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Abstract

Optimal control is a powerful method that can be used to solve a variety of challenges
for dynamic systems. However, the majority of real-life optimisation tasks requires the
solution of a nonconvex optimisation problem. Two techniques for the solution of such
optimal control problems are introduced in this thesis.

The first approach represents a general framework for the solution of optimal control
problems with highly nonlinear models and difficult constraints. The procedure is ap-
plicable to a large class of nonlinear, continuous systems and aims at depicting the op-
timisation task as accurately as possible rather than achieving low computation times.
The approach employs a direct method to generate a finite dimensional optimisation
problem, which enables the use of nonlinear programming solvers. Hermite-Simpson
collocation is used for increased sparsity enhancing the solvability of the optimisation
problem. Several preliminaries are proposed that aim at improving the convergence
behaviour and broadening the field of possible applications. The approach is used in
this thesis to solve minimum lap time optimisation problems for automotive vehicles,
which represent a challenging minimum-time optimal control application. The frame-
work also enables a concurrent optimisation of selected model parameters. This provides
optimal system parameters with corresponding optimal input trajectories and therefore
the maximum possible benefit of individual vehicle setups. The objective comparison of
various optimised vehicle concepts, with different powertrain designs or actuator setups,
can accelerate the development process of vehicles. Furthermore, the optimal control
trajectories can be used in a subsequent step to tune real-time capable controllers or
deduce general control strategies.

While the first method pursues the goal of solving highly complicated optimisation prob-
lems accurately, the second method focusses on reducing computation time. The novel
technique, which is called space splitting convexification, computes the solution of a spe-
cial class of nonconvex optimisation problems by iteratively solving convex substitute
problems. These convex quadratic programming problems are efficiently solvable by nu-
merical solvers. The approach is capable of considering two types of nonconvexities: a
broad class of two-dimensional, zonally convex sets and equality constraints with possibly
multiple univariate nonlinearities. Although this method does not guarantee convergence
to the global solution, the computed solution is a local optimum for a piecewise linear
approximation of the original problem. The scalable approximation error is determined
in advance, but is in trade-off with the size of the optimisation problem and thus the
computation time. The outcome of the optimisation depends on the provided initial
guess. However, the algorithm is capable of dealing with infeasible initial solutions due
to a relaxation technique. Using an intermediate update routine, the relaxation is itera-
tively attenuated until convergence to the unrelaxed problem is achieved. The approach



Abstract

is showcased using a hanging single-mass oscillator with nonlinear spring characteristic
and semi-active damper as well as for a vehicular drag race application. Compared to
a nonlinear programming solver, the novel iterative procedure greatly reduces compu-
tation time. Due to the low computation time and robust convergence, the presented
method seems to be a promising approach for real-time optimal control applications.
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Zusammenfassung

Mit Hilfe der Methode der Optimalsteuerung kann eine Vielzahl an Herausforderungen
fiir dynamische Systeme gelost werden. Allerdings erfordert der Grofiteil realer Optimie-
rungsaufgaben die Losung eines nicht konvexen Optimierungsproblems. In dieser Arbeit
werden zwei Methoden vorgestellt, welche in der Lage sind solche Optimalsteuerungs-
aufgaben zu I6sen.

Der erste Ansatz repréasentiert ein allgemeines Vorgehen zur Losung von Optimalsteue-
rungsaufgaben fiir hochgradig nichtlineare Systeme mit komplizierten Nebenbedingun-
gen. Die Methode kann fiir eine grofle Klasse nichtlinearer, kontinuierlicher Systeme ver-
wendet werden. Dabei zielt der Ansatz darauf ab das Optimierungsproblem moglichst
genau abzubilden, wobei eine kurze Rechendauer hier als zweitrangig erachtet wird.
Die Verwendung einer direkten Methode ermoglicht den Einsatz numerischer Loser
flir nichtlineare Programme. Dariiber hinaus liefert der Einsatz von Hermite-Simpson
Kollokation ein diinnbesetztes Problem, was die Losbarkeit erhoht. Weiterhin werden
vorbereitende Mafinahmen présentiert, welche das Konvergenzverhalten verbessern und
das Anwendungsgebiet des Ansatzes vergroflern. Die Methode wird in dieser Arbeit
zur Losung zeitoptimaler Optimalsteuerugsprobleme fiir Fahrzeuge auf Rennstrecken
verwendet. Diese Problemklasse stellt einen herausfordernden Sonderfall der zeitopti-
malen Optimalsteuerung dar. Der Ansatz ermoglicht ebenfalls eine simultane Optimie-
rung ausgewahlter Modellparameter. Dieses Vorgehen stellt optimale Systemparameter
mit zugehorigen StellgroBenverldufen bereit und ermdéglicht somit die Identifizierung der
maximal moglichen Vorteile einzelner Aktuatorkonfigurationen. Der objektive Vergleich
einzelner Fahrzeugkonzepte mit verschiedenen Antriebsstrangtopologien oder Aktuator-
konfigurationen kann den Entwicklungsprozess von Fahrzeugen beschleunigen. Des Wei-
teren konnen die ermittelten Stellgroflenverldufe im Nachgang genutzt werden um echt-
zeitfdhige Regler auszulegen oder allgemeine Regelstrategien zu identifizieren.
Wiéhrend die erste Methode darauf abzielt hochkomplexe Optimierungsaufgaben mit ho-
her Genauigkeit zu losen, fokussiert sich der zweite Ansatz auf eine Reduktion der Re-
chendauer. Die neue Methode mit dem Namen Raumteilungskonvezifizierung ermittelt
die Losung einer speziellen Klasse nicht konvexer Optimierungsprobleme durch iterati-
ves Losen konvexer Ersatzprobleme. Diese konvexen quadratischen Programme kénnen
numerisch effizient gelést werden. Der Ansatz ist in der Lage zwei Arten von Nicht-
Konvexitédten zu beriicksichtigen: eine grofle Klasse zwei-dimensionaler, zonal konvexer
Sets und Gleichungsnebenbedingungen mit gegebenenfalls mehreren univariaten Nicht-
linearitdten. Obwohl diese Methode die Konvergenz zum globalen Optimum nicht ga-
rantiert, stellt die Losung ein lokales Optimum einer stiickweise linearen Approximation
des urspriinglichen Problems dar. Der skalierbare Approximationsfehler wird vorab fest-
gelegt, steht jedoch im Zielkonflikt mit der Grofie des Optimierungsproblems und somit
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Zusammenfassung

der Rechendauer. Das Ergebnis der Optimierung héngt von der zur Verfiigung gestell-
ten Initiallosung ab. Allerdings kann der Algorithmus dank einer Relaxationstechnik
mit nicht-zuldssigen Startlésungen umgehen. Eine zwischengeschaltete Aktualisierungs-
routine reduziert kontinuierlich die Relaxation bis eine Konvergenz zum unrelaxierten
Problem erfolgt. Die Methode wird anhand eines hingenden Einmassenschwingers mit
nichtlinearer Feder und semi-aktivem Dampfer sowie einer Drag Race Anwendung illus-
triert. Im Vergleich mit einem Loser fiir nichtlineare Programme wird die Rechendauer
durch den neuen iterativen Ansatz deutlich reduziert. Auf Grund der geringen Rechenzeit
und der robusten Konvergenz, scheint die vorgestellte Methode einen vielversprechenden
Ansatz fiir die Losung von Optimalsteuerungsproblemen in Echtzeit darzustellen.
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Notation and Symbols

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted
by lower case letters in bold type with z; representing the i*"* element of the vector x.
Matrices are denoted by upper case letters in bold type.

Mathematical Notation

X
of

O
Vi f(x)

time derivative of vector-valued variable x
derivative of function f with respect to scalar-valued variable x
gradient of function f(x) with respect to vector-valued variable x

V2, f(x) Hessian of function f(x) with respect to vector-valued variable x

R
Rn
RY
0

P

o)

set of real scalars

set of n-dimensional, real vectors

set of n-dimensional, real, positive vectors
empty set

Euclidean norm of a vector

Landau-notation for computational complexity

Optimal Control Problem

>

&G (¢] Lu&>3‘

<.

NR2EFHS ™ML

5

—
~—

upper and lower bound of respective variable (-)
scaled state, input and parameter vector

index set of all active constraints

left-hand sides of equality constraints

left-hand sides of collocation equality constraints
domain of function

width of i*" collocation segment

set of equality constraints indices

right-hand side of differential equations system
intermediate objective term

boundary conditions

left-hand sides of inequality constraints
Hamiltonian function

extended Hamiltonian function

set of inequality constraints indices

set of active inequality constraints indices
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I
J
L
A
n
e

TNeoll
np
Tp

Ngseg

set of inactive inequality constraints indices

objective function

Lagrangian function

Langrange multiplier for equality constraints
Langrange multiplier for inequality constraints
number of equality constraints

number of collocation points

number of inequality constraints

number of adjustable, time-invariant model parameters
number of collocation segments

number of input decision variables

number of original decision variables

number of state decision variables

vector of adjustable, time-invariant model parameters
bounding-box set for adjustable, time-invariant model parameters
time

terminal objective term

system input vector

bounding-box set for system inputs

decision variable

(locally) optimal solution for decision variable w
feasible set

system state vector

bounding-box set for system states

Curvilinear Coordinates

B
ds
dhw
dr
Rr

R

XX

path boundary

lateral distance of path boundary to tangent of reference curve
half-width of path boundary

lateral distance of COG to tangent of reference curve
curvature of reference curve

reference curve

arc-length of reference curve

error angle between reference curve tangent and COG-orientation
tangent angle of reference curve

total velocity at COG of moving body

longitudinal velocity at COG of moving body

lateral velocity at COG of moving body

yaw angle



Two-Track Vehicle Model for NLP-Algorithm

Aair
Ay Oy
bfa by
by

Cair,x» Cair,y

Cair,z,k

Ca

O

APg,

APg,

Ey

Em,k

froll,O

Fa:,ka Fy,k

g’x,kv gy,k

g

hy

Ng .k

I

gk

Jw,in,k

Jw,k

Jw,out,k

Sz

kmot

g,y

)\x,ky )\y,k
e Ak

m

cross-section area of vehicle

longitudinal/lateral acceleration at COG

track width of front/rear axle

vehicle chassis width

longitudinal/lateral drag coefficient

aerodynamic lift coefficient for corresponding wheel
capacitance of battery pack

front steering angle

normalised power flow into overload tank of battery pack
normalised power flow into overload tank of corresponding electric machine
overload tank of battery pack

overload tank of corresponding electric machine

rolling resistance coefficient

longitudinal/lateral tire force for corresponding wheel in the body coordinate frame
longitudinal/lateral tire force for corresponding wheel in the wheel coordinate frame
gravitational acceleration

COG height

efficiency factor of transmission for corresponding wheel-unit
battery pack current

gear ratio for corresponding wheel-unit

wheel-unit inertia on input-side for corresponding wheel
total wheel-unit inertia for corresponding wheel

wheel-unit inertia on output-side for corresponding wheel
vehicle inertia around vertical axis

performance shift variable

distance from COG to front/rear axle

longitudinal/lateral tire slip for corresponding wheel
optimal longitudinal/lateral tire slip for corresponding wheel
total vehicle mass

road friction coefficient

number of auxiliary decision variables

power losses of battery pack

power losses of corresponding inverter

power losses of corresponding electric machine

capacity of battery pack

internal resistance of battery pack for short-term dynamic behaviour depiction
internal resistance of battery pack

dynamic rolling radius of corresponding wheel

friction brake torque at corresponding wheel

torque at corresponding electric machine

total torque at corresponding wheel

time constants for acceleration low-pass filter
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Thst,b
Thst,m
Vo

Vi

Voe

Vg

Uy

Vg, ky Vy,k
V. ks Vy,k
Wk

Wm,k
froll

boosting time of battery pack

boosting time of electric machines

terminal voltage of battery pack

capacitor voltage of battery pack for short-term dynamic behaviour depiction
open circuit voltage of battery pack
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1 Introduction

By nature, humankind strives to make the best decision when confronted with problems.
People try to find the path of shortest time considering the current traffic situation and
infrastructure when aiming to reach a destination. In order to generate the best pos-
sible business results, decisions are made under consideration of all relevant business
goals and business rules. In engineering, the best product design is often a trade-off
between individual subgoals like engine power, engine weight and installation space. All
these problems can be expressed in form of an optimisation problem (OP) that can be
solved using mathematical programming. Mathematical programming or mathematical
optimisation is a powerful tool that enables finding the best element from a set of al-
ternatives considering an evaluation criterion and given restrictions. Growing economic
pressure and high performance requirements often raise the interest of companies to op-
timise technical systems in regards to design and control. Many of these systems can be
described using models: engines, electric motors, chemical reactors, industrial robots,
trains, airplanes, vehicles and more. Optimal control deals with solving constrained OPs
that consider such dynamic system models. The goal is defined by minimising a func-
tional under consideration of given constraints and equations describing the temporal
development of the dynamic system. Frequent goals of optimal control are minimisation
of time consumption, energy consumption, tracking errors or operating effort. Thus,
optimal control can be used to identify optimal control trajectories, optimal strategies
or an optimal design. Depending on the contemplated system model and optimisation
task, the resulting OPs get very complicated and can often only be solved numerically.
The progress in computing power continuously lowers computation times, which steadily
increases the appeal of numerical optimisation.

This thesis is comprised of two parts. The first part deals with optimal control methods
for possibly complicated systems aiming to solve nonconvex OPs. For this approach, an
accurate solution is valued more than short computation times. The thesis focuses on
minimum-time optimal control, which aims at computing time-optimal solutions. Al-
though applicable to many technical systems, this thesis commits to automotive appli-
cations aiming at minimising lap times on racetracks. Due to the highly nonlinear model
equations and complicated path constraints, minimum lap time optimal control for ve-
hicular applications represents a challenging problem. Since few other real-life problems
are comparatively difficult, the approach is capable of solving a large class of optimal
control problems (OCPs) for many different applications. This first approach is capable
of concurrently optimising passive vehicle parameters and control inputs enabling the
performance improvement of vehicles. The following idea motivates such simultaneous
optimisations: Different actuators with adequate control systems can enable a different
design of the passive system, which can improve agility. This is a well-known design
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concept in aviation, which is utilised to enhance manoeuvrability of combat aircrafts:
The centre of gravity (COG) is placed in a way which renders the system statically un-
stable, whereas the control systems assure that the airplane remains controllable by the
pilot [72, p.468]. Thus, the concurrent optimisation enables identifying optimal passive
vehicle setups with corresponding optimal control strategies. The objective compari-
son of various optimised vehicle concepts, with different powertrain designs or actuator
setups, can accelerate the development process of vehicles. Furthermore, the optimal
control trajectories can be used to tune real-time capable controllers or deduce general
control strategies in a subsequent step.

While the first part of this thesis primarily targets the accurate computation of the opti-
mal solution, the space splitting convexification (SSC) approach presented in the second
part aims at reducing computation times for numerical optimal control. By introducing
convex approximations in an iterative algorithm, the computation time is greatly low-
ered. This approach is only applicable to a selected class of nonconvex OPs but provides
convexification measures that can be combined with other approaches to extend the
application range. Due to its low computation times and robust convergence, the SSC
method seems to be a promising approach for real-time optimal control applications.
This chapter recapitulates the state of the art regarding lap time optimisation and
convexification in optimal control in Section 1.1 and Section 1.2, respectively. These
sections partly contain paragraphs of our previous publications [185], [183] and [186].
Summarising remarks and an outline of this thesis are provided in Section 1.3.

1.1 State of the Art for Lap Time Optimisation

Minimising an objective for a dynamic system under given restrictions can be cast as a
trajectory OP. Typically this task is tantamount to finding the time-dependent inputs
for the dynamical system that minimise or maximise a cost functional while satisfying
additional constraints. The goal for time-optimality is generally final time minimisation,
velocity maximisation or distance maximisation over a fixed time period. The methods
used to solve such problems can be split into four groups: variational methods, quasi
steady-state (QSS) optimal control, graph search methods and incremental search meth-
ods. Furthermore, the difficulty of the problem can be reduced by approximating the
task via optimal tracking of a predetermined trajectory. The reference trajectories can be
identified by preceding trajectory optimisations, geometrical computations or measure-
ments. Various methods for tracking have been used in the automotive field including
QSS simulations, model predictive control (MPC), linear and nonlinear feedforward and
feedback structures as well as iterative learning controllers. Generally, the methods dif-
fer in the compromise between accuracy and required computation time.

This section reviews the methods and applications for lap time optimisation of vehicles
used in literature. Fig. 1.1 depicts the classification of the individual approaches, which
are discussed more thoroughly in the following sections.
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Figure 1.1: Classification of literature for lap time optimisation.

1.1.1 Trajectory Optimisation Methods

The straightforward approach for coping with the previously mentioned optimisation
task is solving a trajectory OP. This approach provides flexibility in problem formulation
however generally requires longer computation times. This section presents literature
regarding trajectory optimisation methods applied for vehicular applications.

Variational methods Using calculus of variations, optimal control methods consider
the dynamic system behaviour and compute the system inputs that optimise a predeter-
mined objective while meeting specified constraints. Variational methods also provide
the optimal state trajectories enabling the identification of the optimal racing line. Due
to highly nonlinear vehicular system models and nonlinear path constraints as well as
the minimum-time objective, accurate lap time optimisations for vehicles generally result
in nonlinear, nonconvex OPs. These problems are generally hard to solve and require
longer computation times. Many implementations use nonlinear programming (NLP)
solvers that compute a solution based on derivative information. These solvers tend to
converge to local optima unless an appropriate initial guess is provided. One way to
mitigate this problem is using evolutionary algorithms to find the global optimum, like
the genetic algorithm in [131, 132]. The downside of these algorithms is a generally
slower convergence rate. Variational methods can be clustered into dynamic program-
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ming (DP) [53, 56, 198, 224], indirect methods (IMs) [10, 15, 16, 39, 80, 124, 125, 177,
203] and direct methods (DMs) [29, 30, 54, 95, 117, 118, 172, 183, 185]. DP decomposes
the OCP into simpler subproblems that are solved recursively from back to front. IMs
solve a boundary value problem (BVP) that arises when applying Pontryagin’s minimum
principle to the OCP. DMs discretise the OCP of infinite dimension yielding a static op-
timisation problem (SOP), which can be solved using NLP solvers. More details on the
individual methods are given in Section 2.3.1. A direct comparison of DMs and IMs for
vehicular applications is shown in [16].

Technically, discrete decisions like gear shifting have to be considered when controlling
vehicular systems. Sometimes these decisions can be approximated enabling the use of
NLP solvers. Otherwise, the solution of a mixed-integer programming (MIP) problem
is necessary. However, these kind of problems require specialised solution methods and
generally longer computation times. In order to include optimal gear selection or engine
on/off choices for hybrid electric vehicles (HEVs), MIP has been applied for DMs [66,
101, 172] and IMs [151].

Due to the flexibility and accuracy of variational methods, a large body of research has
been conducted in the field of vehicular optimal control. Table 1.1 provides an overview
over the available literature addressing the individual focal points for various applica-
tions with combustion engine vehicles (CEVs), HEVs, battery electric vehicles (BEVs)
and wheel-independent drive vehicles (WIDVs).

Numerous studies have employed moving horizon techniques to enhance computation
time of vehicular OCPs. The computational complexity of OPs increases among other

Table 1.1: Vehicular applications using variational methods.

application focus literature
effect of vehicle parameter variation on lap times [158]
accuracy analysis for model simplifications [124]
suspension design for minimum lap times [137],[15]
varying road friction conditions on racetracks [35]
effect of road surface on lap times [203]
longitudinal torque allocation [203]
passive limited-slip differentials [95],[158],[118],[116],[213]
semi-active limited-slip differentials [212]
thermodynamic tire model and tire wear [95],196],[212],[131],[227]
energy management and energy recovery for HEVs [118]
fuel consumption for HEVs [136]
straight acceleration with gear shifting for BEVs [151]
energy management for BEVs [81]
thermodynamic modelling of electrical components [82]
torque allocation for WIDVs [43],[32],[31],[44]
real-time torque allocation for WIDVs with simplified EOL [55]
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things with the number of decision variables. Thus, reducing the size of the OP by con-
sidering a limited preview horizon enhances solvability. Especially for shooting methods,
convergence behaviour improves by shortening the considered time horizon due to follow-
ing reasons. Firstly, a shorter time horizon yields simpler constraints with less couplings
between the decision variables. Secondly, stability problems may occur when numerically
integrating over longer time periods. However, other problems can arise from moving
horizon techniques, as will be explained in Section 2.3.3. In [65, 67], a minimum lap
time OCP has been solved by dividing the racetrack into segments yielding multiple
smaller OCPs. The individual problems have been solved sequentially whereas the ini-
tial condition for the individual OCPs has been determined by the preceding OCP. This
approach represents a modified MPC approach since an OP is not solved in every time
step but rather at the transition to the next segment. Classical MPC has been used
for vehicle models of various complexities. An early implementation of nonlinear MPC
for a minimum lap time objective is given in [163]. In order to further reduce com-
putation times, MPC has been applied to linear time-varying (LTV) vehicle models in
combination with a system linearisation around estimated trajectories [207-209, 211].
By introducing approximations, the OP has been transformed into a convex quadratic
programming (QP) problem, which can be solved efficiently. Additionally, disturbance
rejection has been improved in [210] by extending the MPC-approach with an ancillary
gain-scheduled linear quadratic regulator (LQR). By approximating the NLP problem
using local convex QP approximations at each sampling time, a real-time application of
nonlinear MPC for vehicle systems has been presented in [119, 220].

Quasi Steady-State Optimal Control A hybrid method between QSS simulation and
optimal control has been presented in [126, 217]: QSS limitations on the acceleration of
a body are computed in form of a g-g-v-diagram, which is extended if three-dimensional
tracks are investigated. For vehicles, these acceleration limits represent the summary of
individual effects like tire friction characteristics, aerodynamic effects and power limits.
Using the body accelerations as system input, an OCP is solved for a point mass model
with path constraints for the racetrack boundaries and acceleration limits via the g-g-v
diagram defining physical performance limits. Once the trajectories for the accelerations
and velocity are computed, the nonlinear equations describing the QSS behaviour of a
more elaborate vehicle model are solved for its states and inputs. Hence, more specific
constraints on the states and inputs of the elaborate vehicle model are not directly
included in the OP but rather represented to some extent by the acceleration limits.
This greatly reduces the size and complexity of the OCP, which enhances computation
time. Opposed to QSS simulations, the approach concurrently optimises the travelled
path identifying the optimal racing line. However, various simplifying assumptions are
used to derive the g-g-v maps and only steady-state conditions are considered resulting in
a suboptimal solution. Nevertheless, the method offers a compromise between accuracy
and required computation time.



1 Introduction

Graph Search Methods, Incremental Search Methods and Hybrid Methods Alter-
native trajectory planning methods are based on searching spatially or spatiotemporally
discretised graphs. In the automotive field, these techniques have been mainly applied
in motion planning for autonomous driving. For completeness, this paragraph outlines
these procedures however a more detailed overview is given in [70, 92, 150].

In order to mitigate the problem of local convergence, graph search methods identify
the optimal trajectory by searching the minimum-cost path in a graph. The graph rep-
resents the discretised configuration space of the vehicle with vertices depicting vehicle
configurations and edges the transitions between them [150]. The search graph can
be generated by recursively applying motion primitives starting from the initial vehi-
cle state. Possible motion primitives for vehicular applications are arcs with different
steering angles, simulations with a sampled number of inputs, clothoid segments and
recorded vehicle motions driven by experts. Popular graph search strategies are Dijk-
stra’a Algorithm [50], the heuristic search algorithm A* [76], the real-time replanning
algorithm D* [195] and various extensions [150]. Exemplary applications of graph search
methods for vehicles are given in [194, 231]. However, graph search methods only search
over the finite set of paths constructable from the motion primitives in the graph, which
may return suboptimal paths or even fail to return a feasible one.

In order to overcome the drawbacks of graph search methods, incremental search meth-
ods build increasingly finer discretisations of the configuration space until a satisfactory
solution is found. The resulting reachability graph, which is often a tree, maintains a
discrete set of reachable configurations and feasible transitions between them [150]. Pop-
ular randomised tree-based incremental planners are expansive spaces trees (ESTs) [83],
rapidly-explorig random trees (RRTs) [112], stable sparse trees (SSTs) [113] and various
extensions [150]. Exemplary racing applications of incremental search methods are given
in [84, 85] using RRTs.

Hybrid procedures of the previously mentioned methods enable capitalising on the advan-
tages of the individual methods. In [51], a modified A* search algorithm has been used
to compute a solution that is then improved via numeric nonlinear optimisation. MPC
and an extended version of the D* algorithm have been used in [214] for autonomous
driving. In [4], SSTs have been combined with an extended version of RRTs to reduce
the computational burden yielding a fast convergence to the optimal solution. Then,
nonlinear MPC has been used to find the attracting area for the generated trajectory
under consideration of the constraints on the system.

1.1.2 Trajectory Tracking Methods

In order to reduce computation time, various methods have been proposed that approxi-
mate the trajectory OP by the task of tracking a specified reference trajectory. However,
by fixing the trajectory, these approaches generally do not consider the influence of ve-
hicle setups on the optimal racing line and thus yield suboptimal solutions. This section
presents literature regarding trajectory tracking strategies for vehicular applications.
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Racing Line Generation Trajectory tracking methods with the goal of minimum lap
times require a predefined racing line. If experimental data is available, a driven line can
be used as reference trajectory. Alternatively, the solution of previous computations,
based for instance on variational methods, can be used. However, racing lines can also
be computed geometrically. As shown in [20], the optimal racing line is a linear com-
bination of the shortest path and the minimum-curvature path. However, the authors
have shown that the minimum-curvature path is generally close to the fastest racing line
since it allows highest cornering speeds at a given maximum lateral acceleration. Thus,
the fastest path can be identified by sampling various linear combinations of the shortest
path and the minimum-curvature path [20] or the racing line can be approximated by the
minimum-curvature path [20, 78]. Another approach for the generation of racing lines
based on track partitioning has been presented in [64, 205]: Each corner of the race-
track is decomposed into straights, an entry clothoid, a constant radius arc and an exit
clothoid. The parameters of these subsections are identified by consideration of initial
conditions and continuity conditions. A similar approach based on the concatenation of
circular arcs and straights has been presented in [171].

Once a racing line is generated, it can be used as reference for the tracking approaches
presented in the following paragraphs.

Quasi Steady-State Simulation (QSS simulations offer good robustness, short compu-
tation times and the capability to consider the limitations of complicated models via
diagrams, however generally neglect most of the transient behaviour [16]. The approach
requires a predefined racing line and thus falls into the group of trajectory tracking. In
order to achieve minimum lap times, friction forces from the tires should be maximised.
However, the transmittable tire force is generally different for each tire since it depends
on the normal loads, slip conditions and suspension geometries. Additionally, limiting
effects given by the powertrain, like engine constraints, have to be considered. Com-
plicated equations are necessary to depict all these relations. However, complexity is
reduced by using g-g-v diagrams instead, which lump the transmittable forces of all tires
together depicting limits on the longitudinal and lateral acceleration as a function of the
vehicle speed [142, 170]. These limits are identified for steady-state operating points.
Using these bounds and the given curvature profile of the racing line, the optimal speed
profile of a point mass model is computed via forward-backward integration [22, 25, 145,
190, 223]. Assuming zero longitudinal acceleration in a first step, the initial speed pro-
file is computed using the racing line curvature and the maximum lateral acceleration.
The resulting speed profile is saturated by the predefined maximum speed value of the
vehicle. Starting at the apexes of the curvature profile, the velocity of the next discreti-
sation point is computed using the velocity and available longitudinal acceleration of
the current point. This procedure is repeated until intersecting the previously computed
speed profile. The same approach is used in a backwards integration step considering
the deceleration limits yielding the braking points and therefore the final speed profile.
In [77], the authors have improved computation time by primarily using forward inte-
gration and only temporary backward loops if needed. Furthermore, the QSS approach
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has been extended in [156] to consider quasi-transient conditions by additionally using
acceleration limits on yaw movement.

Optimal Control Methods In [120, 218], the authors have shown that the minimum-
time optimal tracking problem can be transformed into a convex OP via a change of
variables. The resulting problem can be solved efficiently using optimal control meth-
ods. This approach has also been pursued in [44] for an electric vehicle with four wheel-
independent drives. Therein the authors have presented a convex formulation of the
time-optimal path following problem using direct collocation together with various model
simplifications.

Various MPC approaches have been used for tracking. An MPC approach using direct
collocation has been employed in [73] to track an offline computed racing line and si-
multaneously avoid obstacles. Time-variant predictive path tracking control has been
presented in [93, 94| using time-varying models linearised around different sets of side slip
angles. The sequence of linearisation points has been chosen according to an estimated
trajectory based on predictions from the preceding iteration. By iteratively linearising
the system around predicted trajectories in [28], the moving horizon, nonlinear OCP has
been approximated by a QP problem using a direct shooting scheme. The presented
controller is capable of tracking a predefined line and simultaneously avoid collision with
obstacles.

Feedforward and Feedback Controllers Various control strategies have been intro-
duced for vehicular applications aiming at tracking position and velocity profiles. The
curvature and velocity profiles identified via QSS simulations can be used as reference
trajectories. Furthermore, the associated acceleration profile can be utilised to consider
wheel load distributions. Tracking of the velocity and curvature trajectories has been
accomplished via linear and nonlinear feedback controllers, gain-scheduling controllers,
feedforward structures deduced via model inversion and disturbance observers [20, 62,
78, 90, 108, 109]. Furthermore, assuming constant disturbances over the course of one
lap, iterative learning control has been used in [88] for lap to lap improvements.
Various preview controllers based on LQR theory have been used for tracking, comput-
ing individual gains for the preview errors that vary over the preview horizon. This
approach has been used to compute front steering angles that minimise position and
orientation errors between the vehicle and a position trajectory at constant longitudinal
velocities [38, 206]. The same approach has been used in [189], however a decoupled
longitudinal vehicle model has been inverted to compute the longitudinal forces required
to simultaneously follow a velocity profile. In [188], the LQR preview approach has been
adjusted for tracking of a velocity profile.

As mentioned, the reference trajectories for tracking can also be generated using optimal
control methods. Indirect optimal control has been used in [123] to compute time-optimal
lap trajectories for a simplified model. These trajectories have been tracked using pro-
portional, integral and derivative feedback controllers that have been designed via the
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Nyquist theorem. In [23, 24], optimal trajectories have been computed using MPC with
direct collocation and have been tracked in real-time via a nonlinear position controller.

Two-Stage Optimisation Methods Several two-level procedures have been developed
to improve accuracy while keeping small computation times. As mentioned before, us-
ing a predetermined racing line yields a suboptimal solution since the influence of the
vehicle setup on the driven line is neglected. In order to mitigate this problem, these
approaches iteratively solve a trajectory tracking problem and appropriately adjust the
reference trajectory based on the result.

Such a scheme has been illustrated in [89]. Starting from a specified racing line given
by its curvature trajectory, the optimal velocity and acceleration profile are computed
using a QSS simulation. The resulting speed profile is then used to determine a sequence
of LTV vehicle models that vary over velocity. A convex OCP aiming at minimising the
driven curvature while staying on the racetrack is solved for this previously computed
model sequence. The novel curvature profile is subsequently used to compute a new
speed profile and the procedure is repeated until the predicted lap time no longer im-
proves.

A different two-level approach, which is real-time capable, has been presented in [221].
An upper level algorithm has been used to identify the reference trajectory by either
minimising its curvature or its length. Then, this reference path has been tracked by a
low-level MPC controller.

Another method for identifying the ideal reference path has been employed in [119]. Per-
forming a stationary velocity analysis for discrete values of longitudinal speeds and steer-
ing angles generates a family of trajectories. The feasible, most cost-optimal trajectory
is selected as reference trajectory for tracking via MPC. Similarly, a set of trajectories
has been generated in [199, 225, 226] by using state space sampling and solving bound-
ary value problems for multiple terminal points under the assumption of polynomial
trajectories. The feasible trajectory with the best cost has been used for a subsequent
trajectory tracking via optimal control methods. However, due to required model sim-
plifications, these approaches have been rather used for online trajectory planning with
collision avoidance than for controlling vehicles at the limits of handling.

A real-time capable two-stage MPC algorithm for controlling the energy management
of HEVs aiming at minimum lap times has been presented in [176]. Considering only lon-
gitudinal dynamics of a point mass model, a high-level MPC has been used to compute
the optimal system trajectories by solving a second-order cone programming (SOCP)
problem. Linearising the dynamics around the optimal trajectories, a low-level zone
MPC scheme has been employed to track time-varying sets defined by the high-level
solution.
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1.2 State of the Art for Convexification in Optimal Control

Many OCPs in engineering applications require the solution of nonconvex OPs. Unfor-
tunately, these problems are much harder to solve and generally demand longer com-
putation times. However, in order to apply optimal control within a real-time capable
framework usually requires a fast and robust computation of the solution. Convex opti-
misation is beneficial in this regards since it enables using efficient solvers that rapidly
converge to the single global optimum. Thus, a large body of research has been con-
ducted to find convex formulations or approximations of OCPs. The nonconvexity in
OCPs can have various causes: nonconvex objectives, restrictions in the operating range
of actuators that result in nonconvex sets, nonlinear equality constraints due to nonlin-
ear system models and more. A classification of OPs and subclasses of convex OPs are
provided in Section 2.4.1.

Optimal control in form of an on-board controller is generally realised using MPC. Based
on a predefined model, this control approach computes optimal input trajectories by solv-
ing an OCP for a limited time horizon and a given initial solution. The initial solution is
updated in each time instant based on measurements or estimates of the current state,
which closes the control loop. Solvability of the OP is enhanced due to the limited time
horizon and thus smaller problem size. However, considering only limited time horizons
in the presence of constraints requires precautions to ensure recursive feasibility [122].
Further information on MPC is given in Section 2.3.3. Nevertheless, limiting the time
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horizon is often not sufficient for real-time capability. Thus, the following paragraphs
present approaches that apply convex approximations or reformulations, mainly to re-
duce computation time. These approaches are visually classified in Fig. 1.2.

Decision Variables representing Nonlinear Terms When formulating OCPs, a suitable
choice of decision variables can sometimes reduce the complexity of the OP. Replacing
a nonlinear term by a decision variable excludes the nonlinearity from the OP, which
can render it convex. After solving the problem, the original variables can be identified
by inverting the nonlinear term. For this approach to work, the excluded nonlinearity
must be invertible. However, simple constraints restricting the original variables incor-
porated in the nonlinear term are cast into a more complicated constraint if a nonlinear
transformation needs to be considered. Hence, this approach is only applicable to few
OCPs. For example, choosing the forces as decision variables for vehicles with wheel-
independent drives and wheel-independent steering greatly simplifies the OP enabling
a fast computation of the optimal solution via QP [31, 44]. The torques and steering
angles associated with the computed optimal forces can be deduced afterwards by inver-
sion of the tire force equation. Unfortunately, this approach is generally not possible for
industrial vehicles, since the centralised steering system and propulsion system introduce
physical limitations that would result in nonlinear and nonconvex constraints.

Lossless Convexification A special class of nonconvex sets can be transformed into con-
vex ones via lossless convexification (LC) [1, 2]. This method lifts the optimisation space
into a higher dimension using additional decision variables. The approach is applicable
to nonconvex sets that can be generated by removing a convex subset from a convex set.
This has been used in aeronautic optimal control applications to successfully convexify
annulus-shaped sets. The method produces a SOCP problem, which represents a convex
OP that is efficiently solvable. Under the assumption that the state space is strongly
controllable, the solution of the relaxed OP is equivalent to the solution of the original
problem. An overview regarding the individual findings on LC is given in [165, p.338|.

Linearisation Another often employed technique for convex approximation is linearisa-
tion since linear objectives and constraints are convex [19]. However, linearisation can
introduce conservativeness and infeasibility since the resulting accuracy strongly depends
on the nonlinearity as well as the linearisation point. Various linearisation techniques
have been used to approximate nonlinear systems when applying optimal control meth-
ods.

In the simplest case, the system is linearised at each time instant around the current
operating point, exemplarily implemented in [57]. Using the resulting LTV system, a
controller based on linear MPC computes the steering angle of an autonomous vehicle
that aims at tracking a predefined trajectory. Additional constraints limiting the front
slip angle are necessary to avoid the vehicle becoming unstable. This illustrates the gen-
eral problem that the resulting linear model approximation is only sufficiently valid in
a close neighbourhood around the linearisation point. With increasing distance to this
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point, the linearised OP can strongly differ from the original one. Thus, this approach
can result in poor controller performance or even lead to infeasibility or instability.

In order to mitigate linearisation errors, the system can be linearised around predicted
trajectories resulting in efficiently solvable QP problems [48, 187]. One method using
iterative linearisation around trajectories in an MPC setup is the so-called real-time
iteration approach [48]. The procedure assumes that at every time instant the shifted
solution from the preceding time instant represents a good initial guess close to the ac-
tual solution. Thus, a full Newton-step is taken, omitting underlying line-search routines
to reduce computation time. Besides using a shifted version of the preceding solution as
initial guess, a tangential predictor can be used to prepare the OP for the next time in-
stant [49, 61]. An overview and comparison with other real-time capable nonlinear MPC
approaches is provided in [71].

Combining the system linearisation around predicted system trajectories with constraints
softening via additional penalty objective terms enables the formulation of an uncon-
strained, convex OP [147]. The resulting unconstrained MPC problem can be solved in
real-time using a sequential linear quadratic solver to compute the optimal controller
gains.

In order to improve robustness, approximation errors in predictions can be limited by
tubes whose cross-section is simultaneously optimised [26]. The presented MPC scheme
results in an efficiently solvable SOCP problem. Furthermore, the approach guarantees
recursive feasibility and asymptotic stability making it suitable for real-time applications.
In [27], the authors have suggested using probabilistic tubes to consider non-conservative
estimations of linearisation errors and stochastic model uncertainties while solving the
problem via stochastic MPC.

Another iterative linearisation scheme has been presented in [133]. Starting from an
initial trajectory, the nonlinear system equations are successively linearised around the
solution computed in the preceding iteration. Adding virtual control inputs eliminates
the artificial infeasibility introduced by the linearisation. Furthermore, including trust
regions ensures that the solution does not deviate too much from the preceding succession
and thus the linearisation represents a valid approximation. This avoids unboundedness
of the linearised OP. Based on the ratio between actual objective change and linearised
objective change, the algorithm adjusts the trust regions and terminates if the objectives
coincide.

