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Nomenclature and Acronyms

↵ Angle of attack, �

↵̇, ↵̈ The rate change of angle of attack, and the second order of time derivative of
angle of attack respectively, ↵̇ = d↵/dt and ↵̈ = d2↵/dt2

↵mean, ↵0 An airfoil’s mean value of angle of attack in a harmonic pitching motion, �

↵amp An airfoil’s amplitude of angle of attack in a harmonic pitching motion, �

↵eff , ↵E The e↵ective angle of attack of an airfoil in a harmonic pitching motion, �

↵i The induced angle of attack, defined as the induced velocity over free stream
velocity, = Ui/U1

A area of a control region, m2

AR Aspect ratio of a blade, defined as the ratio of radius square to the blade area,
for rectangular platform, AR = R/c

a Sonic speed, m/s
aswell⇤ Non-dimensional acceleration of the swell structure
a Acceleration of a point, vector with components in x, y, z directions, m/s2

as Acceleration of a point on surface wall, vector with components in x, y, z direc-
tions, m/s2

I
a Acceleration interpreted in the inertial coordinate system, vector with compo-

nents in x, y, z directions, m/s2

� Compressibility correction coe�cient, =
p
1�M2

Cc Chord wise force coe�cient of an airfoil or a blade section, defined as the ratio of
sectional chord-wise force to the free-stream-based dynamic pressure and chord
length, = Cr

0.5⇢U2c

cfx The skin-friction coe�cient in the chord-wise direction, defined as the ratio of
skin shear stress to the free-stream-based dynamic pressure, = ⌧w

0.5⇢U2

Cm, Cm,1/4 Moment coe�cient of an airfoil or a blade section about its quarter chord, defined
as the ratio of sectional moment to the freestream-based dynamic pressure and
chord square, = m

0.5⇢U2c2

CMy Rotor pitching moment coe�cient, defined as the ratio of half of the rotor’s
pitching moment to tip-velocity-based dynamic pressure, disk area and chord
length, = My

⇢(⌦R)2(⇡R2)c

CMx Rotor rolling moment coe�cient, defined as the ratio of half of the rotor’s rolling
moment to tip-velocity-based dynamic pressure, disk area and chord length,
= Mx

rho(⌦R)2(⇡R2)c

Cn Normal force coe�cient of an airfoil or a blade section, defined as the ratio
of sectional normal force to the freestream-based dynamic pressure and chord
length, = Nr

0.5⇢U2c
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Nomenclature and Acronyms

Cn↵ The slope of normal force coe�cient of an airfoil with respect to angle of attack,
= @Cn/@↵

C
I
n, C

c
n Impulsive and circulatory part of normal force coe�cient in lower-order aerody-

namic models respectively
Cp Pressure coe�cient, defined as pressure over the freestream-based dynamic pres-

sure and chord length, = p�p1
0.5⇢U2c

⇤ for the hovering case, defined as pressure over the tip-speed-based dynamic
pressure and chord length for the hovering case, = p�p1

0.5⇢(⌦R)2c

CT Thrust coe�cient of a rotor, defined as the ratio of half of the thrust over tip-
velocity-based dynamic pressure and disk area, = T

⇢(⌦R)2⇡R2

c Chord length of the blade, m
f frequency, Hz
fs Non-dimensional separation point based on Kirchho↵’s theory
� Circulation of a control region, defined as the counterclockwise line integral of the

velocity over the boundary of the region or the area integral of the vorticity over
the region, =

H
@A ~v · d~s or =

RR
A !?dA, where !? is the vorticity perpendicular

to the control area, m2
/s

�x+ Circulation contributed by the vorticity in x direction with positive sign, =RR
A !x+dA, m2

/s

�i The circulation of a blade section in lower-order aerodynamic models, defined
as the ratio of lift over air density and free-stream velocity, = �L

⇢V , m2
/s

H Shape factor, defined as the momentum thickness over displacement thickness
of the boundary layer for a two-dimensional flow.

Hsep The critical value of shape factor, beyond which the flow is dominated by sepa-
ration.

h Placement of a blade section in z direction, m
⌘ Relaxatioin factor
⌘� Stability e↵ect factor of di↵erent components of @�/@t
✓ Pitch angle of a blade, �

✓0, ✓c, ✓s Collective pitch angle, longitudinal cyclic pitch angle and lateral cyclic pitch
angle respectively, �

k Reduced frequency, defined as the ratio of the time that a particle takes to pass
half chord of an airfoil to the airfoil’s oscillation period, = !c/(2U)

� Inflow ratio, defined as the ratio of the induced velocity over the blade tip ve-
locity, = ui/(⌦R)

µ ( A rotor parameter) advance ratio, defined as the forward-flight velocity over
blade tip speed, = U1/(⌦R)

µ
† ( A fluid parameter) viscosity of a fluid, kg·m�1

· s
�1

M Mach number, = U/a

M1 Free-stream Mach number, = U1/a

Since it is very clear wether this symbol is used in a partial di↵erential equation for aerodynamics or
in an equation for flight dynamics, the conventional note for advance ratio and the viscosity is adopted
without any modification and shall not arouse ambiguity.
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⌫ Molecular viscosity, = µ/⇢, m2
/s

⇢ Density of the air, kg·m/s2

R Radius of a rotor, m

Re Reynolds number, defined as the inertial force over viscous force, =
ULref

⌫
Rec Chord-length-based Reynolds number, = Uc

⌫
r Radial position on a blade, m
r/R Non-dimensional radial position on a blade
T Airfoil type
t Time, s
U , V Velocity, m/s
U1, V1 Free-stream velocity, m/s
Utip Blade tip speed, m/s
u Velocity of a point in the fluid, vector with components in x, y, z directions,

m/s

Vne Never exceed velocity of a flight envelope, m/s
w3/4 Downwash at third quarter chord of an airfoil, m/s
x̄ac An airfoil’s non-dimensional position of aerodynamic center
x/c Non-dimensional chord length
x⇠ Weighted average position of the vorticity change rate field, =

RR
!̇xdS/

RR
!̇dS

 ,  b Azimuth angle of a blade, �

⌦ Rotational speed of a rotor, rad/s
!t Phase of a harmonic motion, rad

! Vorticity of a point in fluid, vector with components in x, y, z direction, = ~r⇥u,
s
�1

2D, 3DR 2-dimensional, 3-dimensional and rotational
BEM Blade element method
CAMRAD Comprehensive analysis model of rotorcraft aerodynamics and dynamics
CFD Computational fluid dynamics
CTC Cycle to cycle
CSD Computational structure dynamics
DDES Delayed detached eddy simulation
DSV Dynamic stall vortex
ILES Implicit large eddy simulation
LE, LEV Leading edge, leading edge vortex
NTSB National transportation Safety Board (of USA)
PIV Particle image velocimetry
SA-model Spalart-Allmaras turbulence model
SI Shock induced seperation
SST-model Shear stress transport turbulence model
TE, TEV Trailing edge, trailing edge vortex
URANS Unsteady Reynolds average Naiver-Stokes
UTTAS Utility Tactical Transport Aerial System

v





List of Figures

1.1 Illustration of the movement of a blade section (highlighted in blue) on a
forward-flying NH-90 Sea Lion helicopter. [13] . . . . . . . . . . . . . . . 2

1.2 Dynamic stall on a pitching NACA 0012 airfoil, reproduced with the per-
mission by Gerontakos [14].(a) Dynamic loads of the oscillating NACA
0012 airfoil, ↵(t) = 10� + 15� sin(!t), reduced frequency k = 0.1. (b)

Dynamic stall associated boundary layer events: flow reversal, reattach-
ment, LEV and secondary vortex positions with respect to the phase !t.
(c) Smoke flow visualisation pictures of selected phases: prior to, during
and post stall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Comparison of Dynamic Stall event on an airfoil that plunges with the
equivalent pitching motion, reproduced from Carta [44].(a)Dynamic loads
of the oscillating Sikorsky SC1095 airfoil with a mean angle of attack
↵mean = 15�, subject to a free stream U1 = 30.5m/s. Plunge equivalent
pitching amplitude ↵̄amp = 5.02�, frequency f , cps(cycle per second)=
8.31, reduced frequency k = 0.131. Pitching amplitude ↵amp = 5�, fre-
quency f, cps = 8.31, reduced frequency k = 0.123 (b) The corresponding
pressure coe�cients on the upper surface of the airfoil in plunge and pitch
motion. The dashed lines represent downward pitching or upward heaving. 7

1.4 Schematic plot of the flow phenomena on a helicopter rotor . . . . . . . . 8
1.5 General flow chart of aerodynamic modelling for rotorcrafts. . . . . . . . . 11
1.6 Aerodynamic environment at a typical blade element, (a): Top view of

the blade; (b) blade element level. . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Control region for the vorticity transport analysis on a rotating and pitch-
ing flat plate by Buchholz [83], where A is the control region, and @A is the
boundary of the region with bound4 aligned with the plate upper surface. 22

3.1 (a) Schematic plot of chimera grid strategy. Red and grey squares rep-
resent two overset meshes (chimera meshes); yellow lines represent the
boundary conditions for each block. (b) Schematic plot of the compu-
tation field, which consists of pitching, rotating and far-field (inertial)
block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Configuration of the mesh: (a) blade block, (b) voxel rotating block, (c)
voxel farfield block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Details of (a) normally extruded boundary block from surface mesh, (b)
surface mesh on the blade, and (b) structured pitch block topology built
on the boundary layer mesh. . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



List of Figures

3.4 Details of the rotating block and its topology. . . . . . . . . . . . . . . . . 41

3.5 Details of the far-field block (a) with point-cloud refined grid; (b) with a
structured cylindrical refined grid for the wake region. . . . . . . . . . . . 42

3.6 Configuration of the mesh for validation: (a) blade block; (b) voxel farfield
block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Thrust coe�cient along inner iterations. . . . . . . . . . . . . . . . . . . . 44

3.8 Pressure coe�cient at di↵erent span-wise locations on the hovering rotor
blade: comparison between numerical simulation with Spalart–Allmaras
turbulence model and experiment result [120]).Cp == p�p1

0.5⇢(⌦R)2 . . . . . . . 45

3.9 Iso-surface of Q-criterion (Q = 5000 s�2) contoured with vorticity mag-
nitude and super-positioning on y-sliced mesh. . . . . . . . . . . . . . . . 45

3.10 Grid convergence study with coarse, medium, and fine grids. . . . . . . . 46

3.11 Force residual as a function of simulation time history expressed in az-
imuth angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.12 Superposition of force coe�cients of di↵erent revolutions. . . . . . . . . . 48

3.13 left: Illustration of coordinate system used to post-process shape factor;
right: schematics of boundary layer over a flat plate. . . . . . . . . . . . . 49

3.14 (a) Shape Factor Hi on the upper surface at azimuth angle  = 32.9�, two
contour lines indicate the upper and lower bound of Hi value to determine
the separation; (b) skin friction cfx on the upper surface at azimuth angle
 = 32.9�, the 0 contour line showing the separation line. . . . . . . . . . 49

3.15 Control region A for vorticity transport analysis. (a) The lines to abstract
flow information and perform line integration; (b) the adjusted boundaries
for area integration of flow variables. . . . . . . . . . . . . . . . . . . . . . 51

3.16 Schematic sketch of the coordinate system . . . . . . . . . . . . . . . . . . 53

3.17 Schematics of the modelling process: dynamic stall events on a single
rotating blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Comparison of thrust and pitching moment coe�cients of the blade within
one revolution by di↵erent turbulence models: Spalart–Allmaras (SA) and
the k � ! SST turbulence model. . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Sectional force coe�cients at selected radial locations, r/R = 0.607, 0.785
and 0.928. (a): sectional normal force coe�cient CnM

2; (b): sectional
pitch moment coe�cient CmM

2. . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Rotor map of sectional force coe�cients. (a): CnM
2 sectional normal

force coe�cient normalised by sonic speed; (b): CmM
2 sectional pitch

moment coe�cient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Pressure coe�cient of a slice on the blade at radial position r/R = 0.714,
0.821 and 0.928, azimuth angle  = 90�. . . . . . . . . . . . . . . . . . . . 63

viii



List of Figures

4.5 Vortex structure shown by iso-surface of Q criterion (Q = 5000 s
�2)

shaded by pressure coe�cient cp referenced to forward flight speed. For
each subplot, top: blade tip, bottom: blade root. The blade border is
shown with the black rectangle. Azimuth positions:  = (a) 270�; (b)
300�; (c) 315�; (d) 330�; (e) 345�; (f) 0�; (g) 30�; (h) 39�. The inertial
coordinate is plotted here. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Snapshots of the flood contour of vorticity field !x and the contour of !y

in blade tip area (0.94 < r/R < 1.125) at di↵erent chord-wise sections;
The circulation �i± =

RR
S ±!idA, where S is the tip region where !x > 0,

i = (x, y). Azimuth positions:  = (a) 318�; (b) 330�; (c) 357�; (d) 18�;
(e) 36�; (f) 54�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 The swell structure on the blade, represented with x and y slices. Left:
slices at r/R = 0.488 and 0.625; Right: slice at x/c = 0.183. . . . . . . . 67

4.8 Comparison of the pressure force and the Coriolis force in vortex cores. (a)
area of integration, where Q > 0; (b) ratio of Coriolis force and pressure
force in 3 directions �FCor/�Fpx. . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Schematics of the generation of the swell structure near the root of the
blade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Left: Location of the vortex cores over the blade in radical region r/R =
0.3 ⇠ 1.0 evolving along azimuth. Dotted line is a curve r/R = 1/2 ⇥

0.248� 2 + 0.16 cos( )� + 0.3426, � in rad. Right: Projection of
vortex cores on the blade upper surface at selected azimuths. . . . . . . . 70

