season, and 

resolution (Li et al. 2020) but also occlusion, illumination changes, and shadowing (Su et al. 

2019). In addition, remote sensing data can consist of more than the three common bands of 

red, green, and blue. 

Remote sensing uses the same deep learning architectures that are being developed in 

computer vision. To meet the special requirements of remote sensing imagery, these are 

extended (e.g. Su et al. (2019)). Another important approach, to improve deep learning results 

in remote sensing, is to provide large aerial image datasets with labels to pretrain models. An 

example of such a dataset is DIOR (Li et al. 2020). It contains 23463 optical remote sensing 

images with 192472 objects in 20 object classes. Thus, good results can be obtained even 

with small datasets. ESRI provides pre-trained models for certain applications and continues 

to expand this (Viswambharan and Singh 2021). This already includes for example models for 

road extraction, the recognition of pools or building footprints, landcover classification and also 

for the detection of shipwrecks in bathymetry data (ESRI 2021m). 
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3 Data 

3.1 Terminology 

When speaking of a rack or stand in the following, it always means one parking spot for one 

bike (German term: Stellplatz). The term bicycle/bike parking facility describes a row of bike 

racks structurally recognizable as connected (German term: (Fahr-)Radständer). When the 

location is mentioned, the position of a bike parking facility is meant (German term: Standort). 

The grouping of several bike parking facilities is described with the term macro-location 

(German term: Makrostandort). 

3.2 Bike Racks Data Situation 

The Baureferat (building department) of the City of Munich primarily maintains data on the 

bicycle racks in an SAP-based platform, which does not allow geo-spatial analysis. Therefore, 

in 2014 a spreadsheet (PlanR_Datentabelle_stammdaten_2016_Auswertung.ods) including 

coordinates was created manually from paper documentations, the SAP-platform, etc.  

The content of the spreadsheet was transformed into a shape-file 

(Fahrradstaender_bis_2019.shp) with a line object for every parking facility. The data was 

continuously updated, so that the latest version contains bike parking facilities until 2020/03. 

When super-imposed with aerial photos, a non-systematic displacement and scaling is visible 

in some cases (see Figure 21). Some racks even do not exist anymore due to, for example, 

construction sites (further details see chapter 4.4.1). 

Figure 21: Detail from LUFTBILD2019_RGB: Orleansplatz (Ostbahnhof: Nordkopf, NO-Aufgang): line-geometries (blue) are shorter than 
bike parking facilities or not on exact position  
(Source: Landeshauptstadt München 2020) 
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It contains information on location (including street name and number), the number of racks, 

their type, the year and month of construction, some specifications like roofing, lighting and 

pavement, administrative data (funding, frequency of bike removal, …) and a column for 

annotations. Since some of the information is stored using coded values, the explaining tables 

in PlanR_Datentabelle_stammdaten_2016_Auswertung.ods are useful. Another shape-file 

(Makrostandort_bis_2019.shp) contains the macro-locations, grouping bike parking facilities 

close to each other and representing them by point geometry.  

The Münchner Verkehrsgesellschaft (MVG; Munich Transport Corporation) offers a bike rental 

service called MVG Rad that has parking stations exclusively for the rental bikes in and around 

Munich. As these stations belong also to city owned bike parking facilities, they are added to 

the dataset. The locations of the stations are stored in 20210113_MVG_Radstationen.shp with 

point geometries. The file contains also stations outside the city, so it is clipped by the 

municipal boarder. 

All the existing types of bicycle stands can be roughly divided into the following categories (for 

a better readability both English and German terms are included): 

English term / 
German Term 

Commonness  
(bike racks / locations) 

Picture 

Inverted-U / 
Anlehnbügel 

- old (Trabant) 
- new 

 
- alt (Trabant) 
- neu 

ca. 7400 / 532 

 
Figure 22: Anlehnbügel neu, Tengstr. / Agnesstr. (new 2020) 

Wheelwell / 
Klemmbügel 

ca. 6000 / 274 
 
no new installations (can 
lead to wheel damage, 
frame cannot be locked) 

 
Figure 23: Klemmbügel, Hauptbahnhof: Nordkopf, SO-Aufgang 



 

26 Detection of Bicycle Racks from Geodata Using Deep Learning 

English term / 
German Term 

Commonness  
(bike racks / locations) 

Picture 

L15  
- one-sided, low 
- one-sided, 

high/low 
- two-sided, low 
- two-sided, 

high/low  
- at an angle 

- einseitig, tief 
- einseitig, hoch/tief 
- doppelseitig, tief 
- doppelseitig, 

hoch/tief 
- schräg 

ca. 15700 / 1073 
- ca. 8900 / 718 
- ca. 700 / 38 
 
- ca. 3200 / 175 
- ca. 1300 / 35 

 
- ca. 1600 / 107 

 
Figure 24: L15 schräg, Elisabethplatz  

Arreta ca. 300 / 12 
 

 
Figure 25: Arreta, U-Bahnhof Maillingerstr.: Westkopf, S-Aufgang 

Kappa 
- one-sided, low 
- one-sided, 

high/low 
- two-sided, low 
- two-sided, 

high/low  
- at an angle 

- einseitig, tief 
- einseitig, hoch/tief 
- doppelseitig, tief 
- doppelseitig, 

hoch/tief 
- schräg 

 

ca. 1100 / 33 
 

 
Figure 26: Kappa schräg and Kappa hoch/tief, Laimer 
Unterführung 
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English term / 
German Term 

Commonness  
(bike racks / locations) 

Picture 

MVG not in data / 137 

 
Figure 27: MVG Rad Station, Oberwiesenfeld 

Others 
- BikeCare / BCS 
- RGT 

 

ca. 700 / 44 
 

 
Figure 28: BikeCare, Waldperlach 

Double Decker / 
Doppelstockparker 
(roofed) 

ca. 2800 / 31 

 
Figure 29: Doppelstockparker, Marienhof (new 2020) 

Table 1: Bike rack types in Munich  

(Source: Landeshauptstadt München 2020, own photographs) 

As described, the locations of the bike parking facilities are only stored as lines. However, a 

polygon representation of each parking facility is necessary for training the model as exact 
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spatial extent is needed. Moreover, as mentioned above, not all lines are in correct position. 

The details on creating the polygon file are described in chapter 4.4.1. 

3.3 Imagery 

Table 2 and Table 3 list the data of aerial flights in 2017 and 2019 that is available as File 

Geodatabase Rasters. The extent of the rasters can be seen in Figure 30. The images are true 

orthophotos. Therefore, tilts of tall objects are eliminated and for example bike racks close to 

building walls are not covered. Nevertheless, artifacts can occur on the edges of buildings and 

trees that make some small regions impossible to interpret. 

The bands of the rasters are composed as follows: 

- RGB: spectral reflectance signature for Red, Green and Blue spectral bands 

- CIR: spectral reflectance signature for NIR (near infrared), Red and Green spectral 

bands – this band combination is vegetation sensitive 

- DSM (DOM): Digital Surface Model: height value representing earth surface including 

natural and built features like trees, buildings, etc.  

- DTM (DGM): Digital Terrain Model: height value representing earth surface excluding 

natural and built features 

- nDSM (nDOM): normalized Digital Surface Model, difference between DOM and DTM 

- NDVI: Normalized Difference Vegetation Index, indicator for green vegetation, 

calculated from NIR and Red bands: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

Composite layers can be formed from the individual raster files by stacking the bands. 

ArcGIS Pro provides the Composite Bands tool in Raster Functions for this purpose. With this 

tool the following composites are generated: 

- RGB + nDSM 

- RGB + NDVI 

- RGB + nDSM + NDVI 

2017 in leaf Resolution 
Uncompressed 
Size (each) 

Pixel Depth and 
Type 

Number of 
Bands (each) 

Luftbilder_2017 (RGB) 
0.1 m 192.78 GB 

8 Bit 
unsigned char 

3 
Luftbilder_2017_CIR 
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2017 in leaf Resolution 
Uncompressed 
Size (each) 

Pixel Depth and 
Type 

Number of 
Bands (each) 

DOM_2017 

257.05 GB 
 

32 Bit 
floating point 

1 
 

DGM_2017 

nDOM_2017 

NDVI_2017_2 

Table 2: File Geodatabase rasters 2017  

2019 leafless Resolution 
Uncompressed 
Size (each) 

Pixel Depth and 
Type 

Number of 
Bands (each) 

LUFTBILD2019_RGB 

0.08 m 

278.52 GB 
8 Bit 

unsigned char 
3 

LUFTBILD2019_CIR 

LUFTBILD2019_DOM 

371.36 GB 
32 Bit 

floating point 
1 

LUFTBILD2019_DGM 

LUFTBILD2019_nDOM 

LUFTBILD2019_NDVI 

Table 3: File Geodatabase rasters 2019  

 

Figure 30: Area of LUFTBILD2019_RGB including municipal border of Munich in red 

(Source: Bayerische Vermessungsverwaltung 2020, Landeshauptstadt München 2020, ArcGIS Map Service 2021) 

 

(Source: Landeshauptstadt München 2020) 

(Source: Landeshauptstadt München 2020) 
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3.4 Additional Municipal GIS Data 

Additionally, a polygon dataset is available covering the public spaces in Munich to support the 

object detection process. Figure 31 shows an excerpt of the 

lhm_oeffentliche_Flaechen_v2.shp. It can be seen that it includes urban space like streets and 

parks together with buildings owned by the LHM like the school complex in Berg am Laim 

(Sonderpädagogisches Förderzentrum, Städt. Ludwig-Thoma-Realschule, Mittelschule Am 

Echardinger Grünstreifen) marked in blue. This dataset is intended to represent the areas on 

which the City of Munich places bicycle racks. However, this dataset is not perfect, even though 

it covers all the land areas where the labeled bicycle racks are located. But it does not cover, 

for example, all the property of Deutsche Bahn (German railroad company) which are also 

available for the installation of new public bicycle parking facilities. However, in order to clarify 

the functionality of such a layer in the step of object detection (described in chapters 4.8 and 

4.9), this dataset is sufficient in any case. 

 

 

 

 

Figure 31: Detail of lhm_oeffentliche_Flaechen_v2.shp (orange): Area between Ostbahnhof and Ostpark, with bike parking facilities (red) 
and school complex (Sonderpädagogisches Förderzentrum, Städt. Ludwig-Thoma-Realschule, Mittelschule Am Echardinger 
Grünstreifen) (blue); background: LUFTBILD2019_RGB 

 

(Source: Landeshauptstadt München 2020) 
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4 Methodology 

4.1 Overview 

One of the goals of this work is a tool that can be used in ArcGIS Pro to detect bicycle parking 

facilities in Munich in aerial images with a trained model. The methodology to reach this goal 

is described in the following chapters. First, hardware and software are introduced before the 

individual steps are explained in more detail. Figure 32 gives an overview of the individual 

processing steps and shows in the colored boxes which software and hardware are used in 

each step. The initial step is the data preprocessing. It is divided into two steps: the first step, 

the labeling of the objects in ArcGIS Pro, is performed prior the second step, which is exporting 

the training data. The intermediate results of labeling and export are described and evaluated. 

A small part of the data preparation is performed right at the beginning of the training, which 

follows next: the training of the Mask R-CNN model takes place. The exact procedure is 

described and the parameters for finding the optimal model are presented. The results from 

the training step are now used to detect bicycle parking facilities. For this purpose, the raster 

data from 2019 as well as from 2017 are used to evaluate the results. These two steps can be 

summarized as the deep learning approach. They are executed iteratively to improve the 

model also on the basis of detected results. Finally, the postprocessing steps are described, 

in which the detected objects are further processed and summarized in an ArcGIS tool. 

 

Figure 32: Overview processing steps 
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4.2 Hardware 

Choosing the right hardware is crucial for training CNNs and its duration. GPUs (graphics 

processing unit) are the most important hardware for deep learning, which allow parallel 

processing on a high level. The supercomputing centre operated by the Bavarian Academy of 

Sciences and Humanities (Leibniz-Rechenzentrum (LRZ)) offers students to rent an NVIDIA 

DGX-1 GPU system with 8 Tesla P100 GPUs or 8 Tesla V100 GPUs (16 GB memory per GPU 

and 512 GB DDR4 of memory per node, 80 CPU Cores per node) (Leibniz-Rechenzentrum 

2021c). The LRZ AI Systems are allocated to the LRZ Linux Cluster and can be remotely 

accessed inside the Münchner Wissenschaftsnetz (Munich Scientific Network, MWN) via 

Secure Shell (SSH). For this, a Linux Cluster account in combination with a separate 

application for the LRZ AI Systems is necessary (Leibniz-Rechenzentrum 2021a). The GPUs 

can be booked via a scheduler on the system (for more details see 4.6.1).  

The software ArcGIS Pro (see 4.3.1) runs on common Windows computers. The amount of 

image data leads to slow processing in terms of exporting image tiles and detecting objects. 