A linearise-and-project (LnP) approach has been used in [134] to resolve the noncon-
vexity due to nonlinear system equations and nonconvex constraints. The approach
presumes convex functions for the right-hand side of the system differential equations.
The satisfaction of the system dynamics is ensured by relaxing the corresponding equality
constraints into inequality constraints and using exact penalty functions. In an iterative
optimisation routine, the computed solution is projected onto the constraints to gain
adequate linearisation points. The projection is accomplished by solving a subordinate
convex programming problem.

Instead of linearising the system equations around trajectories, a linear input-to-state
behaviour can be enforced via feedback-linearisation [98, p.505]. An optimal control
method can then be used to optimally control the linearised system in an outer control
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loop [45]. Mostly, a double-integrator behaviour is imprinted by the lower control loop
but different linear behaviours can be prescribed as well. However, the enforced linear
system behaviour is not necessarily optimal and can thus result in an suboptimal overall
solution as the optimiser could potentially find a better solution considering the real
system dynamics. Furthermore, the feedback controller must be designed under con-
sideration of stable internal dynamics, which requires additional effort regarding rather
complicated stability proofs. Moreover, it is possible that the nonlinear mapping of the
feedback linearisation transforms originally convex objective and constraint functions
into nonconvex ones [191]. Then, the exact satisfaction of these constraints requires an
NLP strategy or an iterative scheme, which both eliminate the computational benefits of
the feedback-linearisation [111]. One possible solution to this problem is approximating
these constraints by estimating future inputs based on the preceding time instant within
an MPC scheme [111, 180]. The authors in [191] have proposed an alternative MPC
approach that replaces such nonlinear constraints via dynamically generated local inner
polytopic approximations rendering the OP convex.

Fuzzy MPC with models of Takagi-Sugeno (TS) type has been successfully used for non-
linear MPC. The TS modelling procedure enables an accurate approximation of nonlinear
systems by using data combined with model knowledge [200]. The modelling approach
decomposes nonlinear models into several local approximations that are blended together
via fuzzy rules. However, this requires the system matrices to be stored, thus occupies
more memory. Although TS fuzzy models have been successfully used in nonlinear MPC,
computation time can be strongly reduced by linearising the TS models around predicted
trajectories [143, 144]. The resulting convex QP problem can be solved efficiently while
guaranteeing convergence via a line search mechanism.

Differential Dynamic Programming and Iterative LQR Differential dynamic program-
ming (DDP) initially linearises the system equations around a nominal trajectory. Start-
ing from the terminal state, a backward pass identifies optimal LQR gains for each time
step using the linearised system. Subsequently, a forward pass computes new nominal
trajectories via numerical integration using the controller gains previously computed
in the backward pass. This procedure is repeated until convergence. Iterative linear
quadratic regulators are a variant of DDP [141]. The main difference is that only first-
order derivatives are used for the approximation of the system dynamics via Taylor
expansion instead of second-order ones, which reduces computation time [201]. Con-
strained versions of this optimisation technique have been presented in [33, 202, 229].

Lifting Procedures Lifting-based MPC methods represent another class of linearisation
approaches used for solving OCPs with nonlinear systems. By lifting the nonlinear dy-
namics to a space of higher dimension, the evolution of the system can be represented in a
bilinear or linear fashion via Carleman linearisation or the Koopman operator framework,
respectively. Representing the nonlinear system equations via bilinear terms enables the
analytical computation of sensitivity functions [5] and of solutions [60], which speeds up
computation time. The Koopman MPC approach employs a linear predictor of higher
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order, which is identified via data sets, to approximate the nonlinear system. The lin-
early evolving substitute system is then used to solve a larger OCP via linear MPC.
By condensing the OCP, the state decision variables are eliminated leaving only the
input decision variables. Thus, the computational complexity is comparable to an OCP
with linear system dynamics of the same size [104]. Hence, this method enables a fast
solution of nonlinear OCPs. However, identifying the linear Koopman system involves
some effort requiring an adequate selection of basis functions, non-recurrent data sets
and the solution of convex OPs [36, 104]. As illustrated for a vehicular OCP in [37], the
Koopman MPC approach does not always outperform the standard MPC method using
local linearisations. Depending on the dimension of the lifted states, both approaches
can require the storage of a great number of offline computed matrices.

Methods for Nonconvex QCQPs Various methods for solving nonconvex quadratically
constrained quadratic programming (QCQP) problems are summarised in [42] and [153]
and subsequently outlined.

A two-phase coordinate descent method first reduces the maximum constraint violation
trying to find a feasible point. The second phase is restricted to feasible points only and
searches in each iteration for a feasible point with a better objective function value.
The convex-concave procedure (CCP) is a method for finding a local optimum for
difference-of-convex programming problems. Since any quadratic function can be rewrit-
ten as a difference of convex expressions, this method is also suitable for QCQP. The
nonconvex part of the constraints is linearised rendering the constraints convex. In or-
der to deal with infeasible initial guesses, penalty CCP relaxes the linearised constraints
via slack variables and introduces a gradually increasing penalty objective for constraint
violations.

The alternating directions method of multipliers (ADMM) is a variant of the augmented
Lagrangian method. It forms an equivalent OP by using auxiliary decision variables
that must satisfy a consensus constraint. The objective function is augmented using
switching indicator functions that penalise individual constraint violations. The aug-
mented objective function terms are separated and reformulated using two groups of
decision variables. Instead of solving the proximal augmented Lagrangian function for
both groups of decision variables simultaneously, the solution is computed using an al-
ternating approach. First, the first group of decision variables is fixed and the problem
is solved for the second group. Then, the solution of the second group is fixed and the
problem is solved for the first one. The results are used for the dual variable update
and the procedure is repeated. This alternating approach requires the solution of simpli-
fied QCQP problems enhancing computation time compared to solving for both groups
of decision variables simultaneously.

Lagrangian Hessian Maodifications Convexification measures for sequential quadratic
programming (SQP) approaches on a more algorithmic level have been presented in [219].
Many QP solvers do not support an indefinite Hessian of the Lagrangian, since then a
descent direction is not guaranteed. The author has presented a structure-preserving
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convexification procedure for indefinite Hessians. The convexified Hessian can be fed to
any structure-exploiting QP solver [219, p.39]. Furthermore, sequential convex quadratic
programming is proposed, which uses second-order derivatives of convex objective func-
tions and convex constraint functions to construct positive definite Hessians enabling
the sequential solution of convex QP problems [219, p.70].

Global Optimisation Although global optimisation (GO) methods have greatly im-
proved in computational effort lately, they generally do not aim at real-time capable
implementations but rather focus on computing the global optimum. They can also be
employed for solving OPs with discrete decision variables such as integer programmings
(IPs) and MIP problems. GO techniques make use of convexification and have simi-
larities with the SSC approach presented in the second part of this thesis. Thus, this
paragraph reviews selected GO methods however a thorough summary on the state of
the art is discarded. The interested reader is referred to [100, 110, 114, 115, 204].

A commonly used GO algorithm is the branch-and-bound (BnB) approach [110, 204].
By replacing the integer variables via continuous, bounded variables, this method trans-
forms IP and MIP OPs into continuous ones. Solving such relaxed problems provides a
lower bound on the objective function. If the gap between this lower bound and an esti-
mated or computed upper bound is larger than a predefined tolerance, the domain of the
discrete variables is split into subdomains. Again, the integrality constraints are relaxed
on each subdomain and corresponding lower bounds are computed. A subdivision into
increasingly smaller segments is repeated until the gap between the bounds is smaller
than a predefined tolerance. Then, the solution of the relaxed problem represents the op-
timal solution of the corresponding subdomain. The iterative division into increasingly
smaller subregions ensures progressively tighter convex relaxations assuring convergence
to the local optimum on the subdomain. Comparing the solutions on the individual
subdomains provides the global solution. Individual subdomains can be rejected on the
fly from further consideration based on the solution of the current branching step. This
enables an exhaustive exploration of the search space in a rather efficient manner and
provides the global optimum.

Spatial BnB applies this notion to compute the global optimum of continuous, noncon-
vex OPs [114, 174, 204]. The search space is iteratively divided into finer subdomains
and convex relaxations of nonconvex functions are applied on each subdomain. The
efficiently solvable relaxed problem provides a lower bound of the objective function for
the corresponding subdomain. Using local minimisation techniques, an upper bound for
the objective function can be computed for each segment. If the gap between the upper
and lower bound on a subdomain is bigger than a predefined tolerance, the subdomain
is split again into subregions. This approach can be used to solve mixed-integer non-
linear programming (MINLP) problems by branching integer variables and continuous
variables: Nonconvex terms are replaced by their convex envelopes yielding a convex
OP whose solution represents the lower bound. Various methods have been developed
for the generation of adequate convex relaxations. For instance, by introducing ade-
quate auxiliary decision variables with corresponding constraints, nonconvex functions
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can be decomposed into sums and products of terms for which convex relaxations are
available [193][204, p.125].

In summary, the BnB technique searches over a tree whose nodes correspond to relaxed
problems that consider different subdomains. Tree nodes are excluded on the fly based
on evaluating the lower and upper bounds of the individual nodes eliminating the ex-
ploration of the entire domain. This procedure reduces the combinatorial complexity of
solving the problem for each possible combination of integer variables and provides the
global optimum.

1.3 OQutline and Contributions

The preceding sections clarified the importance of optimal control methods as well as
numerical optimisation and reviewed literature on this matter. The following paragraphs
outline the structure and content of this thesis, which deals with optimal control methods
for the offline solution of OPs. It is assumed that the used models are accurate and
possible uncertainties are negligible. Since the considered problems include the entire
time horizon, infeasibility and stability issues are not examined. Transferring these
methods to real-time capable controllers via MPC requires the investigation of these
properties. In case of model uncertainties, further precautions can be necessary for
robustness.

The main contributions of this thesis are summarised in following list:

e Implementation of a framework capable of solving minimum-time OCPs for a large
class of highly nonlinear models with difficult constraints but continuous variables.

e Development of a novel track preprocessing method for the generation of smooth
reference trajectories for OCPs with path constraints.

e Experimental validation of a two-track vehicle model for racetrack applications.

e Derivation of simple substitute models for the consideration of electrical overload-
ing in OCPs.

e Development of a novel successive convexification method for the solution of a
specific class of nonconvex OCPs with continuous variables.

Chapter 2 recapitulates the basics of optimal control. Starting with the mathematical
definition of OPs, conditions for optimality are presented and the link to dynamic OPs,
which occur in the context of optimal control, is established. Furthermore, general solu-
tion methods for OCPs are compared. Since this thesis employs a numerical solution of
OCPs, the majorly used numerical solution methods are presented. The individual OP
categories are presented and advantages of individual classes are elaborated.

Chapter 3 presents the first focus of this thesis. Aiming at solving minimum-time
OCPs for highly nonlinear systems with nonconvex constraints but continuous vari-
ables, a general approach is presented that is applicable to a large class of systems.
Direct Hermite-Simpson collocation is used to transcribe the dynamic OP into a static
one, which is solved using NLP. In order to enhance solvability of such OPs, various
preliminaries are proposed. Using a model transformation, the OP is reformulated in
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spatial coordinates, which fixes the final value of the independent variable. A scal-
ing procedure is implemented to equalise the domains of decision variables as well as
constraints and get a numerically suitable range for the objective function. Since the
employed interior-point method (IPM) solver uses derivative information, the OP must
be sufficiently differentiable. Recipes for the smoothing of discontinuities are presented
and a novel procedure for the generation of smooth reference trajectories is introduced.
Chapter 4 presents a challenging application for nonconvex optimal control. The NLP
algorithm presented in Chapter 3 is used to solve the nonconvex OP that arises when
searching for the minimum lap time trajectories of a highly nonlinear vehicle model on a
racetrack. A nonlinear two-track vehicle model is validated using measurement data of
a test vehicle. The model is augmented by electro-chemical relations to depict the be-
haviour of a BEV. The chapter shows how the overloading of electrical components can
be considered in an OCP while keeping good convergence properties. Furthermore, an
initialisation routine producing good initial solutions is proposed to improve convergence
and reduce computation time. Employing a concurrent optimisation, lap time-optimal
control inputs as well as optimal vehicle parameters are identified for a specific race-
track. The results are discussed in terms of plausibility to verify the performance of
the algorithm. The solution computed by the presented framework provides information
about strategies that can be used by racing teams to improve lap times. Furthermore,
the optimal trajectories can serve as reference when developing real-time capable con-
trollers. Additionally, identifying optimal passive vehicle designs is an important process
for racing cars but for industrial cars as well. This framework can be used to shorten
development times of vehicles and compare individual vehicle setups with different ac-
tuators in regards to various objectives.

Chapter 5 deals with the second major topic of this thesis: the convexification of sim-
pler but still nonconvex OCPs with continuous variables aiming at reducing computation
time. The novel SSC approach is presented: It computes a local solution of nonconvex
OPs by iteratively solving convex QP substitute problems. This procedure greatly re-
duces computation time compared to the NLP approach. The method is capable of
considering certain classes of zonally convex set (ZCS) as well as equality constraints
with possibly multiple univariate nonlinearities. The basic idea behind SSC is the de-
composition of nonlinearities into affine segments that are interconnected via suitable
constraints. Using the theory of exact penalty functions, the convergence to a local solu-
tion of a piecewise linear approximation of the original problem is confirmed. Although
this local method does not guarantee to compute the global optimum, the SSC algorithm
can provide good solutions even for moderate initial guesses.

Chapter 6 showcases applications for the SSC algorithm introduced in Chapter 5. Non-
convex OCPs for single-mass oscillators (SMOs) are solved and compared to the solution
of the NLP algorithm. The influence of the initial guess on the outcome of the opti-
misation is analysed. The experimental results confirm the robust convergence of the
method. In order to provide an example in the context of vehicular control, the SSC
algorithm is also employed to compute optimal trajectories for a drag race application.
Chapter 7 closes the thesis with summarising remarks on the covered topics and pro-
vides an outlook for future work.
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This thesis focuses on variational methods. In order to classify the utilised approaches, a
thorough theoretic review is given in this chapter. Basics regarding static OPs are given
in Section 2.1. This forms the foundation for dynamic OPs, which arise when optimising
dynamical systems. The corresponding mathematical background for optimal control
is provided in Section 2.2. Differences in the major procedures for solving OCPs are
reviewed in Section 2.3. Since the solution of complicated OPs generally requires nu-
merical approaches, the major algorithms for the numerical solution of OPs are outlined
in Section 2.4.

2.1 Static Optimisation

OPs can be differentiated into static OPs, for which the decision variables are elements
of the Euclidean space, and dynamic OPs, for which the decision variables are elements
of the Hilbert space [152, p.6]. Simply stated, static OPs have parameters as decision
variables, whereas dynamic OPs determine functions of an independent variable. Deriv-
ing optimality conditions for dynamic OPs is similar to the procedure for static OPs.
Furthermore, dynamic OPs can be approximated by static ones. Thus, the mathemat-
ical theory on static optimisation presented in this section lays the fundament for later
considerations.

2.1.1 Static Optimisation Problems

The task of a constrained SOP is finding the optimal point w* for the vector of decision
variables w € R™ that minimises an objective function J : R™ — R while satisfying
equality constraints ¢(w) = 0 with ¢ : R™ — R™ and inequality constraints h(w) < 0
with h : R" — R"». The constrained SOP can be formulated as

min J(w) (2.1a)
w e R"™
S.t. ci(w)=0 Vie& ={1,...,n.}, (2.1b)
hj(w) <0 VjeZ:={1,...,n4}. (2.1c)
At any feasible point w, an inequality constraint is called active if hj(w) = 0 and

inactive if hj(w) < 0 for some integer j € Z. The following index sets are defined for
the inequality constraints:

Io(W) = {] (S Z|h](W> =

0} (2.2a)
T (w) = {j € Zlhy(w) < 0}

(2.2b)
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Therein Zy and Z_ represent the index set for the active and inactive inequality con-
straints, respectively. The index set for all active constraints is defined as

A(w) = EUT, (2.3)

containing the indices of the equality constraints and active inequality constraints.
A candidate point satisfying the equality constraints (2.1b) and inequality con-
straints (2.1c) is called feasible. The set comprised of all feasible points is called feasible
set and is defined as

Qp :={w e R"™|c(w) = 0,h(w) < 0}. (2.4)
Thus, for unconstrained problems ; = R™ holds. An OP is called infeasible if there
is no solution satisfying the constraints (2.1b) and (2.1c) yielding Q2 = 0.
A major concept of mathematical optimisation is convexity, which is discussed more
thoroughly in Section 2.4.1. At this point it is anticipated that strictly convex OPs only
possess one solution, which is therefore the global solution. However, a problem can have
multiple solutions, which can be divided into local and global ones. A point w* € Q¢ is
called global solution if following condition holds:

J(w*) < J(w) Vwe Q. (2.5)

If (2.5) only holds in a neighbourhood of w*, the point is a local solution of the problem.
Mathematically, local solutions can be expressed as

J(w*) < J(w) VweQpnB, (2.6)

using an Euclidean ball B, = {w € R"|||w — w*||, < r} around w* with some radius r.

2.1.2 Optimality Conditions of Static Optimisation Problems

Conditions on optimality play a major role in optimisation: They provide mathematical
guarantees and are used in algorithms to solve the OP. In order to ensure optimal-
ity, first-order and second-order conditions exist, which use first-order and second-order
derivatives, respectively.

Provided certain regularity conditions are satisfied, the optimum of the static, con-
strained OP (2.1) can be identified using the the method of Lagrange multipliers, which
employs the Lagrangian function

Lw, A\ p) = J(w)+ Ac(w) + puTh(w). (2.7)

Therein each equality constraint and inequality constraint is associated with a Lagrange
multiplier, which is stored in the vector A and u, respectively. Computing the stationary
points of the Lagrangian function (2.7) provides the optimum of the constrained OP if
certain constraint qualifications apply. These constraint qualifications are required to
ensure that the local optimum satisfies the optimality conditions making them necessary
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for an optimal solution'. The most often used constraint qualification is the linear

independence constraint qualification (LICQ) [148, p.320]. It ensures that the gradients
of the equality constraints and the gradients of the active inequality constraints are
linearly independent at the local solution w*. This condition holds at some point W if
the set of active constraint gradients

Sgrad = {Vwei(W)|i € E} U {Vwh;(W)|j € o} (2.8)

is linearly independent.

Assume that the functions .J, ¢ and h are continuously differentiable? and the LICQ holds
at the local solution w*. Then, a Karush-Kuhn-Tucker (KKT) triple p* := (w*, A*, u*)
exists such that the following first-order necessary conditions for optimality, known
as KKT conditions, hold:

VLW A%, %) = Ve J (W) + e (W)X + hy (W) pu* =0 (2.9a)
VAL(WS X, ) =c(w*) =0 (2.9b)
h(w*) <0 (2.9¢)

w >0 (2.9d)
h(w*)'u*=0 or hj(w*)u; =0Vj eI (2.9¢)

Proof for the KKT equations (2.9) is given in [148, p.323]. Equations (2.9¢)-(2.9¢)
are called complementarity conditions whereas following distinction between inactive,
currently active and strictly active inequality constraints is made:

inactive: hj(w*) <0 and pj =0 (2.10)
currently active: hj(w*) =0 and puj =0 (2.11)
strictly active:  hj(w*) =0 and p} > 0. (2.12)

A graphical representation of the constraint activity is given in Fig. 2.1.

The KKT equations (2.9) can be satisfied by minimisers but also by other stationary
points like maximisers or saddle points. Thus, these equations only provide a candidate
for a minimum. Additional information using second-order derivatives is necessary to
ensure that the solution is a local minimum. This requires defining the critical cone:

C(w*, u*) = {6w € R™|Vyci(w)Tdw =0 Vicé&,
Vwhj(w*)Téw <0 Vj € Iy with i} =0, (2.13)
Vwhij(w*)'éw =0 Vj € I with w; > 0}.
This set contains the critical directions dw for which the first-order derivative informa-

tion does not suffice to determine the local behaviour of J [148, pp.330ff][152, p.92].
Assuming that the LICQ holds and the functions f, ¢ and h are twice continuously

'The optimality conditions will thus miss non-regular solutions.
2Further remarks on continuity and smoothness are given in Appendix B.2.
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inactive currently active strictly active
h,j (W) <0
hj(w*) <0, u3=0 hj(w*) =0, u; =0 hj(w*) =0, 5 >0

Figure 2.1: Classification of inequality constraints.

differentiable, the second-order necessary condition for a KKT triple p* := (w*, A*, u*),
which satisfies the KKT condition (2.9), is given by

W Vw L(W*, X, u*)dw > 0 Vow € C(w*, u*). (2.14)

Thus, if the Hessian of the Lagrangian Vyw/L is positive semi-definite on the critical
cone dw € C, the solution w* is a local minimum. Similarly, the second-order sufficient
condition declaring a strict local minimum is given by

W VwL(W*, X5, u*)dw > 0 Vow € C(w*, u*), dw # 0. (2.15)

After listing the requirements for local minimisers of static OPs, the next section estab-
lishes the connection with dynamic OPs.

2.2 Dynamic Optimisation

When dealing with OPs for dynamic systems, the incorporation of the differential equa-
tions describing the system behaviour results in a dynamic OP. The basic principles of
dynamic optimisation and the link to static optimisation are presented in the following
sections.

Real-life systems are time-varying as well as generally nonlinear and stochastic to some
extent. This thesis neglects hybrid systems with integer states and is limited to idealised
systems. The mathematical background in this chapter is formulated considering con-
tinuous, input nonaffine, time-variant systems. These systems can be described by an
initial value problem using an ordinary differential equation system with a predefined
initial value xg and a vector-valued function f:

x(t) = f(x(t),u(t),t),  x(0) = xqo. (2.16)

Therein the state vector is represented by the function x(¢) : R — R™. The sys-
tem behaviour can be influenced by applying controls or inputs defined as functions of
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time u(t) : R — R™. Although neglecting hybrid systems, many physical systems can
be represented via the system class (2.16). In order to extend the applicability to sys-
tems with nonsmooth right-hand sides f, smooth approximations will be given within
this thesis.

2.2.1 Dynamic Optimisation Problems

Opposed to static OPs, the decision variables of dynamic OPs are elements of the Hilbert
space. Thus, dynamic OPs deal with decision variables that are functions and no longer
static parameters. Mostly, the decision variables are a function of time or a state vari-
able like the arc-length of a reference line. The objective for dynamic OPs becomes
a functional: a function of one or more functions. Calculus of variations enables the
derivation of optimality conditions for such OPs.

Optimal control searches for the trajectory or sequence of system inputs that yields an
optimal predefined objective. Dynamic systems are generally subject to input constraints
and often further constraints that possibly depend on the inputs and states. Hence, the
general dynamic OP for a system described by (2.16) is given by

i T(x(t), u(t), t7) = O(x(ts), t7) +/tof¢)(x(t),u(t),t)dt (2.17a)
st x(t) — £(x(t),u(t),t) =0 Vit € [to,t/], (2.17D)
c(x(t),u(t),t) =0 Vt € [to, ts], (2.17¢)
h(x(t),u(t),t) <0 Vt e [to,ts], (2.17d)
x(to) = Xo, (2.17e)
g(x(ty) tr) = (2.17f)

The cost functional J in (2.17a) to be minimised is comprised of the terminal cost func-
tion ¥ and the intermediate cost term ¢. The equality constraints (2.17b) ensure that
the system behaves according to the system equations (2.16). General equality con-
straints ¢ € R™ and general inequality constraints h € R™ are included via (2.17c)
and (2.17d), respectively. Furthermore, it is presumed that the constraint functions c
and h are of class C2. The initial condition xg and a general form of the final condition
with g € R™ are represented by (2.17e) and (2.17f), respectively. For the subsequent
optimality conditions, the functions 9, ¢, f, h, ¢ and g are assumed to be twice contin-
uously differentiable.

2.2.2 Optimality Conditions of Dynamic Optimisation Problems

Similar to the Lagrangian function for static optimisation (2.7), the Hamiltonian func-
tion H and extended Hamiltonian function H

H(x,u, A, t) = ¢(x,u,t) + A(0)T £(x,u,t) (2.18a)
H(x,u,\, 1, AL t) = H(x,u, N 1) + p()T hix,u,t) + A1) c(x,u,t) (2.18Db)

23



2 Optimal Control

are used for deriving the optimality conditions of the dynamic OP. The Lagrange mul-
tipliers A(t) € R, p(t) € R™ and A(t) € R™ are also called adjoint variables in this
context. Pontryagin’s Minimum Principle [160] yields necessary conditions for optimal-
ity, which are listed below without the star-exponent for the sake of clarity [152, p.254].
The Hamiltonian dynamical system to be solved is described by

x=Vy\H=f (2.19a)
A=-VH=-Vo—f'A—hTp—clA (2.19b)
VoH =Vud+fIA+hlp+clA=0 (2.19¢)

and must hold for ¢ € [ty,t¢]. Additionally, the equality constraints as well as comple-
mentarity conditions must hold for ¢ € [to,t]:

c(x(t),u(t),t) =0 (2.19d)
/Lihizo, i:1,...,nh (2.196)
1n>0 (2.19¢£)

The second-order necessary condition is given by the Legendre condition, which requires
an at least positive semi-definite Hessian of the extended Hamiltonian function

V2 H >0 Vtelt,t;] st Y ={duh®su=0;c,du=0} (2.19g)

with h® representing the vector of active inequality constraints. Moreover, assuming the
set of admissible controls

U(x,t) = {ulh(x,u,t) <0;c(x,u,t) =0}, (2.19h)

the following equation is required to hold:
H(x,u, A\, t) = min H(x,U, A t) Vte [to,ts]. (2.19i)

ueld(x,t)

Besides the boundary conditions

x(to) = %o (2.19j)
g(x(ty),ts) =0, (2.19K)
conditions for the final values are dictated by the transversality conditions
T
(V¥ + &Ly v = A) Lf 5xp =0 (2.191)
(H (x, w A\, t) + 9, + g, u) Lf 5tp = 0. (2.19m)

The resulting equations (2.19) represent a two-point BVP. In practice, only simple BVPs
can be solved analytically and the majority requires numerical approaches.

When trying to solve the above equations, it is possible that the input cannot be com-
puted via (2.19¢). This singular case can occur for instance when H is linear in u. The
solution to this problem is a special treatment [152, p.261] or the augmentation of the
objective with a small regularisation term that is quadratic in u [97, 116, 137].
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2.3 Solution Methods for Optimal Control Problems

Numerical methods for solving OCPs can be divided into three main groups: DP, IMs
and DMs. A qualitative comparison of the general methods is given in Table 2.1. The
individual methods are discussed in more detail below.

2.3.1 Dynamic Programming, Indirect Methods and Direct Methods

Dynamic programming is based on Bellman’s principle of optimality [7], which states
that the remaining part of an optimal trajectory from any intermediate point to the fi-
nal point of the optimal trajectory represents an optimal trajectory itself [12]. This is
exploited by dividing the OCP into many small OCPs that are solved by a recursive
procedure moving backwards from the final point. Continuous DP requires the solution
of a partial differential equation, called Hamilton-Jacobi-Bellman equation. However, a
solution to this equation can be very rarely computed analytically. Thus, mainly dis-
crete DP is applied, which yields an optimal control policy in dependence of the discrete
state grid points. The resulting solution represents the global optimum, even if the
OCP is nonconvex. However, this approach suffers from the well-known curse of dimen-
sionality: Computational complexity and memory requirement grow exponentially with
increasing number of states and inputs. Due to this limitation, classical DP is generally
only applicable to systems of small order. Approximate dynamic programming (ADP)
alleviates the dimensionality problem by introducing simplifications, like approximations
of the value function or the control policies, yielding a suboptimal solution [161]. For
systems that cannot be represented by an analytic model, Markov-Chains and proba-
bilistic characteristics are used in stochastic DP. Another remedy is given by DDP, which
computes a local solution using a quadratic Taylor expansion around a nominal trajec-
tory [141]. A backward pass identifies optimal, state-dependent controller gains that are
used in a subsequent forward pass to compute a new nominal trajectory via numerical
integration. This procedure is repeated until convergence. For unconstrained OCPs, the
solution can be computed analytically yielding a fast optimisation process in the back-
ward pass. However, various methods have been introduced to enable the consideration
of constraints [33, 202, 229]. Due to the dimensionality problem, classical DP is not

Table 2.1: Comparison of solution methods for optimal control problems.

Dynamic Indirect Direct
Programming Methods Methods
General idea backwards recursion BVP solution' SOP transformation?
Optimality global local local
Initialisation easy hard easy/medium
Accuracy medium /high high medium
Computing time high low low

'boundary value problem. 2 static optimisation problem.
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suitable for large-scale OCPs. ADP generally requires taking advantage of the problem
structure, which supposes to have a good understanding of the underlying OCP [161,
162]. Another drawback is that its success depends on a careful parameter tuning.
DDP often requires good initial nominal trajectories due to the successive approxima-
tion procedure and often only approximates constraints, e.g. by barrier methods. Thus,
large-scale OCPs have been mainly solved using indirect and direct methods when aim-
ing at accurate solutions and reasonable computation times [13, 29, 97].

Indirect methods require the analytical derivation of the necessary optimality con-
ditions presented in Section 2.2.2. Mostly, the resulting BVP (2.19) cannot be solved
analytically and requires a numerical solution of the discretised BVP-equations. In gen-
eral, the analytical expressions for the optimality conditions yield a higher accuracy and
more reliable error estimates than DMs provide [97]. However, initialising the adjoint
variables can be a challenging process since they have no physical interpretation [13]
and become more difficult with growing model complexity [29]. Moreover, the numerical
solution of the adjoint equations (2.19b) can be difficult due to their ill-conditioning [13,
p.129][154, p.72]. This results in a smaller domain of convergence requiring more ac-
curate initialisations compared to DMs. Additionally, the presence of path inequality
constraints requires an a priori estimate of the constrained-arc sequence [13, p.129].
Direct methods directly solve the OCP by transforming the infinite dimensional prob-
lem of finding optimal trajectories into a finite dimensional OP. This process called
transcription is achieved by discretising the input and, if applicable, also state trajecto-
ries using decision variables at individual grid points of the independent variable. The
resulting SOP can be solved with an adequate NLP solver. Since NLP solvers are de-
signed to converge with poor initial guesses [166], DMs are very robust regarding the
initialisation of the OCP. Furthermore, NLP solvers take advantage of the sparse struc-
ture of the OP, which reduces computational effort and memory usage [166].

Hybrid methods of DM and IM have been introduced to overcome the disadvantages
of both approaches [154, 196]. A DM can be used to compute an initial solution since
it is more robust regarding the initial guess. Then, the accuracy of this solution can
be improved by feeding it as initial guess into an IM. However, this still requires the
derivation of an initial guess for the adjoint variables.

2.3.2 Shooting and Collocation

Depending on the method for the satisfaction of differential equations, IMs and DMs are
each further divided into three classes: single shooting (SS), multiple shooting (MS) or
collocation [13, 166]. The properties of the individual approaches are discussed in the
following paragraphs and are compared in Table 2.2.

Single shooting methods discretise the input trajectories by selecting the inputs at
discrete points of the independent variable as decision variables of the OP. Values in
between these points are approximated using polynomial interpolation. The interpolated
input trajectories are used to numerically integrate the ordinary differential equations
(ODEs) describing the system dynamics, which yields exact state trajectories in every
time step. However, the numerical integration generates couplings between early control
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Table 2.2: Comparison of shooting and collocation methods.

Shooting’ Collocation
Inputs discretised polynomials discretised polynomials
States via numerical integration discretised polynomials
ODE-Accuracy?| exact on entire interval  exact at collocation points
OP-Size? SS: low, MS: medium high
Sparsity SS: low, MS: medium high
Robustness SS: low, MS: medium high

1'SS: single shooting, MS: multiple shooting. 2 ordinary differential equation.
3 optimisation problem.

inputs and later parts of the state trajectories, which can cause sensitivity problems: A
small change in early controls can have a great impact on the entire solution [29]. In
order to demonstrate this issue, let the behaviour of a single-state dynamical system
with state x and input u be given by the initial value problem

z(t) = f(z(t),u(t)) with x(ty) = 0. (2.20)

The coupling becomes apparent when exemplarily considering numerical integration via
the forward-euler method with fixed time step ¢, = t41 — tx, which is given by

Tyl = T+ ta f(ag, ug) (2.21)

with index k indicating the corresponding time step, e.g. xp = z(tx). Consider the first
three time instants:

x1 = xo+ta f (20, u0) (2.22a)
Ty = x1 +ta f (21, u1)
= z0 +ta f (zo,u0) +ta f (xo +ta f (20, u0) ,u1) (2.22b)
x3 = T3 +ta f (22, uz)
= z0 +ta f (z0,u0) +ta [ (x0 +ta f (w0, u0) ,u1) +
ta f(zo+ta f(z0,u0) +ta f (0 +ta f (20, u0),u1),uz2). (2.22¢)

Since the inputs at the individual time instants uy, represent decision variables, it becomes
evident that the interconnection between the decision variables in the states increases
over time. For nonlinear right-hand side functions f, this effect is particularly disadvan-
tageous. These potentially highly nonlinear equations with strong couplings enter the
OP via constraints and greatly deteriorate its solvability. The situation is even worse
if nonlinear constraints have to be considered. Moreover, for unstable or ill-conditioned
system dynamics, the numerical integration can diverge to enormous values especially
for long integration intervals. Although there are numerical quadrature methods with
improved stability properties, these methods generally require longer computation times.
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Multiple shooting methods divide the time interval into subintervals on which the
numerical integration is performed. The states at the interval margins represent addi-
tional decision variables and continuity constraints are introduced to ensure that the
boundary points of the individual integration segments coincide. The shorter intervals
improve the robustness of the numerical integration and reduce the couplings between
inputs and states introduced by the numerical integration (2.22). Although the OP
grows in size, the solvability of the OP can be enhanced due to increased sparsity. The
numerical integration on the individual intervals can be performed in parallel to reduce
computing time.

Collocation methods apply the discretisation and polynomial approximation for both
the input and the state trajectories. The satisfaction of the system dynamics is achieved
by introducing equality constraints at certain knot points, called collocation points.
Thus, the problem increases in size and the exact fulfilment of the system dynamics
is only guaranteed at these generally roughly spaced points. However, this procedure
results in minimal couplings between input and state decision variables, leading to a far
more sparse structure [29]. Considering example (2.22), the individual states x; now
also represent decision variables. Hence, the interconnection is reduced to decision vari-
ables that are locally together in terms of the current and preceding time instant. NLP
solvers, like IPOPT [222], take advantage of this sparsity, reducing computational effort
and memory usage [166]. Collocation methods differ in the order and type of approx-
imating polynomials. Generally, high order polynomials exhibit a higher accuracy but
usually lead to less sparsity [118]. Furthermore, the selection of the polynomial order
as well as the number and position of the collocation points can be controlled by an
adaptive scheme to further improve accuracy and computation time [155].

2.3.3 Model Predictive Control

The preceding sections presented various optimisation methods for the solution of OCPs.
The main drawback of optimal control is the long computation time compared to other
control strategies. The computational effort of OPs increases with the number of deci-
sion variables. If shooting methods are used, a shorter time horizon also yields simpler
constraints with less couplings between the decision variables. This increased sparsity
improves solvability of the OP. Furthermore, numerical integration is more stable for
short integration intervals.

Using optimal control in real-time applications requires a sufficiently fast solution of
OPs, which motivates the concept of MPC. MPC reduces computing time by consider-
ing a limited time horizon for the OP and successively shifting this time window. Mostly,
receding horizon control is used, which looks a few time steps into the future but not in
the past [61]. The horizon must be sufficiently long for an adequate system reaction and
as short as possible to reduce computation time. Model uncertainties, environmental
changes and disturbances cause the real system behaviour to differ from the modelled
one. Closing the control loop can provide some reactivity so that these methods can be
used in real-life applications. This is achieved by feeding back a measured or estimated
state, which is used as initial value condition for the OCP at the current time instant.
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Generally, only the current value of the computed control trajectory is applied to the
system and the remaining values are dismissed. When the next state measurement or
estimate arrives, a new OCP is solved based on the updated value. However, considering
only limited time horizons in the presence of constraints requires precautions to ensure
recursive feasibility: The controller must avoid driving the state to a region where the
OP does not have a solution [122]. Furthermore, the stability of the closed loop system
must be ensured when applying MPC. Finite horizon MPC generally requires additional
constraints and objective terms to ensure these features [106, 139, 165]. Most techniques
make use of Lyapunov functions to ensure stability of the closed loop system. In con-
trast, passivity based MPC, which is also applicable to non-passive systems [58, 164],
guarantees stability by introducing additional constraints ensuring passivity of the sys-
tem to a fictitious output.

As mentioned, the computational complexity and thus solution time of OPs scales with
the number of decision variables. However, the type of scaling depends on the utilised so-
lution method as well as the class and structure of the OP [167]. A popular method that
is often used to reduce the size of OCPs is condensing: Eliminating the state decision
variables yields a dense OP of smaller size [17]. However, the growth of computational
complexity with the horizon length is far slower for sparse problems than for dense prob-
lems. Thus, partial condensing can be used to find a trade-off between problem size and
sparsity enhancing computation time [6].

Considering a moving, limited horizon can also be suitable for offline optimisation tasks
when aiming at reducing computation time. In a racetrack setting, the solution is how-
ever only suboptimal since the decisions are based on a limited preview. Additionally,
MPC requires an appropriate design of the horizon length and further precautions to
avoid infeasibility and guarantee stability. Thus, this thesis does not consider MPC.

2.4 Numerical Optimisation

Numerical optimisation is a field in applied mathematics that uses numerical methods
to solve mathematical OPs. A classification of OPs is given in Section 2.4.1 and popular
approaches for the numerical solution of OPs are outlined in Section 2.4.2.

