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Abstract

Single-cell omics data provide high-dimensional molecular characterisations of cells. These assays both extend
previous efforts to understand cellular systems based on bulk assays and characterise tissue biology in a new
and unbiased fashion. Accordingly, the mathematical methodology used to analyse these data sets is a mixture
of traditional statistical models and strongly non-linear machine learning algorithms. These computational
methods have been used to characterise a range of cellular systems, such as healthy tissues, developmental
systems, and tissues in response to diseases and drugs. Among these application cases, immunology has stood
out as a key application area of single-cell biology with discoveries such as immune cell states that are
associated with disease outcomes. However, causal insights into the mechanisms underlying immune cell
involvement in disease are often incomplete. In this thesis, I used mathematical models of single-cell omics data
in T cell biology to attribute variance in cell-wise molecular states to tissue-level properties of the cellular
systems, thus providing mechanistic insights into variation in single-cell data. First, I advanced current
approaches to understand T cell maturation and antigen recognition by modelling T cells in the context of the
population-level effects. Second, I proposed models of spatial dependencies of cells on proximal cells in their
respective tissue niche. Third, I attributed heterogeneity of immune cells across samples to sample covariates.
Fourth, I improved unsupervised learning approaches based on automated analysis to improve discovery of
cellular phenomena. Fifth, I improved the characterisation of genetic and epigenetic variation in cells, which
explains variation in measurements of different molecular views of cells, such as the transcriptome. Together, the
presented approaches improved the characterisation of immune cells both individually and in the context of the
tissue and, thus, advanced the state of the art in interpretable machine learning of single-cell immunology.
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Zusammenfassung

Einzelzell-Omics-Experimente messen molekulare Charakterisierungen von Zellen in hoher Auflösung. Solche
Experimente werden häufig benutzt um zellbiologische Theorien zu verfeinern, die auf
Gewebsdurchschnittsmessungen basieren, und deshalb Phänomene auf der Größenordnung von Zellen oft nicht
abbilden können. Zusätzlich bieten Einzelzellexperimente dank ihres großen Datenvolumens einen
unvoreingenommenen Blickwinkel auf Zellsysteme und können deshalb benutzt werden, um neue Phänomene
zu entdecken, wie beispielsweise mit Bezug auf die molekularen Zustände einzelner Zellen. Dementsprechend
ist die mathematische Methodik, die zur Analyse dieser Datensätze verwendet wird, eine Mischung aus
traditionellen statistischen Modellen und komplexem maschinellen Lernen. Diese Algorithmen werden benutzt,
um zelluläre Systeme zu charakterisieren, von gesunden Geweben, über Systeme aus der Entwicklungsbiologie,
bis hin zu Effekten von Krankheiten und Medikamenten auf Gewebe. Dies ist besonders relevant für die
Einzelzellimmunologie, in der bereits eine Fülle molekularer Variationen zwischen Zellen mit Pathologien
assoziiert werden konnte. Trotz dieser Datenfülle gibt es viele offene Fragen zu Krankheitsmechanismen. In
meiner Dissertation habe ich mathematische Modelle für Einzelzell-Omics Daten von T-Zellen entwickelt und
angewandt, um die Funktion dieser Zellen in ihrem Gewebeumfeld zu verstehen. Erstens habe ich die
Modellierung der Reifung von T-Zellen und Antigenerkennung durch T-Zellen verbessert. Zweitens habe ich
Modelle für räumliche Abhängigkeiten zwischen Zellen mit ihrer direkten Umgebung im Gewebe entwickelt.
Drittens habe ich Variation von Immunzellen auf Charakteristiken der gemessenen Patienten bezogen. Viertens
habe ich automatisierten Analysen optimiert, um die Entdeckung zellulärer Phänomene zu verbessern. Fünftens
habe ich die Charakterisierung genetischer und epigenetischer Variation zwischen Zellen verbessert, um so die
Variation anderer Molekülklassen der Zellen zu verstehen, wie zum Beispiel im Transkriptom. Die hier
beschriebenen Algorithmen verbessern die Charakterisierung von Immunzellen und deren Interaktionen mit
ihrem Gewebe und stellen neue Algorithmen des interpretierbaren maschinellen Lernens in der
Einzelzellimmunolgie dar.
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ATAC-seq: Assay for transposase-accessible chromatin using sequencing
CDR: Complementarity-determining region
Cas9: CRISPR-associated protein 9
cDNA: complementary DNA
CITE-seq: cellular indexing of transcriptomes and epitopes by sequencing
CRISPR: Clustered regularly interspaced short palindromic repeats
DNA: deoxyribonucleic acid
FACS: fluorescent activated cell sorting
FIM: fisher information matrix
FISH: fluorescence in situ hybridisation
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MLE: maximum likelihood estimate
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ODE: ordinary differential equation
PCA: principal component analysis
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PDE: partial differential equation
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RNA: ribonucleic acid
RNA-seq: RNA-sequencing
scRNA-seq: single-cell RNA-sequencing
TCR: T cell receptor
t-SNE: t-stochastic neighbour embedding
UMAP: uniform manifold approximation
UMI: unique molecular identifier
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Chapter 1. General introduction

Interpretable modelling of single-cell biology is as a cell-centric approach to understanding biology (sec. 1.1), and
depends on high-throughput omics measurements (sec. 1.2), and on analysis paradigms for these data
modalities (sec. 1.3). Streamlining and automation across studies is an important topic in the context of
single-cell data analyses and especially important with respect to interpretability in terms of generalisable
covariates (sec. 1.4). Relaxing the cell-centric view, the tissue context of a cell provides a natural extension of
cellular models through interpretable phenomena which explain cellular variation, such as communication events
between cells (sec. 1.5). All of these topics are relevant to single-cell immunology because immune cell diversity
can be characterised in individual cells but often requires the tissue context to be causally interpreted (sec. 1.6).

1.1 Cell biology

Cells are fundamental units of function based on which many biomedical phenomena can be explained. In
multicellular organisms, they both represent functional entities in a tissue and are also compartmentalised in their
biochemical processes because of lipid membranes. The cell is a useful building block in a bottom-up model of
tissue and organism function because of its discrete nature as a unit of biological function: Phenotypes in
diabetes can be understood based on pancreatic beta cell phenotypes (Bader et al. 2016; Sachs et al. 2020),
certain tumour phenotypes can be understood based on cell states within the tumour microenvironment (Raza Ali
et al. 2020), and inflammation in response to infection depends on specific immune cell states
(Schulte-Schrepping et al. 2020). The cell’s physically discrete nature makes its individual study feasible in many
experimental setups: Many tissues can be dissociated into suspensions of cells that stay intact because they stay
bound by the cell membrane. These suspensions allow for physical separation of cells into reaction chambers for
individual measurement, such as wells or droplets in microfluidics set-ups (Macosko et al. 2015; Gierahn et al.
2017). Moreover, average molecular profiles across a single cell are often useful indicators of cellular
phenotypes, even though there exist complex organelle sub-structures within cells. Thus, a surprisingly large
proportion of theories in cell biology effectively treat cells as unstructured membrane-bound molecular bags
which give rise to cellular function (Quake 2021): Similarity in average molecular profiles of a cell is often used as
an indicator of functional similarity of cells (Eraslan et al. 2019), and average RNA expression of a gene is
correlated with gene-specific phenotypes, such as cell–cell communication and receptor gene expression
(Browaeys, Saelens, and Saeys 2020). Of course, sub-cellular resolution in molecular profiling is required to
understand a multitude of cellular phenomena, such as organelle-specific enzyme activity differences caused by
enzyme concentration differences, and the assembly of multi-protein complexes in particular cellular
compartments. However, many recent advances in measurement technologies that yield average molecular
profiles of single-cells have particularly accelerated progress on cell-level descriptions of cell biology. Most of
these single-cell measurement technologies belong to the clade of omics measurements.

1.2 High-throughput biology: Omics

High-throughput experiments in cell biology yield complex descriptions of cellular systems, such as
quantifications of changes in the transcriptome with 10,000s of detectable transcripts as a function of time,
disease progression or treatment. These experiments improve our understanding of cell biological processes
beyond previous state-of-the-art assays in molecular biology, which largely consisted of targeted probing of
specific molecular hypotheses, such as through Western Blots or Northern Blots. Notably, RNA-seq extended the
resolution of routine molecular biology experiments on the RNA level to the full transcriptome, ChIP-seq (Valouev
et al. 2008) improved DNA binding assays to the full genome, DNaseI-seq and ATAC-seq (Buenrostro et al.
2013) enabled global chromatin accessibility profiling, and global chromosome organisation in terms of contact
regions can now be established with Hi-C (Lieberman-Aiden et al. 2009) (Fig. 1). All of these assays depend on
highly multiplexed sequencing of DNA reads in next generation sequencing (sec. 2.1.1). Since 2009 (Tang et al.
2009), many of these bulk sequencing protocols have been increasingly adapted for higher throughput in the
observation dimension through single-cell protocols that measure molecular properties in individual cells rather
than averages of populations of cells (bulk) only (Fig. 1).

https://paperpile.com/c/PpwEOm/htXB+KNbo
https://paperpile.com/c/PpwEOm/1JTh
https://paperpile.com/c/PpwEOm/1JTh
https://paperpile.com/c/PpwEOm/ArfD
https://paperpile.com/c/PpwEOm/ezym+HuJ3
https://paperpile.com/c/PpwEOm/ezym+HuJ3
https://paperpile.com/c/PpwEOm/De5A
https://paperpile.com/c/PpwEOm/cauS
https://paperpile.com/c/PpwEOm/krEA
https://paperpile.com/c/PpwEOm/EbVq
https://paperpile.com/c/PpwEOm/EbVq
https://paperpile.com/c/PpwEOm/pBJ8
https://paperpile.com/c/PpwEOm/pBJ8
https://paperpile.com/c/PpwEOm/pZVT
https://paperpile.com/c/PpwEOm/if5k
https://paperpile.com/c/PpwEOm/if5k
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Figure 1: Molecular measurements of cells across phases of high-throughput biology. Targeted
assays on bulk measurements create few data points per study: 100 to 102 data points (individual
experiments). High-throughput bulk measurements create data points on the order of the assayed
features, e.g. on the order of the number of genes of the assayed organism: around 104 data points.
High-throughput single-cell measurements create data points on the order of assayed features
multiplied with the number of cells that can be measured: frequently considerably more than 108 data
points (104 genes x 104 cells).

1.3 Analysis of single-cell omics data

This drastic increase in both the observed feature space and the number of samples obtained for a cellular
system drastically changed the set-up of cell biology studies and the analytic methods used to detect patterns in
data, which my collaborators and I discussed in a dedicated review (Angerer et al. 2017). Traditionally, statistical
models have been used to extract feature-wise patterns on bulk protocols: generalised linear models and mixed
effect models have been used to analyse RNA-seq data in this paradigm (Love, Huber, and Anders 2014; Ritchie
et al. 2015). Similar models centred on linear effects characterised by covariates have been used for single-cell
data (Finak et al. 2015; Kharchenko, Silberstein, and Scadden 2014; Luecken and Theis 2019). However, these
models are not sufficient as a stand-alone data exploration tool for data sets with many observations, as they
heavily rely on a priori defined hypotheses about annotated components of variation in the data. In contrast,
manifold learning techniques from unsupervised machine learning yield a fundamentally different view on large
datasets and have proven to be better suited for data exploration in similar settings in other data-rich fields, such
as in machine learning on images, speech, text and customer profiles (Fig. 2a,b). In particular, dimension
reduction techniques can improve the discovery of latent structure of observations: Early on, principal component
analysis, non-negative factorisation (Stein-O’Brien et al. 2019) and t-distributed stochastic neighbour embedding
(Maaten and Hinton 2008) were used to explore single-cell data sets (Macosko et al. 2015). A key discovery in
unsupervised learning on single-cell data was the presence of developmental trajectories in many biological
systems (Trapnell et al. 2014; Haghverdi, Buettner, and Theis 2015; Haghverdi et al. 2016; Setty et al. 2016;
Street et al. 2018; Wolf et al. 2019): These trajectories reconstruct sequential molecular states of a temporal
process from snap-shot data and allow interpretation of a cellular process as a stereotypic developmental
transition, which my collaborators and I discussed in a review (Tritschler et al. 2019). Developmental trajectories
demonstrate how unsupervised characterisation of cellular data sets can improve models of cellular
heterogeneity beyond what is possible based on linear models that attribute variance to sample-wise covariates.
In a second stream of unsupervised analysis methods, cellular embeddings have been used to discover cellular
states which are molecular configurations of cell types that are specific to certain sample conditions (Sachs et al.

https://paperpile.com/c/PpwEOm/k9S8
https://paperpile.com/c/PpwEOm/xYvy+TZ7Z
https://paperpile.com/c/PpwEOm/xYvy+TZ7Z
https://paperpile.com/c/PpwEOm/c2nk+lFR9+kVSi
https://paperpile.com/c/PpwEOm/63Tv
https://paperpile.com/c/PpwEOm/c4Em
https://paperpile.com/c/PpwEOm/ezym
https://paperpile.com/c/PpwEOm/LgKr+lpax+4CTb+Q6uc+d0X4+dWu2
https://paperpile.com/c/PpwEOm/LgKr+lpax+4CTb+Q6uc+d0X4+dWu2
https://paperpile.com/c/PpwEOm/R2I9
https://paperpile.com/c/PpwEOm/KNbo
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2020). Third, these manifold learning techniques have enabled compositional analyses (M. Büttner et al., n.d.;
Böttcher et al. 2021), which have been used to test if the distribution of cells over cell types (or states) is
correlated with biologically relevant effects, such as diseases. As the complexity of the data sets increased,
notions from semi-supervision and domain adaptation were increasingly used to inject prior knowledge into these
unsupervised workflows: For example, semi-supervision has been used to carry over cell type annotations from
pre-annotated reference data sets of the same data modality (Xu et al. 2021), and domain adaptation methods
have been used to map annotation between samples (Haghverdi et al. 2018; Lopez et al. 2018; Polański et al.
2020; Lotfollahi et al. 2020). The growth of this zoo of exploratory machine learning methods has been fuelled by
advances on the computational side, and by advances in single-cell measurement technology, which make new
data modalities available.

Figure 2: Learning representations of cells from molecular profiling. a) Gene expression assays,
such as RNA and or protein quantification, measure cells in a gene-dimensional space if the profile is
represented as a magnitude per gene, for example the number of observed unique reads mapped to a
gene in scRNA-seq. b) This gene-dimensional space is often high-dimensional and structure in data
sets can be discovered in low-dimensional projections of the data, such as from principal component
analysis (PCA), t-stochastic neighbour embedding (t-SNE) (Maaten and Hinton 2008), or uniform
manifold approximation (UMAP) (L. McInnes, Healy, and Melville 2018). c) In contrast to such
embeddings dedicated to unsupervised learning, one can also project data sets to annotated axes of
variation that correspond to interpretable cellular phenotypes.

