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Preface
This dissertation is publication-based, thus its scienti�c content is published in two related, but
independent articles, [1] and [2], which both have undergone the scienti�c peer-review process in
international scienti�c journals and are appended to this work. The �rst four chapters mainly
serve as an introduction to the thematic motivation, relevant literature, and the applied Machine
Learning Method. Summaries of both article are then provided in chapter 5. The main part of
the presented work has been carried out at the Chair of Theoretical Chemistry of the Technical
University of Munich (TUM) between April 2017 and September 2020 and has been completed
between October 2020 and November 2021 at the Fritz Haber Institute of the Max Planck Society
in Berlin, both times under the supervision of Prof. Dr. Karsten Reuter. Major parts of my PhD
was founded by the Deutsche Bundestiftung Umwelt.

München, November, 2021
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Abstract
Green hydrogen is an integral part of the future, renewable energy landscape as clean fuel and
bulk chemical of important chemical processes. Hydrogen production in �exible electrolysis cells
is, furthermore, perfectly suited to bu�er the �uctuating electricity supply of wind and solar parks.
Proton Exchange Membrane (PEM) and Alkaline Electrolysis (AEL) are to date the most promising
options to challenge the currently cheaper and thus predominant hydrogen production via steam
reforming of fossil gas. Although the PEM cell o�ers some essential advantages compared to the
Alkaline Electrolyzer, the roll-out at industrial scale is a long time coming. This is primarily due
to the harsh operating conditions and the hence very limited number of potential catalysts. In the
acidic and corrosive operating environment iridium oxide (IrO2) (and to smaller extend ruthenium
oxide (RuO2)) are the only promising catalysts for the oxygen evolution reaction (OER) at the
anode. The low iridium abundance, however, demands a signi�cant reduction of the metal loading
in order to make the PEM technology sustainable and pro�table. Although e�orts to optimize
IrO2/RuO2 catalysts have led to a variety of studies the catalyst performance has only improved
gradual. A more stringent and systematic optimization requires a more precise understanding of
the catalyst surface and related atomic processes. While computer simulations based on Density
Functional Theory (DFT) or classical force �elds have enabled investigations at the atomic level
for decades, both methods are limited for complementary reasons: DFT methods provide a highly
accurate and complete description, are, however, limited to small(er) systems due to their enormous
computational costs. The much faster force �elds can cope with large systems, yet, only provide
an incomplete description as they are restricted to a �xed atomic connectivity. Here emerging
Machine Learning (ML) methods might close the gap, as they enable a fast, accurate, and complete
description of larger systems including catalytic surfaces.

The identi�cation of the (still unknown) IrO2/RuO2 surface morphologies via a speci�cally
developed global optimization method is the central topic of this thesis. This method applies
a combination of ML and DFT to determine the global energy minimum structure of various
IrO2/RuO2 surfaces via an iterative simulated annealing (SA) protocol. Already the �rst, still manu-
ally executed version of this iterative training protocol revealed multiple hitherto unknown surface
morphologies (so-called complexions), that are characterized by a reordering of the terminating
atom layers. The energetically lowest and thus decisive complexion was then experimentally vali-
dated in cooperation with the chair of Prof. Ulrike Diebold at the University of Vienna. Motivated
by this success the training protocol has been optimized and quanti�ed to obtain a fully automated
ML enhanced global optimization method that provides a gateway to structural optimization of
crystal surfaces.
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Zusammenfassung
Grüner Wassersto� stellt einen integralen Bestandteil der Energiewende dar und kann als Treib-
sto� sowie Grundchemikalie wichtiger chemischer Prozesse verwendet werden. Die Herstellung
in �exibel einsetzbaren Wasserelektrolysezellen kann außerdem die �uktuierende Stromerzeugung
von Wind und Solarparks optimal pu�ern. Proton Exchange Membrane (PEM) und Alkalische
Elektrolyse (AEL) sind dabei die derzeit vielversprechendsten Optionen, um die momentan vorherr-
schende da billigere Wassersto�herstellung via Dampfreformierung aus Erdgas abzulösen. Obwohl
die PEM- gegenüber der AEL-Zelle einige wesentliche Vorteile aufweist, lässt eine industrielle
Umsetzung noch auf sich warten. Dieses ist primär auf die extremen Bedingungen innerhalb der
PEM-Zelle und der daher sehr begrenzten Auswahl an stabilen Katalysatormaterialien zurück-
zuführen. So kommt im sauren und korrosiven Milieu der Anodenseite nur Iridiumoxid (IrO2)
(und mit deutlichen Abstrichen Rutheniumoxid (RuO2)) als Katalysator für die dort statt�ndende
Sauersto�entwicklungsreaktion (engl.: Oxygen Evolution Reaction, daher OER) in Frage. Aufgrund
des geringen Iridiumvorkommens muss jedoch die Metallbeladung stark reduziert werden, um die
PEM Technologie nachhaltig und kommerziell rentabel zu machen. Zwar haben Bestrebungen zur
Optimierung von IrO2 Katalysatoren in den letzten Jahren zu einer Vielzahl an Studien geführt,
was jedoch nur mit graduellen Fortschritten hinsichtlich der Katalysatorleistung verbunden ist.
Ein stringenteres und systematischeres Vorgehen setzt ein genaueres Verständnis der Katalysato-
rober�äche und der sich darauf abspielenden atomaren Prozesse voraus. Computersimulationen -
basierend auf Dichtefunktionaltheorie (DFT) oder klassischen Kraftfeldern - ermöglichen zwar
schon seit Jahrzehnten Untersuchungen auf atomarer Ebene, sind jedoch aus komplementären
Gründen limitiert: DFT Methoden bieten eine sehr genaue und komplette Beschreibung, sind aller-
dings aufgrund der enormen Rechenkosten auf kleine(re) Systeme beschränkt. Größere Systeme
stellen für die mit deutlich weniger Rechenkosten verbunden Kraftfelder zwar kein Problem dar,
werden von diesen aber nur unvollständig beschreiben, da Kraftfelder eine �xe atomare Konnek-
tivität erfordern. Diese Lücke könnte von den neu aufkommenden Methoden des maschinellen
Lernens (ML) geschlossen werden, da diese eine schnelle, akkurate und vollständige Beschreibung
größerer Systeme, wie etwa Katalysatorober�ächen, zulassen.

Die Identi�zierung der (noch unbekannten) IrO2/RuO2 Ober�ächenmorphologien mit Hilfe
einer eigens entwickelten globalen Optimierungsmethode ist das zentrale Thema meiner Disserta-
tion. In dieser Methode kommt eine Kombination aus ML und DFT zur Anwendung, um so das
globale Energieminimum diverser IrO2/RuO2 Ober�ächen über ein iteratives Simulated Annealing
(SA) Protokoll zu bestimmen. Schon mit der ersten noch manuell ausgeführten Version dieses
iterativen Trainingsprotokolls konnten mehrere bis dato unbekannte Ober�ächenmorphologien
identi�ziert werden, nämlich sogenannte complexions, die durch Umordnung der terminierenden
Atomschichten erhalten werden. Die energetisch niedrigste und damit ausschlaggebende com-
plexion konnte in Kooperation mit dem Lehrstuhl von Prof. Ulrike Diebold an der Universität
Wien experimentell validiert werden. Motiviert durch diesen Erfolg wurde das Trainingsprotokoll
im Folgenden optimiert und quanti�ziert, um so eine vollautomatische ML-basierte Methode zur
globalen Optimierung zu erhalten, die auf beliebige Kristallober�ächen angewendet werden kann.
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GAP Gaussian Approximation
Potential

GO global optimization

GPR Gaussian Process Regression

HER hydrogen evolution reaction

MEA Membrane Electrode Assembly

ML Machine Learning

OER oxygen evolution reaction

PEM Proton Exchange Membrane

PES potential energy surface

RIs reaction intermediates

SA simulated annealing

SFE Gibbs surface free energy

SOAP Smooth Overlap of Atomic
Positions

vii





Contents

Preface i

Abstract iii

Zusammenfassung v

Abbreviations vii

1 Introduction 1

2 Industrial water electrolysis for hydrogen production 5
2.1 Alkaline electrolyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Proton Exchange Membrane electrolyzer . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Anion Exchange Membrane electrolyzer . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 The Oxygen Evolution Reaction in Acidic Solution . . . . . . . . . . . . . . . . . . 11

2.4.1 Catalyst performance optimization . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Mechanism and catalyst structure on an atomic scale . . . . . . . . . . . 14

3 Low-index rutile surfaces: structure, energetics and simulation 19
3.1 Surface structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Surface Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Simulations and sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Gaussian Approximation Potentials in computational chemistry 27
4.1 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Representing atomic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Two-body and three-body descriptor . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Smooth Overlap of Atomic Positions descriptor . . . . . . . . . . . . . . . 31
4.2.3 Combined two-body and SOAP representation . . . . . . . . . . . . . . . . 33

4.3 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Locality test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Pure two-body potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 Adding the SOAP description . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.5 Hyperparameters - How crucial are they? A personal note. . . . . . . . . 40

5 Publications 43
5.1 IrO2 Surface Complexions Identified through Machine Learning and Surface

Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



5.2 Data-Efficient Iterative Training of Gaussian Approximation Potentials: Appli-
cation to Surface Structure Determination of Rutile IrO2 and RuO2 . . . . . . . 45

6 Summary, Conclusions and Outlook 47

Danksagung 49

Bibliography 51

Appendices 61

x



1 Introduction
One of the major challenges of the present decade, if not of the century is the decarbonization of the
energy production, i.e. substituting oil- and coal-�red power station by hydropower plants, wind
and solar parks. With broad implementation of environmental friendly energy sources anticipated
worldwide, new challenges are arising from an inevitably changing energy mix (exemplary data
from the Federal Statistical O�ce of Germany[3]). One of the main challenges is the highly
�uctuating electricity supply of renewable energy sources due to weather conditions compared
to the steady operation of classic power plants.[4–6] Especially the �uctuations of wind and
solar parks are in large parts opposite to the actual energy demand as energy produced during
the day/summer has to be stored and made available during the night/winter. Accordingly the
deployment of alternative energy sources crucially depends on the e�cient conversion and/or
storage of surplus electricity. [4, 7, 8]

A combination of numerous technologies will be necessary to achieve complete and e�cient
energy storage, ranging from short-term storage in regular or redox-�ow batteries, medium-term
storage/consumption via conversion to warm water or hydrogen fuel and long-term pumped
hydroelectric energy storage.[8, 9] The conversion of surplus electricity to hydrogen fuel via the
electrochemical decomposition of liquid water comes with the advantage, that H2 constitutes an
energy carrier and a commodity chemical that is highly demanded in many chemical processes
including the Haber–Bosch process and methanol synthesis.[10]

There are currently two di�erent water electrolysis technologies that are industrial relevant:
Alkaline Electrolysis (AEL) and Proton Exchange Membrane (PEM) cells.[4–6, 11–13] The major
advantages of PEM over AEL cells are the higher current density, allowing to fully respond to
sudden spikes in the intermittent power supply and higher operating pressure which results in
an overall higher power e�ciency. In order to meet all requirements for an application on an
industrial scale though, additional performance improvements and cost reduction of the PEM cell
are mandatory.

In an electrolyzer the water decomposition is spatially divided into the hydrogen evolution
reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. The OER is
generally considered the performance bottleneck in both, PEM and alkaline electrolyzers, due
to the substantial anodic overpotential and the resulting e�ciency drop.[14–16] In the acidic
and corrosive operating environment of PEM cells iridium oxide (IrO2) and to smaller extend
ruthenium oxide (RuO2) are currently the only promising catalysts balancing stability and activity.
[17–23] Although only a minor contributor to the overall stack costs, the low abundance of
iridium[24] makes a reduction of the metal loading inevitable in order to achieve commercial
viability.[6, 25–27] It is thus not surprising that in recent years the e�ort in optimizing IrO2/RuO2
based catalysts led to a variety of studies including experimental[28–38], theoretical[39–44] as
well as combined studies[45] ranging from basic research to compound simulations.

Even though there is gradual progress in catalyst performance due to intensive screening of
preparation and operating conditions, detailed information about the atomic structure is still
scarce as experimental in-operando characterization of catalysts is challenging and limited in

1



resolution.[23, 46] Computational methods, like Density Functional Theory (DFT) provide insight
on an atomic scale and might help to develop a better understanding of the catalyst surface
morphology and to eventually determine possible reaction pathways.

The identi�cation of the (still unknown) IrO2/RuO2 surface morphologies via computational
investigations is the main topic of this thesis. The sheer number of calculations necessary to
determine a meaningful surface structure though, calls for simulation techniques multiple orders
of magnitudes faster than regular DFT calculations.

For decades only parameterized methods have �t this speed criterion, such as classical inter-
atomic potentials/force �elds (FFs). The drawback is the onerous parameterization process and
generally unclear transferability of such classical potentials or force �elds. Thus unsurprisingly,
there exists a force �eld for IrO2[47] combining the variable QEq charge model[48] and an in-
teratomic Morse potential[49]. The intrinsically �xed atomic connectivity though, prevents any
bond breaking and forming and thus renders identi�cation of unknown surface morphologies via
classic interatomic potentials impossible.

Fortunately, in recent years a completely new class of reactive, interatomic potentials emerged,
applying Machine Learning (ML) techniques i.a. Neural Networks[50, 51] or Gaussian Approxi-
mation Potential (GAP)[52–54] that enable simulation with almost DFT-accuracy at drastically
reduced computational costs. Opposed to FFs where the total energy of an unknown system is
calculated via a prede�ned functional form, ML potentials approximate the total energy based
on the structural similarity to available training data. Accordingly ML potentials do not apply
a �xed atomic connectivity and are hence suitable to identify novel structures accessible only
via structural changes. With plenty of (recently published) success stories[55–66] it has to be
kept in mind that these techniques are still in their infancy and plenty of dedication, iterating and
testing is yet necessary to unleash the full range and power of ML applications. In this respect,
my thesis might be considered a small contribution to the steady optimization and exploration of
ML methods.

The centerpiece of this thesis is a combined ML/DFT global optimization method based on the
GAP approach, in which novel, low-energy IrO2/RuO2 surface structures are identi�ed via an
iterative simulated annealing (SA) protocol. A �rst fully supervised prototype of this method was
successfully applied to investigate numerous IrO2 surfaces, determining multiple new surface
morphologies, so called complexions, that are obtained via reordering of the terminating atom
layers.[1] Subsequent DFT calculations con�rm that these complexions signi�cantly lower the
surface free energy of a given termination and change the relative energetics at low oxygen
chemical potential. In cooperation with the Institute of Applied Physics at the Technical University
Vienna the one dominant, most stable IrO2 complexion has been experimentally characterized
and con�rmed.

Motivated by this success the initial, supervised training protocol has been rigorously optimized,
quanti�ed and automatized, up to the point where we present a fully automated ML enhanced
global optimization method that provides a gateway to structural optimization of any kind of
(multicomponent) crystal surfaces.[2] Together with my fellow colleague Yonghyuk Lee the
�nal protocol was applied to IrO2 as well as RuO2, identifying more unknown complexions.
As the preparation conditions typically have a large in�uence at least on the initial catalyst
surface structure and morphology, these �ndings are of utmost importance for OER catalysts
manufactured at low oxygen potentials and might pave the way for a more precise understanding
of and instructions for future catalyst design.

In both cases the results have been published as peer-reviewed articles. This publication-based
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dissertation accordingly serves as an introduction of the underlying concepts necessary for an in
detail understanding of this research and hopefully provides guidance for further improvements
and application. In chapter 2 we will introduce the general concept and the major industrial
implementations of the water electrolysis and further discuss the current challenges in OER
catalyst optimization on a macro- and microscopic scale. In the following chapter 3 we illustrate
the most common (and simplest) atomic models for rutile IrO2/RuO2 crystals, derive how to classify
surface structures via the surface free energy and discuss the computational challenges of local
and global structure optimization, necessary to identify novel low-energy surface morphologies.
A detailed discussion of the Gaussian Approximation Potential framework can then be found in
chapter 4, including a tutorial of the underlying theory, available atomic representations and our
approach towards the hyperparameter selection.
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2 Industrial water electrolysis for hydrogen
production

In electrolysis an electric direct current is applied at two electrodes in a conductive liquid (the
electrolyte) to drive a chemical reaction that is otherwise energetically and/or kinetically prohibited.
The voltage source generates an electron-de�cit at the anode and an electron-surplus at the cathode
and induces two partial reactions. The full reaction itself is hence formally and spatially separated
into a pair of reduction and oxidation half reactions that consume respectively produce electrons.
In case of the water electrolysis the full reaction is separated into the hydrogen evolution reaction
(HER) at the cathode and the oxygen evolution reaction (OER) at the anode.

2 H2O(l)
�−−−→ 2 H2 (g) + O2 (g) (Water-Electrolysis) (2.1)

2 H3O+(l)
+24−−−−→ H2 (g) + 2 H2O(l) (Reduction Cathode HER) (2.2)

4 OH−(l)
−44−−−−−→ 2 H2O(l) + O2 (g) (Oxidation Anode OER) (2.3)

As apparent from eq. (2.1) both products are gaseous, and thus leave the reaction equilibrium
and shift the reaction towards the right. However, since water is by far the more stable state for
both species, the overall reaction is not favored with a Standard Gibbs energies of formation of
Δf�

◦
H2O

= 228.71 kJ/mol which is equivalent to a standard potential of �◦H2O
= −1.23 V.[67] At

potentials more negative than �◦H2O
the water splitting reaction is solely kinetically controlled.

The �rst and fundamental criterion to meet in any electrolysis cell is to guarantee a closed electric
current between the two electrodes, such that the reaction educts (in this case the hydronium
and/or hydroxyl ions) are pulled toward the respective oppositely charged electrode. To this
end the electrolyte connecting the two electrodes has to provide a su�cient concentration of
charge carriers, i.e. positively and/or negatively charged ions. Pure water at pH=7, however, is
characterized by a very small ion concentration as a result of its marginal self-ionization and hence
in all industrial water electrolysis cells the conductivity of the electrolyte is improved drastically
by in-/decreasing the pH value and adding additional charge carriers. Still, in practice voltages
signi�cantly larger than �0H2O

have to be applied due to a variety of factors including activation
energy, ionic and molecular di�usion barriers and cell component resistances as well as formation
of O2/H2 gas bubbles at the electrode surface, temporarily preventing further electron transfers.
This surplus voltage necessary to actually initiate water splitting is referred to as overpotential
[. Accordingly [ is a cell-speci�c conglomeration of very di�erent phenomena that all together
determine the performance and e�ciency of an electrolyzer. Performance improvement regarding
the water electrolysis thus implies either a reduction of the overpotential (reducing the operational
costs) or a reduction of catalyst loading (reducing the investment costs) without a signi�cant drop
in production.

Considering the distinctive character of the individual contributions to the overpotential a team
e�ort of multiple scienti�c disciplines is required to achieve holistic improvements. The ohmic
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loss due to resistance and gas bubbles is an intrinsically mechanical challenge and thus has to be
left for fellow cell design experts to overcome.[68]1

Consequently, we refer the interested reader to the manifold of work within technical electro-
chemistry and materials science that addresses di�usion processes and cell conductivity, testing
and updating available diaphragms, membranes and electrolyte composition.[4, 6, 16]

The largest part of the overpotential is usually assigned to the activation overpotential which
again is ambiguous, as it is a combination of two di�erent types of activation barriers, the energy
required to transfer an electron to/from the electrode from/to the reactant (electron transfer
overpotential) and the energy required to generate adequate precursors prior to the actual electron
transfer (reaction overpotential).

Nonetheless the general way to lower any kind of reaction barriers remains the same, viz the
addition of an appropriate catalyst; it is thus in no way surprising that from the earliest imple-
mentation of electrolysis cells catalysts for both, reduction and oxidation have been thoroughly
investigated and optimized constantly.

These (heterogeneous) catalysts should follow the Sabatier principle, i.e. stabilize reaction
intermediates (RIs) without hindering the consecutive reaction(s) to and desorption of the product
and the catalytic performance can then be approximated based on (selected) adsorption energies in
so-called volcano plots (see below).[69–71] While volcano plots provide a good estimate regarding
thermodynamic metrics, kinetic aspects are neglected although they might become crucial for
highly active catalysts and/or under working conditions (i.e. above the onset potential > �0H2O

+ [)
and thus have to be accounted for.[72, 73] Alongside that, further requirements for electrocatalysts
are a fairly good conductivity, enabling the electrons transfer to the reactants, and a su�ciently
high stability in the (generally harsh) environment of a water electrolysis cell.

Alkaline Electrolysis (AEL) and the Proton Exchange Membrane (PEM) electrolyzer are at
present the only two technologies that can claim industrial application. While the former is
considered more mature with application in the MW range[4] the latter does provide interesting
advantages though to date application is limited to small units within the KW range.[25] A detailed
illustration of the schematic composition of a Proton Exchange Membrane electrolyzer together
with a hypothetical reaction mechanism of the OER can be found in Fig. 2.1. As discussed in more
detail below, materials in both electrolysis cells are not only exposed to a high applied potential
but also to highly acidic respectively alkaline conditions, which especially for the PEM cell raises
the bare for material requirements w.r.t. corrosion.

In PEM cells the standard catalyst for the HER (see eq. 2.2) at the cathode are platinum
nanoparticles dispersed on carbon black (Pt/C) with a typical platinum loading between 0.035[26]
and 0.1 mg cm−2[4] while in AEL cells cheaper materials like Raney Nickel are the successfully
used catalysts for decades now.[74, 75] At industrial applied operational current densities (>0.5
A cm−2) the two-electron HER process is characterized by reasonably fast kinetics[15] and the
overpotential of the water electrolysis is typically dominated by the overpotential of the four-
electron OER (see eq. 2.3). Therefore and since the Pt loading can be potentially reduced to 0.05
mg cm−2 without signi�cant performance losses, the HER itself and its catalysts are currently
not in the spotlight of scienti�c attention and huge progress, e.g. regarding the replacement of
Pt/C catalysts are neither considered a burning issue nor likely to happen in the near future.[6]
Thus the speci�cs of the HER shall not be discussed in full detail in this introductory chapter. The

1Obviously the surface morphology of the catalyst has implications on the gas di�usion and - as will be seen - also on
catalytic activity etc. but guaranteeing su�cient di�usion is still mainly a mechanical challenge.
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Fig. 2.1: (Left): Schematic setup of a alkaline electrolysis cell. Cathode and anode are separated by a porous
diaphragm that allows hydroxyl di�usion and the electrolyte, a KOH solution. (Right): Schematic
composition of a Proton Exchange Membrane (PEM) electrolysis cell. The cathodic side and anodic
side both consist of a bipolar plate, a Porous Transport Layer (PTL) which also functions as current
collector and the respective HER/OER catalysts in a zero gap setup, separated via a Polymer Electrolyte
Membrane permeable only for protons. In industrial electrolyzers a Na�on™ membrane and platinum
nanoparticles on carbon black (Pt/C) as HER catalyst are used while several Ir and/or Ru materials
have been applied and tested as OER catalysts (see section 2.4). A polymer solution (ionomer) is added
to promote the proton transport through the catalytic layer towards the membrane while the electron
is transferred to the current collector at intersections of catalyst and PTL (top right inlet). In the
bottom right inlet of the PEM panel, the peroxo reaction pathway (cf. eq. (2.8)-(2.11)), as one potential
mechanism of the four electron oxidation of the OER at the catalytic surface is depicted.
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interested reader is instead referred to the pertinent literature.[17, 76–78]
Similar to the cathodic chamber the conditions at the anode in PEM and AEL cells are obviously

di�erent and thus dictate completely distinct catalytic materials. However, both types of anodes
have in common, that they are usually designed as porous as possible in the respective envi-
ronment, to maximize the reactive surface and enable fast circulation of solvent, reactants, and
gaseous products. In addition, high cell current densities, high temperatures and high operation
pressures are usually considered desirable to increase the cell e�ciency for both, PEM and AEL.
Reasonably high current densities are required to assure the necessary power throughput while
high temperature commonly drives the endothermic reaction towards its products. Finally, high
operation pressure reduces the need for additional posterior H2 gas compression (required for
e�cient storages as well as direct consumption, e.g. mobile sector) even though a post-production
compression might be more cost e�ective than high pressure operation at reduced catalytic
e�ciency[79].