2.4.1 Classification of Optimisation Problems

OPs can be classified by various properties: convexity, linearity or type of nonlinearity,
continuity of decision variables and smoothness. Fig. 2.2a provides an overview for the
classification of OPs. Convexity represents arguably the most important property. If the
OP is convex, any locally optimal solution of the problem is the global one. This reduces
the probability of iterative methods getting stuck at suboptimal solutions. There are
efficient and robust solvers for convex OPs capable of computing the global optimum
with high accuracy and generally short computation times. Linearity represents a sec-
ond decisive property of OPs. Generally, the more linear an OP is, the better it can be
solved in terms of robustness and convergence speed. The type of nonlinearity deter-
mines whether the problem is convex and which type of convex OP is given, as depicted
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Figure 2.2: Classification of optimisation problems.

in Table 2.3. Nonconvex OPs can be further classified into NLP problems, IP problems
and MIP problems. NLP problems contain only continuous decision variables and IP
problems only discrete ones. However, MIP problems with continuous and discrete deci-
sion variables are more often encountered than OPs with solely discrete variables. In this
thesis, NLP problems are also distinguished regarding their smoothness since there are
many solvers that use derivative information to deduce appropriate descent directions.
The computational complexity of the individual OP classes is qualitatively assessed
in Fig. 2.2b. Linear programming (LP) problems are inherently convex and represent
one of the best solvable classes of OPs. Efficient algorithms have been developed to
solve these problems in polynomial time [91]. Traversing into the domain of continu-
ous but nonlinear OPs increases complexity. However, efficient solvers exist for convex
NLPs. For instance, convex QP problems have been proven to be solvable in polyno-
mial time [107]. Although nonconvex NLP problems are generally harder to solve, quite
robust solvers have been developed that are capable of reliably solving these problems,
albeit they generally require longer computation times. Although OPs with discrete
variables are inherently nonconvex, they are referred to as convex, if dropping the inte-
grality constraints results in a convex problem. Generally, the solution to integer linear
programming (ILP) problems is identified by solving a sequence of efficiently solvable
LP problems resulting in a moderate computational complexity. MINLP problems are
generally hard to solve however there has been significant progress in this field enhancing
the solvability of these problems, especially for convex MINLP problems [101, 110].
Due to its importance in operations research and since this thesis also deals with the
convexification of OPs, convexity is discussed in more detail below. A set S € R™ is con-
vex if a straight line connecting any two points within the set w1, wy € S with wy # wy
is contained in the set [19, p.21]:

awi + (1 —a)we € S Va €[0,1]. (2.23)
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A

Figure 2.3: Examples for convex and nonconvex sets. The pentagon is like all polyhedra, which
are defined by a set of affine equality and inequality constraints, convex [19, p.31].
The star shaped set is nonconvex since the depicted line segment between two
admissible points is not contained in the set. The depicted triangle is nonconvex
since some boundary points are not included in the set, thus the illustrated line
leaves the set.

Examples of convex and nonconvex sets are depicted in Fig. 2.3. Similarly, a func-
tion f:D — R is convex if its domain D is a convex set and Jensen’s inequality is
satisfied for any two points w1, wo € D [19, p.77]:

flaw) + (1 —a)wa) < af(wi) + (1 —a)f(w) VYael0,1]. (2.24)

Furthermore, if f is twice differentiable, it is convex if its domain D is a convex set and
its Hessian is positive (semi-)definite [19, p.71]:

V2 f(w)>0 VYweD. (2.25)

For a function with D = R, (2.25) reduces to f”(w) > 0 representing the requirement
of a non-negative curvature. Convex sets and convex functions are linked via the epi-
graph: A function is only convex if its epigraph, which represents the set above the
function, is a convex set [19, p.75]. The standard form of a convex OP [19] with decision
variables w € R"v is given by

min J(w) (2.26a)

w e R™
s.t. ci(w)=al w+b =0 Vi=1,...,n,, (2.26b)
hj(w) <0 Vji=1,...,n4 (2.26¢)

with a; € R™ and b; € R. The n. equality constraints (2.26b) are affine® thus linear
in the decision variables. Furthermore, the cost function J(w) as well as the nj func-
tions hj(w) defining the inequality constraints (2.26c) are convex in w. The fact that
only linear equality constraints are convex can be demonstrated as follows. An equality
constraint ¢(w) = 0 can be rewritten in terms of inequalities:

c(w) <0 (2.27a)
c(w) > 0. (2.27b)

3 Affine constraints are linear in the decision variables and can have additional constant terms.
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Table 2.3: Classification of convex optimisation problems.

‘ objective equality constraints inequality constraints
LP linear linear linear
cQP |convex quadratic linear linear
cQCQP | convex quadratic linear convex quadratic
SOCP linear linear second-order cone
SDP linear linear semi-definite cone
ncGP! posynomial monomial LHS? posynomial LHS?

! nonconvex form of geometric program, which can be transformed into convex form.

2 left-hand side of equation.

The equality constraint holds if both inequality constraints (2.27a) and (2.27b) are sat-
isfied. If ¢(w) is a convex function, (2.27a) represents a convex inequality constraint
but (2.27b) is nonconvex. For a concave function ¢(w) it is vice versa. Both inequality
constraints can only be convex at the same time, if ¢(w) is an affine function.
The type of objective and inequality constraints define the subclass of convex OP as de-
picted in Table 2.3. Following hierarchical structure is given for the subclasses of convex
OPs:

LP C cQP C cQCQP c SOCP c SDP. (2.28)

An LP problem is comprised of an affine objective function as well as affine equality and
inequality constraints

. T
min qy W+ 19 2.29a
weRw U ( )
s.t. Aw+b =0, (2.29b)

Gw+k<0 (2.29¢)

with qg € R™, ryg € R, A € R"*™ b € R" G € R™ "™ and k € R" [19, p.146]. A
convex QP problem is given in case of affine constraints and a convex quadratic objective
function

. L o T
min —w' Pow+qy w+1rp 2.30a
N 0 (2.30a)
s.t. Aw+b=0, (2.30b)

Gw+k<O0 (2.30¢)

with matrix Py € R™*™ being positive (semi-)definite Py > 0. A convex QCQP
problem arises if also convex quadratic inequality constraints are present

: I 7 T
min —w' Pow+qy w4+ g 2.31a
ol g 0 (2.31a)
s.t. Aw+b=0, (2.31b)

1
inijJrquerrjgo Vi=1,...,np (2.31c)
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with r; € R, q; € R™ and positive (semi-)definite matrices 0 < Py, P; € R™*"w [19,
p.152]. SOCP problems represent a further generalisation with the inequality constraints
representing a second-order cone

w lénﬁnw at'w (2.32a)
s.t. Aw+b=0, (2.32b)
IG;w+kjll, <d] w+l; Vi=1...n, (2.32¢)

with G; € R™*"™ k; € R", d;j € R™ and [; € R [19, p.156]. More general posi-
tive semi-definite cone inequality constraints yield a semi-definite programming (SDP)
problem, which is defined as

. T
min qy W 2.33a
o Din, 9o (2.33a)
s.t. Aw+b=0, (2.33b)
Nw
F(w) =Fo+ > w;F; >0 (2.33¢)
j=1

with symmetric matrices Fo, F; € R"*™ and positive semi-definite matrix F(w) > 0
[216]. Geometric programming (GP) problems represent a special class of nonconvex
OPs defined as

min  po(w) (2.34a)
w e R
s.t. mi(w)=1 Vi=1,...,n,, (2.34b)
pi(w) <1 Vi=1,...,n (2.34c)
with m; in equality constraints (2.34b) being monomials and pg in the objective (2.34a)

as well as p; in the inequality constraints (2.34c) being posynomials [19, p.161]. The
decision variables are limited to positive, real values. With w € R"?, a monomial and

>0
posynomial is given by
m(w) =g- (wi' ... - wy™) with g >0, e= {el enw} € R™ and (2.35)
K
p(w) = ng . (wfk’1 L wzlfﬂ‘"”) with gr > 0, e = [ek,l €k,nw} € R"™  (2.36)
k=1

respectively. Thus, a posynomial represents a sum of monomials. Although (2.34)
is nonconvex, it can be cast into its convex form by considering the transformation
w; = log(w;) VI =1,...,ny. The resulting convex OP is given in [19, p.162].

This thesis deals with the solution of nonsmooth NLP problems. Many engineering
problems require nonconvex constraints or a nonlinear, potentially nonsmooth, differen-
tial equation system to describe the system behaviour. An optimal control approach for
solving nonsmooth, nonconvex NLP problems is presented in Chapter 3. This proce-
dure enables the computation of optimal solutions for many engineering problems. The
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approach aims at solving such problems with high accuracy but requires longer compu-
tation times. An alternative approach that aims at low computation times is presented
in Chapter 5. The SSC method greatly reduces computation time by iteratively solv-
ing convex QP subproblems of the original nonconvex OP. The applicability is however
limited to a certain class of nonconvex problems: nonconvex OPs that possess a con-
vex quadratic objective, equality constraints that are affine or exhibit only univariate
nonlinearities and inequality constraints depicting convex sets or ZCSs.

2.4.2 Numerical Solution of Optimisation Problems

This thesis employs numerical solvers using derivative information to solve OPs. Start-
ing with an initial guess, derivative information is used to compute a descent direc-
tion for iterative improvement of the solution. Focussing on Newton-type optimisa-
tion methods, solutions to the KKT equations (2.9) are computed by iterating on the
triple p* = (w*, A*, u*) until reaching a solution of sufficient accuracy. There are two
major Newton-type approaches, which differ in the treatment of the complementarity
conditions (2.9¢)-(2.9¢): SQP and IPMs. Both methods are presented and compared in
this section.

Newton’s Method Newton’s method can be used to solve nonlinear equation systems
or minimisation problems. In order to numerically compute the roots of a differentiable
nonlinear, vector-valued equation system F(x) : R — R™, a first-order Taylor expan-
sion (B.3c) is used to approximate the equation system at a point xj close to the actual
zero x* and the estimated function is set to zero:

F(x) ~ F(x;) + Fx(xx) Ax; = 0. (2.37)

Solving for the direction Ax; = x — xj enables formulating a policy for successively
computing better approximations of the root:

Xk4+1 = Xi + Axp = X, — Fx(Xk)il F(Xk). (238)

Newton’s method can also be employed to compute stationary points of a scalar-valued
objective function J(w) used in OPs. Inserting F(x) = Vw.J(w) into (2.38) yields an
equation for iteratively computing the roots of the cost function gradient

Wil = Wi — Vawd (W) 7! Vi d (wg), (2.39)

that corresponds to applying a second-order Taylor expansion of J around wy, [103, p.87].
The prerequisite for using equation (2.39) is a positive definite Hessian V2, J(wy),
which has to be computed in every iteration step. Due to the quadratic convergence in
a close neighbourhood of the root, Newton’s method tends to converge faster compared
to first-order approaches like the gradient descent method, which exhibits only linear
convergence. Since Newton’s method suffers from a small area of convergence around
the local optimum, it can be combined with a line-search algorithm [148, p.56] or a
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trust-region approach [148, p.92] to yield global convergence under certain conditions.
Furthermore, Quasi-Newton methods reduce the computational effort by using a posi-
tive definite approximation of the Hessian to compute the search direction for the next
iterate [148, p.46]. Moreover, there are various algorithms for the modification of an
indefinite Hessian yielding a positive definite approximation [148, p.48].

Sequential Quadratic Programming In this paragraph, active-set SQP methods are
considered. An equality-constrained QP approach is assumed, which converts the
inequality-constrained OP (2.1) into equality-constrained subproblems [148, p.533]. By
iteratively guessing which inequality constraint will hold with equality at the optimal
solution, a subset called working set is formed in every iteration. Only the active in-
equalities, denoted in the following by h®, are considered as equality constraints in the
modified OP

w Ién]l%nw J(w) (2.40a)
s.t. c(w) =0, (2.40b)
h%(w) = 0. (2.40c¢)

In case of an incorrect guess, the working set is updated by removing or adding inequality
constraints until the optimal solution is identified. Thus, the constrained OP is solved
by wandering along the border of the admissible set until the optimum is reached [152,
p.117]. The Lagrangian function belonging to the modified OP (2.40) is given by

L(w, A p)=J(w)+ATe(w) + p"h%(w) (2.41)

with the corresponding KKT equations

Vw L(W* X5, 1*) = Vo J(W*) + co (W) TA* + he (w)Tp* =0 (2.42a)
VAL(WS X, ) =c(w*) =0 (2.42b)
VLW, X, p*) = h*(w*) = 0. (2.42¢)

The nonlinear equation system (2.42) can be solved via Newton’s method using the
linearised equation system

VWJ‘WJC + C&’Wkkk + hgvT‘Wkp’k: v%\/wﬁ‘pk CW|Wk h%v‘wk Awk
Clw, + | cwlw, 0 0 AN | =0 (2.43)
h%|, h% |w, 0 0 Apy,
—_———
=F(px) =Fp(pr) =Apy

at the current iterate py = (Wi, Ak, g). Solving equation (2.43) using the update
policy (2.38) provides the search direction Apy for the computation of the subsequent
iterate

Witl = Wi+ AWg, A1 = A+ AN, fpaq = pp + Apy (2.44)
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which enables the reformulation of (2.43) resulting in

Vwdw, v%vw£|Pk Cwlw, hylw,| [Awg
clwe |+ | cwlws 0 0 Akt1]| =0. (2.45)
ha|Wk h3v|Wk 0 0 uk+1

Equation (2.45) can be interpreted as first-order optimality condition of the following
QP problem [148, p.531][152, p.114]:

1
min — AW} V2 LWy A, ) AWk + Vi J (W) Awy (2.46a)
Awy € R™ 2
s.t. Vwe(wi)? Awy + c(wy) =0, (2.46b)
Vwh®(wi)? Awy, +h%(wy) = 0. (2.46¢)

Thus, the application of SQP methods corresponds to a successive approximation of
the problem (2.40) around the current iterate pyp = (W, Ay, ;) using Taylor series
expansion. The objective is quadratically approximated and the constraints linearly
yielding a QP problem.

Interior-Point Method Opposed to active-set methods, IPMs reach the optimum from
within the admissible set by strictly satisfying inequality constraints using a barrier
parameter to control the distance to the border of the admissible set [152, p.117]. This
procedure avoids the combinatorial complexity of active-set methods, which is especially
advantageous for large-scale OPs [152, p.118]. Converting inequality constraints into
equality constraints using slack variables s € R™ yields the OP

min J(w 2.47a
w e R™ s e R" W) ( )
s.t. c(w) =0, (2.47b)
h(w) +s =0, (2.47¢)
s>0 (2.47d)
with the Lagrangian function
Lw,s,\ 1) =J(w)+ Alc(w) + p? (h(w) +5) —vls. (2.48)

Relaxing the complementarity conditions of the corresponding KKT equations in (2.9)
via a barrier parameter? 7 results in

VwL(W*, 85, A%, %) = Vo J (W) + co (W) TA* + hy, (w*) T p* =0 (2.49a)
VAL(W*, s*, A%, p*) = c(w*) = (2.49b)
Vo L(w*, 85, A%, 1u*) = h(w*) +s* = (2.49¢)
wisy =1 Vi=1,...,np (2.494d)

s*>0, u*>0 (2.49¢)

“The conditions in (2. 49) can also be derlved using the concept of barrier methods with the barrier
function ®(w,7) = -7 Z"h In(—h;(w)), hence the term barrier parameter [152, p.106, 118].
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2.4 Numerical Optimisation

with VgL = 0 dictating v = p. Using S = diag(si,...,Sn,), M = diag(ui, ..., fin,)

T
and e = [1 . 1} € R", the nonlinear equation system given by (2.49) is solved via
Newton’s method using the so-called primal-dual system

Vwd|w, + C&‘Wkkk + h&‘Wkﬂk V%vwﬁ‘pk 0 Cwlw, hwlw,| [Awg

Sls, i, — T € n 0 M|,4k 0 Sls, Asy, _o
C‘Wk Cw‘wk 0 0 0 AN
h|w, + sk hy |w, I 0 0 Apy,
=F(p) =Fp(pk) =Apg
(2.50)

at the current iterate py = (Wg, Sk, Ak, pbg). Solving equation system (2.50) via the
update policy (2.38) yields the search directions Apy, at the current iterate for the primal
variables w,s and dual variables A, . The solution is used to compute the subsequent
iterate according to

Wil = Wi + Qp i AWy, Sgi1 =Sk + Op Asy (2.51a)
A1 = A+ ag g AN, Hir1 = B+ gk Apy, (2.51b)

whereas the current step widths oy, and agj are chosen such that the boundary of
inequalities (2.49¢) is not reached too fast [152, p.117]. For vanishing barrier parame-
ter 7 — 0, the solution of the relaxed equation system (2.49) converges to the minimiser
of the original problem. Thus, the barrier parameter 7 is successively reduced. The
algorithm stops when a termination condition of the form

maX{HVWﬂwk + Ca’wk/\k + hg]wkuk

; S’Sk:u’k_Te ) C|wk 5 h|wk+SkH}§5
is satisfied. The convergence properties of IPMs greatly depend on the adaptation
strategy for the barrier parameter 7 with several methods existing in literature [152,

p.120]. For a deeper analysis of individual IPMs, the reader is referred to [63].

Comparison of Newton Methods and Selected Solvers IPMs reach the optimum
from within the admissible set by using slack variables to describe the distance to the
set boundary. Thus, opposed to the active-set strategy of SQP methods, there is no need
figuring out the active inequality constraints, which represents a problem of high combi-
natorial complexity. Due to their constant computational load when solving instances of
related problems, IPM are often preferred for solving QP problems [61]. Another benefit
are polynomial runtime guarantees for various IPMs [9, 146]. As a result, IPMs tend to
have a faster convergence rate and are well suited for solving large-scale, sparse prob-
lems [148, p.564]. Opposed to IPM [86], SQP methods greatly benefit from warmstarting:
Reusing the solution from the previous time instant may greatly reduce computational
load [61, 167]. For the real-time iteration scheme for nonlinear MPC [48] introduced in
Section 1.2, SQP methods provide a better tangential predictor than IPMs: The predic-
tor delivered by SQP methods is also accurate across active-set changes [49, 61]. Thus,
SQP methods have been used very successfully for real-time capable MPC.
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2 Optimal Control

In this thesis, the entire horizon of the OPs is considered. Thus, the beneficial warmstart-
ing properties of SQP methods, which are especially useful within an MPC framework,
do not come into play. In the first part of this thesis, IPOPT is employed for the solution
of large-scale, sparse NLP problems. This solver uses a primal-dual IPM employing a fil-
ter line-search, heuristics and further correction measures for performance improvement
and robustness [222]. The second part of the thesis deals with convex programming
problems, which are solved via Gurobi [74]. By default, this optimiser uses an IPM to
solve convex QP problems and a concurrent optimiser combining an IPM with a sim-
plex method for solving LP problems. Although initially developed for LP problems,
it is possible to apply the simplex method also to convex QP problems [228]. Detailed
information on the simplex algorithm is given in [148, pp.355-392].
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3 Nonlinear Programming for Nonconvex
Minimum-Time Optimal Control

The first goal of this thesis is solving complicated OCPs focussing on accuracy rather
than computation time. Thus, this chapter presents a framework using nonlinear pro-
gramming to solve a broad class of nonconvex OCPs. Direct Hermite-Simpson collocation
is used to convert the dynamic OP into a static one. The framework is implemented using
the programming language Julia [14] with the embedded modelling language JuMP [52]
for mathematical optimisation. The necessary derivative information is computed sym-
bolically in advance by a forward mode automatic differentiation algorithm [169] included
in JuMP. Thus, the gradients and Hessians are available in machine precision hence high
accuracy. IPOPT is selected for the solution of the nonconvex OP. This chapter is based
on our publications [185] and [183].

The class of OCPs for which the framework is applicable is presented in Section 3.1. In
order to simplify the OCP and improve convergence rate, several preliminaries are imple-
mented. Approximations for a smooth OP are presented in Section 3.2. The differential
equations are reformulated in Section 3.3 to employ spatial information as independent
variable. A scaling procedure normalising the OP is presented in Section 3.4. The refor-
mulated dynamic OP is then transcribed into a static one. For this purpose, Section 3.5
elaborates the transcription process using Hermite-Simpson collocation. The resulting
SOP is presented in Section 3.6. Section 3.7 concludes the chapter by comparing the
approach with other existing methods, concentrating on lap time optimisation.

3.1 Specification of Optimal Control Problem

Aiming at solving a large class of nonconvex OCPs, the framework considers systems
that can be characterised by a continuous, input nonaffine, time-invariant differential
equation system

x(t) = £(x(t),u(t), p) (3.1a)

with state vector x € R™* input vector u € R™ and the adjustable but time-invariant
model parameters concatenated in the vector p € R". For simplicity, static model
parameters are omitted in (3.1a). Since collocation will be employed, the trajectories
x(t) and u(t) will be represented by decision variables. Additional time-invariant deci-
sion variables or optimisation parameters will be used for p to determine optimal model
parameters. For the moment, the system equations are not required to be continu-
ously differentiable®, thus f € C° is allowed. It is assumed that the states, inputs and

SFurther remarks on continuity and smoothness are given in Appendix B.2.
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3 Nonlinear Programming for Nonconvex Minimum-Time Optimal Control

parameters are bounded by box constraints according to

x(t) € X = [x,%], (3.1b)
u(t) e =[u,a] and (3.1¢)
peP = [E,ﬁ} - (3.1d)
Furthermore, the OCP can be subject to general equality and inequality constraints
c(x(t),u(t),p) =0 and (3.1e)
h(x(t), u(t),p) < 0, (3.1)

respectively. Both constraint functions ¢ and h can be nonsmooth thus of class C. The
goal of the OCP is minimising the objective

J(x(t),u(t), p), (3.1g)

which will be twice continuously differentiable due to the contemplated problems within
this thesis. As previously mentioned, solvers using derivative information require the
OP to be sufficiently continuously differentiable. Thus, the next section discusses how
discontinuities in f, ¢ and h can be approximated, enabling the use of such algorithms.

3.2 Smoothing of Optimal Control Problem

The applied solver IPOPT uses an elaborate IPM to compute the optimal solution.
Considering the corresponding equation system (2.50) that is solved for IPMs, discon-
tinuities need to be smoothed in order to guarantee twice continuous differentiability
of the functions f, h, ¢ and J. Assuming 0 < ¢ < 1 and ¢ > 1, following smooth
approximation is adopted for absolute value functions:

abs(z) = |z| = V2?2 4+ ¢ = abs.(x). (3.2)

Applying (3.2) to the maximum and minimum function results in

L [(x +y)+/(z—y)2+ 5} = max.(z,y) (3.3a)

max(z,y) = }[(w—Fy) + |z — y” ~ 5

2

min(z,y) = %{(m +y) — |z — y|} ~ ;[(a: +y)—/(r—y)?*+ e} =: min.(z,y), (3.3b)

respectively [158]. Furthermore, the sign-function can be approximated by

> —: sign(x). (3.4)

This can be used to represent a smooth switching function with switching point xgy:

sign(z) =~ tanh (cx) = tanh (i

fsw(xa l'sw) = — [Sign(az - JJSW) — 1}

(3.5)

~
~

[tanh (c (x — Tgw + 8x)) — 1] = fow,e(T, Tsw).

N = DN =
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3.3 Reformulation of Differential Equations

=abs(z) ) =max(z,0) ) =sign(z) ) = fow(2,1)
abs.(x) max.(z,0) sign. () fowe(z, 1)
(a) Absolute value func- (b) Maximum function. (c) Sign function. (d) Switching function.

tion.

Figure 3.1: Smooth versions of discontinuous functions.

Therein a small shift variable 0 < ¢, < 1 is introduced to avoid violating the switching
point and approximate the boundary from below. The original functions with their cor-
responding smooth approximations are illustrated in Fig. 3.1. After implementing these
smoothing measures, the smoothed differential equations will be reformulated in the
subsequent Section 3.3 in order to transition to spatial information as independent vari-
able. This transformation is especially useful for minimum-time problems with spatially
dependent path constraints.

3.3 Reformulation of Differential Equations

The system behaviour is described by the differential equation system (3.1a) with time
as independent variable. For minimum-time optimal control applications, it can be
advantageous to reformulate the system equations to depend on spatial information
rather than time. When the final position is fixed, this approach transforms the OCP
with free final time to a problem with fixed final value for the independent variable [158,
173]. The time information is then decoupled from the path geometry and inputs and
states are explicitly connected to the spatial variable. Furthermore, some geometric path
limitations, such as track boundaries and obstacles, can then be formulated via simple
box constraints. For industrial robots, this procedure is illustrated in [219, p.104]. The
approach is adopted for planar point-to-point motions of vehicular systems, which is
subsequently presented.

3.3.1 Curvilinear Coordinates

The system motion can be defined in dependence of a spatial variable like the arc
length s of a predefined reference curve R, as illustrated in Fig. 3.2. This reference line
can be characterised by its curvature ki over its arc length. Two coordinate systems are
introduced for further considerations. The inertial frame with coordinates (z',y', z') rep-
resents a static world coordinate system. The body frame with coordinates (z®,y”, %)
is linked to the COG of the moving object capturing the position and orientation of the
object. The yaw angle 1 represents the rotation of the body coordinate frame around
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3 Nonlinear Programming for Nonconvex Minimum-Time Optimal Control

Figure 3.2: Moving object in relation to reference line R and path boundary B.

the z'-axis of the inertial coordinate frame. Furthermore, the longitudinal and lateral
velocity of the moving object given in the body coordinate frame is represented by v, and
vy, respectively. These speed components compose the total velocity of the object vio.
For describing the system behaviour relative to the reference curve, the position of the
object has to be associated with a point on the reference line. Considering a current
point Pg at s on the reference curve, O depicts the angle around the z'-axis to the
tangent of the reference curve in this point. The deviation between this angle and the
vehicle orientation defines the tangent error angle © = 1) — ©x. The normal distance be-
tween the tangent and the COG of the object is represented by the lateral deviation dy.
The differential equations describing these curvilinear coordinates are given by [189]

vz cos(0) — v, sin(O)

Sg = 1 — durin ) (3.6a)
dr = v, sin(0) + v, cos(©) and (3.6b)

The derivation of (3.6) is demonstrated in Appendix A.3. Introducing these coordinates
enables describing path boundaries B using simple box constraints with a possibly arc
length-dependent distance variable dz, which represents the half-width dz = dp,, when R
is the centre line. An extension to three-dimensional track profiles is presented in [157].
The system description depending on the arc length requires a transformation of the
differential equation system (3.1a) according to

ox  dx Ot 1

/ . 1
=X _ X g .
X (SR) 8573 dt 8873 XS‘R 'éR (3 7)
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3.3 Reformulation of Differential Equations

Thus, a drawback of transformation (3.7) is the introduction of additional nonlinearities
into the differential equations. Time information can be retrieved by considering the
differential equation

ot 1
t'(sg) = =— = — with (s = 0. 3.8
(50) = 3= = 5 (52.0) (33
For a full description of the system in relation to the reference curve, the state vector is
augmented according to

Xref(S’R

%(sx) = l x(sx) ] ER™ with Xu(se) = [t(se) di(sx) O(s0)] . (3.9)
R ) ref\SR R r\SR R . .

Using (3.6), the augmented differential equation system is given by

x'(sr) = f(x(sz),u(sg),p) with f= i

SR

[fT 1 de @R]T. (3.10)

Due to the spatial reformulation, the differential equations in (3.10) depend on the cur-
vature kg (sg) of the reference trajectory. Since the employed numerical solver utilises
derivative information, a nonsmooth curvature trajectory can result in poor solver per-
formance. Thus, the following section presents an elaborate smoothing approach for
measured position data of reference trajectories.

3.3.2 Reference Path Preprocessing

The curvature of the reference curve enters the model equations via the Frenet equa-
tions (3.6a) and (3.6¢c) as well as via the transformation to spatial dependency (3.10).
For good convergence properties of derivative-based numerical solvers, the curvature
trajectory kg (sz) is required to be sufficiently smooth. For real-world applications, it is
desirable to generate appropriate reference trajectories from measured coordinates. This
section showcases how a smooth curvature trajectory can be derived from 2D-position
data. The approach has been first presented in [185] for racetrack applications however
it is applicable to other use cases as well.

The starting point are measured position coordinates x,,(S,) and ¥, (s;,) of the refer-
ence curve available in dependence of the arc length s,, € [$/,,0, Sm,f]. The specification
in dependence of the arc length can be achieved using pre-written software like [40]. The
geometric relations between position and curvature are given by

’ 8$m ! aym —
. D5 cos(Op,) Ym D5, sin(©,,) (3.11a)
©,, = arctan (if”) (3.11b)
o = @ = 0Om _ YmZm = YmZm (3.11c)
Osm  al,” +u,
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(a) Curvature of racetrack centre (b) Coordinates of racetrack centre line.

line.

Figure 3.3: Track data preprocessing.

Therein the tangent angle and curvature are denoted by ©,, and ,,, respectively. The
crux of the matter is that the curvature is computed via (3.11c) using derivatives of
measured data, which amplifies the noise. This results in a highly oscillating curvature
trajectory as displayed in Fig. 3.3a. However, smoothing the curvature data manipulates
the position data: Computing the x-y-coordinates corresponding to a smoothed curva-
ture trajectory requires a double integration process, which accumulates errors and can
hence lead to an unclosed circuit or a strong deviation from the original x-y-trajectory.
Thus, the following paragraph presents an elaborate smoothing approach yielding a
smooth curvature trajectory that depicts the original x-y-coordinates.

Approximating the curvature trajectory with piecewise cubic polynomials inherently
guarantees smoothness since these polynomials are of class C?. Furthermore, the an-
alytical derivative and integral of the piecewise polynomial form is straightforward.
Oscillations are reduced by appropriate positioning of the knot points used for the
spline fitting. The optimal positions of ngr knot points accumulated in the vec-

tor sg = [Sg,0,-- - Srnp—1] € R™® are identified via the multi-objective OP

ne—1

LIPS it (5ei) + (Em(se) = Tr(5e0))® + (Um(5es) — v (5e,1))? (3.12a)
= smooth,i =Jht,i

st. Sr,0 = Sm.0, (3.12b)
Sm0 < Srj < Smopr Vi=1,...,ng —1, (3.12¢)
Spj < Spj+1, Vj=0,...,ng —2, (3.12d)
Orm. = Oro — 27, (3.12¢)
Adyg p, = —sin(Og,0)(zz,0 — Trn.) + €08(Or0)(Yr,0 — Yr,n.) = 0. (3.12f)

The cost function in (3.12a) is comprised of two objectives. A smoothing objective
Jsmooth,s that minimises the derivative of the curvature generating a preference for a
smooth curvature trajectory. The fitting objective Jg;; penalises errors between the
original and fitted position trajectories. The individual objectives are weighed relatively
to each other using the scaling parameter a4, trading curvature oscillation for position
error. The number of spline knot points ny is kept rather low to reduce optimisation
time. However, the curvature and position trajectories are evaluated on a fine and uni-
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3.3 Reformulation of Differential Equations

form grid of n. evaluation points s, € [Sg 0, Sr.nr—1] € R™ via spline interpolation. The
finer grid n. > ny is chosen to avoid errors between the original and fitted position
trajectories in between knot points. The first knot point is fixed using the equality
constraint (3.12b). Inequality constraint (3.12c) ensures that the knot points lie within
the maximum arc length of the measured trajectory. A strictly increasing arc length
is enforced via (3.12d), which is implemented as linear matrix inequality constraint.
Considering racetrack applications require a closed circuit, equality constraints for the
tangent angle (3.12e) and the lateral distance (3.12f) are introduced for the final knot
point.

Although the curvature can be directly computed via (3.11c), it is advisable to intro-
duce an intermediate spline fitting according to Algorithm 1 to avoid using second-order
derivatives of measured data and thus a highly oscillating reference trajectory. Highly
oscillating objectives have a large number of local minima increasing the difficulty of
finding the optimal solution especially for derivative-based optimisation schemes. The
detour via an intermediate fitting of © in line 8 only requires first-order derivatives of
the measurement data yielding a smoother reference trajectory and accelerating the op-
timisation. The tangent angle trajectory is computed via (3.11b) and interpolated using

Algorithm 1 Cost function for track data smoothing algorithm.
1: INPUTS:

o X (Sm), Ym(Sm): vectors containing arc length dependent position points

e Sg,S.: arc length at knot points and evaluation points

OUTPUT: J: cost function value

MAIN FUNCTION:

x’m (S) % pWCS(Sﬂ'l/? X77l) a’nd y’m (8) % pWCS(SW'L? Y’m)a

x),(s) < DpwCS(sr, zm(s)) and y.,(s) < DpwCS(sr, ym($))
X:’n,ref — 1';71 (SR) and y;n,ref A y;n (SR)

Oy ref arctan(y’mﬂ.ef/x;n,ref) (3.11Db)

e’R,temp(s) — PWCS(SR’ @m,ref)

KR temp(8) <= DpwCS(sr, O temp($))

KR ref < ’iR,temp(SR)

¢ kir(s) < pwCS(sr, KR ref)

0 Og(s) < IpwCS(sg, kr(s))°

. ki (s) < DpwCS(sg, kr(s))

D Op et Ox(sr)

15: X o ¢ COS(Or rer) and  yj ¢ < sin(Orref) (3.11a)

16: 2 (s) <= pwCS(Sr, X% o) and  yrp(s) < pwCS(Sz, Y7 ref)

17: zr(s) < IpwCS(sg, 2% (s)) and yr(s) < IpwCS(sg,yr(s))
18: J + 27;61 Jsmooth,i(ﬁ;z(se,i)) + Jﬁt,i(xm(se,i)» ym(se,i)a ZR(Se,i)a yR(Se,i)) (3123)

pwCS(): generation of piecewise cubic splines via solution of a tridiagonal linear system [18, p.43].

b

e e el =

"DpwCS(): analytical derivative of piecewise cubic splines.

“IpwCS(): analytical integral of piecewise cubic splines.
Bold variables represent data point vectors and piecewise spline functions are depicted with light vari-
ables.
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piecewise cubic splines. The analytical derivatives of these tangent angle splines yield
piecewise quadratic curvature splines. For C2-smoothness of the curvature trajectory,
piecewise cubic splines are subsequently fitted to these quadratic splines in line 11. Since
the analytical integral of these splines is known, the corresponding piecewise quadratic
tangent angle trajectory is defined as well. The trajectories for the position derivatives
are computed using the tangent angle trajectories and (3.11a). A subsequent integration
yields the position trajectories. However, the analytical integral is not straightforwardly
computable due to the nonlinear relation. Thus, a subordinate spline fitting of the posi-
tion derivatives is performed in line 16 and the position trajectories are then computed
via analytical integration®. Although this additional fitting process can potentially intro-
duce a discrepancy between curvature trajectory and position trajectories, a sufficiently
high number of knot points yields practically negligible numerical errors. Since race-
tracks are generally smooth, relatively small knot point numbers already yield a good
coincidence of the original and fitted trajectories.

The results of applying Algorithm 1 to measurements of 2D-position data for the Niirbur-
gring Grand-Prix course are displayed in Fig. 3.3. The curvature trajectory in Fig. 3.3a is
much smoother than the trajectory computed via (3.11c). The corresponding coordinate
trajectories are illustrated in Fig. 3.3b. With a small mean deviance of 2.76 centimetres
between the coordinates, the fitted position trajectories match well the original position
data. These results confirm the correct functioning of Algorithm 1.

Comparison with Related Methods Subsequently, the presented procedure is com-
pared with other existing methods for trajectory smoothing. The notion of optimising
the position of spline knot points within a fitting process has been used before in [21,
69, 87, 197, 215]. However, the method previously presented in this section simultane-
ously optimises three trajectories, both position trajectories and the curvature trajec-
tory, which are related to each other via integration and nonlinear equations resulting
in a different OP. Firstly, the smoothing objective Jsmooth,; and fitting objective Jgq ;
in (3.12a) relate to different trajectories yielding a different cost function. Secondly,
constraints (3.12e) and (3.12f) are added to guarantee a closed trajectory.

However, there have been multiple algorithms specifically designed for preprocessing
of track data using various procedures. Filtering, trajectory stretching and the use of
error-compensation terms are displayed in [30]. The approach in [157, 158] formulates
the smoothing task as an OCP which is transcribed using orthogonal collocation yield-
ing a SOP similar to (3.12). However, each differential equation is approximated using
Lagrange polynomials. Exact correspondence of these polynomials with the differen-
tial equations is only guaranteed at the generally roughly spaced collocation points.
The application of hp-adaptive mesh refinement strategies, for instance implemented
in GPOPS-II [155], can reduce approximation errors introduced by such a polynomial
approximation.

By using analytical derivatives and integrals of the piecewise polynomials, Algorithm 1
ensures the satisfaction of the differential equations in each point. The approximation

6 Alternatively, numerical integration can be employed.
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errors introduced by the intermediate fittings are generally negligible. Requiring only cu-
bic spline interpolation and static optimisation, an easy implementation is possible with
open-source or well-known software frameworks such as Julia [14] or MATLAB [138].
This is especially advantageous when no software for hp-adaptive collocation methods
is available.

3.4 Scaling of Optimal Control Problem

In order to reduce the computation time required by the NLP solver, suitable domains
should be enforced for the decision variables, the cost function and the constraints via
scaling. As indicated in Section 3.1, the inputs, states and adjustable model param-
eters represent decision variables. Adopting the scaling procedure presented in [183],
which is derived from [3, 13], the OP is scaled such that the decision variables lie within
the range R, = [—1,1] and inequality constraints take values within R, = [—1,0].
Furthermore, the objective function is multiplied by a scalar to take values within the
domain R := [0,150]. Using the vector of optimisation parameters y € R™ to repre-
sent the states X, the inputs u or the passive optimisation parameters p, the following
equations describe the scaling procedure. The relation between the original decision
variables y and the scaled and shifted counterpart ¥ is given by

y=¢,)=S,y+k, & y=¢,'(ys)=8S,"F k). (3.13a)

Assuming approximated constant bounds y; € [y y;] Vi=1,...,n,y, the scaling ma-
trix S, € R™*™ and the shifting vector k, € R are selected accordmg to

2
S, = diag (sy,1,...,5yn,) with s,;=— Vi=1,...,ny (3.13b)

T
ky=[ky1 oo kyw,|  with kyi=1--" Vi=1...n, (3.13¢)

yielding decision variables ranging within the domain R, [3]. The application of scal-
ing (3.13a) requires the differential equation system (3.10) to be adjusted:
L 0p,(%)  0py(%) dx i

f X.U.D) = = = _— = j~/ = jf X =

= S:f (87! (x— k), 87 (- k), S, (B - Ky) ). (3.13d)

u

For the scaling of vector g(xX,u,p) € R™, which represents a concatenation of all in-
equality constraints, a constant lower bound g, Vi =1,...,ng is assumed to be known
for each constraint. In order to yield the constramt range Rg, following scaling is applied:

1 1
g(x,0,p) = Syg(x,u,p) with S, =diag (|g g ’) (3.13e)
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In this thesis, the objective J is presumed to only take positive values. Assuming an
approximate cost function value J* at the optimum is available, the cost function is
scaled following

A 150
U T J(x,u,p) (3.13f)

J(%,0,p) =

to yield objective values approximately within the region R ;. After scaling the differen-
tial equations, constraints and cost function, the collocation approach can be applied to
convert the dynamic OP into a static one. This procedure is presented in the following
section.