Many common cell biological questions asked in the context of single-cell high-throughput assays can be
reduced to flavours of variance attribution: Is the inter-conditional variation observed in a gene’s mRNA
distribution significant? This question is often framed as differential expression in generalised linear models
(Love, Huber, and Anders 2014). Is the variance of global gene expression between two cell states large with
respect to their intra-state variances? This question is often addressed in unsupervised cell type and state
discovery workflows (Maren Büttner et al. 2019). Can the variance of a single-cell data set of a perturbed cellular
system be partially attributed to the perturbation? Can axes of variation be annotated with known cellular or
biochemical processes (Fig. 2c)? Notions of variance attribution often belong to the state-of-the art of
interpretable modelling of cellular systems and give insights into relative scales of effects and highlight processes
that could be targeted in therapeutic interventions. Hypotheses that are often posed in this context include: Is
only a particular set of genes centred around a pathway affected by a disease? If so, molecular targets in this
pathway could be explored in intervention design. Is a disease’s effect limited to a few cell types? If so, those cell
types could be selectively targeted. Importantly, these concepts stand in contrast to complete black-box
representation learning, such as in purely predictive machine learning models. These black box models learn the
full variance in the data without links to biologically meaningful labels.

https://paperpile.com/c/PpwEOm/KNbo
https://paperpile.com/c/PpwEOm/kDta+zx3j
https://paperpile.com/c/PpwEOm/kDta+zx3j
https://paperpile.com/c/PpwEOm/ucZH
https://paperpile.com/c/PpwEOm/t7rs+p3x8+l9kK+kwfD
https://paperpile.com/c/PpwEOm/t7rs+p3x8+l9kK+kwfD
https://paperpile.com/c/PpwEOm/c4Em
https://paperpile.com/c/PpwEOm/D7LQ
https://paperpile.com/c/PpwEOm/xYvy
https://paperpile.com/c/PpwEOm/FGmL
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1.4 Automation of single-cell analyses

The wide-spread use of high-throughput single-cell omics technologies has resulted in a rapid increase of
available molecular profiles of single cells (Angerer et al. 2017). This increase in data availability both comes with
a challenge of structuring available data for access and with an opportunity of increased automation of single-cell
analyses through increasingly generalisable machine learning algorithms. The automation of analyses through
pre-trained models requires community standards on model classes and frameworks to use and deploy model
fits. Kipoi is such a framework that was suggested for the functional genomics community for DNA
sequence-based models (Avsec et al. 2019). Such streamlining improves data and model re-usage, and
reproducibility under the FAIR principles (Wilkinson et al. 2016), and is, therefore, also desirable in single-cell
biology.

1.5 Cellular systems and tissue niches

Single-cell assays, such as scRNA-seq, single-cell ATAC-seq (Buenrostro et al. 2015) and CITE-seq (Stoeckius
et al. 2017), are well suited to characterise heterogeneity of average molecular profiles of cells in a population.
The discovery of molecular heterogeneity in cell atlases is core to a large fraction of single-cell biology papers
published recently, such as in the context of the Human Cell Atlas (Regev et al. 2018). This molecular
heterogeneity of cells is used to characterise cell types and cell states, and disease or treatment effects on gene
expression (Han et al. 2018; Tabula Muris Consortium 2020; Litviňuková et al. 2020; Travaglini et al. 2020). A
natural next step on biological length-scales is to leverage these cell biological insights in models of tissue
biology. Tissue biology describes emergent tissue phenotypes (Fig. 3), which cannot be directly understood if
cells are considered as independent building blocks of a tissue. Tissue properties emerge from cell–cell
interactions and structured tissue architectures, which result in statistical dependencies between cells. Notably,
cells are frequently modelled as independent and identically distributed (i.i.d.) in the single-cell modelling
literature (Lopez et al. 2018; Eraslan et al. 2019), an assumption that is violated in the context of tissue biology.
Thus, mathematical models of tissue biology may extend single-cell models by dependencies between cells.
Cell–cell dependencies are readily motivated through biological mechanisms of tissue functions: First, tissue size
is finite, thus imposing normalisation constraints on densities of cells across a molecular space. Second, cell–cell
communication events give rise to specific gene expression signatures in signal receiving cells, thus creating a
correlation of this signature in the receiver cell type with the presence of the sender cell type.

Figure 3: The tissue context is a determinant of cellular phenotypes. Tissue biological effects such
as inflammation, metabolite availability, and cell–cell communication explain variation in cellular
phenotypes.

https://paperpile.com/c/PpwEOm/k9S8
https://paperpile.com/c/PpwEOm/A5zk
https://paperpile.com/c/PpwEOm/wucP
https://paperpile.com/c/PpwEOm/7xox
https://paperpile.com/c/PpwEOm/j8XT
https://paperpile.com/c/PpwEOm/j8XT
https://paperpile.com/c/PpwEOm/cNG5
https://paperpile.com/c/PpwEOm/TTc1+nPaz+nXDx+1F1d
https://paperpile.com/c/PpwEOm/p3x8+cauS
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Normalisation constraints on tissues are relevant for domain translation models of single-cell states. In an
approximation that ignores spatial tissue architecture, one may think of a biological process that modifies a tissue
as a transformation of the cell state distribution over the tissue. The transformed distribution is normalised and
thus introduces conditional dependencies between domain maps of individual cells. In traditional machine
learning, such domain maps can be learned with optimal transport algorithms and style-transfer through
generative adversarial models, for example. In population dynamics, the transformation is learned as a
parameterisation of a differential equation model. Such dynamic models usually require temporally resolved
single-cell measurement unless steady-state systems are studied and specifically modelled. Inference in
steady-state systems has been shown to suffer from non-identifiability (Weinreb et al. 2018), thus compromising
the interpretability of this approach. In contrast to steady-state models, time-resolved models of cell populations
have been fit based on discrete cell states characterised by high-throughput assays (Kafri et al. 2013; Kuritz et al.
2017), such as from flow cytometry or mass cytometry (Bandura et al. 2009). Probability distributions on a
discrete state space in time are covered by an extensive literature of ordinary differential equation modelling.
However, the first high-dimensional measurements of cellular development with scRNA-seq showed that many
developmental processes are better approximated as continuous processes which can be captured as
pseudotemporal orderings along a stereotypic developmental trajectory of a cell through molecular space
(Trapnell et al. 2014; Haghverdi et al. 2016; Setty et al. 2016). In extension to such one dimensional descriptions
of a developmental process, lineage branching events can be identified in dimension reductions such as t-SNE,
UMAP, diffusion maps (Haghverdi, Buettner, and Theis 2015) and in a single-cell graph coarsening (Wolf et al.
2019). These continuous description of cell states in development suffer from two core shortcomings: First,
multiple key properties of a cellular system, such as death and proliferation events, cannot be easily identified in
such pseudotemporal orderings or diffusion maps: Apoptotic states are usually not observed because of the
associated physical degradation of the cells. Proliferation events can be assigned to cell states via gene
expression profiles (Macosko et al. 2015) as states with an increased fraction of cells in S, G2 or M phase
(Macosko et al. 2015). However, the relative extent of proliferation to death or developmental flux cannot usually
be determined from these observations. Second, dimension reductions and pseudotemoral orderings are
fundamentally not able to infer the directionality of a process. Instead, directionality of lineages is usually
determined via prior knowledge of the molecular identity of progenitor cell states, or, more recently, via RNA
velocities (La Manno et al. 2018; Bergen et al. 2020). These two shortcomings of unsupervised analysis on
molecular states, non-identifiability in direction and birth and death events, are part of the non-identifiability also
encountered in dynamic models fit on steady state data (Weinreb et al. 2018). This equivalence is intuitive
considering that traditional unsupervised molecular state analysis via dimension reductions is effectively unaware
of time covariates. These limitations can be addressed with differential equation modelling on time series
scRNA-seq data.

Cell–cell interactions have been studied as cell–cell communication based on cognate ligand and receptor gene
expression in putatively interacting cell types (Browaeys, Saelens, and Saeys 2020; Efremova et al. 2020). In
spatial molecular profiling data, spatial proximity between pairs of putative interacting cells can be used as a prior
for cell–cell communication. Many spatial transcriptomics protocols do not give single-cell resolution but yield
data comparable to small bulk samples at defined spots in the tissue (Asp, Bergenstråhle, and Lundeberg 2020).
There are, however, methods with high enough resolution to distinguish individual cells in a slice of a tissue.
Common protocols include approaches based on antibody-based labelling of proteins in situ, with advanced
methods measuring 10s of proteins (Goltsev et al. 2018), imaging mass cytometry, which can measure on the
order of 100 proteins in situ (Giesen et al. 2014), and variations of fluorescence in situ hybridisation (FISH) which
can measure up to 100s to 1000s of transcript species: seq-FISH+ (Eng et al. 2019) and MERFISH (Xia et al.
2019). In all of these cases, the processed data consists of a 2D spatial grid with a third dimension of gene
expression measurement. This data can be segmented into cells, and the molecular state of the cell as well as its
position in the image can be recorded to give a single-cell data set that contains molecular characterisations of
cells as well as the additional spatial location of the cell. Previous work on spatial transcriptomics has addressed
gene function prediction in the context of ligand and receptor genes (Yuan and Bar-Joseph 2020), neighbourhood
enrichment based on cell type labels (Dries et al., n.d.), and matrix factorisation techniques that distinguish
intracellular and extracellular components of variation (Arnol et al. 2019). Antigen-recognition by immune cells is
a specific example for cell–cell interactions in a tissue niche (sec. 1.6).

https://paperpile.com/c/PpwEOm/gRTm
https://paperpile.com/c/PpwEOm/5FOq+gKGo
https://paperpile.com/c/PpwEOm/5FOq+gKGo
https://paperpile.com/c/PpwEOm/yKtE
https://paperpile.com/c/PpwEOm/LgKr+4CTb+Q6uc
https://paperpile.com/c/PpwEOm/lpax
https://paperpile.com/c/PpwEOm/dWu2
https://paperpile.com/c/PpwEOm/dWu2
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1.6 Single-cell immunology

Immunology is the study of the immune system, a multi-faceted, cross-tissue mechanism with which organisms
mitigate infections and other aberrations from a healthy tissue state. Broadly, the immune system of vertebrates
can be divided into an innate and an adaptive part. The innate immune system deals with broad molecular
signatures of pathology and is often involved in the primary response to an infection or wound, for example. The
adaptive immune system is centred on an antigen-specific response via B cells and T cells and facilitates
recognition and targeted destruction of infectious agents and infected cells. Both, innate and adaptive immunity,
elicit immune responses to infectious diseases, such as SARS-CoV2, but can also contribute to autoimmune
diseases if dysregulated (I. B. McInnes and Gravallese 2021). Thus, innate and adaptive immunity are centrally
involved in pathologies that impose a large burden on our societies. Indeed, the immune system is a key target of
therapy development, with prominent examples such as immune checkpoint targeting (Wolchok 2021) and
genetically modified T cells (Sterner and Sterner 2021). In adaptive immunity, antigen recognition through T cells
is a key molecular event in disease mitigation and is facilitated by a receptor protein complex, the T cell receptor
(TCR).

A TCR is a heterodimeric protein which consists predominantly of an alpha and a beta chain which are
genetically highly diverse between T cells in a single organism. This genetic diversity stems from mutation events
during cellular maturation. Both alpha and beta chains consist of C (constant), V (variable), D (diversity, only in
beta chain) and J (joining) segments, which exist as multiple variants in different loci in each cell. During T cell
maturation, protein-coding genes are assembled by genetic recombination between these segments. These
recombination events happen sequentially for both chains (Yui and Rothenberg 2014). T cells first develop
functional beta-chain during beta-selection and then develop alpha chains that yield functional heterodimers with
the beta chain. The functional heterodimer is acquired in the double positive stage of maturation, which is
followed by positive and negative selection. Positive selection removes cells from the population that have
receptors that cannot bind to major histocompatibility complex (MHC) on antigen presenting cells. Negative
selection removes cells that bind to auto-epitopes, which could otherwise trigger autoimmunity. The specificity of
a TCR to an antigen is largely determined by small variable regions on both chains, named complementarity
determining regions (CDRs), which obtain their variability from the genetic recombination events in cellular
development. Molecularly, the unique specificity of the receptor is derived from variability in the physico-chemical
properties of the TCR binding surface that is exposed to antigens bound on a MHC of an antigen presenting cell.
The total number of unique TCR sequences among the full set of 1012 T cells in a human is estimated to lie
around 107 (Arstila et al. 1999). This large diversity underlies core mechanisms of adaptive immunity which rely
on recognition of new pathogen-derived antigens by existing TCRs. Accordingly, the dependency of T cell
phenotypes on antigen recognition events has been a longstanding focus of research in adaptive immunity.

CDR3 chains can be measured with techniques such as nucleotide sequencing in mRNA or genomic DNA
assays. Recently, it has become possible to reconstruct CDR3 sequences in single-cell mRNA capture assays
(De Simone, Rossetti, and Pagani 2018). These two modalities can be routinely combined with surface protein
quantification through oligomer-labelled antibodies in CITE-seq (Stoeckius et al. 2017) to improve identification of
T cell states (Mimitou et al. 2019). The genetic variability across T cells measured with CDR3 chain sequences is
a powerful predictor of T cell phenotypes during antigen exposure. The relationship between CDR3 and antigen
sequences in specific TCR-antigen pairs has been addressed in many statistical learning studies: Originally, pairs
of specific TCR and antigen-loaded MHC were identified in bulk assays and collected in databases with 1000s to
10,000s of validated pairs (Bagaev et al. 2020; Shugay et al. 2018; Vita et al. 2019). Antigen-specificity has been
largely addressed as a supervised learning problem in mathematical modelling studies. There are, however, also
studies based on explicit protein structure modelling (Flower et al. 2010). The prediction of T cell specificity has
largely been performed with models of antigen binding as a function of TCR sequence. Antigen-binding was
treated both as a binary variable (Glanville et al. 2017), the presence of a binding event, or as a sequence
variable, the sequence of a binding antigen (Montemurro et al. 2021). The sequence representation of antigens
could allow models to generalise to unseen antigens and is, therefore, an attractive avenue for global models of
antigen specificity.
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Two phases along the T cell life cycle are key to understanding their function: First, T cell maturation, and
second, antigen recognition through mature T cells. T cell maturation is characterised by proliferation and
selection events and is often described in phases that map maturation progression to particular gene expression
markers. However, this functional insight into the system of developing T cells had not yet been contextualised
with scRNA-seq measurements which yield high-resolution molecular characterisation of cell states. Yet, this
characterisation of the full transcriptome often helps with understanding gene regulatory circuits that underlie
maturation and selection events in development. Antigen recognition through T cells happens in the context of
antigen presenting cells and is usually accompanied by cytokine signalling, thus affecting cell states of many
proximal cells, not only the antigen-specific ones (Fig. 4a). Antigen recognition events are often given in samples
from acute-phase patients of infectious diseases after a sufficient delay between initial infection and
measurement. However, the full set of cellular events that accompany antigen recognition is still not completely
understood and many aspects of the cellular interactions and their impact on disease resolution, pathogen
persistence and disease time course are current focus points of research. Here, single-cell omics assays can
uncover components of molecular variation of T cells that are associated with antigen recognition events (Fig.
4b).