The common features and di�erences together with the resulting advantages and challenges
of AEL and PEM setups along Fig. 2.1 are discussed in the following two sections. Recent devel-
opments considering OER catalyst improvements and proposed reaction pathways for relevant
catalysts are recapped in the �nal section of this chapter. An even more detailed and technical dis-
cussion considering the overall competitiveness of alkaline and PEM systems taking into account
more technical details like durability and cell lifetime, investment and annual maintenance costs
as well as stack size and capacity can be found in recent reviews and studies.[4, 11]

2.1 Alkaline electrolyzer

In AEL cells hydroxyl ions are the charge carriers and industrial electrolyzers are usually op-
erated with a cheap 20-30 % KOH solution[12] that is easily replaceable and chemically stable
w.r.t. to impurities and chemical decomposition while ensuring a high hydroxyl/charge carrier
concentration (pH∼12).

As illustrated in the left panel of Fig. 2.1 cathode and anode are spatially divided by a thin
solution �lm and a porous diaphragm that allows hydroxyl di�usion, i.e. free circulation of
charge carriers. The alternative zero-gap setup where the respective catalyst is directly dispersed
on the diaphragm is found less often.[11, 80] Since the alkaline solution is much less corrosive
than the acidic environment of a PEM electrolyzer, a wider range of materials beyond expensive
platinum-group metal(-oxides) can be used as HER/OER catalysts such as the much more abundant
Ni, Co and Fe metals.[4, 81, 82]

Historically AEL cells have been operated at low current densities of 200-400 mA cm−2[4],
as the overpotential necessary to maintain higher current densities (>400 mA cm−1) results in
uneconomical cell voltage (e.g. 1.98 V at 1000 mA cm−2[83]).

This narrative is questioned though as selected studies applying advanced catalysts and/or
setups report reasonable voltages at high currents for novel cell setups (e.g. 1.85 V[84] at 1000 mA
cm−2) within reach to regular PEM cells.

The lower maximum current density can be partially ascribed to the liquid electrolyte and a
corresponding bulky cell design as the ohmic loss due to hydroxyl di�usion (linearly) increases
with the electrode distance, in the �rst approximation. On the same note, the liquid electrolyte is
also the limiting factor regarding operating pressure and temperature. While in general operation
at high pressure and high temperature is possible, the former increases O2 and H2 di�usion
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through the aqueous electrolyte and diaphragm. Gas impurities especially at the anode can exceed
the technical safety limits of 2 vol.%. For example, increasing the operation pressure from 1 to 10
bar results in an increase of the anodic H2 concentration from 0.3 to 2.0 vol.%.[85]

The intrinsically �uctuating nature of wind and solar energy supply poses another speci�c
challenge for regular alkaline electrolyzers: even though the widely used Ni-based catalysts are
very stable at a cell potential >�◦H2O

they show notable dissolution below this potential prohibiting
an operation at reduced power densities, a major disadvantage in the application as an energy
bu�er for renewable sources.[13] Furthermore and probably even more critical, an increased gas
di�usion and thus impurity at part-load conditions has been observed.[85]

While short periods without electrode polarizations can be tolerated when gas impurity is still
low, longer periods with low to no power density, i.e. also loss of polarization will eventually lead
to a hazardous increase of H2 concentration at the anode. This imminent risk can be tremendously
decreased by a spatial separation of the electrolyte cycles of anode and cathode. This however
requires occasional mixing as the separation leads to an in-/decrease of hydroxyl ions at the
cathode respectively anode. To completely avoid any complications an external energy storage
device can be implemented upstream to balance out any excessive �uctuation of the supply. In
both cases additional components have to be implemented into the setup which consequently
increases complexity and investment costs.

Nonetheless, the conceptually less complex and to date more economical setup seems to give
(regular) alkaline cells a competitive edge above PEM cells for now and makes them the main
commercial application especially for steady state conditions.

2.2 Proton Exchange Membrane electrolyzer
The PEM electrolyzer is in many aspects complementary to the alkaline cell, obviously starting
with the highly acidic environment (pH ∼2) with substantial implications for the overall stack
composition and applied materials.[4] Alongside this eponymous pH contrast, the stack concept
di�ers from the AEL as we usually �nd a zero-gap setup with coated catalyst membrane where
the electrocatalyst is dispersed on the separating polymer electrolyte membrane. The combination
of membrane and electrode is referred to as Membrane Electrode Assembly (MEA).2

As illustrated in the top right inlet of the PEM panel in Fig. 2.1 the electrocatalyst in this setup
is connected to the membrane to reduce any ohmic loss due to di�usion processes of protons
towards the membrane. In PEM cells the much smaller and mobile protons (in comparison to the
hydroxyl anions) serve as charge carriers and in turn enable the application of a solid polymer
membrane as electrolyte, permeable only for protons.

A variety of membrane materials has been tested in recent years where per�uorosulfonic acid
polymers such as Na�on™ or Selemion™ are currently the preferred choice. Overall this cell
component bene�ts from a considerable knowledge transfer from PEM fuel cells considering
standard Na�on™ membranes, even though additional optimization to account for electrolyzer
speci�cs (e.g. higher pressure compared to fuel cells) is necessary.[6] Furthermore, there are still
ongoing e�orts to substitute these per�uoro materials by hydrocarbon-based polymers as these
are in general cheaper and more stable at higher operating temperatures (above > 100 ◦C).[86]

An ionomer (i.e. polymer solution) is added during the catalyst synthesis (usually ∼10%) which
mixes with the catalytic material to increase the proton transfer ability through the catalytic layer

2This is the origin for the second equally applied extension of the acronym PEM: Polymer Electrolyte Membrane.
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towards the membrane as well as the dimensional stability of this layer.[87, 88]
To enable electron transfer towards the respective electrodes the catalyst is attached to the

Porous Transport Layer (PTL) which serves as a current collector and regulates solvent and gas
di�usion. Finally, surrounding separator plates (aka bipolar plates), separating multiple PEM
cells within each stack, are required. In a PEM cell several independent transport and di�usion
processes have to be considered and balanced to maximize the overall performance. The overall
reaction �ow can be sketched as follows:

Water molecules fed at the anode side �rst �ow through the bipolar plate via relatively broad
channels and di�use through the PTL to reach the MEA and eventually the catalytic layer, where
they are decomposed into (solvated) protons, electrons and molecular oxygen via the OER. The
protons leave the electrocatalyst and di�use through the ionomer towards and across the membrane
to the cathode side on the other side of the MEA chamber while the electrons travel through the
conductive catalytic layer to the PTL and via the circuit to the cathode where they combine with
the protons at the Pt/C surface to form molecular hydrogen in the HER. The oxygen and hydrogen
gas have to exit the respective catalyst layers, di�use back through the PTL and the separator
plate and leave the cell together with the process water.[4]

The implementation of a solid electrolyte as spatial separator of cathode and anode in a zero
gap setup comes with three major advantages over the alkaline cell:

Solid electrolyte membranes are generally characterized by much lower gas crossover rates
compared to an aqueous solution. Consequently, PEM electrolyzers can operate at considerably
higher pressure thus making a post-production hydrogen compression obsolete. While obviously
H2 and O2 di�usion are still to be avoided, this can be regulated by the membrane thickness yielding
high purity hydrogen without additional e�ort like gas-recombiners. Trinke et al. estimate that at
atmospheric pressure a Na�on™ membrane with a thickness exceeding 100 µm would be su�cient
to guarantee an anionic H2 concentration smaller than 2.0 vol.%.[85]

Furthermore, no severe stability issues are reported for PEM catalysts for low (non-zero) power
densities. Accordingly, PEM cells can cover (almost) the full power density range and thus little to
no additional e�ort has to be made to account for intermittent energy supply. Higher cell pressure
and slim electrolyte membranes are moreover allowing for a more compact stack stack design
reducing the operational costs.

Yet the probably most compelling advantage over the alkaline electrolyzer are the higher current
densities at which a PEM cell can be operated. In general, the maximum current densities of
an electrolyzer are limited by the ohmic loss, which in turn depends in �rst approximation on
electrode distance and ion conductivity. In addition to the smaller electrode distance (50-250 µm,
respectively 400-550 µm for zero-gap PEM and AEL)[11, 85, 89, 90], the molar ionic conductivity at
25◦C and in�nite dilution of hydronium ions (350 S cm2mol−1) is signi�cantly larger than that of
hydoxide ions (198 S cm2 mol−1).[91] As a result higher, maximum current densities are accessible
for PEM cells, achieving values above 2 A cm−2.[4, 6]

With all the advantages outlined above the combination of high applied voltage and acidic
solution comes with one main drawback: only a restricted number of materials is actually stable
in this environment, in particularly at the anode where these materials additionally have to be
inert to corrosion given an increased O2 concentration. This does not only a�ect the selection of
possible OER and HER catalysts but extends to membrane, bipolar plate and porous transport
layer as well.

Since extraordinarily expensive Ir-coated Ti materials have to be used as PTL and separator
plate, these make up for 40 − 50 % of the stack costs[4, 92]. Despite the high potential regarding
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cost reduction, e.g. via substitution[92, 93], research and development considering PTL and bipolar
plate optimization are still just at the beginning.[6]

Considering the OER catalyst candidates, several studies con�rm rutile structured oxides as best
material choice. Here, Ru-based catalysts are more reactive yet prone to dissolution while Ir-based
materials are less reactive however much more stable and ergo the preferred choice in state-of-
the-art PEM electrolyzers.[19–21, 28] Commercial OER catalysts are currently characterized by an
iridium loading between 1 and 3 mgIr cm−2.[6, 16]

In general, PEM cells are characterized by a slightly shorter life time in comparison to AEL cells
which is at least partly related to the aforementioned OER catalyst degregation.[4, 94] Nonetheless,
reduced performance can also be attributed to a couple of additional factors, including an ongoing
replacement of protons within the membrane by competing cations which results in a decreased
conductivity[95], or ohmic losses by the oxidation of surfacial Ti present in the PTL and separator
plates resulting in a non-conductive TiO2 coating.[96] Particularly challenging in the scienti�c
analysis of test stacks is the extrapolation of short-term durability and stability experiments (hours
to days) towards the long-term operation of industrial PEM cells (years to decades) and hence
conclusive insights are rare at this end.[23, 94, 97]

In summary, the PEM setup provides some important advantages over AEL cells yet the high
costs due to the compulsorily application of noble metals and high loadings at both electrodes to
date prevent an industrial-scale implementation. On the other side it is sure to say that alkaline
cells can be considered a mature and well established technology with some major drawbacks
regarding its adaptability in renewable energy power plants.

2.3 Anion Exchange Membrane electrolyzer

A third alternative approach that receives more and more attention in recent years is aiming
to combine the approaches of PEM and alkaline cell concepts by applying an Anion Exchange
Membrane (AEM), permeable for OH– instead of H+ (potentially) combining the advantages of
both techniques. As a highlight and similar to the alkaline cell AEM catalysts are in general not
limited to the expensive platinum group metals. In addition, AEM cells still achieve the same
hydrogen purity and compact stack size[98–100] as well as high current densities (e.g. 2 A cm−1
at 1.82 V)[101] in short-term experiments as the PEM electrolyzer. However, with this technology
still in its infancy, the main obstacle is the low durability of the alkaline membrane and to the best
of my knowledge no industrial long-term operation has been reported yet.[102] In the present
thesis only this brief outline can be provided and the interested reader is referred to the relevant
literature.[6, 102, 103]

2.4 The Oxygen Evolution Reaction in Acidic Solution

In the very �rst PEM electrolyzers, reported in the early 70s at General Electrics pure metallic
iridium (and/or ruthenium) was used as OER catalyst (see, e.g. [104]).However, considering that
already in the late 60s Trasetti et al. concluded that pre-generated (thermal) Ru/Ir oxides are
substantially more stable[105] than metallic Ru/Ir, most recent studies agree on IrO2 (respectively
doped/mixed IrO2 material) as the preferred OER catalyst.[19, 23, 39]

Since then decades of research and knowledge transfer from PEM fuel cells have borne fruits
and PEM electrolyzers are competitive compared to AEL in small installations (kilowatt range). In
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modern PEM cells HER and OER catalysts account for (only) ∼15% of the overall costs (including
stack and supporting components).[4, 106] Yet, due to the scarcity of iridium, the reduction of
the Ir loading in PEM electrolyzers by (at least) an order of magnitude (from 1-3 mgIr cm−2 to
∼0.4 mgIr cm−2) is an absolute constraint for a large-scale industrial application.[6, 25–27]

Even though there is unabated interest and good reason to try to completely substitute Ir by
more abundant and less precious elements such as cobalt based materials[107–110], no competitive
catalyst has been reported so far.[111]

At present, Ir (and to smaller extent Ru) materials remain frontrunners and the only material
class seriously considered for industrial applications. For an overview and comparison of activity
and stability at standardized conditions of commercially available Ir-based catalyst see [112].

It thus comes as no surprise that a broad variety of studies on how to increase current density
performance and long-term stability and/or decrease Ir loading has been published, similar to the
optimization of HER and HRR (hydrogen reduction reaction) catalysts. In contrast to the HER (in
acidic environment)3, where only one reaction intermediate is formed, the OER as a four-electron
process comprises at least three RIs (compare right inlet of Fig. 2.1).

Accordingly HER catalysts can be optimized by considering the adsorption energy of the sole
intermediate which makes it a one-dimensional problem (in �rst approximation). On the contrary,
within the OER catalyst optimization adsorption energies of multiple RIs have to be balanced
as discussed in more detail below. On top of that, potential degradation processes have to be
identi�ed and mitigated to increase the catalyst durability.

While the scienti�c community unanimously agrees on the demand for optimization, the general
concepts on how to achieve this vary signi�cantly. From my (rather theoretically biased) point of
view these e�orts can be divided into two di�erent approaches which might be labeled instant vs.
long-term, practical vs. fundamental or even optimization vs. understanding.

The �rst approach focuses on directly increasing the catalyst (and overall cell) performance
here and now, i.e. on instant, practical optimization based on macroscopic properties of industry-
relevant cells and empirical experience.

The second ansatz emphasizes insights to and conclusions from microscopic structure and
processes (be it via experimental observations or computational simulations), i.e. the fundamental
understanding of the OER which in the long-term facilitates catalysts optimization.

Obviously, the present thesis leans more towards the latter and a detailed discussion and
perspective are presented in section 2.4.2. Yet in the next section, the �rst, practical approach shall
be addressed by a small compilation of recent studies providing some insight into the meticulous
experimental e�ort to improve the OER catalyst and thus PEM electrolyzer performance.

2.4.1 Catalyst performance optimization

If we assume the catalytic surface structure to be homogeneous and independent of size and shape
of the catalyst, one apparent way to improve the activity of any catalyst is to increase the ratio of
surface area to catalyst loading. Even though a homogeneous and independent catalytic surface is a
harsh approximation, controlling the shape and size for IrO2 (nano-)structures is a natural route of
optimization. Accordingly, synthesis routes for multiple 1-D, 2-D, and 3-D nanomaterials including
small "regular" nanoparticles,[28, 29] ultra-thin nanoneedles,[114] laminar superstructures,[115]
mesoporous thin �lms,[116] and nanotube arrays[117, 118] can be found in recent literature.

3Note here that in alkaline solution the HER becomes a two-step reaction process, as the protons have to be abstracted
from water molecules and HER catalyst optimization gets less straightforward than for acidic HER[6, 113]

12



However, long-term durability tests of these materials are either missing or are referenced to
in-house benchmark catalysts, limiting their transferability and informative value.

An alternative strategy is the addition of less expensive materials in order to dilute the Ir
loading4 while maintaining the overall activity and dimensional stability. Obviously this extends
the creative leeway yet also the synthesis and system complexity.

One commonly used catalytic material is the Umicore catalyst (a mixed IrO2-TiO2) with a
reduced iridium loading of 66%.[30] Another IrO2-TiO2 catalyst was reported by Oakton et al. with
an even further reduced Ir loading of 60% that shows slightly lower overpotential in comparison
to the Umicore reference.[31]

Besides titanium oxide as additional material, improved activity and decreased Ir-loading has
been, e.g. reported for di�erent IrM alloys with M = Ni, Co, Fe,[32] lanthanides, and iridium
double perovskites Ba2MIrO6 with M = Y, La, Ce, Pr, Nd or Tb.[34] It has to be noted that in
short-term stability experiments (up to 11 h) only selected lanthanides and perovskite candidates
showed similar durability as common IrO2 nanoparticle.

Another concept that relies on secondary materials, too, are core-shell catalysts where a
catalytically active layer is dispersed on a (cheaper) core material.[35] In an early study on
IrNi@IrOG Nong et al. were aiming - rather unusually - for activity improvement instead of load
reduction.[36] A 50% load reduction (at constant activity and slightly improved stability) was
then reported by Trackett et al. for IrO2@FeN/Co core-shell particles.[37] Following a di�erent
approach Kim et al. presented a new method to increasing the activity by dealloying thin IrxOsy
�lms and nanoparticles generating an IrO2 shell on a metallic Ir core.[119]

In a "hybrid" kind-of approach Tariq et al. disperse whole IrO2 nanoparticles on even larger
MoO3 particles (generating macroscopic core-shell particles) and conclude a synergistic e�ect
of core and shell material due to enhanced electrochemical performance and stability.[120] In
a recent study, Pham et al. introduced an enhanced core-shell catalyst with a TiO2 core and a
thin, crystalline IrO2 shell. In a full-cell test mimicking an industrial stack the candidate yields
superior performance over a Umicore benchmark catalyst with catalytic loadings as low as 0.4
mgIrcm−2.[38]

Last but not least, continuous e�orts are made to combine the outstanding activity of ruthenium
(oxide) with the increased stability of iridium (oxide) based materials,[121, 122] as in situ XPS
investigation suggests a positive e�ect of mixing the precious metals on the overall stability.
The enhanced stability is assigned to a suppressed formation of (unstable) hydrous ruthenium
oxide Ru(OH)4 by vicinal Ir atoms.[123] Exemplary, Xu et al. recently showed that small IrxRuyOz
nanoparticles supported on a CoNC metal organic framework exhibit high activity as well as
improved stability and assign the increased stability to a higher degree of catalyst immobilization at
the MOF surfaces, preventing catalyst agglomeration and, consequently, loss of active surface.[121]

This compilation should be su�cient to illustrate the variety of optimization approaches and the
associated challenge of keeping track of all new �ndings let alone drawing universal conclusions
from them. Moreover, it is apparent, that stability and activity of these Ir-based catalysts are not
solely de�ned by their chemical composition. Rather and opposite to the approximation outlined
at the beginning of this section we do observe a substantial dependence of activity and stability
w.r.t. growing condition, particle size and shape - ergo on the surface morphology.

4It shall be noted here that load reduction reported here is referenced to "pure" IrO2 catalyst, as given in the respective
publications. This however does not indicate a strictly and well de�ned reference system as a detailed review of the
di�erent growing methods of these reference catalysts is way beyond the scope of this thesis, making consistent,
cross-publication comparison di�cult.
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Most studies conclude that OER activity and stability are strongly correlated, i.e. implying
that catalytically active materials/sites are also more prone to dissolution as both processes,
reaction and dissolution might share common RIs.[20, 21, 30] However, recent investigations of
several single-crystalline RuO2 surfaces by Roy et al. suggest that these two phenomena might be
decoupled for certain surface morphologies.[124] While breaking the activity-stability relation
would actually be good news, it also reveals that unclear surface morphologies make interpretation
and comparison of experimental �ndings exceptionally di�cult.

As a matter of fact, it seems like implementing a standardized experimental setup for activity
and stability measurements is very di�cult which in turn renders a stringent catalyst classi�cation
and identi�cation of correlations complicated to impossible.[23, 125, 126] The catalyst stability,
for example, is characterized via chronopotentiometry or -amperometry, i.e. monitoring the
potential at a constant current (and vice versa) for a given time period in almost all of the above
studies. Yet these experiments substantially vary in duration (1-300 h), applied constant current
(1-2000 mA cm−2) respectively constant potential (1.0-2.0 V), and overall setup.

Evidently a guideline to compare, classify and optimize OER catalysts would be highly bene�cial.
While macroscopic descriptors like the S-Number (number of produced oxygen molecules per num-
ber of dissolved iridium atoms)[127] or the Ir3+ and OH concentration at the catalytic surface[128]
might provide some guidance considering catalyst performance/stability, no straightforward
conclusion on why this or that descriptor varies for di�erent systems can be drawn.

In order to provide more conclusive observations a clear idea of the microscopic surfaces
properties and (reaction) processes is required.[23, 39, 128, 129] Unsurprisingly, there always
have been attempts to account for microscopic properties as an increasing number of studies
incorporate insights from computational methods to support proposed hypotheses.

Regarding the overview of studies above, Trackett et al. as well as Xu et al., for example,
underpin their �ndings via estimating the OER activity based on ab initio binding energies of
proposed reaction intermediates on simpli�ed models, simulating Ni4N/Fe4N support respectively
mixed IrRuO4 surfaces. However, it is questionable whether the extremely complex material
presented in these studies can be satisfactorily described by simple surface models.

In the next section we will discuss the systematic approaches to gain access to the atomic
structure and provide a relation between the OER activity and microscopic properties.

2.4.2 Mechanism and catalyst structure on an atomic scale

Although catalyst improvements purely based on macroscopic properties are possible, identi�ca-
tion of microscopic processes and morphology could be pivotal for a faster and more sustainable
optimization regarding the OER activity. Microscopic insights, however, demand resolution at
an atomic scale, be it via experimental or computational investigations. That said, there is an
undeniable discrepancy in length and time-scale experimental and computational resolution - yet
the challenge to close this gap has been and is incessantly addressed by both communities.