4.3 Software 

The software required for the different process steps is presented below. The detailed 

application description of the software components follows in the next chapters. 

4.3.1 ArcGIS Pro 

ArcGIS Pro (ESRI Inc.) is a geographic information system software provided by ESRI and the 

current version is 2.8. As it is the standard GIS-software at the City of Munich, the final toolset 

shall be executable with this software. For working with aerial images and deep learning, the 

Image Analyst extension is necessary. It provides tools to prepare the training data by 

supporting labeling and export, the possibility to train the model in- or outside of ArcGIS Pro, 

and tools to use the trained model (ESRI 2021f). It is therefore a valuable tool to realize this 

project: it will be used to preprocess the data (labeling and tiling) and steps after training 

(applying the model / detecting the objects, some of the testing and creating the final toolbox). 

4.3.2 Software and Libraries for the Training 

As the GPUs run in a Linux environment, the desktop application ArcGIS Pro cannot be used 

for training the deep learning models. ESRI offers the ArcGIS API for Python together with 

the arcgis.learn module that has the same deep learning tools as the desktop software, based 

on Python (Python Software Foundation) coding. The arcgis.learn module provides functions 

for data augmentation and for training deep learning architectures. It is based on the deep 

learning libraries PyTorch and fast.ai and, if desired, also TensorFlow elements. Jupyter 
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Notebook (Project Jupyter) is chosen as the Python programming environment. Advantages 

of using Jupyter Notebook are the ability to run the code step by step and visualizing graphs 

and images directly when the code is executed.  

PyTorch and TensorFlow are both open-source machine learning frameworks. PyTorch is 

based on the machine learning library Torch. The Facebook’s AI Research team released its 

first version in 2016. fast.ai, also open-source, is built on top of PyTorch and provides high-

level component libraries for deep learning. TensorFlow was released by the Google Brain 

team in 2015. TensorBoard is the visualization toolkit of TensorFlow (TensorFlow 2021) and 

helps with visualizing the loss functions of the different models. 

4.4 Preparation of the Training Data 

4.4.1 Labeling 

The foundation for the training of a neural network is the dataset with ground truth data – the 

training dataset. In this case, it means that the exact location and the extent of each bike 

parking facility need to be determined in the reference aerial image and documented 

accordingly together with information on the rack type (=class). ArcGIS Pro provides the 

Classification Tool Label Objects for Deep Learning in the Image Analyst extension. With this 

tool the labeling of the bike parking facilities can be performed.  

The underlying raster is the LUFTBILD2019_RGB image. Step by step every line feature of 

the vector dataset Fahrradstaender_bis_2019.shp is examined and, when recognizable, a 

polygon of a certain class is manually drawn around the object according to the rack type. 

4.4.2 Image Characteristics and Labeling Limitations 

During the labeling process, imagery characteristics and limitations for the labeling and 

possible challenges for the training and detection processes came to the fore.  

First of all, there are bike racks that are not existing at the time the image was taken. This can 

be due to dismantlement, temporary removal due to construction sites or because the facility 

was built after the remote sensing flight took place. Others might be displaced due to 

transformations in the streetscape. Figure 33a) shows an excerpt of LUFTBILD2019_RGB 

where bike parking facilities are removed due to a construction site. Figure 33b) shows the 

same area with the redesigned station forecourt in a Google Maps (2021) image. 
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Secondly, some are not visible as they are roofed parking facilities or as they are located in 

underpasses (Figure 34). In these two cases, the facilities can obviously not be labeled and 

are therefore not content of the training dataset. The covered bike racks are anyhow outside 

of the scope of this work because they are not detectable as bike racks. In addition, they often 

have a more fixed structural location anyway and are not that often subject to changes. 

 

Figure 34: Detail from LUFTBILD2019_RGB: U-/S-Bahnhof Neuperlach Süd: on the left: bike parking facility under the bridge and in the 
upper right roofed bike parking facilities and therefore not labeled (Image source: Landeshauptstadt München 2020) 

In addition, it sticks out that some of the line features in the dataset are slightly dislocated and 

sometimes also shorter or longer than the imagery shows (Figure 21, Figure 34, Figure 36). 

This requires a close look and prudent labeling. 

Figure 33: Construction site: S-Bahnhof Allach  
a) Detail from LUFTBILD2019_RGB: Oertelplatz with bike parking facilities (blue) not existing anymore due to building and construction 
site (Source: Landeshauptstadt München 2020)  
b) Situation after construction was finished, displaced: now Double Decker racks in building with solar panels on the right (image March 
2020) (Source: Google Maps 2021) 

 

a) 
 

b) 
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Furthermore, shadows make it also hard to recognize 

bike racks in certain areas. Shadows (in images from 

2019: casted from the southeast to southwest) are 

clearly visible on the images: on the one hand, there 

are shadows that are clearly cast by a bicycle and thus 

indicate a parked bike (see Figure 35); on the other 

hand, the system may be overfitted concerning paying 

too much attention to the shadows. In addition, in 

areas of shadowing, for example through buildings, 

there is a risk of racks being not recognizable by the 

human eye (see Figure 36a). Shadows are therefore 

important and to be considered when evaluating the 

results and when training the network. They are a 

well-known challenge in remote sensing (e.g., Dare 

(2005)). 

 

The aerial photographs show that some bicycle racks are placed under trees. However, they 

are often recognizable in leafless imagery, but not always due to for example dense branches 

(see Figure 36b). Detection in leafy images is unprofitable as the treetops cover them often 

entirely. 

 

  

Figure 35: Detail from LUFTBILD2019_RGB: U-Bahnhof 
Richard-Strauss-Str.: Nordkopf, S-Aufgang: Shadows 
clearly cast by bikes locked to inverted-Us  
(Source: Landeshauptstadt München 2020) 
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4.4.3 Result 

The Fahrradstaender_bis_2019.shp 

dataset contains 1,999 objects. Of 

these, 536 objects are not labeled 

due to the reasons mentioned above. 

Figure 37 gives the reasons and 

shows that 42% (=228) of the 536 

objects not labeled are roofed 

facilities.  

Although LUFTBILD2019_RGB was 

taken at a time with no foliage, in 127 

cases trees still cover the bike racks. 

105 facilities did not exist at that time 

Figure 37: Reasons for bike parking facilities not being recognizable & 
therefore not being labeled and the corresponding proportions with 
reference to LUFTBILD2019_RGB (total: 536 facilities not labeled) 

a) 
 

b) 

Figure 36: Detail from LUFTBILD2019_RGB: Rotkreuzplatz: shadows and trees 

a) orange: bike racks in shadow, line-geometry not on exact position; red: bikes cast shadow overlayed by shadow of a tree; green: tree 
is covering part of the facility 

b)  LUFTBILD2019_RGB overlayed with LUFTBILD2019_nDOM: shows where branches of trees cover bike racks on the ground  

(Image source: Landeshauptstadt München 2020) 
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and 30 objects are not recognizable on the imagery due to black shadows and no reflections 

or similar irregularities. In addition, 135 MVG Rad stations in the city area could be labeled.  

In total, 1,463 objects (=71.8%) are recognizable and therefore labeled. As some consist of 

more than one line, this results in 1,839 polygons and labels, respectively, for the training 

dataset. Table 4 shows the number of objects of each class together with the number of labels 

on the left. As ten rack types have less than 50 labels representing their class, rack types that 

are similar according to their appearance from above are grouped so that each class has at 

least 80 representatives to train on. Table 4 shows the new rack type groups on the right. 
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Anlehne neu 10 422 442   Anlehne neu 10 442 442 

Anlehne alt 11 109 129   Anlehne alt 11 129 
132 

A. geschwungen 12 1 3 
  

A. geschwungen 12 3 

L15G E T 20 718 614   L15G E T 20 614 

635 
L15G E H/T 21 38 10 

 

 L15G E H/T 21 10 

L15G D T  22 175 149   Arreta E 30 9 

L15G D H/T 23 35 7   Kappa E H/T 41 2 

L15 E T (schräg) 24 107 82   L15G D T  22 149 

160 Arreta E 30 12 9 
 

 L15G D H/T 23 7 

Kappa E H/T 41 13 2   Kappa D H/T 43 4 

Kappa D H/T 43 11 4   L15 E T (schräg) 24 82 

83 

Kappa (schräg) 44 1 1 
  Kappa (schräg) 44 1 

Kappa E H/T DB 46 4 0      

Kappa D H/T DB 48 2 0      

Kappa (schräg) DB 49 2 0      

Klemmbügel 50 274 225 
 

 Klemmbügel 50 225 

252 

BCS 60 12 15   BCS 60 15 

RGT 70 7 8   RGT 70 8 

Doppelstockparker E 80 12 0   Unknown 100 4 

Doppelstockparker D 81 19 0      

MVG 99 137 135      

Unknown 100 25 4   MVG 99 135 135 

Table 4: Number of labels for the training dataset according to their rack type / class and grouping of classes; left: number of objects in 

Fahrradstaender_bis_2019.shp and the number of labels (=polygons) for each rack type (=class); right: groups of classes;  

(E: one-side/einseitig; D: double-sided/doppelseitig; T: low/tief; H/T: high-low/hoch-tief; DB: Deutsche Bahn) 
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4.5 Export of the Training Data 

Having the objects labeled, it is now time to export the image tiles and the corresponding 

labels. The export takes place in the second tab of the Label Objects for Deep Learning tool. 

In this thesis, it makes sense to use image tiles of 256 px x 256 px or 512 px x 512 px 

(px: pixel): with a resolution of 8 cm a ground section of 20.48 m x 20.48 m and 40.96 m x 

40.96 m, respectively, is displayed in one tile and thus bike parking facilities are not too 

fragmented, but still take up a reasonable area of the cutout. By adding an overlap with a stride 

of 50% of the tile size, both horizontally and vertically, the training dataset is enlarged artificially 

to extent the generality of the model.2  

The image tiles are saved in the TIFF format as this format supports more than three bands 

contrary to PNG and JPEG format. The masks for Mask R-CNN are binary images of the same 

size as the image tiles with one band (256 px x 265 px x 1 and 512 px x 512 px x 1, 

respectively). A mask corresponds to one class and sets the pixel values of areas with an 

object – here bike parking facilities – to 1 while the value of the background pixels stays 0. 

Figure 38 shows an image tile with its corresponding mask. 

Tiles that have at least one bike parking facility included are exported. This results for the whole 

area of Munich in about 7500 image tiles for 256 px x 256 px export and in about 4900 image 

tiles for 512 px x 512 px export without additional rotation. 

 

2 A further way to enlarge the dataset artificially would be to add rotated image tiles. By setting the Rotation Angle 
parameter in the tool’s settings to 315°, the number of image tiles is doubled as each tile is rotated by -45° and 
added to the dataset. The reason for rotating by 315° is the shadow cast that needs to fit the positions of the sun in 
Munich: the sun never shines from the north in Munich. Rotating by 315° results in shadows that fall into the range 
of west to north. One single rotation by +45° is not possible with this tool as it adds all rotations that are multiples 
of 45° up 360° to the dataset. Unfortunately, ArcGIS Pro could not execute this export and aborted repeatedly with 
undefined error. Therefore, the rotation was implemented as part of the data augmentation (see chapter 4.6.2). 

Figure 38: left: image tile 256 px x 256 px (Feldmoching), right: corresponding mask with 
three objects (Image source: Landeshauptstadt München 2020) 
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The output of the tool, when exporting for Mask R-CNN, includes six elements:  

- images folder: includes all exported image files (.tif), together with the corresponding 

world files (.tfw) for georeferencing 

- labels folder: includes folders named after the different classes and each of them 

contains the corresponding binary masks (.tif) together with their world files (.tfw) and 

their small auxiliary xml-files (.aux.xml) 

- map.txt: text file that maps all image file-paths to the corresponding mask(s) by listing 

the file-paths of the mask TIFFs 

- stats.txt: text file that contains statistics on the number of images, their size, and how 

many images belong to each class together with information on min, mean and max 

size of the features on the image 

- esri_accumulated_stats.json: file that contains statistics on the image tiles and classes 

(e.g. number of features per class, number of features per image, feature area per 

class, band statistics) in JSON format 

- esri_model_definition.emd: incomplete Esri model definition file (JSON format) that 

provides the user with a framework to describe the trained model; it already contains 

information about the exported images and the classes settled by the labeling and this 

export step 

The different rasters and composites of 2019 are exported as training data to train the models 

and to compare their performance and characteristics. As a result, we now have the following 

exported image tiles for 256 px x 256 px and 512 px x 512 px, respectively. In addition, every 

raster is exported with labels of all classes, of the grouped classes (see Table 4) and with all 

labels assigned to the same class. 