Figure 4: Multi-view measurements of T cells. a) T cells interact with their environment through
signalling which is facilitated by cytokines, for example, and perform antigen recognition on antigen
presenting cells using T cell receptors. b) The state of a single T cell can be interrogated with multiple
molecular single-cell assays, including scRNA-seq identifying transient transcriptomic cell states,
CITE-seq for surface protein expression quantification identifying markers used for cell state
classification on FACS data, variable-region sequencing for T cell receptors identifying specificity to
antigens, and scATAC-seq identifying chromatin states. Various combinations of these assays exist.
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1.7 Aims of this thesis

In this thesis, I investigated the dependency of T cell states on their tissue context with new algorithmic
approaches tailored to single-cell and bulk omics data. Many properties of T cells are not well understood, even
though measurements of T cells are abundant and heterogenous. I considered this research question in the
context of specific experimental systems that assay particular characteristics of T cells and improved the
interpretability of models used for inference in these specific cases. I structured this endeavour into five project
areas (Fig. 5): The first group is centred on annotating molecular heterogeneity of T cells measured with
scRNA-seq with labels of tissue function, advancing beyond cell-centric descriptions of heterogeneity. The
remaining project areas represent basic cell biology research that addresses conceptual bottlenecks in single-cell
immunology and related disciplines: In the second part, I consider spatial dependencies of cells on their tissue
niche. The third project group is centred on statistical models for variance attribution to sample covariates. The
fourth project area is centred on automation and reproducibility of single-cell data analyses. In the fifth part, I
propose computational methods and infrastructure for variance attribution on epigenetic features.

Figure 5: Discovering and attributing variance in molecular cell states of T cells. In this thesis, I
developed and used methods to attribute transcriptomic variance of T cells based on antigen specificity
(I), the spatial tissue niche (II), and sample or patient covariates (III). I also developed methods to
improve the discovery of heterogeneity on T cells by improving analysis throughput through automation
(IV), and by improving single-cell epigenetic and genetic analyses (V).

In the first part of this thesis, I integrated population-level phenotypes with high-resolution molecular profiles of
individual T cells. This integration results in an annotation of cell states with functional labels derived from the
tissue phenotypes. At the same time, this approach extends single-cell immunology towards tissue biological
principles. Specifically, I addressed three such integration settings:

- Publication 1 “Inferring Population Dynamics from Single-Cell RNA-Sequencing Time Series
Data.” (sec. 3.1, sec. 5.1): We mapped the population-level phenotype of total population size onto a
cell distribution over the molecular space observed with single-cell RNA-seq to map proliferation and
selection events along T cell maturation to specific molecular states. This approach allowed us to
annotate in vivo T cell heterogeneity in the thymus with birth- and death rates, and a developmental
potential that describes directed development. We developed a model that reconciles interpretable
domain translation in time with cell number normalisation constraints that are specific to growing organs,
thus accounting for the tissue biology centred on total functional T cell output of this system. I was the
lead author in this study.

- Publication 2 “Predicting Antigen Specificity of Single T Cells Based on TCR CDR3 Regions.”
(sec. 3.2, sec. 5.1): We proposed a method to predict antigen-specificity of single T cells from
single-cell measurements to attribute in vivo T cell heterogeneity to antigen recognition. The proposed
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method addresses the interaction between antigens presented in a tissue and T cells to which these
antigens are presented. I was the lead author in this study.

- Publication 3 “Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T
cells through ‘reverse phenotyping’.” (sec. 3.3, sec. 5.1): We proposed a method to reduce the
amount of experimental confounding during the inference of the molecular state of antigen-reactive T
cells in patient samples to couple antigen recognition events more directly to in vivo T cell heterogeneity.
Our method highlights the relevance of conditional statistical dependencies between individual immune
cell’s responses to infection to understand the overall system behaviour. I was the lead author in this
study.

- Additional publication 9 “Concepts and Limitations for Learning Developmental Trajectories
from Single Cell Genomics.” (sec. 5.2): I contributed to a review on molecular trajectory estimation
from scRNA-seq data which covers trajectory learning trends relevant for population dynamics
described in (Publication 1). I was a supporting author in this study.

In the second part of the thesis, I discuss how the spatial context of a cell in a tissue can be used to relate
molecular cell states to cell–cell communication and tissue niche:

- Preprint 1 “Learning cell communication from spatial graphs of cells.” (sec. 3.7, sec. 5.1): We
studied graph neural networks on spatial graphs of cells as a means to induce spatial proximity priors in
cell–cell interaction inference. Among other cell biological systems, we studied the dependency of T
cells on their cellular niche in solid tissues. I was the lead author in this study.

- Additional publication 6 “Graph Representation Learning for Single Cell biology.” (sec. 5.2): We
reviewed the broader context of graphs in single-cell biology, including spatial cell graphs. This study
contextualises the usage of spatial proximity graphs of cells in the broader context of graph
representation learning, thus connecting this project area to the machine learning and other
computational biology communities. I was a second author in this study.

- Additional publication 8 “Squidpy: A Scalable Framework for Spatial Single Cell Analysis.” (sec.
5.2): We designed a python framework for basic analyses on spatial molecular profiling data. This
framework serves as a basic toolbox to access and analyse spatially-resolved single-cell data and
serves as a building block for graph-based modelling projects (Preprint 1). I was a supporting author in
this study.

- Additional publication 10 “Spatial components of molecular tissue biology.” (sec. 5.2): We
reviewed variance attribution concepts in spatial molecular profiling data. This study contextualises the
description of cells as a function of their tissue niche in the field of single-cell genomics (Preprint 1). I
was a co-first author in this study.

In the third part of this thesis, I discuss modelling approaches centred on statistical models that are related to
generalised linear models. These models can extend the molecular characterisation T cells by patient covariates
and thus yield mechanistic insight into cell states:

- Publication 4 “Impulse Model-Based Differential Expression Analysis of Time Course
Sequencing Data” (sec. 3.4, sec. 5.1): Temporally-resolved gene expression profiles are often
encountered in time course experiments on stimulated cell systems, such as in the model system of
infectious disease or inflammation. We improved the modelling of non-linear temporal gene expression
trends on bulk RNA-seq data and showed that many gene expression trajectories along stimulation
processes can be characterised by simple parametric functions. I was the lead author in this study.

- Additional publication 7 “Single-Cell Meta-Analysis of SARS-CoV-2 Entry Genes across Tissues
and Demographics.” (sec. 5.2): Between patient variation results in significantly different disease
outcomes for different patient groups. Methods to account for patient covariates can be used to relate
cellular heterogeneity to these patient strata. I studied challenges of generalised linear models that
account for patient covariates on a large cell atlas in the context of SARS-CoV-2 infection. I was a
supporting author in this study.

- Additional preprint 1 “Ultra-High Sensitivity Mass Spectrometry Quantifies Single-Cell Proteome
Changes upon Perturbation.” (sec. 5.3): The description of cells on the proteomic rather than on the
RNA level may yield descriptions of cells that are closer to the cell function. Mass-spectrometry-based
cell measurements are fundamentally different from next-generation sequencing-based measurements
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and may need to be addressed with different statistical tools. I contributed to a study of distributional
characteristics of a first generation of mass spectrometry-based single-cell proteomics data in relation to
single-cell RNA-seq data. The proposed methodology serves as a proof-of-concept for the analysis and
measurement technology which may be extended to immunology-inspired case studies in the future. I
was a supporting author in this study.

In the fourth part of this thesis, I discussed automation strategies related to exploratory single-cell analysis
workflows centred around a data and model zoo.

- Publication 5: “Sfaira Accelerates Data and Model Reuse in Single Cell Genomics.” (sec. 3.5, sec.
5.1): Automated single-cell data analyses and model benchmarks require streamlined data sets and
streamlined model classes. We addressed this need with a python framework for data streamlining and
computational model streamlining. Moreover, we designed a modelling approach to account for
ontology-structured cell type labels in label-based models. The framework can be used for single-cell
data sets from any tissue. I was the lead author in this study.

- Additional publication 2 “Single Cells Make Big Data: New Challenges and Opportunities in
Transcriptomics” (sec. 5.2): We reviewed big data challenges in single-cell genomics. The
conclusions drawn hold for the broader single-cell genomics community but also for single-cell
immunology. I was a supporting author in this study.

In the fifth part of this thesis, I studies the utility of genetic and epigenetic states as descriptors of cellular
heterogeneity:

- Publication 6 “MPRAnalyze: Statistical Framework for Massively Parallel Reporter Assays.” (sec.
3.6, sec. 5.1): We extended generalised linear models to a new model class that can model coupled
DNA and RNA abundance observations in massively parallel reporter assays (MPRA) which can be
used to attribute transcription rates to sequence variation in regulatory elements close to the promotor.
MPRA can be used to understand genetic regulation, developmental and stimulation processes, and
may be useful to understand the consequences of genetic variations between patients in the future. I
was a co-first author in this study.

- Additional publication 3 “Learning Tn5 Sequence Bias from ATAC-Seq on Naked Chromatin.”
(sec. 5.2): Chromatin accessibility is usually assayed through ATAC-seq in single-cell experiments,
making use of the Tn5 transposase. We studied Tn5 sequence bias, which is a confounding source of
variation in ATAC-seq data and, therefore, relevant to understand different chromatin accessibility
across genomic sites. I was a second author in this study.

- Additional publication 4 “EpiScanpy: Integrated Single-Cell Epigenomic Analysis.” (sec. 5.2):
Epigenetic variation can be described in high-throughput in single cells on the level of chromatin
accessibility and methylation, for example. We designed a python framework for single-cell epigenetic
data analyses. Such epigenetic characteristics will be valuable to describe long-lived chromatin states of
immune cells, for example. I was a second author in this study.
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Chapter 2. General methods

This methods section is divided into experimental and computational methods. The experimental methods
describe molecular principles underlying the datasets discussed in this thesis. The computational methods
describe analytic concepts used to model data in this thesis.

2.1 Cell biological methods

The vast majority of datasets discussed in this thesis rely on a next-generation sequencing read-out which is
described in (sec. 2.1.1). These assays differ in their nucleic acid capture strategies and are, for example,
specific to single-cell capture (sec. 2.1.2, 2.1.3) or plasmid and transcript co-capture (sec. 2.1.4).

2.1.1 Next-generation sequencing

Next-generation sequencing is a term specific to nucleotide sequencing and presents a ground-breaking advance
over previous low-throughput sequencing methods (Goodwin, McPherson, and McCombie 2016), such as
Sanger sequencing (Sanger, Nicklen, and Coulson 1977). In brief, next-generation sequencing protocols allow for
a massively parallelised characterisation of short DNA sequences in terms of their base sequence. This parallel
setup allows for many short reads to be handled in a single experiment. The sequencing process is based on one
of two core physicochemical mechanisms: First, nucleotides can be recognised via fluorescent signals in a cyclic
strand extension process based on reversibly blocked and fluorescently-labelled nucleotides. This technique is
employed in clonal bridge amplification which is used commonly in sequencing. Second, nucleotides can be
recognised based on their electrical properties in a nanopore which are assayed in Oxford nanopore sequencing
(Jain et al. 2016). Most of the protocols discussed here produce short DNA reads that are usually sequenced in
clonal bridge amplification machines to yield reads that are then aligned against a reference transcriptome or
genome to characterise the origin of the DNA sequence.

2.1.2 Single-cell RNA-sequencing

Single-cell RNA-sequencing (scRNA-seq) is the measurement of abundances of RNA species in individual cells.
Protocols can be largely distinguished based on two core characteristics: the method with which cells are
compartmentalised in distinct reaction chambers and the RNA capture mechanism (Fig. 6). Early scRNA-seq
protocols largely relied on well-based separation of cells which were either based on manual or robotic pipetting
of individual cells into wells (Tang et al. 2009; Ramsköld et al. 2012). Here, the wells could be treated in parallel
with reaction cocktails thereby increasing the throughput in comparison to a naive set-up in which each cell is
handled as an entirely individual experiment. These early scRNA-seq protocols were enabled by the biochemical
optimisation of reverse transcription that enabled scRNA-seq on the low input RNA amounts presented by cells
(Tang et al. 2009). These complementary DNA (cDNA) generation methods classify as “full length” protocols
which yield reads across the entire transcript and stand in contrast to 3’- and 5’-capture protocols which yield
read spectra heavily biased to one end of the transcript. Full-length protocols can be used to study transcript
diversity, such as splicing variants, but cannot be controlled by unique molecular identifiers (UMIs) and are not
strictly necessary to simply count RNA molecules in a sample. Drop-seq (Macosko et al. 2015) and inDrop
(Macosko et al. 2015; Zilionis et al. 2017) introduced the usage of microfluidics to separate cells into droplets in a
reverse emulsion in oil, using droplets as reaction chambers. These microfluidics protocols were later
commercialised and translated to other sequencing-based assays in single-cells. Microfluidics-based set-ups
facilitated an increase in throughput from 100s of cells per experiment to 10,000s per experiment and up to
1,000,000s cells per study. Microwell-based separation protocols constitute a third pillar of physical separation of
cells (Gierahn et al. 2017; Han et al. 2018). These methods have comparable throughput to microfluidics
methods because they do not require targeted placement of cells into wells but rely on stochastic separation of
cells over many small wells. Both microfluidics and micro-well based separation of cells rely on transcript capture
of lysed cells in a reaction volume by a bead that transfers bead- and molecule specific barcodes to a cDNA upon
reverse transcription in the reaction volume. These bead- and molecule-specific barcodes allow both
demultiplexing of the RNA-seq results into the individual cells (beads) and deduplication of reads originating from
a single cDNA via molecular barcodes, thus improving accuracy of transcript count estimates. Full length
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RNA-seq protocols cannot be trivially performed in these parallelised reaction volume setups because the
demultiplexing depends on the transfer of barcodes from beads to cDNAs, and barcodes are carried by beads
that transfer barcodes only at the time of transcript capture, and, therefore, once per transcript. This difference to
well-based setups is one of the core reasons for the parallel evolutions of full length protocols, especially
SMART-seq1-4 (Ramsköld et al. 2012; Picelli et al. 2013; Hagemann-Jensen et al. 2020), and bead-based
transcript-end capture assays. In yet another approach to transcript capture and barcoding, sci-RNA-seq
replaces the physical isolation of cells or nuclei by combinatorial indexing of reads in permeabilised cells or nuclei
(Cao et al. 2017). Finally, spatial transcriptomics approaches extend this paradigm of measuring cells in
dissociated tissues to measuring cells in situ (A. Rao et al. 2021).

