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ABSTRACT

A model is presented for the reliability calculation of so-called
time variant redundant systems subject to a Gaussian load-process
accounting for the possibility of failure under fatigue reduced
resistances. The wupcrossing approach together with the well-known
Poisson limit theorem i8 used for the derivation of the distribut-
ion function of individual times to failure. The numerical part is
facilitated by modern FORM/SORM techniques. Especially informative
are parameters computed for the most likely failure state. The
times up to and between individual failures resulting from these
calculations can be used for the design of appropriate inspection
and repair strategies.

1. INTRODUCTION

Fatigue-induced deterioration of offshore platforms and other
structures is an important scurce of diminished structural perform-
ance and can even cause structural collapse. A reliability analysis
of deteriorating structures is especially interesting for redundant
structures as it can help to design suitable inspection and repair
strategies and/or to quantify the remaining time of safe use of the
structure. However, reliability models so far have primarily been
developed for failure of structural components and systems under
extreme loading and only a few studies are directed towards the
reliability analysis of structural components subject to fatigue
(see, for example, Martindale/Wirsching, 1983).

Recently, a reliability formulation has been proposed (Guers et
al.,1987) which leads to approximate "time-variant” reliabilities
of redundant structures whose componential resistance properties
are still time-invariant. It models structural deterioration by
considering explicitely the consecutive states of degradation in
time as descibed by the sequence of componential failures. It is
particularly suited for high reliable structures.

In this paper that formulation is generalized to include fatigue
deterioration. It is based on some earlier studies on structural
component reliability under fatigue where the so-called upcrossing
approach (Guers/Rackwitz, 1985) has been found to be feasible and
sufficiently accurate, especially in the context of modern FORM/
SORM techniques. It enables a unified reliability approach for both
extreme-value failure and fatigue rupture. It will be shown that
those concepts directly carry over to structural systems.

2. BASIC MECHANICAL AND STOCHASTIC ASSUMPTIONS

Assume a linear-elastic, statically reacting, redundant structural
system. where M control points (bars, cross sections, hot spots,
etc.) have been preselected as prone to failure. For simplicity of
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presentation but also sufficiently realistic in many cases, the
load on the structure is taken as a stationary scalar Gaussian

process L(r) with mean mLand standard derivation o Further, the

load process obeys certain regularity conditions, that is
continuous differentiability of sample paths and ergodicity (see
Cramer et al.1967). The load-effects in the control points are then
Eiven by Sn(r) = amLtr) where the nm's are certain determin-istic

coefficients. The m-th control point is said to fail when a large
load "wave" causes Sm to exceed a possibly deteriorated control

poeint resistance Rm for the first time.
This event (upcrossing of Rm(rl by Smtr)) is followed by a more or

less abrupt change of the mechanical properties of the control
point. The change is assumed as perfectly brittle as concerns the
remaining resistance after failure. The corresponding load re-
distribution, however, is supposed to occur sufficiently slowly
such that, firstly, no dynamic effects need to be considered at the
surviving hot spots and, secondly, the new stress regime in the
structure is reached at the earliest in the next loading cycle.
This means that the same resistance thresholds are relevant during
the very wave that caused control point failure or, potentially,
multiple control point failure resp. multiple threshold crossings.
It is then possible in any state of the system to assign a critical
threshold Rm(T)/am to each non-failed control point and failure of

one or more elements in a large wave can be treated by the out-
crossing approach formulated in the same load space.

The resistance parameters in the control points, in general, must
be assumed as uncertain. Therefore, control point failure is first
considered conditional on a realisation of the vector Q=g of un-
certain resistance parameters.In a second step these conditions
must be removed by integration according to the total probability
law.

The other limiting case of immediate stress redistribution ecan be
dealt with in a similar manner at the price of slightly more invol-
ved computational operations (see Guers, 1987). With some restrict-
ions it ie elso possible to consider dynamic overshooting of load
effects in non-failing control points (Rackwitz/Guers,1986) and
even damped load redistribution. These and other refinements of the
approach are presently still under study.