- LUFTBILD2019_RGB  

- LUFTBILD2019_CIR 

- Composite: LUFTBILD2019_RGB + LUFTBILD2019_nDSM 

- Composite: LUFTBILD2019_RGB + LUFTBILD2019_NDVI 

- Composite: LUFTBILD2019_RGB + LUFTBILD2019_nDSM + LUFTBILD2019_NDVI 

The size of an entire output folder is for 256 px x 256 px with three bands about 1.1 GB, with 

four bands about 3.5 GB and with five bands about 5.3 GB. The output with grouped classes 

has around 40,000 files. The size of one folder of the 512 px x 512 px image tiles is with three 

bands 2.9 GB and with four bands 9.1 GB. With this image size, the output with grouped 
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classes has around 27,500 files. It takes between 0.5 and 48 hours to export the image tiles 

for the whole city, depending on the image size and the computer performance. It can be 

accelerated enormously by using a mask for reducing the area where the tool is checking for 

image tiles to export. 

4.6 Training 

As already described, the training phase is not carried out in ArcGIS Pro but on the 

LRZ AI Systems in a Python environment. This chapter deals with both the soft- and hardware-

specific processes and the procedure for finding the best-performing model. 

4.6.1 Usage of LRZ AI Systems 

The LRZ provides NVIDIA GPUs for deep learning purposes. Currently, the LRZ AI Systems 

include a DGX-1 P100 Architecture with 8 NVIDIA Tesla P100 GPUs and a DGX-1 V100 

Architecture with 8 NVIDIA Tesla V100 GPUs (Leibniz-Rechenzentrum 2021c). As mentioned 

above (chapter 4.2), a Linux Cluster account and approval for the LRZ AI Systems are required 

to access the GPUs. 

The remote access is realized with an SSH-Connection to datalab2.srv.lrz.de (xxyyzz: alias for 

Linux Cluster account ID) onto the Ubuntu system (connection to MWN, e.g., via VPN needed): 

ssh -L 8888:localhost:8888 -Y datalab2.srv.lrz.de -l xxyyzzz 

 

Files can be transferred via the Globus Research data management portal (University of 

Chicago, Argonne National Laboratory) into a personalized $HOME folder on a DSS (Data 

Storage Service) container accessible on the LRZ AI Systems. The default disk quota is 

150 GB and 200,000 inodes. It can be extended upon request (Leibniz-Rechenzentrum 

2021b). The global path on datalab2.srv.lrz.de to the uploaded data is /home/xxyyzzz/ and 

navigation is done by the standard Linux commands. 

The installation of custom software stacks is realized within Enroot containers. The Enroot 

container framework by NVIDIA works analogous to Docker software. A container is defined 

by and created out of a container image. Enroot supports images provided by the Nvidia NGC 

Cloud as well as from the Docker Hub. To use Jupyter Notebooks, the foundation is a 

miniconda image – a minimal installer for conda with Debian as operating system – from the 

Docker Hub. This container is modified by installing the ArcGIS API for Python and saved as 

a new enroot image (my_arcgis_container.sqsh). The exact versions of the installations 

are important to avoid errors in the installation process and in the execution later on. 

(Anaconda Inc. and Docker Inc. 2021; ESRI 2021g)) 
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enroot import docker://dockeruser@continuumio/miniconda3 

enroot create continuumio+miniconda3.sqsh 

enroot start continuumio+miniconda3 

  

conda install python=3.7.7 

conda install -c esri arcgis 

conda install -c esri -c fastai -c pytorch arcgis=1.8.2 scikit-

image=0.15.0 pillow=6.2.2 libtiff=4.0.10 fastai=1.0.60 pytorch=1.4.0 

torchvision=0.5.0 tensorflow-gpu=2.1.0 --no-pin 

conda install -c esri gdal=2.3.3 

 

The container also needs the driver for the NVIDIA-GPU. Therefore, the installation of CUDA 

(as of today: version 11.4) is necessary (NVIDIA Developer 2021)3: 

apt-get install gnupg 

apt-get --allow-releaseinfo-change update  

apt-get install software-properties-common 

apt-key adv --fetch-keys 

https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86

_64/7fa2af80.pub 

add-apt-repository "deb 

https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86

_64/ /" 

add-apt-repository contrib 

apt-get update 

apt-get -y install cuda 

 

Finally, the container can be exported to a new Enroot image (ending: .sqsh) to create new 

containers with the desired software components ready for usage: 

enroot export --output my_arcgis_container.sqsh continuumio+miniconda3 

enroot create --name my_arcgis_container_1 my_arcgis_container.sqsh 

 
 

SLURM (Simple Linux Utility for Resource Management, SchedMD LLC) is the system for 

scheduling the jobs. The command sinfo informs on the available hardware resources and 

some specifications, squeue reports the jobs’ statuses. The allocation of resources is 

performed with salloc and options on desired partition, number of parallel tasks, number of 

gpus and the maximum of needed time:  

salloc -p dgx-1-v100 --ntasks=1 --gres=gpu:1 --time=0-12:30:00 

or 

salloc -p dgx-1-p100 --ntasks=1 --gres=gpu:1 --time=0-12:30:00 

 

Subsequently srun is used to submit the job. The following command executes a terminal 

within the allocated machine: 

srun --pty bash 

 

 

3 be sure to have started the container in root mode: enroot start –root container_name 

https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86_64/7fa2af80.pub
https://developer.download.nvidia.com/compute/cuda/repos/debian10/x86_64/7fa2af80.pub
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Now, the container, if not already built, can be created, and then started: 

enroot create --name my_arcgis_container_1 my_arcgis_container.sqsh 

enroot start my_arcgis_container_1 

 

The Jupyter Notebook is started with 

jupyter notebook --ip=0.0.0.0 --allow-root --port=8889 

 

and a second terminal is used to set up further port-forwarding to be able to access the 

notebook structure via the browser (localhost:8889): 

V100: ssh -L 8889:dgx-002:8889 xxyyzzz@datalab2.srv.lrz.de 

or: 

P100: ssh -L 8889:dgx-001:8889 xxyyzzz@datalab2.srv.lrz.de 
 

The Jupyter Notebook usage is cancelled with Ctrl+C, the container, the allocation, and the 

ssh-connection with exit. A job can be deleted with scancel jobid . 

In order to take advantage of TensorBoard visualizations that show graphs of the training loss 

and the validation loss already during the training but also afterwards for comparing different 

runs, the extension has to be installed: 

conda install tensorboard=2.2.1 

conda install -c conda-forge tensorboardx=2.1 

pip install tensorboardX 

 

Due to security concerns the usage of Jupyter Notebooks was deprecated by the LRZ in 

August 2021. Therefore, the less convenient way of starting Python-scripts was used to run 

the code. 

4.6.2 Preparation 

Writing the actual python code for executing the training is the next step. It starts with importing 

the required libraries: 

% import of pathlib for getting home-directory path 

from pathlib import Path 

 

% import of required arcgis_learn functionalities 

from arcgis.learn import prepare_data, MaskRCNN 

 

% import of fastai and torch libraries 

import fastai 

import torch 

Before starting the actual training, the data has to be split into training and validation data. The 

arcgis.learn module provides the prepare_data-function for data preparation. It not only 

splits the data but also offers data augmentation and the possibility to set parameters to 

customize it. The only required argument is the path to the directory, where the exported data 

mailto:xxyyzzz@datalab2.srv.lrz.de
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is saved. The arguments of this function are described in Table 5, which gives a brief 

explanation of the arguments and describes what and how parameters are set for the 

preparation of the bike-parking-facilities-dataset. 

Argument Brief description Remark relating this work 

path path to data directory required 

path: home/xxyyzzz/UploadedFolder 

val_split_pct percentage of validation data,  

default: 10% 

subject of testing: 

10%, 20%, 30% 

batch_size batch size,  

default: 64 

subject of testing:  

4,8,32, (64: OutOfMemory-Error) 

seed random seed for reproducible train-
validation split 

optional integer, set to make different 
trainings easier to compare 

collate_fn function to collate data at PyTorch default 

transforms fast.ai transforms for data 
augmentation 

subject of testing:  

default (ESRI has set good defaults 
that work well for aerial imagery) & 
other transformations 

chip_size training images cropping size, 
default: 224 

default 

working_dir path where folder including trained 
model is saved 

optional, when None: new folder 
‘model’ in data directory 

class_mapping dictionary for mapping id label to 
string label 

not needed 

dataset_type type of images and labels, when 
map.txt is missing 

not applicable, as map.txt is existing 

resize_to size for resizing images not applicable for RCNN_Masks 

imagery_type ‘sentinel’, …, ‘ms’ (any other type 
of image) 

optional 

bands bands used to export data,  

e.g. [‘r’,’g’,’b’,’nir’] 

optional 

rgb_bands indices of red, green, blue bands optional 

extract_bands indices of bands for training not needed, as all exported bands 
used for training 

norm_pct percentage of training data for 
statistics for normalizing, default: 
30% 

default 

downsample_factor downsampling factor, default: 4 default 
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Argument Brief description Remark relating this work 

encoding encoding to read csv/json-file not applicable for RCNN_Masks 

min_points 

classes_of_interest 

extra_features 

remap_classes 

background_classes 

arguments for PointCloud 
preparation 

not applicable 

Table 5: Arguments of the prepare_data-function (black: required parameter, blue: parameter for which various values are tested to 
improve the training, green: optional parameters, sometimes set, or parameters where default option is optimal) (adapted from (ESRI 
2021a)) 

The transforms parameter is responsible for the data augmentation of the input image data, 

which can help to achieve better training results and prevent overfitting. It is implemented with 

the help of fast.ai. ESRI offers default values that are already well adapted to satellite data. 

The data augmentation is a tool to counteract overfitting, so it is worth taking a closer look at 

the default values. In addition, further transformations can be considered. 

ESRI implements the transformations for Mask R-CNN as follows (ESRI 2021b): 

            chip_size = 224 

        [...] 

            ranges = (0, 1) 

        [...] 

                train_tfms = [ 

                    crop(size=chip_size, p=1., row_pct=ranges, 

col_pct=ranges), 

                    dihedral_affine(), 

                    brightness(change=(0.4, 0.6)), 

                    contrast(scale=(1.0, 1.5)), 

                    rand_zoom(scale=(1.0, 1.2)) 

                ] 

        [...] 

            val_tfms = [crop(size=chip_size, p=1., row_pct=0.5, 

col_pct=0.5)] 

            transforms = (train_tfms, val_tfms) 

 

First, all images (p=1.0) are cropped to the size of 224 to 

have the correct size for the FPN. For this, a random part of 

the image is selected (range: (0,1)). In addition, the 

images are rotated by multiples of 90° 

(dihedral_affine()). The brightness is changed in the 

range of 0.4 to 0.6, so it is slightly increased or slightly 

decreased, while the contrast is increased by random values 

between 1.0 and 1.5. Figure 39 shows how brightness and 

contrast changes affect an image. Finally, a random zoom 

(rand_zoom) is applied to the image. The image will have 

a zoom level between 100% and 120%. 

Figure 39: Brightness (top) and contrast 
(bottom) changes 
(Source: fast.ai 2021) 
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Other possible transformations that are not yet applied by the default settings, but provided by 

fast.ai (2021), are flip_lr and rotate. flip_lr flips an image horizontally. Specifying 

p=0.5 causes 50% of the images to be flipped. rotate rotates an image by the specified 

value or a value within a specified range of values. A percentage can be specified here as well. 

Typical properties of aerial images such as shadow directions must be considered when 

rotating.  

An example of calling the prepare_data-function with using the default transformations is: 

home = Path.home() 

data_path = Path(home,'myOutputFolderName') 

print(data_path) 

 

data = prepare_data(data_path, batch_size=8, imagery_type='ms', 

rgb_bands = [0,1,2], val_split_pct=0.2, seed=174413) 

 

The next step is initializing the desired model by calling the class constructor. This includes 

defining the backbone model together with arguments for detailed model modification (Table 

6). For example: 

model = MaskRCNN(data, backbone='resnet101')  

 

Argument Brief description Remark relating this work 

data fast.ai Databunch data-object returned from 
prepare_data function 

backbone compatible backbones: resnet18, 
resnet34, resnet50, resnet101, 
resnet152  

default: resnet50 

subject of testing: 

resnet34, resnet50, resnet101 

pretrained_path path to pretrained model pretrained model not available 

pointrend boolean for indicating if PointRend 
used, default: False 

default, not needed as shape of bike 
parking facilities is rectangular 

  further arguments for RPN and 
classification-head 

default 

Table 6: Arguments of the MaskRCNN class (black: required parameter, blue: parameter for which various values are tested to improve 
the training, green: optional parameters, sometimes set, or parameters where default option is optimal); adapted from (ESRI 2021a) 

In addition, the arcgis.learn module provides a learning rate finder (lr_find()) to determine 

the initial learning rate:  

lr = model.lr_find() 
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4.6.3 Training of the Models 

The next step is the actual training with the fit-function. Here, the number of epochs must be 

set. When it is unknown, how many epochs the training will need to perform best, the early 

stopping argument can be used by setting a high number of epochs but at the same time let 

the function stop as soon either the loss or the training function do not improve anymore. Table 

7 includes all arguments for the function. 