Fig. 6: Technical variations in scRNA-seq protocols. Protocols vary in the isolation mechanism with
which cells are separated into physically distinct reaction volumes and in the RNA capture mechanism
within these volumes. Further differences occur in the chemical treatment of each reaction volume and
in cDNA library processing.

It is worth noting that while bead-based transcript capture assays are designed for transcript counting, they do
resolve splicing state differences in some cases even though their strong read bias to one end of the transcript.
This splicing state observation gave rise to the field of RNA velocities (La Manno et al. 2018; Bergen et al. 2020).

2.1.3 Single-cell ATAC-seq

Assay for transposase-accessible chromatin using sequencing (Buenrostro et al. 2013) (ATAC-seq) is a
transposase-base chromatin profiling method and provides an alternative to DNase-seq (Song and Crawford
2010) for this purpose. DNase-seq is a digestion-based chromatin profiling method in which DNA is first digested
with DNaseI, DNA strand breaks are then ligated to primers and the library then sequenced to identify the
digestion sites. The accumulation of such sites in hypersensitive regions provides a measure for chromatin
accessibility, such as the absence of nucleosomes. In ATAC-seq, this notion was leveraged in an assay that
measures hyperactive Tn5 transposase integration instead of enzymatic digestion. This transposase is able to
cleave DNA and ligate primer to the DNA strand breaks in a single-step, “tagmentation” (Adey et al. 2010).
ATAC-seq can be used to assess chromatin accessibility, transcription factor footprinting and nucleosome
positioning. Single-cell ATAC-seq was achieved via microfluidics-based single-cell compartmentalisation
(Buenrostro et al. 2013). To date, scATAC-seq is the only single-cell open chromatin profiling method and the
only epigenetic method which is routinely used in molecular characterisation of single-cells.

2.1.4 Massively parallel reporter assays

Massively parallel reporter assays (Inoue and Ahituv 2015) (MPRA) were developed to quantify the effect of
sequence variation in regulatory DNA sequences on gene expression. Often, one is constrained to rely on
naturally occurring genetic variability to study such variation. The MPRA in vitro system allows for targeted
perturbations of the dependence of gene activation on these genetic variants in high-throughput: First, a reporter
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gene with a minimal promoter is cloned into plasmid library with barcoded enhancer elements with variable
regulatory sequences such that the barcode is included into the reporter gene transcript. The sequencing
diversity in the resulting plasmid library is assayed via bulk DNA-seq and an aliquot of the library is transfected
into a cell culture which is then assayed in bulk via RNA-seq. One can then use these two bulk DNA and RNA
abundance measurements of barcodes to assess the relative abundance differences of barcodes between DNA
and RNA measurements, which corresponds to the effect of the regulatory sequence on transcription in this
controlled system. The barcodes can be coupled to explicit regulatory sequences via DNA sequencing to give
mechanistic insights into differential transcription regulation.

2.2 Computational methods

Inference in mathematical models depends on parameter estimation and cost functions which are very general
concepts that underpin much of computational biology. Differential equation models provide many unique
challenges to inference which I discussed in a separate section. Finally, uncertainty estimation and the design of
priors are frequently encountered in mechanistic models that are common in computational biology.

2.2.1 Parameter estimation in statistical learning

Parameter estimation is the pursuit of finding parameter estimates for a given model such that a cost function is
minimised. Usually, the cost function contains regularisation terms and a deviation measure between model
predictions and observed data. A popular theoretical framework for parameter estimation in frequentist statistics
is maximum likelihood estimation, in which the objective function is directly optimised. In other frameworks, such
as variational inference (Blei, Kucukelbir, and McAuliffe 2017), the objective function cannot always be directly
evaluated and, therefore, can also not directly be optimised and a lower bound to the objective is used instead.
Both direct and lower-bound-based techniques use gradients of a cost function with respect to the model
parameters to relay the deviation of the model prediction from the training data to the parameter updates. This
paradigm of gradient-based optimisation requires continuously differentiable models.

In maximum likelihood estimation methods (Hastie, Tibshirani, and Friedman 2013), the cost function is a
likelihood function and quantifies deviation of model estimates to the observed data, subject to assumptions on
the distribution of residuals. Depending on the model, one can either derive the maximum likelihood estimates
(MLE) as an analytic expression of the extremum of the likelihood function or obtain local MLEs through iterative
parameter updates. If the likelihood function is convex, these local MLEs are also global MLEs. The following
example illustrates these differences: A linear model, a Poisson generalised linear model (Agresti 2015) and a
non-linear multi-layer perceptron (Hastie, Tibshirani, and Friedman 2013) can all be fit to a given data set using
maximum likelihood estimation. The linear model and the generalised linear model both are convex optimisation
problems, the multi-layer perceptron is not necessarily convex. Additionally, we can derive an analytic description
for the MLE of the linear model (eq. M.1), the least squares estimator (eq. M.2), whereas this is not possible for
the Poisson generalised linear model (Agresti 2015):

Here, are parameters of the model, the model inputs, and the labels. Accordingly, both generalised linearθ 𝑋 𝑦
model and multi-layer perceptron have to be fitted with iterative parameter updates. As the cost function of the
generalised linear model is convex, the local MLE can be obtained through iterative optimisation is also the global
MLE and insensitive to initialisation. In contrast to this, the optimisation of multi-layer perceptron is sensitive to
initialisation, a problem that is subject to many practical considerations concerning neural network training, such
as weight initialisation and training schedules (Glorot and Bengio 2010; Klambauer et al. 2017). Additionally,
generalised linear models can also be optimised more efficiently than multi-layer perceptrons because of
parameter updates that exploit a quadratic approximation of the likelihood function. Such updates from the class
of Newton-Rhapson or quasi-Newton methods require the full hessian matrix or an approximation thereof
(Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970). The computational complexity of hessians is
quadratic in the number of parameters and therefore usually infeasible for neural networks with many
parameters. If estimation using Newton-Rhapson or quasi-Newton type methods becomes infeasible, one usually
resorts to methods that only require a linear local approximation of the cost function through the Jacobian. Again,
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this Jacobian may be computed in closed form or with finite differences. A core strength of deep learning
software frameworks like tensorflow (“TensorFlow” n.d.) and pytorch (“PyTorch” n.d.) is that they use
auto-differentiation to define the analytic Jacobian of a model based on the forward pass described in code. This
auto-differentiation accelerates modelling cycles drastically and lies at the heart of the revolution of deep learning
models. Standard gradient descent optimisers have been developed to more advanced optimisers such as
ADAM (Kingma and Ba 2014), that also have linear complexity in the number of parameters of the system but
improve convergence compared to gradient descent better on rugged loss functions with saddle points that are
frequently encountered in neural networks.

Gradient-based learning on large data sets imposes the additional challenge that the complexity of gradient
evaluations is linear in the number of observations, which leads to excessively large parameter update times for
many applications. Here, stochastic optimisation is often used to reduce the number of gradient evaluations per
parameter update without biasing the resulting parameter estimators (Hastie, Tibshirani, and Friedman 2013). In
stochastic optimisation, a compromise between the number of updates until convergence and the time required
to compute a single update is defined. Importantly, with large data sets, gradient evaluations across observations
can be sufficiently correlated such that stochastic methods yield overall faster convergence than deterministic
optimisation methods. Additionally, parallelised gradient evaluation is often not possible in memory for large
models with many parameters which results in further computational advantages of stochastic optimisers. In deep
learning, mini-batched stochastic optimisation is a common form of stochastic optimisation with a range of 10s to
100s of observations used for each gradient evaluation.

2.2.2 Cost functions for optimisation

Cost functions for optimisation quantify deviation between model predictions and observed data and thus give
rise to parameter optimisation problems. The exact weighting of deviations depends on the prior knowledge on
the data modelled. Classification and regression cost functions are umbrella terms that are used for a wide range
of maximum likelihood problems for models that predict either categorical or continuous outcomes (Hastie,
Tibshirani, and Friedman 2013).

2.2.3.1 Classification problems
A classification problem is characterised by a one-hot encoded label that represents a probability mass
distribution over a categorical label space (Hastie, Tibshirani, and Friedman 2013). Classification models typically
predict a probability mass distribution over this label space. In the case of a log multinomial likelihood with one
trial per observation, the cross entropy cost function is the negative log likelihood function (eq. M.3):

This log likelihood over observation and label classes, where is the predicted probability mass for𝑁 𝐾 𝑝
𝑛𝑘

observation the true class of observation . I used such a cross entropy cost function for categorical antigen𝑘 𝑛

specificity prediction (Publication 2) and basic cell type prediction (Publication 5), for example. In sfaira
(Publication 5), we adapted the cross-entropy cost function to a label space in which labels can be related to
each other through a directed acyclic graph, a cell type ontology (eq. M.4):

This likelihood function is designed for a model that predicts a probability mass distribution over leaf nodes of a

directed acyclic graph provided by an ontology. This log likelihood over observation, is based on the sum of𝑁

probability mass values assigned to any of the labelled classes . The set of labelled classes is the set of leaf𝐾+

nodes that correspond to a particular observed node in the directed acyclic graph. Therefore, a model fit for a
given observation is evaluated based on the predicted probability mass of all admissible leaf nodes that match
the observations. If all observations are assigned to a single class, which is equivalent to saying that all
observations are assigned to leaf nodes of the ontology, the likelihood function becomes a standard
cross-entropy function of a multi-class classification problem.
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Classification models can be evaluated with metrics that derive from a confusion matrix of the prediction problem
at a defined classification score threshold, such as accuracy or F1 score, or score-independent metrics, such as
the area under the curve of the receiver operator characteristic curve.

2.2.3.1 Regression problems
The categorical antigen specificity prediction problem on labels derived from peptide-MHC counts can be
extended to the full count labels on specificity (Publication 2). The new labels are on a positive support and thus
require cost functions that deal with count structured (Agresti 2015) or continuous real numbered labels. Such
supervision problems can be addressed with regression cost functions. In the case of peptide-MHC counts, we
chose a mean squared error on log-transformed count predictions to mitigate count data-induced
heteroscedasticity in the data (eq. M.5):

Shown is the mean squared log error of a model f that predicts observation y in the positive domain based on the
input x and the parameters .θ

In next-generation sequencing modelling scenarios, one is often confronted with reconstruction cost functions
which are special cases of regression cost functions that make use of domain-specific noise models (Lopez et al.
2018; Eraslan et al. 2019). A noise model is a probability density or probability mass function that describes an
observation distribution, often based on a few distributional moments that can be parameterised. Reconstructing
models cover scenarios that predict cell-wise gene expression states based on cellular covariates in supervised
models, or cell embeddings in latent variable models, for example. Many commonly used models parametrise a
location and a scale term and use exponential family probability distributions.

A core modelling framework for the statistical analysis of next-generation sequencing data is the generalised
linear model (Ritchie et al. 2015; Love, Huber, and Anders 2014): generalised linear models decompose the data
variance into different effects encoded in covariates. Generalised linear models are commonly defined to be
based on exponential family noise models (Hastie, Tibshirani, and Friedman 2013; Agresti 2015), for which
parameters can be efficiently estimated by using iterative updates that directly optimise the likelihood with an
algorithm called iteratively re-weighted least squares (IRLS) (Hastie, Tibshirani, and Friedman 2013). Exponential
family probability distributions include functions such as normal, log-normal, beta and Poisson distributions, and
are characterised by having a density that can be rewritten in the format shown in (eq. M.6):

The probability density (or mass) function of a canonical exponential family distribution can be rewritten into the
above canonical form. are parameters of the model, the model inputs, a dispersion term relating toθ 𝑦 ϕ
variance, and and are functions .𝑏 𝑐

In IRLS, the optimal parameter update under a local quadratic approximation of the likelihood function at a given
point in the parameter space can be solved as a weighted least-squares problem, where the weights depend on
the current parameter estimate, thus requiring iterative re-weighting across updates (Agresti 2015). The negative
binomial distribution (eq. M.7) is a special case of exponential family generalised linear models because it is only
an exponential family distribution if the dispersion parameter is fixed.

The negative binomial distribution describes the probability mass of an urn experiment outcome of drawing 𝑥
successes before failures occur, where the success probability is .𝑟 𝑝

In next-generation sequencing modelling, a re-parameterisation of the negative binomial density which explicitly
includes the expectation of the modelled count distribution as a parameter is very common (eq. M.8) (Love,
Huber, and Anders 2014; Lopez et al. 2018; Eraslan et al. 2019):
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This re-parameterisation of the standard negative binomial distribution (eq. M.6) is often used in noise models as
it explicitly contains the expectation of as a parameter . The second parameter can be interpreted as an𝑥 𝑚 𝑟
over-dispersion parameter which quantifies the deviation of the mean-variance trend of the distribution with
respect to a Poisson distribution.

With the scale model fixed, the location model parameters can be updated with IRLS as a convex problem for the
negative binomial model. However, the complete model estimation including dispersion parameter is no longer a
convex problem. In the R package MASS (Venables and Ripley 2002), negative binomial generalised linear
models are fit using a coordinate ascent scheme with alternating IRLS updates conditioned on a dispersion
estimate and line search updates on the dispersion parameters.

A second class of non-exponential family probability distributions that has been important for RNA-seq data
modelling consists of bi-modal noise models (Agresti 2015): In MAST (Finak et al. 2015), a hurdle model was
proposed, a two-component Poisson was proposed in scde (Kharchenko, Silberstein, and Scadden 2014), and
multiple other publications were centred around zero-inflated negative binomial distributions (Risso et al. 2017):
These bimodal noise models (eq. M.9) were largely proposed to deal with an apparent bi-modality of single-cell
data. The lower mode was typically close to zero and was described as “drop-out” (Risso et al. 2017), a technical
artefact from the measurement.

The zero-inflated negative binomial likelihood LZINB is a mixture model of a point density I at zero and a negative
binomial likelihood LNB with a mixing parameter (eq. M.8). Since its first reports, multiple studies haveπ
established that this drop-out was an artefact that likely originated in the lack of control of PCR bias during library
amplification in early non-UMI protocols (Svensson 2020). Recently, almost all single-cell experiments have been
performed with UMI, thus controlling for PCR bias, and there has not been evidence for drop-out effects in these
newer protocols (Svensson 2020).

