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ABSTRACT

Various schemes for the computation of structural reliability in the
presence of ergodic wave load processes, ergodic sea state sequences
and simple gnon—crgodic) random variables such as strength
parameters or statistical uncertainties are investigated for both
non—deteriorating and deteriorating structural properties. It is
assumed that at least conditional outcrossing rates can be
computed. It is found that rigorous formulations can require
substantial numerical effort even in the context of FORM/SORM

computation schemes as they require n_est_ed_integration. owever,
for high reliability and not too large variabilities of the non—ergodic
variables simpler computation schemes can be used. In the

non—deteriorating case use of the ergodic theorem can be made. In
the deteriorating case Jensen's inequality can be applied to arrive at
simple and appropriate computation schemes.

NOMENCLATURE

A = arbitrary event

b = velocity of settlement of the platform

E[] = expectation

F = failure domain

ﬂ) = state function

13 = significant wave hight

X)) = integral of outcrossing rate with respect to
time

N*(F t) = number of the outcrossings in [0,t] through failure
surface

No number of zero level upcrossings in [0,t]

P(.) probability of an event
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random variable R

I 0B RnwunuN

I'TIE mean

0, standard deviation of random variable R

Tf{) transformation of probability distributions

oy standard deviation of zero mean normal process
- random time to failure

e
o

= significant wave period
= reference time

= standard normal vector
= ergodic vector process
= mg/(7p? + asﬂglﬂ

= gcncraﬁzcd safety index

~
B
~—

uration of a sea state

= standard normal integral

= outcrossing rate for failure domain F
= rate of zero level upcrossings

c

e DR XS

St

=
=3
+

INTRODUCTION

Offshore structures are exposed to continuously randomly varying
wave loads causing multi-dimensional stresses in the structural
members. Other time—variant loads like current, wind, life or
operation loads are also present. The structures have to withstand
not only extreme loading conditions but also the long—term,
material—deteriorating cyclic wave loading. The worst conditions
occur when extreme loading events meet an already reduced
structural capacity. Their likelihood increases with the age of the
structure.

Considerable uncertainty usually exists not only with respect to the
resistance properties and the structural geometry but also with
respect to the actual loading environment at a particular location of
the structure. Therefore, serious attempts have been made to
quantify structural reliability probabilistically. This is, however, not
an easy task as it requires sophisticated stochastic models for the
uncertainties and non—trivial reliability computation schemes.

While uncertainties about structural properties but also about
parameters of the loading can be modeled by simple random
variables or vectors, the time—varying sea states must at least be
modeled by a random sequence. The wave loading itself must be
modeled by a random process in continuous time whose parameters
depend on the random sea state sequence. The sea state sequence,
in general, can be assumed to be a stationary and, given its
parameters are known, even by an ergodic sequence. Also, for

sufficiently long duration of the sea states, the wave elevation
process can be assumed to be stationary and ergodic.




In this paper the concepts to compute reliabilities for stationary and

ic conditions in the presence of time—invariant non—ergodic
parameters will first be reviewed. Focus will be on numerical
techniques like FORM/SORM. The effect of various simplifications
will be studied. The considerations parallel very much those carried
out recently by Bjerager [Bjerager et al., 1988]. Then, the important
case of deteriorating structures will be discussed in more detail, in
the framework of FORM/SORM. The reliabilities to be computed
are based on the mean number of exits of the load effect process
into a failure domain. Those, in turn, are estimated from the
corresponding crossing rate. The reliabilities so determined are
asymptotic in the sense that the results may hold no more in full
rigor for relatively low reliabilities. The theoretical insights will be
demonstrated at a number of numerical illustrations.

TIME—INVARIANT  NON-ERGODIC _PARAMETERS  AND
ERCODIC SEQUENCES (PROCESSES) FOR SEA-STATES AND

Denote by
EN<(F;t)] = »#(F)t (1)

the mean number of crossings of a regular stationary and ergodic
load effect process into the failure domain F during the time interval
[0.t] where 1#(F) is the corresponding outcrossing rate. Then, if the
structure is initially intact, it is well known that the failure

probability can be bounded by
P{t) <P{0) + E[N*(F;t)] (2)

or, if certain mixing conditions for the load—effect process X(t) are
{fulfilled, can be approximated by

PLt) ~ 1 — exp[-E[N(F;t)]] (3)

Eq. (2) can also be used as an approximation but here we are
primarly concerned with the high refiability approximation in
eq. (3). Next, assume that there 15 a sequence of stationary and
ergodic sea states characterized by the wvector sequence
Q=(Q. Q......Q;.....Q.)T where n is the number of sea states in
the interval [O,tj. This vector may include variables such as
significant wave height, zero crossing period, wave propagation
direction. The mean number of outcrossings has to be written as a
conditional quantity, E[N*(F;t.q;)]. with qj a realization of Q;. The
failure probability is

P()=1-EQP(f (NYF:44Q) = 0) ®

with n = t/Ad and A# the duration of each sea state. Among
others, Naess has shown [Naess, 1984] that then

1) ~ 1 — expl— EQIEIN'(F;t. Q)] (5)

This result is best appreciated if the sequence of sea states is
assumed to be independent each with duration Ad. Then, the

obability that failure occurs in the interval [0,t] is given in the first
ine of eq. (6). It is assumed that all Q; have the same statistical
properties. e the sea state index j is omitted in the sequel for
simplicity of notation.