3.5 Hermite-Simpson Collocation

Various solution methods for OCP have been discussed in Section 2.3. In this thesis,
direct Hermite-Simpson collocation is employed for the solution of OCPs due to following
reasons. A direct method is preferred over an indirect method due to the more robust
initialisation properties. Compared to DP, direct methods require significantly shorter
computation times. Furthermore, this thesis aims at accurately solving OCPs for systems
with complicated differential equations of possibly larger order. This excludes DP due
to the dimensionality problem or the required approximations for ADP. Collocation
methods discretise the input trajectories as well as the state trajectories. As illustrated
in Section 2.3.2, this procedure minimises couplings, which reduces the complexity of
equations enhancing solvability of the OP. Hermite-Simpson collocation is based on
dividing the integration interval into segments and approximating the trajectories for
the controls and the right-hand sides of the differential equations by piecewise quadratic
polynomials. The low polynomial order results in only mild couplings between adjacent
decision variables while the piecewise quadratic polynomials yield piecewise cubic, hence
smooth, state trajectories. Utilising specifically the separated form of Hermite-Simpson
collocation, sparsity in the differential equations is fully exploited by also using the mid
points of each segment as collocation points [13, p.143]. Thus, the selected approach
represents a good compromise between accuracy and sparsity.

Hermite-Simpson collocation employs Simpson’s Rule for numerical integration, which
is defined as

[ wtryir s S o) + 4w (10 + L5 ) ). (3.14)

0

Therein the integrand w(7) is replaced by a quadratic polynomial with coinciding values
at the start, mid and end point. These three points represent the collocation points
for the segment. The discretisation is applied to the transformed and scaled continuous
system dynamics (3.13d) using the scaled decision variables. The integration interval for
the spatial independent variable sz € [sz.0, S, f] is divided into mnge segments with the
individual segment width A; = sz ;11 — sr,; yielding neon = 2ngeg + 1 collocation points.
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3.6 Transcribed Optimisation Problem

Applying (3.14) on each segment provides the collocation constraints

1

R 2, R — - _

Ceolli ﬁi+% B %(fiz Rin1) — %Ai( - f) 0 Vi=0,1,...,n5s —1 (3.15)
with f'j = f'(fcj, u;,p) [13, 97]. The margins of a segment are given by two collocation
points represented by (-); and (+);+1, whereas the collocation point in the middle between
them is marked as ()z+%
The optimisation process computes optimal values for the inputs and states at the col-
location points. In a post-processing step, the intermediate values are computed by
applying piecewise quadratic and piecewise cubic interpolation for the input and state
trajectories, respectively. Thus, the input values are determined by

o= 1) (o0 - A))a - %0(0 - Ai)ﬁH% + éa(a - %)ﬁm (3.16a)

for the i*" segment with sz € [SR,i) Sr,i+1] Using o = sg — sz ;. The input derivatives are
deduced by differentiating (3.16a) resulting in

N 1 N N N 2 /. N "
u/(sR) = K (—3111' + 4ul-+% — ui+1> + P (2ui - 4ul.+% + 2ui+1> o. (316b)
7 7

::AO,Z' ::Al,i

The continuously differentiable state trajectories are defined by the piecewise cubic poly-
nomials

2 re o A 0'3 A A A~
QAi(_3fi+4fi+%_fi+1) (28 -4y +284). (3.160)

%(sr) = %i +of; + 3A2
K3

After applying the discretisation approach, the infinite dimensional OP is transformed
into a finite one, which is listed in the following section.

3.6 Transcribed Optimisation Problem

The SOP resulting from applying the separated form of Hermite-Simpson colloca-
tion is presented in this section. On each segment, the margin points as well as
the mid point represent collocation points yielding n.on decision variables for each
component of the state vector X € R™ and input vector . € R™. Moreover,
all adjustable parameters p € R™ are further decision variables. In total, this re-
sults in nept = (nz + ny) Neoll + Ny decision variables. Accumulating the state decision

variables in X = [XO f‘% )A(nseg:| € R"aXMeoll and the input decision variables

in U= [flo u ﬁnseg} € R"™wXMeoll  the SOP pursuing a minimum-time objec-

[NIES
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3 Nonlinear Programming for Nonconvex Minimum-Time Optimal Control

tive is stated in the following form:

anIIJIt 6 Jp +eq Jy (3.17a)
st.  %x,€X, 4z €U, peP VkeKk, (3.17b)
Ceoll,i (Xi, Wi, Xj1, Ui, P) =0 Vi € Leon, (3.17c)

ci(Xp, 05, ) =0 Yk € K, (3.17d)

hy, (X5, G, P) <0 Vk € K, (3.17e€)

(%0, 00, Ky s Uneg, P) = 0. (3.17f)

Therein cgop; represent the collocation constraints (3.15) for each collocation segment
i € Zeon. Further equality and scaled inequality constraints at the collocation points
k € IC are depicted by c; and hy,, respectively. The set of collocation segment indices
and collocation point indices is given by

Teon :=10,1,2,...,ngeg — 1} and (3.18a)
1
K =0, 2 L,..., Nseg} (3.18b)

respectively. The boundary conditions are considered via ®. Furthermore, all states,
inputs and parameters are limited by the scaled box constraints in (3.17b) given by the
convex sets X , U and 75, respectively. Considering the smoothing procedures presented
in Section 3.2, all constraints are assumed to be continuously differentiable. Scaling
is performed according to Section 3.4. The cost function (3.17a) is comprised of the
minimum-time objective

tr SR.f dt SRS 1
Jy = / 1dt = / —dsp = / —dsgr =t(sgr,r) — t(sz,0)
t S S

0 R,0 dsg R0 SR

= t(SR,f) = tngeg- (3.19)

and a regularisation term Jy

S R 2
Ji= / W2dsy ~
j=1 SR,0

Nq Tseg—1 AZ 1
(ﬂ}(sR,i)Q + 4@ (s + §Ai)2 + @ (s + Ai)2> -

Ny Tseg—1 A
1
6

(6AF; + 6 M0 A0 +2A7,; ;A7) (3.20)

j=1 =0
that penalises input oscillations using the input derivatives (3.16b). From an application
standpoint, smooth control trajectories are generally preferable for vehicular applications
due to actuator limitations or operating effort, which legitimises (3.20). Furthermore,
the additional objective function term (3.20) improves convergence properties. OPs
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3.7 Comparison with Related Methods

exhibiting a family of optimal solutions rather than a unique optimal solution can cause
convergence problems: The numerical solver searches for the locally optimal solution
among equally good solutions oscillating between the individual solutions and failing
to converge [97]. Trajectory OPs with non-unique solutions often have singular arcs,
which occur when the OCP is not uniquely defined by the optimality conditions. In
this case, the Hessian of the extended Hamiltonian matrix (2.18b) with respect to the
inputs Huy is singular [13, pp.125/212][152, p.261]. An additional objective term that
is quadratic in u can be used to remedy the problem by modifying the Hessian [97,
116, 137]. Although the combined objective (3.17a) is not strictly time-optimal, the cost
manipulation by (3.20) can greatly improve convergence and is negligible when choosing
a sufficiently small regularisation weight .

The SOP (3.17) can be solved using elaborate NLP solvers. This thesis applies the
open-source solver IPOPT. The approach presented in this chapter can be used to solve
a broad class of OPs with different objectives instead of (3.19). In the following section,
the approach is compared with other software frameworks for the solution of nonconvex
OCPs however focussing on vehicular applications.

3.7 Comparison with Related Methods

Although the approach presented in this chapter is capable of solving problems for a
wide range of applications, this section concentrates on lap time optimisation since it
represents a focus of this thesis. The corresponding related literature has been presented
in Section 1.1.

Graph search and incremental search methods are generally utilised for motion planning.
Using rather simple models or being restricted by predefined motion primitives, these
simplifications yield suboptimal solutions. However, search methods can be used to mit-
igate the problem of high computation times that can occur for variational methods. For
instance in [4], search methods are employed to generate approximately optimal paths
that are tracked via variational methods meeting a compromise between computation
time and accuracy or optimality. Geometrical relations and QSS simulations have also
been used to generate velocity profiles that can be tracked via variational methods and
other controllers, as mentioned in Section 1.1. Although the concept of separating the
trajectory OP into trajectory generation and trajectory tracking can reduce computation
time, it generally results in suboptimal solutions.

The method presented in this chapter focusses rather on accuracy than on computa-
tion speed. The goal is to provide a general framework capable of considering highly
nonlinear models and aiming at identifying optimal control strategies as well as opti-
mal model parameters. Thus, variational methods solving the trajectory OP are more
suitable: Due to the flexibility in the problem formulation, a broad range of OPs can
be solved. Since MPC introduces suboptimal solutions and the issue of infeasibility and
stability due to the limited optimisation horizon, the MPC methods from Section 1.1 are
not revisited here. Furthermore, since accurate models are generally of high dimension,
DP is not suitable due to the curse of dimensionality. This leaves only direct and indi-
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3 Nonlinear Programming for Nonconvex Minimum-Time Optimal Control

rect variational methods. The indirect optimal control software PINS [10, 11] has been
used successfully for solving vehicular OCPs [15, 16, 124, 203]. Due to their robustness
regarding the initial guess and the omitted necessity of deriving optimality conditions,
direct methods are often preferred. Especially direct collocation is commonly used for
maximum sparsity in order to enhance convergence properties. Often employed colloca-
tion frameworks for direct optimal control are ICLOCS [59] and GPOPS-II [155] using
trapezoidal and orthogonal collocation, respectively. Trapezoidal collocation implements
piecewise linear trajectories on the collocation segments yielding a nonsmooth solution.
Orthogonal collocation deploys Lagrange polynomials as basis functions, whereas the
collocation points are commonly obtained from the roots of Chebyshev polynomials or
Legendre polynomials [166][155][47, p.184]. Using polynomials of higher order generates
smooth solutions. However, an increasing polynomial order increases local density of the
OP, which can deteriorate solvability [158]. Elaborate adaptive schemes exist that ad-
just the polynomial order and the placement of the collocation points [155, 166] in order
to improve convergence rate and accuracy. With Hermite-Simpson collocation, a simple
but effective approach is selected in this thesis. The quadratic polynomials yield smooth
state trajectories while discontinuities are possible in the input trajectories. Further-
more, the small polynomial order yields sparse matrices enhancing solvability. A fixed
discretisation mesh of constant width is used but a more elaborate meshing could im-
prove the convergence rate. However, this is a subject for future work. Although some
smoothing functions have been introduced in [158], additional smoothing functions are
proposed in this thesis extending the applicability to a larger problem class. Further-
more, the method for generating smooth curvature data introduced in Section 3.3.2
represents a simple, alternative procedure for the preprocessing of reference trajectories.
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4 Nonconvex Lap Time Optimisation for
Vehicles using Nonlinear Programming

Many OCPs for engineering applications require the solution of nonconvex OPs with
highly nonlinear equations. Chapter 3 presented an approach for the solution of such
problems. In order to verify that the algorithm is capable of solving complicated optimi-
sation tasks, this section deals with computing minimum-time trajectories for a vehicular
racetrack application. This chapter focuses on electrical overloading (EOL) and is based
on our publications [183] and [185]. However, the approach has also been used to anal-
yse the benefits of rear-axle steering and transfer cases while considering the concurrent
optimisation of selected vehicle parameters. The corresponding results are showcased in
our publication [185].

In Section 4.1, a sophisticated vehicle model is derived that depicts the major physical
effects of the system. Augmentations for the description of electrical dynamics are listed
in Section 4.2. Smooth approximations of discontinuities in the model equations are
illustrated in Section 4.3. The OP is discussed in Section 4.4 and the corresponding
results are presented in Section 4.5.

4.1 Nonlinear Two-Track Vehicle Model

When driving on a racetrack, the vehicle is operated at the limits of handling. A good
representation of the vehicle behaviour at this rather demanding conditions requires a
sophisticated model. For this purpose, this section presents a nonlinear two-track vehicle
model capable of depicting the majorly occurring physical effects in vehicles. Aiming at
keeping results tractable and computations feasible, it is important to represent only the
essential dynamics and reduce model complexity if possible. Since conditions on race-
tracks are rather quasi steady-state, the model neglects vertical dynamics and computes
the wheel loads assuming quasi steady-state conditions. Furthermore, the current appli-
cation focusses on comparing vehicles with different powertrain topologies. Aiming at
identifying relative differences between the individual vehicle configurations, neglecting
the vertical dynamics is acceptable. A tire model of medium complexity is selected for
sufficient accuracy but tractable parameter identification. Thus, the implemented model
represents a good compromise between accuracy and complexity especially suitable for
racetrack applications. The differential equations describing the basic vehicle behaviour
are derived in Section 4.1.1 and validated with measured data in Section 4.1.2.
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4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

4.1.1 Model Equations

Fig. 4.1 illustrates the physical conditions considered by the model: The topview of
the vehicle model on a racetrack is illustrated in Fig. 4.1a with the corresponding free
body diagram of the wheels shown in Fig. 4.1b. Introducing various coordinate frames
simplifies the derivation of the basic model equations. The world coordinate frame is
depicted by the inertial coordinates (z',y', z'). Furthermore, the body coordinate frame
using the coordinates (2, y”, z”) moves with the vehicle and has its origin Py in the COG
of the vehicle. Thus, it rotates with the yaw angle ¢ around the z'-axis, which coincides
with the z”-axis since only planar motions are considered. Coordinates (z"k,y"k, z"k)

F, air front 2B Fy aivrear F air,left 2B F:/.air.rip;ht

Py, Py lmay,

Ty roll Tyt mag D
hy
mg
F’, front F, rear F left F, right
ly - I, _ b, R
(b) Forces and torques act- (¢) Computation of quasi steady-state wheel loads.

ing on wheel.

Figure 4.1: Vehicle model.
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4.1 Nonlinear Two-Track Vehicle Model

Table 4.1: Parameters for nonlinear two-track vehicle model.

Variable Value Unit Description
g 9.81 ms ™2 gravitational acceleration
2 7 1.0 — road friction coefficient
® Pair 1.204 kgm—3 air density

F,/F, 2000.0/6000.0 N reference load a/b

5\17%1/2/5\%1,’1/2 0.123/0.109 — front long. slip coeff. at load a/b

Ayaij2/Ayp12  0.129/0.119 — front lat. slip coeff. at load a/b

Dy ai/2/Dypij2  1.512/1.219 — front long. friction coeff. at load a/b

Dyaij2/Dyprj2  1.472/1.427 - front lat. friction coeff. at load a/b
§ ngl/Q/C_y’l/g 1.949/1.938 — front long./lat. shape factor
pe) %\xya’g/4/%\x’b73/4 0.116/0.106 — rear long. slip coeff. at load a/b

Ay.a3/a/Ayp3/a  0.108/0.094 — rear lat. slip coeff. at load a/b

l_)x7a73/4/l_)x,b,3/4 1.338/1.185 — rear long. friction coeff. at load a/b

Dya3/a/Dypssa  1.421/1.271 - rear lat. friction coeff. at load a/b

Cr3/4/Cy.3)a 1.949/1.949 — rear long./lat. shape factor

le/1, 1.45/1.24 m distance from COG to front/rear axle

by /by 1.57/1.59 m track width of front/rear axle
by 1.85 m vehicle chassis width
hy 0.34 m COG height

T1/2/73/4 0.32/0.33 m dyn. roll. radius of front/rear wheels
.E.o-’ m 2200.0 kg total vehicle mass
2|z 3140.0 kgm2 vehicle inertia around vertical axis
O A 2.21 m?2 cross-section area of vehicle

Cair,z» Cair,y 0.36 — longitudinal/lateral drag coefficient

Cair,z,1/2/ Cair,z,3/4  0.09/0.03 — aerodyn. lift coeff. for front/rear axle

froll,0 0.0031 — rolling resistance coefficient

Tace 0.03 S time constants for acceleration low-pass

Eroll 0.7 — roll moment distribution factor

define the frame that is coupled with the corresponding wheel in its centre point Py
with £ € K = {1,2,3,4}. It is assumed that both wheels on an axle are deflected with
the same angle: the front wheels with the front steering angle 6y = 6; = d2 and the rear
wheels with the rear steering angle 6, = d3 = d4. Thus, the wheel coordinate frames
are rotated by the corresponding wheel angle around the z'-axis compared to the body
coordinate frame. For a better differentiation, calligraphic symbols are used for the
components of a vector in the corresponding wheel coordinate frame. The description
of the curvilinear coordinates is given in Section 3.3.1. The parameters for the basic
vehicle model are described and listed in Table 4.1.
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4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

T
The tire forces are described in the wheel coordinate frame Fp* = [Qfgg,k F, k} and
can be transformed into the body reference frame via

B— l?’“] =R.(-0,) F* VkeK (4.1)
y,k

using the corresponding steering angle d; and the rotation matrix

_ | cos(y) sin(y)
R:(7) = [_Sinm COS(W)] (4.2)

which describes a rotation around the z'-axis with the angle v € R. Newton’s second
law [181] is used to derive the differential equations describing the vehicle motion. These
equations utilise following parameters: vehicle mass m, vehicle inertia around the vertical
axis J, distance from COG to front axle [ or to rear axle [;., track width of front axle by
or rear axle b,, dynamic rolling radius of the corresponding tire r; and inertia of the
corresponding wheel-unit Ji. The translational movement of the vehicle is described
by the temporal development of the longitudinal vehicle velocity v, and lateral vehicle
velocity v, at the COG:

H 1 F;I Fop— F] N l Doy ] , (4.30)

= 4
Uy m | > p=1 Fyk — Fyair —h vy

-[r B]

Therein Fj ai; and F) . represent the longitudinal and lateral aerodynamic drag force
in the body coordinate frame, respectively. The derivation of (4.3a) is demonstrated in
Appendix A.1. The yaw motion of the vehicle is given by the differential equation

. 1 b b,
Q;Z) = T (Fy,l + Fy,2)lf - (Fy,3 + Fy,4)lr + (Fx,Q - Fx,l)gf + (Fx,4 - Fx,B)E (43b)

for the yaw rate . The rotational speed wy, of the individual wheels follows the differ-
ential equation

1
n
Therein the torque applied to the wheel is represented by 7} and torques resulting from
rolling resistance are considered via J, ;o115 The missing equations for the aerodynamic
forces, rolling resistance and tire forces used in the motion equations (4.3) are given in
the subsequent paragraphs.

For completeness, the side-slip angle, which often serves as indicator for the stability of
the driving situation, is computed via

Wi =

(Tk — Gk T+ %,roll,k) vk € K. (4.3¢)

B = arctan <Uy) (4.4)

(%
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4.1 Nonlinear Two-Track Vehicle Model

whereas large side-slip angles occur when the vehicle is drifting. On racetracks, drifting
is generally avoided since it strains the tire and results in fast tire wear.

Due to air resistance, the chassis of the vehicle is exposed to aerodynamic forces that
depend on the total velocity of the vehicle

Vot = 1/ V2 + UZ. (4.5)

For simplicity, this thesis assumes windless conditions and computes aerodynamic drag
and lift forces using following parameters: air density pa,ir, longitudinal and lateral drag
coefficient cajr» and cajir,y, aerodynamic lift coefficient c,ir . 1 and cross-section area of
the vehicle A,;;. Aerodynamic drag forces are assumed to apply to the COG of the
vehicle and are computed in the longitudinal and lateral direction via
1 1

Fm,air = 5 Pair Cair,z Agir Vet v, and Fy,air = 5 Pair Cair,y Agir Vtot Uy, (46&)
respectively [181]. For simplicity, the same cross-section area is used for the longitudinal
and lateral air force. This thesis presumes that the aerodynamic lift forces apply on the
centre of the corresponding vehicle axle resulting in the aerodynamic lift force

1
Fz,air,k = Z Pair Cair,z,k Aair Ut20t Vk e K (46b)

for the individual wheels [181].

As previously mentioned, the vehicle is subject to rolling resistance forces that depend
on the wheel load of the corresponding wheel F, j and result in torques opposed to the
rolling direction given by

Tyrollk = = froo Frprr VE €K (4.7)

with the rolling resistance coefficient fyon,0 [181].

In order to simplify the computation of wheel loads, a rigid connection between vehicle
chassis and wheels is assumed. Thus, dynamic rolling, pitching and heaving motions
are neglected discarding dynamic wheel loads. Since conditions on racetracks are rather
QSS, this simplification is legitimate. However, the influence of the neglected suspension
dynamics is partly considered in the tire force parameters since these parameters are
tuned to fit the overall vehicle model to measurement data. The vertical forces acting
on the tires are computed by applying balance equations for forces and momentums
considering the accelerations acting on the COG. Using the gravitational acceleration g,
the static wheel loads are given by

1 l, 1 lf
- = F d F = — = F
9 mg lf T, z,5,2 all 2,8,3 9 mg lf 1, 2,8,

Fz,s,l = 4. (48&)

Considering the COG height of the vehicle h,, wheel load changes due to longitudinal
acceleration are included according to

1 h 1 h
Fracn = —gmaay 7 = Fraer and Fgg=gma s s

=F,q,4. (4.8b)
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4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

Assuming that the roll momentum M, = may h, is allocated via the roll moment dis-
tribution factor &.op, the wheel loads on each side need to be modified with the terms
M, M,
Fz,ay,l = _froll fo = _Fz,ay,Z and Fz,ay,?) = _(1 - éroll) Tj = _Fz,ay,4' (48C)
Using equations (4.8a)-(4.8¢c) and the aerodynamic wheel loads (4.6b), the resulting tire
loads are given by

Fz,k = Fz,s,k =+ Fz,az,k + szayvk + Fz,air,k Vk € K. (48d)

The computation of the wheel loads (4.8b)-(4.8¢c) is based on the accelerations of the
vehicle. Using the tire forces to compute these accelerations results in an algebraic
loop. In the context of optimal control, this circular dependency yields a set of algebraic
equations that needs to be solved within the NLP [158]. A different procedure is used
in this thesis to simplify the OP. The algebraic loop is removed by considering delayed
accelerations using first-order lag elements with time constant T, [16]:

1 1 1 1
Gy = (Fx — aw) and ay, = (Fy — ay> . (4.9)

Tacc \T Tacc \MT

Besides avoiding additional equality constraints, this approach reduces couplings and
nonlinearities, which eases the solution process of the OCP. Physically, the equations
in (4.9) can be justified by the neglected suspension dynamics [16] and the fact that
tire forces build up dynamically, which is commonly depicted via first-order lag elements
with variable time constant for each individual tire force [192]. However, this would add
eight additional state variables, making the solution of the OCP more challenging.

The computation of the tire forces requires the wheel slip, which characterises the relative
speed between wheel and ground. Using Fig. 4.2a as graphical support, the velocities
of the wheel centre points are computed below. Let rf , be the position vector in the
body coordinate frame pointing from the COG Fy to the corresponding wheel centre
point P,. Considering the body coordinate frame rotates with the yaw rate 1) around
the z'-axis, the velocities of the wheel centre points given in the body or corresponding
wheel coordinate frame are computed via

Vg k Vg 0 0 )
VIB;k = |vyk| = |vy| + 0] x rf,opk and vk = l m’k] =R, (k) [ wk] , (410

respectively. The resulting quantities are given in Appendix A.2. Using these velocities,
the longitudinal wheel slips are given by

wg >0
WETk — Y2k 00,k >0  WETE — Vg k

Aok = = .
“F 7 max (ke [9nk]) max (Werh, o)

)

(4.11a)

Thus, a symmetrical longitudinal slip relation is chosen by incorporating the case-
distinction in the denominator of (4.11a). This enables using symmetrical tire force
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"o
8 o
6
4
2
Z
£ 0
Ly
-2
—01F.,
—4 —0.5 F.,
—10F.,
=6 15 F., ;
_s o 2.0 Fzs 0.2
o Fyopt
d

—~0.2-0.15-0.1-0.05 0 005 0.1 0.15 02 ~0.1

0.1
N Ay

-0.2-0.2 Az
(a) Wheel slip angle re- (b) Lateral tire force for A, =0, (c) Total tire force for nominal

lation with positively u =1 (dry asphalt) and various load F s and relation to friction
drawn angles. wheel loads. ellipse (red).

Figure 4.2: Combined slip tire force model.

curves and improves the tire model quality. Good results in the field of traction con-
trol [168] confirm the benefit of this slip equation. Furthermore, the lateral slips A,
are approximated by the wheel slip angles ay following

Ayl R Qg = 0p, — arctan (%k) (4.11b)
Ve k

A simplified version of the Pacejka tire model for combined slip [149] is employed to
compute the tire forces based on the longitudinal and lateral slip. The influence of tire
pressure and tire temperature is neglected. For clarity, the following equations only
depict the longitudinal tire forces but lateral tire forces are constructed analogously.
The tire parameters differ for the front and rear wheels as well as in the longitudinal and
lateral direction yielding an anisotropic behaviour. For simplicity, the load-dependent
tire slip optimum and the nonlinear wheel load degressivity are approximated using
linear relations between two characteristic wheel loads 0 < F}, , < F; according to

o j\z,b,k - \zx,a.k = 3
Az,maxk = W (Fz,k; - Fz,a) + Az and (4.12a)
o Da:,b,k - Dcc,a,k - =
Daz,k = Fz,b — Fz7a (Fz,k - Fz,a) + Dx,a,k7 (4'12b)

respectively [95]. Therein the values (_) represent fixed tire parameters. The impact
of (4.12a) and (4.12b) is depicted in Fig. 4.2b. Both effects strongly influence the vehicle
behaviour particularly during cornering because of the lateral wheel load transfer due to
the lateral acceleration (4.8c). Relation (4.12a) and its counterpart for lateral tire forces
shift the optimal longitudinal and lateral slips /\;, i and AZ, i towards smaller values as the
load increases. Thus, different optimal slips are present between the left and right wheel
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4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

of an axle during cornering. Reaching the optimal slips on both sides simultaneously
generally requires lateral torque allocation. By including (4.12b), the tire forces increase
degressively with rising wheel load. Thus, the load discrepancy between the left and
right wheel during cornering reduces the total wheel force potential of an axle. The
normalised slips and the combined slip coefficient are characterised by

Az k
Mo = 5 and Aork = /A2 0+ A2 (4.12¢)

z,max,k
respectively. The tire force shape curve, which remains in the range [—1, 1], is given by

m
2 arctan(Cy i)

A
Tz shapek = Tk Gin (C%k arctan(Bg )\tot’k)) with B, =

4.12d
)\tot,k ( )

Using (4.8d),(4.12b) and (4.12d) together with the road friction coefficient p yields the
longitudinal component of the tire force

gw,k =H Fz,k Dw,k gfr,shape,k- (4126)

The total tire force value is determined by the longitudinal and lateral tire force compo-
nent according to |F| = \/F2, + 9"; x- The total tire force peaks at the friction ellipse
illustrated by the red line in Fig. 4.2¢, which can be represented by the elliptical equation

2 2
A A
(;”“) + (;j’“) —1 with (4.13a)
x,k y,k
y —1tan( " ))\ and A} —1tan(7r>)\ (4.13Db)
z,k — Baz,k 201‘,1: x,max,k Y.k — By,k ZCy,k: y,max,k- :

.\ )\ x
_'Az,n,k _.)\yanvk

It can be shown that the region within the friction ellipse (4.13a) depicts the stable
region of the wheels [178, p.32][105, p.16].

4.1.2 Model Validation

The two-track vehicle model presented in the previous section has been experimentally
validated in a test vehicle. For this purpose, the test vehicle was equipped with an
Automotive Dynamic Motion Analyzer (ADMA) from the company GeneSys. This
measurement device contains a highly precise inertial measurement unit whose data
is combined with differential GPS data via data fusion. This provides high quality
measurement data of accelerations and speeds for the three axes of the body coordinate
frame as well as the position of the vehicle. Furthermore, the ADMA computes the angles
and angular rates around the body frame axes and provides the side-slip angle. The
rotational wheel speeds are measured via the standard incremental encoders installed at
the wheels. Torque sensors have been used to sense the torque applied to the shaft of
the wheels and brake torques have been computed using brake pressure sensors. This
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4.1 Nonlinear Two-Track Vehicle Model

enables the computation of the wheel torques, which serve, together with the measured
front steering angle d¢, as model inputs.

The model is tuned to depict the overall vehicle behaviour on racetracks with the highest
possible accuracy. For the parameter fitting, the vehicle motion has been measured on
a short racetrack. The tire parameters have been identified in an optimisation aiming
at minimising a multi-objective error between model data and measurements of the test
vehicle. This procedure partly covers non-modelled effects in the model. The decision
variables of the OP are

by
Pr

P = with (4.14a)

Pj = [/\z,a,j Aabi Ayaj Aybg Drag Dapj Dyaj Dypi Cuj Cy,j} (4.14b)
whereas py and p, represent the tire parameters for the front and rear wheels, respec-
tively. Subsequently, the measured variables are denoted by an additional index: y;,
represents the nye.s measured data points and y the data points generated by simulating
the model via numerical integration. The multi-objective OP used to fit the model data
is given by

0.5 0.5 0.524 0524 2.0 20 2.0 2.0 195 1.95

4
min cacc(Jﬁt(axyax,m)+Jﬁt(ayvay,m))+C¢Jﬁt(¢7¢m)+szjﬁt(wj7wj,m) (415&)
. 1" Yk — Ymk ’
with Jae(y, ym) = —— 3 Yk Ymk (4.15D)
meas | _ ¥l 1max

P> 00 00 O0O0OO0OO0OTI14 14

—10 00 OO O OO0 14 14
s.t. , (4.15¢)
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2 2
(A; — A ) < 0.02? ()\* -\ > < 0.02?
7f yaf - ’ T,r y.r -
’Fz,s,f ‘FZ,S,f ) Fepsr Fear/, . (4.15e)
* * 2 * * 2
( il F) <0.022, (Ay’f‘Fzsf — F) <0.02
( 2
Fy s ~ Ty 4] ) < 5002
IN* F, N I s -
s Pt br o) (4.15f)
( z,r - gyﬂ" > < 5002
D R ASroFzs,r

using the objective weights cacc = 0.4, ¢ = 0.4 and ¢,, = 0.2. Therein the bounds (4.15c¢)
are used to limit the search space to a plausible range: The empirically selected values
avoid tire forces that are excessively large or possess an implausible shape curve. Fur-
thermore, the bounds prevent an exaggerated wheel load degressivity and avoid large
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Figure 4.3: Comparison of measured signals and model simulation on a racetrack section.

slip optimum shifts over load. The inequalities in (4.15d) ensure that the dependencies
in (4.12a) and (4.12b) are given in the right direction, thus fix the sign of the linear
relations. Furthermore, the discrepancies between the individual optimal slip values at
nominal loads are limited via (4.15¢e) to avoid excessive anisotropy and large differences
between front and rear tires. Similarly, the discrepancy in maximum tire force at nom-
inal loads between the longitudinal and lateral direction is limited in (4.15f) for both
axles. The additional constraints are necessary to enforce plausible solutions since many
solutions exist to the OP. Further constraints can be imposed to imprint a tendency.
The OP has been solved via MATLAB using the solver fminsearchcon [41]. Within
each iteration, the model data y is generated by feeding the measured wheel torques
and steering angle to the model and applying numerical integration: A Runge-Kutta-4
solver with step time 0.1 seconds is employed. The tire parameters computed by the
optimisation are listed in Table 4.1.

Selected state trajectories generated by the model simulation with the identified tire
parameters are depicted together with corresponding sensor data in Fig. 4.3. The figure
shows a combined slip situation for alternating turns under acceleration and deceleration
with a velocity up to around 1501%“. Although representing a highly nonlinear situa-
tion, the model depicts the measured trajectories with sufficient accuracy. The model
is suitable for racetrack applications but fails to accurately depict situations with large
side-slip angles, which occur for instance when the vehicle is drifting. However, a highly
accurate representation of the system behaviour is not crucial for the following investi-
gations since the absolute lap time value is not of primary interest: The thesis focusses
on relative differences between individual vehicle configurations, which all employ the
same two-track base model.
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4.2 Model Augmentations for Electric Vehicles

The application considered in this chapter aims at analysing the control strategy for
a BEV with four wheel-independent drive units, which is depicted in Fig. 4.4. Each drive
unit is comprised of an electrical motor, an inverter and a single-speed reduction gear.
The torque and rotational speed of the corresponding electric machine is represented
by T, 1 and wy, i, respectively. The electrical motors are capable of generating positive
and negative torques, which depict drive torques and motor brake torques, respectively.
With 445 and 7y denoting the gear ratio and the gear efficiency of the corresponding
powertrain unit, the wheel-based motor torques are given by

Tw,k = Tm,k ig,k n;iin(Tm’k) Vk € K. (416)

A sign function is used in (4.16) to capture the directional property of the mechanical ef-
ficiencies. An additionally installed conventional braking system enables supplementary
friction brake torques Tp, 5. Thus, the accumulated torque at the wheels

T = Twk + Thor (4.17)

enters the differential equation for the wheel dynamics (4.3¢). The rotational speeds of
the wheels wy, and the corresponding motor speeds w,, 1, can be converted into each other
as follows:

W,k = Wk ig,k Vk € K. (4.18)

By differentiating between components at the input and the output of the gear box
with Jy in % and Jy, out &, the inertia of the corresponding wheel-unit J, in (4.3c) considers
the gear ratio according to

Jo = Jwoutk + Juwinkisg Yk €K (4.19)

In order to consider the essential battery pack dynamics, Section 4.2.1 presents the
link between the mechanical and electrical parts of the vehicular system. A simplified
modelling procedure to depict EOL in OCPs is presented in Section 4.2.2. The required
model parameters are given in Table 4.2.

Figure 4.4: Powertrain components of battery electric vehicle with wheel-independent drive
units: battery pack, inverters, electric machines and reduction gears.
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Table 4.2: Model parameters for electrical vehicle components.

Variable Value Unit Description
Ng,1/2/3/4 0.98 — efficiency factor of transmission
Jwout,1/2/ Jwout,3/4  1.80/2.25 kgm?  front/rear wheel inertia on output-side
Jw,in,1/25 Jw,in,3/4 0.08 kgm? front /rear wheel inertia on input-side
Qp 60.0 Ah capacity of battery pack
Cy 300.0 F capacitance of battery pack
DPR; 1 0.202 — char. parameter for resistance R;
DR;.2 -0.167 — char. parameter for resistance R;
DR;.3 0.048 — char. parameter for resistance R;
PRy1 0.143 — char. parameter for resistance Ry
DRy,2 -0.118 — char. parameter for resistance Ry
PRy,3 0.024 - char. parameter for resistance Ry
Dol 5.20 —  char. parameter for open circuit voltage
Dv,2 -1.57 —  char. parameter for open circuit voltage
Dv,3 696.94 —  char. parameter for open circuit voltage
Do 4 16.62 — char. parameter for open circuit voltage
Cm,1 634.86 - 10~* a char. parameter for motor power loss
Cm,2 0.16-10~* a char. parameter for motor power loss
Ci1 206.96-10~*  *  char. parameter for inverter power loss
Ci2 42.62-10~% a char. parameter for inverter power loss
Ci3 3.05-1074 &  char. parameter for inverter power loss
Ci4 0.11-107% a char. parameter for inverter power loss
Thst,b 10.0 S boosting time of battery pack
Thst,m 5.0 S boosting time of motors

@ Parameter units in accordance with (4.20f) and (4.20g) using SI-units for torque and ro-
tational speed.

4.2.1 Electrical Relations and Battery Pack Dynamics

Permanent-magnet synchronous-machines are assumed for the four electrical motors.
Describing the behaviour of these machines generally requires differential equations for
the stator currents and the rotational motor speeds, as depicted in [159]. However, these
electromagnetic dynamics are generally fast compared to mechanical effects [125]. In
order to reduce the number of differential equations and thus simplify the OP, the con-
sideration of the motor dynamics is reduced to incorporating the rotor inertias of the
motors into the wheel-unit inertias Ji in (4.19).

The battery pack is comprised of np,, parallel strings with ng, battery cells intercon-
nected in series. Neglecting long-term dynamic effects over lifetime, the main battery
dynamics are captured using a Thevenin battery model [175] with the equivalent elec-
tric circuit depicted in Fig. 4.5a. The short-term dynamics of the battery pack are
described using an RC-element with the resistance Ry and the capacitance Cy. The
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Figure 4.5: Thevenin battery model with parameters varying over state of charge.

internal resistance, battery pack current, terminal voltage and open circuit voltage is
represented by R;, I, Vo and V., respectively. Both resistances as well as the open
circuit voltage depend on the battery pack state of charge (SOC) (. Generally, the
working zone for the SOC is constrained to a certain range to preserve durability and
decelerate degradation of the battery pack. In this thesis, the recommended range for
the SOC is assumed to be ¢ € [QT,ZT] = [0.1,0.9]. In order to provide sufficiently smooth
equations for the derivative-based NLP solver, the parameter dependencies are described
via smooth analytic polynomials depicted in Fig. 4.5b, which have been introduced in
our publication [183]. Compared to [34], the order of the polynomial describing the
open circuit voltage is reduced. Furthermore, polynomials for the approximation of the
resistance relations are also presented. Generally, the parameters of the battery pack
model also differ over temperature. However, the vehicle is assumed to be equipped with
an efficient thermal management system that is capable of keeping the temperature of
the electric parts within a desired operating region [99]. In this region, the parameter
changes due to temperature variation are small and thus neglected. Over the course of
one lap, this simplifying assumption has been verified to be possible via experiments with
a test vehicle. Thus, thermic dependencies of the electrical components are neglected for
the sake of simplicity improving solvability of the OP. The table-based implementation
of the battery model has been validated in [127].