From an experimental point of view, improving experimental techniques continuously extend
our knowledge of the atomic structure and processes of actual catalytic materials.[46]

From a theoretical point of view, the increase in computation power and advances regarding
theoretical methods have not spared electrocatalysis, enabling larger and more realistic surface
simulations.[23, 39]

Since the adsorption energies and consequently the OER activity are crucially depending
on the proposed reactions intermediates and the surface morphology meaningful conclusions

14



should only be drawn if experimentally investigated surface and the atomistic slab model are
akin. As computational methods are still limited to small, periodic slab cells arguably only a
strict elimination of material complexity in experiment provides a stringent relation between
macroscopic and microscopic properties. In simple periodic slab models the surface morphology
is determined by its crystal orientation given by the Miller index (ℎ:;) with ℎ, :, ; ∈ [0, 1, 2, ...]
and the surface termination f , specifying the terminating atomic layer. For a detailed discussion
in particular of surface morphologies of RuO2 and IrO2 see chapter 3.1.

One promising approach is the experimental investigation of so-called single-crystalline model
systems that are characterized by a uniform and homogeneous surface structure and can hence be
directly compared to the respective periodic slab model. Needless to say, single-crystalline model
electrodes are complicated to synthesize and, due to the high metal loading (small surface/bulk
ratio), certainly not the �nal industrial choice.

One of the earliest and still most common experimental approaches towards the OER mecha-
nism is the Tafel analysis, an approximation to the Butler-Volmer equation in case of negligible
backwards reaction ([ > 0.2) that has been applied as early as 1956 by Bockris et al..[130] In a
Tafel plot the (over-)potential measured for a catalytic surface is then displayed as a function of
the logarithm of the current density. A kink in the Tafel slope indicates either a change of the rate
determining step (rds) of the respective reaction or a change of the terminating atom layer of the
active surface. The latter is a sometimes overlooked yet not uncommon phenomenon.[40, 42, 45,
131] Since the adsorption energies and consequently the overpotential are crucially depending on
the morphology of the active surface, conclusions from a Tafel analysis should only be drawn if
the experimentally investigated catalyst is characterized by a single-crystalline surface.

In their pioneering study Bockris et al. suggested multiple reaction mechanisms, including
a predecessor of the electrochemical oxide path discussed next, without committing to one in
particular.[130]

Thirty years later Castelli et al. in their study of a single-crystalline RuO2 (110) surface revisited
the electrochemical oxide path proposing four elementary steps '.[132]

M + H2O −−−→ M−OH* + H+ + e− (2.4)
M−OH* −−−→ M−OH (2.5)
M−OH −−−→ M−O + H+ + e− (2.6)
2M−O −−−→ M + O2 (2.7)

Note here, that we follow the original notation of Castelli et al. where M represents a metal
site and M−OH* indicates an intermediate surface species that then undergoes a chemical re-
arrangement (eq. 2.5) before further oxidation. From the observed kink they conclude that this
chemical rearrangement is the rds for potentials below 1.52 V while the initial water adsorption
(eq. 2.4) is the rds above 1.52 V. Today, however, the electrochemical oxide path, especially the
�nal recombination (eq. 2.7) is considered unlikely.

A purely computational approach towards the OER mechanism, based on ab initio thermo-
dynamics was introduced by Rossmeisl et al..[14, 15] Here the overpotential of an (in advance
proposed) reaction mechanism at a speci�c surface is approximated via the (potential-dependent)
Gibbs free energy di�erence of the OER Δ�OER(U), which in turn is given by the Gibbs free energy
di�erence of the cascading reactions Δ�OER(U) =

∑
' Δ�' (U) After calculating the required

energies based on appropriate computational surface models, the overpotential can be extracted
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from the elementary reaction with maximum Δ'� (U) (see reference [14] for the detailed method).
Since in this ansatz only reaction steps depending on the cell voltage, i.e. including an electron
transfer are considered, any other elementary steps (e.g. chemical rearrangement) are neglected.

In their original work Rossmeisl et al. propose an alternative peroxo path for (110) surfaces of
RuO2, IrO2 and TiO2.

* + H2O −−−→ HO* + H+ + e− (2.8)
HO* −−−→ O* + H+ + e− (2.9)
O* + H2O −−−→ HOO* + H+ + e− (2.10)
HOO* −−−→ * + O2 + H+ + e− (2.11)

In this updated notation * represents an catalytically active surface site. This reaction mechanism
is illustrated in the bottom right inlet of the PEM panel of Fig. (2.1). It is important to note that
since the overall reaction depends on several di�erent adsorption/binding energies (viz. M−OH,
M−O and M−OOH) so does the overpotential.

In addition, Rossmeisl et al. conclude that the catalytically active site is a coordinately unsatu-
rated (CUS) metal site located at the surface. Since then CUS metal atoms have been con�rmed
to be the active sites for OER at RuO2 surfaces by several studies.[124, 133–135] However, CUS
atoms of di�erent morphologies are usually characterized by very di�erent electronic structure
and coordination environment which renders direct classi�cation based solely on density of CUS
atoms misleading.[135]

Despite obvious approximations (see below) this purely thermodynamic approach culminated
in considerably accurate relations between activity and selected adsorption energies displayed
in so-called volcano plots and has received widespread recognition.[15, 136, 137] In case of OER
catalysts, the volcano plot is typically relating the OER activity to the di�erence of oxygen and
hydroxy binding energies Δ�O − Δ�OH.

All in all, Tafel analysis and ab initio thermodynamics have been undoubtedly and exceedingly
successful in many regards. However, both methods have an identical and potentially crucial
drawback: they are heavily biased w.r.t. the hypothesized mechanism and active surface.[23, 138]
Already Bockris realized that two di�erent mechanisms might result in similar or even identical
Tafel slopes. Moreover, any reaction pathway that is based solely on ab initio adsorption energies
of (arbitrarily) selected reaction intermediates at (arbitrary) surfaces is in limbo and might lead to
false conclusions without supplementary experimental validation.

In addition to that, both have their own speci�c shortcomings as the Tafel analysis does not
provide microscopic insights nor the actual thermodynamics of the RIs, while within the ab initio
thermodynamics picture any kinetic contribution is ignored.[39, 42, 44] Furthermore, it is painfully
di�cult to include explicit solvation e�ects in atomic-scale computational simulations due to the
large statistics that are entailed.

While in principle the latter can be partially bypassed by implicit solvation models, the local
character of solvation e�ects on the OER reaction/catalyst, e.g. hydrogen bonding pose seemingly
insurmountable obstacles regarding a detailed description.[139] Only a handful of studies including
explicit aqueous solvation, usually in form of static water layers, can be found in literature[36, 41,
131] indicating the potential in�uence of explicit solvation on surface morphology and adsorption
energy.[23] Even harder to account for are ionic e�ects at the electrode-electrolyte interface, the
so-called electric double layer.[140, 141]
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Kinetic barriers have been investigated in an ab initio study of Ping et al. comparing multiple
reaction pathways on the IrO2 (110) surface in implicit solvation revealing that the thermodynam-
ically favored pathway might be characterized by high-energy transition states, i.e. unfavored
kinetics.[42]

One way to incorporate kinetics and thermodynamics into a full reaction path has been intro-
duced by Exner et al.. In a set of studies they combine Tafel measurements of single-crystalline
electrodes and ab initio calculations to determine the free energy diagram, i.e. reaction pathway
of the chlorine evolution reaction (CER) over RuO2 (100), the HER over Pt (111) as well as the
OER over RuO2 (110) and IrO2.[45, 138, 142] Slope and kinks of the Tafel plot are used to extract
the energy of transition states while the binding energies of RIs are extracted from electronic
structure calculations. During their studies they observe several changes of the active surface,
implying a distinct potential dependence of the surface morphology.

Kuo et al. also observe di�erent active surfaces for varying potentials in their study combining
cyclic voltammetry (CV) and electronic structure calculations of single-crystalline IrO2 (110) and
RuO2 surfaces.[72, 140] 5

Regarding the starting surface for electronic structure calculations, the general conception was
and still is to consider primarily IrO2 (110) or RuO2 slab models as these are reckoned to exhibit
the lowest surface energy.[23, 41, 42, 45, 131, 132, 138, 143] Yet how misleading an exclusive
focus on (110) surfaces might be has been stressed in recent years by several studies indicating a
pronounced dependence of mechanism, activity (and stability) on the surface orientation.[23, 39,
43]

Roy et al., for example, report surface-speci�c activity and stability for (110), (001), (101) and
RuO2 (111) surfaces and rationalize this with varying density and coordination environment of
the Ru CUS sites.[124] On the same note, Stoerzinger et al. emphasize the in�uence of the distinct
electronic structure of the CUS sites on the OER activity of (100), (101), (110) and RuO2 (111)
and IrO2 surfaces and �nd (100) and (101) notably more active than (110) for both materials.[40,
134] And just recently Rao et al. report an orientation-speci�c change of the rds observed at the
RuO2 (101) surface opposed to (100) and (110) surfaces.[133, 135] This change is rationalized by
a descending binding energy for M−OO, with (101) < (100) < (110), caused by deviations in the
electronic structure of the respective RuCUS sites. Finally, in a comprehensive study on a set of
more than 70 IrO2 surfaces of varying orientation and termination Opalka et al. concluded that
the (somewhat neglected) (111) orientation is most stable at OER operating conditions.[43]

This excerpt illustrates the ongoing, vivid exchange and discussion on the mechanism, activity
and stability of speci�c IrO2 and RuO2 catalysts.6

5They further observe a pH-dependency of the OER activity which they attribute to the interfacial water arrangement
at di�erent pH values. This change in activity is rationalized by a change in OER mechanism, in particular the
acid-base transition of M−OOH formation, where in acidic environment (eq. 2.10) is favored, while at pH>10 the
competing alkaline pathway M−O+OH– −−−→ M−OOH+ e– is favored (implying a reaction rate that is �rst-order
in OH– ).

6In addition to the discussion outlined above, one of the most heated debates shall not be ignored here, which ensued
around whether or not lattice oxygen is involved in the OER.[39, 125, 134] While there is consensus that lattice
oxygen is contributing to the oxygen production in alkaline cells if (Ir-based) perovskites are used as catalysts,[125,
144] isotope labeling experiments of rutile IrO2/RuO2 catalysts in acidic environment paint an ambiguous picture.
Stoerzinger et al., for example, conclude that for crystalline, mono-oriented RuO2 surfaces the lattice oxygen
evolution reaction (LOER) is negligible,[134] which is in stark contrast to previous �ndings for IrO2[145] and
RuO2[146] electrodes of not further speci�ed morphology. This debate seems to proceed to the next stage as a
recent study by Schweinar et al. report an exchange of oxygen atoms between water and oxide lattice on a surface
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Only recently this discussion has been extended to surface morphologies revealing a dormant
optimization potential. A thorough understanding of the relation between surface morphology and
activity (as well as stability) is a premise towards the selective synthesis of catalytic nanomaterials.
In this regard, appropriate atomistic slab models re�ecting the actual surface morphologies are of
utmost importance. These surface morphologies, however, might di�er signi�cantly from any
slab model derived from simple bulk-truncation as metal oxide surfaces are known to undergo
reorganization during the synthesis and operation.[148–150] To this end, advanced techniques
including global structure optimization are required to determine the true active surface structure
even for simple single-crystalline surfaces.

Not by chance have surface reconstructions been put forth as explanation for activity in-
crease[124] and decrease[134] in above examples when simpler atomistic models failed.7

In the next chapter we will �rst introduce the most common slab models of IrO2 and RuO2 that
can be obtained by simple bulk-truncation as they usually provide an adequate initial structure.
We then discuss how to classify di�erent slab models based on their surface free energy and �nally
discuss how to �nd novel low-energy surface morphologies via global structure optimization of
bulk-truncated slab models.

"with a preferential (110) crystal orientation".[147] It will be interesting to see, whether this ambivalence can be
attributed to single-crystalline (no LOER) opposed to more polycrystalline (enhanced LOER) materials.

7How many of the "rough" and "amorphous" surfaces on closer inspection might actually be reconstructions shall
remain undecided at this point.
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3 Low-index rutile surfaces: structure,
energetics and simulation

3.1 Surface structure

Rutile is the only stable bulk phase of pure IrO2 and RuO2 while the anatase phase has only
been stabilized for mixed TiIrO4 materials.[151] Accordingly, experimental and theoretical studies
exclusively focus on rutile IrO2/RuO2 surfaces and so does this thesis.

Rutile crystals are characterized by a tetragonal unit cell that is fully speci�ed by three pa-
rameters: the two lattice parameters 0 and 2 , and by the projection G = 〈rIrO |a〉 determining the
internal position of the oxygen atoms as illustrated in the left panel of Fig (3.1). The rutile bulk is
then obtained by (in�nite) repetition of this unit cell.

Each truncating plane in a periodic bulk system represents a surface or facet and in general
an arbitrary number of unique surfaces can be generated. A set of parallel lattice planes is fully
speci�ed by three integers (ℎ:;) (the Miller indices) which determine the respective surface
normal m, orthogonal to all parallel planes. This surface normal is given by m = (ℎ ·" , : ·#, ; ·$ )>
where " ,# and $ are the basis of the reciprocal lattice vectors a, b and c (for the rutile symmetry
we �nd a = (0, 0, 0), b = (0, 0, 0) and c = (0, 0, 2)). Each unique surface is characterized by a distinct
Gibbs surface free energy (SFE) that indicates the energy necessary to create this surface from the
in�nite bulk system (see next section 3.2). Euhedral, i.e. regular and periodic crystal structures
with �at facets, such as pure IrO2 and RuO2, try to maximize the surface orientation characterized
by the lowest SFE while minimizing energetically higher facets, and are thus preferably growing
in one speci�c direction.1 The obtained surface mixture usually re�ects the relative ordering of the
SFEs associated to all possible Miller indices. Since the SFE is depending on external conditions i.a.
temperature, (oxygen) pressure and/or solvation, di�erent surfaces orientations can be obtained
by varying the growing conditions. Moreover, the growth of one speci�c orientation can further
be enforced by a support crystal (e.g. growing a IrO2 (110) surface on a TiO2 (110) support).

Surface orientations with low Miller indices, i.e. only containing 0 and 1 values: (ℎ:;) = (001),
(110), (111) etc. are usually characterized by close(r) packed surface structures compared to higher
index orientations, with a few exceptions.[153] Following the broken bonds model a higher surface
atom density in turn results in lower Gibbs surface free energies.[154, 155] This is especially
apparent for single-compound materials like metals where high-index surfaces eventually result
in a combination of terraces, edges and kinks of low-index facets due to the discrete crystal lattice.
Even though binary crystals are structurally more complex, to our knowledge no high-index single-
crystal IrO2 or RuO2 surface has been synthesized so far and computational studies accordingly
focus mainly on low-index surfaces. The tetragonal symmetry of rutile gives rise to �ve unique
low-index lattice planes: (001), (010) = (100), (011) = (101), (110) and (111), illustrated in the

1For nanoparticles this directly leads to Wul�’s theorem[152] according to which a nanocrystal adopts a polyhedron
structure of minimal surface free energy with a facet ratio that re�ect the relative SFEs of all possible crystal
surfaces.
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Fig. 3.1: (Left) Tetragonal unit cell of rutile metal oxides with trigonally coordinated oxygen atoms (red sphere)
and octahedrally coordinated metal atoms (blue sphere). The symmetry is fully speci�ed by two
lattice parameters a and c and internal projection x. (Middle) Truncating planes arising from (001)
(black), (100) (red) and (110) (yellow) Miller indices. (Right) Truncating planes arising from (101)
(blue) and (111) (green) Miller indices.

two right panels of Fig. 3.1.
For single-compound materials like metals the surface morphology is fully characterized by the

orientation and thus the respective Miller index alone. However, for multiple-compound systems
each lattice plane may create several di�erent surface morphologies, one for each symmetry-
invariant atomic layer of the crystal along the respective surface normal. Depending on the
terminating atom layer f , re�ecting the overall stoichiometry at the surface, the respective bulk-
truncated slab models of binary metal oxides are denoted either metal-rich, stoichiometric or
oxygen-rich. For IrO2/RuO2 we �nd three symmetry-invariant atomic layers for (010), (101)
and (110) resulting in one metal-rich, one stoichiometric and one oxygen-rich termination each.
Further, for (111) four atomic layers (one metal-rich, two stoichiometric and one oxygen-rich)
can be found while for (001) only one bulk-truncation is directly available, which is obviously
stoichiometric. Additional terminations can be generated by removing selected atoms of the
terminating layer though, as done for the (001) orientation to obtain a metal-rich and an oxygen-
rich surface.

The resulting bulk-truncated surface structures are illustrated in Fig. 3.1. Obviously many
more terminations might be obtained via adsorption (layers) and/or defects, yet the corresponding
investigations must be left for others to do.

In the next section we will show how to approximate the surface free energy of a given
morphology in order to compare a set of atomic slab models and determine the most stable surface.
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Fig. 3.2: All bulk-truncated surface structures obtained for low Miller-index orientations of rutile metal oxides.
Metal and oxygen atoms are depicted as gray and red spheres, respectively. From left to right, (001)
(black), (010) (red), (101) (blue), (110) (yellow), and (111) (green) surfaces, and from top to bottom,
metal-rich, stoichiometric and oxygen-rich. As apparent there are two stoichiometric surfaces for the
(111) orientation. Furthermore, metal-rich and oxygen rich (001) structures have to be arti�cially
generated by removal respectively addition of an oxygen layer.
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3.2 Surface Free Energy

Generally speaking, the Gibbs surface free energy quanti�es the energy required to break speci�c
chemical bonds and truncate the bulk system at a certain lattice plane forming the respective
surface structure. As long as all accessible facets are characterized by positive SFEs the respective
euhedral crystals is stable, indicating that the bulk phase is energetically preferred and that
energy is required to form a surface. On the other hand this implies that in case one or more
surface morphologies of a material are characterized by a negative SFE, the crystal dissolves as
the formation of surfaces is energetically favored.

Even though there exist a couple of ways to experimentally approximate the SFE of solid
materials this is restricted to pure metals[156, 157] and polymers[158, 159]. No experimental SFE
of IrO2 has been reported so far. Experimental observation of the growing behavior of IrO2 at
strictly controlled conditions, however, can verify SFEs obtained via �rst principle methods.

In this thesis the Gibbs surface free energy W (ℎ:;),fsurf of a periodic slab model with Miller index
(ℎ:;) and termination f is calculated via ab initio thermodynamics following an approach of
Reuter et al.[160, 161] which shall be outlined in the following.

In general W (ℎ:;),fsurf of a binary metal oxide system MO2 is de�ned as

W
(ℎ:;),f
surf =

1
� (ℎ:;)

[
�
(ℎ:;),f
surf − = (ℎ:;),fM `M − = (ℎ:;),fO `O

]
, (3.1)

where � (ℎ:;) is the surface area and � (ℎ:;),fsurf the Gibbs free energy of the slab model, while the
latter two terms include the total number of atoms = (ℎ:;),fX and the chemical potential `X of
the respective metal M and oxygen O. Note here that the surface area � (ℎ:;) is identical for all
terminations f of a particular orientation (ℎ:;).

Re�ecting actual physics, we assume the surface system to be in thermodynamic equilibrium
with the respective bulk instead of the atomic species. The Gibbs energy �bulk of a MO2 bulk unit
cell is given as

�bulk = `M + 2`O . (3.2)

Now, for any slab model that maintains a stoichiometric composition (e.g. =O = 2 · =M for MO2)
we obtain a simple equation for W (ℎ:;),stoich.surf ,

W
(ℎ:;),stoich.
surf =

1
� (ℎ:;)

[
�
(ℎ:;),f
surf − = (ℎ:;),fMO2

�bulk

]
, (3.3)

where obviously =MO2
= =M = 0.5 · =O.

For non-stoichiometric MO2 slab models this equation gets slightly more complicated as we have
to account for de�cit/surplus oxygen atoms in metal-rich/oxygen-rich terminations which leads
to

W
(ℎ:;),f
surf =

1
� (ℎ:;)

[
�
(ℎ:;),f
surf − = (ℎ:;),fMO2

�bulk − Δ= (ℎ:;),fO `$

]
. (3.4)

where the oxygen de�cit/surplus is given by Δ= (ℎ:;),fO = =
(ℎ:;),f
O − 2= (ℎ:;),fMO2

.
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As apparent for stoichiometric slab models we �nd =O = 2=MO2
and hence recover eq. (3.3).

Eq. (3.4) formally covers all binary systems, yet two challenges remain: neither the Gibbs
energies (� (ℎ:;),fsurf and �bulk) nor the chemical potential of atomic oxygen `$ is easily accessible
on DFT level.

Fortunately, Reuter et al. showed that for metal oxides the di�erence of the two Gibbs energies
in eq. (3.4) can be approximated with su�cient accuracy by the di�erence of the DFT-computed
total energies

�
(ℎ:;),f
surf − = (ℎ:;),fMO2

�bulk ≈ � (ℎ:;),fsurf − = (ℎ:;),fMO2
�bulk . (3.5)

In order to access `O we again assume equilibrium, this time with the surrounding O2 gas phase.
Based on this assumption `O is connected to the total energy of molecular oxygen �O2

in vacuum
via `O = 0.5 · �O2

+ Δ`O where Δ`O is the relative chemical potential. Note here that �O2
includes

the experimental zero point energy of oxygen (0.0488 eV[162]) - contrary to �bulk and � (ℎ:;),fsurf
where it can be neglected.

The SFE is then given as a linear function of the relative chemical potential Δ`O,

W
(ℎ:;),f
surf (Δ`O) =

1
� (ℎ:;)

[
Δ� (ℎ:;),f + Δ= (ℎ:;),fO Δ`O

]
, (3.6)

where the (constant) energy di�erence Δ� (ℎ:;),f is calculated based on the total energies of surface,
bulk and molecular oxygen,

Δ� (ℎ:;),f = �
(ℎ:;),f
surf − = (ℎ:;),fMO2

�bulk − 0.5Δ= (ℎ:;),fO �O2
. (3.7)

In order to obtain the SFE of a particular facet for the full potential range two calculations are
required. In practice we determine the SFE at the chemical oxygen potential of pure O2, i.e. with
Δ`O = 0 and at the chemical oxygen potential within the IrO2 bulk system,

Δ`O = 0.5(�O2
− (�IrO2

− �Irfcc)) . (3.8)

Here �Irfcc donates the total energy of a metallic iridium atom in its most stable face centered cubic
(fcc) phase.[163, 164]

The dependence of the SFE on Δ`O can be converted into a temperature/pressure dependency
for better comparison to actual synthesis conditions, i.e. speci�c temperatures and oxygen (partial)
pressure. In the limit of an ideal-gas-like O2 atmosphere `O is a function of temperature and
pressure

`O(), ?) = `O(), ?0) + 0.5:) ln(
?

?0
) (3.9)

where : is the Boltzmann factor and `O(), ?0) denotes the temperature dependency of `O at a
�xed pressure.

Explicit knowledge of the pressure dependency is however not necessary as we are only
interested in the chemical potential di�erence Δ`O at constant pressure and thus the latter term
vanishes. The remaining temperature dependency at �xed oxygen partial pressure (e.g. 0.2 bar for
regular air) can be extracted from tabulated experimental data.[165]
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In our publications [1] and [2] the results are reported in a Gibbs surface free energy phase
diagram illustrating the SFE of all low-index morphologies as a function of Δ`O (respectively
temperature at a �xed O2 pressure of 0.2 bar). In SFE phase diagrams stoichiometric slabs are
independent of Δ`O since Δ=stoich.O = 0 while oxygen-rich and metal-rich surfaces are characterized
by a negative respectively positive slope due to Δ=O−richO > 0 and Δ=Ir−richO < 0.