4.11 Rotor map of chord-wise separation xSep/c and attachment xAttach/c lo-
cations. The direction of the free stream is from  = 180� to  = 0�, and
the rotating direction is counterclockwise. . . . . . . . . . . . . . . . . . . 70

4.12 Snapshots of the skin friction lines cf . For each subplot, the blade is
placed the same way as in Figure 4.5, with the top side being blade tip
and bottom being blade root, the left side being the blade leading edge,
and the right side being the trailing edge. Azimuth positions are:  =
(a) 270� (b) 300� (c) 315� (d) 330� (e) 345� (f) 0� (g) 30� (h) 39�. . . . . 71

4.13 Mach contour of the slice r/R = 0.898 and the corresponding pressure
coe�cient cp, skin-friction in the x-direction cfx on the blade section,
azimuth angle  = 90�. On the upper surface, cfx drops from positive to
negative and crosses 0 at x/c = 0.12, where the Cp shows a sharp increase. 72

4.14 Rotor map of separation regions. F.A. is the fully attached region; L.S.
is the region where the LEV is attached, and the conical vortex structure
on the rotating blade is present; F.S is the fully separated region due to
the shedding of DSV; SI is the shock induced separation region. . . . . . . 73

ix



List of Figures

4.15 Up: Comparison of Sectional force coe�cients on blade at r/R = 0.898
with the numerical simulation of non-rotating pitching blade and pitching
airfoil. Down: vortical structure on pitching airfoil and the slice at radial
location r/R = 0.898 of the rotating blade, shown as a contour of Q at
selected pitch angles shown in the force plot. For rotating blade, these
pitch angles correspond to azimuth angle (a)  = 264.0�, (b)  = 279.0�,
(c)  = 291.0�, (d)  = 315.0�, (e)  = 33.0�. The coordinate in the
slice of the rotating blade is inertial. . . . . . . . . . . . . . . . . . . . . . 75

4.16 Sectional force coe�cients Cn and Cm at di↵erent radial locations, r/R =
0.82, 0.898 and 0.92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.17 Integration of vorticity over the upper surface (0  x/c  2.25, 0 < z/c <

2) of the pitching airfoil and the slice of the rotating blade, with solid
lines representing the upward pitching and dashed lines the downward
pitching. The circulation �y =

RR
S !ydA, integrated in region S, S : Q > 0. 76

4.18 Induced AoA according to BEMT, ↵i = Vi/U(r, ); (a) rotor map of ↵i;
(b) ↵i at r/R = 0.898. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.19 Comparison of the net thrust coe�cients and y moment coe�cients of the
rotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.20 Up: Comparison of normal force and moment force coe�cients of di↵erent
grid strategies and turbulence models; Down: Comparison of the vortex
cores in the wake region. left: standard point-cloud refined wake region;
right: cylindrical refined wake region. . . . . . . . . . . . . . . . . . . . . 79

4.21 Comparison of the sectional force coe�cients CnM
2 and CmM

2 between
two simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.22 Comparison of the vortex core locations on the blade between two simu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 (a) Contribution of di↵erent terms to the circulation change in the control
volume. (b) Comparison of the summation of the terms and d�/dt . . . . 84

5.2 Pressure gradient contribution to vorticity change at di↵erent radial loca-
tions: Compressibility e↵ect with respect to the vorticity transport analysis 85

5.3 Correlation between the span-wise convection term and the tilting term. . 86

5.4 Contribution of acceleration terms to the rate change of circulation @�
@t at

radial location r/R = 0.898. With the light blue curve representing the
first term of the Coriolis acceleration: 2⌦y

H
@A u · n@Ads. . . . . . . . . . . 87

5.5 Relative velocity profile in y direction at r/R = 0.898 at di↵erent azimuth
angles: (a) = 180�; (b) = 270� and (c) = 0(360)�. Due to the inverse
of z axis, the coloured lines (v profile) that lean towards (at right side) or
extend away (at left side) from the black solid line have the characteristic
@v/@z > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

x



List of Figures

5.6 Comparison of �Cn in orange and stabilisation parameter ⌘� for Coriolis
term, centrifugal term and the net of span-wise convection and vorticity
tilting terms, where �Cn is the di↵erence between the cross-sectional
normal force coe�cient and the linear approximation of the normal force.
The definition of the individual terms can be found in Eq. 3.34. . . . . . 89

5.7 Comparison of Cm in orange and combined stabilisation parameter x⇠ ·⌘�
for Coriolis term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 (a) Contribution of di↵erent terms to the circulation change in the control
volume. (b) Comparison of the summation of the terms and d�/dt . . . . 91

5.9 (a) Contribution of di↵erent terms to the circulation change in the control
volume at r = 0.785. (b) Contribution of di↵erent terms to the circulation
change in the control volume at r = 0.928 . . . . . . . . . . . . . . . . . . 92

5.10 (a) Correlation of vorticity tilting and span-wise convection at radii r =
0.785. (b) Correlation of vorticity tilting and span-wise convection at
r = 0.928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Net contribution of the span-wise terms, namely v@!y/@y and !x@v/@x+
!z@v/@z to the change rate of circulation in the control volume. . . . . . 94

5.12 Rotational acceleration e↵ect on the change rate of the circulation in the
control volume at di↵erent radial locations . . . . . . . . . . . . . . . . . . 94

5.13 Vorticity transport analysis around the swell structure between r/R 2

[0.27, 0.7], at azimuth angle  = 285�. (a) Analysis result of the control
areas as described in Fig. 3.15; (b) Acceleration components. . . . . . . . 95

xi





List of Tables

1.1 List of the constants of the approximated exponential series for the re-
sponse function �(s,M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Recommended values for reconstruction of the aerodynamic coe�cients
for NACA 0012 airfoil, Re = 2.0⇥ 106 . . . . . . . . . . . . . . . . . . . . 16

1.3 Time constants for NACA 0012 airfoil suggested by Leishman [65] . . . . 16

2.1 Summary of the literature on three-dimensional dynamic stall

on rotating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Details of the connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Comparison of the spatial resolution between current simulation and the

7A rotor mesh of [98] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Details of the rotating block . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Details of the farfield block . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Flow condition for validation. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Comparison of the spatial resolution between current simulation and the

validation case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Grid spacings and numerical results. . . . . . . . . . . . . . . . . . . . . . 46

4.1 Sensitivity of CT and Cmy to wake refinement methods and turbulence
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Sensitivity of Cn and Cm at r/R = 0.898 to wake refinement methods and
turbulence models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xiii





Acknowledgements

I would like to thank my supervisor, Prof. Dr. -Ing. Hajek, and the colleagues who
are selflessly helping me whenever I encountered a problem in research or in life. To all
my friends, family members and passersby, thanks for supporting me and companying
me walking through the mists and shadows in my life. This research was funded by the
China Scholarship Council and the chair of helicopter technology, TUM.

xv





Abstract

Dynamic stall is a phenomenon on the retreating blade of a helicopter which can lead to
excessive control loads or even result in safety issues. Research with numerical simulation
and experiment on dynamic stall has been carried out mainly on pitching airfoils, and has
helped people understanding the phenomena to a great extend. However, the research
of dynamic stall on rotating blades is insu�cient. The di↵erences between the dynamic
stall events on a rotating blade and on a pitching airfoil are yet to make clear, so is the
mechanism behind them.
In order to elucidate the characteristic of dynamic stall on a rotating blade, and inves-

tigate the mechanism that results in these di↵erences, I performed a numerical simulation
of a single rotating blade with the NACA 0012 airfoil, 0 twist, and a rectangular plat-
form. The collective and cyclic controls are estimated by an un-coupled simulation using
CAMRAD II so that the incidence is large enough to trigger dynamic stall and in the
mean time, the period-averaged longitudinal and lateral moment have the minimum ab-
solute values. The numerical simulation was carried out with careful verifications of the
grid strategy and the grid convergence. The main contents of the dissertation include:

1. The simulation result with Spalart-Allmaras turbulence model (SA model) is care-
fully examined in aspects of force coe�cients, vortex structures, leading-edge/tip
vortex interaction and separation locations.

2. The force coe�cients and vortex structures at the quasi-symmetric plane of the
dynamic stall vortex, at radial location r/R = 0.898 are compared with a 2D
simulation that has the same pitching harmonics and reduced frequency.

3. The comparison of the simulation results with SA model and k � ! turbulence
model are also presented, including the net thrust coe�cient and rolling moment,
sectional force coe�cients, as well as the vortex cores on the blade at selected
azimuth angles.

4. The vorticity transport analysis was for the first time implemented on the vortex
system on the rotating blade and the 2d airfoil to clarify how rotation influences
the vortex system.

5. The possible ways to improve lower-order models are proposed based on the nu-
merical investigation.

The most important findings of the numerical investigation include:

1. The interaction of the leading edge vortex with the tip vortex dominates the post-
stall stage. And a newly noticed outward moving swell structure, originating in-
board is observed to have a great impact on the load in the post-stall stage.

xvii



Abstract

2. Di↵erent from normal helicopter blades, the current case only shows separations
starting from the leading edge.

3. The vorticity transport analysis shows that the Coriolis acceleration has a sta-
bilisation e↵ect throughout the dynamic stall process, and the combined e↵ect of
the span-wise convection and vorticity tilting is an “unstable” source before the
occurrence of dynamic stall.

4. The Coriolis acceleration’s stabilisation e↵ect is due to the creation of a vorticity
“sink” by appropriate distributions of span-wise velocity gradient in z direction;
this mechanism suggests passive and active means of control method for dynamic
stall on rotating blades.

xviii



1 Problem Statement

1.1 Dynamic Stall and Helicopters

S
ince the first controllable helicopter made its maiden flight, understanding and pre-
diction of the unsteady aerodynamic loads on the rotor blade has been one of the

important tasks in helicopter industry. Among these loads, the one that a blade in the
3rd quadrant experiences, can cause severe increase in blade control link load, torsional
stresses as well as oscillatory torsional loading due to dynamic stall, all of which can
greatly reduce the fatigue life of rotor mechanical components. An example of such con-
trol link load surge can be seen in the manoeuvre flight of UH-60A [1], when in order to
avoid terrain obstacles doing UTTAS (Utility Tactical Transport Aerial System) pull-up
(the vehicle starting from maximum level flight speed, starts to nose pitch up with 1.75g
normal acceleration for 2.5s, and lose minimum airspeed), the blade pitch rate can reach
up-to 14.7 deg/sec and the dynamic stall occurring on the blade for several revolutions
results in more than twice the pitch link load of a level flight.
This phenomenon, dynamic stall can also result in flight accident if not properly

handled. On a Friday in December 1998, a pilot encountered retreating blade stall while
flying Bell 47G2 at 100 mph in Helendale, CA [2]. The shaking of the helicopter was
reported as an unbalanced washing machine. The rpm began to decay and when the
pilot reduced the power and stabilised the air speed to around 60 mph, the shaking
stopped. He further reported that the lift was unable to maintain and hence it entered
an autorotation over a hilly terrain. The National transportation Safety Board (NTSB)
determined the cause of the accident to be exceeding of the Vne(never exceeding velocity)
for the Bell 47G2 helicopter, 100 mph, following by inappropriate procedure to recover
from main rotor retreating blade stall. This Vne for a specific helicopter represents the
important role that dynamic stall plays, and indicates the barrier in the route of seeking
faster flying helicopters.
Yet this phenomenon is till now not well thorough understood due to its complexity

in the onset mechanism and the three dimensional features of the flow field. Semi-
empirical models, such as Beddose-Leishman model [3], ONERA mode [4] and other
thereupon-based revised models [5–9], were established, demonstrated through 2d airfoil
experiment results and implemented on full-rotor environment (e.g. CAMRAD II [10])
to trim and predict loads. The Research [11] that compared the simulation result in
full-rotor environment and flight data, concluded that Beddose-Leishman, ONERA BH,
ONERA Edlin, Johnson, Boeing models can predict the stall locations fairly well, yet
all unable to yield the correct magnitude of pitching moment peaks during dynamic
stall. A recent research from ONERA [12] also showed discrepancy of model predicted
loads from the experiment data, despite the well predicted azimuth angles, at which stall
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1 Problem Statement

Figure 1.1: Illustration of the movement of a blade section (highlighted in blue) on a forward-
flying NH-90 Sea Lion helicopter. [13]

occurs. The imprecision of the models manifest that there is still a distance to go before
we comprehend the phenomenon on the retreating blade of a helicopter.

1.2 Dynamic Stall: the phenomenon

T
he optimum operation condition of an airfoil profile is that the flow passes around
it smoothly, and there is no separation at any position. When the flow is observed

with smoke streaks, the streak-represented stream lines should pass the airfoil smoothly,
without any disturbance or deflection over the upper surface of the airfoil. Usually the
lift produced by the airfoil increases linearly with the angle of attack. But this rule does
not hold when the flow begins to separate. At a certain value, when the flow shows
separation over a large portion of the upper region of the airfoil, or the stream lines
deflect and become discontinuous to a great extend in this region, the lift produced by
the airfoil drops dramatically. The stall takes place.

Dynamic stall is the stall event that takes place on a periodically pitching airfoil. When
a helicopter enters its forward flight, the asymmetric flow conditions on the forward side
and retreating side require that cyclic controls should be implemented to maintain an
equilibrium state of a helicopter: hence the blade is pitching down in the forward regime
and pitching up in the retreating half revolution. And due to the ability of flap – either
around a hinge or by bending with elasticity of the blade, the tip moves up and down
in every revolution, as shown in Figure 1.1. The motion makes the stall event on the
blade significantly di↵erent from the one that occurs on a stationary airfoil or wing.