When training the model, only the weights of the Mask R-CNN specific layers and not of the 

backbone are updated. This is called freezed model. The backbone was pretrained before and 

runs now with the weights found for the previously trained model. In the case of using a ResNet 

backbone in ArcGIS, the backbone was pretrained on large image sets like ImageNet. To also 

update the weights in the backbone layers, the unfreeze-function can be called previously. 

It has no arguments. 

model.unfreeze() 

model.fit(epochs=30, lr=lr, early_stopping=True, checkpoint=’all’, 

tensorboard=True) 

  

 

Argument Brief description Remark relating this work 

epochs number of epochs required, subject of testing, depending 
on training performance 

lr learning rate used for training float returned from learning rate finder 

one_cycle boolean for usage of 1cycle learning 
rate schedule, default: True 

default, as small corrections of the 
learning rate support optimization 

early_stopping boolean for stopping when monitor-
value does not increase for 5 epochs, 
default: False 

optional 

checkpoint boolean/String for saving checkpoints, 
False: no checkpoints, True: best 
model based on monitor-value saved,  

all: all checkpoints saved 

optional / all 

tensorboard boolean for writing training log for 
visualization with TensorBoard, 
default: False 

set to True 

monitor parameter for early stopping & 
checkpoints,  

default: valid_loss (else: train_loss) 

optional 

Table 7: Arguments of the fit-function (blue: parameter for which various values are tested to improve the training, green: optional 
parameters, sometimes set, or parameters where default option is optimal); adapted from (ESRI 2021a) 

During the training, the python output provides information about the current epoch with the 

number and percentage of batches processed, as well as the training and validation loss at 
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the end of each epoch. In addition, an estimate of the duration of the current epoch is displayed, 

as well as the time actually required afterwards.  

The trained model is then saved in the desired storage location that was set as working_dir 

when preparing the data. The function save itself only needs the parameter for naming the 

model and the folder, respectively. 

model.save(‘ModelFolderName’) 

 

This function offers more parameters to set, but apart from the model folder name all are not 

applicable in this case. 

4.6.4 Improving the Model 

The output of training and validation loss for each epoch during training give a first impression 

on how the model performs. Calling the following functions give additional graphical feedback: 

model.plot_losses() 

model.show_results(mode='bbox_mask', rows=7) 

 

The plot_losses-function plots the two graphs of training and validation loss in one figure. 

The show_results-function prints ground truth image tiles next to the corresponding image 

tiles with the predicted object(s). Here, rows=7 indicates that seven image pairs are output. 

These two functions only work in the Jupyter Notebook environment. But the graphics are also 

saved in the model metrics file in the model folder and can be opened there.  

Further, the average precision score can be printed with: 

model.average_precision_score() 

 

It returns the average precision on the validation set for each class. The numbers can also be 

found in the model metrics file. 

4.6.5 Output – Model Definition 

In addition to the model metrics file, there is also the following data stored in the model folder 

(ESRI 2021f): 

- name_model.dlpk: deep learning model package that contains an emd-file and a 

trained model file, so all files and data required to do object detection 

- name_model.emd: Esri model definition file: JSON file including information on the 

framework used (e.g., PyTorch), on the trained model and on the training images 

(optional) as well as paths to related files for describing the trained deep learning model 

- name_model.pth: PyTorch file with saved model 
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- model_metrics.html: document including fundamental information on the trained model: 

backbone, learning rate, training and validation loss plot, average precision score for 

all classes, and sample results (four image pairs of ground truth and predictions) 

- ArcGISInstanceDetector.py: instance segmentation python raster function to inference 

an arcgis.learn deep learning model 

- ModelCharacteristics: folder including the images loss_graphs.png (plot of training and 

validation loss functions) and show_results.png (four image pairs of ground truth and 

predictions) 

Globus helps with downloading the files. Now the trained model is ready for object detection 

back in ArcGIS Pro. 

4.7 Experiments for Validation of the Model Parameters 

With this knowledge presented of losses and average precision scores, adjustments and 

improvements can be applied: different parameter setting combinations are tested and 

evaluated to get closer to the best model. The parameters to be changed are image size, 

backbone, batch size, percentage of validation data, data augmentation and the number of 

epochs. 

Different values are tried for one value, while the others remain the same. This gives a feeling 

for the best parameter configuration. It starts with default settings for backbone, percentage of 

validation data and data augmentation. This gives the batch size. Then different backbones 

and validation percentages can be tried out. If a good value for a parameter is found, it is useful 

to alter and check the previously found parameters again to see if they are still a good choice. 

In this process, the number of epochs can at first be chosen to be large to see when the losses 

approach their minima. Afterwards, this can be adjusted in such a way that no overfitting 

occurs. 

In the meantime, the models can be tested in ArcGIS Pro with the Detect Objects Using Deep 

Learning tool (see chapter 4.8) to assess the performance based on the results there. This 

results in an interative process. 
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The following values were determined as the best model parameter combination: 

- image size:   256 px x 256 px 

- batch size:   8 

- backbone:   ResNet-50 

- validation:   20% 

- data augmentation:  rotation: in the range between -30° and 30° for 50% of image tiles 

left-right flip: 50% of images 

no 90° rotations 

crop, brightness, contrast and zoom: standard settings  

- unfreeze 

- epochs:   100  

From the settings for the data augmentation, the following code for the transformations results: 

train_tfms = [rotate(degrees=(-30,30), p=0.5), flip_lr(p=0.5), 

crop(size=chip_size, p=1., row_pct=ranges, col_pct=ranges), 

                    brightness(change=(0.4, 0.6)), 

                    contrast(scale=(1.0, 1.5)), 

                    rand_zoom(scale=(1.0, 1.2))] 

val_tfms = [crop(size=chip_size, p=1., row_pct=0.5, col_pct=0.5)] 

tfms = (train_tfms, val_tfms) 

 

The entire Python code for building and training the model with the arcgis.learn module is given 

in Appendix B. 

The justification of the choice is now given by the following training and validation loss plots 

based on the RGB image tiles. For this purpose, the selected model is compared with models 

where one parameter is changed at a time and where the other parameters remain those of 

the best model. The losses of the model with the described setting is shown in blue in the 

following plots. The loss values were exported from the TensorBoard log-files as .csv and 

plotted using Matlab (The MathWorks, Inc.). The results of the parameter comparisons can be 

transferred to the other band combinations, since they react very similarly to the parameter 

values.  
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Image Size 

A comparison of the two image crop sizes of 256 px x 256 px (blue) and 512 px x 512 px 

(orange) is shown in Figure 40. The 256 px x 256 px image size results in lower loss values. 

The difference between the two losses is also lower. 

Figure 40: Training and validation loss for different image sizes: blue: 256 px x 256 px, orange: 512 px x 512 px; training losses 
smoothed by 12th degree polynomial for better comparison 

Figure 41: Training and validation loss for different batch sizes: orange: 4, blue: 8, green: 32; training losses smoothed by 12th degree 
polynomial for better comparison 
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Batch Size 

The batch size depends on the performance of the GPU. Figure 41 shows the losses of the 

models with 4, 8 and 32 images per batch. The training of a model with batch size 64 fails at 

the available hardware. A batch size of 8 turns out to be the best choice. 

Backbone 

ResNet-50 is the default backbone in ArcGIS Pro. Using ResNets with fewer or more layers is 

represented in Figure 42 by ResNet-34 (orange) and ResNet-101 (green), respectively. It can 

be seen that ResNet-34 does not lead to such a high level of fitting as the other two backbones. 

Using ResNet-101 does not lead to any improvement. The validation loss is even a little worse 

than ResNet-50 (blue). In addition, it takes more time for each epoch as more parameters need 

to be updated. Therefore, the default backbone setting is kept here. 

Figure 42: Training and validation loss for different backbones: orange: ResNet-34, blue: ResNet-50, green: ResNet-101; training 
losses smoothed by 12th degree polynomial for better comparison 
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Validation  

Changing the validation set percentage results in the losses shown in Figure 43. The default 

setting of 10% (orange) yields similarly good results as 20% (blue). Using 30% (green) of the 

data as validation set results in a higher validation loss and a higher difference between 

validation and trainining loss. Here, as less data is available for training, the generalization is 

not as good. For a stable validation and since a ratio of 80:20 is a common value, 20% is 

chosen as parameter. 

Data Augmentation 

Figure 44 compares four different data augmentations. While the standard setting (orange) 

turns into an overfitting at 23 epochs at the latest, the other models improve further. The 

additional rotation of 30% of the images in a range of -10° to 10° (green) prevents overfitting, 

but still includes rotations by multiples of 90°. Replacing the 90° rotations with a wider contrast 

change (0.8 to 1.5) (yellow) reduces the loss. However, rotating 50% of the images in a range 

from -30° to 30° and an additional left-right flipping of 50% of the images without additional 90° 

rotations (blue) performs best. Here the contrast change remains at the default setting in the 

range between 1.0 and 1.5. Here, the validation loss is identical to the third alternative, but the 

difference between training and validation loss is smaller. 

Figure 43: Training and validation loss for different validation set percentages: orange: 10%, blue: 20%, green: 30%; training losses 
smoothed by 12th degree polynomial for better comparison 
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Freeze/Unfreeze 

For the sake of completeness, a comparison of the freezed (orange) and unfreezed (blue) 

backbone is shown in Figure 45. The unfreezed model starts with the same pretrained weights 

in the backbone, but adjusts them further during training, while freezing only improves the 

layers of the heads. This confirms the assumption that an unfreezed model leads to slightly 

better results. 

Figure 44: Training and validation loss for different data augmentations: orange: default, green: rotations +-10°, yellow: ±10°, contrast, 

blue: ±30°, left-right flips; training losses smoothed by 12th degree polynomial for better comparison 

Figure 45: Training and validation loss for freezing/unfreezing the backbone: blue: unfreezed backbone, orange: freezed backbone; 
training losses smoothed by 12th degree polynomial for better comparison 
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Epochs 

When the number of epochs is about 100, the values for training and validation loss remain 

the same and will no longer improve. Therefore, the training can stop here, and the number of 

epochs can be set to 100. 

 

Finally, it has to be decided whether training is done over all classes, the grouped classes or 

without classes. A comparison of the loss curves (Figure 46) shows that they do not differ 

considerably. In addition, average precision scores can be used for comparison. The following 

Table 8 (as an extension of Table 4) shows the average precision scores for the training on 

256 px x 256 px RGB images. Since small or overfitting values result for the classes that are 

only represented by very few labels, grouping is preferable. The grouped classes give good 

values; therefore this option is used. After all, it is also about the detection of the bicycle rack 

type. An exact evaluation of the classification is done when looking at the object detections. 
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10 422 442 0.8063   10 442 442 0.7963   

all 1839 0.8346 

11 109 129 0.7618   11 129 
132 0.7318 

  

12 1 3 0.5   12 3   

20 718 614 0.8642   20 614 

635 0.8278 

  

21 38 10 1   21 10   

22 175 149 0.8017   30 9   

23 35 7 0.8333   41 2   

24 107 82 0.7772   
22 149 

160 0.8322 

  

30 12 9 0.7308   23 7   

41 13 2 1   43 4   

43 11 4 0.75   24 82 

83 0.7872 

  

44 1 1 1   44 1   

46 4 0        

48 2 0        

49 2 0        

50 274 225 0.7862   50 225 

252 0.7310 

  

60 12 15 0.7749   60 15   

70 7 8 1   70 8   

80 12 0    100 4   

81 19 0        

99 137 135 0.8222       

100 25 4 0.5833   99 135 135 0.7926   

Table 8: Average Precision Scores for training on RGB images; left: average precision score together with number of objects and labels 
for each rack type (=class); middle: grouped classes with number of labels and average precision score; right: average precision score 
when all 1839 labels belong to the same class 
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4.8 Detect Objects Using Deep Learning 

The object detection in ArcGIS Pro is performed using the Detect Objects Using Deep Learning 

tool. The tool needs the .emd or the .dlpk path of the trained model for the Model Definition. 

The Input Raster must be set to the same type of band combination that was used for training. 

In addition, a name for the output-shp has to be defined. The arguments will be filled in by the 

tool, when the .emd-file or .dlpk-file is loaded. On the Environments tab of the tool, the 

Processing Extent can be defined, to delimit the area in which objects are to be detected with 

the trained model. 

At the position where an object was detected, it is 

framed with the segmentation mask and by this its 

extension and position are displayed (Figure 47). 