This thermodynamic framework allows an adequate classi�cation of a set of surface morpholo-
gies and identi�cation of the most stable structure therein. However, one crucial point has been
untouched so far: For a speci�c surface the bulk-truncated slab model never represents the lowest
energy structure. Instead relaxation (and potential reorganization) processes might result in a
completely new, unexpected structure.

Depending on the degree of structural changes during relaxation/reorganization small to drasti-
cally decreased SFEs are observed and just as well a�ect the relative stability. Any classi�cation
based on SFEs should hence always be carried out based on fully relaxed slab models re�ecting
the actual surface morphology.

In the next section we will discuss how to determine low-energy surface structures via lo-
cal/global optimization together with the statistical and computational challenges that are en-
countered especially considering global optimization.

3.3 Simulations and sampling

Low-energy con�gurations of a given system represent minima of the respective potential energy
surface (PES). Since the identi�cation of these minima is a frequent problem in computational
chemistry various minimization/optimization techniques have been developed over the years.
Most common is a simple structure relaxation via a local optimization starting from an appropriate
initial guess, which in present case is the respective bulk-truncated geometry. This approach is
comparatively undemanding as a geometry relaxation of (1 × 1) slab models with appropriate
convergence criteria is usually converged within a hundred force/energy evaluations. Surface
relaxation of slab models thus can be considered a standard procedure and even prerequisite in
todays DFT surface science studies.[15, 37, 42, 43]

However, any local optimization method enforces a downhill progression on the PES and thus
only provide access to the structural minimum that can be reached without crossing any energy
barrier as illustrated in Fig. 3.3.

Accordingly, the relaxation and thus the minimum are crucially depending on the initial guess.
For (small) molecules the most important structural features like bond orders, bond lengths
and (dihedral) angles can be estimated beforehand providing a decently good initial guess and
consequently a local optimization usually results in a low-energy structure that can be considered
the global minimum. On the other hand, the PES of larger molecules like proteins or clusters is often
characterized by a multitude of local minima of similar energy which renders the identi�cation of
the global minimum di�cult.[166]

Crystalline surface structures can be considered somewhere in between, since the bulk-truncated
slab model is usually a solid initial guess for a local optimization. However, numerous surface
morphologies with reorganized top layers characterized by an atomic connectivity that di�ers
from any bulk-like structure have been observed, including pure metals, such as Au[167, 168]
and Si[169], binary materials, e.g. GaAs[170], Cu2O[171], FexOy[172, 173] and TiO2[174, 175]
and ternary materials like perovskites[176]. Reorganizations are usually further divided into
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Fig. 3.3: Illustrative potential energy surface (PES) of a selected surface termination with the potential energy E
as a function of the atomic con�guration ®X. Local optimization (orange) of the bulk-truncated
structure as initial guess will merely lead to a local minimum; the relaxed bulk-truncation (LM-A). A
global optimization (blue) is required to identify the second local minimum; the (2× 1) reconstruction
(LM-B) and the global minimum (GM) of this exemplifying PES; a complexion with (1× 1) periodicity.

reconstructions and complexions. While a reconstruction changes the size and shape of the surface
unit-cell, leading to, e.g. the (4×1) TiO2 reconstruction[175], the latter preserve a (1×1) periodicity
at the surface (compare LM-B and GM of Fig. (3.3), respectively).

Reorganizations are typically not accessible via a local optimization starting from the bulk-
truncated slab model as illustrated in Fig. (3.3), instead they are a more distant local or the global
minimum for the respective stoichiometry and would require an advanced initial guess that already
re�ects the �nal structure in order to be found directly. Yet, selecting an appropriate initial guess
to �nd a still unknown reorganization via local optimization resembles the chicken or the egg
dilemma.

Fortunately we can resort to a variety of global optimization (GO) techniques that are (more)
independent of the initial structure as they allow to escape local minima, thus drastically improve
the PES sampling and the chance to identify an unknown global minimum. It still has to be kept
in mind, that there is no valid criterion to ensure that the global minimum is found and hence any
global minimum has to be considered tentative.

Modern GO techniques include individual-based methods such as Simulated Annealing[177],
Basin Hopping[178]or Monte-Carlo optimization as well as population-based approaches like
Di�erential Evolution[179] or Particle Swarm method[180, 181]. While the former explore the PES
based on a single initial structure the latter manipulate a set of structures, i.e. a whole population
at once applying di�erent reproduction algorithms. Since a detailed description of any/all of these
methods is beyond the scope of this work, the reader is referred to the literature cited above and
[166, 182, 183].

All of these techniques share a selection criterion that casually accepts con�gurations char-
acterized by a higher energy than the initial/previous structure and thus enable to cross energy
barriers. Obviously, the number of energy evaluations required to identify the global minimum
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grows exponentially with the number of atoms/degrees of freedom and thus a GO based on ab
initio evaluations is computationally painfully expensive (compared to a local minimization) and
still restricted to smaller systems and/or a very limited number of di�erent compositions. A
high throughput screening of dozens of structures, e.g. of all low-index, bulk-truncated surface
morphologies would to-date require a disproportionate amount of computational resources. In fact,
this limitation is even more pronounced if we want to extend our atomistic simulations beyond
periodic, single-crystalline model electrodes towards more industrially relevant catalysts, e.g.
nanoparticles. For large systems with �xed atomic connectivity, e.g. proteins[184] these costs can
be bypassed via classical force �elds (FF). FFs approximate the computationally highly demanding
electronic structure by parameterized interatomic potentials which makes them multiple orders
of magnitude faster than �rst-principle methods.

It is not surprising at all that also for IrO2 systems a FF has been parameterized: Sen et al.
combined a Morse Potential[49] and QEq variable charge model[185] and successfully predict
the charge distribution of nanoparticles as well as the oxygen adsorption energies at various
surface sites.[47] That said, there is one critical drawback of FFs that ultimately prevented any
application in this thesis viz. the general lack of reactivity. Neither bond breaking nor forming
can be simulated in (regular) FFs, as �xed atomic connectivities have to be speci�ed together with
the input structure. Metal oxide surfaces though are prone to structural changes[148–150], hence
the identi�cation of novel surface morphologies demands reactivity. Moreover, the paramount
goal is to investigate the OER in aqueous solution, thus simulation methods involved should allow
bond breaking/forming. Any attempt to restore reactivity as done for example in the ReaxFF
framework[186] inevitably entails an immense number of �tting parameters.

Consequently, we developed a new methodology that adapts a di�erent approach to approximate
the atomic interaction without relying on a �xed connectivity: a fully �exible Machine Learning
(ML) interatomic potential trained with ab initio data. This combined ML/DFT method itself
is described and discussed in full detail in my second publication[2], which in turn is brie�y
summarized in chapter A.2.

That said, the underlying ML theory will be discussed in the next chapter for optimal under-
standing. This includes a tutorial style example, an introduction of the common descriptor required
to represent atomic structures and a discussion on how to select the necessary hyperparameter
regulating the ML potential.
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4 Gaussian Approximation Potentials in
computational chemistry

There exist several Machine Learning (ML) methods, �rst and foremost based on Neural Networks
or the Gaussian Process Regression (GPR) approach that provide fully �exible ML potentials
and have been already successfully applied to computational chemistry.[55–66] Inherent to all
ML methods in computational chemistry is that they predict properties of an unknown sys-
tem/structure based on its similarity to con�gurations within a set of training structures via
interpolation. And further that, in order to determine these similarities, atomic structures are
transformed into some mathematical representation called descriptors. Accordingly, there are
three key factors that de�ne the quality of a ML potential: the available training data, the applied
representation/descriptor(s) and, �nally, the ML method itself.

Central to my thesis is the Gaussian Approximation Potential (GAP) framework, a chemistry-
speci�c application of the GPR designed to provide straight-forward access to scalable ML poten-
tials for atomic structures.

An in-detail description of the complete mathematical formalism is way beyond the scope of
this thesis and instead I highly encourage reading the recent, elaborated review of Deringer et
al.[54] This review does not only cover the full GPR formalism but also provides a comprehensive
discussion on all further GAP-speci�cs, available representations for chemical structures, heuristics
for the hyperparameter selection and a variety of application examples.

Nonetheless, at least the fundamental concepts together with crucial aspects of the GAP model
shall be introduced and discussed in this chapter.

Accordingly, the �rst section 4.1 of this chapter constitutes an introduction of the basic mathe-
matical formalism of the underlying GPR approach including a simple tutorial-style example.

In the second section 4.2 common descriptors/representations of chemical structures together
with the concrete form of the similarity measures, the so-called kernels, applied within the GAP
model are introduced.

In the �nal section 4.3 we take a deep dive on the hyperparameters that are required for the
GAP model applied in both publications[1, 2] and present a multi-step selection process on how
to identify an optimal set of hyperparameters.

4.1 Gaussian Process Regression

In general terms, the GPR model is a non-linear, non-parametric regression tool to approximate a
(multi-dimensional) function, e.g. the PES of a chemical system, via interpolation of available data
points

As an easy example of the GPR model we examine a smooth, regular, one-dimensional function
~ : R→ R of unknown form that takes a scalar (e.g. an atomic distance r8 9 ) as input and returns a
scalar value (e.g. a binding energy n) shown in Fig. 4.1.
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Fig. 4.1: GPR prediction (solid blue line) of an unknown one-dimensional function (dashed black line) based on
an increasing number # of observations ~= (G=). The regulating hyperparameters are kept unchanged.

Since the exact form of ~ (G) is unknown we collect a total of # observations ~= ≡ ~= (G=) of
independent input values G= . These# input-return pairs are collected as training data in a so-called
training set �1-d = {G= : ~=}#==1. Obviously the prediction is improving with an increasing number
of observations (for an otherwise identical GPR model). In Fig. 4.1 the increasing agreement of
prediction ~̃ (G) and true function ~ (G) with an increasing number of data points is illustrated.

Integral to the GPR model is its formalism to approximate the true (yet unknown) function
value ~ (G) for an arbitrary input G as a linear combination of " basis function,

~ (G) ≈ ~̃ (G) =
"∑
<=1

2=: (G, G<) , (4.1)

with the similarity measure : : R ×R→ R, commonly referred to as kernel (functions) within the
GPR/GAP framework and a set of coe�cients c = (21, ..., 2" ) that are normalized, i.e. |c| = 1 and
yet to be determined.

For sake of simplicity, we will discuss the full GPR in the following with" = # and {G<} ≡ {G=},
i.e. where each basis function represents precisely one observation. An overview on the implica-
tions arising from a sparse GPR can be found in the appendix C.

Coming back to our example: to determine the similarity between an arbitrary input G and a
training data point G< a Gaussian kernel is applied, which in the one-dimensional case is simply
given by

: (G, G<) = exp
[
− |G − G< |

2

2\ 2
]

, (4.2)

where the Gaussian width \ is the �rst example of a hyperparameter which in this speci�c case
regulates the smoothness of the similarity measure.

The coe�cients are now determined based on the available training data �1-d via the loss
function,

; =

#∑
==1

[~= − ~̃=]2

f2=
+ '(2=) , (4.3)

with individual weights f= re�ecting the uncertainty (and/or importance) of an observation ~= and
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Fig. 4.2: E�ect of regularization fD and kernel width \ on the GPR prediction (solid blue line). For a strong
regularization (large fD ) the prediction function ~̃ (G) is increasingly centered around the average of
the observations (~=), which is referred to as over�tting (left panel). For a small regularization fD
and/or kernel width \ a close agreement of observation ~= and prediction ~̃= is achieved at the cost
of high uncertainty for any unknown input values G ≠ G= , which is referred to as over�tting (right
panel). Balancing smoothness and accuracy with appropriate regularization and kernel width will
provide an optimal prediction (mid panel).

a regularization function '(2=)1. Note here that ~̃= ≡ ~ (G=) and thus also the �rst term depends
on the coe�cients due to eq. (4.1).

Assuming that we observe or expect similar uncertainties for all observations ~= , a uniform
weight fu can be applied and eq. (4.3) simpli�es to

; =

#∑
==1
[~= − ~̃=]2 + f2u'(2=) . (4.4)

The missing coe�cients can then be determined via minimization of this loss function (see
appendix B).

Both terms of eq. (4.4) are required to provide a well-rounded prediction as they are balancing
two contrary aspects of the interpolation: accuracy and smoothness. The �rst term is highly
�exible and ensures an accurate description of the actual training data while the regularization
prevents coe�cient from getting too large and thus (together with the kernel width \ ) guarantees
a smooth interpolation in between training points. An appropriate combination of these two
terms makes the prediction of unknown input possible in the �rst place.

With decreasing regularization and/or kernel width (fu, \ → 0) we obtain an increasingly
close agreement of training data and prediction, ~= → ~̃= , until eq. (4.4) is eventually reduced
to a least-square �t (for fu = 0). However, as illustrated in the right panel of Fig. 4.2 this
precision is achieved at the expense of rapidly increasing uncertainty for any unknown input
values. An insu�cient regularization in combination with a small kernel width is usually referred
to as over�tting. Too much regularization, on the other hand, will lead to so-called under�tting
illustrated in the left panel of Fig. 4.2 since for fu →∞ the prediction will yield the average of all
the training data, ~̃ (G) = ~= . Vividly spoken, the regularization enforces a non-perfect description
of the training data with ~̃= ≠ ~= , (compare inlets of Fig. 4.2) but ensures that the interpolation is
meaningful/non-zero in between two observations.

In this simple GPR example we only have to select two hyperparameters, the uniform regu-
1Within the GAP model the Tikhonov regularization[187] is used.
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larization strength fu and the kernel width \ . We will, however, see in the following that more
hyperparameters are required to regulate an actual GAP.

Obviously, there are several aspects in which the more complex GAP model di�ers from this
very simple, one-dimensional example above. First and foremost the GAP model constitutes a
sparse GPR, with" � # in order to achieve better scalability and transferability (see appendix C).
Furthermore, the GAP training data usually contains derivatives of the observation as well, namely
the atomic forces with the implications and the mathematical formalism covered in Ref. [54]. To
account for the generally larger deviation (uncertainty) of atomic forces two di�erent weights fY
and ff distinguishing between these two types of intrinsically di�erent training data are applied.
And �nally, in the GAP framework the observations, i.e. the total energies �tot are separated into
local energy contributions Y8 that are then predicted based on local representations/descriptors. In
the next section we thus will introduce suitable representations/descriptors for atomic structures
together with the respective similarity measures/kernels.

4.2 Representing atomic structures
The most intuitive and well known representation of an atomic structure is a list of Cartesian
coordinates. However, a Cartesian representation is not well-suited to determine similarities
between two con�gurations as it depends on the concrete ordering and the external coordinate
system. Translation or rotation will leave the con�guration and thus all chemical properties
unchanged, yet the e�ect on the corresponding Cartesian representation is arbitrarily large.
In addition, multiple di�erent representations can be generated by simply swapping atoms of
the same element, again without changing total energy nor con�guration. A ML model with a
similarity measure based on Cartesian representations would thus require an enormous amount
of redundant training data to account for structural identical con�gurations. Evidently, we are
looking for a representation that is invariant to translation, rotation and permutation.

In addition, the discrete, non-regular nature of the Cartesian representation makes a similarity
measure anything but an easy task. If, for instance, all atomic positions are subject to an in�nitesi-
mal displacement, the resulting con�guration while in fact of almost unchanged total energy is
unknown and it remains unclear how to relate structural and energetic changes. Furthermore, but
on a similar note, a di�erentiable, regular energy expression is mandatory to extract atomic forces
and conduct any kind of MD simulations.

Consequently, as a second premise we demand a smooth, di�erentiable interpolation which in
turn requires either a smooth, di�erentiable representation or kernel function.

In the following we discuss three representations and their kernel functions that are commonly
used within the GAP model as they - by design - meet these requirements: two-body, three-body
and Smooth Overlap of Atomic Positions (SOAP) descriptor.

4.2.1 Two-body and three-body descriptor

One simple way to guarantee rotational, translational and permutational invariance is to represent
a structure via a set of atomic distances {A8 9 } accounting for all (eligible) atom pairs 8 and 9 .
However, in order to compare a set of distances (representing an unknown test structure) to the
available training data we have to apply a smooth and regular kernel function since the distances
themself constitute a discrete representation. In contrast to a Cartesian representation this is
a straight-forward task as the scalar two-body descriptor resembles the basic, one-dimensional
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example discussed in section 4.1, where regularity was clandestine introduced via the applied
kernel function. Consequently and analogous to eq. (4.2), the two-body kernel :2b : R × R→ R
providing a similarity measure of two distances A8 9 and A< is de�ned as

:2b(A8 9 , A<) = exp
[
−
|A8 9 − A< |2

2\ 22b

]
, (4.5)

where the hyperparameter \2b (two-body kernel width) regulates the smoothness of the kernel.
The total energy of the test structure is then approximated based on the sum over all distances

A8 9 , each one compared to the distances A< in the training set via the two-body kernel

�2b(r) =
∑
8 9

Y2b,8 9 =
∑
8 9

"2b∑
<

22b:2b(A8 9 , A<) , (4.6)

where r = {A8 9 } contains all distances up to a system- and kernel-speci�c cuto� radius Acut,2b. As
already indicated above, rather than evaluating the kernel at each of the #2b atomic distances
included in the training set, it is evaluated at a much smaller number of "2b sparse points.

The most evident shortcoming of this pair-wise decomposition is the lack of angular information,
i.e. the neglection of energy contributions arising from the relative position of three (or more)
atoms. An obvious way to account for angular information is the addition of the corresponding
three-body terms. The total energy is then given by

�2b/3b =
∑
8 9

∑
<

22b:2b(A8 9 , A<) +
∑
8 9:

23b:3b(A8 9 , A8: , A: 9 ) , (4.7)

where the three-body kernel :3b : R3 × R3 → R sums over all atom triplets in the training data
and has to be di�erentiable.

In principle, the energy approximation can be re�ned as required by including higher orders, e.g.
four-body terms. Unlike the two-body term though, higher order terms are not per se invariant to
permutation and the exponential increasing number of contributions makes it more and more
di�cult to ensure permutational invariance.

4.2.2 Smooth Overlap of Atomic Positions descriptor

Instead of approximating the total energy via a set of two-body (and/or higher order) contributions,
the total energy can also be separated into local contributions Y8 of atomic environments via

�MB =
∑
8

Y8 =
∑
8

"MB∑
<

2MB:MB(/ 8 , /<) , (4.8)

which in turn are approximated based on a many-body kernel :MB : R3 × R3 → R at "MB sparse
points and multi-dimensional descriptor / 8 representing the respective local atomic environments.

One many-body representation that ful�lls permutational and translational invariance is the
radial distribution function or the neighbor density. To convert the neighbor density into a smooth,
di�erentiable description, the atomic positions are represented by Gaussian functions instead of
Dirac delta functions. Since we further want to di�erentiate between di�erent atomic species U , a
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set of element-speci�c neighbor densities {d8,U } for each central atom 8 is extracted. The smooth
neighbor density of atom 8 representing its atomic environment w.r.t. to the element U is then
given by

d8,U (r) =
∑
9

XU,U 9
exp

[−|r − r8 9 |
2\ 2MB,U

]
5cut(A8 9 ) , (4.9)

where \MB,U is an element-speci�c descriptor width2, the delta function XU,U 9
assures that the

sum is only including neighbor atoms 9 of species U and the cuto� function, 5cut(A ) smoothly
approaches zero at a given AMB,cut. In the present thesis we apply a uniform descriptor width \MB
throughout.

While d8,U (r) is invariant to permutation and translation, the rotational invariance has yet to be
introduced. To this end we expand the neighbor density in the basis of orthogonal radial functions
'= (A ) and spherical harmonics .<

;
(r),

d8,U (r) =
∑
=;<

2
8,U

=;<
'= (A ).<; (r) . (4.10)

To truncate this in�nite basis we have to choose =max and ;max (with< ∈ [−;max, ;max]), similar to
the representation of atomic orbitals in a radial basis.

The expansion coe�cients 28,U
=;<

are then obtained via integration

2
8,U

=;<
=

∫
3r'= (A )∗.<; (r)d

8,U (r) . (4.11)

We now sum over < and obtain a rotationally invariant, symmetrized combination of the
expansion coe�cients referred to as power spectrum p8 = {?

8,UU′

==′; }. The individual vector elements
are calculated via

?
8,UU′

==′; =
1

√
2; + 1

∑
<

(28,U
=;<
) ∗ 28,U

′

=′;< . (4.12)

Finally the SOAP representation of atom 8 is obtained by normalizing the power spectrum

/ 8 =
p8
|p8 |

. (4.13)

As opposed to the two-body representation, the SOAP descriptor itself is already di�erentiable
and thus the respective kernel is readily available

:MB(/ 8 , / 9 ) = (/ 8 · / 9 )Z , (4.14)

where the order of the polynomial is determined by the hyperparameter Z . Note that, Z is directly
related to the body order of interaction as, e.g. Z = 2 corresponds to a 5-body term (for an
elaborated discussion on the body order see page 14 Ref. [54]).

2Note here that while \2b and \MB both constitute a Gaussian width, the former is part of the two-body kernel (thus
kernel width) and the latter is incorporated directly in the SOAP descriptor (hence descriptor width).
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4.2.3 Combined two-body and SOAP representation

In general the representation of an atomic structure is not limited to one single descriptor. Just
on the contrary, most ML applications apply a combination of di�erent descriptors. While a
pure SOAP description is possible, the explicit addition of two-body descriptors has been shown
to guarantee a signi�cantly more stable potential for atomic structures. Hence in the present
work we applied a combination of two-body and SOAP representation. The intention with this
combined representation is to reproduce the main features of the PES by the two-body potential
while the additional SOAP contribution then accounts for the subtlety of the PES.

Combining eq. (4.6) and (4.8) the total energy of the system is approximated via

�2b+SOAP =
∑
8 9

X2b

"2b∑
<

22b:2b(A8 9 , A<) 5cut(A8 9 ) +
∑
8

XMB

"MB∑
<

2MB:MB(/ 8 , /<) , (4.15)

Two additional hyperparameters X2b and XSOAP are scaling (the respective basis functions of) the
two contributions. Note here, that these two hyperparameters are not enforcing a strict ratio but
rather provide a corridor for each contribution as the coe�cients 22b and 2MB can counteract the
X-ratio to a certain extent.

As apparent, the application of a combination of more sophisticated representation requires
signi�cantly more hyperparameters than the simple tutorial example of section 4.1. Accordingly,
the hyperparameter selection method applied in this thesis will be discussed in the �nal section.