1.2.1 Dynamic Stall of a pitching airfoil

Dynamic stall on an oscillating blade section is pretty well understood with the help
of experiments and discussions in early years [15–26]. Not all the early literature is
listed above, since it was then a heated topic and various of experiments, joint-research
were conducted, and some of the contents were repetitive. This literature was reviewed
profoundly by McCroskey [27] and Carr [28]. In Figure 1.2, (a) shows a typical force

2
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(a) (b) (c)

Figure 1.2: Dynamic stall on a pitching NACA 0012 airfoil, reproduced with the permis-
sion by Gerontakos [14].(a) Dynamic loads of the oscillating NACA 0012 airfoil,
↵(t) = 10� + 15� sin(!t), reduced frequency k = 0.1. (b) Dynamic stall associated
boundary layer events: flow reversal, reattachment, LEV and secondary vortex
positions with respect to the phase !t. (c) Smoke flow visualisation pictures of
selected phases: prior to, during and post stall.

3
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hysteresis of a pitching NACA 0012 airfoil at low Mach number (M < 0.1) with the
pitching scenario ↵(t) = 10�+15� sin(!t). Here the reduced frequency k = !sc/(2U1) =
0.1, where U1 is the free-stream velocity and c is the chord length of the airfoil. (b)

shows the boundary layer events come along with the motion and (c) shows the smoke
flow visualisation of selected phases. The events indicated by the numbers are consistent
in three subplots. The dynamic stall process can be categorised into 4 main stages:

(1) ”Overshoot“ of the normal force coe�cient. The airfoil pitches up and the
angle of attack exceeds that of the static stall angle, the flow is still attached and
the separation point is at around x/c = 0.6 as shown in 1 .

(2) Stall onset. The break down of leading edge separation bubbled arouses the
growing of a leading edge vortex(LEV). In this phase, the normal force coe�cient
continues to grow with a slightly larger Cn↵(@Cn/@↵), while the moment coe�cient

begins to drop, as shown in 2 . As the pitch angle increases further, the LEV
grows larger and the minimum pressure on the upper surface of the airfoil moves
aftwards, as shown in 3 .

(3) Detachment of dynamic stall vortex. At a certain pitch angle, the LEV is
shed from the leading-edge and the flow over the upper surface becomes completely
separated, as shown in 4 . Then the Cn decreases and Cm recovers. In this phase
after the pitch angle enters its decreasing scenario, a secondary or even tertiary
LEV manifests itself on the upper surface, resulting the fluctuation of Cn and Cm,
similar to consequence of the first LEV, as the vortex transported downstream, as
shown in 5 .

(4) Re-attachment of flow. The pitch angle continues to decrease and at a certain

point the flow begins to reattach, as shown in 6 . And after a while, the flow
becomes totally attached to the upper surface of the airfoil.

The mechanism of the primary dynamic stall vortex(DSV) formation and detachment
was first reviewed by Reynolds et al. [29], and was comprehensively reviewed later by
Doligalski et al. [30]. Reynolds et al. [29] used potential theory and vortex/image theory
to explain this phenomenon. They pointed out the vorticity is accumulated at the
leading edge of a pitching airfoil due to the high adverse pressure gradient, and it is
strong enough with an vortex/image system to resist the external free stream, hence
attached and even moving upstream on the airfoil. And the detachment of the vortex
is explained as a result of the break of the balance between the outer flow forces and
the inner viscous e↵ect. Based on more experiment observations [31–36], Doligalski et
al. [30] categorised the eruption of the dynamic stall vortex (during the previously
mentioned stages (2) and (3)) into 4 main stages:

(a) Recirculation and eruption. An sharp adverse pressure gradient region appears
on the leading edge of a pitching airfoil. At high Rec a ”spike-like” boundary layer
response consequently leads to a narrow-band eruption of the surface layer. A
thin plume containing significant levels of vorticity leaves the surface rapidly. This
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process is also described by other researchers as ”the bursting of a leading edge

separation bubble”.

(b) Primary vortex rollup. This eruption of the plume moves farther away and
forms the primary dynamic stall vortex.

(c) Vortex-induced eruption and viscous-inviscid interaction. This departing
primary vortex induced a surface separation, or a second plume of eddy. The
consequent viscous-inviscid interaction provokes the ejection of vorticity into the
main stream. This process is believed to cut o↵ the primary vortex from its the
source of vorticity.

(d) Wrap-up and Detachment Finally the erupted plume wraps around the primary
stall vortex and quickly detaches from the surface.

This phenomenon is dependent on aerodynamic parameters (compressibility e↵ect as
a consequence of free-stream Mach number M1, Reynolds number Re, airfoil shape
TAirfoil) and the motion parameters (average angle of attack ↵mean, reduced frequency
k, pitching amplitude ↵amp). We can express the force coe�cients curves of the pitching
airfoil Cx (representing either normal force coe�cient Cn, moment coe�cient Cm or
chord-wise force coe�cient Cc) as:

Cx = F(TAirfoil, k,↵mean,↵amp,M1, Re). (1.1)

Dependent on the maximum incidence angle ↵max, oscillating airfoils can be categorised
into four regimes, namely no stall, stall onset, light stall and deep stall. The light
stall of an oscillating airfoil is characterised by a relatively small scale of the vertical
viscous zone, which is on the order of the airfoil thickness, and the scale is generally
less than the static stall. The stall behaviour is closely related to the boundary layer
separation characteristics, namely leading edge separation, trailing edge separation. This
type of stall is very sensitive to TAirfoil, M1, k, ↵mean and ↵amp. While deep stall is
characterised by a relatively larger viscous zone, which is on the order of the airfoil
chord, and manifests the passage of vortex structures on the upper surface of the airfoil.
Figure 1.2 is a typical example of a deep stall case, since the smoke flow visualisation
show a large viscous zone.

TAirfoil is the parameter that refer to either di↵erent airfoil profiles, (e.g. NACA 0012,
NLR-1, Sikorsky SC-1095, etc.) or any modification of the leading edge of a typical airfoil
profile. McCroskey [15] figured out that with moderated sharp leading edge, the airfoil
tends to stall with an abrupt leading-edge separation, contrary to the other blunt-nose
airfoils, which tend to experience a gradual, trailing-edge-separation aroused stall. And
it has a relatively stronger influence on the light stall cases than the deep stall cases [16],
since deep stall cases are dominant by the large vortex passage.
Reduced frequency k represents the ratio of flow transportation time (c/2)/U1 to the

oscillation period measurement 1/!s, with the former term representing the time needed
for the convection through half of the airfoil chord. Extending Sommerfeld’s statement
of conservation of vorticity [37], Wu [38] suggested that half of the solid angular velocity
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! = ⌦s/2 can be treated indistinguishable from the vorticity of the fluid, or in other
words, the rotating body in fluids is another source of vorticity besides the viscous
boundary shear layer. As a result, the increase of k means a stronger leading edge
vortex, hence a larger Cn,max, no matter a light stall or a deep stall. However, for airfoils
with sharp leading edge (e.g. VR-7 airfoil, typical of leading edge separation in light
stall), the increase of k results in a lighter moment stall, while for airfoils with blunt-nose
(e.g. NACA 0012 airfoil, typical of trailing edge stall in light stall), the increase of k
results in a stronger moment stall [27]. For both types of airfoils in deep stall, since the
vortex passage dominates the process, the larger k means a stronger and larger leading
edge vortex, and hence a stronger moment stall. This parameter determines also the
time when the leading edge vortex begins to shed, for example, a critical kcr may exist
for a certain type of airfoil pitching with a certain amplitude ↵1 and a mean incidence ↵0,
beyond which, the leading edge vortex only detaches in the down-ward pitching phase.

↵mean and ↵amp determine the ↵max, hence they determine whether the stall process
is a light stall or a deep stall. On the other hand, if together with k, the combinations
selected that has a similar ↵(t) history of a cycle for some portion where ↵(t) is larger
than the static stall angle, show almost identical force coe�cients hysteresis throughout
the stall events [27]. This holds true for deep stall, [27] but current literature doesn’t
support the pitch rate analogy for light stall events.

The e↵ect of compressibility M1 is reported by Patrick [39], with the wind tunnel
experiments on a Bell helicopter airfoil (most likely Bell/Worthmann FX 69-H-098 Air-
foil), to result in two di↵erent behaviours of dynamic stall. For M1  0.4, the leading
edge separation is governed by an abrupt break down of the turbulence boundary layer,
while for M1 � 0.5, the flow breaks down after the formation of a �-shock over the
airfoil, namely shock-induced stall. Within the lower-Mach range, the gestation period
decreases as M1 increases, and the growth of stall vortex is cut-o↵ due to the presence
of supersonic flow as the incidence becomes larger. Within the higher-Mach-number
range, multiple normal shocks form and coalesce into a stronger shock wave over a small
spatial extend at the leading edge area, and the normal force travels downstream, grow-
ing in strength as ↵(t) increases, but not immediately followed by separation. In this
Mach range, increasing k delays the shock-induced stall onset, as that of the incompress-
ible flow. Early research [40, 41] noted that increasing M1 results in an earlier stall.
Nevertheless Patrick stated that this is a static e↵ect, since for the same k, the stall
penetration, ↵ds�↵ss, remains constant as M1 increases. Carr [42] mentioned the over-
shoot of force and pressure decreases as M1 increases, nonetheless Patrick found that
the ratio |�Cp/Cp,min| increases with increasing M1. Patrick’s experiment, together
with the interferometric investigation [41], confirms that the shock-induced separation
is more inline with a jet/gust of air than a concentrated vortex.

The e↵ect of Reynoldsnumber Re = U1c/⌫ is believed to be a weak factor at low
Mach numbers, but its role is unclear for large Mach conditions [27, 40]. Since it is an
important parameter that determines the transition of the flow, this may acts like a strip
at the leading edge of the pitching airfoil. McAlister’s experiment [17] shows that for
pitching NACA 0012 airfoil with strip’s:

6



1.2 Dynamic Stall: the phenomenon

(a) (b)

Figure 1.3: Comparison of Dynamic Stall event on an airfoil that plunges with the equivalent
pitching motion, reproduced from Carta [44].(a) Dynamic loads of the oscillating
Sikorsky SC1095 airfoil with a mean angle of attack ↵mean = 15�, subject to a
free stream U1 = 30.5m/s. Plunge equivalent pitching amplitude ↵̄amp = 5.02�,
frequency f , cps(cycle per second)= 8.31, reduced frequency k = 0.131. Pitching
amplitude ↵amp = 5�, frequency f, cps = 8.31, reduced frequency k = 0.123 (b) The
corresponding pressure coe�cients on the upper surface of the airfoil in plunge and
pitch motion. The dashed lines represent downward pitching or upward heaving.

(1) The moment stall is sooner for all k;

(2) Its Cn,max is smaller when k < 0.1, and its |Cm,min| is smaller when k < 0.05;

(3) The phase when Cn,max, Cm,min is reached is postponed for all k.

Gupta [43]showed that higher Reynolds (Re = 1⇥ 106) have the same trend as the trip.
However as summarised, the di↵erence, comparing with that results from other factors,
is small in low Mach range (Ma  0.1), yet few research has done for higher Mach range.

1.2.2 Dynamic Stall of a plunging airfoil

On the other hand, the flap corresponded plunge-heave motion of the blade section can
be analogous to the pitching case, using the concept of e↵ective angle of attack ↵eff .
When the airfoil moves downwards, or plunges, with a velocity �ḣ, the e↵ective angle
of attack of the airfoil, subject to a free-stream velocity U1 with an angle of attack ↵0,
can be written as:

↵eff = ↵0 + arctan
ḣ

U1
. (1.2)
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Figure 1.4: Schematic plot of the flow phenomena on a helicopter rotor

For small angles, arctan can be eliminated from the equation. However, plunge-heave
motion is still di↵erent from its equivalent pitching motion. Figure 1.3 shows the
force coe�cients and pressure coe�cients of an airfoil with plunge-heave motion and
equivalent pitch motion. According to Carta [44], for the plunge case, there is no orderly
downstream propagation of the stall vortex. Moreover, the slope of CN of a plunge case
shows a larger value comparing to the equivalent pitch case, while the shape and value
of both CN and CM of a plunge case vary significantly depending on the equivalent pitch
amplitude ↵amp and the mean incidence angle ↵mean. These di↵erences are believed to
be a result of major di↵erent mechanisms of the stall flow breakdown for plunge and
pitch cases.

Some researchers explain that the di↵erence is attributed to pitch-induced camber
e↵ect @z/@x = (xp � x)↵̇ cos↵, which varies along with the angular velocity [45,46]. Or
starting from the analogy of ↵(t) as is mentioned in previous section, the match of pitch
rate ↵̇(t) is also important for dynamic stall cases. By di↵erentiating equation 1.2, the
equivalent pitch rate:

↵̇eff =
ḧ/U1

1 + (ḣ/U1)2


ḧ

U1
. (1.3)

This also explains why a huge di↵erence exists. Since before the onset of dynamic stall,
the e↵ective pitching rate ↵̇eff (t) begins to deviate from the pitching case.