For the evaluation of the detection, a dataset is required, on which no training has been 

performed, but for which ground truth data is available. Therefore, four areas were taken out 

of the training dataset. This concerns the area between Rosenheimer Platz and Ostbahnhof 

(Figure 48a)), Rotkreuzplatz (Figure 48b)), the area around the U- and S-Bahn station Harras 

(Figure 48c)), and the U-Bahn station Messestadt West (Figure 48d)). These areas were 

chosen to represent different environments: while Harras and Rotkreuplatz are busy squares 

in the city, the Messestadt is a bit outside with comparatively newly established bicycle parking 

facilities and the area near the Ostbahnhof is characterized by multi-story buildings and thus 

shadows and backyards. In terms of shadows, three of the areas can be categorized as 

follows: while the area around the Ostbahnhof is characterized by shadows from buildings, the 

Figure 46: Training and validation loss for different class groupings: orange: all classes, no grouping, blue: grouped as in Table 4, 
green: one class; training losses smoothed by 12th degree polynomial for better comparison 

Figure 47: Example of detection masks (Orleansplatz) 
(Image source: Landeshauptstadt München 2020) 
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Rotkreuzplatz area has many trees that cast shadows, and the Harras area has most bicycle 

racks in the sun. The four areas contain a total of 128 labeled bike parking facilities (7% of all 

labeled facilities). The size of the study areas is limited because, on the one hand, the training 

dataset should not be reduced too much, since it is already small, and as, on the other hand, 

it takes a long time4 to detect the bike racks. 

Each of the five reduced image and label datasets is trained with the best performing 

parameters (see 4.7). The result of Object Detection Using Deep Learning tool is then analyzed 

for each band combination and for each of these four areas. Table 9 shows an example of 

such an analysis. All detected objects are looked at individually and accordingly recorded in 

 

4 ca. 12 hours for all four areas for one band combination 

a) 

c) b) 

d) 

Figure 48: Areas taken out of the training dataset for evaluation; labeled bike parking facilities in red; a) Rosenheimer Platz to 
Orleansplatz/Ostbahnhof (50 labels); b) Rotkreuzplatz (31 labels); c) Harras (30 labels); d) Messestadt West (17 labels) 
(Image source: Landeshauptstadt München 2020) 
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the table. If a bicycle parking facility can be seen at the location of the object mask in the aerial 

image, it is classified as a TP. If this facility is labeled, a distinction is made whether the 

classification is correct. A distinction is also made between bicycle racks on private property, 

single bikes, for example locked to lamp posts, and bicycle racks in public spaces. If an object 

is detected wrongly, it is described and assigned to the FP accordingly. In addition, in order to 

detect FN, all labeled bicycle racks in the corresponding area are examined. 

RGB  Ostbhf. 
Rotkreuz-

pl. 
Harras Messe sum 

% of 
detected 

  correctly detected 87 46 22 15 170 86.3% 

T
P

 +
 T

P
_

o
th

e
r 

private 47 19 4 1 71 36.0% 

correctly classified 25 17 14 11 67 34.0% 

wrongly classified 5 8 4 3 20 10.2% 

            

single bikes detected 9 2    11 5.6% 

unlabeled & public  1       1 0.5% 

F
P

 

wrongly detected 13 4 8 2 27 13.7% 

roof 3   2 1 6 3.0% 

groundclutter 5 2  1 8 4.1% 

cemetery    4   4 2.0% 

car  1 1   2 1.0% 

bush, tree, grass 4 1 1   6 3.0% 

shadow       0 0.0% 

rectangular object       0 0.0% 

motorbike, etc. 1       1 0.5% 

sum detected 100 50 30 17 197 100.0% 

              

              
% of to 
detect 

  to detect 50 31 30 17 128   

T
P

 

detected & labeled 30 25 18 14 87 68.0% 

correctly classified 25 17 14 11 67 52.3% 

wrongly classified 5 8 4 3 20 15.6% 

F
N

 labeled &  
not detected 

20 6 12 3 41 32.0% 

Table 9: Detailed breakdown of TP, FP, and FN for detection in RGB for all areas of study 

From this recall, precision, FDR and FNR are calculated. Afterwards, the true positives are 

tested to what extent the detected masks correspond to the labeled rectangles. Here IoU 

supports. The false positives are examined on the basis of examples. The confidence value 

returned by the Detect Objects Using Deep Learning tool helps here. Subsequently, an 

analysis of the false negative bicycle racks takes place. Reasons, why these were not 

detected, are discussed.  
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4.9 Postprocessing 

When a suitable deep learning model has been found for the detection of the bicycle racks, it 

can be used to detect the objects in the aerial imagery. Afterwards, the postprocessing can be 

performed on the output polygon features. The steps are summarized in an ArcGIS model to 

perform the entire workflow at once. The individual processing steps are concatenated with 

the Model Builder of ArcGIS Pro. Since recognition is a computationally intensive and long 

task, it is performed beforehand, and the result is then used as input for the model. 

Figure 50 shows the individual steps in the Model Builder. The detected objects from the Detect 

Objects Using Deep Learning tool and a polygon feature class serve as input. This second 

input covers the areas that are appropriate for the installation of bicycle racks by the LHM. 

Here, the lhm_oeffentliche_flaechen_v2.shp file described in chapter 3.4 serves as an 

example. With these two input feature classes and the Pairwise Intersect tool, all detected 

bicycle racks that are located on private property can be filtered out. If no Non Maximum 

Suppression was applied during the detection, the next step is to use the same to ensure that 

only one object is retained if more than 60% of two or more objects overlap. Then, a minimum 

bounding rectangle is placed around each of the objects. This new geometry represents more 

accurately the intended effective area of bicycle parking facilities. From this, the Polygon to 

Centerline tool calculates lines. Line objects are used, so far, at the LHM for the representation 

of bike parking facilities in GIS (Fahrradstaender_bis_2019.shp). Since fields/attributes are lost 

in this processing step, the values for class and confidence are added to the line features with 

Join Field. Since the workflow contains fields that are not required in the output feature classes, 

additional Delete Field steps are added. To be able to name the output of the rectangular 

objects by the user, the intermediate step Rename is inserted. This results in two output feature 

classes: rectangles that represent the area of the detected bicycle racks and the associated 

line features.  

Figure 49 shows the input mask for the 

user. The user hands over the two required 

feature classes in the first two fields and 

then assigns names to the two output 

feature classes. 

The created workflow can be used for new 

aerial images in the future to postprocess 

detected bike racks. Chapter 5.3 shows the 

resulting rectangles and lines. Figure 49: Input mask for Detected Objects to Lines and Rectangles 
tool 



 

Detection of Bicycle Racks from Geodata Using Deep Learning 59 

 

 

 

Figure 50: Postprocessing steps in Model Builder: blue: input feature classes; yellow: calculations; green: intermediate results/final results 
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5 Results 

One model is trained for each band composition. The advantages and disadvantages of using 

additional datasets (CIR, nDSM, NDVI) need to be analyzed and statistically evaluated. The 

trained models are applied to different areas of the available imagery. 

5.1 Performance Evaluation 

The analysis of the detected objects, which was performed as shown in Table 9, results for all 

band combinations in the following Table 10: 
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  correctly detected 170 86.3% 187 82.4% 188 90.4% 174 89.7% 166 85.1% 

𝑻
𝑷
⁡+

⁡𝑻
𝑷
𝒐
𝒕𝒉
𝒆
𝒓
  

private 71 36.0% 78 34.4% 69 33.2% 70 36.1% 71 36.4% 

correctly classified 67 34.0% 79 34.8% 80 38.5% 77 39.7% 75 38.5% 

wrongly classified 20 10.2% 17 7.5% 19 9.1% 16 8.2% 17 8.7% 

                     

single bikes 11 5.6% 10 4.4% 17 8.2% 6 3.1% 1 0.5% 

unlabeled & public 1 0.5% 3 1.3% 3 1.4% 5 2.6% 2 1.0% 

                        

𝑭
𝑷

 

wrongly detected 27 13.7% 40 17.6% 20 9.6% 20 10.3% 29 14.9% 

roof 6 3.0% 5 2.2% 0 0.0% 1 0.5% 2 1.0% 

groundclutter 8 4.1% 7 3.1% 4 2.4% 3 1.5% 8 4.1% 

cemetery 4 2.0% 3 1.3% 0 0.0% 2 1.0% 3 1.5% 

car 2 1.0% 2 0.9% 0 0.0% 0 0.0% 4 2.1% 

bush, tree, grass 6 3.0% 9 4.0% 8 3.8% 4 2.1% 8 4.1% 

shadow 0 0.0% 4 1.8% 0 0.0% 2 1.0% 1 0.5% 

rectangular object 0 0.0% 3 1.3% 2 1.0% 4 2.1% 1 0.5% 

motorbike, etc. 1 0.5% 7 3.1% 5 2.4% 4 2.1% 2 1.0% 

                        

 Σ detected 197 100.0% 227 100.0% 208 100.0% 194 100.0% 195 100.0% 

           

      
% of to 
detect   

% of to 
detect   

% of to 
detect   

% of to 
detect   

% of to 
detect 

  to detect 128   128   128   128   128   

𝑻
𝑷

 detected & labeled 87 68.0% 96 75.0% 99 77.3% 93 72.7% 92 71.9% 

correctly classified 67 52.3% 79 61.7% 80 62.5% 77 60.2% 75 58.6% 

wrongly classified 20 15.6% 17 13.3% 19 14.8% 16 12.5% 17 13.3% 

𝑭
𝑵

 

labeled & not detected 41 32.0% 32 25.0% 29 22.7% 35 27.3% 36 28.1% 

Table 10: Detailed breakdown of TP, FP, and FN for detection in all band combinations summarized over all areas of study 
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The bold percentages in Table 10 give precision, FDR, recall and FNR. For a better overview 

and comparison, Table 11 presents these values once again. Here, a distinction is made 

between two TP values. On the one hand 𝑇𝑃, which contains the true positives that are also 

contained in the ground truth labels (correctly classified and wrongly classified), and, on the 

other hand, 𝑇𝑃2 ⁡= ⁡𝑇𝑃 + 𝑇𝑃𝑜𝑡ℎ𝑒𝑟. Here 𝑇𝑃𝑜𝑡ℎ𝑒𝑟 are all additional correctly identified bike racks 

and bikes (private, single bikes, unlabeled & public). In this case, no recall and FDR 

percentages can be calculated as no FN values are available for additional parking facilities. 

 
RGB CIR +nDSM +NDVI 

+nDSM 
+NDVI 

Precision2 

𝑇𝑃2
𝑇𝑃2 + 𝐹𝑃

 86.3% 82.4% 90.4% 89.7% 85.1% 

FDR2 

𝐹𝑃

𝑇𝑃2 + 𝐹𝑃
 13.7% 17.6% 9.6% 10.3% 14.9% 

Recall 
𝑇𝑃

𝑇𝑃⁡ + ⁡𝐹𝑁
 68.0% 75.0% 77.3% 72.7% 71.9% 

FNR 
𝐹𝑁

𝐹𝑁⁡ + ⁡𝑇𝑃
 32.0% 25.0% 22.7% 27.3% 28.1% 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
76.3% 70.6% 83.2% 82.3% 76.0% 

FDR 
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 23.7% 29.4% 16.8% 17.7% 24.0% 

Table 11: Precision, FDR, Recall and FNR for all band combinations 

If 𝑇𝑃𝑜𝑡ℎ𝑒𝑟 is included, RGB+nDSM has the best results with a precision of 90.4%. CIR performs 

worst with 82.4%. If the 𝑇𝑃𝑜𝑡ℎ𝑒𝑟 is left out, the recall values range between 68.0% (RGB) and 

77.3% (RGB+nDSM). Precision reaches values between 70.6% (CIR) and 83.2% 

(RGB+nDSM). In all cases, RGB+nDSM achieves the best values for the detection of bike 

parking facilities (recall: 77.3%, precision: 83.2%). When it comes to the proportion of 𝑇𝑃 

compared to all detected objects (precision), CIR (70.6%) still performs worst. When 

considering the recall, it is RGB (68.0%) being worst. RGB+NDVI is closest to RGB+nDSM in 

terms of precision. For recall, it is CIR. This shows that RGB+nDSM yields the best results. 

5.1.1 IoU for True Positives 

Looking at the correctly detected masks, it is noticeable that they cover the bicycle parking 

facilities very well. In most cases, they are slightly smaller than the labeled rectangle, because 

the masks have round corners. Now and then, they are a little wider or longer. Figure 51 shows 

five examples with the red ground truth label in the background. Above it, the detected objects 

are in color. The area of the detections is usually very similar to that of the label. On the right, 
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two object masks differ: the model trained with RGB+NDVI (green) detects only about half of 

the facility while the one trained with RGB+nDSM+NDVI (sand) includes extra space. 

