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A. Temporal Consistency Metric (TCM)
The temporal consistency metric (TCM) is proposed to

quantify the consistency of depth predictions across consec-
utive frames from monocular image sequences. The estab-
lished standard accuracy metrics against ground-truth depth
cannot reflect such consistency, due to applying per-frame
alignment and individual comparison.

As described in the main paper, we evaluate the tempo-
ral consistency of multiple consecutive depth predictions in
a sequence by measuring their alignment in 3D. Consec-
utive predictions are aligned in the same camera view by
using the warping flow generated by ground truth depth and
pose. We define the central frame of a short sequence of
predictions as target depth Dt, and the other frames as the
source depths Ds. The length of the short sequences is cho-
sen as k = {3, 5, 7}. Longer sequences are not suitable for
outdoor driving scenarios, as the visual overlap between im-
ages is too small (fast forward motion with 10fps for Kitti
dataset [2]).

We introduce the nomenclature of track as the point-wise
euclidean distance between the target depth and any source
depth in 3D after being aligned in the same camera view:

track =
∥∥Tt−→sπ

−1(Dt)− π−1(D
′

s)
∥∥
2

(S1)

where Dt is the depth from target frame, Tt−→s is the
ground-truth pose, D

′

s is the interpolated depth from source
frame aligned with the warping flow calculated from ground
truth pose and depth, and π−1(·) is the projective transfor-
mation function for 3D lifting.

We can now calculate track for ground-truth and pre-
dicted depths to acquire trackGT and trackpred. Notably,
for monocular methods with scale ambiguity, every frame
from a sequence is scaled using the same ratio acquired by
median-scaling from the target frame and its corresponding
ground truth. Finally, we can utilize the computed track to
define the absolute error (abs), square relative error (sq) and

root mean square error (RMSE) to measure the depth con-
sistency of each input:

TCMabs =
1

H

H∑
j=1

∣∣trackGT
j − trackpredj
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where H is the total amount of valid tracks in current
given input after outlier filtering as we suggested in the main
paper (20%). To acquire the final TCM evaluation, we sim-
ply average over all measured TCM from every testing in-
put.

To sum up, the TCM metrics can be interpreted as: the
error between the euclidean distance of consecutive 3D pre-
dictions and the euclidean distance of their ground-truths,
after alignment in the same camera view.

B. Additional Quantitative Results
B.1. TCM Analysis

A detailed statistical analysis on the absolute TCM met-
ric can be found in Figs. S1, S2, and S3 (left) for different
sequence lengths k. Our method has lowest mean and me-
dian absolute TCM errors with reduced outliers. This holds
true over all sequence lengths k = {3, 5, 7}.

For a fair comparison between methods, and due to er-
rors in the interpolated ground-truth LiDAR and moving
objects, we set a threshold to filter out 20% of the largest



Figure S1: Detailed 3-frame-TCM statistical analysis. Left: distribution of the absolute errors of TCM tested on 3 frames. Right: Absolute errors of TCM
measurement with different sampling rate for outliers handling.

Figure S2: Detailed 5-frame-TCM statistical analysis. Left: distribution of the absolute errors of TCM tested on 5 frames. Right: Absolute errors of TCM
measurement with different sampling rate for outliers handling.

Figure S3: Detailed 7-frame-TCM statistical analysis. Left: distribution of the absolute errors of TCM tested on 7 frames. Right: Absolute errors of TCM
measurement with different sampling rate for outliers handling.



Method Test-time input Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

ManyDepth [7] Temporal Frames (Standard) 0.098 . . . . . . .0.770 4.459 0.176 0.900 0.965 0.983
Ours (DRN-C-26) Temporal Frames (Standard) . . . . . .0.106 . . . . . . .0.770 . . . . . . .4.558 . . . . . . .0.182 . . . . . .0.890 0.964 0.983
Ours (DRN-D-54) Temporal Frames (Standard) 0.103 0.746 4.483 0.180 0.894 0.965 0.983
ManyDepth [7] Single Frame (Static) . . . . . .0.117 . . . . . . .0.886 . . . . . . .4.754 . . . . . . .0.191 . . . . . .0.872 . . . . . .0.959 0.982
Ours (DRN-C-26) Single Frame (Static) 0.107 0.784 4.596 0.184 0.888 0.963 0.983
Ours (DRN-D-54) Single Frame (Static) 0.104 0.760 4.515 0.181 0.982 0.964 0.983

Table S1: Simulation of static camera scenario: Accuracy results on Kitti Eigen test split [1] for standard temporal frames input compared to static single
frame input.

outliers. For this reason, we provide TCM results over vary-
ing outlier sampling ratios in Figs. S1, S2, and S3 (right).
Our method consistently outperforms other methods over
all sampling ratios.