Assuming for simplicity that the resistance values for charging and discharging are the
same, the electrical resistance curves are approximated by

n Nser

Ri = = Rjcol = Rehape(Pr,) and Ry = —Rgcel = Rehape(Pr,)  (4.20a)
Npar Npar

with Rshape(pR) = (pR,l ¢ +pR,2)2 +prs and pr= [p;m Pr,2 Dkr, 3} . (4-20b>

The open circuit voltage is approximated via

Voe = nser%c,eell = (pv,l ¢+ pv,2)3 + Pv,3 + Pua (}%,1( + pv,2) . (4200)
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Applying Kirchhoff’s laws [102] yields the differential equation for the capacitor voltage

) ]- ar
Vig=— (Ib — V;i) with Cy = "'p Cy cell (4.20d)
Ca Nger

and enables the computation of the terminal voltage
Vo = Rl + Vi + Ve (4.20e)

The efficiencies of the electric motors and inverters are considered via the power
losses B, , and P, ,, respectively. These losses can be approximated via power loss
maps depending on the motor torque and motor speed, exemplarily depicted for the
electrical machines in Fig. 4.6. The combination of various loss terms T'7w/« of differ-
ent orders ny and n,, enables the depiction of arbitrary power loss maps [128]. Although
specific loss terms can be motivated physically for various machine types, this thesis pur-
sues the pragmatic approach of choosing loss terms aiming at minimising the error to
measured power loss maps. Increasing the number of the individual loss terms generally
improves accuracy [129] however complicates the OP due to additional nonlinearities.
The power losses also depend on the voltage applied to the inverter as well as the tem-
perature of the machine components [182]. As previously mentioned, this thesis assumes
an elaborate thermic management system and thus neglects temperature dependencies.
In order to reduce complicated equations, the loss maps are assumed to be constant over
voltage. Power loss maps based on measurements with Vj = 740V have been used as
reference to identify the coefficients for the loss terms

Py =cmi T+ cma /T2, +en, wip VkEK and (4.20f)
Pli,k =¢Ci1 Q/Tg,“k + €1, Wm k T Ci,2 T%’k +¢i3 w72n,k +Cia Tg@,k Wi, k Vk € K (4.20g)

with P, P, , > 0 and wr > 0. This voltage value corresponds approximately to the
mean value of the terminal voltage trajectory for the first lap with initial SOC ¢ = 0.9.

400

300

T, in Nm

0 500 1000 1500
wy, in rad/s

Figure 4.6: Motor power loss P, ;;, in kW over motor torque 7T}, and motor speed wy,. — continu-
ous operation boundary Pp . — auxiliary boundary for temporary operation Pg,, .
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According to the power balance equation, the total electrical power P,.; at the battery
pack terminal must equal the sum of the power demands of each drive unit P, :

4

4

|

Pel = E Pel;c = E _(Tm,k Wm,k + le,k + P)lzk) = VOIb~ (420h)
k=1 k=1

Inserting (4.20e) in (4.20h), applying the quadratic formula and selecting the
solution that enables positive currents and provides zero standby currents for
Tk = 0= wpiVk € K yields

1 1
Iy =55 < — Yy + /2% + 4R,~Pe,) and Vp = 3 (Ev + /5 + 4RiPel> (4.20i)

with Xy := V;+ V. In order to show that the discriminant Dy = Z%/ +4R; P, in (4.201)
takes only positive values, the total electrical power

.20e)

4
Pu=Voly "2 RIZ 4 (Vi + Vi), (4.209)

is derived with respect to the battery pack current and set to zero, which identifies the
extreme value:

0P,

Vd + V;)c
ol '

2R;

=2R; I} + (Vd + VOC) < 0 = Ib,lirn = — (4.201{)

Inserting (4.20k) into (4.20j) yields the limit value for the total electrical power, for
which the discriminant in (4.20i) is zero:

(Vd + VOC)2

1R = Dinm = Z%/ + 4RiPel,lim =0 = Dy>0. (4.201)
%

Pel,lim = -

Thus, the discriminant D, stays nonnegative enabling the use of the formulas in (4.201).
Finally, the dynamic behaviour of the SOC is given by the battery pack capacity @
using the Coulomb counting method [34]:

I

¢ = o (4.20m)

Using this sign convention, drive torques 7T}, > 0 draw current from the battery pack
via negative motor currents and motor brake torques T, < 0 charge the battery pack
via positive motor currents. Hence, the battery pack is being charged for positive battery

pack currents I, > 0, which will be called "recuperation” in the following sections”.

"In fact, energy is recuperated when any electric machine is used for motor braking. For simplicity, the
term is used in this thesis when all machines in total recuperate energy.
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4.2.2 Electrical Overloading

In order to provide increased power, electrical components can be temporarily over-
loaded, however this raises heat generation in the component. Since the electrical com-
ponents can only withstand certain temperatures, this boosting measure depends on
the heat properties of the component. Sophisticated thermic models could be used to
control this feature without damaging the component [79]. However, identifying the
parameters for thermic models generally requires costly test benches and an appropriate
sensor setup. Moreover, adding further, possibly nonlinear and complicated, differential
equations increases the size and complexity of the OP deteriorating its solvability. In
this thesis, vehicles with four wheel-independent drives are analysed. An exact overload
model would require implementing temperature models for each electrical component,
which would result in a high number of additional differential equations. Solving the
corresponding OCP would take considerably longer. Thus, this thesis only analyses the
macroscopic relations regarding overloading, which suffices to identify key differences
between several vehicle setups while keeping a reasonable computation time. Neglecting
the internal states of the electrical components, the simplified approach presented in our
publication [183] is employed. Overloading is limited by the duration and overload extent
via a tank model in combination with power loss flows and appropriate constraints. The
heat generation is approximated via power losses representing the overload extent. Us-
ing the power losses (4.20f) for the electric machines, the main power loss in the battery
pack is modelled as Joule heating. Assuming ideal resistors with complete conversion of
the power into heat, the battery pack power loss is computed by
2
Py, =Py + P, = Rilj + FZ' (4.21)
The threshold temperature up to which electrical components can be operated continu-
ously is represented by a power limit Pg. Fig. 4.6 exemplarily depicts the corresponding
limit Pp  for an electrical machine. The tolerable heat energy deposition into the
component, which characterises the overload capability, is represented by a predefined
energy storage E of capacity E. The power losses P, depict the heat power fed into the
component and the dissipated heat power is denoted by P;. Thus, the total power flow
is given by
Pp =P - P, (4.22)

For simplicity, it is assumed that the dissipated heat power is constant and considered in
the corresponding power limits P, yielding P; = 0. When the total power flow exceeds
the power limit P > P, the energy storage, which represents the boost capacity, is
drained. Analogously, the storage is filled for total power flows below the limit Pr < Pp.

8The dissipated heat power can depend on aerodynamic relations, which could be considered via
velocity-dependent terms. Furthermore, the heat dissipation can be modelled using temperature
differences between the component and its surroundings. For this purpose, simplified thermic models
represent an alternative approach [82]. However, depending on the number of temperature nodes,
this method can require additional differential equations.
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For a unified modelling of these relations for storages of various capacity E, the nor-
malised flows running into the overload tank for the battery pack Ej € [0,1] and each
motor E,, € [0,1] are defined as

Pp, — Pg,

P - Pg
APp, = = “Bmk 7 Bmok

and APp, , = vk € K. (4.23)

b Epk

Thus, the magnitude of the power losses (4.20f) and (4.21) indicate the extent of the
overload and affect the flow rate (4.23), which determines the possible overload dura-
tion. Within the scope of this thesis, the term ”boosting” represents a negative power
flow APg < 0 and ”chilling” refers to positive flows APg > 0. Inflows into the overload
storage are only possible until the tank is full. This is implemented using the switching
function (3.5):

Ejy = min(APg,,0) + max(APg,,0) fow(Ey, 1) and (4.24a)
B =min(APg, ,,0) + max(APg,, ,,0) fsw(Emi, 1) Vk €K. (4.24b)

Switching off the inflow is necessary to avoid infeasible sets that can occur for instance
at the race start: Small initial power losses P, = Pp < Pp result in positive power
flows APg > 0, but the limited energy storage F < 1 is initially full with £ = 1.
Additional states for inverter overloading are omitted under the assumption that the
thermic bounds of the inverters are much higher than the thermic bounds of the motors.
Exaggerated EOL reduces the efficiency of the electrical components over lifetime. It
is assumed that proper overload limits are chosen that either exclude such long-term
effects or these effects become negligible for the desired operation period of the vehicle.
In order to model the power loss flows via (4.23), the corresponding power limit Pp and
energy tank capacity E must be available. The following paragraph presents a method
to approximate these values if they are unknown. Manufacturers often provide estimated
regions for continuous and temporary operation together with a time span m,q; for the
operation within this boosted power area. These regions are represented by the lower
and upper power limit value P and P, respectively. For the battery pack, these power
limits are denoted by P, and Pj,. Using these power limits, the boundary values for the
power losses are approximated by the maximum possible power loss, which is identified
via the SOP

P\ V2
min — P, =— {Ri (el) + d] with 4.25a
A7EE Vi) " R 25
1
Vi = 5 |(Vat Vio) o+ \(Va Vi) + 4Ri (4.25b)
st. 0.1<(¢<0.9, (4.25¢)
— 15V < V; < 15V. (4.25d)

Adequate bounds are set for the SOC ¢ and capacitor voltage V; in (4.25¢) and (4.25d) to
gain realistic values. The terminal voltage (4.25b) is the result of inserting I, = P2 /V{
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in (4.20e) and selecting the solution with Vi > 0. Solving (4.25) using P}, = P}, provides
a solution (¢*, V;). The SOC ¢* can be used to compute the resistances via (4.20a) and
the open circuit voltage following (4.20c). Then, the battery pack current is computable
by (4.20i) with Vj and P}; = P;,. Finally, the corresponding power loss, which represents
the power limit P, , is given by (4.21). Analogously, using P}, = Py, delivers the auxiliary
upper bound Ppg,. It is possible to compute the power limit values for the electric
machines similarly: Prescribing a certain power, the maximum possible power loss value
for given torque characteristics and power loss maps (4.20f) can be used as limit value.

However, it is presumed for now that the power limits Py  and Pg,, ,, which are
depicted in Fig. 4.6, are known.
Using the power limits, the overload tank capacities are approximated by

— — T — — T

Ey=(Pp,— Pg)—= and Eng=(Pg,, —Pp,,)— YheK  (420)

for the battery pack and each motor, respectively.

4.3 Model Smoothing

Before formulating the OP, the model equations listed in Section 4.1 and Section 4.2
must be smoothed according to Section 3.2 to ensure the smoothness requirements of the
NLP solver. The discontinuity due to the maximum function included in the longitudinal
slips (4.11a) is removed using (3.3a) yielding

Ay g A WETE — Y2k
ok A
%((wm + k) + \/ (wers — 92,)” + am)

)

Vk € K. (4.27a)

Using the approximate absolute value function (3.2), the total slips (4.12¢) are replaced
by

)\tot,k ~ \/)\i,n,k + )\32/:”7k + €\ tot Vk e K (427b)

avoiding nonsmoothness for Ay, 1, = 0 = Ay, 1 and a division by zero in (4.12d). Another
discontinuity is given for vy = 0 in (4.5), which is introduced into the system by the
aerodynamic drag and lift forces in (4.6a) and (4.6b). However, this discontinuity is
avoided by enforcing positive longitudinal speeds via constraints yielding vo; > 0, which
enables keeping the equations simple. Since driving backwards on racetracks is not
reasonable, this arrangement is legitimate.

Using (3.4), the directionality of the mechanical efficiencies in (4.16) is approximated by

tanh(Tm,k/&,)

Tw,k ~ Tm,k Z.g,k 7797k vk € K. (428)

In (4.20f) and (4.20g), the absolute value of the individual motor torques is approximated
using (3.2). Since the identification of the corresponding parameters listed in Table 4.2
was performed using the smoothed equations to reduce errors, the smoothed equations
have been directly specified in Section 4.2.1.
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Table 4.3: Smoothing parameters for vehicular optimal control problem.

Variable Value Unit Description
Exz 1076 — smoothing factor for longitudinal slips
€ tot 1078 — safety factor for singularity in total slips
En 1.0 — smoothing factor for directionality of gear efficiency
ET,, 102 — smoothing factor for power loss maps
ep, 1076 - smoothing factor for power loss
Cp 102 — smoothing factor for switching function
€p 50-1072 — shift factor for switching function

The differential equations describing the overloading of the battery pack and the electri-
cal machines in (4.24) are smoothed using the approximations (3.3a), (3.3b) and (3.5).
This results in the smooth equations

. 1
min(APg,0) ~ 3 (APE —/APE + Epl), (4.29a)
1
max(APg,0) ~ 5 (APE + /AP + spl> and (4.29b)

fsw(E,1) = —% [tanh (CE(E -1+ EE)> — 1} (4.29¢)

for APp € {APg,,APg,,,,...,APg, ,} and E € {Ey,En,...,Ena}. The selected
values for the smoothing parameters are listed in Table 4.3. After applying the smoothing
measures in this section, the model equations are ready to be used within an OP that
shall be solved by a derivative-based NLP solver. The formulation of adequate OPs for
computing minimum-time optimal trajectories is illustrated in the subsequent section.

4.4 Optimisation Problem

Using the model equations presented in the previous sections, this section describes var-
ious OPs aiming at completing a lap on the Niirburgring Grand Prix course in minimum
time. The vehicle behaviour is described by a continuous, input nonaffine, nonlinear,

time-invariant differential equation system of the form (3.1a). The input vector of the
system model is given by

T
u= [Tm,l Tm,2 Tm,3 Tm,4 Tbr,l TbT,Z Tbr,S Tbr,4 6f} €R9. (430)

using the motor torques T, , friction brake torques Ty, and front steering angle ;.
The state vector is comprised of the individual model parts

T 19
X = |Xref Xyeh Xbat Xeol} e R™. (431)

71



4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

The position of the vehicle relative to the track is determined using the differential
equations (3.6) describing the temporal development of the track reference states

Xiet = [sx dx O] ER®, (4.32)
The basic vehicle motion is depicted using the states
Xyeh = [Ux vy ¥ wi ws w3 wi Ay ay| € R (4.33)

following (4.3) and (4.9). The temporal behaviour of the battery pack is illustrated via
the SOC and capacitor voltage

Xbat = {C Vd} € R? (4.34)

according to (4.20m) and (4.20d). The EOL is depicted using (4.24) to describe the
development of the overload reservoirs over time:

Xeol = |:Eb Em,l Em,2 Em,3 Em,4:| €R5' (435)

Applying the objective (3.17a) composed of the time-optimality term (3.19) and the
regularisation term (3.20) favours smooth input solutions, which are better realisable
by human drivers. The cost weights are chosen such that the extra time gained by
the regularisation term is negligible but smoothness and solvability is greatly enhanced.
The minimum-time OP is solved for a vehicle with nominal passive parameters with

Table 4.4: Optimisation parameters for vehicular optimal control problem.

Variable Value Unit Description
tg,nom 6.456 — nominal gear ratio of transmission
kmot,nom 0.0 — nominal motor performance shift
€y 2.0-1072 — scaling factor for regularisation-term
€5 1.0 ms~! safety margin for arc length constraint
3f 40.0 - 7/180.0 rad  maximum steering angle for front wheels
Tir1/2/Lor3/4 -7025.0/-4030.0 Nm maximum brake torque for front/rear axle
Wm 1570.0 rad/s maximum motor speed
Uy 0.9 ms~! minimum longitudinal speed
L/, -1500.0/480.0 A minimum/maximum current of battery
Vo/Vo 520.0/806.0 \Y% min./max. terminal voltage of battery
Py, /Pg, 18.5/51.0 kW  limit values for battery pack power losses
Py /Pg, 4.0/10.0 kW limit values for motor power losses
T 470.0 Nm maximum motor torque
¢/C 0.724/1.0 — minimum /maximum state of charge
zg /ig 1.0/15.0 - minimum /maximum gear ratio
Kmot 0.8 — maximum performance shift
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and without EOL. Furthermore, an optimal passive vehicle setup is determined for a
vehicle with EOL by concurrently optimising selected model parameters as described in
Section 4.4.1. Adequate initial values and necessary constraints are listed in Section 4.4.2
and 4.4.3, respectively. An elaborate procedure for the generation of initial trajectories

is presented in Section 4.4.4. The necessary parameters for posing the OP are listed in
Table 4.4.

4.4.1 Passive Optimisation Parameters

For improved vehicle performance, selected model parameters are optimised simultane-
ously with the system inputs and states. Firstly, the optimal front and rear gear ratios
igf = ig1/2 and iy, = i43/4 are identified. Secondly, a predefined total motor per-
formance is optimally distributed in longitudinal direction using the shift variable kot
according to

kmot,f = kmot,l/Q =1+ kmot and kmot,r‘ = kmot,3/4 =1- kmot- (436)

The passive optimisation parameters are accumulated in following vector

T
P= ig,f ig,r kmot . (4.37)

In general, with increasing motor power rises the maximum torque and the heat tolerance
represented by power losses. However, the maximum motor speed lowers due to the
increased rotor inertia. For simplicity, these tendencies are represented by a linear
scaling of the maximum motor torque, the motor power limits and the maximum motor
speed according to

Tm,k = kmot,k Tm vk € Ky (438&)
Pg,. . = kmotk Pp, VkeK and FEm,k- = kmotk PE,, k€K, (4.38b)
Ok = (1 — kmot) Wm Vk € {1,2} and @y = (1 + kmot) Wm Vk € {3,4}. (4.38¢)

Values for Ty, Wm, Pp, and P, are given in Table 4.4. With (4.38), the passive
optimisation parameters (4.37) affect the wheel inertias in (4.19), the maximum wheel-
based motor torque in (4.47) and the maximum wheel speed in (4.48). Additionally, the
capacities of the motor overload tanks in (4.26) are scaled by the corresponding shift
variable kot 5 due to the adaptation of both power limits in (4.38b). For simplicity, it
is assumed that the changes in motorisation do not affect the weight distribution of the
vehicle and the power loss maps (4.20f) and (4.20g).

4.4.2 Initial Condition

Assuming a rather small battery pack capacity Qy, the task of completing nj,, = 5 laps
is intended. The optimisation examines only the first lap in order to reduce the prob-
lem size. Hence, the vehicle starts with a SOC of ¢ = (, and full overload tanks
with By = 1= E,, ; Yk € K. The initial track segment is straight. Thus, the steering
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angle, lateral speed and yaw rate are initially set to zero. Furthermore, the vehicle
starts in the centre of the racetrack in alignment with the track reference curve yielding
dr = © =9 = 0. Imposing a small initial longitudinal speed v, = v, x = 17} avoids the
singularity at vanishing speed in (4.11b). Since steady-state conditions are assumed at
the race start, accelerations are initially zero resulting in only static and aerodynamic
wheel loads. For simplicity, the longitudinal wind force is assumed to be fully imposed
on the rear tire forces. The friction brake torques are initially set to zero. These assump-
tions enable the computation of the front and rear tire forces as well as the wheel-based
motor torques via (4.3a) and (4.3c) resulting in

1
9;:,1 = _froll,() Fz,l = gm,% gx,fﬂ = 5(_Fx,air - 9;,1 - gm,2) = gm,4 and (4393)

Ty = Yok — Iyronk Vk €K (4.39Db)

After identifying the initial tire forces (4.39a), the longitudinal slip and the rotational
wheel speeds are computed via (4.12¢) and (4.11a). The initial motor torques are deter-
mined by inserting (4.39b) in (4.16). Motor speeds are computed using the previously
calculated wheel speeds and (4.18). Presuming steady-state conditions, (4.20d) results
in Vj = Rylp. Using this relation together with (4.20i) as well as the initial SOC, motor
speeds and motor torques, provides the initial capacitor voltage V.

4.4.3 Constraints

As stated in Section 3.5, the integration interval is divided into ns segments yielding
neoll collocation points. Each state and input at each collocation point represents an
optimisation parameter. Applying the collocation constraints (3.15) to each collocation
segment ensures the satisfaction of the system dynamics. However, further constraints
are necessary to consider non-modelled physical effects, enable simplifications and avoid
numerical problems. Although the OP is formulated using the scaled optimisation vari-
ables X, @t and P, the remaining constraints are depicted using the original variables to
improve comprehensibility. All subsequent constraints are imposed at each collocation
point, however the indices are omitted to enhance readability.

In order to prevent the vehicle from leaving the racetrack, the lateral deviation of the
vehicle from the track centre line is limited via

by by
- dhw + 5 < dR < dhw — 5 (440)

using the chassis width b, and the arc length-dependent track half-width dp,,. Driving
backwards on racetracks is not reasonable and is hence avoided by enforcing positive
longitudinal speeds via a lower limit

0< v, < v, (4.41)

When driving on racetracks, (4.41) generally results in vy x, 05 1 > 0 omitting the singu-
larity in (4.11b). Furthermore, (4.41) enables the simplification made in (4.11a).
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4.4 Optimisation Problem

In order to stay within the stable region of the tires, the wheel slips (4.11a) and (4.11b)
are enforced to stay within the load-dependent friction ellipse

2 2

Ao A

s,k :=< *’k) +< i”“) —-1<0 VkeK (4.42)
x,k )‘y,k

defined by the optimal slips (4.13b). Guaranteeing tire forces within the region of adhe-
sion, (4.42) results in an efficient tire usage and reduced tire wear. Since the tire force
potential reduces with tire wear, constraining the slips via (4.42) is eligible.

Tire forces can only be transmitted as long as the wheels have ground contact. In order
to avoid additional discontinuities as in [158], positive wheel loads are demanded:

F.p>0 VkeK (4.43)

Moreover, dividing by zero when implementing the spatial reformulation (3.7) is avoided
by imposing

Sg > €5 >0, (4.44)
which is legitimate since backwards driving is not a reasonable scenario on racetracks.

Generally, the operating range of actuators is limited, which is captured by box con-
straints for the front steering angle

— 05 <6p <9y (4.45)
and for the friction brake torques
Ty <Torxy <0 VEkekK (4.46)

Further actuator constraints are given for the electrical machines. The motor torques
are limited by the maximum torque (4.38a) yielding

~Tip < Tk <Tiap VEEK (4.47)

Since we exclude driving backwards on racetracks, adequate constraints are set to enforce
positive motor speeds. Considering the maximum motor speed (4.38c), the wheel speeds
are limited according to

0<wp <ok vk ek (4.48)
gk

Furthermore, a safe operation of the battery pack requires strict limits on the current of
the battery pack
I, < I, <1 (4.49)

as well as on its terminal voltage
Vo < Vo < V. (4.50)

The charging current is chemically limited by Ij, whereas the maximum discharging
current I, generally depends on thermodynamic conditions resulting in |I| > T,.

75



4 Nonconvex Lap Time Optimisation for Vehicles using Nonlinear Programming

As mentioned in Section 4.4.2, only the first of nj,, = 5 laps is considered by the
optimisation. The first lap generally requires more energy due to the initial acceleration
phase. Thus, a slightly higher portion

Plap = + 2% = 0.22 (451)

Map
is granted for the battery pack capacity. Using (4.51), the initial SOC and the recom-
mended working zone (. € [QT,ZT], the SOC boundaries are set according to

¢ = ((5r,0) = Prap(C, = () <C< 1= (4.52)

> 2r

Therein the true maximum upper bound is admitted enabling a fully charged battery
pack. Furthermore, the overload reservoirs are constrained from below via

0< Eyp,Epy VkeK. (4.53)

Due to the saturation in (4.24), the overload tanks do not need to be limited from above.
Finally,the passive optimisation parameters are restricted according to

Zg < ig,f/r < gg and — Emot < Fmot < Emot (4'54)

to only allow plausible gear ratios and motor powers.

4.4.4 |Initialisation Routine

Direct collocation methods are generally robust enough to cope with initialising the de-
cision variables with zeros or linearly interpolating between the initial and final value.
Yet, providing a good initial solution for the OP can greatly reduce computation time.
Furthermore, derivative-based optimisation methods only ensure convergence to local
optima and can potentially get stuck in suboptimal solutions.

There are various possibilities to deduce better initial solutions. If available, measure-
ments can be used to generate initial trajectories. In case the OP is complicated, a

KR

Uref Sr

Utot

vehicle
dynamics dr

Figure 4.7: Triple PID controller structure for generation of initial trajectories for the OCP.
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simplified version of the problem can be solved first using its solution as initialisation
for the actual problem. Another method is generating initial trajectories using tracking
controllers to follow a predefined trajectory. For racetrack applications, the very first
trajectories for the inputs and states can be created via the simple controller struc-
ture depicted in Fig. 4.7 that tracks the racetrack centre line [185]. Three separate
proportional-integral-derivative (PID) controllers are used to reduce the lateral devia-
tion eg = —djz, the tangent angle error e = —O and the speed error e, = Vpef — Vtot- A
constant, small reference speed vef is chosen whereas the torques are allocated equally
according to T = iTmt.

Regardless of which initial solution is chosen, the number of collocation segments should
be increased gradually starting with a rather coarse mesh to simplify the computation
of the very first optimal solution. Thus, the quality of the subsequent optimisations
successively increases while preventing that the solver fails entirely to find a solution.

4.5 Results

The OP presented in the previous section is solved using 1000 equally spaced collocation
points yielding a mesh interval of about 2.5 metres. An OP is solved for each of the
vehicle configurations C0-C2 listed in Table 4.5. The solution for nominal configura-
tion CO represents the baseline solution. This setup represents a vehicle with nominal
parameter values and without EOL. Hence, the power losses of battery pack and electric
machines must stay below the corresponding limit for continuous operation: P, < Pp,
and B, , < Pp . Vk € K. The influence of EOL is analysed via configuration C1.
In order to identify the optimal passive setup, the passive parameters (4.37) are simul-
taneously optimised for configuration C2 while also considering EOL. The individual
setups are compared in regards to various features. Considering (4.36), the performance
percentage of the rear motors is given by

1 1
Pmot,r = 5 kmot,r - 5 (1 - kmot) . (455)

The recuperation percentage

 J! max(Voly, 0)dt
J \min(Voly, 0)| dt

(4.56)

rec -

classifies the ratio between recuperated energy and consumed energy. The time advan-
tage progression compared to the nominal configuration is defined as

Atcr(sr) = tok(sr) —tco(sgr) with k€ {1,2}. (4.57)

The time advantage progression and track curvature depicted in Fig. 4.8 show that EOL
mainly reduces lap time at the race start and after exiting corners. The causes of these
lap time progressions are explained below by examining the optimal trajectories of the
individual vehicle setups.
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Table 4.5: Optimisation results for individual vehicle configurations.

EOL CO parameter values lap time e |%)]
ig[=] igr[=] Pmotr[%] tapls] Atiapls] Atiap[%]

Co 6.456  6.456 50.0 141.58 - - 31.42

C1 v 6.456  6.456 50.0 135.60  -5.98 -4.22 31.95

C2 v v 4.987  6.275 59.3 135.45 -6.13 -4.33 31.85

EOL: electrical overloading. CO: concurrent optimisation of passive parameters (4.37). iq,¢/ig,r: fron-
t/rear gear ratio. pmot,r: performance percentage of rear motors (4.55). tiap: lap time. Atjap: lap time
advantage over configuration CO. kyec: recuperation percentage (4.56).
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Figure 4.8: Racetrack curvature Kz and course of time advantage Atcy compared to setup CO.
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Figure 4.9: State of charge ¢ and total motor torque T}, ot for individual vehicle setups.
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Fig. 4.9 compares the SOC ( and total wheel-based motor torques T, 1ot = Zi:l Tw i
to provide general energetic discrepancies between the individual configurations. The
figure illustrates that setups C1 and C2 show higher total motor torques due to the
possibility to overload the battery pack and motors. Thus, the full amount of energy
allowed by (4.52) is consumed so that the SOC is at its lower limit at the end of the lap.
Considering the performance-oriented cost function, this indicates that the results are
correct. For Cl1 and C2, the gradient in the torque trajectory is substantially steeper
switching faster from drive torques to motor brake torques. Thus, the SOC trajectories
for C1 and C2 diverge from the trajectories for CO on acceleration phases and approach
each other again when decelerating. The recuperation percentages in Table 4.5 show
that the EOL also increased efficiency by recovering 0.53% and 0.43% more energy for
setup C1 and C2, respectively.

Optimal Electrical Overloading In order to go into depth regarding EOL, selected
trajectories are subsequently shown for setup C1. The heat power flows of the battery
pack APg,, the front right motor APg, , and the rear left motor APg,, , are depicted
for setup C1 in Fig. 4.10, Fig. 4.11 and Fig. 4.12, respectively. Additionally, Fig. 4.13
illustrates the trajectories of the overload reservoirs, wheel-based motor torques, friction
brake torques, the current and terminal voltage of the battery pack as well as the friction
ellipse constraints for setup C1.

Due to the far higher limit for discharging currents than charging currents |I,| > I,
in (4.49), the battery pack is mainly overloaded to enhance acceleration rather than
recuperation. Hence, the battery boosting mainly occurs at the race start and at corner
exits to enable higher discharging currents that result in higher drive torques. Fur-
thermore, the battery pack is chilled during the braking phase before corners, which is
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Figure 4.10: Overloading of battery pack for vehicle configuration C1. Symbols: o 500m marks,
A start chilling, v start boosting, — empty overload reservoir.
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Figure 4.11: Overloading of front right motor for vehicle configuration C1. Symbols: o 500m
marks, A start chilling, V start boosting.
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Figure 4.12: Overloading of rear left motor for vehicle configuration C1. Symbols: o 500m
marks, A start chilling, V start boosting, — empty overload reservoir.

represented by recharging the overload tank of the battery pack. This replenishes the
boosting capability for the subsequent acceleration phase. The overloading of the elec-
tric motors occurs during the initial acceleration at the race start as well as after corner
apexes. Generally, motor overloading is used to increase the wheel torque in unison with
the wheel load distribution to better exploit the force potential of the individual tires:
Mainly the rear motors are overloaded when accelerating and the motors of the outer
wheels are boosted more than the inner wheels when exiting corners. In summary, EOL
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0 500 1000 1500 2000 2500
Sk in m

Figure 4.13: Overload reservoirs FE, wheel-based motor torques 7T, and friction brake
torques Ty, current I, and terminal voltage V|, of battery pack as well as fric-
tion ellipse constraints g, for configuration C1. Dotted lines represent bounds.

is mainly used for acceleration and therefore improves lap time primarily at the race
start and after corners by enabling higher drive torques. As illustrated in Fig. 4.13,
primarily the overload storages of battery pack and rear motors are drained due to the
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preference for boosted acceleration. When accelerating from slow speeds, like at the
race start or after tight corners, the overload storages of the rear motors are drained to
emptiness for maximal acceleration. Overall, lap time of setup C1 is 4.22% smaller than
the lap time of setup CO.

Fig. 4.13 reveals the general torque allocation strategy for minimum lap times. Besides
the already mentioned longitudinal torque allocation, torque is also distributed later-
ally. Firstly, the lateral torque discrepancies generate an additional yaw moment that
stabilises the vehicle when braking on corner entries and enhances agility when accel-
erating after corner apexes. Secondly, the tires are used more efficiently: The lateral
wheel load distribution during cornering results in different optimal slips (4.13b) for
the inner and outer wheel of an axle, which is considered by applying individual wheel
torques. The motor brake torques saturate due to the maximum charging current Ip
in constraint (4.49). When the battery pack current reaches this boundary, the friction
brakes are used to provide additional brake torque. This facilitates the full exploitation
of the tire potential when braking resulting in friction ellipse constraints (4.42) at the
limit of adhesion. Since the braking system does not engage otherwise, the friction brake
torques are far from saturating. However, the brake torque allocation between motors
and braking system depends on the motor characteristics and the powertrain topology. It
can be necessary to use friction brake torques more frequently when smaller motors with
lower maximum torque are installed. The benefit of additional friction braking increases
for vehicles with less than four electric machines due to the possibility of differential
friction braking. Another factor that strongly influences the utilisation of the friction
brakes is the remaining SOC. Lowering the available energy percentage pia, reduces the
engagement of the braking system. Then, it is beneficial to drive slower and not exploit
the full tire potential. Thus, less energy is spent and more energy can be recuperated
by the motor brake torques, which are then capable to account for the full brake torque.

Concurrent Optimisation In order to further improve lap time, the front and rear gear
ratios as well as the longitudinal distribution of the motor performance have been simul-
taneously optimised for setup C2. The optimiser reduces the front gear ratios, whereas
similar gear ratios are maintained at the rear. Considering the torque transfer from mo-
tors to wheels in (4.16), this enables larger torques at the rear wheels. Furthermore, less
torque is required to accelerate the front wheels since the inertia of the front wheel-units
reduces following (4.19). Although not representing a limit for the current application,
the smaller front gear ratios enable higher rotational speeds at the front wheels via the
upper wheel speed limit in (4.48). A higher gear ratio at the rear wheels than at the
front wheels is beneficial for acceleration due to the rear weight bias of 54.0% and the
larger rear axle loads when accelerating.

Besides the gear ratios, the fixed motor performance is shifted via kot to the rear yield-
ing a performance bias of pmet,r = 59.3%. Following (4.38a)-(4.38b) and (4.26), this

increases the maximum motor torque limits 7'y, k, the lower motor power limit Pp

and the overload tank capacity E,, j for the rear motors while reducing the corresponding
values for the front motors. Consequently, overloading is improved for the rear motors
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by allowing a higher continuously usable power and increasing the overload capacity.
The overload tank trajectories in Fig. 4.13 illustrate that this entails a benefit when
accelerating from slow speeds like at the race start or after tight corners. Although not
depicted in a figure, the maximum wheel speed in (4.48) is not reached for the current
track and setup. Thus, it does not represent a limiting factor in the current optimisation.
However, the motor performance shift decreased the maximum rotational motor speed
at the rear wheels and increased it at the front wheels via (4.38¢).

While the mentioned measures improve acceleration potential, recuperation poten-
tial krec is marginally reduced by 0.1% compared to setup C1, as depicted in Table 4.5.
The concurrent optimisation of the passive parameters results in an additional lap time
improvement of 0.11%, compared to C1. The lap time improvement is only small since
the basic vehicle setup of C1 is already quite good. However, the results show that
different setups can achieve similar performances and the presented method can be used
to simultaneously identify optimal vehicle parameters.
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5 Convex Quadratic Programming via
Space Splitting Convexification

Optimal control methods for realistic engineering problems generally require the solution
of nonconvex OPs, which are rather hard to solve. The second part of this thesis deals
with reducing the computation time required to solve such nonconvex problems. A novel
successive convexification method, which is called space splitting convexification (SSC)
and has been introduced in our publication [186], is presented in this chapter. It decom-
poses certain nonconvexities into affine parts by introducing auxiliary decision variables
and absolute value constraints (AVCs). In an iterative procedure, these AVCs are lin-
earised around the solution of the preceding iteration and transferred to the objective
function using the concept of exact penalty functions. An intermediate projection routine
identifies an adequate initial guess. The utilised AVCs possess a beneficial structure for
linearisation and point projection onto constraints. The linearisation of the AVCs results
in a binary decision: wrong or right sign of the absolute value term. In each iteration,
the preceding solution is projected onto the AVCs and the sign is corrected if necessary
enabling the linearisation errors to vanish in subsequent iterations. The violation of the
linearised AVCs serves as feedback whether the correct sign was chosen, which is used as
indicator for convergence. The approach is capable of considering two types of noncon-
vexities. Firstly, a class of nonconvex sets that can be split into convex subsets, which
are called zonally convex sets (ZCSs) in this thesis. Such sets arise for instance when
semi-active actuators are used. Secondly, equality constraints with possibly multiple
but univariate nonlinearities. A common source for these nonlinear equality constraints
are nonlinear system equations when applying optimal control methods. Requiring only
simple mathematical operations, the AVC-projection is of linear computational com-
plexity. Furthermore, the binary nature of the AVC-linearisation generally results in
few superordinate iterations. The method produces an efficiently solvable substitute
problem, which is a convex QP problem or even LP problem if the original objective is
linear. Thus, the SSC algorithm greatly reduces computation time enabling an efficient
solution in polynomial time. Furthermore, robust initialisation properties are given since
the initial guess is not required to be feasible. The algorithm converges under certain
conditions to local optima of the piecewise linear substitute problem, which represents a
scalable approximation of the original problem. However, being a local solution method,
the computed local solution generally depends on the provided initial guess. For good
initialisations, the algorithm computes solutions that are close to the global optimum.

This chapter contains parts of our publication [186] and is organised as follows. The ini-
tial SOP for the numerical solution of the optimal control task is presented in Section 5.1.
Afterwards, Section 5.2 derives the successive convexification algorithm and provides a

85



5 Convex Quadratic Programming via Space Splitting Convexification

proof of convergence. The specific application of the SSC algorithm to two-dimensional
ZCSs and nonlinear equality constraints is illustrated in Section 5.3. Remarks on the
computation time of the algorithm are given in Section 5.4. Section 5.5 closes the chapter
with a comparison of the presented method with related approaches.