 

Figure 51: Masks of detected bicycle parking facilities at Franziskaner Str./Rosenheimer Str. to visualize IoU: red: ground truth label; pink: 
RGB; purple: CIR; blue:RGB+nDSM; green: RGB+NDVI; sand: RGB+nDSM+NDVI (Image source: Landeshauptstadt München 2020) 

For all band combinations, IoU values around 80% are obtained for the detected LHM bike 

parking facilities together with the corresponding labels. In terms of IoU, there are no significant 

differences recognizable to determine the best band combination.  

5.1.2 Analysis of False Positives 

When detecting objects, only those are output whose confidence value lies above a certain 

threshold. This is set to 0.9, which means that only objects that are detected with a probability 

of correctness of over 90% are stored in the output feature class. Nevertheless, false positives 

are detected, as already shown in Table 9 and Table 10. Table 10 shows that, depending on 

the band combination, between 9.6% (RGB+nDSM) and 17.6% (CIR) of the detections are 

wrongly detected. The reasons for the errors differ. Figure 52 shows examples of wrongly 

detected objects. Reasons for false detection are unsteady roof structures (Figure 52a)). This 

type of false detection is filtered out with adding nDSM to the RGB bands. Furthermore, 

cluttered background is a common source of error. This also includes the imagery of a 

cemetery, as seen in Figure 52c). For RGB, CIR and RGB+nDSM+NDVI band combinations, 

dark cars on dark backgrounds are also a problem (Figure 52d)). Shadow patterns (Figure 

52e)) and bushes (Figure 52f)) as well as dense branches can also be misdetected. 
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Concerning vegetation, all band combinations return erroneous object masks. Even those that 

are stronger correlated with the vegetation as CIR and NDVI. Figure 52g) does not originate 

from the observed areas but is still worth mentioning. The structure of the track bed is very 

similar to the arrangement of bikes in a parking facility and is thus misinterpreted just like the 

platform roof here. Overall, the combination of RGB + nDSM performs best in terms of false 

positive detections since no roofs are detected and cars and the cemetery in Sendling do not 

cause any misdetections. 

To see how well the Detect Objects Using Deep Learning tool itself evaluates the detection, 

the confidence values can be viewed for each object. As described above, these are between 

90% and 100%. Figure 53 shows the frequency of these in histograms for TPs that are correctly 

classified (a)), for TPs to which the wrong class is assigned (b)), TPs that are on private 

property and not in the ground truth data (c)), and the confidences for the FPs (d)). For this, 

objects of all band combinations and of all observation areas are summarized. The histogram 

of the correctly classified objects shows that these often have a high level of confidence and 

that the tool classifies them as reliable. This trend can also be observed in the case of correctly 

detected objects with incorrect classification, but not to the same extent. In the case of private 

bicycle racks, the trend is also noticeable, although to an even lower extent. In contrast, 

incorrectly detected objects have an even distribution over all confidence values. It concludes 

that objects with higher confidence are more likely to belong to the group of true positives. In 

this case, the value keeps its promise. Nevertheless, false positive detections can still be found 

in all value ranges. However, the threshold value of 0.9 is already a good filter for false 

detections. 

a) b) c) d) 

e) 

f) 

g) 

Figure 52: Examples for false positive detections: a) roof (Willy-Brandt-Platz, with RGB); b) groundclutter (Preysingstr., with RGB+nDSM); 
c) cemetery (Friedhof Sendling, with CIR); d) dark car (Volkartstr., with RGB); e) shadow pattern (Kidlerplatz, with CIR); f) bush (Kidlerplatz, 
with CIR); e) tracks and roof (Ostbahnhof, with RGB) (Image source: Landeshauptstadt München 2020) 
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Figure 53: Histograms for confidence value distributions; a) TPs that are correctly classified; b) TPs that are wrongly classified; c) TPs on 
private areas and not in ground truth data; d) false positive detections 

5.1.3 Analysis of Reasons for False Negatives 

RGB+nDSM has an FN to FN+TP ratio of 22.7% and thus performs best. RGB has the worst 

result with 32% non-detected bike racks. The reasons for a lack of detection are diverse. False 

negatives occur when there are not enough training examples for a particular pixel pattern. In 

the following some examples are given. Occlusion of the parking facility as in Figure 54a) is 

one reason. In this case, the branches of the tree are too dense, and the structure of the parked 

bicycles cannot be seen. No band combination was able to detect this facility. In example 

Figure 54b) the background is very dark due to shadows cast by the building and the bike 

racks cannot stand out from it. So, also here, none of the band combinations helps to detect 

this facility. The problem in Figure 54c) might not be apparent to the human observer. It is 

probably due to the number of bicycles that were not properly parked. Therefore, the trained 

network (RGB) cannot recognize this as bike racks. In Figure 54d) the bike parking facility is 

difficult to recognize. There are no bikes parked and the shadows cast by the trees make 

detection more difficult. Only RGB+nDSM was able to detect parts of the racks. Figure 54e) 

a) b) 

c) d) 
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shows a facility in which only one bicycle is parked. Again, it was not possible for all band 

combinations (only RGB+nDSM) to recognize them as a facility.  

Rotkreuzplatz, characterized by many tree shadows, and Ostbahnhof area, characterized by 

building shadows, have the lowest FNRs. This can be explained by the fact that about 74% of 

the labeled bike racks are mostly shadowed (37% cast by trees, 37% cast by buildings). Only 

18% of the ground truth data are not affected by shadows from the surrounding area. In 8% of 

the cases only small shadows by lamp posts, street signs or similar objects are visible.  

5.1.4 Private Parking Facilities and Single Bikes 

Due to the choice of the four study areas, many of the detected and at the same time private 

bike racks are in completely dark, shaded backyards and only identifiable as such at second 

glance (Figure 55a)). Again, this type of shade is not included sufficiently in the training data 

as bike racks that were not identifiable due to dark shadows are not labeled. Figure 55b) shows 

a clearly visible private parking facility without shadows. Overall, many private facilities are 

detected, but the individual is not detected by all band combinations. In addition, some are only 

detected by one band combination. If detection of private bike racks were desired, examples 

would have to be added to the training data to achieve even better results. 

The reason, why single bicycles, e.g., locked to street signs (Figure 55c)) or other street 

furniture (Figure 55d)), are detected, is that the training data also contains single inverted-Us, 

which offer space for up to two bicycles. The similarity is therefore very high. In specific cases, 

bicycle collections in public spaces are also detected. These are listed as unlabeled & public. 

Either a bicycle parking facility of the LHM was detected here, which is not included in the 

database (Figure 55e)) and the labeled objects, respectively, or it is a facility of a business. It 

may also be a loose collection of bikes at the time of the image flight. 

a) b) c) d) 

e) 

Figure 54: Examples for false negative detections (label in red); a) dense branches (Orleansplatz); b) dark shadow (Willy-Brandt-Allee); c) 
high number of bikes (Albert-Roßhaupter-Str.); d) tree shadow and no parked bikes (Rotkreuzplatz); e) (almost) empty bike parking facility 
(Plinganserstr.) (Image source: Landeshauptstadt München 2020) 
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5.1.5 Classification 

Table 10 shows that of all the labeled bicycle parking facilities, RGB can only classify 52.3% 

correctly. RGB+nDSM has the best result with 62.5%. CIR (61.7%), RGB+NDVI (60.2%) and 

RGB+nDSM+NDVI (58.6%) perform comparably well. The ratio of false detections to correct 

detections for CIR, RGB+nDSM, RGB+NDVI and RGB+nDSM+NDVI is for all close to 0.22. 

RGB has a value of 0.30.  

When looking at the rack types, it is noticeable that in particular facilities with classvalue 50 

are often classified incorrectly. Here the ratio of wrongly to correctly classified objects is 

35

7
=  5.0 , while for classvalue 10 it is 

17

156
≈ 0.11, for classvalue 20 

27

171
≈ 0.16 and classvalue 22 

it is 
7

65
≈ 0.11. The wheelwells (classvalue 50) are similar in structure to the facilities with 

classvalue 20 and classvalue 22. However, the formation of the bikes is in practice more 

chaotic as in those of classvalue 20 and 22 due to the poor locking possibilities of this rack 

type. In terms of bike formations, it resembles racks of classvalue 10. Therefore, incorrect 

classifications occur for the racks of type 50. It should be noticed that the chosen areas of 

a) b) 

c) d) e) 

Figure 55: Examples for true positive detections that are not in the ground truth data: a) private parking facility in backyard with dark 
shadow (Pariser Str., with RGB+nDSM+NDVI); b) private parking facility without shadow (Spicherenstr., with RGB); c) single bike locked 
to street sign (Steinstr., with RGB+nDSM); d) single bikes locked to handrails (Weißenburger Pl., with RGB); e) bike parking facility at S-
Bahn station not in database (Rosenheimer Pl., with RGB+NDVI) (Image source: Landeshauptstadt München 2020) 
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study are not representative for all classes. Classvalue 99, classvalue 11 and classvalue 24 

are only included in small proportions (<5%) in the test areas. 

5.1.6 Application to Bicycle Parking Facilities Trained On 

The results so far show the application of the trained models to areas that have been taken 

out of the training data. Applying the models to bicycle parking facilities that are part of the 

training data has a recall of over 98%. Only very few facilities are not detected. This is mostly 

because they are difficult to detect due to branches or dark shadows. The confidence of the 

detected and previously labeled objects is primarily over 99.8%. Figure 56 shows that the 

detected objects match the labeled objects very good. It is remarkable that this image section 

includes a parking facility at the U-Bahn exit that was not in the labeled data and has now been 

detected (Figure 56, highlighted by the star). The IoU is, with more than 90%, also higher than 

for facilities that were not used for training. In addition, the classification is correct for almost 

all of the detected and previously labeled facilities. 

. 

5.2 Application of the Model to Additional Aerial Imagery 

To evaluate the applicability of the model to other unknown areas, the aerial imagery from 

2017 is used. Furthermore, an area outside of the City of Munich is used. Here the area around 

the S-Bahn station of Ottobrunn (Landkreis München) is applicative as there are unroofed 

bicycle racks near the station and in the vicinity there is a school with many bicycle parking 

facilities. Since in the previous analyses, the model trained with RGB+nDSM performs best, 

this model is also used for the following detections.  

Figure 56: Detected bicycle parking facilities with RGB+nDSM in Laim (Gotthardstr./Friedenheimer Str.): red: labeled parking facilities; 
blue: detected parking facilities; star: facility not labeled but detected and property of the LHM 
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5.2.1 Aerial Imagery of 2017 

To test the transferability of the model to other aerial images, the same types of raster from 

2017 are used. The model trained over all labeled bicycle parking facilities with RGB+nDSM 

is applied to the four known areas. It becomes apparent that the application to images with 

leafy trees is not beneficial with respect to bicycle racks. Figure 57 shows a section of the 

Rotkreuzplatz. Only one of the bicycle racks is almost completely free of occlusion. This is the 

only one that was detected in that image section. Two others could have been partially 

detected but are not. Eleven others, however, are completely hidden by trees. 

As the images of 2017 were taken in summer, the shadows and lighting conditions are different 

than in the 2019 images. The shadows of the buildings, trees, and other objects are not as 

long, and more bike racks are in the sun unless they are covered by foliage. 

  

Figure 57: Detected bike parking facility at Rotkreuzplatz in 2017 imagery with RGB+nDSM; blue: detected object; red: labeled parking 
facilities (Image source: Landeshauptstadt München 2020) 
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Figure 58 shows a section of the less leafy area at Harras. Here, eight of the labeled bike racks 

are at least partially detected. Three are completely covered by foliage.  

On the left of the image, six labeled parking facilities are not detected. The uppermost one is 

not present at the time of the image flight because there is a construction site here. To find 

reasons for the missing detection of the others, a comparison with the aerial image of 2019 is 

shown in Figure 59. For a good comparison, a bicycle parking facility is used, which is in the 

sun on the image of 2017 as well as on the image of 2019. On the left image, the facility is not 

detected, while it is detected on the right. It is obvious that there is a difference in the brightness 

of the images. In addition, the difference in resolution (2017: 10 cm; 2019: 8 cm) becomes 

apparent. While on the left the bicycles are not recognizable as such, on the right, better 

contours of the wheels and the shadows cast by the bikes are recognizable. 

 

 

Figure 58: Detected bike parking facilities at Harras in 2017 imagery with RGB+nDSM; blue: detected objects; red: labeled parking facilities 
(Image source: Landeshauptstadt München 2020) 
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5.2.2 Ottobrunn 

For Ottobrunn, the data from 2019 is 

applied since no training was 

performed over this area. 15 out of 

19 bike parking facilties were 

detected (Figure 60). This 

corresponds to 78.9%. One reason 

for the lack of detection of the four 

facilities might be their location in the 

sun. As described above, there is 

more training data in the shadow. 