Regression models can be evaluated based on the likelihood value to take the residual weighting into account
that was used for training, but are often also evaluated based on metrics that are more naive with respect to
residual weighting, such as mean squared error or mean squared log error, correlation scores, or explained
variance scores.

2.2.3 Differential equation models for single-cell population dynamics

Differential equation models are ubiquitous in computational biology and model the temporal evolution of systems
such as biochemical reactions, populations of cells in tissues and populations of organisms in ecology (Holmes et
al. 1994; Fröhlich et al. 2017). Cellular development can be described with population dynamics models to model
transitions of cells between developmental stages over time. This type of model naturally lends itself to a
differential equation model that models a probability distribution over time and a state space. Often,
developmental stages are defined as discrete molecular states, such as FACS bins. A population dynamics
model then describes the flux of cells between connected compartments over time as a system of coupled
ordinary differential equations (ODEs) (eq. M.10):

The temporal derivative of the discrete states depends on the states themselves. This model is called𝑋 𝑋
ordinary because the states are discrete. Here, this dependency is a linear dependency via the weight matrix ,𝐴
the ordinary differential system is, therefore, called linear.

If one defines a continuous state space, such an ODE model can be replaced by a partial differential equation
(PDE) model (eq. M.11):
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In a PDE, the partial derivatives of the differential equation model depend on each other. Shown here is a
classical PDE model, Fick’s second law, which models the temporal derivative of concentration of a substance𝑐
as a function of the second spatial derivative of the concentration profile and the diffusion coefficient .𝑠 𝐷

In a few cases, the temporal evolution of a differential equation system can be expressed in closed form. If this is
not the case, one needs to approximate the local temporal behaviour through the temporal derivative encoded in
the equation system at a given state. However, this interpolation in time requires the continuous space used in
PDEs to be discretised. One can distinguish three main paradigms for discretising space in forward simulations of
PDEs: Finite differences, finite volumes and finite elements (Fröhlich et al. 2021). The finite difference method
approximates the partial derivative of a differential equation at a given position in state space (eq. M.12) and
iteratively uses a linear extrapolation in state space using this partial derivative in a first order Taylor
approximation of the function to model the state of the system across the state space based on an initial
condition.

The finite volumes method extends this point-grid approximation of the state space to a discretisation into
volumes which are treated as compartments of an ordinary differential equation. The PDE is then simulated
based on this system of ordinary differential equations.

The approximation of the temporal behaviour of a differential equation system is necessary both for prediction of
unseen states and for parameter estimation: Parameters of differential equation models can be fit with maximum
likelihood estimation and with Bayesian estimation schemes (Stapor et al. 2018).

In the pseudodynamics model (Publication 1), directed development, asynchronicity of maturation and
proliferation or death events are core hallmarks of the cellular process which are captured and mapped to the cell
state space. In this PDE model, a drift term represents directed development, a diffusion term models the effects
of asynchronous development on the variance of the distribution and a reaction term with a birth-death rate
represents proliferation and death events (eq. 13):

In this single-branch pseudodynamics PDE model for cellular development, u is a probability density function of a
population of cells over a molecular space s and time t, D is a diffusion coefficient, v is a drift coefficient, and g is
a birth-death coefficient. This equation reproduces (Fischer et al. 2019) Online Methods eq. 1.

We used a no flux boundary condition at both ends of the s domain, additionally enforcing zero drift at the right
boundary (eq. M.14, M.15):

Note that the molecular domain s was padded beyond the observed molecular states in all cases. Accordingly,
the zero drift constraint did not directly affect observed states. These equations reproduce (Fischer et al. 2019)
Online Methods eq. 2,3.

To account for developmental branching events, we coupled multiple PDEs for each branch through probability
mass exchange terms at the ends of the modelled cell state intervals (eq. M.16, M.17):
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This model for two branches is a system of two coupled PDEs which describe the two branches as two
probability density functions on separate 1D domains, u1 and u2. On each branch, the population behaves as
described through (eq. M.13). The coupling is induced through probability mass exchange terms on a defined
region T(s) in the molecular state space, the “branching region”, and probability mass exchange rates δij from
branch i to j. Extensions for more branches can be defined by the introduction of further branching regions. These
equations reproduce (Fischer et al. 2019) Online Methods eq. 4,5.

Additionally, we also modelled the total population size to increase identifiability of the system (eq. M.18):

The total population size N of the cellular system is the sum of the integrals over the molecular space s of all
branches B. This equation reproduces (Fischer et al. 2019) Online Methods eq. 10.

We defined a likelihood function using the modelled and observed probability density functions over molecular
space at the observed time points and the modelled and observed population sizes at the observed time points.
(eq. 19):

The overall likelihood decomposes into three terms: First, the likelihood function for the fit of the modelled
probability density is based on the empirical cumulative density functions of predicted and observed density at
time points at which the population distribution was observed Tcdf. Second, the likelihood of the predicted
population size is evaluated based on the mean and the standard deviation of the population sizes observed at
the set of time points at which the population size was observed TN. Third, the likelihood of the population size
distribution over branches B is evaluated at Tcdf. This equation reproduces (Fischer et al. 2019) Online Methods
eq. 11. We defined a loss function to optimise the parameters of the differential equation system, diffusion, drift
and growth-rate coefficients, using the likelihood function and additional constraints on the parameters. In this
study, we used a spline model for the dependency of diffusion, drift and growth-rate coefficients on the molecular
space and imposed smoothness constraints on these splines in the loss function.

2.2.4 Uncertainty estimation: From linear models to neural networks

In pure frequentist statistics, one is only interested in finding the maximum likelihood estimator of the model
parameters, a point estimator. However, point estimators are liable to identifiability issues in a model. In machine
learning, identifiability issues often materialise as overfitting: The identity of the point estimator and the prediction
change drastically with small changes in the training data. This phenomenon can be largely mapped to moments
of the posterior of the model parameters, the core tool of statistical uncertainty estimation in a Bayesian
approach: The posterior describes a distribution over parameter estimate values that incorporates both their
likelihood under the data and prior assumptions. The posterior can be described through Bayes’ theorem (eq.
M.20):

The posterior is the probability of the model parameters given the data , and is based on the likelihood𝑝(θ; 𝐷) θ 𝐷
, the prior and the evidence . For a unimodal posterior, the variance of the distribution indicates𝑝(𝐷; θ) 𝑝(θ) 𝑝(𝐷)

the range of probable parameter estimates, so that one can interpret a higher posterior variance as a higher
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uncertainty in the parameter estimate. Indeed, such a wide posterior yields strongly fluctuating parameter
estimates if the training data is re-sampled and no further prior constraints are enforced on the parameter.

A popular framework that uses the notion of posterior width for uncertainty estimation is the Wald test (Wald
1943). In exceptional cases, one can find a closed form description of the posterior distribution of the parameters,
and thus derive all required notions of uncertainty from characteristics of this distribution. However, in most cases
this is not possible and one has to resort to approximations of the posterior distribution, such as through
sampling, marginal-wise approximation, or parametric approximation.

First, one can sample an approximate posterior distribution by sub-sampling the training data and computing
parameters estimates on each sample. In machine learning, this is done in some applications of cross-validation
and is primarily deployed to quantify uncertainty in the model output rather than in the model parameters. In
statistics, this re-sampling-based uncertainty estimation is called bootstrap. While simple to implement, this
sub-sampling based methodology is expensive as it requires new model fits for each sub-sample, and rests on
the assumption that the variation in sub-samples is representative of the variation in truly repeated sampling,
which is often not given in real world data settings. A different approach to posterior sampling is implicit in
optimisation schemes that sample the posterior, such as Markov-chain Monte Carlo methods (Ballnus et al.
2017). Here, samples from a chain in steady state can be considered samples from the posterior. Monte Carlo
methods are however computationally expensive and liable to set-up issues in the chains.

Second, one can focus on the parameter-wise marginals and sample the posterior or likelihood function on a grid,
which is usually much too expensive on the full multivariate posterior. An approach in this class of methods is
called likelihood-profiling (Stapor et al. 2018): Here, target values on the grid of the profiled marginal are fixed
and the remaining parameters optimised to yield an optimal cost function value for this grid point. While effective
in describing the marginal posterior, these methods are computationally intensive because of the separate
parameter estimation run for each grid point, liable to issues in choice of the grid and limited by their focus on the
marginals of the full posterior.

Third, one can sometimes derive a parametric approximation to the full posterior. If a hessian can be computed,
one can derive a parameter covariance matrix via the fisher information matrix (eq. 21).

A lower bound on the parameter estimate covariance matrix can be derived based on the Fisher informationΣ
matrix (Cramér-Rao bound), which can be expressed based on the expected Hessian (C. R. Rao 1945). This𝐼 𝐻
approach has conceptual overlaps to variational inference, in which a posterior is approximated during model
fitting through a variational posterior, which is often chosen from the set of exponential family probability
distributions.

This parameter covariance matrix together with the vector of maximum likelihood point estimates yield estimates
of the first two moments of the multivariate posterior. These two moments are frequently used to approximate the
full posterior with a multivariate gaussian distribution, which is the maximum entropy choice of distribution in this
setting. In generalised linear models, this posterior approximation is used in the Wald test (eq. M.22, M.23):

The Wald statistic is the squared deviation between the parameter estimate and the null hypothesis; which is𝑊
usually . The test statistic depends on the deviation between estimate and null hypothesis and theθ

0
= 0

variance of the parameter posterior, which can be derived from the fisher information matrix for generalised linear

models (eq. 13). is -distributed with a distribution with one degree of freedom ( ) if one parameter is𝑊 χ2 𝑘 = 1
tested. The distributional assumption on under the null hypothesis allows for the derivation of p-values for a𝑊
given model.

https://paperpile.com/c/PpwEOm/avTW
https://paperpile.com/c/PpwEOm/avTW
https://paperpile.com/c/PpwEOm/edHF
https://paperpile.com/c/PpwEOm/edHF
https://paperpile.com/c/PpwEOm/JG8H
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5CSigma_%7B%5Ctheta%7D%20%5Cgeq%20I%5E%7B-1%7D(X%2C%5Ctheta)%3D%20%5Cbigg(-%5Cmathbbm%7BE%7D%20%5BH(X%2C%5Ctheta)%5D%20%5Cbigg)%5E%7B-1%7D%20%5Cquad%20(M.21)#0
https://paperpile.com/c/PpwEOm/L9es
https://www.codecogs.com/eqnedit.php?latex=W%20%3D%20%5Cfrac%7B(%5Chat%7B%5Ctheta%7D%20-%20%5Ctheta_0)%5E3%7D%7Bvar(%5Chat%7B%5Ctheta%7D)%7D%20%20%5Cquad%20(M.22)#0
https://www.codecogs.com/eqnedit.php?latex=W%20%5Cstackrel%7BH_0%7D%7B%5Csim%7D%20%5Cchi%5E2(k%3D1)%20%20%5Cquad%20(M.23)#0
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A common theme in uncertainty management is model regularisation to reduce overfitting and to reduce
uncertainty. Lasso, Ridge regression and elastic nets are common variants of linear models with L1 and/or L2
penalties on the parameters (Zou and Hastie 2005). Similarly, L1 and L2 penalties are frequently enforced on
parameters in neural networks. Input or hidden layer drop-out is another important mechanism of regularisation in
neural networks (Hinton et al. 2012). Especially with large sample sizes, one is also confronted with the concept
of data-intrinsic regularisation: With large enough data sets, the posterior variance becomes sufficiently small to
avoid overfitting even without strong priors. While this can be directly assayed via Wald tests in generalised linear
models, this is much harder to diagnose in neural networks: Here, overfitting is usually diagnosed based on
held-out data but its management is hard. Often, one considers the training of the network as a trajectory through
parameter space along which models are increasingly overfitted. Accordingly, one can attempt to find a model
estimate that compromises training data fit and generalisability. For this purpose, one can co-evaluate the model
on held-out validation data to diagnose overfitting during training.

2.2.5 Representations of prior knowledge on feature correlation patterns in neural networks

A strong trend in the deep learning literature has been the optimisation of network layer architectures to the
underlying data type. Examples of such layers include convolutions, recurrent units, and graph convolutions.

Convolutional neural networks revolutionised computer vision through their flexible representation of local pixel
correlations (Krizhevsky, Sutskever, and Hinton 2012), which correspond to recurring image objects across length
scales, from edges to faces. Sequential data has been a second area of focus of deep learning model
development and was previously approached with dedicated models, too, such as hidden Markov models, for
example (Baum and Petrie 1966). Sequential data are often characterised by frequent local correlations and
sparse distant correlations. Recurrent neural networks (Rumelhart, Hinton, and Williams 1986) capture local
correlation in a layer structure element called “cell” that is repeated across sequence positions and, therefore,
allows learning and prediction on varying sequence lengths. Similarly, convolutional networks can also be used
for learning on sequence data. However, both suffer from difficulties with representing long-range correlations.
The recurrent neural network cell was extended to a long-short term memory (Hochreiter and Schmidhuber 1997)
(LSTM) cell to explicitly represent these long-range correlations. Convolutional networks were adapted to long
sequences through dilated convolutions which increase the field of vision of a latent unit exponentially in the
depth of the network, rather than linearly as in standard convolutional networks. Sequence-based neural
networks are used for representation learning on text, sound and protein sequences, for example. Recently,
representation learning on text has received especially large interest by the Deep Learning community. One
advance in this field are transformer networks (Vaswani et al. 2017). Transformers have been very successful at
text generation tasks and are scaled to more than one billion parameters (Radford et al. 2019).

Graphs are a very flexible mathematical representation of expected correlation structures and have recently
gained much interest in the Deep Learning community as intuitive representations of spatial, spatiotemporal and
contact networks (Kipf and Welling 2016; Duvenaud et al. 2015; Bruna et al. 2013). Graph-neural networks
forward propagate activations in graphs and can be mapped to convolutional neural networks (graphs of pixels)
and recurrent neural networks (graphs of sequence elements). The self-attention concept was also translated to
node embedding in graph-neural network, in graph attention networks (Veličković et al. 2017).

Layer structure choice is a crucial step in many Deep Learning projects because advanced layer architectures
are often more parameter-efficient in encoding particular correlation structures than densely connected layers
are. Layers reflect prior knowledge by constraining the function space accessible to the neural network.

https://paperpile.com/c/PpwEOm/bARL
https://paperpile.com/c/PpwEOm/Q2s0
https://paperpile.com/c/PpwEOm/G7zH
https://paperpile.com/c/PpwEOm/XlkR
https://paperpile.com/c/PpwEOm/G5Vw
https://paperpile.com/c/PpwEOm/Z8tG
https://paperpile.com/c/PpwEOm/NDfM
https://paperpile.com/c/PpwEOm/PnjS
https://paperpile.com/c/PpwEOm/exv9+yvoU+3tdG
https://paperpile.com/c/PpwEOm/eLnB
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Chapter 3. Publication summaries

This section contains one-page summaries of the seven main publications and preprints presented in this thesis.
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3.1 Publication 1: Inferring Population Dynamics from Single-Cell RNA-Sequencing Time Series Data.