1.3 Dynamic Stall on helicopter blades: the three-dimensional
e↵ect

D
ynamic Stall takes place in the fourth quadrant of the rotor revolution when the
incidence angle increases. The flow condition of a rotor blade section is neverthe-

less more complex than what is shown in the previous section. Most importantly, the

8



1.3 Dynamic Stall on helicopter blades: the three-dimensional e↵ect

varying free stream velocity and forces on a non-inertial coordinate system, namely the
centrifugal force Fcentrifugal and the Coriolis force FCor. Using the azimuth definition
shown in Figure 1.4, for the blade section at a non-dimensional radial location r/R, the
free stream velocity in-plain with this airfoil is:

U1 = (r/R)⌦R+ µ⌦R sin . (1.4)

where µ is the advance ratio of a helicopter, defined as the ratio of forward flight speed
to blade tip speed, µ = VForward/(⌦R). It varies as the azimuth angle changes. In the
mean time, for a trimmed helicopter with collective pitch ✓0, longitudinal cyclic control
✓c and lateral cyclic control ✓s, the incidence angle of the blade can be written as:

✓( ) = ✓0 + ✓1 sin( + '). (1.5)

where ✓1 =
p

✓2s + ✓2c , and ' = arctan(✓c/✓s). Hence the maximum incidence angle ✓max

and the maximum free stream flow U1,max has a phase lag ', and for a helicopter in
forward flight, ' 2 [⇡, 3⇡/2]. Gharali [47] did a numerical simulation and showed that
for such phase lag, the Cn is smaller and the dynamic stall vortex(DSV) is relatively
weaker. At the time when the dynamic stall vortex grows, the instant velocity U(t) is
smaller than the average flow velocity Umean, which results in a shorter trailing edge
shear layer and inhibits the growth of the leading edge vortex. As a result, the dynamic
load overshoot on the pitching airfoil is smaller. Recent research [48] also confirms the
trend of the Cn and Cm curves: their hysteresis shrink as the phase angle ' increases.
Another out-of-plane velocity component, perpendicular the blade section is:

Ur = µ⌦R cos . (1.6)

It is positive when the flow direction is towards the blade tip, and negative when towards
the blade root. This component creates the well-known yawing e↵ect, or sweep e↵ect.
St. Hilaire et al. [19] did experiment on a pitching swept wing, and find that sweep tends
to delay the onset of dynamic stall and to reduce Cn, Cm’s rate of change as stall begins.
And the magnitude of the hysteresis loops are also reduced to some extend. However,
experimental research hasn’t touched the harmonic varying Ur. Wen [49] did numerical
research concerning the ”dynamic sweep” e↵ect on a pitching blade section, and the
implicit large eddy simulation (ILES) simulation indicated a weaker trailing edge vortex
in the presence of yawing e↵ect. And the dynamic vortex sheds with a higher frequency
comparing to the baseline case. Similar to the in-plane varying free stream velocity, the
phase di↵erence of the dynamic sweep is also a key factor that influences the vortex field
on the airfoil. Yet little research has covered this area.
Most importantly, fixing the coordinate on the blade section means the usage of a non-

inertial coordinate system, hence the flow thereupon experiences the centrifugal force,
which is pointing towards the blade tip; and because it’s also a rotating system, the flow
experiences the Coriolis force, FCor = �

H
2⇢(~⌦⇥ ~Ur)dV , with a direction perpendicular

to the stream velocity on the blade section. Note that this velocity is a summation of the
chord-wise and radial-wise relative velocity. A natural question arises when comparing
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the flow condition on a helicopter blade with that of an airfoil: What role do these

two factors play in the dynamic stall event of a retreating blade?

A search on the dynamic stall events on a two-dimensional blade section with artificial
centrifugal force term in the governing equation [49] can not address the full picture of
the rotating characteristics. Indeed, any two-dimensional numerical investigation, or
non-rotating experiment can hardly uncover the role played by these two forces. Neither
does the investigation of the e↵ect of the radial flow [50] on a rotating blade explain
comprehensively, since radial flow itself is a consequence of the centrifugal force.

Moreover, as shown in Figure 1.4, the phenomena on a multiple-bladed rotor include
also the interaction of the blade and the wake, especially the blade and the tip vortex of
the previous blade. Other factors such as transonic flow/supersonic flow at advancing
side near  = 90� and reverse flow in the root region at retreating side can also result in
di↵erent kinds of dynamic stalls. Ref. [52, 53] show that vortex can also lead to leading
edge separation on a pitching airfoil, and is also related to the leading edge separation
on the succeeded rotating blade, the latter of which is rather a combination of blade
vortex interaction (BVI) and the rotating e↵ect. In order to answer the question raised
above, we have to eliminate the possibility of BVI induced dynamic stall.

Modern helicopters that seek a high Figure of Merit require the twist of the blade,
a high advance ratio require a special swept tip design. And excellent performance in
multiple types of tasks requires combinations of airfoil profiles as well as plant forms.
These abundant parameters entangle with the aforementioned varying free stream and
forces in a non-inertial coordinate, which makes it even harder to answer the question
stated above, let alone establish a full picture of dynamic stall on a helicopter rotor.

1.4 Modelling of dynamic stall on helicopter blades: Lower
Order Models

E
ngineering is an art of trade-o↵ of accuracy and e�ciency. This also true for
rotorcrafts in their design process: the evaluation of considerable amount of design

parameters through CFD simulations is impossible; even after the design is fixed, the
searching for trim conditions with full coupling of computational fluid dynamics (CFD)
and computational structure dynamics (CSD) is not e�cient enough. As a result, the
lower order models, both aerodynamic and dynamic models that have a reduced accuracy
but a relatively high e�ciency are adopted in engineering. We hence introduce the lower
order aerodynamic models that are used to assess the loads on helicopter blades. The
flow chart of an e�cient and accurate aerodynamic model for comprehensive analysis
is sketched in Figure 1.5. We do not distinguish here inflow model and wake model,
since the inflow is usually influenced by the wake, and the term ”wake model” is also a
method to predict inflow field.
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Figure 1.5: General flow chart of aerodynamic modelling for rotorcrafts.

1.4.1 Basic ideas for modelling aerodynamic loads on helicopter blades

Blade-Element Theory

The blade element theory (BET) approach, or blade element method(BEM), is based
on the assumption that each blade section acts as a two-dimensional airfoil to

produce aerodynamic forces, and various types of corrections, both theoretical and
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Figure 1.6: Aerodynamic environment at a typical blade element, (a): Top view of the blade;
(b) blade element level.

empirical, are used for three-dimensional e↵ects [63]. As sketched in Figure 1.6, the
influence of the rotor wake, the well-know finite aspect wing e↵ect and other aerodynamic
influences are assumed to be contained in an inflow angle �, at a blade section. The
induced flow from the rotor wake, blade motions (e.g. pitching, flapping, lead-lag),
elastic bending, and torsional deformations, as well as from perturbations by air-frame
components.

Induced velocity field

A primary aerodynamic problem in hovers and forward flights is to determine the nonuni-
form distribution of induced velocity, or the inflow over the rotor disk and its e↵ect on
the sectional air-loads. The inflow models including linear models [54], dynamic in-
flow model [55,56], prescribed wake model [57], free wake model [58] and more advanced
wake models are reviewed in detail by Chen et.al. [59]. The simplest linear inflow models
assume linear distributions of the form:

�i(r, b) = �0(1 + kxr cos b + kyr sin b) (1.7)

where �0 is the inflow at the center of the rotor as given by the momentum theory and
where the weighting factor kx and ky represent a spatial distribution distortion of the
inflow. The blade azimuth angle  b is defined as sketched in Figure 1.4,  b = 0 when
the blade points downstream, and  b = ⇡/2 on the advancing side.
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1.4 Modelling of dynamic stall on helicopter blades: Lower Order Models

1.4.2 Modelling of 2-dimensional dynamic stall

Unsteady aerodynamic modelling of attached flow considering compressibility and
vary free-stream velocity

The modelling of unsteady aerodynamic forces on an airfoil begins as early as 1930s when
Theodorsen [60] derived the expression of the force on a plate under arbitrary motions
(free from separation) in frequency domain. And later Duhamel integral was introduced
by Van der Wall et. al. [61] to express the circulatory change of the force due to the
change of angle of attack, free stream velocity or other aerodynamic parameters in time
domain. For an airfoil pitching at its 1/4 chord, the normal force coe�cient, following
Jones [62], can be expressed as:

Cn(t) = C
c
n(t) + C

I
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=
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where s is the distance traveled by the airfoil in semi-chords,

s =
2

c

Z t

0
V (t)dt. (1.9)

and �W (s) is the Wagner function, which is usually presented approximately, according
to Jones [63] as a exponential series with 4 parameters:

�W (s) = 1�A1e
�b1s �A2e

�b2s (1.10)

And the moment coe�cient can be expressed as:
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c
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V
). (1.11)

Jose et. al. [62] extended the model to compressible regime, considering a non-uniform
free-stream velocity. The comparison of the model with CFD result showed a good
agreement. The basic idea is also treat the normal force and moment to be composed of
a circulatory part (the part which is associated with the circulation around the airfoil,
or the e↵ect of the wake, and is denoted as the superscript n) and the impulsive part
(the part is associated with apparent mass e↵ects, and is denoted as the superscript
I). Using small perturbation theory, the normal force and moment at 1/4 chord can be
modelled as:
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Here �c
n, �

I
n, �

c
m and �

I
n are analogous circulatory lift response function, impulsive lift

response function, circulatory moment response function and impulsive moment response
function, respectively. Cn↵w3/4 can be written as:

Cn↵w3/4 =
2⇡

�
(↵V +

↵̇c

2
)

for thing airfoil, with Cn↵ = 2⇡/� as the static lift curve slope for compressible flow from
Glauert rule. Moreover the analogous response functions and their exponential constant
is shown to be:(with the constant are listed in Table 1.1.)
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Table 1.1: List of the constants of the approximated exponential series for the response function
�(s,M)

A1 A2 b1 b2 A3 A4 b3 b4 A5 b5 k

0.3493 0.6507 0.0984 0.7759 1.5 -0.5 -0.5 0.25 1.0 5.0 0.75
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Extension to separation regime

A generally accepted and most widely used empirical model is proposed by Leish-
man [64, 65]. Trailing-edge (TE) separation due to its small scale, is highly relevant
to the airfoil types, as is described in section 1.2.1. A reasonable modelling of the trail-
ing edge separation can thus refer to the static aerodynamic characteristics of the airfoil.
Leishman adopted the Kirchho↵ model [66,67] using the concept of trailing-edge separa-
tion point fs. This value represent the loss of circulation due to the TE separation and
the movement of the aerodynamic center (xac). The normal, chord and moment force
coe�cients are then modelled as:

Cn = Cn↵(M)

✓
1 +

p
fs

2

◆2

(1.20)

fs =

⇢
1� 0.3 exp[(↵� ↵1)/S1] if ↵  ↵1

0.04 + 0.66 exp[(↵1 � ↵)/S2] if ↵ > ↵1
(1.21)

Cm

Cn
= K0 +K1(1� fs) +K2 sin(⇡f

m
s ) (1.22)

Cc = ⌘Cn↵↵
2
p
f (1.23)

One can also model the Cn↵ as a function of both Reynolds and Mach number (Re, M).
Based on the experiment data [68], a suggestion of the parameters for NACA0012 airfoil
for Reynolds number Re = 2.0⇥ 106 are listed in Tabel 1.2.
For the cases of unsteady airfoils, Leishman et al. [65] modelled a delayed e↵ect of

pressure distribution (Cn), boundary layer response(or separation point fs) with first
order di↵erential equations.

dC 0
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Table 1.2: Recommended values for reconstruction of the aerodynamic coe�cients for NACA
0012 airfoil, Re = 2.0⇥ 106

M CN↵ (/�) ↵1(�) S1 S2 K0(= 0.25� xac) K1 K2 m ⌘

0.3 0.1128 13.78 1.0 1.2 0.01 -0.128 0.04
2 0.950.5 0.1183 9.76 0.8696 4.528

0.8 0.1573 6.88 0.1417 0.3177

Table 1.3: Time constants for NACA 0012 airfoil suggested by Leishman [65]

Time constant Description Value
Tp Leading edge pressure response 1.7
Tf Separation point movement 3.0
Tv Vortex dissipation 6.0
Tvl Vortex convection time 7.5
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And the normal force coe�cient, moment coe�cient and chord-wise force coe�cient are
then:
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The leading-edge (LE) separation is determined by a critical normal force coe�cient,
Cn1 , depending on Mach number M . And when the criteria is reached, the vortex
generated normal force is modelled as the rate change of circulation d�/dt, which is
proportional to the rate of lost circulation Cv when the leading edge vortex is on the
upper surface of the airfoil after LE separation occurs.

dCv
n(t)

dt
=

1

Tv
(�C

v
n(t) + Ċv(t)) (1.28)
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where
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(1.29)

As the LE separation occurs, ⌧v = 0 and when the LEV reaches the trailing edge,
⌧v = Tvl, the vortex passage generated moment is modelled as:
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v
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As is noted in section 1.2.1, this the convection speed of the leading edge vortex is
approximately 1/3⇠1/2 of the free-stream velocity, and hence Tvl can be modelled ac-
cording to the instant free-stream velocity. The time constants Tp, Tf , Tv, Tvl suggested
by Leishman [65] are listed in Table 1.3.

1.5 The Questions

B
ased on the introduction of the background, multiple questions are worth further
investigation.

• What is the dynamic stall process on a rotating blade?

• What are the di↵erences between the 2-dimensional dynamic stall and

the stall on the rotating blade?

• How does“Rotating” a↵ect the process of dynamic stall?

• What role do Coriolis force and centrifugal force play in the stall pro-

cess?

• How to improve the loads prediction with the lower-order models on the rotating
blade for dynamic stall cases?