4.3 Hyperparameter selection
Especially when dealing with a training set that is extended iteratively, as it is the case in this
thesis, selecting appropriate hyperparameter is a delicate task[54], We further have to account for
the fact that, no high-temperature structures were considered as training data in order to maintain
a cost-e�cient training protocol. Yet a su�ciently accurate description of the high-temperature
regime is necessary to obtain meaningful results via Simulated Annealing. A strict optimization of
the hyperparameters w.r.t the initial training data is hence ill-advised as it would inevitably lead
to a poor description of both, high-temperature and unknown minimum structures compromising
the whole global optimization.3

The applied hyperparameters should thus provide a �exible but smooth PES enabling enough
room for exploration without sacri�cing a su�ciently accurate description of the already identi�ed
PES minima. While an exact realization is easier said than done the application of various
hyperparameter sets throughout this thesis revealed that, in praxis, the precise identi�cation of
the best hyperparameters is not necessary, as exemplary discussed for two hyperparameter sets in
section 4.3.5. Instead it was found that either a range of similarly well-performing parameters
exists (f’s) or well-founded heuristics (\ ’s) or even independent metrics (Acut) can be applied.

While far from constituting an universal method for the quantitative determination of a perfect
set of hyperparameters for any given system, the semi-systematic selection process applied within
this thesis shall be outlined and discussed in the following. May this multi-step selection and/or
its �aws provide guidance (and con�dence) for future work.

3Obviously this does not apply to those hyperparameters that regulate truncation, in particular the number of sparse
points "2b/"MB and =max/;max. Here a larger value will always provide a more precise description, at the expense
of (exploding) computational costs - a challenge very familiar from ab initio calculations.
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In total we have to select 13 hyperparameters to train a GAP applying a combination of two-body
and SOAP descriptors which include

• three two-body speci�c hyperparameters: the cuto� Acut,2b, the kernel width \2b and the
number of basis function, i.e. sparse points "2b

• six SOAP speci�c hyperparameters: the cuto� Acut,MB, the descriptor width \MB, the power
spectrum truncation parameters =max and ;max, the number of sparse points "MB and the
body order Z

• four hyperparameters to regulate the GAP itself: the two two scaling factors X2b and X2b as
well as two regularization factors/weights fY and ff accounting for the intrinsically di�erent
uncertainty (deviation) of total energies and atomic forces.

In the present work the number of hyperparameters is reduced as a �xed body order (Z = 2)
and a global cuto� Acut = Acut,MB = Acut,2b has been applied.

Preceding to the hyperparameter selection itself we �rst introduce the concept of cross-
validation in section 4.3.1 since it has been applied multiple times within the selection process.
In section 4.3.2 we then introduce the so-called locality test, a data- and method-independent
way to determine an appropriate cuto� Acut. In a second step optimal hyperparameters of a pure
two-body potential are identi�ed, as outlined in section 4.3.3 . Finally, in a nested cross-validation
process the remaining SOAP parameters are extracted, as discussed in section 4.3.4.

4.3.1 Cross-validation

One way to select optimal hyperparameters solely based on the available training data is cross-
validation. The general concept of a four-fold cross-validation as applied in our hyperparameter
selection process is illustrated in Fig. 4.3. At �rst all structures, that are considered mandatory for
a GAP training are collected separately (in present case these are the O2 dimers and the IrO2/RuO2
unit cell) while the remaining training structures are randomly divided into four subsets.

To evaluate a speci�c set of hyperparameters four GAPs are trained based on combinations
of mandatory structures and three subsets. The mean absolute error (MAE) of total energies
and atomic forces w.r.t. the ab initio reference are extracted based on the remaining subset to
avoid/reduce over�tting. To quantify the performance the resulting average MAEs of energies
("��Y ) and forces ("��f ) are scaled and combined: "�� = "��Y + 0.1 · "��f re�ecting the
generally larger deviation of the atomic forces.

4.3.2 Locality test

By applying a cuto� Acut and dividing the total energy into local contributions the GAP model
e�ectively neglects any long-range interactions arising from, e.g. electrostatics or dispersion.
There is - so far - no applicable work around to implicitly or explicitly incorporate long-range
e�ects without sacri�cing reactivity. These interactions are thus adding to the uncertainty or noise
we observe in a GAP model as two central atoms characterized by identical atomic con�guration
inside Acut (i.e. identical atomic environments) might still be characterized by di�erent forces due
to structural di�erences outside Acut.

The success of GAPs with �nite cuto�s for a multitude of diverse systems can generally be
accounted to screening e�ects, which introduces full or at least su�cient locality in, e.g. insulators,
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Fig. 4.3: In a four-fold cross-validation the available data is divided into mandatory structures (black) and
four randomly composed subsets (red, yellow, green and blue). Four GAPs are trained on combinations
of mandatory structures and three subsets. The mean absolute errors of total energies"��Y,- and
atomic forces"��f,- are extracted based on the remaining subset. The average MAEs are scaled and
combined to quantify the performance of the set of hyperparameters.

Fig. 4.4: Locality test of the oxygen-rich (101) IrO2 surface. Induced force on a given central atom upon
displacement of atoms outside a radius Acut. To provide some statistics, three di�erent central atoms
are considered for each of the nine outermost atomic layers in the slab as illustrated in the panel on
the right. Reproduced from reference [2], with the permission of AIP Publishing.
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metals/metallic systems and a variety of liquids. In general, there exists a material-speci�c upper
limit of force accuracy for a given cuto� radius that depends only on the degree of locality of
this material. In other words, this minimum uncertainty is completely independent of the applied
ML model, descriptors or amount of training data. Whether a localized ML model is applicable
and - if so - which cuto� radius Acut provides reasonable small force errors thus can and should be
estimated via DFT calculations beforehand in a so-called locality test:

Starting from a regular con�guration R we generate a set of rattled con�gurations {R′} charac-
terized by small displacements of atoms outside an increasing cuto� radius Acut around a central
atom 8 . The induced force at atom 8 , i.e. the force di�erence of regular and rattled con�guration
Δf8 = |fR

′
8 − fR8 | as a function of the cuto� as obtained from ab initio single-point calculations is a

measure for the local character of the system.
Obviously this metric strongly depends on the magnitude of displacement which has to be

chosen with care and w.r.t. the underlying physics of the system. In the present thesis small,
random perturbations taken from a uniform distribution of standard deviation 0.05 Å are applied
as we are actually interested in the convergence of Δf8 only. If instead a speci�c minimum
accuracy (i.e. maximum Δf8 ) is required, the rattled structures {R′} would have to be taken from a
MD simulation (at the requested temperature) to guarantee meaningful, more physical atomic
displacements.

In Fig. 4.4 the results of a locality test of the oxygen-rich (101) IrO2 surface structure is illustrated.
To provide some statistics, the average induced force of three di�erent atoms for each of the three
respectively six unique iridium and oxygen layers of this slab model has been calculated. As
apparent Δf8 decays rapidly with increasing Acut and initial di�erences between surface and bulk
layers vanish for Acut > 4.25Å.

4.3.3 Pure two-body potential

Next a pure two-body potential is trained that is intended to cover large parts of the total energy
and interatomic interactions. Besides Acut there are �ve hyperparameters that have to be selected in
order to obtain a two-body potential, viz. "2b, \2b, X2b, fY and ff . Note here that the regularization
parameters fY and ff are preliminary and will be updated for the combined two-body and SOAP
representation.

Besides the MAEs of total energies and forces the atomic pair potential serves as an independent
validation since a two-body potential should be able to describe this pure two-body interaction
appropriately.

In general the regularization parameters fY /ff and X2b are strongly correlated (compare eq. (4.4)
and eq. (4.15)) and it can be assumed that several similarly well-performing parameter sets exist.
A perfect selection of X2b (or fY/ff ) upfront is thus not imperative - on the contrary, seeking for
perfection is probably not the most on-point description of what is requested here. Instead we �rst
provide a reasonable scaling factor based on an easy heuristic in full awareness that we still can
account for possible imperfections afterwards via adapting the regularization hyperparameters
accordingly.

In a pure two-body potential X2b scales the individual pair contributions to the total energy and
should hence re�ect the respective binding energies which can be approximated via the atomic
cohesive energy �coh8 within the initial training. In the present thesis X2b is then extracted based
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Fig. 4.5: Atomic pair potential for three di�erent sets of hyperparameters based on the initial IrO2 training
set. In the lower and upper part of each panel the GAP predicted binding energy respectively the
number of corresponding two-body distances in the training set as a function of distance between
two Ir atoms, two O atoms and an Ir-O atom pair is shown. A small kernel width \2b (left panel)
or poorly selected regularization (mid panel) results in partially over�tted and/or non-physical pair
potentials. As discussed in the text a more pronounced force regulation (ff > fY ) consistently provides
better results (right panel).

on the standard deviation of �coh8 ,

X2b =
1
12b

#∑
8=0

(
�coh8 − �

coh
8

)2
# − 1 , (4.16)

that is weighted by a bond order term 12b to account for multiple two-body descriptors per atom
and thus per atomic cohesive energy. According to the bulk dominant training set we simply apply
the IrO2 bulk bond order 1IrO2

2b = 4 here, even though a slightly decreased bond order re�ecting
the non-negligible share of surface atoms within the training set might be selected as well.

It has to further be noted that eq. (4.16) assumes a distribution of the binding energies around
zero which, to be honest is far-stretched. It would probably be more accurate to extract the scaling
factor based on an average of �coh8 divided by the average number of all pair contributions A8 9
within the cuto� instead. However, as rationalized above, even with a potentially poorly chosen
scaling factor, the resulting GAP provides reasonable results (see section 4.3.5).

The initial intention was to determine the remaining four hyperparameters via a four-fold
cross-validation as described in section 4.3.1. However, the obtained parameters ("2b = 25,
\2b = 0.3, fY = 0.001 and ff = 0.0001) yield an over�tted atomic pair potential as illustrated in
the left panel of Fig. 4.5. While the number of sparse points "2b = 25 seemed reasonable and of
only minor in�uence on the pair potential, it turned out that a larger kernel width \2b > 0.5 is
required to obtain a more physical pair potential. Yet even for an appropriate kernel width the pair
potential still depends crucially on the regularization parameters and might lead to non-physical
pair interaction as illustrated in the middle panel. The generally larger uncertainty of the atomic
forces in comparison to the total energies should also be re�ected in a more pronounced regulation,
i.e. ff > fY and we consistently obtain better results when implementing this insight as exempli�ed
in the right panel of Fig. 4.5.
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Fig. 4.6: Scaled MAE of energy and forces for di�erent regularization parameters (fY ,ff ) obtained via a four-
fold cross-validation The pair of energy and force regularization parameters is determined based on
pre-selected fY :ff ratios with fY < ff including 5 (blue cross), 10 (orange circle), 15 (green square), 20
(red diamond). The minimum is identi�ed for fY = 10−3 and ff = 10−2. Reproduced from reference [2],
with the permission of AIP Publishing.

4.3.4 Adding the SOAP description

To complete our combined representation we have to select the four remaining SOAP descriptor
hyperparameters viz. \MB, =max, ;max and "MB, the scaling factor XMB and the �nal regularization
parameters ff and fY .

As already stated above the SOAP contribution is intended to reproduce the nuances of the
PES not captured by the two-body potential. Accordingly, the scaling factor XMB is related to the
di�erence of the atomic cohesive energies Δ�coh8 = |�DFT,coh

8
−�2b,coh

8
| of pure two-body description

and the DFT reference within the initial training set via

XMB =

#∑
8=0

(
Δ�coh8 − Δ�

coh
8

)2
# − 1 , (4.17)

where in comparison to eq. (4.16) no weight is required since we have exactly one descriptor per
atom and thus per atomic cohesive energy. Further note here that the SOAP contributions are
presumably centered around zero which makes eq. (4.17) a decent choice.

Instead of optimizing the missing six hyperparameters in a single grid search, which would
require an excessive amount of evaluations, we conduct a three-stage grid search, consecutively
optimizing matching hyperparameter pairs via a four-fold cross-validation.

In the �rst step only the regularization is investigated while the remaining parameters are kept
�x. Here the unknown convergence parameters are simply selected such that they ensure a highly
accurate (yet expensive) description with =max = 15, ;max = 10 and the maximum possible number
of sparse points "MB,max (see appendix C). The missing descriptor width is actually more tricky
since it is no convergence parameter. From previous work though \MB = 0.5 seemed appropriate,
accounting for the fact, that the SOAP potential should be more precise, i.e. less smooth than the
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Fig. 4.7: Scaled MAE of energy and forces as a function of the number of sparse points "MB and SOAP
descriptor width \MB as obtained from a four-fold cross-validation (left) and average computational
costs as a function of"MB taken from a 5000 steps MD simulation of the metal-rich (101) IrO2 surface
(right).[188] The minimum w.r.t. to the descriptor width is identi�ed for \MB = 0.6. Due to only
marginally increasing computer costs for increasing number of sparse points we settle for an exceeding
"MB = 2000 since we are anticipating a signi�cantly larger �nal training set (see text).

two-body potential with \2b = 1.0. This is also within the recommended width range as reported
in Ref. [54]. The optimization is then performed on a logarithmic grid for four di�erent ff :fY
ratios as illustrated in Fig. 4.6 and the optimal regularization is determined to be fY = 10−3 and
ff = 10−2. Attention might further be drawn to the fact that multiple hyperparameter sets perform
almost identical as already pointed out in the beginning.

In a second step the number of sparse points"MB and the descriptor width \MB are investigated.
The performance results are shown in the left panel of Fig. 4.7. Furthermore, the average
computational costs as a function of "MB is illustrated in the right panel since the number of
sparse points is a convergence parameter. We observe a plateau with similarly well performing
parameter sets for \MB > 0.3 and "MB > 600.

As a matter of fact, the computational costs do not increase as rapidly as expected and therefore
we select "MB = 2000. While this is well beyond the number of atoms #at for the initial training
set and will hence be decreased automatically as long as #at < 2000 by the GAP formalism (see
appendix C), it ensures that the computational costs are capped for the constantly extended training
set. Obviously this also implies that the accuracy is limited and might decrease, if #at > 2000.
Indeed the �nal training set of [2] includes slightly more than 2000 iridium and well beyond 3000
oxygen environments, yet we do not observe a severe drop in accuracy at this point.

In a �nal step the in�uence of the two remaining hyperparameters =max and ;max on the scaled
MAE is investigated as illustrated in the right panel of Fig. 4.8. Here the plateau is even more
pronounced with almost identical MAEs for =max > 6 while the in�uence of ;max is basically
negligible indicating a minor dependence on the angular information - at least for the initial
training. In stark contrast, the computational costs increases exponentially with larger =max and
;max. We thus settle for =max = 8 and ;max = 4 providing an almost converged description at very
reasonable costs.
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Fig. 4.8: Scaled MAE of energy and forces as a function of the truncation parameters =max = 15 and ;max = 10
as obtained from a four-fold cross-validation (left) and average computational costs as taken from
a 5000 steps MD simulation of the metal-rich (101) IrO2 surface (right).[188] Large values of =max
and ;max yield no bene�t in accuracy but signi�cantly increased computational cost thus we select
=max = 8 and ;max = 4 (indicated by the yellow cross).

Tab. 4.1: IrO2 GAP hyperparameters employed in the two publications associated with this
thesis and summarized in section 5.

Acut \2B X2B "2b \MB =max ;max XMB "MB fY ff
[Å] [Å] [eV] [Å] [eV] [eV] [eV/Å]

[1] 5.5 1.0 1.0 20 0.5 10 3 0.1 1000 0.01 0.1
[2] 5.0 1.0 0.362 25 0.6 8 4 0.1 2000 0.001 0.01

4.3.5 Hyperparameters - How crucial are they? A personal note.

Throughout my PhD I applied several di�erent sets of hyperparameters. Naturally, in the beginning
I was choosing hyperparameters based on chemical intuition and some super�cial tests and then
gradually implemented more and more systematic selection criteria. Yet when focused on �nding
new surface structures and extending the training set the hyperparameters had to be �xed - for
better or worse. In table 4.1 the two most important sets of IrO2 hyperparameters, viz. the ones
applied in my two publications are reported.

The hyperparameters from the �rst publications have been mostly obtained via cross-validation
based on an omnium gatherum of various structures assembled in the �rst period of my ML
journey and a decent amount of chemical intuition due to a rather limited number of publications
covering this topic back then. Even with this improvable selection process we identi�ed multiple
novel, low-energy IrO2 surface complexions.[1]

Nonetheless, it was our concern to provide a guideline for a more methodological and systematic
hyperparameter selection in the second publication and the above discussed multi-step process
re�ects this e�orts. At �rst glance the hyperparameters might look similar, however especially the
di�erences in regularization (fY ,ff ) and two-body scaling X2B are non-negligible. Since adapting
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a smaller regularization and an increased focus on the SOAP contribution the second set of
hyperparameters leads to a much more �exible potential and thus higher accuracy w.r.t. to
the training data. As a potential downside of this high �exibility/accuracy though many of the
minimum structures determined via preliminary GAPs were not con�rmed as minimum by the
subsequent DFT calculation indicating a larger discrepancy between GAP and DFT PES outside
the con�guration space covered by the training set.

That said, after iteratively converging the training set both hyperparameter sets identi�ed
exactly the same low-energy surface structures (compare [2] for the convergence protocol). To be
quite frank, this was a relief since a distinct output that can only be achieved by a very speci�c
combination of hyperparameters, should be treated very carefully. From my perspective, analyzing
the in�uence of hyperparameters in general is inevitable - regardless of the actual ML method.
Yet this hyperparameter analysis should be aiming on avoiding arti�cial results and identifying
plateaus in the parameter space, instead of focusing on �nding the absolute optimum.
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5 Publications
As this thesis is publication based, in this chapter a summary of my two publications that resulted
from my research during my PhD period is given. Each overview includes a brief summary of the
genesis and its content and is followed by a more detailed elaboration on my personal contribution.
The corresponding full articles together with the respective supporting information can be found
in the appendix of this thesis.
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5.1 IrO2 Surface Complexions Identified through Machine
Learning and Surface Investigations
Jakob Timmermann, Florian Kraushofer, Nikolaus Resch, Peigang Li, Yu Wang, Zhiqiang
Mao, Michele Riva, Yonghyuk Lee, Carsten Staacke, Michael Schmid, Christoph Scheurer,
Gareth S. Parkinson, Ulrike Diebold and Karsten Reuter
Phys. Rev. Lett. 125, 206101 (2020).
DOI: 10.1103/PhysRevLett.125.206101

Summary: During an initial ab initio study of IrO2 nanoparticles and surfaces, it quickly
became obvious that relevant insights considering the catalytic surface demand a method multiple
orders of magnitude faster than DFT. As classical force �elds in this case are insu�cient due to
their lack of reactivity we turned to the Gaussian Approximation Potential (GAP) framework
as a reactive, interatomic Machine Learning (ML) potential. At that time no GAP for a multi-
component solid material other than Ge2Sb2Te5[189] has been published yet. Accordingly, we had
to develop our own method: a generation-based GAP training protocol to adequately sample the
con�guration space and identify global minima for a set of IrO2 surface structures. In this protocol
an initial training set including bulk, surface and nanoparticle structures available from previous
studies is extended within each generation, successively re�ning the associated GAP. To this end
the current GAP is used to run simulated annealing (SA) simulations of all low-index surface
structures providing a pool of new structures. From this pool of structures a varying number of
candidates is selected via visual inspection for consecutive DFT calculations. The new DFT data is
then integrated in the training set for the next generation. Over �ve generations we identi�ed, i.a.
four novel, low-energy complexions for metal-rich IrO2 surfaces that signi�cantly alter the surface
free energy phase diagram and predicted the (101) to be the predominant surface at low oxygen
potentials. Our structure prediction was then validated together with the chair of Prof. Ulrike
Diebold at the Technical University Vienna by multiple experiments and additional calculations:
Low-energy electron di�raction images of IrO2 single crystals exposing solely (101)-type surfaces
con�rm a (1 × 1) surface unit cell size hence ruling out any reconstruction of higher symmetry.
Scanning-tunneling microscopy images show a zigzag pattern that matches the surface oxygen
sites of the (101) complexion. Finally, x-ray photoelectron spectroscopy displays a shift in the
binding-energy of surface iridium (compared to bulk iridium) that is in perfect agreement with
our initial-state calculations of the respective DFT Kohn-Sham orbitals.

Individual Contributions: After realizing that a shift away from pure DFT calculations
towards a faster yet reactive method was inevitable, Christoph Scheurer and Karsten Reuter
introduced me to the GAP model. Fruitful discussion with Carsten Staacke helped me to understand
the theory and select a �rst set of hyperparameters. Already the �rst SA simulations based on the
initial GAP revealed several unknown GAP minimum structures and subsequent DFT calculations
con�rmed that one of them - the metal-rich (101) structure - also constituted a new, unknown DFT
minimum. I quickly realized that the GAP could be signi�cantly improved by including the new
structures in a training set for a consecutive GAP training. This way the generation-based learning
approach was conceived. Within the following generations, I manually selected candidates based
on visual comparison to available training structures. I further recalculated all, and con�rmed
some of the complexions for RuO2 and carried out the calculations necessary for interpreting the
XPS spectrum. The manuscript was jointly written and edited by all authors.
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5.2 Data-Efficient Iterative Training of Gaussian Approximation
Potentials: Application to Surface Structure Determination of
Rutile IrO2 and RuO2

Jakob Timmermann, Yonghyuk Lee, Carsten Staacke, Johannes T. Margraf, Christoph
Scheurer and Karsten Reuter
J. Chem. Phys. .
DOI: 10.1063/5.0071249

Summary: Despite its instant success the generation-based training protocol as summarized
above had an obvious �aw: the selection process via visual inspection is time-consuming, highly
subjective, and can not be automated. Accordingly, we introduced a similarity measure as a
systematic, quanti�able selection criterion into our work�ow and developed an updated iter-
ative and automated training protocol for the identi�cation of global minimum structures of
arbitrary metal oxide surfaces. After each SA simulation the similarity of the �nal GAP mini-
mum structure and the respective training structures is measured based on the associated atomic
environments via the SOAP kernel distance. If the kernel distance surpasses a material speci�c
threshold the GAP minimum structure is classi�ed as unknown and automatically selected for a
consecutive DFT calculation. Starting from an initial training set the GAP is re�ned via iteration
of SA simulations, DFT calculations and retraining until no further unknown GAP minimum
structures are obtained via SA runs. We further present a systematic yet data-e�cient scheme for
bootstrapping the initial training set, detailed heuristics on how to test and select appropriate
hyperparameters, and a straight-forward approach to determine the similarity threshold. This
fully-automatized, iterative training protocol is then applied to IrO2 and RuO2 and reveals ad-
ditional low-energy complexions for both materials. Our work�ow can further be extended to
di�erent systems and is easily adapted, e.g. by substituting SA by any alternative sampling method.