The paper “Inferring Population Dynamics from Single-Cell RNA-Sequencing Time Series Data.” was published
in 2019 in the journal Nature Biotechnology as an article. The full citation is:

Fischer, David S.*, Anna K. Fiedler*, Eric M. Kernfeld, Ryan M. J. Genga, Aimée Bastidas-Ponce, Mostafa
Bakhti, Heiko Lickert, Jan Hasenauer, Rene Maehr, and Fabian J. Theis. 2019. “Inferring Population Dynamics
from Single-Cell RNA-Sequencing Time Series Data.” Nature Biotechnology 37 (4): 461–68,
https://doi.org/10.1038/s41587-019-0088-0.

Contribution:
I performed the unsupervised analysis of the single-cell data that yielded the developmental trajectories and
branching events and which yielded the hypothesis of the quasi steady state in T cell maturation. I performed
model interpretation with respect to the quasi-steady state discovered in T cell development and cell intrinsic and
extrinsic effects in beta cell maturation. I contributed to experiment design I defined the modelling scenario
tailored to intrinsic and extrinsic predictors of cell state of pancreatic beta cells. I wrote the manuscript with Anna
K. Fiedler, Jan Hasenauer, and Fabian J. Theis with assistance from all other authors.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://doi.org/10.1038/s41587-019-0088-0). All code published in the context of this project can be found on
Github (https://github.com/theislab/pseudodynamics).

https://doi.org/10.1038/s41587-019-0088-0
https://doi.org/10.1038/s41587-019-0088-0
https://github.com/theislab/pseudodynamics
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Summary:
Time-resolved models of developmental processes measured with scRNA-seq would require models or cellular
distributions in a continuous state space in time; a modelling paradigm that can be captured by PDEs. We
proposed a PDE model for cellular development in a continuous molecular cell state space. This state space is a
dimension reduction of a high-dimensional gene space. This approach overcomes the limitations inherent in
discrete state models used in ordinary differential equation models for flow cytometry data and the identifiability
issues related to steady-state observations (sec. 1.3). We used this new mathematical model, pseudodynamics,
to gain insights in two cellular systems with a strong temporal component to development: Embryonic T cell
maturation and pancreatic beta cell maturation.

My collaborators and I developed the pseudodynamics model for directed cellular development, asynchronicity of
cellular development and proliferation or death events during cellular development. We mapped these hallmarks
of cellular processes onto a molecular cell state space. In this PDE model, a drift term represents directed
development, a diffusion term to model effects of asynchronous development on the variance of the distribution
and a reaction term with a birth-death rate represents proliferation and death events (sec. 2.2.3). To account for
developmental branching events, we coupled multiple such PDEs for each branch through probability mass
exchange terms at the ends of the modelled cell state intervals. Additionally, we also modelled the total
population size to increase identifiability of the system. We defined a likelihood function using the modelled and
observed probability density functions over molecular space at the observed time points and the modelled and
observed population sizes at the observed time points. We defined a loss function to optimise the parameters of
the differential equation system, diffusion, drift and growth-rate coefficients, using the likelihood function and
additional constraints on the parameters.

My collaborators sampled the thymus from mouse embryos between ages E12.5 and P0 with Drop-seq to
capture the developmental trajectory of T cells in embryonic mice. I performed the unsupervised analysis of this
scRNA-seq time course data of developing T cells in the mouse thymus based on previous cell type assignments
by my collaborators. I recovered the full maturation trajectory from progenitors up to double-positive T-cells,
including a branching event to NK-T cells in an unsupervised analysis of the scRNA-seq data. I defined a
maturation progression coordinate as a 1D compression of the transcriptomic state using diffusion pseudotime
and set out to model the probability density of the population in the 1D transcriptomic space (cell state) as a
function of time. Notably, this 1D cell state space was the first continuous interpolation of the discrete
developmental stages usually defined for T cell maturation, a significant advance in molecular characterisation of
this system. I discovered a quasi steady state in T cell maturation at later time points and found that the
stationary distribution co-localises both with transcriptomic markers of beta-selection, and with the cell states on
which negative selection acts. Therefore, I hypothesised that a source-sink system to be the cause of the quasi
steady-state. I validated the annotation of the developmental trajectory with the beta-selection event by
integrating the wild type samples with samples from Rag1/Rag2 knockout mice that have T cells incapable of
passing beta-selection. T cells from these knockout mice were indeed delayed in developmental progress
compared to wild type T cells from matched time points. I then designed a validation experiment based on
Rag1/2 knockout mice with my collaborators. Indeed, we could show that T cells from these mice arrest at a
transcriptomic state that corresponds to the proposed beta selection cell state. My collaborators and I designed a
probabilistic model of the position of beta selection on the developmental trajectory based on these knockout
samples. We concluded that T cell development is a bi-phasic process from a dynamic point of view and
quantified birth-death rates along the process, mapping transcriptomic states to proliferation after beta-selection
and to death caused by apoptosis induced by positive and negative selection on T cells with fully developed T
cell receptors.
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3.2 Publication 2: Predicting antigen specificity of single T cells based on TCR CDR3 regions.

The paper “Predicting antigen specificity of single T cells based on TCR CDR3 regions.” was published in 2020 in
the journal Molecular Systems Biology as an Article. The full citation is:

Fischer, David S., Yihan Wu, Benjamin Schubert, and Fabian J. Theis. 2020. “Predicting Antigen Specificity of
Single T Cells Based on TCR CDR3 Regions.” Molecular Systems Biology 16 (8): e9416,
https://doi.org/10.15252/msb.20199416.

Contribution:
I designed the models in this study, performed analysis, led code development, and wrote the manuscript with the
other authors.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://doi.org/10.15252/msb.20199416). All code published in the context of this project can be found on Github
(https://github.com/theislab/tcellmatch).

https://doi.org/10.15252/msb.20199416
https://doi.org/10.15252/msb.20199416
https://github.com/theislab/tcellmatch
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Summary:
We studied the prediction of single T cell specificity to antigens as quantified by binding of
oligonucleotide-labelled and pMHC multimers, such as dextramers, focussing on data modalities that are specific
to the single-cell measurement setting. I identified dextramer counts coupled to CDR3 sequence measurements
in the same cells as data that allow for the fitting of supervised models that predict antigen specificity, measured
by dextramer counts per cell, as a function of the cells CDR3 sequences. Here, cells are observations, in contrast
to previous models that used specificity measurements from bulk experiments. This approach drastically
improves the effective experimental throughput that can be used by models: We were able to train models on the
order of 1e5 observations from a single study, in contrast to about 1e4 observations which were previously
curated from the entire literature (Shugay et al. 2018; Vita et al. 2019). Moreover, I identified the transcriptomic
state and surface protein state as an additional confounder of dextramer binding in individual cells, thus
extending this supervised model class by information not available from bulk assays. I designed models capable
of using this transcriptomic information and an ablation study to show its relevance for the prediction problem. My
collaborators and I then implemented neural networks that perform the prediction task and performed a
benchmarking study.

First, we found that models trained on both alpha- and beta-chain sequences were only weakly more predictive
for antigen binding than models only fit on beta-chain sequences. This finding can be rationalised based on the
co-evolution of alpha- and beta-chain sequence during T cell maturation. Second, we did not find evidence that
models could generalise well to unseen antigens given the currently available data. We hypothesise that this is
due to the extremely sparse sample of the antigen space and the confounding of binding events by HLA types.
Here, larger and more targeted data collection efforts are required to build models that can predict binding of
TCRs to unseen antigens.

Next, we established a machine learning model to use single-cell measurements of pMHC oligomers as a
readout of TCR-antigen binding events (Bentzen et al. 2016). The opportunities of this data modality to advance
TCR specificity modelling are manifold: First, the specificity of a single TCR (cell) to multiple antigens can be
assayed in a single cell by treating a T cell sample with a mixture of different pMHC identities. Second, the
binding assay is multiplexed via cells and yields much larger observation sets than previously possible with bulk
assays (Bagaev et al. 2020). Third, molecular states of cells can be assayed in parallel to binding events and can
confound unspecific binding events. Fourth, the pMHC concentration bound to cells may be used as a
quantitative read-out for binding, yielding data beyond binary binding observations often reported in databases.
We addressed all four points in new models trained on a large single T cell data with RNA, surface proteins,
CDR3 and pMHC binding measured for around 100,000 cells from four patients. We could indeed show in
ablation studies that the molecular state of cells conveys additional predictive power to CDR3-based models of
pMHC binding. Moreover, we could also show that pMHC binding can be predicted in a quantitative fashion.

The dependency of binding events on transient molecular states and constant genetic states, that we established
in this study, narrow the gap from the bioinformatics field of TCR-antigen binding prediction to contemporary
fields of T cell research: It is widely accepted the molecular states are core determinants of antigen-induced T
cell behaviour in many physiological settings, e.g. in T cell exhaustion (Blank et al. 2019). By allowing for the
integrating of cellular molecular states with TCR-antigen binding events, we provide a holistic understanding of T
cell action in vivo.

https://paperpile.com/c/PpwEOm/hBkv+FBqs
https://paperpile.com/c/PpwEOm/Mxqw
https://paperpile.com/c/PpwEOm/YVw3
https://paperpile.com/c/PpwEOm/2VCQ
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3.3 Publication 3: Single-Cell RNA Sequencing Reveals in Vivo Signatures of SARS-CoV-2-Reactive T
Cells through ‘reverse Phenotyping.’

The paper “Single-Cell RNA Sequencing Reveals in Vivo Signatures of SARS-CoV-2-Reactive T Cells through
‘reverse Phenotyping.’” was published in 2021 in the journal Nature Communications as an article. The full
citation is:

Fischer, David S.*, Meshal Ansari*, Karolin I. Wagner* et al. 2021. Single-cell RNA sequencing reveals ex vivo
signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nature Communications 12, 4515,
https://doi.org/10.1038/s41467-021-24730-4.

Contribution:
I designed and performed all analysis related to the stimulation assay in this study and contributed to manuscript
writing and to the integrative analysis with published data sets.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://www.nature.com/articles/s41467-021-24730-4#Sec43).

https://doi.org/10.1038/s41467-021-24730-4
https://www.nature.com/articles/s41467-021-24730-4#Sec43
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Summary:
CDR3 measurements in single cells do not just serve the purpose of investigating TCR sequence-dependent
antigen specificity, but also allow for a grouping of cells into clonotypes: groups of cells derived from the same
ancestor T cell. In T cells, these lineage relations can be established based on common or similar TCR
sequences (Sturm et al. 2020). We hypothesised that we can use clonotype assignments to track large clones
across short term ex vivo stimulations. This type of analysis requires the identification of virus-specific T cells
among other T cells that may also be affected by the disease or co-infections. Previously, virus-specific T cells
were identified based on staining with MHC multimers loaded with virus epitopes, or, based on ex vivo stimulation
phenotypes. Both are subject to fundamental limitations, including the restriction to particular epitopes and
confounding of in vivo transcriptomic states with ex vivo stimulation gene expression signatures, respectively. We
addressed these limitations using a new coupled experimental and algorithmic approach: reverse phenotyping.

My collaborators sampled peripheral blood mononuclear cells of two patients, stimulated cells ex vivo with
SARS-CoV2 spike protein, isolated T cells using FACS and performed scRNA-seq with additional CDR3
sequence capture on T cells from before and after stimulation. Additionally, they performed scRNA-seq on T cells
from tracheal aspirate samples from the same patient cohort. First, I characterised the transcriptomic state of T
cells specific to virus spike protein before re-stimulation based on interferon gene expression. I performed
unsupervised scRNA-seq analysis on the T cells, identifying CD4 and CD8 T cells, T cell phenotypes and
activation states. I then identified clonotypes based on CDR3 sequences and coupled clonotypes across
conditions within patients, thus establishing maps between T cell phenotypes in stimulated and unstimulated
conditions. I used these maps to identify virus-specific cells in the unstimulated condition and used this
classification to build gene signatures characteristic of specific cells. I identified distinct transcriptomic signatures
of virus-specific clonotypes, characterising clonotype heterogeneity both in the unstimulated condition and with
respect to their response to stimulation.

My collaborators used and validated these gene expression signatures on tracheal aspirate samples from our
study and on T cells from other COVID-19 cohorts. My collaborators then validated the TCRs that I predicted to
be spike protein-specific in an additional screen using orthotopic TCR replacement: My collaborators used a
genetic engineering system to replace the innate TCRs in control T cells from healthy donors with the putative
spike-specific TCRs. The transgenic T cells produced significantly more cytokines associated with TCR signalling
activity when stimulated with virus antigens then non-transgenic control cells, thus corroborating the validity of the
reverse phenotyping approach. As a second core result of this project, these validated SARS-CoV2-specific
TCRs can now be used in in vitro models of SARS-CoV2 immunity. In summary, we improved the
characterisation of the T cell response to SARS-CoV2 infection and presented a generalisable framework to
identify phenotypes of disease-specific T cells during an infection.

The reverse phenotyping method discussed here has applications in many stimulation assays in T cell systems.
This method improves on unconstrained distribution matching between patients, such as with optimal transport
and CycleGANs (Zhu et al. 2017), by establishing explicitly observed domain transitions.

https://paperpile.com/c/PpwEOm/PdvZ
https://paperpile.com/c/PpwEOm/hOuQ
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3.4 Publication 4: Impulse Model-Based Differential Expression Analysis of Time Course Sequencing
Data.

The paper “Impulse Model-Based Differential Expression Analysis of Time Course Sequencing Data.” was
published in 2018 in the journal Nucleic Acids Research as an Article. The full citation is:

Fischer, David S., Fabian J. Theis, and Nir Yosef. 2018. “Impulse Model-Based Differential Expression Analysis
of Time Course Sequencing Data.” Nucleic Acids Research 46 (20): e119, https://doi.org/10.1093/nar/gky675.