B.2. Static Camera Performance

To simulate the scenario of a static camera, where no
consecutive images with changing scene structure are pro-
vided, we input only a single static image to our method.
For this example, we only report accuracy metrics, as TCM
metrics would not be meaningful for a static scene with a
non-moving camera.

As ManyDepth [7] is also utilizing consecutive input
frames, we use this method as our baseline. Table S1 sum-
marizes the accuracy measures for the identical split as pre-
sented in the main paper. Despite slightly inferior results for
our method with single static frame input compared to tem-
poral images, we do not observe such strong deterioration
in accuracy as for ManyDepth [7].

C. Additional Qualitative Results
Figs. S4 and S5 show more qualitative 3D reconstruction

results like the ones provided in the main paper. The im-
portance of temporally consistent depth predictions is ap-
parent in such reconstructions. A single depth map can-
not capture inconsistencies, but observing a reconstruction
of fused depth maps from different view points can intu-
itively demonstrate such effects. In the examples illustrated
here, the strong baseline ManyDepth [7] - despite achiev-
ing the best results in accuracy - suffers from deformed ob-
jects, ghosting effects, and ”flying pixels”. Similar artifacts
are observed for the semi-supervised PackNet-SfM∗ [4].
Our method yields the most consistent reconstructions from
consecutive depth maps. We also refer to the supplementary
video for more qualitative results on the TCM metrics, 3D
reconstructions, and temporal depth map predictions.

D. Network Architecture
An overview of the spatial-temporal attention module is

illustrated in Fig. S6, and details on the individual attention
mechanism are given in Fig. S7 for the spatial attention and

the temporal attention in Fig. S8, respectively.

E. Implementation Details
We implement our model in PyTorch [6] and train for 25

epochs using Adam [5] with a batch size of 6 for our full
DRN-C-26 [8] model, trained on one NVIDIA RTX-3090
GPU. We choose an initial learning rate of 1× 10−4 for 15
epochs, which we decrease to 2.5× 10−5 for 5 epochs, and
6.25 × 10−6 for the last 5 epochs. We perform the same
augmentations as [3]. We set λgeo = 0.1 and λs = 10−3.
λm = 1.0 for the first 20 epochs, after which λm = 0.0 to
allow our network better finetuning.



V
ie

w
 3

D
ep

th
 M

ap
V

ie
w

 2
V

ie
w

 1
RGB Keyframe ManyDepth PackNet-SfM* Ours

G
T 

V
ie

w
 1

G
T 

V
ie

w
 2

G
T 

V
ie

w
 3

V
ie

w
 3

D
ep

th
 M

ap
V

ie
w

 2
V

ie
w

 1

RGB Keyframe ManyDepth PackNet-SfM* Ours

G
T 

V
ie

w
 1

G
T 

V
ie

w
 2

G
T 

V
ie

w
 3

Figure S4: Qualitative reconstruction results from five consecutive depth predictions. Both, ManyDepth [7] and PackNet-SfM∗ [4] with velocity semi-
supervision, suffer from ”flying pixels”, ghosting effects, and deformed objects, due to temporal inconsistencies. This is not directly apparent in a single
frame depth prediction, but unfold when changing the viewpoint. Our method mitigates these artifacts to a large extent.
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Figure S5: Qualitative reconstruction results from five consecutive depth predictions. Both, ManyDepth [7] and PackNet-SfM∗ [4] with velocity semi-
supervision, suffer from ”flying pixels”, ghosting effects, and deformed objects, due to temporal inconsistencies. This is not directly apparent in a single
frame depth prediction, but unfold when changing the viewpoint. Our method mitigates these artifacts to a large extent.
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Figure S6: Overview of Spatial and Temporal Attention Modules.
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Figure S7: Detailed Spatial Attention Architecture.
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Figure S8: Detailed Temporal Attention Architecture.
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