5.1 Problem Formulation

Optimal control deals with computing the optimal input and state trajectories for a
given system model. The motion of a nonlinear, continuous, time-invariant system is
given by the differential equation system

x(t) = £ (x(t),u(t)) (5.1)
with states x € X C R™ and inputs u € & C R™. An optimal control trajectory u(t)
for a system described by (5.1) and time interval ¢ € [to, t¢] can be computed by solving a
dynamic OP of the form (2.17). The SSC approach aims at solving such problems numer-
ically, employing a direct collocation method due to the simpler initialisation of direct
methods and the increased sparsity of collocation methods. Using separated Hermite-
Simpson collocation with a discretisation into mges segments yields ncon = 2ngeg + 1
collocation points and thus the vector of decision variables

T
W= [Wg WE Wi Wgseg} € R™ with wj = [Xg uﬂ (5.2)

The SSC procedure is applicable to NLP problems of the form

1
min J(w) = §WT Pow+al w+rg (5.3a)
s.t. CCOll,i(Wi7 Wi+%,wi+1) =0 Vi € Leon, (53b)
c,=A.wp+k.=0 vk e IC, (5.3C)
hk(Wk) <0 Vk € IC, (53d)
hzcs,k(Wk) <0 Vk e K (536)

with indices i € Z.op and k € K representing the corresponding collocation segment
and collocation point according to (3.18), respectively. Objective (5.3a) is assumed
to be quadratic and convex in the decision variables with rp € R, qp € R"™ and
0 <Py € R"w*™  The positive semi-definiteness of Py concludes the convexity of the
objective. Collocation constraints (5.3b) ensure that the system equations (5.1) are
satisfied. For Hermite-Simpson collocation, these equality constraints are given by

Xit1 — X — g Ai(£; + 4fi+% +fii1)

5.4
Xip1 — S(xi + xi41) — s A(F — i) (54)

Ceoll,i =

with f; .= f(x;,u;) and A; = t;41 — t;, as introduced in Section 3.5%. The SSC approach
is capable of considering nonlinear right-hand sides of the form

f(x,u) = (Ax+Bu+k) + fu(x, u) (5.5)

9Without spatial reformulation of the OP, the collocation method performs a time discretisation.
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with A € R™*" B € R"**™ and k, f,1 € R"*. Therein fy, represents a composition
of univariate nonlinearities that can be depicted or approximated by piecewise linear
curves. For simplicity, it is assumed that the remaining equality constraints (5.3c) are
affine in the decision variables. The inequality constraints (5.3d) are required to be
convex in the decision variables. However, aiming at constructing a QP problem, it is
assumed below that the inequality constraints are even affine. This stricter assumption
can be posed without loss of generality since convex inequality constraints can be ap-
proximated via a polyhedron using multiple affine functions [19, p.32]. The inequality
constraints (5.3e) depict ZCSs, which are nonconvex sets that can be split into convex
subsets.

5.2 Successive Convexification Procedure

Considering the standard form of convex OPs (2.26), all equality constraints must be
affine in the decision variables to enable the convexity of the problem!?. Hence, a
nonlinear right-hand side of the system equations (5.1) results in nonlinear equality
constraints (5.4), yielding a nonconvex OP. Furthermore, the nonconvex inequality con-
straints (5.3e) also prohibit a convex problem.

As schematically illustrated in Fig. 5.1, the SSC algorithm iteratively solves a convex
substitute problem (5.20), which is derived from the original problem (5.3). The core
idea of the SSC concept is considering the transformed problem (5.13), which represents
a piecewise linear approximation of the original problem (5.3). This transformation is
achieved by introducing space splitting constraints. These constraints are nonconvex
but render the original constraints convex. Furthermore, they possess an advantageous
structure that is exploited by the algorithm. In order to deal with the remaining non-
convexity, the nonconvex space splitting constraints are transferred to the objective
following the theory of exact penalty functions. The resulting problem (5.17) possesses
a convex feasible set but a nonconvex objective. Thus, the nonconvex part of the objec-
tive is iteratively linearised around points that are adjusted based on the previous iterate
using an intermediate projection routine. This yields the convex problem (5.20), which
is sequentially solved within the SSC algorithm. The smoothable absolute value func-
tion (3.2) with smoothing parameter 0 < £5 < 1 is subsequently employed: It recovers
the true absolute value for e, = 0. The intermediate OPs (5.13)_ and (5.17), depicted
in Fig. 5.1 apply €5 > 0 to provide continuous differentiability for the validity of the op-
timality conditions legitimising the application of exact penalty functions. Afterwards,
this smoothing is removed since it represents an approximation that is not required in
problem (5.20) for continuous differentiability. The subsequent sections describe the
problem transformation process in more detail.

10The special case of geometric programming (2.34) is excluded for simplicity.
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(5.20) s =0
iterative
linearisation

Figure 5.1: Transformation of OP. Dotted and solid arrows represent approximated and exact
transformations, respectively.

5.2.1 Space Splitting Constraints

Before presenting the individual OPs, the basic principle for the space splitting of a de-
cision variable is illustrated in this section providing graphical support. If collocation is
used, the inputs as well as states represent decision variables. Thus, the input space and
the state space can be split. The splitting procedure is presented using w € W = [w, W]
as a representative decision variable that is split at the transition point w = wy,.
As illustrated in Fig. 5.2a, the auxiliary decision variables wioy € Wiow = [w, wi,] and
Wyp € Whap = [wir, W] are introduced aiming at satisfying following relations:

(5.6)

wyy  else

w  Vw < wy, w o Yw > wy,
Wiow = y Wup = .
wiy  else

Lemma 5.2.1. The splitting relations (5.6) can be implemented via the splitting con-
straints

Gaft = Wyp + Wiow — ('IU + wtr) =0 (57&)
Jabs = Wup — Wiow _| W — Wir | =0. (57b)
—_—— \T/
=wa =0

Proof. Solving (5.7a) for one of the auxiliary decision variables yields
Wiow = W + Wiy — Wyp. (5.8a)

Inserting (5.8a) into (5.7b) results in

(5.8a)
1 Wyp =W = Wow =Wy YV W > W
wup = 5 (|’LU - wtr| +w + 'UJt,r) = P (5.83.) o ' " (58b)
Wyp = Wiy = Wiow = W Vw < wyy
Thus, the constraints in (5.7) ensure the desired splitting according to (5.6). [ |
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Waux
w ;P
W Wir w. w
Wiow
w

(a) Splitting of deci- (b) AVC (5.7b) and its relaxed lin- (c) Projection after optimisation
sion variable w into earisation according to (5.11a). with initially wrong sign. I: ini-
Wiow and Wyp. tial guess. O: optimum. P: pro-

jection of optimum.

Figure 5.2: Space splitting.

The AVC (5.7b) is relaxed into a convex inequality constraint, which can be depicted
using two linear inequality constraints:

Wa — W

=wa—|W >0 < hys= -
Gabs A |‘_ abs TUA+U)

> 0. (5.9a)

Furthermore, the linearisation of the AVC based on the result of the preceding itera-
tion wy,., is added as an additional objective term in form of an exact penalty function

with penalty weight 7:

Jy =T laps with (5.9b)

labs = Wa — 0y W =0 and oy, = sign(w*) = sign(wyey — Wir)- (5.9¢)

Considering (5.9¢), the linearisation breaks down to choosing the sign o, of the absolute

value based on the previous solution wy,.,. Furthermore, the projection of the previous

solution onto the constraints in (5.7) follows from (5.6) and provides the initial solution,

v

marked as (-), for the subsequent iteration:

*
prevs

*
prevs

X s Wir)- (5.10)

W= w Wow = min(w W), Wyp = MAX(Wp ey,
The projection step is depicted in Fig. 5.2¢ for an initial guess with a different sign than
the computed solution: sign(w* — wt,) # sign(w},e, — wtr). For a graphical interpreta-
tion, the additional cost term (5.9b) can be replaced by an additional relaxed equality

constraint with the slack variable s,, > 0 being minimised via a penalty objective:

Wa — Oy W = Sy (5.11a)

Js =T Sqp- (5.11b)

Since adding slack variables increases the number of decision variables, this is not de-
sirable from an implementation standpoint; however, it fosters comprehension. The

relaxation of constraint (5.11a) via the slack variable s, is necessary to avoid infeasi-
bility, which is illustrated in Fig. 5.2b: Since g.ps = wa — |@| > 0 holds, an unrelaxed
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constraint (5.11a) with s,, = 0 would only allow values satisfying @ < 0 for o, = —1 and
only values @w > 0 for o,, = 1. However, the sign is based on the previous iteration and
can thus be wrong. Then, a relaxation represented by the slack variable is necessary to
allow values W of the opposite region and avoid infeasibility. The sign is corrected for the
subsequent iteration step to enable eradicating the additional objective (5.11b) and thus
the slack variable. This concludes that the initial solution does not have to represent
a feasible solution, which results in robust initialisation behaviour. The relaxation via
the slack variable s,, in (5.11a) corresponds to the violation of constraint lyps via (5.9b).
The fact that the constraint violation will be large in case of a wrong sign is used as
feedback for the algorithm. The algorithm will iterate until a feasible point satisfying
laps &~ 0 & sy, is reached. Then, the additional objective (5.9b) vanishes.

5.2.2 Piecewise Linear Approximation of Optimisation Problem

The first step towards a convex OP is the derivation of a piecewise linear approximation
of the original problem (5.3). This is achieved by using the concept of space splitting
presented in the previous section. Since multiple decision variables can be split, the
formulation of the OP is posed using the augmented vector of decision variables
T

z = {ZE)F Zg zf .. Zzseg} with z] = [x% ul Wifux,k € RIxm= (5.12)
with the auxiliary decision variables wauxk € R"™s. Therein some of the original states
and inputs are excluded when they are depicted using affine transformations as illustrated
in Section 5.3.1. The corresponding substitute problem is given by

min J(w) (5.13a)
st €eolli(2) = Ceoll,i(W = ®(2), fyw1 = Ppwi) =0 Vi € Lo, (5.13b)
¢r(z) =cr(w=®(z)) =0 Vk e I, (5.13c)
hy(z) =hy(w=®(z) <0 Vkek, (5.13d)
h,esi(z) <0 VkeK, (5.13€)
g k(2) = Es p Wausck — (B2 2p + W) =0 Yk e IC, (5.13f)
8abs k(2) = Ex t Waux ks — @(E, p2z, — Wi ) =0 Vk e K. (5.13g)

Therein «(-) : R™ — R™ represents a function that applies the smoothable absolute
value function (3.2) to each vector component individually: No smoothing occurs for
gs = 0. Furthermore, the right-hand side of the system equations (5.5) is depicted or
approximated by the affine expression

fo (Xv u, Waux) = (A P, (X, u, Waux) +B®, (X, u, Waux) + k) + 4)pvvl(xa u, Waux) (514)

with ®, : R"* — R™ and ®,, ®,,1 : R"* — R" representing functions that are affine
in the decision variables. Thus, (5.14) enables affine collocation constraints (5.13b). The
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transformation function ®(z) in problem (5.13) represents the accumulation of the affine
transformations ®, and ®, with ng = (ng + ny) neon yielding

@
w=®(z) = : =Az+b with ®, ::[
®

Dol , A e R™X™ b eR™. (5.15)
q)u|k

Nseg

Inserting the affine mapping (5.15) into the affine constraints (5.3c) and (5.3d) results
in the affine constraints (5.13c) and (5.13d), respectively [19, p.79]. Furthermore, the
auxiliary variables are used to represent the ZCSs (5.3e) using convex functions flzcs
in (5.13e). In order to get a QP problem, these constraints are assumed to be affine or
approximated by affine inequality constraints. The application of space splitting for the
convexification of the original constraints will be shown in more detail in Section 5.3.
The splitting constraints (5.13f) and (5.13g) represent the constraints (5.7a) and (5.7b),
respectively. These constraints are necessary to ensure that problem (5.13) correctly
represents the original problem (5.3). They implement a bisection of selected decision
variables at predefined transition values that are stored in the vector w¢,. The matri-
ces Ey i, Eo 1, and E; ;, are selection matrices extracting the desired decision variables.
It is assumed that % decision variables are split at each collocation point.

Depending on the individual approximations of the nonlinear constraints, the piecewise
linear representation is subject to some error. The approximation error of this substitute
problem is defined beforehand by the implemented number of space subdivisions. If the
original problem is piecewise linear, this substitute problem can be an exact representa-
tion.

Remark 1. Let f,(w) represent a nonlinearity within a constraint depending on the
decision variable representative w, as depicted in Fig. 5.3. Then, the total absolute error
of the piecewise linear approximation pyyi(w) is given by the sum of absolute errors at

f(w)
A
5 i

Powl3

Powls

|
O O e .0

W

Figure 5.3: Approximation of nonlinearity f,,; with three-/five-segmented piecewise linear poly-
NOM Ppwl,3/Ppwl,5- Approximation error can be reduced with increasing number of
splitting segments.
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each collocation point of the decision variable:

Cpwl = Z |fnl(wk) _ppwl(wk)|- (5.16)

kel

An adequate number and position of knot points for the segmentation into piecewise
linear parts achieve sufficiently small approximation errors. However, a higher number
of splitting segments increases the size of the OP influencing the computation time.

5.2.3 Nonconvex Optimisation Problem with Convex Feasible Set

The absolute values in equality constraint (5.13g) still prohibit convexity. Deploying the
theory of exact penalty functions [46, 75], the absolute value equality constraints are
moved to the objective without compromising optimality:

Theorem 5.2.2. Let zZ be a stationary point of the OP

min JW)+ 7 llgavsll, = J(w) +7 > Zgabs,k,j (5.17a)
kek kel j=1

st (el e gl =07 Vi€ Tou keK, (5.17b)

b7 BL.,| <0  vkeKk, (5.17¢)

Sabs,k = 0 Vk e K (5.17d)

with A representing the Lagrangian multipliers of the corresponding equality constraints.
Since a Li-norm is an exact penalty function, Z is a critical point of problem (5.13) for
es > 0 and sufficiently large but finite penalty weights T > ||A]| -

Proof. The prerequisite for the optima recovery is that the optimality conditions are
admissible for problem (5.13) [148, p.507]. For this purpose, the LICQ (2.8) is analysed
subsequently.  Since the transformation ®(z) in (5.15) is affine, the gradients of the
transformed basic constraints (5.13c) and (5.13d) remain linearly independent if the
original constraints ¢(w) : R™ — R and h(w) : R™ — R"» are linearly independent:

(P (z r
Viéi(z) = (8622};’())?) =ATVuci(w=®(z) Viel,...,n (5.18a)

T
V.hi(z) = (Waq’) = ATVyhj(w==®(z) Vjecl,...,n,.  (5.18b)
0P 0z
The gradients of the splitting constraints (5.13f) and (5.13g) are by definition lin-
early independent from each other and from the remaining constraints. Further-
more, it can be assumed without loss of generality that the gradients of the collo-
cation constraints (5.13b), of the basic constraints (5.13¢)-(5.13d) and of the ZCS-
constraints (5.13e) are linearly independent. Thus, if the LICQ holds for the original
problem (5.3), then it is also satisfied by the problem (5.13). By choosing a sufficiently
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small but positive smoothing parameter 0 < £5 < 1, the prerequisite of continuous differ-
entiable objective and constraint functions is given while approximation errors are kept
small. Thus, the optimal solution will satisfy the Karush-Kuhn-Tucker conditions [148,
p.321]. |

Constraints (5.17d) are added to enable omitting the norm in the objective as il-
lustrated in (5.17a). Since gabsk is a vector of concave functions, the AVCs (5.17d)
represent a convex set. Thus, the feasible set of OP (5.17) is convex.

5.2.4 Convex Optimisation Problem for Iterative Solution

From Theorem 5.2.2 follows that solving (5.17) provides the solution for problem (5.13)
assuming €5 > 0. Unfortunately, the augmented objective (5.17a) is nonconvex, which
will be addressed via linearisation. Subsequently, the smoothing is removed by set-
ting €5 = 0 since it will not be required for continuous differentiability. Omitting the
smoothing represents an approximation to the smoothed version of (5.17); however, it is
beneficial from a practical standpoint since the splitting constraints are exact for 5 = 0.
Furthermore, it enables representing the AVCs (5.17d) by two affine inequalities, which
yields exclusively affine constraints required for an LP and QP problem. For a convex
OP, the absolute value of the AVCs in the augmented objective is linearised around the
points z; € R" yielding the linearised constraints

labs’k(z, ZZ) = EA,k Waux,k — Yz =0 Vk € ]C, (5.19&)
which represent (5.9¢), with the linearisation points being stored in matrix
3= [20 2% Znseg} with 3, = diag (Sign(él’;l), . ,sign(i,;ns)) . (5.19Db)

Comparing (5.13g) and (5.19a) shows that the linearisation breaks down to a binary de-
cision: choosing the correct sign of the absolute value term zj. The linearisation (5.19a)
is affine in the decision variables. Since the sum of convex functions preserves convex-
ity [19, p.79], the composite objective function is then convex in the decision variables.
With all constraints being affine, using linearisation (5.19a) results in the convex QP
problem

lein JtOt(z7 Z*) = J(W) +7 Z Z labs,k,j (520&)
kel j=1

s.t. écoll,i =0 Vi € Z'.coll? (520b)

Clot,o(2) = [C}C gfg,k] =0"  VkeKk, (5.20¢)

hii(z) = [Bf BIL ] <0”  vkek, (5.20d)

haps i (2) = [EAJ“ Wawck T > 0 Wk e K. (5.20¢)

EA,k Waux,k + ik
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For linear objectives J(w), the SSC approach results in an LP problem. The convex

problem (5.20) is iteratively solved whereas the linearisation points in ¥ are updated

based on the solution z* = [ng e z;*:eg} of the preceding iteration yielding

z,=E.pz; —wy VkeK. (5.21)

However, the question arises if replacing the constraint g,ps in the objective with its
linearisation 1, falsifies the solution. This motivates following lemma:

Lemma 5.2.3. The satisfaction of haps(z) > 0 and lasi(2,2);) = 0 concludes
8abs,k(2) = 0, independently of the linearisation point Zj.

Proof. This can be verified using Fig. 5.2b as graphical support. For this purpose,
the following equations are given in general notation and are compared with the equa-
tions from the illustrative example in Section 5.2.1 using the vector of decision variables

T
Zox = [w Wp wlow} . The nonsmoothed absolute value constraint gapsk,; spans the
following set of points:

O (z) = {z | ez’k Waux,k — |2k, = 0} = {zex | wa — @] = 0} (5.22a)

with el , representing the 7™ row of matrix E, . The admissible points for the AVC-
linearisation lups x,; are given by

Lyj(z, % ;) = {Z | €k Wauxk — sign(Z ;) 2 = 0} = {zex | wa — 0@ = 0} (5.22b)
representing the infinite extension of the positive and negative branch of the AVC for

Z,:,j,aw > 0 and Eg’j,aw < 0, respectively. Then, the intersection with the admissible
points of the inequality constraint hapg g ;
> 0} = {Zex

Ny (z) = {Z | z € Hiy, z € Ly j(2, % ;)

Hyj(z) = {z

T ~
€Ak Waux,k — %k,j
T ~
eA,k Waux,k + Zk,j

provides the sets

. .22d
4 <0) (5.22d)

Py (z) = {Z |z € Hij, 2 € Li(2, 5 )

22}j20}, (5.22e)

which represent the negative and positive branch of the AVC and are thus a subset:

Nijs Prj C Gk L

This important lemma confirms that the solution to which problem (5.20) converges,
which satisfies the linearised constraints lays k(2,2}) = 0, also satisfies the original non-
linear constraints gans k(z) = 0 in (5.13g).
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5.2.5 Space Splitting Convexification Algorithm

Subsequently, the SSC algorithm 2 is presented in detail and the proof of its conver-
gence is provided. The algorithm inputs are described in line 1. An initial solution for
the inputs U} € R™«*™eoll and states X € R™ *™eell must be provided. The algorithm
iteratively solves the convex problem (5.20) using the solution of the previous iterate
to correct the signs of the linearisation if necessary. The algorithm terminates when all
signs are chosen correctly or the maximum number of iterations gmax is reached. Thus,
if the algorithm converges before reaching the maximum number of iterations ¢ < gmax,
the largest constraint violation is smaller than a small value laps < gg with 0 < g, < 1.
As already mentioned, the violation of the linearised AVCs indicates that a wrong sign
was chosen. The reason why the constraint violations are a suitable feedback for cor-
rect sign selection can be visualised using Fig. 5.2b. The signs and thus the linearised
constraints lyhs . j in the objective (5.20a) are fixed before optimisation. Then, running
into the region of w=2;, ; with the opposite sign requires increasing wAéegk Waux,k due
to the constraints h,ps=haps 1 > 0, which in turn increases the linearised constraints in
the objective. Based on the solution of the preceding iteration, the updating routine
in line 7 adjusts the convex QP problem (5.20) to satisfy (5.13f)-(5.13g) using the pro-
jection procedure (5.10): The update routine computes the projected initial solution Z
and the correct signs X for the linearisation of the AVCs. Afterwards, the optimiser is
invoked in line 8 to solve the convex QP problem or LP problem if the main objective
is linear. The theory of exact penalty functions states that the penalty parameter 7
must be larger than the largest optimal dual variable of the corresponding constraints.

Algorithm 2 SSC: a procedure for iterative convex optimisation.
1: INPUTS:

o Uj, X§: initial solution for input and state decision variables

* (max: Maximum number of iterations
e &4: error tolerance for linearised AVCs

e 7,7: weight bounds for penalty objectives

2: OUTPUT: U*, X*: system solution within tolerance ¢,

3: MAIN FUNCTION:

4: q=1, Zabs =00

5. while ¢ < ¢max and Lyps > g4 do

6: T = ;;IX -q+71 // weight for additional objectives

7 (X, Z] = updateQP( a—1> 2_1) // linearisation and initialisation

8: [U%, X}] = solveQP(7, X, Z)

9: Labs = ||labs,0 labs’% oo labsngeg - // maximum value of all relaxations
10: g=q+1

1n: U*=U;, X*=X7 //output final solution
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Since estimating the limit value for the penalty parameter is a rather complicated task,
Algorithm 2 pursues the straightforward approach in line 6 of gradually increasing the
penalty parameter up to a high value. A reasonably high but finite upper bound on the
penalty parameter 7 avoids numerical problems. Although this is not the best updating
approach, it can work well in practice [148, p.511] as it is the case for the examples
considered in this thesis.

Finally, following theorem verifies that the algorithm produces a sequence of solutions
that eventually converges to a local solution satisfying the AVCs:

Theorem 5.2.4. Let the feasible set of problem (5.20) be denoted by the convex set
Qf = {Z’écoll,i = Oactot,k(z) = 07 htot’k(z) < 0, habs,k(z) > O,i S Icoll; ke /C} . (5.23)
Starting from a point 20, Algorithm 2 generates a sequence {Z(Q)} according to
2t = min {Jtot (z,z(q)> ‘z € Qf} gq=0,1,... (5.24)

with Jyoy being a convex function. This sequence eventually converges to a limit point z*
that satisfies absy = 0 Vk € K.

Proof. Algorithm 2 iteratively solves problem (5.20) and gradually increases the penalty
parameter up to a finite value 7 < 7. Let the condition 7 > ||A||,, mentioned in
Theorem 5.2.2 hold for ¢ > Q) € N. Then, the theory of exact penalty functions states
that Lps i = 0 Vk € K is satisfied for all ¢ > Q). As described in Lemma 5.2.3, this
concludes that only solutions on one branch of the AVCs are admissible. Thus, no sign
changes of Z j=w are possible for ¢ > Q). This concludes that the linearisation points
of laps 1 VE € K and thus OP (5.20) remain unchanged for ¢ > Q. The convexity of the
problem entails that only one optimum exists yielding

20t 70 -0 = HZ(QH) - z(q)H =0 Vq> Q). (5.25)
This concludes that for every e, > 0, there is a Q € N such that
|Az|| = Hz(”) - z(m)H <er forevery n,m>Q (5.26)

since (5.26) holds at the latest from the value Q@ = Q) with ||Az|| = 0 < ;. This
proves that (5.24) is a Cauchy sequence and thus converges [232, p.85]. Hence, the
solutions of the individual iterations can oscillate; however, this oscillation vanishes
with increasing number of iterations finally converging to a single point z*. Due to
Lemma 5.2.3, Ly 1, = 0 V& € K concludes that this point satisfies gapsy = 0VE € . W

Theorem 5.2.4 concludes that the iterative solution of OP (5.20) within the SSC algo-
rithm basically solves the OP (5.13) with ¢, = 0: From convergence to Lyps, = 0 Vk € K
follows that the computed solution satisfies gaps = 0 = haps i VE € K and the aug-
mented objective term vanishes. The remaining constraints of problems (5.13) and (5.20)
are identical. Thus, the SSC algorithm computes a solution that is arbitrarily close, but
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not necessarily identical, to the solution of the piecewise linearly approximated prob-
lem (5.13). The potential discrepancy in solutions is rooted in the necessity to smoothen
problem (5.13) with 5 > 0 for the admissibility of the optimality conditions in Theo-
rem 5.2.2. Since the linearisation removes the discontinuity, the smoothing is disregarded
within the SSC algorithm. From a practical standpoint, the discrepancy is negligible
since the smoothing parameter can be assumed arbitrarily small e, — 0 making the
impact of the smoothing numerically irrelevant. This procedure for the approximation
of discontinuities in OCPs is common practice, see e.g. [158]. In summary, the SSC
approach chooses one branch of the discontinuity, resulting in the continuously differen-
tiable problem (5.20) with €5 = 0, and switches in the following iterations to the other
branch if the wrong side of the discontinuity was selected.

5.3 Constraint Convexification via Space Splitting

The previous sections derived the basic structure of the convex OP (5.20), which is
solved in an iterative manner. However, the question of how the original constraints can
be convexified via space splitting to gain the convex constraints (5.13b)-(5.13e) is still
open. The basic procedure of bisecting the space of a variable into two subdomains has
been illustrated in Section 5.2.1. This can be employed to consider ZCSs and equality
constraints with univariate nonlinearities in a convex manner, which is demonstrated in
Section 5.3.1 and Section 5.3.2, respectively. Subsequently, the index for the collocation
discretisation k € K is omitted for readability.

5.3.1 Convexification of Zonally Convex Sets

One prominent physical example of ZCSs are constraints ensuring semi-activity. Semi-
active actuators like limited slip differentials and semi-active dampers are used in many
engineering applications due to their good compromise between low energy consumption
and high performance [179, 184, 185]. A typical ZCS for a semi-active damper is depicted
in Fig. 5.4a with damper force F; = v and damper velocity v. The nonconvexity of the

u
4

u

|
o

IS4

\i v

[

(a) ZCS with single transition (b) Shifted, rotated ZCS with (¢) ZCS with shared line at tran-
point. single transition point. sition.

Figure 5.4: Space splitting convexification of zonally convex sets.
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set is apparent considering that it is easy to draw a line that contains non-admissible
points and connects an admissible point in the first quadrant with an admissible point
in the third quadrant. Note that simply linearising the inequality constraints depicting
this nonconvex set results in a half-plane, which represents a poor approximation of the
set. The main idea for the novel convexification approach is appropriately decomposing
nonconvex sets, described in the original decision variables, into convex subsets using
auxiliary decision variables. The applicability of the SSC method to the ZCS types
depicted in Fig. 5.4 is proven in the subsequent paragraphs.

The approach is initially illustrated using the ZCS depicted in Fig. 5.4a. Let the convex
subset in the first and third quadrant be given by

Sp = {(u,v) ] w€U, vEV, Buesy(u,v) <0} and (5.27a)
S, = {(u,v) ’ uel, veV, hygnlu,v) < 0}, (5.27b)

respectively. Therein v and u are original decision variables. Moreover, flzcs,p <o
and flzcs’n < 0 are convex sets. The union of convex sets does not necessarily result
in a convex set. As illustrated in Fig. 5.4a, the union § = §, U S, is assumed to be
nonconvex in this thesis. Thus, S is a nonconvex set comprised of convex subsets: a
ZCS. The velocity v is split at v = vy, = 0 by a vertical line following Lemma 5.2.1. The

two auxiliary decision variables v,, € V,, := [v, vi;] = [v,0] and v, € V), := [v4y, 7] = [0, 7]
are introduced aiming at implementing
Yo <0, Vv > 0,
Up = voTrs and v, = vorr=t (5.28)
0 else 0 else

Introducing analogous constraints to (5.7a) and (5.9a) as well as additional objective
terms in form of (5.9b) ensures the relations in (5.28). Furthermore, the auxiliary vari-
ables u,, € Uy, = [u, uty] and u, € Uy, := [uy, ] are introduced for the individual subsets.
Therein ut, represents the ordinate value of the common point, which lies on the origin
in the current example depicted in Fig. 5.4a resulting in uy, = 0. However, the com-
mon point of the subsets is not required to lie on the abscissa or ordinate. The vector
of auxiliary decision variables is given by waux = {vp Un  Up un} While the original
state variable v remains a decision variable in the problem, the input variable is replaced
according to the transformation

Dy = up +up — Uty = {1 1} [Zpl — Utr, (5.29)
n

which is affine in the decision variables. The convex subsets in terms of the auxiliary
decision variables are given by

Sp = {(Upﬂ’p) ’ Up € Up, vy € Vi, Byes p(uip, vp) } (5.30a)
Sn = {(unavn) ‘ Up € un; Un € er hzcs n(unyvn) < 0} (53019)
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Hence, the convex subsets Sp and S’n are now defined for separate decision variables
and will be linked via the affine mapping (5.29). This enables the formulation of convex
constraints as depicted in problem (5.13). The proof that this procedure produces the
same set as S will be given in Theorem 5.3.1.

For convexity, flzcs,p and flzcs,n in (5.30a) and (5.30b) must be convex functions. As
exemplarily illustrated in Fig. 5.4a, the convex subsets are assumed in this thesis to be
representable by 1,cs = Nyes n + Nuesp affine inequality constraints:

A

u
hzcs,p(ua U) = Azcs,p

+ bresp < 0 with Aeg,, € R™2*% b, € R™=»  (5.31a)

A

u

hzcs,n(ua U) = Azcs,n v + bzcs,n < 0 with Azcs,n c ancs’nX2, bzcs,n € R"=esm (531b)

These constraints represent (5.13e) in the convex OP. Although nonlinear, convex func-
tions for ﬁzcs,p and ﬁzcs,n would not prevent convexity, introducing such constraints would
prohibit an LP or QP problem, which can be solved especially efficiently. Asymmetric
subsets like the one illustrated in Fig. 5.4a can be easily implemented by using varying
coefficients in (5.31a) and (5.31b) or by using different domains for U, and U,.

Theorem 5.3.1. The subsets (5.30a) and (5.30b) in combination with the affine map-
ping (5.29) depict the set S that is given by the union of the convex subsets (5.27a) and
(5.27b).

Proof. For proving that the splitting approach provides sets that depict the original one,
the individual cases for the bisected variable space are considered subsequently.

Case 1: v, <0

The decision variable v is split at v = vy, Thus, v, = v, holds according to Lemma 5.2.1.
This concludes u,, = uy, since the subsets converge to the common point (ug,, vy;) when
leaving the subset towards the other subset. Lemma 5.2.1 also concludes v, = v. Then,
the affine mapping (5.29) is given by ®, = u, € Sp. For v > v, § = S, holds. Since
v, =v, u €S, and &, € Sp provide the same feasible set. The chain of conclusions
for the remaining cases follows the same reasoning but is given below in equations for
conciseness.

Case 2: v < vy

Up =V
Case 3: v = vy,

Up = Uty = Up = Utr

= &, =u = U= Uty 5.32b
Up = Vir = unzutr} “ o o ( )

Thus, inserting the affine mapping (5.29) into the constraints while replacing the original
set S with the sets (5.30a) and (5.30b) yields the same feasible set. [ |
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5 Convex Quadratic Programming via Space Splitting Convexification

The presented proof requires a space splitting of the variable v, which is performed
by splitting the convex subsets via a vertical line. Thus, the SSC approach is capable
of convexifying two-dimensional ZCSs that can be divided into two convex subsets con-
nected in a single point using any vertical line. Following theorem is added to show that
this also holds for any splitting line that is straight but possibly rotated:

Theorem 5.3.2. Space splitting applied to a rotated, two-dimensional ZCS also results
in convex constraints.

Proof. This can be verified by applying the previously described procedure to a rotated
coordinate frame, exemplarily depicted in Fig. 5.4b. The auxiliary decision variables
need to split the rotated two-dimensional space spanned by the variables v and u. As-
suming the coordinate system is rotated by the angle ¢ with counter-clockwise rotations
depicting positive rotations, following relations hold between the original coordinates
v — u and the rotated coordinates v — u:

0 cos(p) sin(p)| [v— vy v cos(p) —sin(p)| | Uty
= . and - . +
w —sin(p) cos(p)| |u— ugy u sin(p)  cos(p) | |u Uty
=R() =R(-¢)
(5.33)
The vector of auxiliary decision variables is chosen as wuux = [vp On  Up un}.

For a concise notation, the equations below use the abbreviations c, = cos(y) and
sy = sin(yp). Constraints (5.31) are analogously formulated on the rotated, auxiliary de-
cision variables: leC&p(ap, 0p) and ﬁzcs,n(an, o). However, an adjustment using (5.33) is
necessary for the constraints (5.7a), (5.9a) and (5.9¢) as well as the input mapping (5.29):

Gaft = (vp + o) — [cw (v — vgr) + 8¢ (sg, (0p 4 on) + co(up + an)) } =0 (5.34a)

=

>0 (5.34b)
labs = (0p — 0p,) —sign(9) 6 > 0 (5.34c)

O, =u= [sc;, s@} [ﬁ:] + {csp c@] + Ugy. (5.34d)

Since the angle ¢ is constant, the trigonometric functions represent constant values.
Thus, a rotated space splitting procedure also yields affine constraints and mappings
enabling the formulation of a convex OP. |

The previous theorems required the subsets to be connected in a single point. Follow-
ing theorem states that the SSC approach can be used to approximate ZCSs that share
a line of points:

Theorem 5.3.3. When a two-dimensional ZCSs is comprised of two conver subsets
sharing a line of points, the SSC approach can only approximate the original set however
with sufficiently small approximation error.
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5.3 Constraint Convexification via Space Splitting

Proof. Without loss of generality, this can be analysed considering Fig. 5.4c as example.
For the depicted case, the transition line lies on the ordinate vy, = 0. Analysing the
individual cases shows that using the original subsets within the SSC approach would
yield a larger set than the original set:

Case 1: v, < v

’Up:U:>up€$p }é‘b _ S 5* S=3S 5.35
o= vy = 1ty € [0.10] w=(un+up) €Sop DS, Z ue . (5.35a)

Case 2: v < vy

Up =V = Up € [Oluo}} = @, = (up +up) € ‘5})7” > Sn Z ueS8 =38, (535b)

Up =0V = U, €S,
Case 3: v = vy,

Up =V = up € [0,T)

e 7w [MO]} S By —uptuy € [0,27) £ uel0m).  (5.350)

Thus, using the original subsets can render non-admissible points of the original prob-
lem admissible. When the input variable is replaced by the auxiliary inputs according
to (5.29), both sets must be adjusted at the transition line v = wv,. The simplest set
adjustment is enforcing u, = 0 = u, at the transition axis, as illustrated in Fig. 5.4c
by the dotted lines. Then, the subsets are connected in a single point enabling the ap-
plication of Theorem 5.3.2. However, other set manipulations are possible and can be
numerically better. Generally, such set approximations introduce conservativeness for
the sake of feasible trajectories. However, the introduced error is negligible when the
removed area is sufficiently small, which can be implemented by choosing steep linear
constraints at the transition between the subsets. |

Remark 2. In this thesis, only two-dimensional ZCSs that can be split into two convex
subsets have been considered. However, the SSC approach can be applied to certain
two-dimensional ZCSs with more than two subsets. For instance, consider three convex
subsets positioned horizontally to each other whereas each subset is conmnected to the
next subset in a single point on the abscissa. This can be verified using the procedures
described previously in this section.

This section illustrated the convexification procedure for ZCSs in regards to inputs.
This results in the depicted affine input transformation ®,. Implementing the approach
for a ZCS with state decision variables yields an affine transformation ®,. This procedure
can be applied to multiple inputs and states. The corresponding vector functions for the
affine transformations are given by

(I)u,l (px,l
P, = : and @, = : (5.36)
(I)u,nu q>$,nz
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5 Convex Quadratic Programming via Space Splitting Convexification

with ®,; and ®, ; representing the transformation for the individual input and state,
respectively. If no transformation is necessary, a direct mapping is implemented ac-
cording to ®,; = u; and ®,; = x;. The vectors of transformations (5.36) are used to
generate ® in (5.15), which is used for the convex depiction of the original constraints
in (5.13b)-(5.13d).

5.3.2 Convexification of Nonlinear Equality Constraints

Some nonlinearities in physical systems are characterised by a univariate function. Ex-
amples are nonlinear springs, saturation, dead-zones or the tire force shape curve of
vehicles. Since nonlinear system equations yield nonlinear thus nonconvex equality con-
straints, this section presents how such nonlinear univariate terms can be convexified.
The nonlinear univariate curve is depicted using piecewise affine parts. Hence, if the non-
linearity is not a piecewise linear function, SSC introduces approximation errors. The
subsequent paragraphs illustrate the application of the SSC algorithm for convexifying
piecewise linear, univariate nonlinearities.

Theorem 5.3.4. The splitting constraints in (5.7) can be used to convexify equality
constraints by transforming a univariate nonlinearity with two piecewise linear segments
into an expression that is affine in multiple decision variables.

Proof. Proof is provided using the piecewise linear curve depicted in Fig. 5.5a as ex-
ample, which represents a typical function for piecewise linear springs. Assuming the
position x is a state of the system, it represents a decision variable that will be split at the
transition point x = xy, < 0. Thus, the auxiliary position variables Zjoy € Xiow = [, Tt
and xup, € Xyp = [Ttr, ] are introduced. By including analogous constraints to (5.7a)
and (5.9a) as well as additional objective terms in form of (5.9b), following relations are
ensured using Lemma 5.2.1:

K Vo < xyy, K Vo > Ty,
Tlow = , Tup = ) (5.37)
riy else zir else
(I)pwl,2 (I)pwl,3 Taux
Iy Iy A
x /
Cup /
c x ’
up _zup __L__ /S
T Ty T, . z Tir . z Ty /Ty T,
Tty ZT
Llow
Clow Clow
Z

(a) Nonlinearity with two linear (b) Nonlinearity with three linear (c) Splitting of state variable z
segments. segments. for three segments.

Figure 5.5: Space splitting convexification of piecewise linear equalities.
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5.3 Constraint Convexification via Space Splitting

Hence, the piecewise linear function can be represented by the expression

T4 Cow Tr) » (5.38)

low
N——

="Waux

q>pw1,2 = Cup Tup T+ Clow (-Tlow - mtr) = [Cup Clow} [

which is affine in the decision variables w,yux. The relations in (5.37) yield following two
segments for the piecewise linear function (5.38):

Tup = T

Lo, <z = { P = Ppwl2 = Cup L. (5.39a)
Llow = Ltr
Tup = Ttr

I v < x4y = { P = Pyl 2 = Cup Ttr + Clow (T — Zir). (5.39b)
Tlow = X

Thus, (5.39a) and (5.39b) depict the upper and lower segment of the nonlinearity, re-
spectively. |

Since (5.38) is an affine function in the decision variables, it can be inserted into the
differential equations without preventing convexity. The subsequent theorem proves that
this approach can be extended to univariate nonlinearities with more than two piecewise
linear segments:

Theorem 5.3.5. A repeated application of the space bisection approach using the split-
ting constraints in (5.7) can be used to convexify equality constraints by transforming a
univariate nonlinearity with more than two piecewise linear segments into an expression
that is affine in multiple decision variables.