3. OUTCROSSING APPROACH FOR FATIGUE-INDUCED DETERIORATION

3.1 INDIVIDUAL FAILURE TIMES

It has been shown (Guers, et al.,1987) that a probabilistic de-
ecription of the time-variant reliability of redundant systems can
be based on the distributions of the conditional times to individu-
al failures. For the highly reliable structures under consideration
{1)
i
under a single large "wave"” is well approximated by an exponential
distribution. In each structural state (1) such a time component is
the result of the almost simul-taneous failure of J control points,
i.e. it comprises control points i = {il,...,ij). The following

the distribution of the time T to failure of (time) component i

well-known asymptotic formula is valid
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where v(ll(

i r) is the time-dependent upcrossing rate of L(r) of the

(1) (1)
i § LA

in the time interval [0,T]. For simplification of notation, the

considered thresholds and I (T) denotes the integral over v

index (1) is omitted. It is further well known that (Madsen et al.,
1985)

vilr) = w Plr,(r) v(éirr)/uox (3.2)
where

r, (r) = (Rj(r) - aimL)/(aiuL) (3.3)

is the standardised threshold, f(r) ita derivative, uz the variance
o

of the derivative of the normalized load process, and
P(x) = P(x) - x$p(-x) with P the density and $ the distribution
function of a standard normal variable, respectively. The function

* . frequently can be approximated by the constant (Zﬂl_ljz. By in-

troducing an auxiliary standard normal variable UT by the identity
i
FT{TI = F” (u) = ¢(u), the variable Ti can be expressed as
i )
i

T, = 171
i

i (-1n ¢(-Uy )] (3.4)

i
Herein, Iil[.] represents the inversion of the integral in
eq. (3.1) with respect to the upper integration limit. A simple,
fairly accurate formula for the evaluation of the upcrossing rate
integral which makes use of Laplace's approximation (Copson, 1965),
and a suitable numerical inversion algorithm has been derived in
(Guers/Rackwitz ,1986). It is recognized that the failure pro-
bability can now be determined from

e 2 PP Saspla) (3.5)

which is precisely the formulation needed for the application of
FORM/SORM-techniques.

3.2 SYSTEM FORMULATION

Structures can fail in one of K failure sequences which are formed
by a series of individual random failure times. At the end of each
time step a time component is said to fail. Each time component is
associated with a single failure or multiple failures of control
points. The total time to structural failure is obtained by adding
up the time component failure times. Hence, structural collapse
occurs in a given sequence during the reference peried [0,T], if

1
m

Lo Teg=ieeu (3.6)

Lz} o
where the complete set of consecutive failures of time components
izl to i:im imply collapse. In contrast to the case of time-inde-

pendent resistances, the values of the thresholds of the non-failed
control points at the beginning of every time step are dependent on
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the previous time-step lengths and the already failed control
points due to the different deterioration regimes of the accumulat-
ion of damage along that sequence. This implies a dependency bet-

ween the Ti's. It is conveniently represented by the sequence of

conditional distribution functions of failure times. The corres-
ponding Rosenblatt-transformation necessary for application of
FORM/SORM for these failures times given a realisation of the re-
sistance variables can be written as (Hohenbichler/Rackwitz, 1981):

5

FT (Tl) z 1 - expi-J ul(r)dff = c]:(UT )
1 0 1
T2
FT (Tlel} =1 - expl=-f vz(rng)dr] = ¢(UT )
2 0 2
Ti
m
i e Bl e e ) = 1 -expl-f S s ol g idr]
Tim = 1 lmﬂl 0 i 1 i 1
= ¢(UT,’ {3.7)
i
m
Again, performing the integrations in eq. (3.7) and inverting them

a8 described above and inserting the failiure times into eq. (3.6)
yields a representation of the failure event in the standard space.