In the next chapter, the literature that aims to answer these questions are analysed.
The research that focuses on dynamic stall in a rotating system answers only part of the
questions raised above. Some di↵erences between the pitching airfoil and the rotating
blade are noticed, but the mechanism hidden behind is not clarified. Especially the
“Coriolis force influence on dynamic stall” is not answered at all. Some literature didn’t
touch dynamic stall su�ciently, but focused on aerodynamic phenomenon on rotating
systems; or on the theoretical basis for explaining the complex vortex system. This
literature is also reviewed in the next chapter and it serves as the stepping stone to further
understand the dynamic stall phenomenon on the rotating system. The current work is
based on the literature review and a numerical simulation is designed to answer these
questions. The description of the numerical simulation is addressed at the beginning of
the third chapter.
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2 State of the Art: Three-dimensional
E↵ect and Modelling

2.1 Stability of the leading-edge vortex on rotating blade

2.1.1 Spanwise flow

S
ince dynamic stall is closely related to the generation and shed of a vortex structure,
and this dynamic stall vortex is mainly comprised of the leading-edge vortex (LEV),

the stability of the LEV is hence a key point that determines the force curves and the
fluid structure. Ellington [69] mentioned that the high lift on insect wings is due to the
attachment of a LEV. Comparing to the high-incidence translating wings, the span-wise
flow on insects’ wings carries the vorticity away and delays the LEV detaching from the
leading edge, which makes the LEV more stable. This is similar to the explanation of
the stability of the vortex structure on a delta wing, proposed by Lee et al. [70]. They
explained that the attached LEV was due to the balance of vorticity surface flux and
the free-stream convection of the vorticity. The former refers the process of vorticity
accumulated from the shear layer, and the latter results in the depletion of the vorticity
in a third dimension comparing to a two-dimensional airfoil. Indeed, the yawing e↵ect
of a blade also means the presence of spanwise flow. Hilaire’s experiment [19], as is
shown in the previous chapter, showed a later stall for both lift and moment. This
indicates a delay of the breach of the LEV from the leading-ledge, or in other words, the
LEV is more ”stable” on the swept pitching wing. Gardner et al. [71] experimentally
investigated the sweep e↵ect on a pitching wing, which used DSA-9A airfoil along the
span and a positive twist to reduce the wind-tunnel wall e↵ect. They showed that the
lift stall was postponed for both forward and backward sweep, though the moment stall
occurs earlier but milder. This indicates the leading-edge vortex stays longer on the
pitching finite wing. Moreover, the e↵ect of tip vortex that pinned the LEV at the
leading edge is mentioned, while the topic of the stability of the LEV is not discussed.

Beem et al. [72] carried out an experiment in a water tunnel on a swept plunging wing,
using swept translating motion to create strong span-wise flow on the plunging wing,
they observed that the break-down and downwards convection of the vortex started
at the same relative time for cases with di↵erent swept angles. Nonetheless Wong et
al. [73] refuted the conclusion, and showed that the span-wise flow did contribute to
the relative stability of the LEV on a flapping plate. Moreover, Beem’s swept plunging
wing experiment utilised direct force measurement, in contrast to the measurement of
pressure on spanwise positions, and the force did show increase in the peak of the net
force.
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2.1.2 Other explanations: quasi-steady analogy, Ro, Coriolis Force

G
armman et al. [74] implemented ILES numerical simulations on a rotating plate and
twisted translating plate, which have similar velocity vector and surface normal

fields on the plate, and showed that the vortex structures showed limited similarity and
the LEV is not maintained on the translating plate. They therefore concluded that the
stability of the LEV cannot be explained using the quasi-steady analogy. Wojcik et al.
[75] measured the vorticity flux of the leading-edge vortex on a rotating blade in a water
tunnel, and concluded that the span-wise convection alone is not su�cient to balance the
flux from leading-edge shear layer and addressed the importance of annihilation as a sink
of vorticity flux, which is defined by Wojcik as the neutralisation of the oppositely-signed
vortical structures.

Carr [76] investigated experimentally the e↵ect of the aspect ratio AR on the evolving
wing, and Lee et al. [77] investigated numerically the e↵ect of Rossby number Ro =
r/c (1 ⇠ 4), with r representing gyration radius and c representing chord length, as well
as AR e↵ect on the vortical structures on revolving wing. They found that the pure
increasing of AR results in a larger averaged CL along the span, and the increasing of
Ro leads to the decreasing of LEV stability. Smith et al. [78] investigated numerically
the Ro (0.7 ⇠ 1.4) e↵ect on the balance of the Coriolis force and centrifugal force, which
is believed to be a pivotal factor that stabilises the LEV on revolving wings. The Ro

and AR have the similar expressions, but Ro can represent a local radial (span-wise)
location on a revolving wing, at the tip of the rotating wing, Ro = AR. However most
of the research omits the interaction of tip vortex and the leading-edge vortex, when
discussing the stability of LEV. These investigations focus mainly on low Re(< 105) and
small Ro, which is typical fluid properties for insects and small birds. Yet understanding
how rotation augments the stability of leading edge vortex helps the comprehension of
the rotation e↵ect on dynamic stall.

A virtual experiment was performed by Jardin [79], in which a blade (Re ⇠ 103)
was placed in a rotating flow and by alternatively adding Coriolis force and centrifugal
force into the momentum equation of the Navier-Stokes equation. The lift coe�cient
of the blade was found to be a↵ected drastically by Coriolis term, yet marginal by the
centrifugal term. The vortex structure of each case were further examined [80], and the
LEV on the outboard of the blade was found to be unstable and break down earlier for
the cases for Re > 750 if the Coriolis term was eliminated. And hence the Coriolis force
is believed to be the key factor for the stabilisation of the leading edge vortex. Wether
or not this is valid for larger Reynolds number remains to be determined.

2.1.3 Theoreom: Vorticity dynamics

R
eynolds [29] reviewed the unsteady separation and showed that for a two-dimensional
airfoil subject to unsteady flow, the vorticity flux of a surface can be expressed as:
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Vorticity Flux Surface Acceleration Transpiration Pressure Gradient
(2.1)
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where y is the normal direction of the surface curve, and x is along the surface. U̇s is
the surface acceleration along the x direction. The transpiration term is only considered
when a porous region is in presence. Eq(2.1) implies that the vorticity flux contributed
by the solid surface for a two-dimensional airfoil, is due to the acceleration of the sur-
face and the pressure gradient. For an airfoil subject to a uniform free-stream velocity,
the vorticity flux of the surface is the same as a uniform moving airfoil, since for both
cases there is no acceleration. Wu and Wu [81] identified the vorticity flux in the vor-
ticity transport equation, namely the total vorticity variation for a arbitrary material
subdomain D bounded by @D:
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where � and A are compression and shear variables, respectively. The volume integral
represents vorticity stretching/turning and the baroclinicity due to self-interaction of
compressing process respectively. The first surface integral represents the e↵ect of a
nonconservative force, and the second surface integral contains the surface vorticity flux
�:

� ⌘
1

⇢
n · rA (2.3)

They showed that this vorticity flux on the boundary can be expressed as:

� = n ⇥ (a � f) +
1

⇢
{n ⇥ r� + (n ⇥ r) ⇥ A} on Boundary B (2.4)

They did further decompose these terms into four terms, representing the contributions of
pressure gradient, the surface acceleration, and the non-uniformly distributed tangential
vorticity or shear stress.

� =n ⇥ rp Pressure gradient

+ n ⇥ a Surface Acceleration

� (n ⇥ ⌧w) · K � n(n · (r ⇥ ⌧w)). Wall shear stress

where K is the surface tensor. Note that this surface vorticity flux is the extension from
2D Equation 2.1. For a 2D airfoil, n, K and ⌧ are all in xy plane, hence n ⇥ ⌧w is in
z direction, the dot product with K yielding 0; the second term of the wall shear stress
gives a result, the component of which is in the xy plane, hence neither of them have any
contribution to !z. This in turn, gives a preliminary insight into the three-dimensional
e↵ect, namely the shear stress in yz and xz(due to the curvature of the surface) planes
will have an e↵ect on !z.
By evaluating the vorticity transport of a control volume, for example, a leading-

edge vortex, one can identify the sources and sinks of the vortex system, and hence
a framework is established, through which the physical mechanisms of the vorticity
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system can be understood. The stability of the leading-edge vortex is such an example:
through the analysis of the vorticity transport, the e↵ect of span-wise flow, Coriolis force,
centrifugal force and other e↵ects can be better understood. Wojcik [75] considered a
planar control region, and used Eq.(2.5) to identify di↵erent e↵ects:

Figure 2.1: Control region for the vorticity transport analysis on a rotating and pitching flat
plate by Buchholz [83], where A is the control region, and @A is the boundary of
the region with bound4 aligned with the plate upper surface.
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with the first term at right hand side(RHS) representing the span-wise convection
of the vorticity, second term vortex tilting, third term the in-plane vortex convection,
and final term the cancelation of oppositely-signed vorticity. The control region is the
leading-edge vortex and no boundary flux is included. Panah et al [82] measured vorticity
transport on a plunging plate, using Eq.(2.6):
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where bound4 is the wall boundary and @A is the boundary downstream of the control
volume. In their research, the integration on bound4 shows strong positive vorticity,
which includes also the secondary vortices, and hence did not necessarily explain the
contribution of boundary vorticity flux to the leading edge vortex. Buchholz [83] derived
the analysis equation on a non-inertial system that is subject to arbitrary rolling and
pitching motion, see Eq.(2.7).
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The changes on a non-inertial reference frame is the artificial force, and the surface
vorticity flux term Eq.(2.1) in the non-inertial frame is:
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2.2 Three-dimensional e↵ect on dynamic stall

with [⌦x,⌦y,⌦z]T representing the angular velocity under the non-inertial coordinate.
Note that, except the general expression Eq.(2.4) derived by Wu and Wu, both Eq(2.1)
and Eq.(2.8) deal with a flat plate. By comparing the Coriolis tilting terms with other
fluxes, they concluded that the Coriolis force doesn’t have a significant e↵ect on circu-
lation within the control region, which contradicts what Jardin [79,80] suggests.

2.2 Three-dimensional e↵ect on dynamic stall

2.2.1 Pitching Finite Wing

O
ne cannot surpass the wing tip when a finite aspect wing/blade is considered. For
non-rotating pitching finite wings, experiments observed LEV pinned at the leading

edge by tip vortex. Piziali [84] measured the pressure distribution as well as the force
hysteresis of di↵erent span-wise positions of a pitching finite wing. The data showed
clear di↵erence of the force hystereses at tip region from the counterpart inboard, at tip
the dynamic stall force hystereses are smaller, and even lack of stall. Several consequent
experimental investigations [85–87] using surface pressure distribution data, as well as
smoke visualisation technique confirmed the findings of Piziali, and further demonstrates
that the vortex structure on a finite wing is highly three-dimensional. Schreck [85]
noted the span-wise load di↵erence on the constant ramping finite wing. The dynamic
stall vortex begins at the mid-span, and the separation of the wing begins when the
vortex convection reaches the wing tip. Moreover, the vorticity in span-wise direction
accumulated near the wing tip delays the vortex arching away from the tip, resulting
in a ”⌦-shaped” vortex structure. Conton [87] mentioned that the dynamic stall on
an oscillating finite wing is characterised by an initial response of the mid-span. Once
formed fully, the vorticity strength is strongest at mid-span, while its infuence was
detectable at quarter chord throughout the span. The pressure distribution data also
indicate the appearance of a ⌦-shaped vortex. Szafruga et al. [88] used LDA technique
measured the phase locked velocity at the tip area of an oscillating rectangular wing,
and found a strong cross-flow even inboard at y/c = 0.66 (with y/c = 0 representing the
wing tip), which has a magnitude comparable to the free stream velocity (U1 = 18m/s).
Furthermore large magnitude of cross-flow was found at the tip region, confining in tip
vortex, and in these regions with large cross-flow, there was no evidence of stall. Le Pape
et al. [89] used combined LDV, PIV technique to provide insight on the interaction of
tip vortex and the dynamic stall vortex. The dynamic stall separation that spreads from
the inner part of the wing to the tip is “blocked” by the wing tip vortex, or the wing tip
remains attached during the pitching motion. However they found that the swept e↵ect
can have a major influence on the interaction with the tufts visualisation.

2.2.2 Rotating Blade

T
here is not much literature on how the rotating environment a↵ects the dynamic
stall event. The articles that investigated dynamic stall in a three dimension and

in rotating systems are reviewed as follows:
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Bross et al. [90] performed an experiment on a wing going through pure pitching, pure
rotating and combined pitching and rotating in a water channel. The wing is a pure
rectangular plate with an aspect ratio AR = 2 and the pitching follows a ramp motion.
They compared three dimensional vortical structures and sectional-wise properties of the
plate doing these three types of motion. The rotation makes the LEV due to pitching
remains closer to the plate surface, comparing to the pure pitching case. It is believed
that this vortical structure is due to the e↵ect of the unidirectional span-wise flow on
the rotating plate, the unidirectional span-wise flux of vorticity and the large-magnitude
downwash being shifted forward near the leading edge. They also noticed that the
degradation of the tip vortex on a purely rotating case does not occur on the combined
rotating/pitching case, and the trailing edge wake vortical structures are highly ordered
during the pitching-up phase for the combined motion.

DiOttavio et al. [91] measured the span-wise flow on a teetering rotor in wind tunnel
with particle image velocimetry (PIV). The blade is a rectangular, non-tapered blade,
zero twist blade with NACA 0012 airfoil as blade section. They found that the dynamic
stall is strong inboard while weaker outboard near the tip, suggesting the separation line
moves towards the trailing edge as moving outboard, indicating deep stall inboard and
light stall outboard. In addition, the radial flow profiles were repeatable near the surface
while varies from cycle to cycle. The root mean square variation of the radial velocity
suggests that the instability originates from the radial flow near the surface instead of
from the outside flow. Raghav et al. [50] continued with the same experiment setup
and dug further into the radial flow on the retreating blade. They came to a similar
conclusion as DiOttavio et al. [91] that the radial velocity along the blade develops a
sharp jet-like profile outward. The velocity profile was found to decrease in the peak
velocity, and a decrease of the jet layer thickness as moving from mid-span outboard.
Besides, the discrete vortical structures were discovered in the separated flow field near
the blade upper surface. These vortical structures lifted o↵ from the jet layer and
carried away the roughly 30% of the vorticity in the shear layer, which is believed by
Raghav et al. to be responsible for suppressing the growth of radial jet. Naghav et
al. [92] investigated the e↵ect of advance ratio µ on the life cycle of the dynamic stall
on the retreating blade. They observed the dynamic stall being a result of the classical
trailing edge separation, and increasing µ leads to earlier separation, which is consistent
with lower Reynolds number and higher reduced freqency k. A larger µ can also shift
the dynamic reattachment phase earlier. Furthermore, the vortex structure following
separation appears elongated while pinned to the surface. It lifts o↵ the blade surface
and reaches maximum height at  = 270�. The cycle to cycle (CTC) variation is also
observed to maximise at this azimuth angle and then decrease. They observed significant
radial flow in the separated flow regions from root to the tip, and supposed that this
radial momentum transport could play an important role in the propagation of dynamic
stall on a rotating blade. In addition, their experiment showed during reattachment
process, there exists a locally separated zone near the leading edge, beyond which the
flow is attached.