Individual Contributions: Already in the �nal generations of the �rst publication the iden-
ti�cation of novel structures via visual inspection became tiresome and increasingly prone to
human error. Accordingly, determining a fast and strictly reproducible selection process that
would also allow for automation was my priority after the general training concept had proven
itself as such. Measuring structural changes via the SOAP kernel distance to me seemed and still
seems like the most promising and logic solution considering the GAP framework, which does not
provide any intrinsic uncertainty measurement. I tested and integrated the similarity measure into
our work�ow together with several subtleties necessary for a fully automated roll out such as a
simple approach to determine the material speci�c similarity threshold within the �rst generation.
Finally, Yonghyuk and I developed a systematic testing suite for the hyperparameter selection
as outlined in full detail in chapter 4.3 and applied the �nal work�ow to IrO2 and RuO2. The
manuscript was jointly written and edited by all authors.
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6 Summary, Conclusions and Outlook
Hydrogen gas obtained from on-site water electrolysis coupled to renewable sources will be
a cornerstone of the future, decentralized energy landscape as a clean, versatile and storable
energy carrier and bulk chemical. Proton Exchange Membrane and Alkaline electrolyzers are
to date the only two setups that are assumed to meet industrial requirements and challenge the
currently cheaper and thus predominant steam reforming. Although the PEM cell o�ers some
essential advantages over the Alkaline Electrolyzer such as higher power density and pressure
and a more compact stack design, the roll-out at industrial scale is a long time coming. This is
mainly due to the harsh, corrosive operating conditions, especially at the anode side, and the
hence very limited number of potential catalysts. E�ectively IrO2 is still the only stable catalytic
material. However, the very low abundance of iridium demands a metal loading reduction of
at least one order of magnitude. To achieve such an increase in performance it is bene�cial if
not indispensable to gain knowledge of the atomic processes and structures involved in oxygen
evolution reaction (OER) at the anode. Yet due to experimental (and computational) restrictions
this knowledge is still very limited. Among other things, the actual surface morphologies of the
individual facets of catalyst-particles have not been conclusively identi�ed preventing the further
analysis of potential active centers. DFT calculations have proven to constitute a powerful tool
considering the classi�cation of di�erent surface morphologies, but ultimately have to capitulate
given the sheer number of calculations required by global optimization techniques. In recent
years, there is increasing evidence that Machine Learning (ML) methods might close exactly this
gap, as they provide (almost) DFT-accuracy at a fraction of the costs.

Even though this thesis was not intended to evolved around an ML application, the challenges
of a global optimization of a set of surface structures almost inevitably led me to consider ML
methods that were emerging at the time. Already the tentative steps indicated the great potential
of combining the advantages of ML and DFT methods. The �rst version of our iterative training
protocol - still heavily human supervised - revealed multiple unknown surface morphologies,
so-called complexions, that have been experimentally validated by our collaborators in Vienna and
reported in a joint publication[1]. A fully automated, data-e�cient, iterative training protocol for
structure identi�cation via simulated annealing was then presented in the second publication[2].
To be frank, the seemingly e�ortless identi�cation of new structures based on such a lean, simplistic
protocol came as a surprise to me. While this partially can be attributed to material speci�cs such
as a high locality and clearly de�ned PES minima, these �ndings would have not been possible
without the GAP ML method.

Very sceptical w.r.t. ML methods at �rst, I quickly put aside my reservations and realized that ML
potentials provide two key advantages I have always craved for when working with classical force
�elds: reactivity and seamless integration of new data. The constant expansion of my practical
experience (and eventually also updating my theoretical knowledge) left me no choice but to
recognize that ML potentials open up possibilities in computational chemistry, so far unheard of.
That does not mean that ML methods are a panacea and transfer without further ado and without
restriction to all major challenges in chemistry. Just on the contrary, we are still getting to know
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what ML methods are capable o� - and what not. Relentless analysis and, if necessary, tedious
adjustments of new ML potentials should remain a main driver in this �eld of research. For me
personally it was of immense importance to discover that di�erent hyperparameters still lead to
the identi�cation of exactly the same low-energy complexions in our iterative training protocol.
This was a substantial boost for my con�dence in Machine Learning as it basically con�rms that
ML potentials re�ect the underlying physics over a broad range of hyperparameters. Obviously,
the frequent evaluation of the GAP minimum structures via DFT calculations within the iterative
training protocol serves as built-in validation. Eventually though, the system size will exceed the
DFT limit and new validation respectively evaluation schemes have to be applied.

I hope that my work helped to lay the foundation for further research considering the OER
on IrO2 and RuO2 surfaces. Two topics in particular, come to my mind: developing a GAP
training protocol for a metal-water interface or sampling the actual OER on selected surfaces,
e.g. via nudged elastic band simulations based on a speci�cally tailored GAP. Running excessive
simulations of nanoparticles in aqueous solution with a highly accurate, reactive and �exible
potential or extracting a complex reaction mechanism on a variety of di�erent catalytic surfaces -
two things that seemed utopian at the beginning of my scienti�c studies less than 10 years ago,
are now not far from becoming reality. I guess, therein lies the magic of science.
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A Gaussian approximation potential was trained using density-functional theory data to enable a global
geometry optimization of low-index rutile IrO2 facets through simulated annealing. Ab initio thermo-
dynamics identifies (101) and (111) (1 × 1) terminations competitive with (110) in reducing environments.
Experiments on single crystals find that (101) facets dominate and exhibit the theoretically predicted
(1 × 1) periodicity and x-ray photoelectron spectroscopy core-level shifts. The obtained structures are
analogous to the complexions discussed in the context of ceramic battery materials.

DOI: 10.1103/PhysRevLett.125.206101

First-principles computations based on density-
functional theory (DFT) have become a standard tool to
determine surface structure. In the standard approach, a set
of trial structures are optimized geometrically to identify
minima on the ground-state potential-energy surface.
Observables are computed to check for consistency with
experimental data, and one structure is declared best. While
successful, this approach depends on the trial structures,
and it is possible that the true surface is simply missed.
With the increasing efficiency of DFT calculations and

computational power, DFT-based, global geometry optimi-
zation has been heralded as a significant step to overcome
this limitation [1–6]. Despite impressive successes of simu-
lated annealing or basin hopping work, this direct approach
has never truly affected the popularity of the “trial set and
local geometry optimization” approach. The excessive
number of computations required by even the most efficient
algorithms [7,8] leads to an intractable computational
demand, particularly for reconstructions with large surface
unit cells. Fortunately, machine-learned (ML) interatomic
potentials [9,10] may now overcome this deadlock, and
enable a paradigm shift in our approach to automatic
structure searches. These potentials can be trained with a
feasible number of DFT calculations and, if needed, can be
retrained on the fly in the course of an ongoing global
geometry optimization. Crucially, the optimization is per-
formed using the inexpensive ML potential, which enables
extensive sampling of the configuration space.
Here, we use this approach to find the most stable surface

terminations of rutile-structured oxides. Our motivation

came from empirical reports that IrO2 catalysts for proton-
exchange membrane water electrolysis exhibit increased
activity following electrochemical activation with a small
number of reductive formation cycles [11,12]. We hypoth-
esized this might originate in a metal-rich complexion,
which is similar to the complexions discussed in the context
of ceramic battery materials [13]. A complexion is a surface
(or interfacial) phase that possesses a thermodynamically
determined equilibrium thickness on the order of nano-
meters, but is neither a thin version of a known 3D bulk
phase nor merely a reconstructed surface layer. While the
ubiquity and importance of complex (often large surface-
unit-cell) reconstructions at surfaces of compound catalysts
under operation conditions is well known [14–18], com-
plexions can be more subtle by only involving deeper
compositional changes at unchanged translational sym-
metry. After training a ML Gaussian approximation poten-
tial (GAP) [19,20] with DFT data, simulated-annealing-
based global optimization immediately leads to very stable
new terminations on the (101) and (111) low-index surfaces
of rutile IrO2 with mixed Ir—Ir and Ir—O bonding. Direct
ab initio thermodynamics [21] calculations confirm the
high stability of these complexions under strongly reducing
conditions [22]—not only on IrO2, but also on RuO2,
which is the alternative state-of-the-art rutile-structured
catalyst used in proton-exchange membrane electrolysis.
The theoretical predictions are supported by surface inves-
tigations of IrO2 single crystals, which exhibit (101) facets
rather than the more common low-energy (110) orienta-
tion of rutile [23,24]. Characterization by low-energy
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electron diffraction (LEED), scanning-tunneling micro-
scopy (STM), and x-ray photoelectron spectroscopy
(XPS) confirms the properties of the predicted metal-rich
complexions, explaining why IrO2 nanoparticles often
expose (101) facets [25–31].
Our investigation starts with the creation of a reference

database of DFT structures to train the nonparametric GAP
potential. GAPs decompose the total energy of a system
into a sum of atomic energies that depend on the local
chemical environment [19,20]. This dependence is learned
from the atomic environments present in the reference
database through Gaussian process regression. For energy
predictions, the similarity between each atom in an
unknown structure and representative training atoms is
then determined via a kernel function. In this work, we
employ the smooth overlap of atomic positions kernel [32],
which considers all neighboring atoms within a radius of
5.5 Å, combined with a simple two-body kernel based on
interatomic distances. The reference database comprises
136 structures calculated with QUANTUMESPRESSO [33]
and the revised Perdew-Burke-Ernzerhof (RPBE) [34]
exchange-correlation functional. These structures span a
range of most diverse chemical environments, and com-
prise various optimized or near-optimum crystalline bulk
and low-index surface geometries of different stoichiom-
etry, as well as highly nonequilibrium structures taken from
snapshots of high-temperature molecular dynamics (MD)
simulations of differently shaped and sized nanoparticles.
Validated against an equally diverse set of 39 structures not
used in the training, the final GAP reproduces the widely
varying DFT formation energies with a mean average error
of 25 meV=atom.
To explore a possible formation of complexions, we

performed extensive simulated-annealing MD runs for
all five symmetry-inequivalent low-index surfaces [35]

of rutile IrO2, each time starting with the metal-rich regular
(1 × 1) termination expected under reducing conditions.
Specifically, we employ periodic boundary-condition
supercells with thick slabs comprising at least seven rutile
trilayers and (3 × 3) or (4 × 4) surface unit cells as further
detailed in the Supplemental Material (SM) [36]. The
temperature is initially raised to around 1000 K for
20 ps, before a slow cooling rate of 3 K=ps is applied
during an additional 250 ps. After a final geometry
optimization, we obtain new structures with a significantly
lower energy, in particular for the (101) [or the symmetry
equivalent (011)] and the (111) orientations. Analysis of
these structures (Fig. 1) reveals that neither correspond to a
reconstruction with a lowered translational symmetry, but is
instead a reordering of the original rutile layering sequence
that preserves the regular (1 × 1) lateral periodicity. Direct
recalculation and geometry reoptimization of these struc-
tures at the DFT-RPBE level confirms the reliability of the
GAP prediction. The structures are significantly lower in
energy than the regular Ir-rich (1 × 1) termination for the
respective orientation and, in slabs where at least the five
topmost layers are allowed to move, the regular Ir-rich
(101) termination relaxes barrierlessly into the new
complexion.
Within an ab-initio thermodynamics framework [21], we

can compare the stability of these new structures to all other
possible and known (1 × 1) terminations of rutile IrO2.
Generally, there is at least one metal-rich, one stoichio-
metric, and one oxygen-rich termination for each low-index
facet, with some facets lacking some terminations and
some facets additionally allowing for an oxygen-superrich
termination (Figs. S7–S11 of SM [36]) [44]. Figure 1
shows the resulting surface phase diagram. Only the lowest
surface free energy is shown for each facet as a function of
the chemical potential of oxygen ΔμO, and a kink in the
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FIG. 1. Left: side views of identified complexions. Ir and O atoms are drawn as blue (large) and red (small) spheres, respectively.
Right: computed surface free energies γ of the five symmetry-inequivalent low-index facets in a pure oxygen atmosphere. In the top
x axis, the dependence on the oxygen chemical potentialΔμO is translated into a temperature scale at 0.2 bar pressure (the oxygen partial
pressure in air). The dashed lines indicate the surface free energies without complexions.
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surface free-energy line reflects a change in the most stable
termination. Metal-rich terminations exhibit a positive
slope, O-rich terminations a negative slope, and stoichio-
metric terminations are independent of ΔμO. For low
oxygen chemical potentials, the complexions significantly
lower the surface free energy and change the relative
energetic ordering. The same form and relative ordering
of the surface free energies is obtained with the stronger-
binding Perdew-Burke-Ernzerhof (PBE) [45] functional,
but the entire phase diagram shifts to lower ΔμO (see
Fig. S13 of SM [36]). While we cannot quantify the gas-
phase conditions of the phase stability, the (110) facet
would clearly be the lowest-energy orientation in reducing
environments in the absence of complexations, in line with
the predominant focus of surface-science work on this
particular facet [23,24]. The stability of the complexions
makes the (101) and (111) facets energetically competitive.
In order to test this surprising finding, we investigate

the surfaces of IrO2 single crystals grown in a tube furnace
with an O2 inflow of 100 ml=min at atmospheric pressure.
Ir was supplied from Ir powder (Alfa Aesar, 99.99%) at
1250 °C, and flake-shaped IrO2 crystals formed at the
colder end of the furnace (1000 °C). Two of the larger
crystallites (both ca. 3 mm2 top surface area) were chosen
for surface studies. Electron backscatter diffraction
immediately reveals that all areas where a diffraction
pattern could be identified expose (101)-type surfaces
(Fig. S18 of SM [36]).
The two IrO2 samples were then loaded to an ultrahigh

vacuum (UHV) chamber and prepared by sputtering (1 keV
Arþ ions, pAr ¼ 8 × 10−6 mbar, 10 min) and annealing in
oxygen (450 °C, 40 min). Oxygen gas was dosed through
an oxygen shower, with the gas outlet very close to the
sample. This increases the local pressure by a factor of
10–30 compared to the O2 pressure measured in the
chamber (5 × 10−6 mbar).
Low-energy electron diffraction (LEED) images

[Fig. 2(b) herein, and Fig. S20 in the SM [36] ] reveal a
rectangular pattern with the spots moving toward the center
of the screen with increasing incident beam energy. The
unit cell size of ð0.58� 0.04Þ × ð0.47� 0.04Þ nm2 was
quantified using LEED patterns of a Pd(111) single crystal
as a reference. These numbers are in good agreement with
the (1 × 1) unit cell of IrO2ð101Þ (0.55 × 0.45 nm2). Some
additional diffraction spots are also observed, but these
move in nonradial directions with increasing energy,
indicating the presence of other facets for which the beam
incidence is off normal.
STM images acquired at room temperature after UHV

preparation [Fig. 2(a)] exhibit a zigzag pattern with (1 × 1)
periodicity. Since the intrinsic drift of the STM scanner
cannot be corrected by comparison to a known structure,
distance measurements are unreliable, but the 0.55 ×
0.45 nm2 spacing expected for an IrO2ð101Þ-ð1 × 1Þ unit
cell fits the data within the expected error. Some bright

point features are also visible, which we attribute to either
lattice defects or adsorbates. Interestingly, the periodicity
of these protrusions cannot be reconciled with a bulk-
truncated (1 × 1) surface (Fig. S22 [36]). On the proposed
complexion, the features are located at surface oxygen
sites, allowing tentative assignment as either surface
hydroxyls or oxygen vacancies.
On one of the samples, a second, pseudohexagonal

surface phase was also observed (Fig. S19 [36]). The
nearest-neighbor distances were determined as ≈0.55 nm,
which would fit an IrO2ð111Þ-ð1 × 1Þ unit cell. However,
since the unit-cell angle cannot be accurately determined by
STM alone, a (2 × 2) superstructure on Ir(111) could, in
principle, also fit the data. We also note that a hexagonal
reconstruction of the (101) facet was previously observed
on rutile TiO2ð101Þ [46] and attributed to contamination.
XPS of the Ir 4f region is shown in Fig. 2(c). We fit the

spectrum using peak shapes and oxide satellite peak
positions from Ref. [47], which results in a peak at
61.9 eV (blue) due to Ir(IV) and a lower-binding-energy
component shifted by 0.6 eV at 61.3 eV (red). This
agrees with our initial-state calculations of the 4f DFT
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FIG. 2. IrO2 crystal after UHV preparation. (a) STM image of
the IrO2 sample (30 × 20 nm2, Usample ¼ −2 V, Itunnel¼0.2 nA)
with the inset processed to enhance the visibility of the atomic
corrugation. (b) LEED pattern from one of the IrO2 crystals
(Eelectron ¼ 70 eV). A rectangular pattern (unit cell drawn in
blue) is clearly visible, and its diffraction spots move toward the
center of the screen with increasing energy, as expected for
normal beam incidence. (c) XPS data (points) and fit (lines) of the
Ir 4f region (Mg Kα anode).
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Kohn-Sham orbital positions for the IrO2ð101Þ complex-
ion, which yield an initial-state shift of 0.6 eV for the top
two Ir layers with respect to a bulklike Ir atom deeper in the
IrO2 slab using both the RPBE and PBE functionals (see
SM [36]). A much larger shift (1.1 eV toward lower binding
energies) is predicted for the top layer of the regular Ir-rich
(101) termination. We also acquired Ir 4f XPS peaks from
a freshly sputtered sample (Fig. S21 [36]), which is
dominated by a strong contribution of metallic surface
iridium at 60.9 eV, in agreement with the position reported
in the literature for Ir single crystals [32]. Overall, the
experimental evidence clearly shows that the crystals are
dominated by (101) facets with a (1 × 1) surface symmetry,
and supports the predicted IrO2ð101Þ-ð1 × 1Þ complexion.
Since the crystal growth direction was not enforced, and the
relatively rough, vicinal surfaces would have faceted to a
more stable orientation, the dominance of the (101) surface
is an indirect confirmation of its thermodynamic stability at
the growth conditions.
In our view, the complexions are precursors to a full

reduction of the bulk oxide. Two layers with mixed Ir─O
and Ir─Ir bonding are obtained through a mere reordering
of the rutile layering sequence of the (101) and (111)
orientations. The increased coordination of the topmost Ir
atoms (from threefold to fourfold) stabilizes the structures.
Adding further equivalent complexion layers does not
further increase this coordination, and we calculate higher
surface free energies for such structures (see Fig. S12 [36]).
As such, the identified complexions are novel 2D inter-
phases, and not just thin versions of known 3D bulk
structures. They are thus quite analogous to the much
discussed surface oxides as precursors to a full oxidation of
transition metals [48–50].
With this understanding, one would expect complexions

to be a general feature of oxides in reducing environments,
and follow-up computations predict that analogous
complexions render the (101) and (111) facets energetically
competitive for rutile RuO2 under reducing conditions
(Fig. S14 [36]).
In summary, a completely unexpected class of surface

structures was readily identified for a well-studied type
of oxide crystals using ML interatomic potentials. That
such simple structures have consistently eluded previous
trial-structure-based surface structure determination
work on IrO2 or RuO2 shows them to be counterintuitive,
and one wonders how many more surprises await us
when global geometry optimization based on predictive-
quality machine-learned potentials has reached full
maturity.
See Supplemental Material [36] for additional detailed

information on the reference database employed for the
training of the ML potential and simulated-annealing runs,
on the ab initio thermodynamics results, on the initial-state
core level-shift calculations, as well as on the experimental
growth and characterization work.

All input and output files for the DFT training structures
are available at the NOMAD database [51].
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Machine-learning interatomic potentials like Gaussian Approximation Potentials (GAPs) constitute a powerful class
of surrogate models to computationally involved first-principles calculations. At similar predictive quality but signif-
icantly reduced cost, they could leverage otherwise barely tractable extensive sampling as in global surface structure
determination (SSD). This efficiency is jeopardized though, if an a priori unknown structural and chemical search
space as in SSD requires an excessive number of first-principles data for the GAP training. To this end, we present a
general and data-efficient iterative training protocol that blends the creation of new training data with the actual sur-
face exploration process. Demonstrating this protocol with the SSD of low-index facets of rutile IrO2 and RuO2, the
involved simulated annealing on the basis of the refining GAP identifies a number of unknown terminations even in the
restricted sub-space of (1×1) surface unit-cells. Especially in an O-poor environment, some of these, then metal-rich
terminations, are thermodynamically most stable and are reminiscent of complexions as discussed for complex ceramic
materials.

I. INTRODUCTION

Machine-learning (ML) interatomic potentials trained
with first-principles data promise steep advances for the
predictive-quality modeling and simulation of molecules and
materials.1–10 At a computational cost that is significantly re-
duced compared to direct first-principles calculations, such
ML potentials allow to address larger system sizes or perform
more extensive dynamical simulations and sampling. While
typically not as cost efficient as classical force fields with fixed
functional form, they straightforwardly allow to include reac-
tivity and, most importantly, can seamlessly be improved by
additional training data.11

This versatility also has its downsides though. With the
ML potential itself completely void of any physics, the train-
ing data needs to adequately cover the structural and chemical
space of interest. Depending on the application, the underly-
ing multiple first-principles calculations for the training data
could then themselves start to become a computational bottle-
neck. The latter is e.g. particularly pronounced for surface sci-
ence or interfacial applications like heterogeneous catalysis or
batteries. There, training structures may necessarily extend to
large supercell calculations, which even on an efficient semi-
local density-functional theory (DFT) level may constitute a
formidable computational burden. This calls for data-efficient
training protocols that achieve a reliable ML potential with a
minimum number of DFT training data (of tractable system
sizes).

A further complication in this respect is that the targeted
chemical space may actually not be known a priori at the
beginning of a study. Take the example of surface structure
determination that we want to specifically pursue here. We
would like to use an ML potential to afford global structure de-
termination techniques and identify unknown, possibly com-
plex surface structures with non-bulk-like coordinations and
chemical composition. If we do not know these structures be-

forehand, how can we make sure our training set covers all
relevant local geometric and compositional motifs, while si-
multaneously being of minimum size?

The obvious solution to this challenge is to resort to itera-
tive training protocols12. While exploring new parts of chem-
ical space, some form of uncertainty quantification will al-
low the ML potential to realize that it requires new pertinent
training data. Corresponding new first-principles calculations
will (ideally automatically) be initiated and the potential be re-
trained. By now a number of such iterative learning strategies
have been reported, e.g. for elementary carbon or silicon,13–16

binary bulk materials like zirconia,17 nanoparticles12,18,19 and
even for selected surface morphologies20. While concep-
tionally all similar, technical differences between these ap-
proaches extend from the ML model used (e.g. full or sparse
kernel regression, neural networks) over the way the un-
certainty is measured (e.g. committee/ensemble methods,
Bayesian uncertainty or dissimilarity to existing training data)
to the way the automatized protocol is tailored to the targeted
application (e.g. learning of the full potential energy surface
or only of parts of it, with same or variable accuracy). In this
context, we here present and detail a two-stage highly data-
efficient training protocol specifically geared toward surface
structure determination and based on sparse Gaussian process
regression. It consists of an initial bootstrapping, in which
existing domain knowledge on the system of interest is used
to generate a suitable preliminary training set and arrive at
a rudimentary ML potential that satisfactorily describes key
physical properties. In a second stage, this training set is it-
eratively augmented and the potential refined. Importantly,
this refinement stage uses simulated annealing (SA) on the
ML potential energy surface to efficiently sample the complex
phase space of surface structures and identify new training
structures as those that exceed a critical dissimilarity to those
already computed at the first-principles level before. In this
way, the training gets intimately intermingled with the actual
global optimization process and the evolving, minimum-size



2

training set is ideally tailored to identify candidate structures
that can subsequently be compared within an ab initio ther-
modynamics surface phase diagram21,22.