Contribution:
I designed the maximum likelihood approach to fitting the ImpulseDE2 model to data and designed statistical
hypothesis tests to the relevant questions in time series data. I implemented ImpulseDE2 as an R package. I
performed the benchmarking and wrote the manuscript with the other authors.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://academic.oup.com/nar/article/46/20/e119/5068248#124731012). All code published in the context of this
project can be found on GitHub (https://github.com/YosefLab/ImpulseDE2).

https://doi.org/10.1093/nar/gky675
https://academic.oup.com/nar/article/46/20/e119/5068248#124731012
https://github.com/YosefLab/ImpulseDE2
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Summary:
One of the core challenges of analysing bulk RNA-seq lies in the proper treatment of technical variation (“noise”)
and biological variation. As bulk RNA-seq became much more accessible, also densely sampled time series bulk
measurements became more common (Graveley et al. 2010; Broadbent et al. 2015; Jovanovic et al. 2015;
Baran-Gale, Purvis, and Sethupathy 2016; Sykes et al. 2016). Time series measurements are interesting from a
noise modelling point of view as biological variation can be captured as a smooth trend across time, which allows
for a disentanglement of the mean trajectory and of technical variation, even without replicating samples. In
previous work, Sander et al. had modelled bulk RNA time series with a double-sigmoid (“impulse”) model (eq.
R.1):

The mean is modelled as a function of time t via three amplitude parameters h0, h1 and h2, two switch-pointµ
parameters t1 and t2 and a slope parameter β. ImpulseDE (Sander, Schultze, and Yosef 2017) could recover
smooth temporal trends but was very slow to fit and was tailored to microarray data and did, therefore, not
account for the strong mean-variance relationship usually encountered in RNA-seq data. Indeed, other differential
expression frameworks, which were not centred on time series analysis, already used generalised linear models
with negative binomial noise models at this time (Love, Huber, and Anders 2014). I defined a maximum likelihood
approach to fitting the impulse model and defined the model likelihood as a negative binomial function with mean

, scaled by a size factor, and a pre-defined dispersion parameter.µ(𝑡)

I defined the temporal dependency of the mean of the expression distribution that is necessary to parameterise
the negative binomial likelihood through the impulse model. I modelled the dispersion parameter as a constant
over time, similar to how the dispersion model was previously treated in generalised linear models on RNA-seq
data (Love, Huber, and Anders 2014). I solved the issue of regularising the dispersion estimate of the negative
binomial noise model by pre-fitting this parameter with a regularised generalised linear model from DESeq2
(Love, Huber, and Anders 2014). Secondly, I designed a model selection mechanism based on similar methods
used for differential expression analysis with generalised linear models: I introduced a likelihood ratio test that is
capable of assigning significance to non-constant gene expression trajectories in time trends. Here, the null
model has a constant mean in time, which I showed to be a nested model of the impulse model. The likelihood
ratio test yields p-values instead of empirical p-values which were previously used in ImpulseDE. These p-values
are much faster to compute than their empirical counterparts because they do not require repeated model fits to
sample the null distribution of the test statistic. I designed a similar likelihood ratio test for non-constant condition
effects on gene expression trajectories in time, covering the most common experimental scenarios in this field. I
could show in benchmarking of the ImpulseDE2 model that ImpulseDE2 outperforms ImpulseDE both in fitting
speed and accuracy of detecting differentially expressed genes. Moreover, the prior implicit in the parametric
form of the mean trajectory described by the impulse model did indeed give additional statistical power in
detecting differentially expressed genes if many, more than six, time points were sampled, as our model uses
less degrees of freedom (six) for a similar fit as a generalised linear model that is based on a categorical
description of time (number of time points). In this benchmarking we also investigated spline-based models
RNA-seq measurements of gene expression in time with generalised linear models which had not been
discussed much in the literature before. We found that these spline-based generalised linear models were a good
alternative to reduce the number of parameters used in time series models. A core advantage of the impulse
model compared to these splined based models was that we could stratify differentially expressed genes into
permanently changed and transiently regulated genes based on nested likelihood ratio tests.

https://paperpile.com/c/PpwEOm/DSR8+RlN3+QjLD+cri9+podD
https://paperpile.com/c/PpwEOm/DSR8+RlN3+QjLD+cri9+podD
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmu(t)%3D%5Cfrac%7B1%7D%7Bh_1%7D%5Cbigg(%20h_0%20%2B%5Cfrac%7Bh_1-h_0%7D%7B1%2B%5Ce%5E%7B%5Cbeta(t-t_1)%7D%7D%20%5Cbigg)*%5Cbigg(%20h_2%20%2B%5Cfrac%7Bh_1-h_2%7D%7B1%2B%5Ce%5E%7B%5Cbeta(t-t_2)%7D%7D%20%5Cbigg)%20%5Cquad%20(R.1)#0
https://paperpile.com/c/PpwEOm/NxIn
https://paperpile.com/c/PpwEOm/xYvy
https://paperpile.com/c/PpwEOm/xYvy
https://paperpile.com/c/PpwEOm/xYvy
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3.5 Publication 5: Sfaira Accelerates Data and Model Reuse in Single Cell Genomics.

The paper “Sfaira Accelerates Data and Model Reuse in Single Cell Genomics.’” was published in 2021 in the
journal Genome Biology as a Software article. The full citation is:

Fischer, David S.*, Leander Dony*, Martin König, Abdul Moeed, Luke Zappia, Lukas Heumos, Sophie Tritschler,
Olle Holmberg, Hananeh Aliee, and Fabian J. Theis. 2021. “Sfaira accelerates data and model reuse in single
cell genomics.” Genome Biology 22, 248. https://doi.org/10.1186/s13059-021-02452-6.

Contribution:
I designed the sfaira project and the overall software architecture, was lead developer of the project and
developed the aggregate cross-entropy solution to ontology-based cell type classification. I wrote the manuscript
with the other authors.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://doi.org/10.1101/2020.12.16.419036). All code published in the context of this project can be found on
GitHub (https://github.com/theislab/sfaira, https://github.com/theislab/sfaira_benchmarks).

https://doi.org/10.1186/s13059-021-02452-6
https://doi.org/10.1101/2020.12.16.419036
https://github.com/theislab/sfaira
https://github.com/theislab/sfaira_benchmarks
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Summary:
Many unsupervised analyses start with alignment output summaries (Luecken and Theis 2019), which consist of
an UMI count matrix for most scRNA-seq protocols. There are strong format differences in these count matrices
between studies. Additionally, there are often cell- or dataset-wise meta-data, such as cell type labels or tissue of
origin. These meta-data are heterogeneous in terms of storage format and differ in naming conventions: T cell
subtypes are not always called the same but are largely labelled as free text. This happens even though there
are extensive ontology efforts which aim at structuring such metadata (Diehl et al. 2016). This lack of streamlined
data is a major bottleneck for many single-cell analysis projects. First, re-analysis of published data is slowed
down, even though more frequent re-analyses would be both beneficial to the scientific community by providing
reproduction of published analyses, and would enhance new results as they would be contextualised in the
context of more public reference data sets. Second, advanced automation of single-cell data analyses depends
on standardised data formats and may greatly accelerate single-cell analysis projects in the future. Because of
this lack of data streamlining, the input and output to machine learning models used on scRNA-seq data is
typically also not streamlined. We addressed this lack of standardisation with a software and algorithm set
implemented in the software package sfaira.

I planned the software architecture required to assemble data loaders in a community-driven way and to allow for
decentralised model deployment and contribution. My collaborators and I then implemented this software,
yielding a data zoo and a model zoo. My collaborators and I leveraged this data repository to build an entirely
automated model deployment pipeline for scRNA-seq: We divided the data set collection up into data sets per
organism and organ (anatomic structure) to train and deploy models across these partitions. I defined two
modelling settings required for basic interpretation of scRNA-seq data: First, embedding models yield a
dimension reduction which can be visualised with dimension reduction methods such as UMAP (L. McInnes,
Healy, and Melville 2018). Second, a cell-type model predicts a cell type for each cell. Taken together, both yield
a dimension reduction with cell type annotation without the need for any data processing. My collaborators and I
showed that these embedding models and cell type predictor models work stably across organs in data set
hold-out experiments. In this process, we identified cell type annotation granularity as a key issue with training
supervised models across studies: A particular group of cells would be annotated coarsely as T cell in one study,
while the corresponding set of cells would be annotated as fine grained T cell subtypes in another study. These
differences originate from data set size, data quality and study focus and are difficult to mitigate retrospectively
without major re-analysis efforts. I developed an aggregate cross entropy loss function and aggregate accuracy
score which can be used in these settings, which generalise cell type prediction models from cell type lists
(categorical label space) that were used before to ontologies (directed acyclic graphs) (sec. 2.2.3.1). In this
aggregate cross entropy loss function, probability mass is propagated from finer labels to coarser labels in the
directed acyclic graphs provided by a cell type ontology to train on data sets with different levels of annotation
granularity at the same time.

My collaborators and I showed that these embedding and cell type classifier models can be meaningfully
deployed in a scRNA-seq analysis setting. This level of automation advanced the state-of-the-art beyond what
was done in previous publications which often relied on integrated data sets from different studies or
preprocessed gene feature spaces for a particular cell type prediction problem.

https://paperpile.com/c/PpwEOm/kVSi
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3.6 Publication 6: MPRAnalyze: Statistical Framework for Massively Parallel Reporter Assays.

The paper “MPRAnalyze: Statistical Framework for Massively Parallel Reporter Assays.” was published in 2019
in the journal Genome Biology as a Method article. The full citation is:

Ashuach, Tal*, David S. Fischer*, Anat Kreimer, Nadav Ahituv, Fabian J. Theis, and Nir Yosef. 2019.
“MPRAnalyze: Statistical Framework for Massively Parallel Reporter Assays.” Genome Biology 20 (1): 183,
https://doi.org/10.1186/s13059-019-1787-z.

Contribution:
I designed the initial models, initial R package and proof-of-concept application. I contributed to further
development and manuscript writing.

Additional supplementary material:
Additional supplementary material is not suitable for printing and is available at the publisher’s website
(https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1787-z#Sec26). All code published in the
context of this project can be found on GitHub (https://github.com/YosefLab/MPRAnalyze).

https://doi.org/10.1186/s13059-019-1787-z
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1787-z#Sec26
https://github.com/YosefLab/MPRAnalyze
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Summary:
MPRAs characterise variability in gene expression as a function of the DNA sequence in proximal regulatory
elements in a plasmid model system. In contrast to genome wide association studies, they do not rely on natural
variability but allow for the screening of arbitrary sequence motif libraries. Moreover, they are multiplexed in the
sequences that are assayed and give a readout for a full library of sequence motifs in a single bulk experiment.
This multiplexing results in a confounding of the output of reporter genes that quantify promotor activity with the
number of plasmids in the cell culture, which may vary between sequence motifs due to concentration difference
after clonal amplification, for example. In MPRA, the plasmid concentration is sampled alongside the reporter
gene RNA concentration, thus allowing for this confounding to be resolved. Therefore, a statistical treatment of
many common hypotheses revolving around differences in promotor activity between assayed sequences needs
to account for the plasmid concentration.

I translated common mathematical concepts from statistical modelling of RNA-seq data to coupled plasmid DNA
and reporter gene RNA read counts in MPRAs (Inoue and Ahituv 2015). In a MPRA, one measures the
transcription rate induced by a promotor on a plasmid vector in cell culture by measuring both plasmid
abundance and reporter gene abundance. Both observations are noisy and depend on each other. Previously,
this data had been analysed by estimating a translation rate as the ratio of RNA and DNA counts (“ratio method”)
(Myint et al. 2019). The “ratio method” suffers from noise in RNA and DNA observations and requires an
extension to a linear model to correct for confounding variables (Myint et al. 2019). I proposed a model in which
both a latent RNA and DNA concentration and their dependence in a sample are modelled, thus accounting for
technical noise. For this purpose, I defined the observed RNA distribution as a convolution of Poisson technical
noise over a gamma-distributed latent RNA amount random variable. The latent RNA amount is the scaled
gamma-distributed DNA amount. Here, the scaling factor α is the translation rate. This convolution can be
expressed in closed-form as a negative binomial distribution, making this a very efficient model for
maximum-likelihood based methods (eq. R.2, R.3):

Here, the DNA amount D is gamma distributed and the RNA amount R is Poisson distributed with the modelled
DNA amount scaled by a constant α as a constant.

I also introduced a relaxations of this model that do not couple the full latent DNA distribution to the RNA
observations but only their mean (eq. R.4, R.5):

Shown is a linear model for the log amount of DNA D and RNA R with a design matrix for DNA amount variation
XD and a design matrix for gene expression rate variation XR with parameters β and γ. sD and sR are size factors
of the DNA and RNA samples, respectively, and adjust the relative amount by the sequencing depth of the library.
In this model, the latent DNA amount Dlatent appears as a point estimator XRβ in the RNA model.

My collaborators compared different MPRAnalyze models and previously used methods with respect to their
deviation from the “ratio-method”, specificity and sensitivity on control experiments, performance on simulation
and downstream analysis of transcription factor binding site enrichments in active screened sequences. My
collaborators and I found that MPRAnalyze is a robust computation method that caters to all common analysis
scenarios related to MPRA data. Importantly, MPRAnalyze is the first method to properly account for the count
statistics inherent in MPRA data.
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3.7 Preprint 1: Learning cell communication from spatial graphs of cells.

The paper Learning cell communication from spatial graphs of cells.” was published in 2021 as a preprint on
bioarxiv. The full citation is:

Fischer, David S.*, Anna C. Schaar*, Fabian J. Theis. 2021. “Learning cell communication from spatial graphs of
cells.” Preprint available on bioarxiv by Cold Spring Harbor Laboratory,
https://doi.org/10.1101/2021.07.11.451750.

Contribution:
I designed the project and models, performed analyses with Anna C. Schaar, and wrote the manuscript with the
other authors. I developed the software with Anna C. Schaar.

Additional supplementary material:
Additional supplementary material is available at the publisher’s website
(https://www.biorxiv.org/content/10.1101/2021.07.11.451750v1.supplementary-material). All code published in the
context of this project can be found on GitHub (https://github.com/theislab/ncem,
https://github.com/theislab/ncem_benchmarks).

https://doi.org/10.1101/2021.07.11.451750
https://www.biorxiv.org/content/10.1101/2021.07.11.451750v1.supplementary-material
https://github.com/theislab/ncem
https://github.com/theislab/ncem_benchmarks
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Summary:
Spatial molecular profiling data with sub-cellular resolution characterise cell types and molecular states of cells in
their tissue context. Experimental protocols capable of producing sub-cellular resolution include MERFISH (Xia et
al. 2019), seq-FISH (Eng et al. 2019), and CODEX (Goltsev et al. 2018), for example. Data from these protocols
is often analysed based on cellular or nuclear segmentation, which give rise to spatial graphs in which nodes are
molecular vectors describing individual cells and edges represent spatial proximity. Previously, neighbourhood
enrichment analysis was used to identify pairs of cell types that co-localise (Dries et al., n.d.; Palla et al., n.d.),
variance decomposition approaches have been used to decompose gene expression variation in space (Arnol et
al. 2019; Tanevski et al., n.d.), and ligand-receptor gene function has been identified based on the spatial gene
distribution (Yuan and Bar-Joseph 2020). On the other hand, ligand and receptor gene expression is used in
scRNA-seq to identify pairs of communicating cell types (Browaeys, Saelens, and Saeys 2020; Efremova et al.
2020).