Proof. The general procedure for this extension is illustrated using the piecewise linear
curve depicted in Fig. 5.5b. The position x is split at the transition points z = z;. <0
and x = Ty > 0. Thus, the auxiliary position variables Zjow € Xiow = [, Z4,],
Ty € Mo = [T, T), Tmid € Xmid = [Ty, Ttr] and zyp € Xyp = [T, T| are employed.
The space is repeatedly bisected following Lemma 5.2.1 to gain

_Jx Vz <y, )z Vo >y, 5 40
Tlow = 1 y Tow — 1 (5.40a)
z, else z, else
T— Vr—=<T r— Vr—>T
Tmid = low low = ¥trs , Tup = low low = “Vtrs (540b)
Ty else Ty else

which is depicted in Fig. 5.5c. Thus, the position space is bisected into a region below
and a region above z = z;, whereas the upper region is again bisected into a region
below and above x = Tt,. The piecewise linear function can then be represented by the
expression

Lup
(I)pwl,S = |Cup Cmid Clow} Tmid _(Cup Tty + Clow Etr)a (541)

Llow
—_——

="Waux
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5 Convex Quadratic Programming via Space Splitting Convexification

which is affine in the decision variables waux. The relations in (5.40) yield following
three segments for the piecewise linear function (5.41):

Tup =T

Lz, <=z = {Tmid = Ttr = Ppwl,3 = Cmid Ttr + Cup (T — Tir). (5.42a)
Llow = Lyr
Tup = Tty

Iz, <2 <Ttry = {Tmia == = @13 = Cmid T (5.42b)
Llow = Ly
Tyup = Tty

I x < zy, = $Tmid = Ty, = Ppwlz = Cmid Tty + Clow (T — Zyy)- (5.42¢)
Tlow = T

Hence, (5.42a), (5.42b) and (5.42c) depict the upper, mid and lower segment of the
nonlinearity, respectively. |

This repeated bisection procedure enables the generation of a characteristic curve
with an arbitrary number of segments. However, an increasing number of segments also
increases the number of auxiliary decision variables and additional constraints making
the OP larger.

The approach presented in this section yields a scalar function @ that is affine in the
decision variables. The procedure can be applied to multiple univariate, nonlinear terms
yielding further scalar mapping functions. The affine vector-valued function in (5.14) is
given by
P11+ Ppwri2 + -
(I'pwl = (5.43)
q)pwl,nz,l + q)pwl,nwﬂ + ...

with @1 ; representing the individual affine mapping functions. For states that are not
affected by the space splitting approach, ®pw1;; = 0 holds. The transformation (5.43)
is used to generate the convex collocation constraints (5.13b).

5.4 Remarks on Runtime

The application of optimisation methods within a real-time capable controller generally
requires upper bounds on the necessary computation time. The SSC approach runs
through a loop that is comprised of a projection step and an optimisation step resulting
in the following theorem regarding computational complexity:

Theorem 5.4.1. The computational complexity of the SSC algorithm is polynomial.
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Proof. SSC solves a sequence of LP problems or convex QP problems, which are known
to be solvable in polynomial time [91, 107]. The projection step (5.10) of the SSC
algorithm uses minimum and maximum functions, which possess linear time complexity.
This concludes a polynomial time complexity of the SSC algorithm:

Tssc(n,q) = q¢- (O(n®) +c¢O(n)) with o> 1. (5.44)

Therein n can be interpreted as the number of operations required by the algorithm.
The parameters in (5.44) depend on the utilised solver as well as the number of decision
variables, which is problem specific. Limiting the maximum number of superordinate
iterations to ¢ < gmax enables terminating the algorithm prematurely at suboptimal
solutions, if necessary. |

Theorem 5.4.1 provides valuable insight for the application in a real-time capable
controller. Firstly, a worst-case bound on computation time can be experimentally
identified for the specific OP and solver. Secondly, the computation time scales well with
increasing problem size. Since the number of superordinate SSC iterations is rather low
in practice, this results in a fast solution of OCPs. Finally, the influences on computation
time are summarised below:

1. System and discretisation. The number of decision variables increases with
rising number of inputs, states and collocation segments for both the original and
the convexified OP. This increases computation time for NLP methods and the
SSC algorithm. Due to the polynomial complexity, this increase in time will be
generally less for SSC than for NLP.

2. Nonlinearity. The more complicated the nonlinearity, the more splitting seg-
ments are required to reduce approximation errors. However, the space splitting
increases the problem size compared to the original problem, which influences the
variable n in (5.44). This can put a practical bound on the number of space
divisions via the SSC approach. Nevertheless, many physically motivated nonlin-
earities can be approximated sufficiently well using a moderate number of affine
segments.

3. Initial guess. Being a local method, the solution computed by the SSC ap-
proach depends on the provided initial solution. Furthermore, this initial guess
can influence the order of sign-corrections regarding the AVC-linearisations, which
can impact the number of superordinate iterations and therefore the convergence
rate. For MPC frameworks, the optimal solution of the preceding time step often
represents a good initial guess [71] promising low computation times.

4. Penalty parameter update. Too small or too large penalty parameters can
slow down convergence [148, p.511]. The straightforward approach of gradually
increasing the penalty parameter is used in this thesis. However, more sophisti-
cated routines have been proposed in [135, 140].
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5.5 Comparison with Related Methods

In order to highlight the novelty of the proposed algorithm, this section compares the
SSC approach with the most related existing methods.

From an algorithmic standpoint, linearising only the nonconvex part of constraints com-
bined with a relaxation and an increasing objective term penalising constraint violations
corresponds to penalty CCP [121]. CCP has the advantage over SQP and other lin-
earisation techniques that it retains more problem information in each iterate: The
information of the convex parts is kept and only the concave portions are linearised.
Furthermore, CCP does not require to use line-search procedures or limit the progress
in each iteration via trust-region methods [121]. Inspired by [130], the SSC approach
avoids additional slack variables by considering the linearised constraints directly in the
penalty objective. This avoids further increasing the size of the OP as in penalty CCP.
Moreover, SSC employs an intermediate projection to enhance convergence. While CCP
linearises the concave part of all nonconvexities, SSC transforms the problem beforehand
requiring only the linearisation of AVCs. This enables providing a feedback about the
correctness of the selected linearisation points, which are subsequently adjusted. Thus,
the linearisation error can vanish completely after the correct signs have been chosen.
The binary nature of the linearisation facilitates a rapid convergence in a small number of
superordinate iterations. Especially the straightforward linearisation of ZCS-constraints
yields very poor approximations that can contain a large set of infeasible points. Thus,
the vanishing AVC-linearisation errors result in an advantage of SSC regarding accuracy,
also over further linearisation techniques like the ones presented in [133, 134]. Although
the SSC method only computes solutions to the piecewise linear approximation of the
original problem, the approximation can be designed to sufficient accuracy enabling small
and known approximation errors. Generally, a scalable trade-off between accuracy and
size of the OP, thus computation time, can be chosen.

While LC possesses the advantage of avoiding approximation errors, it is only applicable
to OPs with annulus-like, nonconvex sets resulting from excluding a convex subset from
a convex set [165, p.340]. Opposed to that, SSC provides a method for the convexifica-
tion of ZCS, which cannot be considered via LC.

Similar to the LnP approach presented in [134], the SSC method is an iterative lin-
earisation algorithm using intermediate projection steps. The updating routine for SSC
is of linear computational complexity with few and simple mathematical operations.
The projection step of the LnP approach generally requires the solution of a convex pro-
gramming problem, which is of polynomial complexity at best. Thus, the projection step
used by the SSC approach is computationally less costly, which is beneficial for splitting
methods [61]. Additionally, the binary nature of the AVC-linearisation provides the ad-
vantage that generally only few superordinate iterations are required, resulting in short
computation times. Moreover, SSC is more robust regarding the initialisation since the
LnP approach requires an additional lifting procedure to cope with arbitrary initialisa-
tions, which costs computation time [134]. Furthermore, the LnP method requires the
right-hand side of the system equations to be convex and the inequality constraints to
be concave. However, nonconvex collision avoidance constraints can be easily considered
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via the LnP approach whereas the SSC procedure requires further measures.

The ADMM is a splitting procedure utilising the augmented Lagrangian method instead
of the exact penalty function method, which is employed by the SSC algorithm. Due
to the alternating approach, the ADMM requires the solution of two QCQP problems
in each iteration. The SSC approach only requires the solution of a single convex QP
problem in each iteration, which is beneficial for computation time.

As mentioned in Section 1.2, the notion of space decomposition is also used by GO
methods, which also partly use auxiliary variables to reformulate the OP. SSC uses
additional decision variables to approximate the original problem via piecewise linear
segments. In contrast, the auxiliary variables are used by GO methods to decompose
nonconvex functions into individual terms for which convex relaxations are available.
An OP with piecewise linear segments can also be represented by a MIP problem [8,
68]. Moreover, special ordered sets of type one could be used to consider that only one
of the piecewise linear segments is active at a time. This would reduce the search space
and thus enhance convergence speed. Solving such a MIP via the BnB approach would
provide the global optimum by solving multiple OPs with convex relaxations on increas-
ingly smaller subdomains. These subproblems provide lower bounds on the objective
function for the considered subdomain. By iteratively dividing the domain into smaller
segments, the lower bound converges to the local solution on the subdomain. Comparing
the solutions on the individual subdomains provides the global solution. However, the
SSC approach solves a piecewise linear approximation of the original problem, which is
iteratively adjusted, on the entire space domain of the decision variables. Opposed to
that, the BnB method solves multiple OPs that represent convexly relaxed versions of
the original problem on separate subdomains of the decision variables. BnB techniques
determine upper bounds by evaluating the objective function at a feasible point. Since
the problem is generally nonconvex, finding a feasible point can be difficult. This is often
tackled by solving the nonconvex subproblem locally, which is computationally expen-
sive [115, p.253]. Thus, the convergence rate of the SSC approach is most likely to be
superior if sufficiently good initial guesses are provided. However, this depends on the
nonlinearities of the OP, which influence the number of decision variables for SSC but
also for BnB approaches that decompose factorable functions [204, p.125]. Moreover,
SSC only guarantees to find local optima of an approximation of the OP and is only
applicable to certain classes of OPs. GO techniques cover a wide range of applicability
and provide the global optimum. A direct comparison of GO methods and the SSC
algorithm is subject of future research.
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6 Applications for Space Splitting
Convexification

The main drawback of optimal control methods is the rather long computation time,
which often prevents real-time implementations. Thus, a fast solution procedure for
nonconvex OCPs, which iteratively solves convex QP problems, has been presented in
Chapter 5. In this chapter, which contains parts of our publication [186], the accuracy
and computation time of the presented algorithm are analysed by studying several ap-
plications.

In Section 6.1, optimal control inputs are computed for a hanging single-mass oscillator
(SMO) with two nonconvexities. Firstly, a piecewise linear spring with two segments
results in nonlinear thus nonconvex collocation constraints. Secondly, a semi-active
damper yields nonconvex inequality constraints, which are input and state dependent.
The solution generated via SSC is compared to the solution computed via the unscaled
NLP-approach presented in Chapter 3. The performance of the SSC algorithm is studied
for multiple OPs varying in number of decision variables and initial value condition. In
Section 6.1.3, the application is extended to a nonlinear spring with three linear seg-
ments. This illustrates the possibility to depict an arbitrary number of piecewise linear
segments using the successive bisection approach presented in Section 5.3.2. Further-
more, the influence of the initial guess on the solution is analysed by varying the initial
solutions fed to the SSC algorithm. An artificial OP in Section 6.1.4 briefly illustrates
the possibility of splitting a ZCS across a rotated line, which has been introduced in
Section 5.3.1. The application of SSC to a system with multiple univariate nonlinear re-
lations is presented in Section 6.2: Using a simplified single-track vehicle model, optimal
control inputs are computed for a drag race application. Therein the nonlinear tire force
shape curve and air resistance force are approximated using piecewise linear segments.
Furthermore, space splitting is applied to approximate the nonconvex set defining the
admissible torques.

6.1 Minimisation of Steady-State Position Deviation for
Hanging Single-Mass Oscillator

In this section, the proposed SSC algorithm is evaluated using a hanging SMO example
with piecewise linear spring and semi-active damping as illustrated in Fig. 6.1. Semi-
active dampers can only generate a force in the opposite moving direction and cannot
impose a force at steady-state complying with the passivity constraint [179, p.16]. Hence,
the admissible set for semi-active dampers always contains a subset in the first quadrant
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and a subset in the third quadrant which are connected at a single point, namely the
origin. A performance-oriented OP is formulated and solved using NLP and SSC, respec-
tively. The results of both algorithms are compared regarding accuracy and computation
time. Both problems are posed using the modelling language JuMP [52] for mathemat-
ical OPs. For a fair comparison, the necessary derivatives are computed beforehand via
automatic differentiation. Furthermore, the tolerances for constraint feasibility and ob-
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Figure 6.1: Characteristics of hanging SMO with semi-active damper and nonlinear spring.

Table 6.1: Parameters for single-mass oscillator application.

‘ Symbol Value Unit Description

g 9.81 m/s? gravitational acceleration

m 5.00 kg mass

g Cup 10.00 N/m overload spring stiffness for rebound
% Cmid 3.00 N/m main spring stiffness
o Clow 5.00 N/m overload spring stiffness for compression
Tir 5.00 m transition point for rebound overload

Ty, —5.00 m transition point for compression overload

Tgs.2 16.35 m steady-state position for 2-segment spring

Tss,3 8.405 m  steady-state position for 3-segment spring

T 100.00 m upper position bound

. x —100.00 m lower position bound
.8 d 20.00 Ns/m upper bound on damper coefficient
s d 0.50 Ns/m lower bound on damper coefficient
é T 100.00 m/s upper speed bound
%. v —100.00 m/s lower speed bound
°© Fy 400.00 N upper bound on damper force
Fy —400.00 N lower bound on damper force

Eg 1076 - violation tolerance for SSC penalty term

/T 1.00/10* - initial/final value for penalty parameter
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6.1 Minimisation of Steady-State Position Deviation for Hanging Single-Mass Oscillator

jective improvement are set to 1079 for both solvers. The NLP problem is solved using
the optimiser JPOPT, which employs a sophisticated IPM [222]. The novel SSC method
transforms the OP into convex QP subproblems, which are solved iteratively. In order
to capitalise on this problem structure, the elaborate optimiser Gurobi [74] is selected.
The utilised parameters are listed with description in Table 6.1.

6.1.1 Optimisation Problems

T
The equations of motion for the state vector x = [a: v} result in

v
x=f= 6.1
Lﬂmg—Fd—Fc)] (6.1)
with z, v, Fy and F, denoting the deflection position, deflection speed, damper force and
spring force, respectively. The expression of these forces differs for the NLP method and

the SSC approach. Starting from a specified initial state xj, = [:Eiv viv}T with damper
force Fy iy = dviy, the goal is to minimise the deviation from the steady-state position zgs
while considering the limitations of the system. Applying Simpson quadrature (3.14),
the main objective penalises the steady-state position deviation eg ; = x; — s according
to

Nseg—1
A; 2 2 2
JSS = Z # (ess’i + 4ess7i+% + essﬂ;_;'_l) . (62)
=0

Considering the values listed in Table 6.1, the steady-state position can be computed
using a root-finding approach like Newton’s method: At steady-state position, the gravi-
tational force must equal the spring force. For the considered nonlinear springs with two
piecewise linear segments the value xg = s 2 is chosen and g = g 3 if the spring with
three segments is used. A uniform discretisation of the time grid ¢ € [to,t¢] = [0, 10] is
employed yielding a constant segment width A; = A = % Both, the NLP approach
and the SSC method, are initialised with zero vectors Uj = 0 and X} = 0. From

foila) = Swi— a5 f0) =2 i) S L) =25 >0 (63)
follows that the Hessian of (6.2) is a diagonal matrix with only positive and zero diagonal
entries and therefore positive semi-definite. Hence, the main objective (6.2) is a convex
function.

Nonlinear, Nonconvex Optimisation Problem For the solution of the OP via NLP,
the decision variables are chosen as

u= {UO uys ... unseg} € Rlxncon with uy = dj, (64&)
2Xn : L

X = [XO X0.5 .- ancg:| eR coll with xp = [ ] (64b)
VU
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whereas the input represents the variable damping coefficient dj of the semi-active ac-
tuator. With i € Z.o1 and k € K, the original OP is given by

Sf,ll)l% Jss (6.5a)
i Ceoll D0 with f = Li (mg B F%%p B Fcl\gf)] , 3R =y, % (6.5b)
F2% = ming (Cmidk, ClowThk — Zir (Clow — Cmid))
w €D = |dd, weX=[3], weV:=ni, (6.5¢)
Fy <upvp < Fo, (6.5d)
up =d, X = Xiy- (6.5¢)

The nonconvex NLP problem (6.5) is comprised of following parts: objective func-
tion (6.5a), collocation constraints (6.5b), bounds for the decision variables (6.5¢),
damper force bounds (6.5d) and initial value condition (6.5e¢). The piecewise linear
spring force is approximated in (6.5b) via the smoothed minimum-function (3.3b) us-
ing ¢ = 10716 to guarantee that the problem is twice continuously differentiable. Prob-
lem (6.5) is nonconvex due to the right-hand side of the differential equation system in
the collocation constraints (6.5b) and due to the damper force bounds (6.5d).

Convex QP Problem for Iterative Solution Following the SSC approach, auxiliary
optimisation variables are introduced, which results in the subsequent decision variables:

. U F,
U= {uo uys ... unseg} € R2XMeoll with wy, i= | POSK| = |~ dposk (6.6a)
Uneg, k Fi neg k
. x
X = [XO X05 .- aneg} € R?XMeoll with x, == [ k] (6.6b)
UV
. Lmi
Xaux = [Xaux,o Xaux,0.5 - - - Xaux’nseg} c R2XMecoll with Xauxk 1= mid,k (660)
Llow,k
2XNeoll . . UPOSJ‘?
Vaux = Vaux,0 Vaux,0.5 -+ Vaux,nseg| € R with Vaux,k = Vnep k| (66d)
neg,

Opposed to the inputs (6.4a) of the NLP problem (6.5), the inputs in (6.6a) represent
the positive and negative part of the damper force.

As illustrated in Algorithm 2, a projection routine is executed in each iteration. Based
on the preceding solution marked by values (-)*, this routine computes the projected

v1

initial solution () for k € K via

o * *

. = Upos,k | _ max(uneg,k+upos,k’0) ¢ — % (67)

k — i - min( * +our 0) y Xk = X la
neg,k Uneg .k T Upos k>

S * ~ *
)v(aux,k — [xmld,k‘| — [max(xkaxtr)] , ‘vfaux,k — |:UpOSVk‘| — [max(vkvo)] (67b)

o . * o
Llow,k mln(:rk, Qtr) Uneg,k

112



6.1 Minimisation of Steady-State Position Deviation for Hanging Single-Mass Oscillator

and the correct signs according to
Oz = sign(xy — x), oy = sign(vy). (6.7c)

For a concise notation in the OP, the decision variables are lumped together
in P :={U, X, Xaux, Vaux - With i € Z.o; and k € K, the convex QP problem, which is
iteratively solved for updated values of 7, 0, 1, 0, 1 and corresponding initial guesses, is
given by

min  Jg+ 7 Z labs,z,k + labs,v,k with (68&)
P kek
labs,x,k = (xmid,k - xlow,k) — Oxk (IEk - gtr) (6 8b)
labs,v,k = (Upos,k - Uneg,k) — O,k Uk
(5.4) . Uk
Ceolli = 0 with fi, =
st O = (mg—F3¢ - FCSS%) : (6.8¢)
F(E%C = Uneg,k + Upos,k» FCSSJC = Cmid Tmid,k + Clow (:L‘low,k - @tr)
xp € X = [z,T], vp €V = [v,7],
Upos,k € Z/{pos = [Oaﬁd} Tmid,k € Xmid = [Qtrvf] Upos,k € Vpos = [07@] ) (6-8d)
Uneg ki € Uneg = [Fg, 0] " Tlowk € Xow = [Z, Ty| " Vnegk € Vneg = [1,0]
N —-d 1 Vpos. k ~ —d 1 Uneg, k
h = Pos:F 1 < h = | = nesl | < .
7cs,p,k [ d _1] [Upos,k = 07 zcs,n,k [ d _1‘| |}¢neg,k > 07 (6 86)
Gaff,z,k = Tmid,k + Llow,k — ($k + itr) =0 (6 Sf)
Gaffu,k = Upos,k T Vnegk — Vk = 0 ’
labs,m,k| _ labs,v,k} _
habs,m,k = |} Tz k=1 > 07 habs,v,k = l v =t > 07 (68g)
abs,m,k|gz!k:,1 abs,v,k}gu’szl
_ |max(dwviy, 0) .
uyg = lmin(dviv,()) 5 X0 = Xjy- (68h)

The QP problem (6.8) is comprised of following parts: augmented objective func-
tion (6.8a), collocation constraints (6.8c), bounds for the decision variables (6.8d), ZCS-
constraints (6.8e), the additional space splitting constraints (6.8f)-(6.8g) and initial value
condition (6.8h). Due to the splitting approach, the right-hand side of the differential
equation system in (6.8¢c) is an affine function in the decision variables. Thus, all con-
straints are affine in the decision variables and therefore convex. The additional ob-
jectives with (6.8b) are affine in the decision variables representing convex functions.
Hence, (6.8) represents a convex QP problem.

Using (6.8b), the termination criterion in line 9 of Algorithm 2 is computed via

Z _ labs,r,O labs7x,nseg
abs — Yoy

labs,v,O labs,v,nseg
As illustrated in line 6 of Algorithm 2, the penalty weight 7 is linearly increased with
a maximum iteration number gn.x = 6 using the lower and upper bound 7 and 7,

(6.9)

max

113



6 Applications for Space Splitting Convexification

respectively. Both OPs are now fully defined. The results generated by solving NLP
problem (6.5) and by applying the SSC algorithm with QP problem (6.8) are compared
in the following section.

6.1.2 Results

In order to inspect the performance of the proposed SSC algorithm, 100 OPs are analysed
in this section using a desktop computer with Intel® Core™ i7-9850H CPU to determine
the solutions. The OPs vary in size and the initial value condition. The number of
collocation segments is gradually increased with ng, € {10, 50,100, 250, 500}. For each
problem size, the OPs (6.5) and (6.8) are solved using the 10 random, admissible initial
values x;, listed in Table 6.2. This procedure is also executed for a simplified QP
problem (6.8) with a fully linear spring of stiffness ¢yjq. This simplifies the right-hand
side of the differential equation system in (6.8¢) and eliminates the need for the auxiliary
variables X,ux in (6.6¢), the corresponding additional objectives in (6.8b) as well as the
corresponding constraints in (6.8f) and (6.8g). The optimisation results are displayed in
Table 6.3.

Firstly, the OPs with initial value xj, = Xjy,1 and ngz = 250 segments are studied in
more detail. Fig. 6.2a depicts the piecewise linear characteristic curve of the spring force
and Fig. 6.2b the admissible set for the damper force. The resulting trajectories of the
states and damper force are illustrated in Fig. 6.2c. The mean absolute deviance between
the damper force trajectory of the NLP solution and the SSC solution is defined as

er, = ‘ FNLP _ SSC‘ (6.10)
ncoll kek

for the neon collocation points. With er, = 1.85N, the control trajectories differ only
marginally considering the damper force domain F; € F = [E d,Fd} = [—400N, 400N].
The mean absolute deviance between the position and the steady-state position

Z ‘xk $ss,k| (611)

Ncoll kek

€Cgg =

is e55¢ = 7.12m and €X'’ = 7.18m for the SSC solution and NLP solution, respec-
tively. However, the value for the main cost function (6.2) is J35¢ = 2550.73m?s and
JYP = 2549.86m?s for the SSC solution and NLP solution, respectively. Thus, the SSC
objective value is higher but the mean deviance in the steady-state position error is
lower. The reason for this is that the cost function is quadratic in the errors, which

Table 6.2: Initial values of robustness analysis.

‘Xiv,l Xiv,2 Xiv,3 Xiv,4 Xiv,5 Xiv,6 Xiv,7 Xiv,8 ZXiv,9 Xiv,10

-24.5 -15.1 -51.4 27.9 59.4 12.3 56.1 154 -73.7 -56.9
v [-30.0 -44.9 -15.4 39.3 18.7 64.3 -15.5 -32.7 16.8 73.1
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(c) State and damper force trajectories.

Figure 6.2: Solution of OPs with initial value X;,,1 and ng = 250 collocation segments.

penalises large errors unevenly more than small errors. As illustrated in the top subplot
of Fig. 6.2c, the position of the NLP solution reaches the steady-state position faster
however with an overshoot that slowly reduces. Thus, the larger errors at the beginning
are reduced more quickly resulting in a lower cost function value. However, the mean
position error, which is a better metric for the actual goal of minimising the deviance
from the steady-state position, is worse than for the SSC solution. Although an objective
penalising the absolute value of the errors would be more adequate, it is not used, since it
would prevent continuous differentiability of the objective function. Nevertheless, both
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algorithms reach the steady-state position x in about 3 seconds resulting in similar
state trajectories. The trajectories of the auxiliary variables verify correct switching at
r =z, = —5m and v = vy = 07 for the position and velocity, respectively. Further-
more, Fig. 6.2a and Fig. 6.2b show that the spring forces lie on the characteristic line
and the computed damper forces lie within the admissible set proving the compliance
of the prescribed constraints. The bang-bang-like control strategy confirms correctness
since it is expected due to the main objective (6.2) which demands to reduce the steady-
state position deviation as fast as possible. With ¢ = 4 superordinate iterations, the
SSC method required a total optimisation time of t%sc = 0.329s, which is 47.71% of
the computation time of tgLP = 0.690s required by the NLP solver. The cumulative
optimisation time t,p¢ y;, which represents the time spent in the QP solver in line 8 of
the SSC algorithm for all passed loops, is tESSz = 0.262s representing 37.97% of the
NLP time. Since the SSC algorithm converged in ¢ < gmax = 6 iterations, the largest
relaxation value of the AVCs is smaller than ¢, ensuring conformity with the original
problem.

Subsequently, the remaining results of Table 6.3 are analysed to identify tendencies. As
stated in Section 5.2.1, the additional objective terms (6.8b) represent a relaxation of the
constraints comparable with slack variables. Besides serving as feedback for determin-
ing convergence, this relaxation provides robustness regarding the initialisation. This
is reflected in the results by a successful convergence of the SSC algorithm in 100% of
the test cases, even though a rather poor initial guess was used. The accuracy of the
computed solutions is evaluated using the mean values of the main cost function (6.2)
and of the averaged errors (6.10) and (6.11) defined as

10 10 10
Js = Z v]ss,i; €efp, = ZEFCM' and ey = €ss,5- (6.12)
=1 =1 =1

These values represent the respective mean value over all 10 OPs, due to 10 different
initial values, for one specified number of collocation segments nges. With €p, < 3.51N
being small compared to the damper force domain F, the control trajectories of the SSC
approach are close to the trajectories computed by the NLP solver. The small deviation
of the mean values in (6.12) between the SSC solution and the NLP solution indicates
that both algorithms converged to a similar solution. Considering the mean value J
of the main objective function, the NLP solver yields lower objective values than the
SSC algorithm. As previously discussed, the mean deviance ég from the steady-state
position is smaller when using the SSC algorithm.

The SSC approach greatly reduces the overall computation time t%sc and requires up to
only 18.20% of the computation time needed by the NLP solver. The time advantage of
the SSC algorithm over the NLP optimiser will be even bigger for asymmetric zonally
convex damper sets. Such asymmetric sets require additional discontinuities in the NLP
problem but can be easily implemented within the SSC procedure by using differing pa-
rameters for the individual convex subsets. As mentioned in Section 5.4, various aspects
influence the runtime of the SSC algorithm, which is reflected in the results: With rising
number of collocation segments, the mean solution time increases and the computation
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Table 6.3: Optimisation results of robustness analysis.

spring | method results

Nseg|-] |LIN NL|NLP SSC|J [m?s] &s[m] er,[N] q[-] topt, s [8] ts[s]
10 | v v 815.26 7.64 - 1.00 0.074 0.074
10 | v v [ 81892 750 3.51 2.00 0.005 (6.45%) 0.021 (27.77%)
10 V|V 597.24 7.11 - 1.00 0.075 0.075
10 v v 1 601.84 6.96 2.72 2.40 0.008 (10.90%) 0.025 (33.67%)
50 | vV v 2135.09 6.67 - 1.00 0.125 0.125
50 | v v’ 12139.30 6.55 2.04 2.00 0.016 (12.87%) 0.036 (28.51%)
20 VIV 1842.48 6.16 - 1.00 0.127 0.127
50 v v [1849.97 6.03 2.28 2.60 0.036 (28.46%) 0.059 (46.34%)
100 | v v 2333.84 6.52 - 1.00 0.229 0.229
100 | v v 12338.26 6.41 1.94 2.00 0.026 (11.18%) 0.050 (21.77%)
100 V|V 2043.91 6.02 - 1.00 0.252 0.252
100 v v/ 12051.33 5.89 220 2.70 0.064 (25.44%) 0.095 (37.53%)
250 | v v 2454.05 6.43 - 1.00 0.587 0.587
250 | vV v’ 12458.40 6.32 1.94 2.00 0.068 (11.64%) 0.105 (18.20%)
250 V|V 2167.57 5.93 - 1.00 0.695 0.695
250 v v [2174.81 580 2.22 2.70 0.183 (26.30%) 0.235 (33.83%)
500 | v v 2494.96 6.40 - 1.00 1.080 1.080
500 | v v’ 12499.36 6.29 1.97 2.10 0.173 (16.03%) 0.235 (21.72%)
500 VIV 2209.03 5.91 - 1.00 1.373 1.373
500 v v 12216.23 5.77 2.22 2.80 0.460 (33.50%) 0.555 (40.39%)

Ngeg: # of collocation segments. LIN/NL: linear/nonlinear spring. NLP: IPOPT solving NLP prob-
lem (6.5). SSC: SSC Algorithm 2 with QP problem (6.8). Jes/€ss/€r,: main objective and error
metrics (6.12)(average for 10 initial value conditions). g: average # of superordinate iterations. topt,s:
cumulative time spent in NLP/QP solver. tx: total computation time.

time of SSC increases less than the NLP solution time. Another mentioned effect on
runtime is the quality of the initial guess. The provided guess with zero vectors is of
varying quality for the individual initial value conditions. A better initial guess in terms
of the correct signs of the state trajectories reduces the number of superordinate iter-
ations and thus the overall computation time. Hence, the sensitivity in regards to the
initial guess is elaborated in Section 6.1.3.

The pure optimisation time tgggz reduces up to 6.45% of the corresponding NLP time
and is generally significantly shorter than its overall computation time t%sc. Since the
projection step of the SSC algorithm employs only simple computations using minimum
and maximum functions with linear time complexity, the time spent outside of the QP
solver, which solves convex QP-problems in polynomial time, seems quite long. Unfor-
tunately, substantial time losses occur at building the updated optimisation model via
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Figure 6.3: Computation time of if-else-operations in C-code.

JuMP and the Gurobi-wrapper. For future implementations, it is advisable to imple-
ment the SSC algorithm via C-code to circumvent this problem and minimise the overall
computation time. This would enable a direct access to the solver and thus eliminate the
communication time between Julia and the Gurobi-solver. An estimation for the com-
putation time using C-code is illustrated in Fig. 6.3: The figure illustrates the required
time to execute a number of if-else-loops that assign values to an array by determining
if a randomly generated number exceeds a certain threshold value. The minimum, max-
imum and sign functions for the projection routine (6.7) can be implemented via such
if-else-loops. This would require a loop for each g, Xaux,k, Vaux,k, 0z and o, resulting
in Nigop = 5Neon if-else-loops. For ngee = 500 with neon = 2ngeg + 1, this would require
5005 if-else-loops, which equates to about 1.335 microseconds and is thus significantly
smaller than the discrepancy ts; — topt,x; = 95000 microseconds for the nonlinear spring
example. Although further time must be considered for the adaptation of the optimi-
sation problem, this additional time will be small if the adjustment of the matrices and
vectors is implemented via call-by-reference.

6.1.3 Influence of Initial Guess on Results

In this section, the OPs (6.5) and (6.8) are modified to consider the nonlinear spring
characteristic with three piecewise linear segments depicted in Fig. 5.5b. The NLP
problem (6.5) is adjusted by replacing the spring force F, CNzL}j in the differential equation
system considered in constraint (6.5b) by

Fcltgjls = InaxXe [mins (Cmidxlm ClowTk — Qtr(clow - Cmid)) ’ Cupxk + Ttr(cmid - Cup)] (613)

using the smooth maximum function (3.3a). The adaptation of the QP problem (6.8)
requires slightly more changes. The auxiliary decision variables for the position (6.6¢)
are augmented resulting in

T
Xaux,k = {xmk Tlow,k Lupk Tmidk| - (6.14)

118



6.1 Minimisation of Steady-State Position Deviation for Hanging Single-Mass Oscillator

Thus, the position space is bisected into a region below and a region above z = z,
whereas the upper region is again bisected into a region below and above x = Ty,.
Compared to (6.7), the update procedure remains unchanged for the decision variables
of the inputs, states and auxiliary velocities:

v * * 0 Y *
/I:JLPOS,IC _ mE'i,X(Ufegk + ufos7k70) ’ ik,‘ — Xz; %ijS,k _ mE.LX(Uf,(())) . (6153)
Uneg,k mln(uneg,k + upos,k’ ) Uneg,k mln(”k’ )

However, since the position space is partitioned into three segments, the updating routine
changes for the auxiliary position states according to

[xlw,ﬂ] _ [max@z?xtr)] lxk] _ lmax<aém,k7xtr>] ‘ (6.15b)
Tlow,k min(x}, i) |7 | Tmidk min(:ﬁmk,ftr)
Furthermore, the correct signs are now given by

Otk = sign(:imyk — Tir),  Ogy, b = SIGN(T — ), Oy k = sign(vy). (6.15¢)
With i € Z.on and k € IC, the convex QP problem is formulated as

min Jy+ 7 Z labs,zmu,k + labs,mlm,k + labs,v,k with (6.16&)
p kel
labs,xmu,k = (l‘up,k - xmid,kz) — O,k ($m7k — Ttr)
labs,@imk = (Tiog p — Tlow,k) = Tap ke (Th — Zgr) (6.16b)
labs,v,k = (Upos,k: - 'Uneg,k) — Ou,k Uk

(5.4) ) Yk SSC
ot, Ceotts = O With £ =1mepiCorssG | FEE™ = Unegh + Uposi. (6.16¢)
m

SSC =
Fc737k = Cup (:Uup,k - xtr) + Cmid Tmid,k + Clow (‘rlow,k - Qtr)

Upos,k € upos = [Oafd} Liow k € XH = [Itr’f]
T € X = [§7 f] ) Upeg k € L{neg = [Ed’ 0] Tlow,k € Xow = [£> Qtr] (6 16d)
v €V = [Q7 W]? ’ Upos,k € Vpos = [0,5] 7 Tup,k € Xup = [ftrvf] ’ ‘
Uneg,k € Vneg = [Q, 0] Tmid,k € Xmia = [@traftr]

N —-d 1 Vpos.k P —-d 1 Uneg,k
h _ pos, < O’ h _ —e neg,

zcs,p,k [ d _;| [upos,k > zcs,n,k d -1 Uneg, k
Gaff,xmu,k = Tmid,k + Tup,k — (xm,k + ftr) =0

Gaff,zpm k = Llow,k T xm,k - (xk + &tr) =0 ) (616f)
Gaffu,k = Upos,k T Unegk — Vk = 0

<0, (6.16¢)

l
[labs,zmu,k|axrllu,k_+1 > 07 abs,$1m,k’gmlmyk:+1 , labs,v,k’U%k:J’_l > 0,
l - l - l -
absurmu7k|gwmu,k:71 abs’zlm’k’lemyszl abs’v:k’gvyszl
:habs,zmu,k :habs,wlm,k :habs,v,k
(6.16g)
max(d viy, 0)
ug = . X0 = Xjy- 6.16h
0 lmm(d v, 0) |7 7Y A ( )
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The termination criterion is computed via

_ labsﬂ/'mmo labsyimmnseg
labs = labs,zlm,O geeey labs,xlm,nscg . (617)
labs,v,O labs,v,nseg max

In order to analyse the effect of the initialisation on the computed solution, several initial
guesses are fed to the SSC algorithm aiming at solving the OP with initial value x;y 1
considering neeg = 250 collocation segments. The maximum number of iterations is
increased t0 gmax = 25 to check if poor approximations eventually converge. Using

the solution of the NLP optimiser uONthP and XEIPI;P as reference, the initial guesses are
generated using

u;OS,k = kit max (uON;ﬁ, 0) , u;eg,k = kipit min (uON;ti, 0) , X1 = Kinit xON;fEi (6.18)
with kini, € {0.0,0.5,0.75,0.95,1.0,1.05,10.0} and fed to the SSC update routine. The
computations are compared with the results of the NLP problem, which is initialised
with the same guesses. The results of the individual optimisations are listed in Table 6.4.
The computed values for the spring force and damper force are depicted for ki,ix = 0 in
Fig. 6.4a and Fig. 6.4b, respectively. Trajectories for selected solutions are illustrated in
Fig. 6.5.

As Fig. 6.4a and Fig. 6.4b indicate for kinix = 0, all solutions satisfy the prescribed
constraints: The spring forces lie on the piecewise linear branches and the damper forces
are within the admissible area. Considering the objective value Jss and mean error €y
in Table 6.4, the NLP solver converges to the same solution independently which initial
guess is supplied. Thus, it is assumed that the computed NLP solution represents the
global optimum or is at least very close to it. However, initialisation can have a massive
impact on the computation time. Generally, the guesses close to the solution result in
shorter computation times. It is striking that both algorithms have the most difficulty
converging for kinix = 0.5, which is not the guess with the biggest difference to the optimal

400
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Z, 0 Z, 100
= E 0
K50 oNLP 100
x SSC
-100 reb. spring -200 ¢
main spring -300 admissible
150 | compr. spring 400 bever ::::_"” points
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z inm vinm/s
(a) Piecewise linear spring force (b) ZCS for damper force.

with three segments.