We specifically demonstrate this approach by developing
Gaussian Approximation Potentials (GAPs)1,23 for the surface
structure determination of low-index rutile IrO2 and RuO2
facets. Both oxides are known active oxidation catalysts in
thermal and electro catalysis, but equally known for their
propensity to undergo surface structural and compositional
changes under operating conditions24–34. In preceding work
by some of us,10 a GAP potential based surface structure
determination could already identify hitherto unknown, so-
called surface complexions for some IrO2 facets. The itera-
tive training of the potential was largely manual though, and
involved the addition of training structures based on visual
inspection or the random addition of nanoparticle and high-
temperature structures for a perceived training set diversity.
Unsatisfied with this, we here revisit the problem with our
automated training protocol that after the initial bootstrap-
ping does not require any further human decision making. In
turn, the bootstrapping set itself consists of those reference
structures (bulk, molecular, canonical surface terminations)
that would always have been explicitly computed by first-
principles in a surface structure determination project any-
way. Gratifyingly, this new protocol identifies exactly the
same complexions as the laboriously developed GAP poten-
tial before. Moreover, the transferability of the protocol is
demonstrated by the application to RuO2. In our preceding
work, we had simply recomputed the identified IrO2 complex-
ions for this iso-structural oxide to demonstrate their stability.
Intriguingly, the new protocol not only confirms this, but re-
veals that RuO2 surfaces in fact exhibit an even wider variety
of these novel surface terminations.

II. METHODS

A. Gaussian Approximation Potentials

GAPs are a widely used class of interatomic ML potentials,
based on Gaussian process regression. A detailed description
is provided in the literature.1,23,35 For self-containment, we
therefore provide here only a brief introduction to the formal-
ism, emphasizing the aspects most relevant to this project.

Interatomic Potential: The GAPs used herein are based on
a combination of two-body (2B) and many-body (MB) contri-
butions. This means that we calculate the total energy EGAP
of a system from its atomic coordinates Xn as

EGAP(Xn) =∑
i, j

δ 2
2B

M2B

∑
m=1

cm,2Bk2B(ri j,rm)

︸ ︷︷ ︸
E2B

+∑
i

δ 2
MB

MMB

∑
m=1

cm,MBkMB(χi,χm)

︸ ︷︷ ︸
EMB

.

(1)

Here, the first sum in E2B goes over all pairs of atoms i, j,

and the first sum in EMB goes over each atom i. The second
sum in each term goes over a set of M2B/MB representative
data points (the sparse set, see below), and contains the re-
gression coefficients cm,2B/MB and the respective kernel func-
tions k2B/MB. The latter are used to measure the similarity
between two geometric descriptors (representations), which
are computed from Xn. In the 2B case, these are simply in-
teratomic distances ri j. In the MB case, these are vectorial
representations of the atomic environment χi, based on the
Smooth Overlap of Atomic Positions (SOAP).1,23 A more de-
tailed description of the kernel functions and representations
used herein is given below. The final yet undefined parame-
ters in Eq. (1) are δ2B and δMB, which are used to specify the
expected relative weighting of the two energy contributions.

While a full MB description of the interatomic potential
is in principle possible, the explicit inclusion of a 2B term
has been found to lead to significantly more stable and data-
efficient potentials.13 The reason is that, due to its high flex-
ibility, the high-dimensional representation used for the MB
contribution extrapolates much more poorly than a simple 2B
potential. The weighting specified by the δ parameters can
therefore be used to switch between a less flexible but more
robust potential with strong 2B character and a highly flexible
MB potential.

Assuming a given choice of kernel and representation (and
a training database), this leaves the determination of the re-
gression coefficients cm,2B/MB. In GAPs these are obtained by
minimizing the regularized least-squares loss function

ℓ=
N

∑
n=1

|yn − ȳ(Xn)|2
σ2

n
+R . (2)

Here, R is a Tikhonov regularization term (see ref. 35 for de-
tails), yn are reference data points (in the present case, total
energies and force components on all atoms of the training
structures) and σn is an inverse weighting factor for a given
data point. ȳ(Xn) indicates the GAP prediction for the prop-
erty yn, given the atomic coordinates Xn based on the coef-
ficients cm,2B/MB. Specifically, this means that energies are
predicted according to Eq. (1) and force components by tak-
ing the corresponding derivative.

The role of the regularization term R is to penalize large re-
gression coefficients, which indicate overfitting. As increas-
ing the magnitude of σn increases the relative contribution of
R to the loss function, these parameters are often called regu-
larization strengths (particularly if a single parameter is used
for all data points). Alternatively, they can be interpreted as
the uncertainty associated with a given data point or the ex-
pected accuracy of the GAP. In other words: Larger values of
σn lead to a smoother potential, smaller values to a more pre-
cise fit of the training set. Furthermore, using different values
of σn for energies and forces allows adjusting the weight of
these properties in the loss function.

Kernels and Representations: The central components in
the GAP energy expression of Eq. (1) are the kernel func-
tions k2B/MB and the corresponding geometric representa-
tions. Kernel functions are simply a similarity measure be-
tween representations usually ranging from 0 (not similar at
all) to 1 (identical). In this sense, an intuitive explanation of a
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GAP model is that it predicts the energy of a configuration ac-
cording to its similarity to other configurations in the training
set. Since this similarity is defined by the choice of represen-
tations and kernels, these are critical to the performance of the
model.

For the two-body contribution, the representation of a pair
of atoms is simply its interatomic distance ri j and a squared
exponential (Gaussian) kernel is used as a similarity measure,

k2B(ri j,rm) = exp

(
− ∥ri j − rm∥2

2σ2
2B

)
. (3)

Inspecting Eq. (1), this means that E2B is a pair-potential,
which consists of M2B Gaussians of width σ2B centered at the
sparse points rm (see below). Note that, in order to ensure
size-extensivity and favorable computational scaling, the two-
body potential is constrained to be short-ranged. To this end,
a cutoff parameter rcut,2B is defined.

For the MB contribution to the potential, the SOAP repre-
sentation and kernel are used. The main idea of SOAP is to
generate a rotationally and permutationally invariant finger-
print of the local atomic environment within a sphere of radius
rcut,SOAP around a given central atom i. To this end, the envi-
ronment is represented as a smooth density function ρ , which
is obtained by smearing out the atomic positions of all atoms
in the environment with Gaussian functions of width σSOAP.
This density is then expanded with a set of basis functions
centered on i, consisting of spherical harmonics and orthogo-
nal radial functions. Finally, the corresponding expansion co-
efficients are transformed into the rotationally invariant power
spectrum and collected in a normalized vector χi, which is the
SOAP representation.

As a similarity measure, the SOAP representation is typi-
cally used with low-order polynomial kernels, so that

kMB(χi,χm) = (χi ·χm)
ζ . (4)

Herein, we use ζ = 2 throughout. To fully define the SOAP
representation, the number of radial and angular basis func-
tions (nmax and lmax) needs to be specified.1,23

Sparsification: An essential aspect of GAP models is
that they use a sparse variant of Gaussian process regres-
sion (GPR). This is important because the training cost of
full GPR models scales cubically with the number of train-
ing data points N (and the prediction cost linearly). This
quickly becomes prohibitive for large training sets, in par-
ticular when also training on forces (where each force com-
ponent on each atom inside a training structure provides one
data point). Sparse GPR models still use the full training set in
the loss function, Eq. (2), but only use a sparse set of M < N
data points in the energy expression Eq. (1). In this manner,
the training costs are substantially reduced and the energy pre-
diction cost becomes formally independent of the training set
size. Of course, this means that the sparse points need to be
suitably selected.

For the two-body potential this is achieved by placing the
sparse points on a regular grid between zero and the cutoff
length rcut,2B. For the high dimensional MB potential such

a grid would be extremely inefficient, however. If the train-
ing set is reasonably small (i.e. on the order of 1000 unique
atomic environments per element), all atomic environments
can be used as sparse points instead. For larger training sets,
the most diverse environments of each species are selected us-
ing CUR decomposition.36 Note that even if all environments
are used, a GAP is always a sparse GPR model, as the full
GPR model would use a regression coefficient for every sin-
gle force component in the training set. This becomes pro-
hibitive even for fairly small training sets, so that training a
GPR model on forces in practice always requires sparsifica-
tion.

Kernel Distance: In addition to being a crucial ingredient
of the GAPs themselves, the SOAP kernel can also be used
for selecting new training structures for the iterative training
scheme described below. To obtain a data-efficient approach,
it is important to ensure that the structures that are iteratively
added to the training set are maximally different from train-
ing configurations already present in the set. As discussed
above, SOAP measures the similarity of atomic environments
and not of complete configurations of atoms, however. It is
therefore common to use the averaged or matched similarities
of the environments in two configurations for such a selection
task.11,37 While this is very useful for comparing and map-
ping structures,38 such global comparisons can overshadow
the presence of a single unusual atomic environment, in an
otherwise similar configuration. This is particularly promi-
nent in surface applications, where inside the employed super-
cells a dominant fraction of bulk-like atoms is always present
in the inner layers of the slab. We therefore rather define the
similarity of configurations A and B (where B could also be
a group of different configurations) by the minimal similar-
ity kMB(χa,χb) between two atoms a ∈ A and b ∈ B, where
only identical species are compared. For convenience, we fur-
ther convert this similarity provided by the SOAP kernel into
a kernel distance using

κ(A,B) =
√

2−2min
a∈A
b∈B

(kMB(χa,χb)) , (5)

where a larger distance κ(A,B) indicates more dissimilar
structures.

B. Density-Functional Theory Calculations

Computational Settings: To achieve a predictive-quality
GAP, all training data for both metallic oxides are com-
puted with first-principles semi-local DFT using the revised
Perdew-Burke-Erzerhof (RPBE)39 functional to treat elec-
tronic exchange and correlation. The periodic boundary con-
dition calculations are performed using a plane-wave basis
set together with SG15 optimized norm-conserving Vanderbilt
pseudopotentials40 as implemented in the QuantumEspresso
software package41. The kinetic cutoff energy for the expan-
sion of the wave function and the charge density is set to 80 Ry
and 320 Ry, respectively, and Brillouin zone integrations are
performed with a uniform reciprocal distance of 0.02 Å−1.
This generates (11×11×16) k-point grids for both rutile IrO2
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and RuO2 bulk unit cells, and corresponding grids for the var-
ious surface supercell calculations. Optimized lattice param-
eters for both oxides are obtained by minimizing the stress
tensor and all internal degrees of freedom iteratively until the
external pressure falls below 0.5 kbar. Geometry optimiza-
tion for the surface calculations employed Broyden-Fletcher-
Goldfarb-Shanno (BFGS) minimization42–44 until residual
changes in total energy and all force components fell below
1.4×10−2 meV and 0.3 meV/Å, respectively. At these compu-
tational settings, convergence tests detailed in the Supporting
Information (SI) demonstrate a high degree of convergence of
the key quantities entering the GAP potential training, i.e. sur-
face free energies to within 5 meV/atom and forces to within
50 meV/Å.

Supercell Setups: All five symmetry-inequivalent low-
index surfaces (hkl) of rutile IrO2 and RuO2 are modeled
via a supercell approach.24,33 Each slab model exposes a
(1×1) surface unit-cell and contains at least seven trilayers of
MO2 units (see Table S1 for a detailed list). A minimum vac-
uum region of 15 Å thickness prevents interactions between
periodic slabs. Truncation at different planes in the (hkl) crys-
tal orientation generally gives rise to one metal-rich, one sto-
ichiometric, and one oxygen-rich termination for all consid-
ered facets. One exception is (111), where two different sto-
ichiometric terminations arise. Likewise, for the (001) facet
layered truncation leads only to a stoichiometric termination.
Here, we therefore also consider one termination with an oxy-
gen vacancy and one termination with an excess oxygen at the
very top layer to build a metal-rich and oxygen-rich termina-
tion for this orientation, respectively. Under strongly oxidiz-
ing conditions, the rutile surfaces are furthermore known to
stabilize peroxo-type surface moieties24,33. One such peroxo-
termination for each facet is thus also considered, with all
structures further detailed in the SI.

Ab Initio Thermodynamics: In order to determine the rela-
tive stability of different surface structures in thermodynamic
equilibrium with a surrounding oxygen-containing gas phase,
we adopt the ab initio thermodynamics approach21,22 and cal-
culate the surface free energy γ(hkl),σ

surf of a given crystallo-
graphic orientation (hkl) and termination σ as

γ(hkl),σ
surf =

1
A(hkl)

[
G(hkl),σ

surf −∑
i

n(hkl),σ
i µi

]
. (6)

Here, G(hkl),σ
surf is the Gibbs free energy of the surface system

with surface area A(hkl), and µi is the chemical potential of
various species i (i =Ir (or Ru) and O) present in the system.
n(hkl),σ

i is the number of atoms of species i within the periodic
supercell of the slab model.

Assuming the surface to be in thermodynamic equilibrium
with the respective bulk MO2 (M=Ir and Ru) phase, we can
connect the chemical potentials of metal (µM) and oxygen
(µO) to the Gibbs free energy of MO2 bulk, GMO2,bulk = µM+
2µO. The chemical potential of oxygen is instead set by the
equilibrium with the surrounding gas phase. It is calculated as
µO = 1

2 EO2 +∆µO, with EO2 the total energy of an isolated O2

molecule including zero point energy (ZPE) contributions45

and the relative chemical potential ∆µO allowing to connect
to finite temperature and pressure (T, p).21,22. In the differ-
ence in Eq. (6) the condensed-phase Gibbs free energies are
approximated by the DFT-computed total energies.21 The fi-
nal working equation to determine the surface free energies
thus reads

γ(hkl),σ
surf (∆µO) =

1
2A(hkl)

[
E(hkl),σ

surf −n(hkl),σ
M EMO2,bulk

−
(

n(hkl),σ
O −2n(hkl),σ

M

)(1
2

EO2 +∆µO

)]
.

(7)

C. Molecular Dynamics Simulations

Simulation Details: All GAP based molecular dynamics
(MD) simulations are performed with the LAMMPS code46

and using the velocity Verlet algorithm as time integrator47.
The periodic boundary condition simulation cells contain
(1×1) symmetric slabs with at least 7 trilayers (see Table S1
for all unit-cell lattice vectors and slab thicknesses), separated
by at least 15 Å vacuum.

Simulated Annealing: For the combined global geometry
optimization and iterative identification of new structural mo-
tifs for GAP training, we employ a SA protocol. Exploiting
the small volumetric thermal expansion coefficients for both
IrO2 and RuO2,48 the SA is carried out at a 1 fs time step
within a canonical ensemble, and only relies on an efficient
Berendsen thermostat49. In the SA, the temperature is first
raised from 200 to 1000 K for 500 ps. After that, the system
is quenched back to 200 K within another 500 ps, i.e. we ap-
ply a constant heating and cooling rate of 1.6 K/ps. The initial
GAP V0 generated from the bootstrapping set, see below, still
offers only a poor description of the potential energy surface,
which is why for the SA in the very first refinement step we
chose to only heat up to 500 K with a decreased heating and
cooling rate of 0.8 K/ps.

The resulting finite temperature structure after each SA is
finally fully optimized through conjugate gradient minimiza-
tion with the same convergence threshold as used for the DFT
calculations. For the surface structures contained in the initial
training set, these optimized structures are obtained by mini-
mization starting from the bulk-truncated geometries.

III. RESULTS AND DISCUSSION

A. Data-Efficient Simultaneous GAP Training and Surface
Exploration Protocol

Bootstrapping: Our iterative GAP training protocol starts
with a bootstrapping step, in which we assemble an initial
data set to establish a preliminary potential. This first GAP V0
should fulfill certain minimum criteria regarding the antici-
pated chemistry of the targeted system and application. One
guideline is thus to select training structures that optimally
convey this chemistry and (largely) cure obvious teething
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problems such as non-physical atomic pair potentials or a
(concomitant) instability of key reference structures. In view
of data efficiency another guideline is to select training struc-
tures that provide maximum information (e.g. in form of
symmetry-allowed forces on atoms) at minimum DFT com-
putational cost (e.g. for small supercell structures).

To the least, the GAP V0 should cover the bulk reference
states of the species in the system, i.e. here crystalline ru-
tile MO2 and the gas-phase O2 dimer. Next to the manda-
tory atomic energies (in case of oxygen provided as 1/2 of the
O2 energy), our initial training set therefore contains O2 dimer
data at varying O-O bond lengths that extend over the attrac-
tive, equilibrium and repulsive part of the DFT O-O binding
energy curve. Analogously, it contains rutile MO2 bulk unit-
cells at compressed, optimized and decompressed DFT lattice
parameters, as well as with displaced internal coordinates.

With a view on the intended surface structure determina-
tion, a final category of structures is spanned by different
(1× 1) terminations of all five rutile low-index facets, each
time in a bulk-truncated geometry and in the DFT optimized
geometry. Specifically, we include the 21 structures that re-
sult from systematically considering metal-rich, stoichiomet-
ric and O-rich terminations, as well as terminations with an
additional peroxo (-OO) group for all facets. The exact ge-
ometries of all structures in the thus resulting initial train-
ing set for both RuO2 and IrO2 are provided in an online
repository.50

Hyperparameter Selection: As outlined in the Methods sec-
tion, training a GAP requires selecting a series of hyperparam-
eters. Most prominently, these are the δ -weights controlling
the relative contributions of 2B and MB terms in Eq. (1) and
the regularization parameters σn in Eq. (2). Herein, we use
separate parameters σE and σF for energies and forces, re-
spectively. Additionally, GAP requires the definition of the
number of sparse points M2B,MMB. There are also a number
of hyperparameters related to the choice of representations
and kernels. In particular, both 2B potential and SOAP use
a cutoff radius (rcut,2B,rcut,SOAP) for atomic interactions and
both use a Gaussian broadening to control the smoothness of
the representation (σ2B,σSOAP). Finally, SOAP uses a set of
radial and angular basis functions to expand the atomic envi-
ronment, the number of which is controlled by the parameters
nmax and lmax.

The selection of these parameters is challenging in iterative
training schemes. While it is possible to optimize the parame-
ters on the bootstrapping set, it is unclear whether this choice
is transferable to the larger training sets subsequently gener-
ated. Fortunately, reasonable heuristics and physical insight
can be applied to mitigate this issue. For example, the weight-
ing of 2B and MB contributions is estimated from the residual
error of a pure two-body potential fit on the bootstrapping set.
Here, it is important to note that these weights δ2B,δMB are
priors, which are multiplied with the regression coefficients
in Eq. (1). This means that the actual contributions of the
MB and 2B terms can deviate from these priors, if this allows
minimizing the loss function (within the flexibility afforded
by the regularization). Consequently, it is not necessary to re-
determine the δ values every time the training set is increased.

FIG. 1: Absolute difference of IrO2 surface free energies
|γ(hkl),σ

surf | computed by DFT and with the initial GAP V0 for
16 different facets and (1×1) terminations contained in the

bootstrapping training set. Shown is data for the
bulk-truncated geometries (red crosses) and optimized

geometries (blue crosses). In the latter case, the optimization
is performed on the corresponding potential energy surface

and the DFT and GAP structures compared are thus not
necessarily the same. The shown kernel distance κDFT,GAP,

cf. Eq. (5), provides a measure for this structural
dissimilarity (green rhombuses). Analogous results for RuO2

are shown in Fig. S8.

Similarly, the regularization parameters σE and σF are chosen
to balance between over- and underfitting (see Fig. S6).

Meanwhile, the cutoff parameters rcut,2B and rcut,SOAP are
related to the characteristic length scale of interatomic interac-
tions in the material. These interactions result from a complex
interplay of short-ranged chemical bonds, mid-ranged polar-
ization and van-der-Waals effects, and long-range Coulomb
interactions. It is therefore, not a priori possible to decide on
an appropriate cutoff length. Fortunately, the locality of inter-
actions in a given material can be estimated by analyzing the
induced forces on a reference atom when atoms at increasing
distances are displaced in DFT calculations.13 A correspond-
ing locality test for IrO2 detailed in the SI motivates using
cutoffs of rcut,2B = rcut,SOAP = rcut = 5 Å in this study.

Given the cutoff, the remaining SOAP parameters (σSOAP,
nmax and lmax) determine how the atomic environment within
the cutoff radius is described. As a general rule of thumb, we
choose the number of radial functions (nmax) to be twice the
number of angular functions (lmax), as it has been shown that
using larger radial than angular band limits generally leads to
better accuracy for a given computational cost.35 Herein, we
find essentially converged performance on the bootstrapping
set with nmax=8 and lmax=4 (see SI). The full set of hyperpa-
rameters used is compiled in Table I.

Assessment of Initial GAP V0: As intended, the initial GAP
V0 trained with the bootstrapping set displays stable reference
structures. The optimum O2 dimer distance exactly matches
the DFT value of 1.22 Å, and the optimum bulk MO2 lattice
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TABLE I: GAP hyperparameters employed in this work.

rcut σ2B δ2B M2B σSOAP nmax lmax δMB MSOAP σE σF
[Å] [Å] [eV] [Å] [eV] [eV] [eV/Å]

IrO2 5.0 1.0 0.362 25 0.6 8 4 0.100 2000 0.001 0.01
RuO2 5.0 1.0 0.326 25 0.6 8 4 0.086 2000 0.001 0.01

parameters are within 0.5% of the corresponding DFT param-
eters. The O2 binding energy and MO2 bulk cohesive ener-
gies are reproduced within 16 meV/atom and 25 meV/atom,
respectively.

Gratifyingly, this local stability also extends already to most
of the (1× 1) low-index surface structures contained in the
bootstrapping set. Figure 1 compiles the absolute differences
of surface free energies |γ(hkl),σ

surf | computed with DFT and the
preliminary GAP V0 for these surfaces. Shown is not only data
for the (necessarily identical) bulk-truncated geometries, but
also after optimizing the structures on the respective potential
energy surface (PES). This means that starting from the bulk-
truncated surface geometry, the GAP structure is optimized
on the GAP PES, while the DFT structure is optimized on
the DFT PES, here and later always fully relaxing the entire
slab.51 Figure 1 also compares the structural similarity of the
two resulting minimum structures for each of the 16 IrO2 sur-
faces as quantified by their kernel distance κ . With the notable
exception of the (101) metal-rich termination, κ is smaller
than 0.075 throughout, indicating a high similarity of the cor-
responding PES basins. We thus achieve already at this stage
a highly satisfactory description of these PES parts of high-
est relevance for structure determination, as also evidenced by
the consistently low error in the GAP surface free energies.
Even the structurally and energetically much dissimilar GAP
minimum structure for the (101) metal-rich termination does
actually not reveal a major shortcoming of the initial GAP. In-
stead, it is in fact already a first success of the global structure
determination to which we will return in more detail below.