Additionaly, since Ottobrunn is not 

part of the City of Munich, other types 

of bicycle racks are used here. This 

could also be a plausible reason. 

However, with a recall of more than 

78% and no false positives, this 

image section shows that bicycle 

racks can also be detected 

satisfactorily outside of Munich in the 

same aerial image. 

Figure 60: Detected bike parking facilities at S-Bahn Ottobrunn & Gymnasium 
Ottobrunn (with RGB+nDSM); blue: detected objects; red: false negative objects 
(Image source: Landeshauptstadt München 2020) 

 

Figure 59: Comparison of RGB Image of 2017 (left) and 2019 (right) (S-Bahn Harras) (Image source: Landeshauptstadt München 2020) 
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5.3 “Detected Objets to Lines and Rectangles” tool 

The processing steps described in chapter 4.9 and the created Detected Objets to Lines and 

Rectangles tool that transforms the detected object masks into rectangles and lines can be 

executed by only giving the two intput feature classes and the two output names. Figure 61 

shows an excerpt of the result. Here, all five labeled bike parking facilities (red) could be 

detected (pink masks). These masks are transformed into the orange rectangles and reduced 

to the green lines. These line objects are now of the same spatial structure as the line objects 

in Fahrradstaender_bis_2019.shp. Of course, they do not contain the same attributes. 

Fahrradstaender_bis_2019.shp contains attributes not attainable by deep learning like 

StandortNr, address, year of construction, etc. The new lines include next to the object id 

information on the length, the detected class, and the confidence value. The rectangular 

objects have the same attributes as the new line objects supplemented by information on the 

area, the width, the length, and the orientation.  

 

Figure 61: Application of the new Detected Objets to Lines and Rectangles tool (Weißenburger Straße) incl. zoom detail; light blue: bike 
racks in Fahrradstaender_bis_2019.shp; red: ground truth labels; pink: detected object masks (with RGB); orange: new bounding 
rectangle; green: new line (Image source: Landeshauptstadt München 2020) 
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6 Discussion 

The first major task of this thesis, to find a deep learning model for the detection of bicycle 

racks, is answered with a Mask R-CNN framework with a ResNet-50 backbone. The ArcGIS 

default settings showed to be not sufficient. A best possible trained model resulted from 

iteratively adjusting the parameters and an additional data augmentation, a best possible 

trained model resulted. 

The application of this shows that with RGB data alone, good recall values of 68.0% and good 

precision values of 76.3% can be achieved. However, the additional implementation of a fourth 

band improved the detection. By adding the NDVI raster to the RGB bands a recall of 72.7% 

and a precision of 82.3% are achieved. Using a combination of RGB together with nDSM 

improved recall and precision to 77.3% and 83.2%, respectively. Both reduced false positive 

detections by the same number while RGB+nDSM increased the amount of true positive 

detections best. The precision and recall values mentioned also satisfy the requirements of the 

LHM (automation rate of 70 to 80%). The training with CIR, i.e., NIR, Red and Green, caused 

more false detections than RGB and even twice as many as RGB+nDSM respecitvely 

RGB+NDVI. Though, it performed comparatively well in true positive detection. This shows 

that the blue band is more important than the NIR for detecting racks. Adding two bands (nDSM 

and NDVI) to RGB does not show any improvement. On the contrary, it results in more 

misdetections than using the RGB alone. In all cases, it can be said that the area of detected 

racks reflects the area of an actual facility well. The superior performance of nDSM can be 

explained by the additional height difference that is included in the training set. Bicycles have 

a maximum height of approximately 1 m. The height of bikes also reflects the maximum height 

of detectable racks. Larger height differences than those of labeled parking facilities are 

excluded in the training process. Therefore, for example roof or cars are not included in the 

detected objects. The use of nDSM data is therefore not only helpful for large differences in 

height, e.g. with buildings (e.g., Roschlaub et al. (2020)), but also for small heights of the 

objects to be detected.  

Adding bands based on NIR (NDVI) results in fewer falsely detected vegetation objects like 

hedges, trees, bushes, or grass areas. However, it does not eliminate these false detections 

completely. This is due to the fact that the training data and also the imagery tested on are 

images taken in winter with much less vegetation than in summer. Bushes and trees are mostly 

without foliage. However, NIR is only sensitive to green vegetation and not to naked branches. 

Moreover, it does not help much with detecting bike racks itself as they appear to be mostly in 

gray and black but rather with avoiding vegetative misdetections. To what extent training with 
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data in which green vegetation is present would further improve the results is difficult to say 

since conversely these would show significantly fewer bike racks due to the obscuring of the 

bike racks by their foliage.  

Private bicycle racks are always included in the results. These makes the evaluation more 

difficult, but also showed that the model recognizes bicycle racks beyond the known ones. 

Since these are not relevant in the final results concerning public bicycle racks, they can be 

filtered out with a mask. The provided mask lhm_oeffentliche_flaechen_v2.shp reflects the 

public areas correctly in most locations but in some places, it does not match the areas where 

the LHM actually places bike racks. For example, not all areas near S-Bahn stations are 

included as here the Deutsche Bahn is the property owner. On the other hand, areas of schools 

are included, which often use their own bike racks. Such a mask is important to filter out false 

detections on railroad tracks. The results show that the structure of railroad tracks is too similar 

to the structure of bike parking facilities and are therefore prone to false detections. It should 

be mentioned for the actual application, a better mask than the one used would be helpful. 

However, the mask is not relevant for the interpretation of the results in this work. 

Overall, shadow is a big issue. Due to the angle of the sun in winter, there is a lot of shadow 

in the city from trees and buildings. Accordingly, the training dataset also includes many bike 

parking facilities in shadow areas. While buildings cast continuous shadows, naked deciduous 

trees cast shadow patterns on their surroundings. The former reduces the contrast between 

the paving and the parking facility. The latter creates patterns that can make detection more 

difficult. In some cases, the shadows cast by individual bicycles leaning against a street sign, 

lamp post, etc. are detected since the dataset also contains single inverted-Us. Their 

appearance is therefore remarkably similar to that of a single bicycle. However, the number of 

single bike detections is small. The presence of bicycles in the parking facilities is of significant 

importance. More than 90% of the facilities in the training data have at least two parked bikes. 

Without bicycles, it is difficult to detect the thin and small racks with a resolution of 8 cm. The 

more densely bicycles are parked, the more a parking facility stands out from its surroundings. 

Li et al. (2018) address the problem of 360° rotation of objects in remote sensing data when 

using deep learning. This is not a problem for bicycle racks, since they exhibit point symmetry 

due to their approximately rectangular shape. 

A limitation of this study is the comparatively small test area and the small amount of training 

data. It appears to be sufficient. Though, for testing not that many labeled parking facilities can 

be taken out of the training dataset. Accordingly, the results of this thesis are based on small 

amounts of test data. In addition, more examples for certain rack types and more cases with 
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empty or almost empty bike racks as well as bike parking facilities not obscured by shadows 

would benefit the detection. 

When applying the trained model to bike racks that are included in the training data, the 

detection results, as expected, are in a very good fit. In addition, it has already been possible 

to locate individual LHM racks that were, at least at the time of the image flight, at a location 

that was not recorded in the database. And this is, in the end, the objective of the deep learning 

approach on bike parking facilities in Munich. 

One of the research questions of this work is, to what extent a classification of bike racks is 

possible. It turns out that the classification works partly, and with additional bands better than 

with RGB alone. RGB+nDSM again performs best here. For certain classes, however, it is not 

possible to evaluate the classification properly due to the small test dataset. However, the 

differentiation between inverted-Us and others, in which the front wheel is parked, such as 

those with classvalues 20 and 22 is possible. The classification can be used as a first 

indication. For classvalues 11, 24 and 99 the test areas did not include enough examples. For 

classvalues 99 and 24 it is expected that these are well distinguishable from the other rack 

types, provided that the number of training data is sufficient. The classvalue 99 represents 

MVG Rad facilities, which are very distinctive, and racks of classvalue 24 have a smaller width 

due to the inclination of the bikes. Classvalues 10 and 11 are very similar and mix-ups between 

these rack type classes are to be expected. Classvalue 50 has already proven to be 

problematic. However, the two rack types 11 and 50 are disappearing increasingly from the 

urban landscape and are no longer being installed by the LHM or even replaced by new ones. 

The application of the model to the aerial imagery of 2017 has shown that it is ineffective to 

use images taken in spring or summer for bike rack detection. Nevertheless, it shows that 

bicycle racks are also detected in other images than in the one trained on. For a better result, 

however, the training dataset would have to be supplemented with brighter images with fewer 

shadows. 

Finally, the possibilities and limitations of using ArcGIS Pro for such a deep learning task are 

to be discussed. ArcGIS Pro as a modern GIS has proven to be a valuable tool to view, 

process, and analyze the data. An advantage of ArcGIS / the ArcGIS Python API is that it 

provides many deep learning models to choose from. These are easy to apply, and the user 

does not need much deep learning experience or programming skills to get started. Drawbacks 

here are that it is not intended to modify the models extensively and not all background 

calculations are documented. However, it is possible to build and train models with other deep 

learning frameworks such as TensorFlow or PyTorch and to apply the trained model to the 



 

Detection of Bicycle Racks from Geodata Using Deep Learning 75 

data in ArcGIS with the Detect Objects Using Deep Learning tool. When working with large 

amounts of image data, it results naturally in long processing times for exporting and detecting. 

Unfortunately, the progress bars in ArcGIS Pro are not meaningful as they are jumping back 

and forth or have non-linear progress. This means that the duration of long calculation steps 

can only be estimated on the basis of empirical values. When trying to export image tiles with 

additional rotation, errors occur. As the tool feedbacks “Unknown Error” the reason cannot be 

determined but with the fast.ai transformations this is compensable. Applying the ArcGIS API 

for Python on Linux was initially challenging but once everything is installed and set up, the 

training can be performed with little coding. ArcGIS Pro also provides helpful tools for the 

analysis following the detection.  
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7 Conclusion & Outlook  

It has been successfully shown that a detection of bicycle parking facilities in the City of Munich 

using deep learning leads to satisfactory results. For this purpose, a Mask R-CNN model with 

a ResNet-50 backbone was trained for instance segmentation. The precision of the result is 

improved by the additional inclusion of an nDSM raster. It helps to prevent some false 

detections due to the additional height information and supports the detection of bicycle parking 

facilities that have a maximum height of approximately 1 m. The classification and thus the 

distinction of the individual bicycle rack types is sufficient for a first categorization but cannot 

distinguish all subtypes. 

It can be seen that, based on the available training data from the winter months in the beginning 

of the year 2019, the model was trained with many parking facilities that were completely or 

partially shaded at the time of the image flight. There are two major types of shadows to 

distinguish from: those cast by buildings and those cast by trees. The former casts continuous 

shadows while the latter casts light-dark patterns on their surroundings. Thus, bicycle racks, 

which are not affected by shadows, are underrepresented in the sample set. In addition, 

shadows cast by bicycles are an indication for the model that there is a parked bicycle at this 

location.  

For detection, it is important that there are bicycles parked in the facilities. Empty bike parking 

facilities are difficult to detect as they are, on the one hand, underrepresented in the training 

data and, on the other hand, their structure is not adequately mapped at an image resolution 

of 8 cm. 

So far, the model has been verified on four selected areas in the City of Munich. In addition, it 

has been applied to a small section in Ottobrunn outside of Munich, to an area from which the 

training data originates, and to aerial images from 2017. For an even better evaluation of the 

performance, an expansion of the area is worthwhile. 

For the postprocessing of the detected objects, the steps used are combined in an ArcGIS Pro 

tool. With this tool rectangles and lines are derived from the object masks. One input parameter 

of this tool is a feature class, which contains all areas on which the LHM maintains or places 

bicycle racks. With the help of such a mask, private bicycle racks and some erroneous 

detections can be filtered out. For the application of the tool, it might be useful to supplement 

it in the future with information about the dimensions and distances of the individual racks 

within a bike parking facility. This would enable the length and area of the detected objects to 

be multiplied by a factor to estimate the capacity of a bike rack. Thus, the trained model 
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together with the toolbox can support the inventory of bike racks in the City of Munich. 

Nonetheless, it must be kept in mind that roofed parking facilities and bike racks in 

underpasses, etc. will not be part of the detection results. 

In addition to the digital appendix containing the model and the toolbox (see Appendix C), there 

is a summary of the steps for an application of the trained model in German (Appendix A) for 

an easy implementation by the users at LHM. 

The results of the model application can not only help to inventory the current state but also 

provide information for the future planning of parking facilities. The detections of single bikes, 

for example locked to lamp posts or street signs, as well as loose groupings of bicycles, 

indicate locations where no parking facility is at a reasonable distance from the cyclist’s 

destination. 

It will be exciting to find out which bicycle racks the model will recognize in future aerial images. 

For example, many new bike racks were installed in Maxvorstadt at the beginning of 2021. 