I proposed to describe statistical dependencies between cells in spatial graphs with a graph neural network that
receives cell types in the input and predicts gene expression in the output. We named this model node centric
expression models (NCEMs). NCEMs leverage the spatial context of a cell to learn its exact molecular state,
without confounding this inference with the cell type frequency distribution. I showed that this graph neural
network can be framed both as a linear model in which individual interactions between cell types can be tested
with Wald tests, and as a nonlinear graph neural network that can capture higher order dependencies, but is less
interpretable. My collaborators and I showed in spatial ablation studies that these models identify statistical
dependencies between cells on biochemically reasonable length scales in the tissue, at distances slightly larger
than average cell radii. Furthermore, we showed that the identified statistical dependencies between pairs of cell
types are interpretable with respect to niches in the tissue. Finally, we showed current limitations in leveraging
this framework for deep variational inference with conditional variational autoencoders. NCEMs provide a
principled statistical backbone for modelling statistical dependencies between cells in spatial molecular profiling
data.

https://paperpile.com/c/PpwEOm/qBb1
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Chapter 4 General discussion and outlook

Immune cells can be characterised with multi-modal single-cell measurements and a zoo of mathematical models
is used to infer mechanistic insights on immune system processes from this high-dimensional data. Here, I
presented multiple novel approaches to understand single-cell data and discussed exemplary insights on T cell
maturation and antigen recognition. These findings are contextualised within computational biology and
single-cell biology in the discussion section. Individually, progress on each of the presented approaches depends
on the specific measurement technology required and on related algorithmic advances, as outlined in the outlook.

4.1 General discussion

The findings described in this thesis have implications for mathematical models of single-cell data, and for
single-cell immunology.

4.1.1 Bottom-up and top-down cell biology

The algorithms discussed in this study can be put into the context of other modelling approaches that are often
classified as bottom-up or top-down in systems biology: bottom-up models describe system properties based on
defined events, latent states are usually directly interpretable as species or other physical properties of the
system. On the other hand, top-down modelling is primarily centred on describing variation in a system, often with
unsupervised, or predictive angles. Traditionally, cell biology has been dominated by reductionist approaches to
cellular systems (Van Regenmortel 2004): Famous success stories of reductionism in cell biology include the
discovery of DNA and the functional characterisation of many proteins. It is noticeable that many of these
discoveries were not sparked by full bottom-up models of system behaviour which are often deployed in physics
or chemistry. Reductionism is a valuable tool in this context as it allows the isolation of a particular property of a
complex system in a bottom-up model if the hypothesis is phrased carefully enough. For example, individual
genes can be identified as necessary or sufficient for a particular process based on studies centred on those
genes. However, reductionism suffers from biases that relate to the class of hypotheses that can be tested and
the questions that are asked, which are typically inspired by the current state of knowledge. Because of this bias,
reductionism can slow discovery of novel phenomena.

On the top-down modelling side, black-box models from statistical learning can be used to learn representation of
systems and may be predictive, but often suffer from strongly reduced interpretability compared to bottom-up
models. Moreover, the limited mechanistic constraints imposed on these blackbox models in cell biology may
result in very limited out-of-domain performance, which is key to most generalisation tasks that are relevant in cell
biology. The approaches discussed in this thesis leverage carefully designed biological priors to model axes of
variation in high-throughput cell biological experiments, with a focus on single-cell and bulk omics experiments. I
advanced the available analytic methods both by defining new models and by translating modelling paradigms
from other machine learning disciplines to cell biology. Instead of attempting to infer all parameters of a global
dynamic or causal statistical model of a cell with molecular entities as states in a bottom-up setting, variance
attribution correlates components of variation with known biological effects and enables the disentanglement of
cause and effects in particular cases in which biological priors are available: The response of a T cell to antigen
challenge presents correlation of condition with state change. From molecular immunology, we know the
pathways that are activated in response to T cell receptor signalling and can therefore identify selected cell state
changes as antigen-induced. In the spatial setting, we can attribute molecular variation within cell types to niche
composition. One can consider these classes of variance attributing models as a middle-ground between
black-box top-down models and complete bottom-up models, that both fit the data formats currently available in
these branches of cell biology and the type of hypothesis often considered in single-cell studies.

As the data complexity increases in the future, variance attributing models may be pushed further towards
bottom-up models as increasingly fine grained biological priors can be represented. On the other hand,
interpretability mechanisms for black box models may improve in the future and may yield a competitive
alternative for extracting actionable biological hypotheses. Likely, combinations of these modelling approaches
will remain relevant and their relative added value will remain application-dependent. However, as machine

https://paperpile.com/c/PpwEOm/PgZR
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learning models evolve rapidly at the movement, there is reason to believe that black-box modelling and variance
attribution are promising approaches for the near future. All of these advances depend crucially on well structured
and annotated training data, a challenge that I addressed with the sfaira toolbox.

The diversity of the biological priors discussed here shows that models have to be carefully tailored to the
biological hypothesis at hand and the modalities that can be obtained for the given system. Both cell biological
questions and available data change rapidly, making the potential insights gained through variance attribution
and its best reflection in a mathematical model a moving target. This insight highlights the need for a continuous
rephrasing of biological questions in the language of data acquisitions set-ups and analytical frameworks, the
core pillars of computational biology. New insights into cell biology are not limited to hypotheses defined in
reductionist study designs anymore, but are often complemented by global insights into systems based on
statistical modelling and machine learning.

4.1.2 Single-cell immunology

Molecular heterogeneity of T cells can be described based on single-cell data alone. However, T cell function is
heavily dependent on the tissue context in vivo. Thus, models of T cells that take their environment into account
will likely yield more meaningful representations in the future. In this thesis, I improved models used to
characterise T cells based on antigen binding. First, I addressed a bottleneck in antigen-binding measurements
through predictive modelling of antigen binding. Second, I demonstrated how T cell phenotypes in ex vivo antigen
stimulation can be disentangled into antigen-specific and by-stander responses using a novel combined
experimental and computational approach (reverse phenotyping). These approaches improve the
characterisation of antigen-mediated activation of T cells and therefore improve the characterisation of potential
targets of therapies centred on T cells.

From a basic T cell biology point of view, understanding the compromises defined by the thymus between
reducing the production of auto-reactive T cells and maintaining a large enough T cell repertoire capable of
quickly identifying any pathogen may improve the design of therapeutic immune system modulation. In this
thesis, I proposed a trajectory model of T cell development which may be queried for molecular hypothesis on T
cell selection. Moreover, our population dynamic description of this cellular system quantifies T cell selection
pressure. Research that extends this approach may quantify tolerable levels of auto-reactive T cells in the future
which may be used to tune T cell therapies or may be used to recreate T cell maturation ex vivo, thus increasing
the biotechnological tool set to produce T cells for therapies. Lastly, T cell maturation is a key phase in the life of
a T cell and many regulatory insights gained on T cell function during this phase may likely be transferred to
phenotypes of mature T cells.

4.2 Outlook

Future progress in each of the five project areas depends on particular measurement technologies and algorithm
development for particular data modalities and questions.

4.2.1 Annotating molecular heterogeneity of T cells

A shift from considering cells individually to modelling populations of cells will yield new insights into cellular
systems. Differential equations in time and molecular space are a strong model class candidate for these settings
but sufficient time resolution is still relatively rarely sampled because of the high costs of the experiments.
Distribution matching (domain translation) machine learning methods may provide population transport maps in
the molecular space even with two time points and may be an alternative to differential equation modelling.
However, interpretable use cases for single-cell data that can be leveraged for hypothesis generation are still
rare. RNA velocity inference via spliced and unspliced read counting in scRNA-seq opens a separate avenue for
inference of directional development, even in non-temporal snapshot data (La Manno et al. 2018; Bergen et al.
2020). Observation-wise gradient observations from velocities have already been used as constraints for a
distribution matching model in TrajectoryNet (Tong et al. 2020). Such combined models are a promising avenue
for modelling both temporal data and splicing states. Similar distribution models of cell populations may also be
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useful to model ex vivo stimulations, where specific domain coupling observed through reverse phenotyping can
be used to constrain the domain transition.

The study of T cell activation and specificity has received much interest in the field of biotechnology because of
the relevance of T cells to engineering immune responses. First, immune responses can be engineered through
perturbation of cell signalling with drugs, including the important example of PD1-mediated signalling inhibitors
(Lei et al. 2020). Second, immune responses can be induced through engineered T cells, such as CAR-T cells
(Kuwana et al. 1987). High quality out-of-sample predictions on antigen-TCR binding will likely require more data
and a new generation of high-throughput assays that cover larger sets of antigens. However, a major step
towards increased throughput has already been taken with multiplexing of T cell specificity measurements in
single cells, as discussed in this thesis. Therefore, data-driven advances in this field may become available in the
near future. From a modelling point-of-view, amino acid sequence-based models for TCR sequences are part of a
category of the rapidly evolving sequence-based deep learning models. Most famously, sequence-based deep
learning has been scaled to models with billions of parameters in the transformer model class, such as in GPT-3
(Brown et al. 2020), and has recently made leaps in protein domain structure prediction, shown by AlphaFold
(Senior et al. 2020) and its successor AlphaFold2 (Jumper et al. 2021). TCR CDR3 sequences are much smaller
than most protein sequences tackled in AlphaFold2, and are indeed only a single loop in each chain of the larger
TCR dimer. However, loops are often worse defined in tertiary structures of proteins because of their lack of
secondary peptide structures, thus presenting different challenges to those addressed in full protein structure
models. Still, there are likely insights and modelling concepts that can be translated from protein structure
modelling to TCR-antigen binding event modelling.

4.2.2 Modelling spatial single-cell data using spatial graphs

Models of spatial single-cell data are still in their infancy, with both the experimental capabilities and the
modelling frameworks developing very quickly. The scientific journal Nature Methods elected “spatial
transcriptomics” as its “Method of the Year” in 2020 (“Method of the Year 2020: Spatially Resolved
Transcriptomics” 2021), showing the great potential believed to lie in this field. In this thesis, I studied cell
interactions as a core area of biological insights that can be gained from spatial data. Further abstraction of cell
and tissue biological questions are likely required to represent the full complexity of emergence in tissues beyond
niche phenotypes studied here.

The work presented here characterises overlaps between spatial molecular profiling and graph representation
learning approaches (Kipf and Welling 2016). Graphs are very flexible mathematical formalisms that can encode
a variety of prior knowledge. Still, further development of graph kernels to reflect the full host of prior knowledge
available in cell biology is required. Building on the NCEMs presented here, one may consider constraining
edges between cells further by matching ligand and receptor expression (Efremova et al. 2020; Browaeys,
Saelens, and Saeys 2020), for example.

High-resolution spatial cellular profiling may also increasingly question the model of a cell as an unstructured bag
of molecules, which is typically used for cell-wise average molecular data from dissociated cells. High-resolution
assays may be used to describe cells with organelle resolution. These cellular representations with increased
spatial resolution may both yield mechanistic insights into cellular function but may also uncover heterogeneity
between cells that is lost during averaging. Thus, spatial molecular profiling will continue to provide opportunities
for cellular representation learning.

4.2.3 Statistical modelling of gene expression data

Mass-spectrometry-based single-cell proteomics is clearly an interesting avenue for statistical modelling of gene
expression data in the future as many aspects of the data generating process are not as well understood as for
scRNA-seq data yet. In scRNA-seq data, models of donor and study variability will likely receive further attention.
In the study on SARS-CoV2 up-take receptor expression, we found that strong donor and study variations can
result in generalised linear models that overfit. Overfitting in generalised linear models on scRNA-seq data was
recently also discussed with respect to dispersion modelling (Hafemeister and Satija 2019). Random effects for
donor covariates in mixed effect models are a mathematical formalism to constrain these coefficients, but are
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also not necessarily free of overfitting and priors are not trivial to use by non-statistician analysts of single-cell
data. Moreover, mixed effect models usually require much more computational resources to fit and can be more
numerically insatiable, resulting in decreased usability compared to generalised linear models. Another problem
with single-cell differential expression analysis as a data exploration tool is that with the increase in number of
cells per experiment, even small effects become significant if cells are treated as observations. Accordingly, the
selection of small gene sets for downstream investigation is often not only powered by p-values anymore, but
also by effect sizes or by prior knowledge. Still, variations of differential expression analysis will likely remain a
bread-and-butter analysis option for single-cell data also in the future because of its high interpretability.

Basic statistical models may be increasingly used in the context of multi-modal single-cell experiments to
discover causal gene relationships in the future. MPRA data were one of the first experimental set-ups in which
RNA was paired with a causally related second modality, plasmid DNA content. Paired single-cell RNA-ATAC
measurements may allow for inference of dependencies between enhancer accessibility and gene expression,
for example. First steps into this direction were taken in studies that relate the expression of genes controlled by
the same transcription factors to each other (Kamimoto, Hoffmann, and Morris 2020) and may now be
supplemented by increasingly mechanistic models exploiting paired RNA-ATAC measurements.

4.2.4 Automation of exploratory analysis of single-cell data and building a machine learning community
around single-cell data

The automation of unsupervised analysis of single-cell data would empower experimentalists to interact better
with the data and would therefore ease integration of biological domain-specific prior knowledge into these
analyses. We took a first step into this direction with sfaira. Sfaira also opens exciting avenues in learning
complex and potentially interpretable representations of cells by enabling model training on very diverse
single-cell data collection for the first time. Efforts on collecting large image datasets enabled models with
multi-purpose convolutional layer stacks which then significantly advanced the image-based deep learning field
(Krizhevsky, Sutskever, and Hinton 2012), highlighting the relevance of such large structured databases for
advances in machine learning. Finally, structured data collections and modelling interfaces reduce barriers for
machine learning and statistics researchers to work on single-cell data and will facilitate future interdisciplinary
research.

4.2.5 Modelling single-cell epigenetic data

Joint scRNA-seq and scATAC-seq measurements are arguably the most commonly deployed single-cell
epigenetic assay and are part of the group of methods which was awarded Method of the Year 2019 by Nature
Methods (“Method of the Year 2019: Single-Cell Multimodal Omics” 2020). Not only does this experiment provide
unprecedented descriptive information for unsupervised characterisation of cells, it also allows causal models for
chromatin regulation of RNA to be built. The syntax of transcription factor binding sites on the genome has
recently been modelled with increasingly complex Deep Learning models of DNA sequence (Avsec, Agarwal, et
al. 2021; Avsec, Weilert, et al. 2021). Often, MPRA can be used to validate predictions in these settings. Our
model of Tn5 specificity lays a basis of a proper treatment of ATAC-data in this context and may give rise to such
models of chromatin opening that achieve higher orders of abstraction.
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