Mulleners et al. [93] implemented stereoscopic particle image velocimetry(sPIV) tech-
nique on a scaled full helicopter model in forward flight and identified the dynamic stall
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events. The helicopter model had a 4-bladed rotor, with each blade having ONERA 7AD
as airfoil profile, a parabolic tip, and a �8.3�/R linear twist. They found out that the
leading edge vortex is stretched from r/R = 0.5 and r/R = 0.6, and the vortex structure
is spatially concentrated and close to the blade surface, contrary to 2D dynamic stall
cases. In addition, they observed the interaction of the tip vortex and the dynamic stall
vortex, which increases the three dimensionality.
Gardner [94] carried out a numerical simulation for a pitching airfoil (2D), a pitch-

ing finite wing, and a pitching while rotating blade , the reference radial location on
which has the same harmonic pitch as the previous cases, in order to elucidate the ro-
tating e↵ect. The simulation suggests that the stall onset is postponed on a pitching
non-rotating wing, and further postponed on the rotating blade. The overshoot of the
moment coe�cient is reduced on the pitching wing and further reduced on the rotating
blade; whereas the overshoot of lift coe�cient on the rotating blade is larger than the
pitching wing, while both smaller than the 2D case.
Letzgus et al. [95] performed a numerical investigation on a 2-bladed model rotor with

cyclic control. The blade uses DSA-9A airfoil, a �9.3�/R linear twist and a parabolic
shaped SPP8 blade tip. They compared three cases, two cases with low and high col-
lective control without axial flow and one with high collective control, with axial flow.
The simulation result shows that slight di↵erence for the blade force hysteresis exists for
further reducing the time step interval from � = 0.5�. Two cases with high cyclic pitch
show the stall events occurring first at radial location r/R = 0.85, with an ⌦-shaped
coherent structure and moving in board. With the presence of axial flow, the stall is
weakened and only one asymmetric arch-like vortex exhibited during primary dynamic
stall. All cases showed dominating radial flows after the stall took place. Schwermer et
al [96] performed an experimental investigation on the model rotor as Ref. [95]. Although
the cyclic pitch control was slightly di↵erent, the experiment showed a similar stall event
as the numerical case. Firstly the separation begins from the leading edge, at around
r/R = 0.85 and propagates in board. Secondly, there is a strong radial flow in the stalled
region, and the radial flow velocity increases as moving from blade root to tip, which
is contrary to Raghav’s [50] observations. Thirdly, the tip area stall was postponed.
Furthermore, they noticed the untwisting of the blade due to the aerodynamic loads to
be constantly 0.8� for the whole cycle. Letzgus et al. [97] carried out numerical simu-
lations on the same case as Schwermer’s experiment [96], and compared the simulation
results of di↵erent numerical solvers and di↵erent turbulence models. They concluded
that the blade elasticity, rotor head and shear layer e↵ects of the wind tunnel seem
to be negligible. Among all the set-ups, the delayed detached-eddy-simulation(DDES)
captures the flattening of lift polar beyond the static stall angle, which was observed in
the experiment, and it is capable of reproducing cycle-to-cycle(CTC) variations for the
separated flow, while unsteady Reynolds average numerical simulation (URANS) with
Menter-SST and Spalart-Allmaras (SA) turbulence models can not. However, DDES
approach showed strong artificial vortex that influenced the lift and nose-down pitching
moment, which was not observed in the experiment and URANS results. In addition,
the di↵erence in the result by two solvers doesn’t tell anything, since their grid strategies
are totally di↵erent.
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Richez [98] did a numerical simulation on a 4-bladed 7A rotor in forward flight. The
cyclic control is solved by coupling a comprehensive analysis tool HOST and the com-
putational fluid dynamics(CFD) code, and the force curves on a certain radial locations
were compared with experiment measurements to guarantee the validation. The rotor
has a �8.3�/R twist. A shape factor based criteria has identified 3 di↵erent separation
regions from the simulation, the trailing edge separation, the leading edge separation
and the shock induced separation. The rotor map shows the beginning of trailing edge
separation for the inboard part of the blade in third quadrant of the rotor disk. And
the leading edge separation happens at the blade tip at the beginning of the fourth
quadrant of the rotor disk. The shock-induced separation appears on the tip at the end
of the fourth quadrant. However the tip shock-induced separation doesn’t show strong
relations associated with stall hysteresis. The simulation also show clearly the onset of
stall as an impact of the tip vortex of a previous blade. Gibertini et al. [99] carried
out an experimental investigation on a model rotor wind tunnel with a descending flight
condition. The measurement shows a deficit in the thrust coe�cient, which was believed
to be a consequence of a perpendicular vortex filament induced stall.

Ruan et al. [100](the current author) did a numerical simulation on a single blade
rotating with cyclic pitch control in forward flight state. The cyclic control was obtained
with comprehensive analysis tool CAMRADII. The blade is a rectangular untwisted
blade with NACA0012 airfoil profile, and the grid convergence study is carried out to
increase the credibility. They identified three di↵erent types of separation: the leading
edge separation, full separation and shock-induced separation. The simulation result
shows drastic interaction between the dynamic stall vortex and the tip vortex, which
yields a pair of counter-rotating vortex in the near wake. They also noticed a swell
structure emerging inboard and convects outboard, which plays a significant role in the
dynamic stall event after the primary DSV sheds outboard. The comparison of a slice
at r/R = 0.898 with an airfoil pitching in a uniform free stream velocity shows drastic
di↵erences in terms of the stall onset, the maximum overshoot and the separated flow
after the shedding of the primary DSV. They also tried to figure out the e↵ect of Coriolis
force and centrifugal force on the swell structure.

The investigation methods, objectives or main conclusions, rotor characteristics and
flight state are summarised in Table 2.1. The research is not systematic compared with
that of the 2-dimensional pitching airfoil, in which the e↵ect of di↵erent parameters
have been well interpreted, while three-dimensionality has just drawn researchers’ at-
tention recently. Researchers in the field of helicopter technologies focused mainly on
the traditional pseudo-steady flow characteristics, for example, the separation points,
the pressure profile, etc., while other researchers in the field of bio-fluid mechanics are
engrossed in modern unsteady fluid mechanical theories, such as vorticity dynamics.
The research fields in bio-fluid mechanics that deals with rotating, pitching, plunging
motions, though mostly characteristic of low M and Re, serve to provide new perspec-
tives to understand the classical problems on the helicopter blades. And with the better
understanding of the unsteady phenomenon, the quasi-3D models that is widely used
in helicopter aerodynamics to predict the aerodynamic loads may be revised for the
dynamic stall cases.
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Table 2.1: Summary of the literature on three-dimensional dynamic stall on rotating system

Literature Method Main Objectives
Additional information

.
Model & Blade

geometry
Flight state

Tip
Aerodynamic
Parameters

Bross et al. [90] Experiment; PIV;
Water channel

Comparison of vortical
structures: pitch, rotate,

pitch+rotate

Flat plate;
AR = 2; c = 0.0381m;
R = 0.113m;t = 2.8mm

– Re = 1.2⇥ 104

DiOttavio et al. [91]
Experiment;

Wind tunnel; PIV

Measurement of radial flow

2-bladed teetering rotor
NACA0012;

Rectangular; untwisted;
AR = 3.49; c = 0.178m;

R = 0.889m

Forward flight;
µ = 0.33

Re = 3.0⇥ 105

Mmax = 0.07Raghav et al. [50]
Investigation of radial jet-like

layer

Raghav et al. [92]
Investigation of the e↵ect of
advance ratio µ on radial flow

µ = 0.4

Mulleners et al. [93] Experiment; sPIV
Identification of dynamic

stall event on di↵erent radial
locations

4-bladed full
helicopter model
ONERA 7AD;
Parabolic tip;
⌧ = �8.3�/R;

AR = 15; c = 0.14m;
R = 2.1m

Forward flight;
µ = 0.42;

U1 = 88.3m/s

Re = 2.1⇥ 106

Mmax = 0.876

Gardner et al. [94] Numerical Simulation;

Comparison of stall
hystereses on: pitching

airfoil(2D), pitching finite
wing; pitching + rotating

blade.

Single blade;
OA209;

Rectangular; untwisted
AR = 8.3; c = 0.3m

R = 4m

Hovering with cyclic
pitch

Re = 1.7⇥ 106

M = 0.45



2
S
t
a
t
e
o
f
t
h
e
A
r
t
:
T
h
r
e
e
-d
im

e
n
s
io
n
a
l
E
↵
e
c
t
a
n
d
M
o
d
e
llin

g

Letzgus et al. [95] Numerical simulation
Grid resolution study;
Axial flow e↵ect on

dynamic stall

2 bladed model rotor;
DSA-9A

Parabolic tip;
⌧ = �9.3�/R

AR = 18; c = 0.027m
R = 0.65m

Hovering with cyclic
control

Re = 1.0⇥ 106

M = 0.6

Schwermer et al. [96] Experiment; PIV;
Wind tunnel;

Investigation of dynamic stall
on rotating blades

Hover with cyclic
control;

U1,axial = 2.2m/s

Re = 4.6⇥ 105

M = 0.28

Letzgus et al. [97] Numerical simulations

Comparing the simulation
results of di↵erent solver,
turbulence models with
experiment results.

Richez [98] Numerical simulation
Identification of separation
types; Discovered BVI
induced dynamic stall

4-bladed root-cut rotor;
OA213 for r/R < 0.75
OA209 for r/R  0.9

⌧ = �8.3�/R;
AR = 12; c = 0.14m;

R = 2.1m

Forward flight
µ = 0.3

Re = 2.3⇥ 106

Mmax = 0.84

Ruan et al. [100] Numerical simulation

Vortical structure of dynamic
stall on rotating system;
DSV-tip interaction;
Comparison with 2D

simulation

Single blade;
NACA0012;

Rectangular; untwisted;
AR = 4; c = 0.15m;

R = 0.8m

Forward flight;
µ = 0.21

Re = 2.8⇥ 106

Mmax = 0.783

28



2.3 Prediction of dynamic stall on rotating blade: Lower Order Models

2.3 Prediction of dynamic stall on rotating blade: Lower Order
Models

T
o improve the accuracy of lower order aerodynamic models including dynamic stall,
the selection and development of inflow models, or wake models is the prior consid-

eration. Lee et al. [101] evaluated di↵erent inflow models in a comprehensive analysis
for a AH-1G flight test, although the Leishman’s dynamic stall model is integrated, the
predicted forces on the blade deviate to a greater extend than the 2D Leishman’s model
for all in-flow models. Moreover, the inflow model that results in a deficit estimation at
60% radii may show an over-prediction at 90% radii. The author attributed the errors
to the re-attachment phase of the 2D dynamic model, yet the over-prediction or under-
estimation in the up-ward pitching phase on the 3D case may indicate the absence of
some factors in the present models.
Modarres [102] extended from 2D dynamic stall model, and developed a semi-empirical

model for 3D dynamic stall, which includes what he called radial coupling. A convection
equation is added to the blade element method,

@�i
@t

+ UR
@�i
@r

= �̇i (without radial coupling) (2.9)

and here UR is the yaw e↵ect, and �̇i is similar to dCv/dt in Eq.1.28. However the
comparison between the lower order model and experiments, flight cases or higher order
models, e.g. CFD simulations, are not presented. And this radial coupling is also not
validated.
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3.1 Objective of this thesis

I
n order to answer the questions that are raised in section 1.5, based on the literature
review, the following numerical experiment and analysis process are designed, such

as to avoid possible blade vortex interaction (BVI) triggered dynamic stall, twist, and
tip shape e↵ect.

• A single rigid, rectangular, untwisted rotating blade (angular velocity ⌦) set with
0 inclined angle in a free stream U1 = µ⌦R, with pitch control ✓0, ✓c and✓s, so
that the pitch angle in each revolution satisfies:

✓ = ✓0 + ✓s sin + ✓c cos , (3.1)

with  representing the azimuth angle defined in Figure 1.4.

• One equation turbulence model (SA model) and two-equation turbulence model
(k � ! with Menter SST version) are utilised for the computational fluid dynamic
simulation of the flow field around the rotating blade.

• The simulated flow field is to be analysed in detail, aiming to address the full
picture of dynamic stall phenomena on a single rotating blade.

• Vorticity transport function is to be analysed on a planar control region at slices
near r/R = 0.898, to illustrate the role of the rotating e↵ect. (The location
r/R = 0.898 is the place where the symmetric plane of the main ⌦-shaped vortex
structure dwells.)

The parameters for simulation are summarised in Table 3.1. The pitch control is a
rough approximation by CAMRAD II [10] with T = 900N and Mx = 0, My = 0 as

the trim condition.