PR =1-1(Egienl-1(Q) A)

s1- 1 (Z expl-17(;) A fgfa)) Ag)

) i=1
m
=1- _Elexp[— l-"(qi) Ati]
= 1-ol-3 (q)tfg(s) Aq)
21— exp[-Eql(Q) t]] (6)

The integration with respect to Q in the first line of eq.(6) is
replaced by a sum with m intervals in the second line each having a
length Aq;. fg(qi) Aq; is the probability that the process is in the
interval [gi, qi + Aqj]. Hence, the total expected time the sequence
will spend in the interval [gi, qi + Aqi] in the long run is
At; = t fg(qi) Ag; as a portion of the time interval [O,tT. By the
ergodic theorem the probability of failure is given in the third line of
eq. (6). Simple mathematical manipulation Eads to the fourth line.
Finally, the sum with respect to Q is replaced by the integral in the
fifth hne.

K, however, non—ergodic time—invariant uncertain quantities R such
as strength parameters and/or statistical uncertainties about the
distribution parameters of the sea state sequence need to be
considered, it is clear that one has to take the expectation with
respect to the variables R outside the exponent (‘outside' integration
scheme) because the independence assumptions for the crossings in
different sea states no more holds

P{t) ~ 1 —Eplexp[-Eql (QR) t]]] (N

The expectation operation with respect to the variable Q can still be
performed inside the exponent (‘inside' integration scheme ) in good
approximation in eq. (7) due to ergodicity or even independence.

The expectation operation with respect to Q is analytic only in a few
special cases and mostly multidimensional. FORM/SORM methods
are well suited to perform the expected operations with respect to
Q. In the present form they require that the integration is over
standard normal variables which implies that the vector Q needs to
be transformed appropriately [Hohenbichler/Rackwitz, 1981] and
that the failure domain is given in the form

F = {X.QR|g(Xt.QR) <0} (8)

where Q must be transformed according to Q = T{Ug). X is an
ergodic vector process and Ug is a standard normal vector.

The expectation operation with respect to R is more difficult. It is,
however, possible to reformulate the integral by introducing an
auxiliary random variable such that FORM/SOI%M concepts are
applicable again [Hohenbichler, Rackwitz, 1981]. Eq.(7) can be
interpreted as the distribution function of the time to (first) failure.
We introduce the identity

1-—exp[A()t] =P(T <t |)=PUg Suy) = (u) (9)
where &(.) is the standard normal integral and r is a realization of

R. For the conditional failure probability this leads by rearrangement
to

Pdt|r) = P(T(r) -t <0) (10)
with t(r) a realization of the random time to failure T(r)

) = — 75y 0 [9(~up) (11)

Inserting the probability distribution transformation

R = T{Ug) (12)

into eq. (11) yields
Pt) = Euﬂ“’("ﬂrlr?(trgﬂ n(®(—up)]-t<0)  (13)

which is precisely the form required for FORM/SORM. This is the
formulation proposed in [Fujita, et. al, 1987]. It can be seen that
because the quantity v‘{}.{u&}) already requires numerical
integration by FORM/SORM two nested algorithms are required
which is a serious complication. Experience also shows that this can
lead to computational problems. It is, therefore, worthwhile to
investigate simplifications. In particular, those simplifications are of
interest which require to run only a single FORM/SORM algorithm.
As the random vector R may introduce a strong dependence %etween
the crossing events it is expected that the results obtained with the
simplified computation scheme are conservative.

For the quantification of the numerical error a simple example is
studied. Assume a stationary scalar valued normal process 5 and one
non—ergodic normal resistance variable R. The outcrossing rate and
hence the failure probability in the interval [0,t] can be calculated
using classical results [see, e.g. Cramer/Leadbetter, 1967]

P(t|r) ~ 1 —expl— v t expl— (;—3)2] (14)

where g is the rate of zero level upcrossings, o5 is the standard
deviation of the zero mean normal process. The statistical
parameters are given in table 1.