When choosing aerial images, however, it should be noted that in images taken in spring and 

summer months the foliage will obscure many of the facilities. 

The transfer of the knowledge gained to other street furniture is also a possible extension 

beyond this work. 
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Appendix A: Instructions on Detection & Tool for LHM (in 

German) 

Anleitung für Detektion von Fahrradständern in ArcGIS Pro 

Diese Anleitung beschreibt die Vorgehensweise für die Detektion von Fahrradständern mittels 

des in dieser Masterarbeit trainierten Deep Learning Models in ArcGIS Pro.  

(verwendete Tools in kursiv; sowohl der englische als auch der deutsche Name des Tools ist 

angegeben) 

Benötigte Daten für die Detektion von Fahrradständern 

Für die Nutzung der Deep Learning Tools ist die Image Analyst Erweiterung in 

ArcGIS Pro erforderlich. 

Außerdem müssen die Deep-Learning-Framework-Bibliotheken installiert sein.  

(Infos dazu unter https://pro.arcgis.com/de/pro-app/latest/help/analysis/deep-

learning/install-deep-learning-frameworks.htm) 

Benötigte Rasterdaten (für eine sinnvolle Detektion: Winterbefliegung, da durch das 

Laub im Sommer viele Fahrradständer verdeckt sind): 

- RGB 

- nDOM 

Zusätzliche Dateien (in Ordner: Masterarbeit Karin Erbe – Appendix C): 

- trainiertes Deep Learning Model (Mask R-CNN) 

der Ordner enthält: 

- model_metrics.html: Hintergrund-Informationen zu trainiertem Model 

- ModelCharacteristics (Ordner): Bilder, die Informationen zur 

Performance des Trainings enthalten 

- ArcGISInstanceDetector.py: Python Rasterfunktion 

- .emd-Datei (Esri model definition file): JSON-file, das Informationen zum 

Deep Learning Model und die Pfade zu den anderen Teilen des Models 

enthält 

- .dlpk-Datei (deep learning model package): Paket, das alle wichtigen 

Daten des trainierten Models enthält 

- .pth-Datei: PyTorch File mit dem gespeicherten Model 

- Toolbox mit der Funktion für die Nachbearbeitung der detektierten Objekte 
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Zum Verständnis: Was wurde bis hierhin bereits ausgeführt? 

Die Schritte in diesem Absatz müssen nicht ausgeführt werden. Sie dienen nur dazu, 

nachzuvollziehen, welche Schritte in der Masterarbeit durchgeführt wurden und worauf das 

trainierte Model basiert. 

1. Labeln der Fahrradständer mit Beschriften von Objekten für Deep Learning / Label objects 

for deep learning: auf Basis von Fahrradstaender_bis_2019.shp wurden alle 

erkennbaren Fahrradständer der LHM entsprechend ihres Typs mit einem Rechteck 

umrundet. Dies dient als Ground Truth für das Training. 

2. Export von Bildkacheln (.tif) mit Fahrradständern (Größe: 256 px x 256 px, Überlappung 

x und y: 50%) und entsprechend dazugehörenden Masken (R-CNN Masks), die zeigen 

an welcher Stelle im Bild ein Fahrradständer ist, mit Trainingsdaten für Deep Learning 

exportieren / Export Training Data For Deep Learning. 

3. Für das anschließende Training ist eine GPU erforderlich. Daher wurde dieser Schritt 

mithilfe der ArcGIS API für Python auf einer Linux-Umgebung des Leibniz-

Rechenzentrums durchgeführt. Trainiert wurde ein Mask R-CNN Model, um die genauen 

Umrisse der Objekte zu erhalten. Die einzelnen Einstellungen finden sich in der 

Masterarbeit. Das Ergebnis dieses Schrittes ist das Model, welches in dem oben 

beschriebenen Ordner zu finden ist. 

Vorbereitende Schritte 

Um das Model nun auf die gewünschten 

Bilddaten anzuwenden ist ein vorbereitender 

Schritt notwendig: 

Mit Bänder zusammensetzen (Raster-

Funktionen) / Composite Bands 

(Raster Functions) das RGB-Bild und 

nDOM-Raster zusammensetzen:  

Tab Allgemein/General: Name 

vergeben 

Tab Parameter/Parameters: beide Raster einfügen 

 Neuen Layer erstellen/Create new layer 
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Detektion (Anwenden des trainierten Models) 

Nun kann das Model, welches auf RGB+nDOM trainiert wurde, für die Detektion der 

Fahrradständer eingesetzt werden: 

Objekte mit Deep Learning erkennen / Detect Objects Using Deep Learning: 

Tab Parameter/Parameters:  

- Eingabe-Raster/Input Raster: das im vorherigen Schritt erzeugte Raster 

- Ausgabename/Output Detected Objects: Name für den Output  

- Eingabemodell/Model Definition: .emd-File (trainiertes Model)  

- (weitere Argumente werden automatisch ausgefüllt) 

- Non Maximum Suppression auswählen, wenn gewünscht ist, dass bei sich 

überlagernden Objekten das bessere ausgewählt wird 

Tab Umgebungen/Environments:  

- Verarbeitungsausdehnung/Processing Extent definieren – in welchem Bereich 

soll detektiert werden?  

- ist eine GPU vorhanden, unten entsprechend auswählen 

 Ausführen/Run 
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Die Ausführung des Tools dauert lange (abhängig von Leistung des Rechners), 

daher ist es sinnvoll eine Verarbeitungsausdehnung zu definieren oder eine 

leistungsfähige GPU zu verwenden 

Ein Ausschnitt des Ergebnisses könnte dann so aussehen: 

Class gibt die Klassifizierung / ID des Fahrradständertyps an (10: Anlehnbügel), die 

Confidence zeigt an, mit welcher Wahrscheinlichkeit das Objekt korrekt detektiert ist (durch 

den Grenzwert/Threshold bei Angabe der Argumente ist dieser mindestens bei 0.9). 

Postprocessing 

Das Model erkennt auch Fahrradständer auf Privatgrund. Daher müssen diese noch 

herausgefiltert werden. Zusätzlich ist es sinnvoll, die unförmigen Masken in Rechtecke und 

Linien umzuwandeln. Dies kann mit der beigefügten Toolbox durchgeführt werden: 

Detected Objects to Lines and Rectangles (Detektierte Objekte zu Linien und 

Rechtecken): 

Tab Parameter/Parameters:  

- Detektierte Objekte / Detected 

Object: Übergeben der Ausgabe 

aus dem vorherigen Schritt 

- Maske öffentliche Flächen / Mask 

Public Space: Polygon Feature 

Klasse, die alle Flächen enthält 

auf denen die LHM 

Fahrradständer aufstellt/betreut 

- Output Linien/Lines: Name für Output 

- Output Rechtecke/Rectangles: Name für Output  

 Ausführen/Run 
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Das Ergebnis sieht dann so aus: 

 

 

 

Was dieses Model nicht kann? Oder besser: Was ist zu erwarten? 

Dieses Modell kann nur Fahrradständer detektieren, die nicht verdeckt sind (durch 

beispielsweise Überdachung, Bäume, etc.). 

Bei Tests wurden bei Fahrradständern, die im Trainingsdatensatz enthalten sind, sehr gute 

Werte sowohl bei der Erkennung als auch bei der Klassifizierung erreicht. Allerdings kann es 

trotzdem vorkommen, dass einzelne Fahrradständer nicht detektiert werden oder eine falsche 

Klassifizierung erhalten. 

Bei Fahrradständer, die nicht im Trainingsdatensatz enthalten sind, liegt die Präzision bei ca. 

80%. Hier kommt es häufiger zu falschen Klassifikationen, insbesondere bei seltenen Typen. 

Das Model erkennt Fahrradständer weniger gut, wenn keine bzw. wenig Fahrräder dort 

abgestellt sind, diese in der Sonne liegen oder im dunklen Schatten stehen. 

Neben der Detektion von privaten Fahrradständern, kommt es auch zu falschen Detektionen 

von Objekten wie Hecken, abgestellten Motorrädern, Bahngleisen, Baustellencontainern,… 

– durch eine geeignete Wahl der Maske bei der Nachverarbeitung können solche falschen 

Detektionen reduziert werden. 

Außerdem werden teilweise auch einzelne Fahrräder erfasst, welche beispielsweise an 

Laternen oder Straßenschildern festgeschlossen sind, sowie sonstige Ansammlungen von 

Fahrrädern. 
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Bei der Klassifizierung ist zu beachten, dass einzelne Fahrradständertypen aufgrund ihres 

Erscheinungsbildes aus der Vogelperspektive zusammengefasst wurden: 

Bezeichnung 
Fahrradständertyp ID 

  Bezeichnung 
Fahrradständertyp ID 

Anlehne neu 10   Anlehne neu 10 

Anlehne alt 11   Anlehne alt 11 

A. geschwungen 12 
  

A. geschwungen 12 

L15G E T 20   L15G E T 20 

L15G E H/T 21 
 

 L15G E H/T 21 

L15G D T  22   Arreta E 30 

L15G D H/T 23   Kappa E H/T 41 

L15 E T (schräg) 24   L15G D T  22 

Arreta E 30 
 

 L15G D H/T 23 

Kappa E H/T 41   Kappa D H/T 43 

Kappa D H/T 43   L15 E T (schräg) 24 

Kappa (schräg) 44 
  Kappa (schräg) 44 

Kappa E H/T DB 46     

Kappa D H/T DB 48     

Kappa (schräg) DB 49     

Klemmbügel 50 
 

 Klemmbügel 50 

BCS 60   BCS 60 

RGT 70   RGT 70 

Doppelstockparker E 80   Unknown 100 

Doppelstockparker D 81     

MVG 99     

Unknown 100   MVG 99 

 

Aus den Informationen über die Fläche und Länge der Rechtecke ließe sich die Kapazität einer 

Fahrradabstellanalge abschätzen. Dafür wären Informationen über die genauen Maße und 

Abstände der einzelnen Fahrradständer nötig. Auf Grundlage der Klassifizierung könnte dann 

die Zahl der abstellbaren Fahrräder für eine grobe Abschätzung berechnet werden. 
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Appendix B: Python Code - Training 

# -*- coding: utf-8 -*- 

“”” 

Python Code for Training a Mask R-

CNN Deep Learning Fragmwork based on the ArcGIS API for Python and argis.learn  

module in order to detect bike parking facilities in aerial imagery 

Masterthesis: Detection of Bicycle Racks from Geodata using Deep Learning 

@author: Karin Erbe 

“”” 

 

#imports 

from pathlib import Path 

from arcgis.learn import prepare_data, MaskRCNN 

 

import fastai 

import torch 

from fastai.vision.transform import rotate, flip_lr, crop, brightness, contrast,  

rand_zoom, dihedral_affine 

 

#pre-checking: if CUDA is available & Torch version 

if torch.cuda.is_available(): 

    print(“CUDA is available.”) 

else: 

    print(“CUDA not available – no GPU connection! “) 

 

print(“Torch version: “+torch.__version__) 

 

#initializing  path that includes images and labels 

home = Path.home() 

data_path = Path(home,’Output_ExportTrainingDataFolder’) 

print(“Data path: “+data_path) 

 

#data augmentation transformation settings for fastai 

chip_size=224 

ranges = (0, 1) 

 

train_tfms = [rotate(degrees=(-30,30), p=0.5), 

                    flip_lr(p=0.5), 

                    crop(size=chip_size, p=1., row_pct=ranges, col_pct=ranges), 

                    brightness(change=(0.4, 0.6)), 

                    contrast(scale=(1.0, 1.5)), 

                    rand_zoom(scale=(1.0, 1.2))] 

val_tfms = [crop(size=chip_size, p=1., row_pct=0.5, col_pct=0.5)] 

tfms = (train_tfms, val_tfms) 

 

#data preparation with BatchSize = 8 and ValidationPercentage: 20% 

data = prepare_data(data_path, transforms=tfms, batch_size=8, imagery_type=’ms’,  

val_split_pct=0.2, seed=174413) 

 

#model: Mask R-CNN with ResNet-50 backbone 

model = MaskRCNN(data, backbone=’resnet50’) 

 

#finding optimal Learning Rate lr 

lr = model.lr_find() 

lr 

print(‘lr:’, lr) 

 

#training of the model and visualization of training&validation loss in TensorBoard 

model.unfreeze() 

model.fit(epochs=100,lr=lr, tensorboard=True, checkpoint=’all’) 

 

#save results 

name = ‘TrainedModel_FolderName’ 

model.save(name) 

print(‘Name: ‘,name) 
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Appendix C: List of Attached Files 

Folder Masterarbeit Karin Erbe – Appendix C 

- Trained Model:  RGBnDOM_MaksRCNN_Model.zip 

- Toolbox:   DeepLearningFahrradstaender.tbx 