Consider new a general system with K possible failure paths to
system collapse. The number of time steps in the k-th path is Lk'

In order to completely define the failure sequence in that path, an
ordering of the reduced resistances must be performed for each of
the time steps and the elements must be grouped into components
failing at the end of each time step. The probability of occurrence
of the k-th failure sequence during [0,T! can be written as:

£

I
i k
P(Fk} = i Pk(T[g-g) : Sl g :

Q=q 1=1 1§

dF
) Q(g}

1
. rl < rl
1 Dy i) np(i+l)
(3.8)
for each for all
time step present
elements
The second probability corresponds to the specifiec ordering.In
numerical calculations the variables r are represented by their
Rosenblatt-transformations.The first probability is:
L

P {T|Q= = Pk P{ Ek Tk( A } £ t) (3.9)
x(T8=g) = i A ey 5t ;
where ythe second term corresponds to eq. (3.6) with new notation.

The first probability is the probability to be on path k. In these
equations, the following notations are used:

t li denotes the numbers of the control points in the k-th path
surviving at the beginning and along the l-th time step.

L4 nki(i) is an integer function which agsigns in ascending order
the numbers of the reduced thresholds during the l-th time

step.
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L

k
¥ Pk S ¢ Pi is the weighting probability of being on the k-th
=1
failure path where
1 1
o v 3
RN - e e e
P =
k vl
nkl(l)

is the weighting probability for the l-th time step which
ends at the upcrossing of ikl thresholds corresponding to

the elements nkl(l) to nkl(ikl) without upcrossing the
nkl(ikl+l)~th level .Again, the corresponding events are
expressed in the standard space by auxiliary standard
normal variables making use of Pi = ¢(U;) (see Guers et
al.,1987, for details)

% TT (r;kI{I,) is the time to the first upcrossing of the lowest

relevant level for the l-th time step, which is also the
length of this time step.

The total failure probability can finally be obtained by integrat-
ion over the uncertain resistance vector Q, i.e. from
K

PZI(T) = [ BliEF ) dF (q}
£ g ko1 kle=a’ g

where Fk]Q—g is the failure event in the k-th sequence condi

tional on Q = gq.

4. MODEL FOR FATIGUE DETERIORATION OF STRUCTURAL ELEMENTS

Fatigue phenomena in metallic structural elements can suitably be
modelled by assuming a certain crack initiation period which is
followed by the crack propagation period. During the first period
there is no substantial reduction of strength against extreme value
loading. In the second period a gradual reduction of residual
strength takes place. For simplicity of presentation it is here
assumed that the crack initiation period is negligibly short (see
Guers/Rackwitz, 1986 for a more rigorous, general formulation). A
number of crack propagation models have been proposed. It must,
however, be recognized that due to the lack of data relatively
simple relationships such as the one proposed by Paris-Erdogan
usually is accurate enough. For this model and many other
alternatives such as the so-called Feddersen scheme it is possible
to assess a decreasing threshold function in the load effect space
(stress space). This function usually has the form

R(r) = R(o)(1-K Bl z (as,)%1)9 (4.1)

(o,rl
where R(o) is the initial resistance and K, cand d are possibly
uncertain material properties. The (dsi) denote the damage relevant

stress cycle amplitudes. The damage accumulation term z(asi)c in

that equation depends on the counting method of damage relevant
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stress cycles. If the loading process is fairly narrow banded it is

simply ASi = max S, - min Si' Then, the expectation term in eq.
i

(4.1) can be written out explicitely. A slight generalisation is

achieved if one adopts certain empirical

adjustments proposed by

Yang (1979). Eq. (4.1) can then be written as

K
R(r) = R(o) (1 - ﬁqm_g ;
R(o)

]1/0

(4.2)

with X K = A K (ZJ?!B r(i+B/2) and A and B some additional, usual-
ly uncertain parameters also obtainable from fatigue tests.