Variable Distribution Mean S.D.
R Normal (varies) 1-10
S Normal Process 0 1.0
Table 1: Statistical parameters

In this case the 'inside' integration is analytic. The unconditional
failure probability according to eq. (8) is

Pf(t) ~ 1 —exp[— it (U—zv_r_{_—giv_,w exp[—% 02]] (15)

where a = mp/(op2+0g?)! 2. For the 'outside' integration according
to eq. (7) it is possible to apply FORM/SORM for the expectation
operation with respect to the non—ergodic variable R.

The generalized safety indices ﬁ—,(t) = — §-I[Pg(t)] for the different
integration methods are plotted in figure 1 versus the ratio og/oc
for a constant value of a = 2. The upper curves represent ‘outside’
integration. if oy tends to infinity the coefficient of variation of R
approaches the value 1/a = 0.5. As expected, the difference in the
satety indices for the 'inside' and 'outside' integration increases with
oy. It approaches zero if the resistance is deterministic. Because the
outcrossings all depend on the resistance variable R the above
difference must grow for a larger number of zero—crossings No = wot
as shown in the figure. From figure 2 it is seen that the error made
by the 'inside' integration decreases with higher standardized
thresholgls a. Thus, the 'inside' integration for non—ergodic variables
yields slightly conservative results except in extreme cases (No in
figure 1 and 2 large). Furthermore, if interest is in the sensitivity of
the probability with respect to parameters or in an optimal set of
dc5|$.n variables rather than the absolute value of the safety index,
the 'inside' integration can be shown to be sufficiently accurate. If,
however, the parameter vector is an ergodic vector sequence as, for

example, the vector Q describing the variations between sea—states,
the 'outside’ integration yields unconservative results.

As a general conclusion we have that the order of integration should
be correct unless one is satisfied with the upper bound for the failure
probability which is obtained by the 'inside’ integration scheme for
all uncertain parameters.

As a side remark it should be mentioned that in system rehiability
analysis where, for example, k components must fail in order to
cause system failure the time to failure for each component can be
evaluated as in eq. (11) but conditioned not only on the vector R
but also on the already failed components T{Ty, Ts, ... T|r)
Then, the componental failure events are conditionally independent.
System failure occurs if a certain criterion, e.g. structural instability,
is reached and the probability of failure along a path including £
elements is
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P(t) = P(kslTk{Tll T2, Tk—l [)=t<0) (16)
The quantities Ty all have to be represented as in eq. (11).
NON-STATIONARY CASE WITH NON—ERGODIC PARAMETERS
AND ERGODIC SEQUENCES FOR SEA-STATES
The analysis of deteriorating structures or when non—stationary

ect processes are present is more complicated. Similar to
eq. (2) the upper bound for the failure probability is

t
P{t) <PLO) + [EQ[Eq(Fir.QR)ldr (17)
0

The mean number of outcrossings according to eq. (1) conditioned
on q and r now has to be evaluated by integration over time

t
EN(F0tan) = [1(Firan) dr (18)
0

with »*4{F;7q,r) a time—dependent function. The stream of
outcrossings now is non—stationary which prohibits the use of the
ergodic theorem even if the sea—state vector sequence Q is ergodic.

As before, the structure is assumed to be initially intact and all
sea—states have the same duration Adand n = t/A#d. Furthermore,
assume an ergodic sequence of sea state parameters Q(’ (=1, ...n)

and non—ergodic, time—invariant uncertain variables R. The
probability of failure then is

PLt) =1- ERiEq[P(jgl {T; - 492 0})]]
S | -——ER[jEIEQ[P({TJ' —Ad2 0})]]

n tj
w1 —-ER[jEIEQ{exp[— S (F;7.QR)dA)]

tj-i
n 4
<1- ER[_ﬂlexp[—-EQ[ flf’(F:iQ-R)dfm
e tj-1
n i
-l *ER[exp[—-ElEq[ [ AF;r.QR)A]]
L ; tj-1
=1- ER[exp[—EQ[ fw(F: 7.Q.R)ld7]]
0

4
<1 —expl-EglEql [(F;7.QR)J}d7] (19)
0

where ty = k Ad. T; in the first line of eq. (19) is the random time

to failure in the j—th sea—state which by using the
Rosenblatt—transformation
FTj(tj) = ¢[uTj] (20)
can be represented by
-1
t=J (—4n{¢{u-rj]].q‘r) (21)

and t;j a realization of Tj and where

tj
JJ.: fr.f’(F;r.q.r)dr (22)

ti-1

and UT, is a standard normal variable.

A numerical evaluation of the rigorous formulation in the first line of
eq. (19) appears not feasible even if FORM/SORM concepts are
applied because the mean number of crossings must be determined
for each sea—state (e.g., for a duration of A#= 3.5 [h] there are
about 2500 sea state in one year). Simplifications are necessary.