Nevertheless and not surprisingly, the initial GAP is not
perfect though. This is prominently reflected by a complete
instability of the five peroxo terminated surfaces contained
in the bootstrapping set. Upon GAP relaxation of the cor-
responding bulk-truncated geometries, the peroxo group al-
ways detaches to form an O2 dimer. To analyze this problem
and generally obtain insight into generated GAPs, we found
an analysis of atom pair potentials (or atom binding energy
curves) as shown in Fig. 2 to be a useful tool. This analy-
sis is based on the number of local environments in the cur-
rent training set that actually convey information of specific
two-body distances between the atomic species. Contrasting
this number as done in Fig. 2 with the predicted binding en-
ergy curves between two atomic species (here M-M, M-O,
and O-O) readily discloses a possible lack of relevant infor-
mation. Precisely in distance ranges for which current train-
ing structures do not provide data, these binding curves tend
to exhibit non-physical behavior, e.g. numerous minima or a
lacking repulsive wall at short distances. Assessing the two-
body distances contained in potential new training structures

FIG. 2: Atom pair potential analysis for the initial GAP V0.
(Lower panel) GAP predicted binding energy as a function of

distance between two Ir atoms, two O atoms and an Ir-O
atom pair. (Upper panel) Number of local environments in
the bootstrapping training set that provide corresponding

two-body distances in their representation. Analog results for
RuO2 are shown in Fig. S9.

then shows whether they actually provide data on hitherto un-
dersampled distance ranges. This provides a manual way to
identify most meaningful new training structures, before the
computationally demanding DFT calculations are actually ini-
tiated. In the present case, this type of analysis led us for
instance to include the five peroxo terminations into the boot-
strapping set in the first place, as they convey important in-
formation on shorter O-O distances. As apparent from Fig. 2,
there is still a lack of relevant structural information at O-O
distances around and above 1.5 Å though, which is precisely
the range relevant for the surface peroxo groups. The O-O
pair potential correspondingly shows a nonphysical form in
this range, rationalizing why the peroxo groups decay into the
more stable O2 dimer within this initial GAP V0. In contrast,
the relevant range of Ir-O and Ir-Ir distances is sampled quite
well by the structures in the bootstrapping set. Correspond-
ingly, the Ir-O and Ir-Ir pair potentials predicted by the GAP
V0 potential also look reasonable. The Ir-O potential shows
one clearly defined minimum around distances corresponding
to equilibrium distances in bulk IrO2. As the bootstrapping
training set does not include Ir metal structures, the Ir-Ir pair
potential instead is purely repulsive. This reflects the obvious
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fact that the training structures generally tailor the GAP for
the intended application, and least in its present form this ini-
tial GAP V0 would not be transferable to e.g. address oxide
reduction to the parent metal.

Iterative Refinement: While the atom pair potential analy-
sis provides leads towards a manual addition of further train-
ing structures, we rather seek to establish a generic protocol
that depends less on the chemical insight of the researcher.
In a second stage of our training protocol we thus refine the
initial GAP V0 in an iterative process. To ensure a high data
efficiency, this process is specifically tailored for the intended
use for surface structure determination. This use case requires
a sufficiently precise representation of the PES basins that act
as funnels into the distinct local minima, while the remaining
PES only needs to be known to the extent that it shall not con-
tain barriers between basins that are insurmountable by typ-
ical global optimization and PES exploration techniques. To
some extent, we thus trade versatility with data efficiency, and
concentrate on exclusively identifying new metastable surface
structures (PES minima) as additional training structures for
the GAP potential. Obviously though, this concept is readily
adapted to other use cases, notably e.g. by selectively includ-
ing transition states into the training when aiming for kinetics.

This specific, basin-focused ansatz intrinsically blurs the
lines between the iterative GAP training and the actual global
geometry optimization, since identified "novel" training struc-
tures are themselves already the sought-after, new and dissim-
ilar surface structures beyond the conventional terminations
that were already included in the bootstrapping set. Here,
we illustrate this concept by specifically exploring the chemi-
cal space of all low-index surface structures with (1×1) sur-
face unit-cell periodicity. As detailed below, we reach a high
data efficiency for this sub-space, identifying an intriguing,
unknown class of surface structures termed complexions after
having computed a minimum number of additional DFT struc-
tures. In future work, the final GAP trained this way could
serve as starting point for the exploration of larger surface
unit-cell reconstructions, then iteratively adding correspond-
ing structures to the training set. An additional challenge at
this stage will arise when such structures extend over surface
unit-cells that are no longer tractable with direct DFT calcula-
tions and thus appropriate smaller models containing the same
structural motifs need to be found for the training. One im-
portant aspect to this end could be the here pursued multi-
task learning, i.e. training the GAP simultaneously for all five
low-index facets. This creates a variety of structural motives
already within the small (1 × 1) surface unit-cells that oth-
erwise would potentially have to be learned in larger surface
unit-cells when training the GAP only on a single facet.

For the present exploration of the chemical space of low-
index (1×1) structures, we implement the iterative refinement
process by executing the steps summarized in Fig. 3 at every
refinement step s. Parallel SA runs based on the GAP Vs−1,
which resulted from step s−1, are spawned for the 16 differ-
ent surface types shown in Fig. 1. As the geometric details of
the initial surface structure from which a SA is started are lost
in the heating phase, we use these 16 different SAs primarily
to sample the structural space of different chemical composi-

tions and always start from the respective bulk-truncated ter-
minations for simplicity. Note that our interest is here more in
O-poor environments where the new complexions form, see
below. This is why we do not further consider the highly O-
rich peroxo terminations included in the bootstrapping set, but
seek to obtain training data for short O-O distances otherwise.

After cool-down and optimization, we then arrive at 16 new
GAP basin candidates BC(hkl),σ

GAP (s) in each refinement step s.
Each candidate is compared to all previously identified basins
{B(hkl),σ} of the same Miller index (hkl) and termination σ
using the kernel distance κ , cf. Eq. (5). Figure 4 shows the
evolution of κ during six selected SA runs in the first refine-
ment step s = 1, where {B(hkl),σ} consists for each (hkl,σ)
only of the corresponding bulk-truncated and DFT-optimized
surface structure contained in the initial bootstrapping set. In
two of the shown SA runs (as well as in the other 10 not-
shown ones) κ decreases back to essentially zero after cool-
down and the subsequent geometry optimization, indicating
that the candidate structure has collapsed back into the known
basin from the bootstrapping set. In contrast, in four runs,
finite values κ > 0.075 remain during cool-down and opti-
mization. Visual inspection, cf. Fig. 4, reveals that in all four
cases a new PES basin with a distinct structure has been found.
Based on this experience in the first refinement step, we em-
ploy κcrit = 0.075 as a system-specific parameter for all later
steps s > 1 and classify a GAP basin candidate as hitherto not
known, if it exhibits a κ > κcrit with respect to all previously
assembled basins {B(hkl),σ}.

Every new GAP basin candidate is subsequently sub-
jected to a DFT optimization to obtain DFT basin candidate
BC(hkl),σ

DFT (s). If this does not lead to any significant structural
changes with respect to BC(hkl),σ

GAP (s), here and henceforth in-
dicated again by a similarity measure κ < κcrit, then there is
no need to consider both similar structures in the GAP training
and only the new DFT basin structure BC(hkl),σ

DFT (s) is added to
the pool of known basins {B}. If there is a significant struc-
tural difference and the DFT basin structure was not known,
then both the GAP basin candidate BC(hkl),σ

GAP (s) and the DFT

basin candidate BC(hkl),σ
DFT (s) are added to the pool. If instead

there is a significant structural difference between BC(hkl),σ
GAP (s)

and BC(hkl),σ
DFT (s), but BC(hkl),σ

DFT (s) was already known, then the
current GAP potential Vs provides apparently only an insuffi-
cient representation of this known basin. Since the DFT basin
is already contained in the pool of known basins, only the new
GAP basin candidate BC(hkl),σ

GAP (s) is added in this case.
As shown in Fig. 3, this iterative process is repeated until

no further new basin candidate is added to the pool in refine-
ment step s. At this point, we declare the training protocol
as converged and conclude that all relevant energetically low-
lying PES minima in the sampled sub-space of (1× 1) sur-
face unit-cells have been found. Note that this situation arises
only when no unknown basins are found and the last GAP re-
finement Vs−1 → Vs has not led to any significant structural
relaxation of previously found GAP basins. In the present
application to the rutile oxides, this convergence is quickly
reached in s = 12 iterations. The final pool of known basins



8

FIG. 3: Flowchart of the iterative GAP training protocol.

FIG. 4: (Left panel) Evolution of the kernel distance κ during 6 of the 16 SA runs of the first GAP refinement step s = 1 for
IrO2. κ generally measures the similarity of the SA structure to all previously found basins {B(hkl),σ} of same Miller index
(hkl) and termination σ . In two cases ((010) O-rich, solid red line, (001) O-rich, solid black line), the SA does not lead to a

new structure as reflected by the small κ value. In four cases, the SA identifies a new structure as reflected by a
κ > κcrit = 0.075. (Right panel) Side views illustrating the identified new structures (Ir atoms drawn as larger blue spheres, O
atoms as smaller red spheres). Shown for all four cases are the initial training structure, the structure obtained after cool-down

and the structures obtained after the final GAP and DFT geometry optimization (see text). The κ values of these optimized
geometries are additionally highlighted in the left panel as correspondingly colored stars (GAP PES minimum) and crosses

(DFT PES minimum).

contains an additional 80 structures for IrO2 and 63 structures
for RuO2 beyond the 32 surface structures already contained
in the bootstrapping set. Of these, 53 (IrO2) viz. 43 (RuO2)

correspond to DFT optimized geometries, with the remaining
ones corresponding to GAP optimized geometries. All struc-
tures are again provided in an online repository.50
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FIG. 5: Unconventional and energetically more stable (1×1) IrO2 surface structures identified during the GAP training and
surface exploration protocol. Upper row: Side view of the conventional (hkl),σ termination resulting from truncating the bulk

oxide-layering sequence and subsequent DFT geometry optimization. Lower row: Side view of the identified most stable
structure, with the relative difference in surface free energy stated explicitly (see text for the (101) metal-rich termination).

Ir atoms are drawn as larger blue spheres, O atoms as smaller red spheres. The color coding of the figure frames is consistent
with that of the κ trajectories in Fig. 4. Analog results for RuO2 are shown in Fig. S10.

Adding a GAP optimized geometry to the training set re-
quires only a DFT single-point calculation. Compared to this,
the DFT geometry optimization of a (1×1) surface structure
required to add a DFT optimized geometry to the training set
is computationally much more demanding. In this respect, the
fact that for the exploration of the sub-space of all low-index
(1×1) surface structures only 53 (IrO2) viz. 43 (RuO2) such
optimizations are needed attests to the high data efficiency of
our approach. While this does in fact not constitute any sig-
nificant computational burden on modern supercomputing ar-
chitectures, we nevertheless chose to further increase the com-
putational efficiency of our approach by thresholding the costs
for these DFT geometry optimizations. For this, any optimiza-
tion is stopped, if relaxation is not achieved within the first 20
geometry steps. In that case, we simply employ the last geom-
etry as a sufficient proxy for BC(hkl),σ

DFT (s) for the purpose of
differentiating known and unknown basins. Further increases
in efficiency could be reached by performing the SAs only
for subsets of all surface orientations and terminations, e.g.
selected on the basis of farthest point sampling of structural
dissimilarity of all acquired basins at the time. Yet, all of this
will only start to play a role when extending the global geom-
etry optimization to larger surface unit-cells and will be the
topic of future work in our group.

B. Novel Structures and Surface Phase Diagram

As mentioned above, the iterative refinement blends GAP
training with the actual surface structure exploration, i.e. the
basins accumulated in the final GAP training pool constitute
at the same time the result of the SA-based global geome-
try optimization. It is worthwhile to emphasize the elegant
efficiency of this approach: The extensive energy and force
evaluations underlying the SA PES exploration are performed

at the undemanding GAP level, while novel identified basins
are immediately validated by computationally less demand-
ing DFT geometry optimization as part of the training pro-
tocol. Every DFT basin contained in the final pool of GAP
training structures is therefore already intrinsically validated
at the first-principles level. Of course, not all of these meta-
stable PES minima are physically really relevant. Many are
likely energetically rather unfavorable and were only added to
the training pool to pinpoint specific structural motives for the
GAP.

Thermodynamically relevant is instead at best only the
lowest-energy structure within each (hkl),σ class, i.e. de-
fined facet orientation and surface stoichiometry. In this re-
spect, the resulting pool of structures is highly intriguing
and underscores impressively the necessity of global geome-
try optimization for reliable surface structure determination.
Even though the sub-space of structures with (1 × 1) sur-
face unit-cells was initially only chosen for the methodologi-
cal development of the training and exploration protocol, en-
ergetically lower-lying terminations are in fact identified for
eight (IrO2) and seven (RuO2) of the 16 (hkl),σ classes. In
other words, even within the restricted structural possibilities
of these small unit-cells, more stable alternatives to the con-
ventionally considered simple truncations of the bulk oxide-
layering sequence are for both oxides found in about half of
the cases.

As detailed for IrO2 in Fig. 5, these unconventional struc-
tures extend over metal-rich and stoichiometric surface com-
positions, and are in many cases energetically significantly
more stable than their conventionally considered bulk-layered
counterparts. Partly, the new structures are somewhat obvi-
ous and may thus potentially also have been tested as part of
a human-devised set of trial candidate structures. This con-
cerns notably open structures like those of the (001) metal-
rich or (111) stoichiometric class, where terminal O atoms
do not occupy the (relaxed) sites corresponding to the next
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layer in the bulk-layering sequence, but instead to the sec-
ond next one. However, especially for the (101) metal-rich
and (111) metal-rich class, the novel structures with their con-
comitant strong energetic lowerings are quite counter-intuitive
and had never been reported in literature before our preceding
work10. Once understood, they are conceptually straightfor-
ward, too, though. They correspond to a reordering of the
layering sequence, in which a terminal metal layer swaps its
position with an oxygen layer and thereby achieves a higher
O-coordination for its metal atoms.

For the (101) metal-rich termination, the concomitant sta-
bilization is in fact so strong that the conventional termination
is not even a local minimum on the DFT-PES anymore. It re-
laxes barrierlessly into the re-ordered structure, which is why
we state the relative energy lowering in Fig. 5 with respect to
the artificial bulk-truncated and unrelaxed conventional termi-
nation. For IrO2, this conventional termination is spuriously
(meta-)stabilized when only relaxing a finite number of outer-
most slab layers (and freezing innermost slab layers) as is typ-
ically done in DFT geometry optimization. As this was also
done in the creation of the bootstrapping training set, this con-
ventional (101) metal-rich termination is part of the IrO2 set.
As noted above, the entire slab is instead flexible in the GAP
SA runs and subsequent DFT optimizations, and even the pre-
liminary GAP V0 then immediately led to this new structure –
as reflected by the high kernel distance κ for this (101) metal-
rich class in Fig. 1. In contrast, for RuO2 the conventional
termination is never meta-stable, even if only a few outermost
layers are relaxed during the DFT geometry optimization, cf.
Fig. S8.

Whether or not the identified, novel lower-energy structures
play a role thermodynamically depends on the environment to
which the oxide is exposed. Here, we specifically consider
an oxygen atmosphere. Figure 6 correspondingly shows the
surface phase diagram for IrO2 and RuO2 in the explored sub-
space of (1×1) surface structures as a function of the oxygen
chemical potential of this surrounding gas phase. Within the
ab initio thermodynamics approach21,22 such a surface phase
diagram is constructed by computing the surface free energy,
γ(hkl),σ

surf (∆µO) of Eq. (7), for each DFT-optimized basin and
plotting for each ∆µO only the lowest energy one for each of
the five facets. In the specific case of the here explored (1×1)
structures, the lines in the resulting surface phase diagram are
easily read. A positive slope indicates the stability of a metal-
rich termination in the corresponding range of oxygen chemi-
cal potentials, a horizontal line the stability of a stoichiometric
termination, and a negative slope the stability of an O-rich ter-
mination. Any kink in the continuous line representing one
facet orientation therefore reflects a change to a more stable
termination with different stoichiometry.

As apparent from Fig. 6 quite some changes are induced
by the novel structures as compared to the surface phase di-
agram when only considering the conventional bulk oxide-
layered terminations.10,33 Notably, this extends to O-poor con-
ditions, where the novel metal-rich (101) structure results as
by far most stable for both oxides. For IrO2, this intrigu-
ing result (and first-principles prediction) has been validated
by experimental work on crystals grown under correspond-

FIG. 6: DFT surface free energies γ(hkl),σ
surf of the five

symmetry-inequivalent low-index facets of IrO2 (top) and
RuO2 (bottom) in a pure oxygen atmosphere. In the top x

axis, the dependence on the oxygen chemical potential ∆µO
is translated into a temperature scale at 0.2 bar pressure (the
oxygen partial pressure in air). Shown is for each facet only
the surface free energy of the most stable termination at each

chemical potential. Each kink in the corresponding line
indicates therefore the change to a different termination with
different stoichiometry. The dashed lines indicate the surface

free energies when only considering the conventional
(relaxed) bulk oxide-layered terminations (see text).

ing O-poor conditions.10 Detailed surface science character-
ization confirmed the dominance of the (101) facet and the
specific geometry of this novel structure. Accompanying cal-
culations showed that no further stability gains can be reached
by a reordering of deeper layers. This places this novel struc-
ture close to so-called complexions as discussed for complex
ceramic materials.52 These complexions possess a thermody-
namically determined equilibrium thickness on the order of
nanometers, but are neither thin versions of a known 3D bulk
phase nor a reconstructed surface layer. In this preceding
work, a recomputation of this complexed (101) metal-rich ter-
mination for RuO2 suggested that this novel structure should
also be stabilized for this oxide. As seen in Fig. 6, we can now
confirm this on the basis of the proper surface exploration per-
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formed for this material. At the same time, it is also for RuO2
that literature already tells that the surface phase diagrams on
the basis of the sub-space of (1×1) surface unit-cells can not
yet be complete: The deactivation of this catalyst for CO ox-
idation had been assigned to the formation of a c(2× 2) re-
construction of the (010) facet.34 Extending the data-efficient
GAP training and exploration protocol to such larger surface
unit-cells forms correspondingly the natural next topic of our
work.

IV. CONCLUSIONS AND OUTLOOK

We have presented a protocol for surface structure deter-
mination through a surrogate ML potential that achieves high
efficiency with regard to the required first-principles calcula-
tions by mixing the potential training and surface exploration.
In an iterative process, the employed GAP identifies novel
structures through extensive SA-based sampling of the poten-
tial energy surface, and is refined by adding sufficiently dis-
similar structures to its training pool. In its construction, this
protocol is aimed for general usage. Here, we have illustrated
it with the application to surface structure determination of
low-index facets of rutile IrO2 and RuO2 within the sub-space
of structures with (1× 1) surface unit-cells. Intriguingly, al-
ready in this restricted space a number of non-intuitive low-
energy structures are identified that would potentially have
escaped the more traditional approach of testing a set of can-
didate structures devised by the researcher.

The obvious next step in developing an automatized work-
flow for surface structure determination in less restricted
structural spaces would be to consider larger surface unit-
cells, e.g. to address some known surface reconstruction. For
tractable unit-cell sizes, the present protocol should in princi-
ple be readily applicable. For one, one would only face con-
comitantly larger computational costs for each required DFT
training structure. More problematic is the larger range of dif-
ferent possible surface stoichiometries, as the actual surface
composition is generally not known, even if the surface unit-
cell is. For the here considered sub-space of (1×1) structures,
this compositional range comprised metal-rich, stoichiometric
and oxygen-rich compositions. Many more relative composi-
tions would have to be considered for general (m×n) surface
unit-cells in the present approach rooted on separate, canoni-
cal PES sampling. Ultimately, grand-canonical schemes could
become appealing, but would have to be appropriately inte-
grated into the GAP training. A final grand challenge arises in
the context of completely unbiased surface structure determi-
nation extending over surface unit-cells of unknown size and
shape. To the least, schemes will need to be developed that ex-
tract those local environments and geometric motives deemed
important for the ML potential training into surface unit-cells
that can still be accessed by first-principles calculations.
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B Coefficients of full GPR
We here consider an unknown :-dimensional function ~ (x) and # input-observation pairs col-
lected in a training set �:-d = {x= : ~=}#==1. To solve for the coe�cients of a full GPR model with
a uniform weight fu we substitute ~̃ (x=) and reformulate eq. (4.4) in matrix notation,

; = (y − Kc)>(y − Kc) + �uc>Kc (B.1)

where y = (~1, ...~# )> contains all observations~= , the matrix elements of K are de�ned as K=,=′ =
: (x=, x=′) and �u = fu1 is a diagonal matrix. For the more general loss function with individual
weights i.e. eq. (4.3) the elements of the diagonal matrix � are de�ned as �=,=′ = X=,=′f=,=′ .

To minimize the loss function it is di�erentiated w.r.t. to all coe�cients

∇; = 0 (B.2)

which subsequently yields an analytic expression for the optimal set of coe�cients c

c = (K + �)−1y , (B.3)

and �nally for the prediction function

~̃ (x) = c>kx (B.4)

where the kernel vector kx = (: (x, x0), ..., : (x, x# ))> contains the similarity measure of the input
x and all training points x= in �:-d.

For a sparse GPR model the formalism is slightly more complicated and explained in full detail
in [1]. E�ectively, sparsi�cation reduces vector and matrix dimension in eq. (B.3) and eq. (B.4).
Yet keeping in mind that the full set of observation (y) is still used to train the sparse GAP.
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C Sparsification
A mayor drawback of a full GPR potential is its poor scalability w.r.t. to the size of the training
set as the computational costs of both, training and prediction/evaluation, scales with the data
size (O(# 3) and O(# ), respectively). This scaling makes especially MD simulations requiring
an excessive amount of evaluations based on full GPR potentials already impractical for larger
molecules/proteins let alone a set of surface structures. Moreover, a non-sparse GPR potential
precisely mapping basis function and observation of a given system is limited to exactly that
speci�c system and can not be applied to any other system of di�erent size or composition. These
two factors prevent the application of full GPR potentials in most chemical simulations, i.a. in this
thesis.1

To circumvent both, the GAP framework constitutes a sparse GPR model in which the potential
is based on a limited number of " basis functions (sparse points) with " � # . Note here that
even with sparsi�cation in the GAP model all # training points are used in the loss function eq.
(4.4) to determine the coe�cients.

Obviously, we have to make sure that this set of basis function provides a su�ciently accurate
description of the input space spanned by the # training points. For low-dimensional input like in
the tutorial example of section 4.1 or in case of the two-body representation discussed in section
4.2, a uniform grid within a certain range/cuto� is su�cient. For a high-dimensional input e.g. the
SOAP representation discussed in section 4.2 though, a uniform grid is massively ine�cient as the
data points are usually distributed very irregularly. Within the GAP model the leverage-score CUR
algorithm[6] is applied, which can be seen as a restricted principle components analysis ensuring
that the selected points (basis functions) are indeed real training points (a feature not strictly
required by the sparse GPR model). Furthermore, in the GAP implementation the number of basis
functions for the SOAP representation is strictly limited by the number atoms #at, respectively
atomic environments (separately counted for each element) " ≤ #at. This has not to be mingled
with the number of actual training points that usually include atomic energies and forces i.e.
# = #at + #f . As a consequence, a SOAP-based GAP model always represents a sparsi�ed GPR
potential, even if the maximum possible number of basis functions ("max = #at) is applied.

1Despite these two drawbacks, full GPR models have been successfully applied in global optimization applying
a computational less demanding random structure search[2, 3] and hybrid ML/DFT MD simulation[4, 5]. One
outstanding advantage of this approach is the fact that a full GPR provides not only the prediction but also the
related uncertainty i.e. the expected error. This allows for a direct estimation on how trustworthy a prediction is
and whether or not a re-evaluation of the respective input (e.g. con�guration) via the underlying ab initio method
is necessary.
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