An important characteristic of that model is
slowly deterministically decreasing resistance, which can be verif-

ied theoretically and experimentally

the assumption of a

for high cycle fatigue

(Guers/Rackwitz, 1986). The value of the threshold depend§ primari-
ly on the past load history and only negligibly on the instantan-
eous stress cycle. The independence of threshold and load process
as another consequence of the high cycle assumption together with

the limitation to high-rel

iable systems i

the outcrossing approach because it allows

stributed conditional upcross

ing events.

s equally important for
to assume Poisson-di-

5. APPLICATION FOR A 4-ELEMENT DANIELS SYSTEM
The ideal-brittle Daniels system (Daniels,
simple mechanics. On the other hand, the deg

redundancy of this system is exceptional

consequence it requires more

1944) is known for its
ree and efficiency in

due to its symmetry. As a

involved reliability calculations than

most of the more common structures. For the

of the foregoing concepts a

Daniels system

purpose of illustration
with 4 elements is

assumed (fig. 1). The tension strengths Ri of the different tendons

are assumed to be normall

¥y distributed

and equicorrelated. The

following simple resistance model then holds:
Ri = E[Ri] + D(Ril(JP UO+J -p Ui)

where U and the Ui’s are independent stand
o

For the numerical calculations with thi

values have been chosen
R, ~ N(EIR.,] = 0.9;DIR.,)
i i i

L{r) ~ N(0.5:0.1)
p=0.3

vt = 10°

= 0.2)

Rt.-nx

ard normal variables.

s example the following

Figure 1: 4 elements Daniels system
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The two parameters in eq.(4.2) are assumed to be lognormally

distributed with means E[XK] = |0_3FEHD. Elec]l = 4 and a coefficient
of wvariation COV = 0.2. B is deterministic, i.e. B = 3. The method
of the order statistics is used to calculate the distributions of
the ordered resistances ﬁ!< R2< ﬁ3< ﬁ4 (Hohenbichler/Rackwitz,

1982). The failure sequences are represented by the ruptures of
elements 1,2,3 and 3, repectively, and differ only by the composit-
ion of the components failing at the end of each time step.

The failure tree of the system without deterioration, i.e. for
E[XK] = 0 is given in fig. 2. The second-order safety indices are
shown in parenthesis at every step in the failure tree after the
last failed component.The values of the variables at the expansion
point for FORM/SORM can be interpreted as the most likely parameter
values for the considered failure sequence. In particular, the most
likely times between failures can be computed providing important
information about the remaining redundancy in the system and, thus,

also for further inspection and repair actions. The numbers just
above the same component are the time step lenghts in the most
likely failure state given as fractiles of the total lifetime. An

ordering of the failure sequences is possible. As expected due to
the assumption of delayed load redistribution, the sequences with
several time steps and thus load redistributions are the most
likely to occur (see fig. 2).

In figure 3 the failure tree with fatigue deterioration of the re-
sistances is shown. It can be observed that the safety indices now
are generally smaller. The safety index for the sequence 1,2n3, for
example drops down from 4.72 to 4.10. Also, the system most likely
spends comparatively more time in the first time steps when the
resistances are less deteriorated. In the previously mentioned se-
quence, the time spent in the intact state increases from 26.4% to
58.2%. Of course, the total lifetime is reduced (compare the
p-values).

6. DISCUSSION

As mentioned in section 4, the independence of the upcrossing
events is a basic condition for the calculation of the first
crossing time. This assumption will be more and more violated for

the lower thresholds, i.e. at the end of the lifetime of the struc-
ture. However, it has been found that because the later times are
short as compared to the preceeding ones, the error made remains
negligible.

The deterioration model proposed before is adequate for preliminary
investigations. It can be easily improved for special cases, for
example, by using Vanmarcke's (1975) improvement for the upcrossing
rate of narrow-band processes or by using more sophisticated models
for componential residual strength.

The application of this methodology to more complicated truss or
frame structures does not imply essential changes. Only ordering
conditions as in eq. (3.9) of the thresholds then have to be in-
cluded (Guers et al.,1987). The case of unequal fatigue con-
stant,i.e. where the thresholds can cross others during he life-
time, can also be solved by introducing truncated distributions for
the first crossing times.
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