The second line is exact when the sea state sequence is, in fact, an
independent sequence. If the dependence structure of the sea state
sequence is such that there is

(N (AD)2 TL PR (23)

with A; an arbitrary event the second line even represents an upper
bound to the first line. The independence assumption for the sea
state sequence also allows to interchange the expectation with the
product operator. In the third line the assumed mixing property of
the wave process given the parameters Q = q is used. Substantial
further simplification can be achieved by Jensen's inequality

(Rao, 1973)
E[g(X)] 2 g(E[X]) (24)

for g(? a convex function from below. lts first application in the
fourth line of eq. (19) results in the most significant simplification
as it allows integration with respect to time over the whole interval.
Its application is based on purely mathematical arguments. Simple
algebraic manipulations lead to the fifth and sixth line. In the last
line Jensen's inequality is applied a second time. The approximation
of the last line can be improved by retaining the integration with
respect to R outside the exponent in analogy to the ergodic case.
The integration can now be performed by FgRM/SORM in analogy
with the procedure in eqgs. (9) to (13). It s

P((t) ~ EglP(J ™} (n[[-u]], R) —t < 0)] (25)

where

t
)= fEQ[y*(F;T,Q,r) dr
0

The inversion of the integral with respect to the upper integration
limit has to be performed numerically, Finally, a lower bound for the
failure probability is obtained if in the third line of eq.(19) n =1
and the time integral is extended from 0 to t.

In order to illustrate the numerical differences of the various
approximations in eq. (19) a simple example is studied. It is
assumed that the threshold function decreases linearly with time.
One may view it as the air gap between the mean water level and
the lowest level of installations in a platform which settles with time
accorc‘iipﬁ to r(t) = r* (1 —bt). b is the velocity of settlement. r* is
the initial value of the air gap. The time dcpcndycnt failure domain is

F = {S,B|r*(1-bt) — s(t) < 0} (26)

and the expected conditional number of crossings is [Cramer,
Leadbetter, 1967]

tj
EIN*(Fit,_y 6 HiaTob)] = f1/To exp [ 8 (202 dr

Ej-1

AT O, b M BlD

where Ty is the zero crossing period and H, 5 the significant wave
hight. The sea state parameter H,3 is modeled by a Weibull
distribution. For the purpose of this illustration Ty is assumed to be
deterministic. The parameters used in the example are collected in

table 2.

Variable Distribution Mean S.D. units
H1/3 Weibull 0.86 0.62 [m]
B Normal 0.05/0.15 0.05/0.15 [1/s]
to determ. 4.4 [s]
re determ. 1.0/1.5 [m]
Table 2: Statistical and deterministic parameters

Figure 3 shows the approximations of the failure probability which is
given in the first line of eq. (19). if both the ergodic QSHM;) and
non—ergodic R (B) variables are integrated 'outside’ and the time
integration is extended over the whole interval an unconservative,
lower bound for the probability of failure is obtained. If, however
the expectation operation with respect to the ergodic and
non—ergodic variable is performed 'inside’ (last line of eq. (19)) the
result will be a upper bound. K the expectation is performed
correctly 'inside' the exponent with respect to the ergodic variables a
sharper upper bound is obtained. Note that upper and lower bound
differ approximately by one order of magnitude. The quality of
Jensen's inequality as an approximation is also investigated, i.e. the
results according to the third and the sixth line eq.(19) are
compared for n = 6 sea—states. Remember that in each sea state
with duration A# and fixed value of the sea—state parameter Q = q
all crossings for the wave process out of the failure domain F depend
on this parameter. Hence, the integration with respect to this
variable within the interval Ad has to be carried out outside the
exponent. In figure 3 the exact results according to the third line are
shown for sea state durations Ad=1[year]. If, however, the
number of sea states and/or the durations of the sea states become
small, rapid convergence of the results in the sixth line is observed
(figure 4). This behavior is best appreciated if the exponent is
expanded into an exponential series with only the linear term
retained because the argument of the exponent is close to zero
which is true for Ad — 0 as n — «. Then with

Eqlexel-(Q) > Eqll —g(Q) = 1 -Eqla(@)]  (28)

the inequality sign in the fourth line of eq. (19) can be replaced by
an equality sign at least asymptotically. The rate of convergence
must depend on the relative variability of the wave process and the
sea state sequence. It should be large for small sea state variabilities
as compared to the variability of the wave process. Unfortunately,
this is not the case for many sea state environments. But the
number of sea states is generally large enough to justify the
approximation of the sixth line in eq. 19?1. For independent sea
states the last result allows to calculate the unconditional failure
probability with a rather effective integration scheme. In [Bjerager,
et al, 1988] it has been shown that even for hi%hly positively
correlated sea states this conclusion holds. Finally, for high reliability
levels the error by using the last line in eq. (19) can be shown to be
small and conservative which parallels the findings for the ergodic

case discussed before.
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