Table 3.1: Parameters for simulation

Flow conditions Blade geometry and pitch control
Air density ⇢ 1.225 kg/m3 Airfoil type NACA0012
Temperature T 289K Chord c 0.15m
Rotor angular velcoity ⌦ 275 rad/s Rotor radius R 0.8m
Tip Mach number Mtip = ⌦R/a 0.5456 Blade aspect ratio AR 4
Advance ratio µ 0.2 Pitch control ✓0, ✓c, ✓s 13.18�, 7.74�, �5.57�
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3.2 Acquiring data of dynamic stall on a rotating system:
Numerical Approach

3.2.1 Governing Equation and flux definitions

T
he Navier-Stokes equations for a three-dimensional case can be written in conserva-
tive form as:
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is the conserved quantities’ vector. V denotes an arbitrary control volume with the
boundary @V and the surface with the outer normal vector S. The flux density tensor
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F is composed of the flux vectors in three coordinate directions:
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with ~ex, ~ey,~ez denoting the unit vectors in the coordinate directions. The indices i and v

represent the inviscid and viscous contributions, respectively. The inviscid and viscous
fluxes are:
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The pressure is calculated by the state equation:

p = (� � 1)⇢(E �
u
2 + v

2 + w
2

2
). (3.7)
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For a control volume fixed in time and space, the temporal change of the conservative
variables ~W can be derived from equation3.2

d

dt

~W =
@

@t

~W = �

RR
@V

¯̄
FdSRRR

V dV
⌘ �

1

V
· ~Q

F (3.8)

with ~Q
F representing the fluxes over the boundaries of the control volume. If the bound-

ary is divided into n faces, ~Q
F is given by:

~Q
F =

nX

i=1

~Qi
F
=

nX

i=1

( ~Qi
F,c

� ~Di)

where ~Q
F,c represent the fluxes over the respective face.

3.2.1.1 Flow Solver

The numerical simulation, or more specifically, the computational fluid dynamics is fully
based on the DLR-TAU code [103], which is a three-dimensional, parallel, hybrid, multi-
grid code. The finite volume scheme for solving the Reynolds-averaged Navier-Stokes
(RANS) equations is implemented and the flow variables are stored on the vertices of
the initial grid. The spatial discretization is cell-vertex with a dual metric, which is
computed during the preprocessing step.

3.2.1.2 Detailed solver settings

• Inviscid flux discretisation: Central scheme

– Central dissipation scheme: Scalar dissipation [104]

– Central convective mean flow flux: Flux of average, the flux is the analytic
flux of centrally averaged conservative variables on the face.

– Central convective turbulence flux: second order upwind scheme for turbu-
lence flux

– Compute exact whirl flux: due to the rigid body motion of the blade, the
additional flux is integrated over the control volume surface.

• Viscous flux type TSL/Full: Full, using a full gradient based approach to evaluate
viscous fluxes;

• Gradients reconstruction: Least square with QR decomposition and Gram-Schmidt
orthogonalisation
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Explanation: It is first described by Anderson, Bonhaus [105] and Hasel-
bacher, Blazek [106] This approach has shown much more accurate gradients
as in comparison to the Green-Gauss theorem. Using the achieved better
robustness and more accurate solutions as the Green-Gauss approach. This
viable algorithm reconstructs linear functions exactly on any type of mixed
grids. (Or hybrid grid.)

• Turbulence models: the linear eddy-viscosity models

– Boussinesq hypothesis: ⇢̄R̃i,j = �2µ(t)
S̃ i,j + 2/3⇢̄k̃�i,j

– Spalart-Allmaras model with Edwards and modification [107]: a single trans-
port equation for ”SA viscosity” ⌫̃ is employed.

– k � ! model, Menter Shear Stress Transport (SST) 2003 version [108–110]:
two transport equations for the specific kinetic turbulence energy k̃ and the
specific dissipation rate ! are solved to obtain the eddy viscosity µ

(t).

• Time stepping

– Relaxation solver: implicit backward Euler

– Time-accurate computations: Dual-time stepping, with CFL number 0.7.

– Inner iterations per time step: 200 ⇠ 400

• Convergence criteria

– Relative Cauchy convergence control on CL, CD, Cmy for inner iterations.

Explanation: If any of the force coe�cients sequences CL(N), CD(N)
and Cmy(N) in the last 30 inner iteration steps satisfies:

CX(m) > CX(m+ 1) form 2 N, (3.9)

and

|
CX(N)� CX(N � 1)

CX(N � 1)
| < 1⇥ 10�7 for N = 30, (3.10)

The relative Cauchy convergence criteria is reached.

– Global residual: The based on the initial value normalised ||res
n
⇢ ||

0 drops 2
orders of magnitude
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Explanation: The global density residual ||resn⇢ || at pseudo-time step
n for the monitoring output is computed as the root mean square value:

||res
n
⇢ || =

vuut
NpX

j=1

[resn⇢ (j)]
2

Np
. (3.11)

and the normalised ||res
n
⇢ ||

0 = ||res
n
⇢ ||/||res

N0
⇢ ||, where N0 is the initial

pseudo time step in a new dual time stepping.

• Multigrid level: 3

Explanation: The normal convergence behavior of an iteration method
slows down after a rapid start, due to the fact that low frequency errors are
hardly damped. Multigrid method can well resolved these low frequency
errors (attached to a long wavelength) on a coarser mesh. And the number of
equations to be solved decreases with the number of agglomerated volumes.
It is based on the numerical simulation experience with TAU code that
level 3 is an adequate choice as a trade-o↵ of computational resource and
accuracy.

3.2.2 Grid Strategy

3.2.2.1 Chimera technology in DLR-TAU

The overset grids method was originally introduced for building structured meshes over
a complicated configuration. Steger et al. [111], Benek et al. [112] developed overset grid
method in two and three dimensions for Euler Equations. Dougherty et. al. [113, 114]
extended this technique to allow movement of embedded meshes, which is powerful to
deal with moving bodies. In order to overcome the shortcomings of the algorithm, such
as loss of conservation, extra computation cost due to interpolation and locally reduced
accuracy due to mismatched cell sizes between the overset meshes, three major steps in
DLR-TAU code is implemented to improve the aforementioned problems.

• The creation of the overlapping region: In order to guarantee that in the chimera
search process, all points have a donor cell for linear interpolation, a su�cient grid
overlap layers is necessary.

• The cell surrounding each interpolation point is searched from the other grids,
using Alternating Digital Tree (ADT) [115].

• The conservative variables are transferred by linear or trilinear interpolation [116].

The parallel chimera method has also been developed, one can get more information
on the algorithms and implementations from Ref. [117].
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(a) (b)

Figure 3.1: (a) Schematic plot of chimera grid strategy. Red and grey squares represent two
overset meshes (chimera meshes); yellow lines represent the boundary conditions for
each block. (b) Schematic plot of the computation field, which consists of pitching,
rotating and far-field (inertial) block.

3.2.2.2 Overview of the blocks

In order to avoid the appearance of orphaned points due to the motion of the blade, and
to guarantee the minimum interpolation error in the chimera layer between the blocks,
we set up a shapes and discretisation that are homogeneous in the motion direction.
Or in other words, using cylindrical shape with its centreline aligned with pitching axis
for the pitching motion, so that as the blade pitches, the outer surface stays in a fixed
region, and hence the overlapping region can also be fixed. Similarly, axisymmetric body,
such as a sphere or cylinder for the rotating motion can also provide such a condition.
In addition, the homogeneous discretisation in the arc direction guarantees the best
interpolation quality. The schematic plot of the grid strategy is presented in Figure 3.1.
The size of the far-field is determined such that the influence of the wake is small to a
great extend on the far-field boundaries. This value is mostly empirical, 5R ⇠ 8R(5 ⇠ 8
times of the blade rotating radius) seem to be su�cient [118] to yield a result comparable
to flight test. 20 ⇠ 30R were adopted by early literature [98] for simulating dynamic
stall on a forward flying helicopter. Figure 3.2 shows the generated mesh.

Pitching Block

The process and detailed data to create the surface mesh and pitching block are docu-
mented here, so that anyone can start from the current work and further improve the
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(c)

Figure 3.2: Configuration of the mesh: (a) blade block, (b) voxel rotating block, (c) voxel
farfield block
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mesh quality for high fidelity simulations, such as LES, DDES approach. The di�cult
part of creating structured grid on a curved surface is separating the areas. The division
of curved surface at the blade tip, the extruded boundary layer mesh and the pitch block
topology are presented in Figure 3.3; the spacing, distribution of the points are listed in
Table 3.2. The basic steps for the establishment of the surface grid in Pointwise [119]
are:

• Determine the tip region, which is l0 = 5%c from the tip y = 800mm, and the
transition region, which is l1 = 20%c from the tip;

• Assign grid points on half of the airfoil according to Table 3.2, and split at LE
and TE at twelfth nodes counting from both ends;

• Create connectors Con-h and Con-v for both LE and TE;

• Assemble domains from the connectors created, and smooth the mesh on the tip
of the model using laplacian method.

• Smooth the domain by setting Con-2 to be a boundary of the domain, at which
the adjacent cells satisfy orthogonality and the size of the cells are equal to the
mesh on the other side of the connector (in the transition part).

And the boundary mesh is created by extruding the surface mesh normally into the
space, with setting the initial step �s = 7 ⇥ 10�4mm and a growth rate of 1.05 for 20
steps, 1.1 for 40 steps. The extrusion method is hyperbolic and total steps are 60, which
makes the connector Con-transition’s node number to be 61. Based on the extruded
block surface, the rest parts of the pitch block is built:

• Create a half sphere centering at
�
0 R� 0.2c 0

�
, and project all the connectors

on to the half sphere;

• Create domains on the half sphere with the projected connectors, and smooth the
domains with laplacian method;

• Create connectors to between the two surfaces (boundary mesh surface and spher-
ical surface);

Note that the connectors should be adjusted in the way that both ends are
perpendicular to the domain surfaces.

• Create domains from the newly created connectors and assemble block-parts from
these domains;

• Select all the inner block-parts and smoothing by setting the inner domains as
floating;

• Repeat the process on the other end of the model, and close the pitch block with
creating a structured block-part between two tip block-parts.
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• Extrude the outer surface domain of the pitching block normally for 5 steps, with
equal space 6.67%c, to create the chimera mesh.

Since the model is using the symmetric NACA0012 airfoil and the model itself is sym-
metric by plane y = 500mm, the steps listed above together with the data in Table 3.2
are su�cient for recreating the mesh in Pointwise. We compare the spatial resolution of
the current pitching block with that by Richez [98] in Table 3.3.

(a)

(b) (c)

Figure 3.3: Details of (a) normally extruded boundary block from surface mesh, (b) surface
mesh on the blade, and (b) structured pitch block topology built on the boundary
layer mesh.
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Table 3.2: Details of the connectors

Connector ID
Number of

nodes
spacing �s Other information

Combined Con-1,2,3 183 �s-LE: 0.2 Distribution function: Tanh

Con-1, Con-2 12 -
Directly split from Combined

Con-1,2,3
Con-h 28 -

Lines projected onto the surface.
Con-v 23 -

Con-4 101
�s at both ends equal to tip

distributions
Distribution function: Tanh

Con-transition 33
LE: �stip = 0.477; �smid = 1.033
TE: �stip = 0.306; �smid = 1.2

Distribution function: Tanh

Con-Extrusion 61 �s1st = 7⇥ 10�4; �send = 0.1655
Distribution function: constant
growth rate, 1.05 for the first 20
steps, 1.1 for the rest 40 steps.

Con-projection - -
Projected from connectors in tip
region, using laplacian smoothing

Con-5 65
both ends adjusted according to
�s̄ of the point on the surface that

they are connected with.
Distribution function: Tanh

Table 3.3: Comparison of the spatial resolution between current simulation and the 7A rotor
mesh of [98]

Current Simulation 7A Rotor [98]

N around airfoil 364 313
N over the blade span/AR 55.25 10.33
N inside the boundary layer at midchord

56 40
and r/R = 0.8
Max y+ 0.55 0.4
�s/c at LE 0.133% 0.11%
max �s/c chord-wise 1.3% 1.6%
max �s/c normal to wall 4.6% 5.6%

Rotating Block

The details of the rotating block is shown in Figure 3.4 and in Table 3.4. Basic steps
to create the rotating block is as follows:

• Create an sphere with radius R0 = 3R, and scale the sphere in z direction with a
factor of 0.9 in order to decrease the number of cells in z direction;
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3.2 Acquiring data of dynamic stall on a rotating system: Numerical Approach

• Draw 12 connectors that form a hexahedron, and project them onto the oval sur-
face. Setting the numbers of the connectors Con-H to be 111, and Con-V to be
54;

• Assemble domains from these connectors and smooth with laplacian method on
the oval surface;

• Create the unstructured voxel block using the chimera mesh’s outer surface of the
pitching block, and the newly created domain, adjust the parameters to yield the
space as listed in Table 3.4

Figure 3.4: Details of the rotating block and its topology.

Table 3.4: Details of the rotating block

Structured surface mesh Unstructured voxel grid
�s̄ 18.50mm �s̄ 8.29mm
(�Ā)1/2 18.76mm (�V̄ )1/3 7.44mm
No. Cells 47,520 No. Cells 15,025,551

Farfield Block

In order to resolve the wake, we tried two di↵erent methods: (1) using a point cloud
that forms a helical path; (2) using a structured, finely designed mesh. The first method
can save computation resources, but since the wake doesn’t strictly follow a helical
path, there will be artificial di↵usion of the wake due to the grid size change. The
second method can relieve the aforementioned problem to a great extend, but costs
more computing resources. We compare these two methods and try to figure out if the
wake has a great impact on the dynamic stall event in a forward flight state.
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The first method is shown in Figure 3.5 (a), and the second method is shown in Figure
3.5 (b). The detailed spacing information is listed in Table 3.5.

(a) (b)

Figure 3.5: Details of the far-field block (a) with point-cloud refined grid; (b) with a structured
cylindrical refined grid for the wake region.