Figure 6.4: Optimisation results for SMO application with three-segmented nonlinear spring
for kinig = 0.
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Figure 6.5: Solutions of SSC optimisations with initial value xj,,; and nggs = 250 collocation
segments for varying initial guesses.
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Table 6.4: Analysis of sensitivity regarding initial guess.

method results

Einit[-]|NLP SSC|Jss[m?s] &g[m] er,[N] q[-] topt,s[8] ts[s]

0.0 v 1603.95 5.47 - 1 4.589 4.589

0.0 v 1211849 991 46.63 7 0.493 (10.74%) 0.798 (17.38%)
0.5 v 1603.95 5.47 - 1 6.347 6.347

0.5 v [1635.20 5.93 14.43 19 1.450 (22.85%) 2.136 (33.65%)
0.75 | vV 1603.95 5.47 - 1 0.557 0.557
0.75 v [1612.62 5.67 15.77 2 0.179 (32.14%) 0.324 (58.26%)
095 | vV 1603.95 5.47 - 1 0.473 0.473
0.95 v 11603.95 547 0.01 1 0.075 (15.86%) 0.199 (42.02%)
1.0 v 1603.95 5.47 - 1 0.417 0.417

1.0 v [1603.95 547 0.01 1 0.072 (17.28%) 0.191 (45.79%)
1.05 | vV 1603.95 5.47 - 1 0.427 0.427
1.05 v [1603.96 547 0.20 1 0.084 (19.67%) 0.202 (47.37%)
10.0 | Vv 1603.95 5.47 - 1 0.981 0.981
10.0 v [1610.74 5.72 6.71 2 0.149 (15.19%) 0.306 (31.22%)

kinit: perturbation parameter for initialisation error. NLP: IPOPT solving NLP problem.
SSC: SSC Algorithm 2 with QP problem (6.16). Jss: main objective (6.2). €ss/€r,: error
metrics (6.11) and (6.10). ¢: # of superordinate iterations. topt,x: cumulative time spent
in NLP/QP solver. ts: total computation time.

solution. The SSC algorithm converges significantly faster than the NLP solver for all
initial guesses. The number of superordinate iterations required by the SSC algorithm
is small for good initial guesses. As for kiyiz = 0.5, a high number of superordinate
iterations can still yield a faster convergence compared to the NLP solver. As already
mentioned, the SSC algorithm represents a local method and does not necessarily provide
the global optimum, which is reflected in the results. Considering the objective value Jgs
and mean error €y, only the SSC solutions for kinix > 0.5 are roughly in the vicinity
of the global solution. The mean deviance between the input trajectories €r, is then
rather small. However, the general shape of the input trajectories in Fig. 6.5 differs
for kinit < 0.75 from the NLP solution, which is reflected in the deviance value. Even
though the SSC solutions may not represent the global optimum, the solutions satisfy
the prescribed constraints since ¢ < qmax- Thus, they represent a local solution of the
piecewise linear problem, which corresponds to the original problem for the example at
hand. The results for kiniy = {0.95,1.0,1.05} confirm that the SSC algorithm converges
to the global optimum if the initial guess is in a close vicinity of it.

As mentioned in Section 5.4, increasing the number of space divisions to depict the three-
segmented spring raises computation time. This can be confirmed by comparing solution
times of the SSC algorithm for ki,x = 0.0: For the two-segmented spring t§§§z = 0.262s,
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6.1 Minimisation of Steady-State Position Deviation for Hanging Single-Mass Oscillator

t%sc = 0.329s and ¢ = 4 holds whereas tgggz = 0.493s, t%sc = 0.798s and ¢ = 7 holds
for the spring with three segments. Thus, more iterations are required and the average
computation time per iteration is increased by 7.52% and 38.6% for tcs)ggz and t%sc,
respectively. This highlights the importance of an implementation in C-Code to reduce

the time required for the updating routine and therefore the overall computation time.

6.1.4 Rotated Space Splitting

As elaborated in Section 5.3.1, some sets require to be split using a rotated straight
line. Without going into detail, the approach is applied to the example of a hanging
SMO with fully linear spring presented in Section 6.1.1. The OP is parametrised with
initial value xj, 1 and nge = 250 collocation segments. The damper set is rotated by
p = 7° resulting in the set depicted in Fig. 6.6a. This is implemented by applying
the changes (5.34) to the convex QP problem with fully linear spring. As depicted in
Fig. 6.6a, the SSC algorithm computes damper forces that all lie within the admissible
area. Although this example represents an artificial use-case, the corresponding position
trajectories in Fig. 6.6b prove that the rotated set yields a reduction of the objective.
Starting with zj,1 < @ in a compression phase with v, 1 < 0, the mass is first decel-
erated and then accelerated using Fy < 0 at v > 0, hence active forces. These active
forces enable a faster attainment of the steady-state position. Due to the similarity to
the previous examples, no further discussion is given.

x SSC, ¢ [] J
300 admissible :
points &
200 T l
17 x x
100 y B} ]
g 0 sosser R L ;‘
=100 5
200 I E 1
-300 i
400 e 3
I
-100 50 0 50 100

vinm/s tins

(a) Rotated ZCS for damper (b) Position trajectory. 255¢: original damper force set. 255°¢: ro-
force. tated damper force set.

Figure 6.6: SSC optimisation results for SMO application with fully linear spring and rotated
damper set.
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6 Applications for Space Splitting Convexification

6.2 Velocity-Maximisation for Vehicular Drag Race

In this section, a longitudinal single-track vehicle model with static wheel loads is con-
sidered in an OP that aims at maximising the velocity on a straight track. The corre-
sponding parameters for model and optimisation are listed and described in Table 6.5.
Assuming steady-state conditions for the wheel dynamics while neglecting rolling resis-
tances, (4.3c) simplifies to

0 !
Jpop =5 —Foyry=0 = Fpy=0 (6.19a)
Jrwp =T, — Fx,r Tr = 0 = T = Fggm Tr (619b)

for the front and rear wheel, respectively. Applying (6.19a) to (4.3a) results in
1 0
b= (F;, b Fyy — FLair) : (6.19¢)
A simplified rear wheel tire force F , is computed using the shape curve f ,:

Fop = Fep Dy fop With  fop = fopm = sin (Cy arctan (By Aop) ). (6.19d)

Therein the static rear wheel load F s, is computed according to (4.8a). Consider-
ing (6.19b) and (6.19d), the shape curve satisfies

T, = kT, (6.19¢)
According to (4.6a), the aerodynamic drag force is given by

1 .
Fx,air = 5 Pair Cair,z Aair fm,air = kair fz,air with f:):,air = fx@ir,nl = Ui- (619f)

Thus, the system behaviour can be described using the rear wheel torque 7, as input and
the longitudinal velocity v := v, as state. However, the aerodynamic drag force (6.19f)

f:c,air

f;l?ﬂi]: nl,
=fCair.low

v = = far
Vtr v f tr f ’
(a) ZCS for rear-axle torque.  (b) Piecewise linear shape curve (c) Piecewise linear shape curve
for air resistance force. for inverted tire force.

Figure 6.7: Nonconvexities in drag race application.
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6.2 Velocity-Maximisation for Vehicular Drag Race

represents a nonlinearity resulting in nonconvex equality constraints when optimal con-
trol is applied. Furthermore, the torque is restricted by the nonconvex set

— _ P
0 < T, < Ty = min (T, T’”) (6.20)

Uy

depicted in Fig. 6.7a. The application of the SSC approach to solve the nonconvex OP
is presented in the following sections.

Table 6.5: Parameters for drag race application.

Symbol Value Unit Description

g 9.81 m/s? gravitational acceleration

m 2000.00 kg total mass of vehicle

Ty 0.33 m rear tire radius

g 1 1.00 — road friction coefficient
% Dair 1.20 kgm ™3 air density
=~ Cair, 0.31 — longitudinal drag coefficient
Agir 2.44 m?2 cross-span area of vehicle
D,/C;/B; 1.50/1.80/1.90 — tire friction coefficient
F,sr 9704.73 N static wheel load of rear axle

T 10446.00 Nm maximum torque

P 390560.00 W% maximum power

v 69.44 m/s maximum velocity

Vtr 26.40 m/s transition point for velocity

Cair Jow/ Cairup  16.23/92.90  m/s slope of lower/upper aerodynamic force

f 1.00 - maximum value for tire force shape curve

o fer 0.87 - transition point for tire force shape curve
.8 Ctlow/Cfoup 0.33/2.66 - slope of lower/upper inverse tire force shape curve
s Qup,1 —243759.69  Ns slope of upper torque subset
é bup,1 —6435255.81 Nm vertical intercept of upper torque subset
%. (up,2 56.70 Ns slope of upper torque subset
°© bup,2 3997.60 Nm vertical intercept of upper torque subset
low,1 387.38 Ns slope of lower torque subset

blow,1 14121.19 Nm vertical intercept of lower torque subset

low,2 244203.78 Ns slope of lower torque subset

blow,2 6448435.76  Nm vertical intercept of lower torque subset

Eg 1076 - constraint violation tolerance

/T 1.00/10% - initial /final value for penalty parameter
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6 Applications for Space Splitting Convexification

6.2.1 Optimisation Problems

The drag race application is solved using the NLP solver IPOPT as well as the SSC
algorithm with Gurobi as underlying QP-solver. The NLP problem and convex QP
problem are listed subsequently.

Nonlinear, Nonconvex Optimisation Problem For the solution of the OP via NLP,
the decision variables are chosen as

u=[T0 Tros - Trng| € R (6.21a)

yMseg

X =[00 V05 oo Ung| € R0, (6.21b)

With ¢ € Z.o and k € K, the nonconvex OP is given by

Nseg—1 A

N A
Hl}% Jmain = ;) e (vi + 4vi+% + v¢+1) (6.22a)

. 1 /T,
s.t. Ceoll (524) 0 with fp=— ( rk _ Kair U,%) , (6.22b)
m \ 7,
ﬂweu:{aﬂ, o €V = [0,7], (6.22¢)
Tox £ <P, (6.22d)
Tr
1 1 . * Y
Apk = = tan | = arcsin(ky T, 1) | <0955 = Ay, (6.22¢)
Pl BI ng k] ’

T,«,Q = 0, Vo = 0. (6.22f)

Using Simpson quadrature (3.14), the objective function (6.22a) aims at maximising the
velocity over the time grid ¢ € [to,tf] = [0,20] with constant segment width A; = A =
%. The collocation constraints (6.22b) ensure satisfaction of the differential equation.
Bounds on decision variables and limitations on the usable power are given by (6.22¢)

and (6.22d), respectively. In (6.22e), the tire slip is limited from above to 95% of the

optimal slip value
.1 us
AL = B, tan <20x) (6.23)

to maintain a stability margin in presence of model uncertainties. Thus, the tire force
remains on the stable branch below the optimal slip. The initial condition is prescribed
via (6.22f). The NLP problem (6.22) is nonconvex due to the nonlinear right-hand side
of the differential equation in collocation constraints (6.22b) and the nonconvex input
restriction (6.22d).

126



6.2 Velocity-Maximisation for Vehicular Drag Race

Convex QP Problem for Iterative Solution In order to generate a convex QP subprob-
lem, the state space is split at v = v, using the auxiliary state variables vjoy € [0, vi;]
and vyp € [Ut, U]. Via the auxiliary input variables Tioy, € [O,T] and Ty, € [O,T], the
rear axle torque is represented by the affine mapping function

T, = ®y = Tiow + Tup- (6.24)

The admissible torque set is defined using the two convex subsets Tiow and Ty, illustrated
in Fig. 6.7a: The goal of the splitting procedure is to approximate T, by the piecewise
linear limit T;,. As mentioned in Section 5.3.1, ZCSs that are not connected exclusively
in a single point require further precautions at the transition. Since torque is required
to increase velocity, pulling both subsets to Tiow = 0 = T\, at v = vy, can result in
longer transition periods with v = v, or even limit the solution to v < v,. Thus, the
subset Tiow enables the use of Tiow = Tir = —alow,2 Vtr + blow,2 at v > vy

Furthermore, the nonlinearity in the air resistance formula (6.19f) is depicted using
piecewise linearities as shown in Fig. 6.7b. For a stability margin, the OP imposes a
limit on the tire slip. Within the stable tire region, the tire force is strictly increasing
over the slip. Thus, this could be implemented using the corresponding limit on the tire
force (6.19d) and posing an upper boundary on the torque (6.19b):

T, <1 Foy(Mgr = Aay) = 10 0 Fa 50 Dy sin (Cx arctan (Bx XI,T) ) (6.25)

However, another approach is pursued subsequently. The tire force shape curve is also
split into two linear segments as depicted in Fig. 6.7c in order to demonstrate that
the SSC approach is capable of considering multiple univariate nonlinearities. Using
relation (6.19e), the tire force shape curve is split at f;, = fi via the auxiliary vari-

ables fiow € [0, fir] and fup € { ftr,ﬂ. Hence, following decision variables are used for
the OP:

T,
U= [UO us .. unseg:| € R2XMeoll with uy, == [ UP’k] (6.26a)
CZjlow,lf
x=[00 05 .o Ung,| € RO (6.26b)
— 2><ncoll ] -— vup’k
Vaux = [Vaux,O Vaux,05 --- Vaux,nseg} eR with Vaux,k = [ ] (626C)
Vlow,k
Faux - [faux,() faux,0.5 ce. faux,nSCg} S RQXHCOH with faux,k = [fup,k] . (626(1)
low,k
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6 Applications for Space Splitting Convexification

Accumulating the decision variables in P := {U, X, Vaux, Faux }, the convex QP problem
is given with ¢ € Z.o and k € K by

Nseg—1
min Z jmain,i +7 Z (labs,v,k + labs,ﬁk) with (627&)
P 1=0 kel
; e A . )
Jmaing = TG ('Uz + 47},’4_% + vz-l—l)
labs,vke = (Vup,k — Viewk) — Ok (Vk — Vgr) (6.27b)

labs, .0 = (fupk = frowk) = 0pk (B (Tupk + Tow,k) — fir)

(5.4) . 1 ( Tup,kt+Tiow,k
Ceollyi = 0 with fk ~m (% - kair fx,air,k)

s.t. : (6.27¢)

fa:,air,k ‘= Cair,low Vlow,k T Cair,up (Uup,k; - Utr)

v €V :=[0,7],

TUPJC € UUP = {07T} Vup,k € Vup = [vtr’ﬁ] fup,k € fup = {ftru?] ) (627d)
77low,k € Upoy = [07?}’ Vlow,k € Viow = [0’ Utr], flow,k € Flow = [07 ftr]

Qlow,1 1 UVlow,k | blow,l <0 Gup,1 1 Uup,k | bup,l <o, (6276)
Alow,2 1 Tlow,k blow,2 Gup,2 1 Tup,k bup,?
:flzcs,low,k :flzcs,up,k
Gaftv ke = Vup,k + Viow,k — (Vk + V) =0 (6.276)
Gaff, .k = fup,k + flow,k - (kf (Tup,k + Tlow,k) + ftr) =0
labswk| . _ labs, k| . _
habs,v,k = [a o ‘Uv’ki—Fl > 07 habs,f,k = e ‘Uf’ki—i_l > 07 (627g)
labs,v,k|0v’k:_1 labs,f,k‘af’k:_l
)\m,r,k = Cf low flow,k + Cfup (fup,k - ftr) <0.95 A; = Xx,ra (627h)
ug = 0, Vo = 0. (6.271)

The main objective in (6.27a) represents (6.22a) and aims at maximising the velocity.
The maximisation of the velocity is used instead of a minimum-time objective since it
yields a convex cost function without requiring the nonlinear transformation presented
in Section 3.3.1. Since the main objective is linear, the resulting OP (6.27) represents an
LP problem. Together with constraints (6.27f)-(6.27g), the remaining objective terms
in (6.27a) ensure the correct switching for V,ux and Faux. The collocation constraints,
bounds and initial value condition are considered via (6.27c), (6.27d) and (6.27i), re-
spectively. The convex subsets Tiow and 7Ty, depicted in Fig. 6.7a are represented via
the affine inequality constraints (6.27e) together with the inputs bounds Uiey and Uyp.
In (6.27h), the tire slip is limited from above to 95% of the optimal slip value A% to
maintain a stability margin in presence of model uncertainties. Furthermore, the inclu-
sion of a slip limit aims at demonstrating that multiple univariate nonlinear equalities
can be depicted via SSC.

Using T} = lewk + T}, k» the updating routine is implemented as follows. The state
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6.2 Velocity-Maximisation for Vehicular Drag Race

and auxiliary states are adjusted according to
U = vf, (6.28a)

g | Vupe | |max(vi,ve) | g B fup,k _|max(kfT7, fir)
Vausk = [mow,k] - [mm(v,:,vtr) awk =\ 5T | in(hy T fuy |- 2

The correct signs are computed via
Ok = sign(vy — vie), ofk =sign(ky Ty — fiur). (6.28c¢)

Due to the adjustment of the torque subsets at the transition, the initial guess for the
auxiliary inputs is updated under consideration of (6.27e):

j:‘long _ m?n (_alow,l 'Uz + blOW,17 —Qlow,2 UZ + blow,Za Ta T]I) Vo < vy, (628(1)
min(T}, i) else
o 0 Vo < Ui
Topk =1 . . ) L . (6.28¢)
min (—aup,l Vi + bup,1s —Qup2 VF + bup2, T} — Tlow,k) else
The termination criterion is computed via
- l l
labs _ abs,v,0 e, abs,v,nseg (629)
labs,f,O labs,f,nseg
max

The results for the presented OPs are discussed in the following Section 6.2.2.

6.2.2 Results

The NLP problem (6.22) and the convex QP subproblem (6.27) within the SSC approach
are solved for a number of ngs € {10, 50, 100, 250} collocation segments. Both algorithms
are initialised assuming maximum velocity in all collocation points with corresponding
torque limitations:

_Pr
vp =0 and T, = min (T, T) VEk € K. (6.30)
’ v

The results are summarised in Table 6.6. The objective function values indicate that
the NLP and SSC algorithm achieve similar results. As will be elaborated below, both
methods identify the optimal solution of the problem provided to them. However, the ap-
proximation of the nonlinearities via piecewise linear segments introduces errors, which
result in a marginally higher cost function for the SSC approach. The quality of the
solutions can be graphically evaluated considering the velocity, torque and force trajec-
tories depicted for ng; = 100 collocation segments in Fig. 6.8. The first subplot shows
the trajectories for the velocity and auxiliary velocity variables. The switching occurs
correctly at v = v,. Analogously, the trajectories for the tire force shape in the second
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6 Applications for Space Splitting Convexification

subplot switch at f., = fir as planned. After reaching the maximum velocity v, the
tire force oscillates in order to keep the velocity at the maximum level. If needed, these
oscillations can be avoided by introducing an additional objective term penalising the
derivative of the tire force. The third subplot depicts the convex subsets for the rear
wheel torque. When accelerating, the upper tire slip bounds (6.22e) and (6.27h) limit
the possible rear axle torque until the limiting factor is the torque characteristic curve
T respectively T, and finally the maximum velocity ©. This confirms the correctness
of the results. As planned, the lower torque variable is kept constant at Tiow = Tt;
when the velocity exceeds the transition point v > wv¢,. Then, both the lower and the
upper torque variable are at their maximum limit and the cumulative torque reaches
the desired linearly approximated torque boundary 7T’ TSSC = Thin. In contrast, the NLP
problem follows the nonlinear maximum torque boundary Ty > Tii,, which enables a
higher torque. The fourth and fifth subplot illustrates the shape curve for the tire force
and for the air resistance force, respectively. Both subplots confirm the correct switching
and depiction of the piecewise linearities. The piecewise linear approximations of the
tire force and air resistance force introduce errors. However, the main cause for the dis-
crepancies between the NLP solution and SSC solution is the approximated torque set.
The velocity trajectories of both solutions v™*F and v55€ roughly coincide as long as the
slip constraint limits the applicable torque. Discrepancies between the solutions occur
afterwards since the admissible torque set of the SSC approach is an approximation of
the original set: The SSC torque set underestimates the original set so that it represents
a subset and thus results in admissible torques. After reaching v ~ 247 at t ~ 3.4s, the
admissible torque for the SSC approach is defined by the torque set and thus lower than
for the NLP problem. This is the primary cause for the different velocity trajectories
and thus different objective function values. For comparison, the NLP solution reaches
the maximum velocity after 16.9 seconds and the SSC solution after 18.6 seconds. Since
the convex torque subsets represent approximations of the original set and the nonlinear

Table 6.6: Optimisation results for drag race application.

Nseg-] ‘ OPT  Jmain[m/s] q[-] topt, s8] ts[s]
10 NLP -930.46 1 0.019 0.019
10 SSC -907.22 1 0.001 (5.26%) 0.088 (461.21%)
50 NLP -958.78 1 0.055 0.055
50 SSC -936.36 1 0.008 (14.55%) 0.098 (177.28%)
100 | NLP -961.33 1 0.096 0.096
100 SSC -940.19 2 0.024 (25.04%) 0.127 (131.79%)
250 | NLP -962.81 1 0.232 0.232
250 SSC -941.72 2 0.102 (43.97%) 0.235 (101.14%)

Neeg: # of collocation segments. NLP: IPOPT solving NLP problem (6.22).
SSC: SSC Algorithm 2 with QP problem (6.27). Jmain: main objective (6.22a).
q: # of superordinate iterations. topt,»: cumulative time spent in NLP-/QP-
solver. ts: total computation time.
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Figure 6.8: NLP and SSC solution for drag race application with ngs = 100 collocation seg-

ments.
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shape curves of air resistance force and tire force are also approximated, the solution
can only be suboptimal. However, the accuracy can be increased by splitting the spaces
into more segments, though this can increase computation time.

The SSC algorithm solves the problem requiring only a small number of ¢ < 2 superor-
dinate iterations, even though the rather simple initial guess (6.30) was provided. The
benefits in pure optimisation time t,p s, of the SSC algorithm reduce with increasing
number of collocation segments. The reason for this are the additional decision variables
introduced for space splitting, which scale with the number of collocation segments.
This increases the OP size and thus the computational complexity according to (5.44).
Comparing the cumulative optimisation time ¢, x; and the total computation time tx
in Table 6.6, the current example illustrates that the updating routine can substan-
tially increase the total runtime such that the SSC algorithm takes longer than the NLP
solver. However, only simple maximum, minimum and sign functions with linear com-
putational complexity are used in the projection routine. As illustrated with Fig. 6.3,
an implementation in C-Code would significantly reduce the computation time for this
step. Furthermore, it would enable a direct access to the solver and thus eliminate the
additional time required for the communication between Julia and the Gurobi-solver.
Thus, a real-time implementation requires rewriting the algorithm in C-code, which is
however subject of future work.
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7 Conclusion and Qutlook

Numerical optimisation is a powerful tool that is becoming more and more important
due to the rapidly progressing development of computers. It enables making smart
decisions in the context of control and can be used for evaluation and design purposes.
This thesis has presented two methods for solving nonconvex NLP problems. Firstly,
a general framework capable of solving complicated optimal control tasks for highly
nonlinear systems has been presented. Secondly, a successive convexification procedure
greatly reducing computation time for a special class of OCPs has been proposed. These
two main research areas are concluded below offering possible directions for future works.
This chapter partly echoes remarks from our previous publications [183, 185, 186].

7.1 Nonconvex Optimal Control for Highly Nonlinear Systems

Many OCPs for engineering applications require the solution of nonconvex and highly
nonlinear OPs. The first part of this thesis has presented a procedure that is capable
of solving these difficult problems. The method illustrated in Chapter 3 aims at solving
minimum-time OCPs, however the approach is also applicable to problems with other
objectives. A spatial transformation enables the reformulation of the problem in terms of
a path parameter instead of the time. This simplifies some path constraints and casts the
free final time OP to a problem with a fixed independent variable at the final point. A
scaling procedure enhances convergence by normalising the domains of decision variables
and transforming the domains of constraints and objective to suitable ranges. Adequate
smoothing functions have been introduced to ensure the required differentiability of the
OP, which is necessary for solvers that employ derivative information. Furthermore,
a novel preprocessing approach for the generation of smooth reference paths has been
presented. The transcription of the dynamic OP into a static one has been achieved via
Hermite-Simpson collocation. This collocation method represents a good compromise
between accuracy and sparsity of the OP, which improves computation time.

A vehicular application aiming at computing minimum lap times has been solved in
Chapter 4 using the presented framework. The vehicle model has been validated using
measurement data from a test vehicle. Model augmentations for BEVs have been pro-
posed with special focus on a simple representation of EOL in OCPs. An initialisation
routine using a triple PID-controller has been suggested for the generation of a suitable
initial guess. After solving the OP, the optimal input trajectories can be interpreted to
derive race strategies. The results quantify the relative benefit of EOL, which mainly
reduces lap time at the race start and after corners by enabling higher drive torques.
The low limit for the charging current of the battery pack also contributes to the prefer-
ence for overloading on acceleration phases rather than deceleration phases. Moreover,
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allocating the torques in accordance with the wheel loads has been identified to be op-
timal. In this regard, overloading is mainly applied to the rear motors respectively the
outer motors during cornering. In order to recuperate as much energy as possible, the
friction brake torques are only used when the charging current limit prohibits higher
motor brake torques. Furthermore, a concurrent optimisation of passive vehicle param-
eters enables design optimisations. This procedure has been used to identify optimal
gear ratios for the front and rear powertrain units as well as the dimensioning of the
front and rear motors. The results show that the concurrent optimisation provides addi-
tional performance benefits highlighting the importance of considering the passive setup
when deriving performance-optimal strategies. The approach can be used for an objec-
tive comparison of various powertrain topologies facilitating an accelerated development
process of automotive vehicles. Due to the generality of the optimisation approach, such
accelerated design processes can be applied to many machines or robotic systems.
Possible topics for future research are listed below:

e The convergence speed could be improved by introducing a mesh refinement strat-
egy. The meshing can be concurrently optimised using additional decision vari-
ables. However, other approaches that avoid introducing further decision variables
can be more expedient. The OP can be solved using an automatic scheme with
gradually increasing number of collocation segments. The error between the orig-
inal differential equation and its polynomial approximation on each segment can
be used to determine if the segment needs to be bisected increasing the number of
collocation segments for a subsequent optimisation [97]. The initial meshing can
be designed using system knowledge: Collocation points should be positioned at
inflexion points of the differential equation trajectories. The initial solution for
the subsequent optimisation can be computed via interpolation of the preceding
optimal solution.

o Alternatively, highly accurate solutions can be computed via indirect methods.
The convergence of these methods tends to be quite sensitive in regards to the
initial guess. Using the presented collocation method to compute a solution on
a coarse grid, the solution can be fed to the indirect method as an initial guess.
However, this requires a suitable approach for deriving adequate initial trajectories
for the adjoint variables.

e An interesting direction from an vehicular application standpoint would be the
consideration of temperature dependencies of electrical components. Although
these relations would increase nonlinearity of the equations, the consideration of
temperature effects increases the model accuracy. It would be useful to quantify
the lap time impact of these effects and possibly find simple substitute models.
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7.2 Space Splitting Convexification

The real-time application of optimal control methods represents a challenging task. As
already mentioned, OPs for real-life applications are often nonconvex and thus hard
to solve. Aiming at reducing computation time, a convexification approach called SSC
has been presented in Chapter 5. The algorithm iteratively solves convex substitute
problems that are updated after each iteration based on the preceding solution. The
method is capable of considering two types of nonconvexities: ZCSs as well as equality
constraints with possibly multiple univariate nonlinearities. Therein the nonlinearity
can be represented without losses if it is piecewise linear and is approximated otherwise.
The basic notion behind the procedure is representing the nonconvexities using piecewise
affine segments that are interconnected using adequate constraints. Similar to previous
techniques, a linearisation is used to simplify the equations. However, the linearisation
is reduced to the binary result of a correct sign. On convergence, the accuracy of
the solution is thus predefined by the design of the piecewise affine segments and less
problematic regarding linearisation errors. This fact and the use of constraint relaxations
result in a robust and generally quick convergence independent of the initially provided
solution. Being a local method, the algorithm converges to a local optimum of the
piecewise linearly approximated problem.

SSC has been used in Chapter 6 to solve nonconvex OPs for a SMO. Compared to an NLP
solver, the SSC approach has provided similar results while greatly reducing computation
time. Moreover, it has been confirmed that the initial guess can greatly influence the
outcome however the global optimum is retrieved for guesses in a close vicinity around
it. Furthermore, SSC has been employed to compute optimal trajectories for a vehicular
drag race application. Using a conservative approximation of the original sets, the
computed solution is suboptimal however follows the same general control strategy like
the NLP solution.

Subsequently, possible directions for future research are disclosed:

o Even though it would not change the algorithm, using nondifferentiable constraint
qualifications [230] could potentially avoid the AVC-smoothing required for con-
tinuous differentiability regarding the convergence proof.

e In order to mitigate the problem of suboptimal solutions, a perturbation mecha-
nism could be used after converging in order to initiate an additional optimisation
loop using the perturbed preceding solution as initial guess.

o Applying a more sophisticated updating procedure for the penalty parameter would
improve computation times [135, 140, 148].

e Due to the low computation time and robust convergence, the SSC method seems to
be a promising approach for real-time optimal control applications. In this context,
using MPC could provide sufficiently good initial guesses [48, 71] resulting in good
SSC solutions. For time-critical applications, it is recommended to implement the
algorithm via tailored C-code. This would reduce the computation time of the
projection routine and avoid the overhead introduced by the high-level routines of
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JuMP and the Gurobi-wrapper. Then, the required time for the updating step can
be greatly reduced to linear time complexity resulting in shorter runtimes.

The current SSC approach can only consider univariate nonlinearities in equality
constraints. Extending this approach to bivariate functions would enlarge the
possible scope of applications.

An extension of the approach to consider nonconvex keep-out zones would be
valuable for collision avoidance applications. This could be implemented via an
iterative linearisation around predefined or predicted trajectories [119]. Alterna-
tively, the LnP approach [134] could be used requiring only the projection onto
the collision avoidance constraints. Another possibility is to map the nonconvex,
prohibited areas onto admissible, convex, inner approximations [28, 191].

The comparison of the SSC algorithm with GO techniques for solving MIP prob-
lems is still to come. Furthermore, the piecewise linearly approximated problem
could also be posed as MIP problem with special ordered sets. The solution com-
puted via existing GO techniques would provide useful insights regarding the con-
vergence domain of the SSC algorithm to the global optimum and comparative
values for runtime.
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A Modelling Addendum

A.1 Transformation of Model Equations into Moving
Coordinate Frame

When integrating differential equations for values in a moving coordinate frame, an
additional term must be considered for correct results. The derivation of this term is
treated in this section. Its is assumed that the COG position of a body with mass m
is given by the position vector p’ = [2',4']7 in the inertial coordinate frame. The
orientation of the body is described using the yaw angle 1, which depicts the angle
between the body coordinate frame and the inertial frame. The acceleration of the COG

is given by . .
B = RUF > R.(0)p = F (A-1a)

m

using the forces F* in the body coordinate frame acting on it. Inspecting the left-hand
side of the right equation in (A.la) results in

d OR.(—v) : ., . B
R.(1)' = R-() ) (Ro(~0)p") = Ra(v) (gw%p FRA-)p )
o 8RZ(_¢) i B . B
= Rz(¢)7¢p +p. (A.1b)
=R
Inserting (A.1b) into (A.la) leads to
pt = %FB — Egj with (A.1c)

‘=Cadd

~ | cos(yp) sin(ep)| [—sin(yp) —cos(¥)| ;|0 71&
"= [— sin(v) cos(w)] [cos(w) —Sin(qb)] v = Lp 0 ] and (A.1d)

Cadd = [2 —0¢] t)}j = l:;f}iy] (A.le)

with v, and v, representing the longitudinal and lateral velocity in the body coordinate
frame.
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A Modelling Addendum

A.2 Translational Velocities at Wheel Centre Points

The computation of the translational velocities at the wheel centre points given in the
body coordinate frame requires considering the yaw rate of the vehicle. Assuming only
planar movements, these quantities are given by

_Ux,l_ o] 07 - I . —Ux B w %f-

Ve, = [vy1| = |vy| + | 0] X %f = |vy +ly (A.2a)
L 0 ] _O_ _1/1_ _—hv + 71 L 0 |
—Ua:,Q_ _Uac_ 0] [ ljl; ] —Ux + @ZJ %f

V];z = (Vy2| = |Vy + 0 X —7f = | Uy + T/J lf (A2b)
i 0 ] _O_ _w_ _—hU—i-?“Q L 0 1
—v$,3_ _Um_ _0_ [ _lr | —Ux - /IL' %-

Vi, = |va| = oy | + [0 x| & | =|v,—dl (A.2¢)
L 0 ] _0_ _w_ __h’U +T3_ L O ]
’%74_ _Ux_ [0] [ -1, i —Ux 4 w %_

Vi, = |vya| = vy | + 0] X s = vy — ¢l | . (A.2d)
L 0 ] _O_ _w_ __hy +T4_ L O ]

A.3 Derivation of Frenet-Equations

The Frenet-Equations (3.6) can be derived by analysing the kinematic relations using
Fig. 3.2 as graphical support. The velocity of the vehicle in the coordinate system of
the reference curve!! is given by

Uy v €0s(0) — vy sin(O)
Vi, = R:(—O)vE = R.(—0) |vy| = |vzsin(©) + vy, cos(0) | . (A.3)
0 0

This velocity vector can be put together by

S
Vi, = Vhps +Viep, = | 0| +Visn, (A.4a)
0
Using the chain rule
. 00y ds .
@R = 8SR 7: = RRSRr (A4b)
R

HThe current point on the reference curve Ps represents the origin. The tangent and normal in Ps
represent the abscissa and ordinate, respectively. Thus, the reference frame is rotated by the angle —©
around the z-axis compared to the body frame.
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A.3 Derivation of Frenet-Equations

when considering the rotation of the reference frame during differentiation yields

R __ 2R R _
VPsP, = PPy +wr X Tpspy =

Q 0 0 7d7€ 672 _dR‘/i’RS’R
- dR + O X dR - dR = dR . (A4C)
0 Or 0 0 0

Inserting (A.4c) into (A.4a) results in the total speed vector

0

From the comparison of (A.3) and (A.4d) follow the Frenet-Equations (3.6a) and (3.6b).
Differentiating © = 1) — O using (A.4b) yields (3.6¢).
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B Mathematics

B.1 Differentiation

It is assumed that f(x) : R® — R represents a scalar-valued function with x € R".
Furthermore, two vector-valued functions are given by g(x) : R®™ — R™ and
h(x) : R — R™. All functions are assumed to be at least twice continuously differ-
entiable. Moreover, the constant vector a € R™ and constant matrix A € R™*" as well
as constant symmetric matrix Q € R™*" are presumed.

B.1.1 Derivatives of Functions

The first-order derivative of f(x) is given by

d n
fxlx) = - f(x) = [a%fl o 2L ertm, (B.1a)
the gradient of f(x) by
of
ox1
Vef(x) = fx(x)" =] 1 | e R (B.1b)
of
OTn
and the Hessian of f(x) by the symmetric matrix
92 f o2 f
0x10T1 *tt 0x10Tn
Vi () = fx()=1| .1 | €RT (B.1c)
o2f 02 f
0xndx1 " Oxplzn

The first-order derivative of g(x), also called Jacobian, is given by the generally asym-
metric matrix

991 991
ox1 e Oy
gx(x) = ng(x)T = : : € R™*™, (B.1d)
9gm 9g9m
o1 Tt Oxp

B.1.2 Basic Rules for Differentiation of Vectors and Matrices

The derivative of the product of a scalar-valued function f(x) and a vector-valued func-

tion g(x) is given by
d

(£ 800)) = 800 fx(x) + F() () € R™. (B.22)
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B Mathematics

For the product of two vector-valued functions g(x) and h(x), the derivative is computed
via

d

(809" h(x)) = g()" hx(x) + h(x)" gx(x) € RV (B.2b)

For the linear and quadratic case, following basic rules apply:

d

—(Ax) = A (B.2c)

(@) = - (xTa) = a (B.24)
S Qx) =x"(@+ Q") (B.2¢)
d;(xTQx) =Q+Q'. (B.2f)

B.1.3 Taylor Series Expansion

For the approximation of functions using Taylor’s theorem, the point X marks the centre
of the Taylor series expansion and the deviation from this point is denoted by dx = x—X.
For small 6x, and thus small ||0x||, the scalar-valued function f(x) can be approximated
by a quadratic function with a third order error term:

£ = F(8) + (%) 0% + 5 057 fe(%) 0 + (o). (B.3a)

For the individual components of the vector-valued function g(x) similarly holds
(%) = (%) + Vaegs(3)T 6% + % oxT Vi (%) 6% + e(|0x|?) ¥i=1,....m. (B.3b)
Thus, the linear approximation of the vector-valued function g(x) in vector form is given

by
g(x) ~ g(X) + gx(X) ox = g(X) + ng(fc)T 0X. (B.3c)

B.2 Continuity

The smoothness of a path can be assessed considering its continuity. A curve is called
Cl-continuous or of class C! if its first derivative exists and is continuous. However,
its curvature trajectory is discontinuous. In contrast, a C2-continuous path has also a
continuous second derivative thus curvature. These relations are illustrated in Fig. B.1
for a spline of class C' and C2, respectively.
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Figure B.1: Trajectory with corresponding first and second derivative for C!-continuous and
C2-continuous curve.

B.3 Linearisation of Absolute Value Inequality Constraint

The SSC procedure presented in Section 5.3 requires the linearisation of a scalar absolute
value constraint:

Y > |z — 20| = fabs(®). (B.4a)

The linearisation of the right-hand side faps(x) around a point & = % is shown below:

@)

. d
fabs(x) ~ fabs(w) + afabs(-r)
= |& — xo| + sign(& — x0) (z — &)
= sign(& — zg) x + (]:ﬁ — x| — sign(Z — xg) ﬁv)

T — X9

= sign(& — xo)  + ( — sign(Z — xo) g%)

sign(& — xo)
= sign(& — zg) x + ((ﬁ: — x0) sign(z — zo) — sign(Z — xo) i‘)

= sign(& — zg) (x — xo) . (B.4b)
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