Table 3.5: Details of the farfield block

Parameters Point-cloud refined Structured grid refined
Farfield together Structured Wake region

�s̄, (mm) 33.17 31.54 12.23
�smax, (mm) 1514.93 1326.65 18.00
(�V̄ )1/3, (mm) 126.83 82.89 7.44
(�Vmax)1/3, (mm) 607.80 443.27 16.21
No. Cells 11, 527, 188 22, 496, 336 7, 772, 310
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3.3 Validation of the grid strategy

3.3 Validation of the grid strategy

3.3.1 Voxel grid: Hovering case

T
he Caradonna–Tung rotor model is adopted, and the surface mesh follows the same
space criteria as described in Section 3.2.2. The only di↵erence of the blade block is

the root part, where unstructured pyramids’ prisms and tetrahedra are used, as shown in
Figure 3.6a. The farfield block consists of a region that is uniformly spaced as the
rotating block in current simulation and the voxel grid growing from small to large
scale on a farfield boundary. The region right below the rotor is refined with a point
source in order to catch tip vortex trajectories, as shown in Figure 3.6b. The flow
condition is summarised in Table 3.6, and the comparison of grid for the simulation
and validation case are summarised in Table 3.7. The numerical method for the hov-
ering case is the same as the current simulation, except that the rigid motion herein
includes only rotation of the whole block. The Spalart–Allmaras turbulence model is
adopted. Figure 3.7 shows the thrust coe�cient along the simulation revolutions, and
Figure 3.8 shows the comparison of the pressure coe�cients on r/R = 0.5, r/R = 0.8, r/R
= 0.96 span-wise locations. Figure 3.9 shows the tip vortex trajectory using Q-criterion
shaded with vorticity magnitude.

(a) Blade block (b) Farfield block

Figure 3.6: Configuration of the mesh for validation: (a) blade block; (b) voxel farfield block.

The thrust coe�cient of the experiment is CT = 0.00473, and the validation case gives
a value of 0.00566, which is 19.6% larger than experiment data, which is consistent with
the pressure coe�cient, where, at r/R = 0.8, the maximum Cp has an error of 11.55%.
Comparing the simulation result of the hover case with the Experiment data from [120],
we conclude that the SA turbulence model is capable of qualitatively catching the main
characteristic of the pressure distribution on the blade in rotation environment, and the
voxel grid with point source as refinement is able to keep track of the tip vortex outside
the fine grid region. The same mesh strategy and turbulence utilised for the current
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Table 3.6: Flow condition for validation.

Chord length c (m) 0.195
Aspect Ratio AR 6
Tip Mach number, Mtip = ⌦R/a 0.877
Tip Reynolds number Retip 3.93⇥ 106

Tip velocity Utip (m/s) 299.24
Collective pitch ✓(�) 8
Angular Velocity (rad) 255.76

Table 3.7: Comparison of the spatial resolution between current simulation and the validation
case.

Current Simulation Validation Case

N around airfoil 364 308
N over the blade span/AR 55.25 33.67
N inside the boundary layer at midchord and r/R = 0.8 56 (� = 1.5 mm) 68(� = 1.85 mm)
Max y+ 0.55 0.9
�s/c at LE 0.133% 0.2%
max �s/c chord-wise 1.3% 1.43%
max �s/c normal to wall 4.6% 3.39%

Figure 3.7: Thrust coe�cient along inner iterations.

simulation is thus considered to give a close estimation of the flow phenomena on the
pitching rotating blade.

3.3.2 Grid convergence study

I
n order to show the convergence of current grid, a coarse grid and a medium grid with
the same strategy as described in Section 3.2.2 are created, and we list the spacing

of each block for these grids in Table 3.8. h is the average of the edge length among
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Figure 3.8: Pressure coe�cient at di↵erent span-wise locations on the hovering rotor blade:
comparison between numerical simulation with Spalart–Allmaras turbulence model
and experiment result [120]).Cp == p�p1

0.5⇢(⌦R)2 .

Figure 3.9: Iso-surface of Q-criterion (Q = 5000 s�2) contoured with vorticity magnitude and
super-positioning on y-sliced mesh.
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the cells, and V is the average of the cell volumes. During coarsening the original fine
grid, we keep the height of the first layer o↵ the blade surface having the same value
which satisfies y+ = 1. In addition, the number of connectors in three directions are all
reduced according the level of the coarse grid. We present here only simulations with
the Spalart–Allmaras turbulence model.

Table 3.8: Grid spacings and numerical results.

Coarse Grid Medium Grid Fine Grid

Pitch Block h = 5.74%c; V
1/3

= 7.18%c h = 2.82%c ; V
1/3

= 3.61%c h = 1.40%c ; V
1/3

= 1.77%c

Rotating Block h = 18.41%c; V
1/3

= 14.33%c h = 9.37%c ; V
1/3

= 8.80%c h = 4.08%c ; V
1/3

= 3.73%c

Far-field Block h = 1.32c ; V
1/3

= 1.69c h = 0.52c ; V
1/3

= 1.175c h = 0.22c ; V
1/3

= 0.84c
CT 0.00782 0.00793 0.00791

We choose the average of cell edge lengths in pitch block as the spacing indicator, and
following [121], we can obtain the exact value of a partial di↵erential equation as:

fexact = fh + C · h
p +O(hp+1) (3.12)

where c is a constant and h is some measure of grid spacing, p is the order of convergence.
We plot the grid convergence curve in Figure 3.10. The fitted curve of Equation (3.12)
is f = fh=0 � 1.251e � 5 · h

1.566, which means the grid has an order of convergence
of 1.566. We have used a 2nd order scheme for both mean-flow flux and turbulence
flux with a Spalart–Allmaras model; theoretically, this value should be 2. Based on
Equation (3.12), the exact value of CT is 0.007942, and the current grid has an error
of 0.4%. We have compared the average CT and CMy of the SA model and the Menter
k � ! SST model, and found that CT is exactly the same, while the averaged CMy for
SA model is �0.001328, and, for k � ! model, it is �0.001676.

Figure 3.10: Grid convergence study with coarse, medium, and fine grids.

46



3.4 Analysis of the phenomenon

3.3.3 Periodicity and residual data

T
he simulation is carried out first with 720 time steps per revolution ( � = 0.5� )
for 2.5 revolutions, and then 1440 time steps/Rev (� = 0.25�) for the subsequent

revolutions. The inner iteration step is set to be at least 200 and maximum 400 to
guarantee the density residual dropping two orders of magnitude. Furthermore, Cauchy
convergence criteria are also implemented for saving computation time for each time
step; if any of the force coe�cients sequences CL(N), CD(N) and Cmy(N) in the last
30 inner iteration steps satisfies Cauchy convergence criteria, as described in Section
3.2.1.1, the inner iterations are considered converged for that time step. The residuals of
the forces on blade, namely thrust Fz and pitch moment My, are plotted in Figure 3.11,
where each circle represents the residual at an azimuth position after 400 inner iterations
or reaches Cauchy convergence criteria. The ranges where no data points show up are
where the residuals drop below 10�6.

Figure 3.11: Force residual as a function of simulation time history expressed in azimuth angles.

The superposition of CT and CMy in di↵erent revolutions is plotted in Figure 3.12,
and we can see that, after the 3rd revolution, the forces have already converged to a
good extent.

3.4 Analysis of the phenomenon

3.4.1 Determination of separation points

T
he feature of dynamic stall is mainly the separation of the boundary layer, both
at the trailing edge and the leading edge. Understanding, as well as modelling of

dynamic stall need these separation points on the blade. Many methods, both Eulerian
and Lagrangian, can be used to detect the flow separation in the unsteady flow. We
present here pure Eulerian methods, the skin friction and shape factor criteria. The
former theorem requiring wall shear stress is based on steady, laminar flows, but was
recently extended by Haller et al. [122] to unsteady, turbulent and compressible flows;
and the latter theorem requiring the near wall flow field is based on the boundary theory,
and the separation criteria is proposed by Castillo et al. [123] as Hsep = 2.76 ± 0.23
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Figure 3.12: Superposition of force coe�cients of di↵erent revolutions.

for two-dimensional turbulent flows. The rigorous skin friction criteria is followed to
extract the instantaneous separation points on the blade and then present the shape
factor criteria resultant separation points to show how good the velocity field can be
used to evaluate the separation points.

According to Tobak et al. [124], the existence of a skin-friction line on a three-
dimensional surface on which other lines converge is a necessary condition for the flow
separation; and skin-friction line emerging from a saddle point indicates a global separa-
tion; otherwise, it is only a local separation. We do not distinguish here global or local
separation, since we know that the leading-edge vortex that attached to the blade can
also contribute to such a local separation, which is our interest as well. For the a blade
section at a radial position, the aforementioned criteria can be expressed mathematically:

cfx = 0;
@cfx

@x
< 0. (3.13)

Similarly, if cfx = 0 and @cfx/@x > 0, this is the point of attachment. Note that the
stagnation point is also an attachment point, hence we have excluded this point in our
algorithm.

Another separation criterion that can be used (see [98]) to detect separation in turbu-
lence flows is based on the shape factor Hi, namely the ratio of the momentum thickness
over displacement thickness of the boundary layer for a two-dimensional flow, as illus-
trated in Figure 3.13:

Hi =

Z 1

0
(1�

⇢(y)u(y)

⇢0u0
)dy/

Z 1

0

⇢(y)u(y)

⇢0u0
(1�

u(y)

u0
)dy. (3.14)

Castillo et al. [123] stated that Hsep = 2.76 ± 0.23 is characteristic of the boundary
separation, yet they did not give a su�cient criteria. In order to imply the concept on
our rotating blade, we transformed all the velocity to the blade-section-fixed coordinate
and dealt with the velocity parallel to the airfoil at di↵erent radial sections, as shown in
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Figure 3.13: left: Illustration of coordinate system used to post-process shape factor; right:
schematics of boundary layer over a flat plate.

Figure 3.13, along nk direction. The flow along radial direction is not considered when
analysing the shape factor since observing from the blade, and the main component of
the flow is perpendicular to the leading edge of the blade. The outer edge of the boundary
layer is treated as the location where the velocity reached its maximum along the n?
direction. To determine how good this criterion can predict separation using only velocity
field, we plot in Figure 3.14 the shape factor and the skin-friction in the x-direction at
azimuth position  = 32.9�. The lower bound Hsep = 2.53 shows quite a good agreement
with the x skin-friction contour on the blade surface. However, Castillo et al. [123]
showed only the correlation of separation and shape factor H in turbulent boundary
layers, the utilisation of such criteria to detect separation should be considerably careful.

(a) (b)

Figure 3.14: (a) Shape Factor Hi on the upper surface at azimuth angle  = 32.9�, two contour
lines indicate the upper and lower bound of Hi value to determine the separation;
(b) skin friction cfx on the upper surface at azimuth angle  = 32.9�, the 0
contour line showing the separation line.
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3.4.2 Identification of the vortical coherent structure

I
n order to investigate the di↵erence of the flow field of a pitching airfoil and a pitching-
rotating blade, the vortex structures, or coherent structures need to be examined.

Although there are many advanced identification criteria, we choose vortex cores, deter-
mined by Q-criterion as the coherent structure. Hunt et al [127] proposed the Q-criterion,
defined by Chong et al. [128] in terms of the instantaneous velocity gradient tensor as:

Q =
1

2
((r · u)2 �ru : ru

T) =
1

2
((r · u)2 + k⌦k

2
2 � kSk

2
2). (3.15)

Here u is the velocity vector and S is the strain rate tensor, ⌦ is the rotation rate tensor.
Positive Q identifies rotation-dominated regions of the flow or the connected regions of
which show a coherent structure of vortices. Hence we use Q = 5000s�1 as the core of
the “rotating dominated region” or vortical core region of the flow field.

3.4.3 Analysis of the vorticity convection on the rotating system

F
ollowing Potter et al. [125], the rate of change of circulation within a control region
can be expressed as in equation 3.16 by substitution of the Navier-Stokes equation:

d�

dt
=

I

@A

@u

@t
· ds

= �

ZZ

A
[r⇥ (! ⇥ u)] · nAdA�

I

@A

dp

⇢
+

I

@A

I
a · ds+

I

@A
⌫r

2
u · ds.

(3.16)

where, for the planar control region shown in Figure 3.15, nA = ey is the surface normal
to the plane of the control region, and I

a is the local acceleration in the inertial frame,

I
a = �2⌦⇥ u� ⌦̇⇥ r�⌦⇥ (⌦⇥ r), (3.17)

where the “ ˙ ” is the time derivative. And u is the relative velocity to the rotating frame.
The line integration is performed on the boundaries, based on the body fixed co-

ordinate system shown in Fig.3.16, boundary 3 at x/c = �0.333 and boundary 1 at
x/c = 0.333, boundary 0 at z/c = 0 and boundary 2 at z/c = �0.333, whereas bound-
ary 4 is directly on the blade surface. Since the grid geometry is not perfectly along the
5 line boundaries, the region for area integration,

RR
A0 f(x, z)dA is adjusted so that the

di↵erence of
H
@A u · ds and

RR
A0 !ydA is kept small:

✏ =

�����

H
@A u · ds�

RR
A0 !ydAH

@A u · ds

�����  0.15%.

With such adjusted integration area A
0, the di↵erence of vorticity convection term

H
(!⇥

u) · ds and
RR

A[r ⇥ (! ⇥ u)] · nAdA can be kept ✏  2%. However this error is still
considered to be very large, and this will be one source of the error when the numerical
evaluation of the vorticity transport is carried out.
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(a) (b)

Figure 3.15: Control region A for vorticity transport analysis. (a) The lines to abstract flow
information and perform line integration; (b) the adjusted boundaries for area
integration of flow variables.

Convective term

The first term of Equation 3.16 can be rewritten as:

�
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)
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I

@A
(u · n@A)!yds

(3.18)

Compressible e↵ect and di↵usive term

And the second term should be handled very careful, since for the current compressible
case, ⇢ = g(x, z) and is not necessarily constant, hence it doesn’t vanish automatically
as is in an incompressible case; The third term will be examined later, and the fourth
term, we consider the integration on the solid boundary part @Abound and in-field part
@Afluid. Wu&Wu [126] showed the following relation on a boundary:

⇢(Ias � f) +rp�r((�+ 2µ)r · u) +r⇥ (µ!) = 0,

where I
as is the surface acceleration in inertial coordinate system:

I
as = ⌦̇⇥ r+⌦⇥ (⌦⇥ r),

f is the acceleration due to non-conservative force and � is the second viscosity, which
is an important parameter for irreversible resistance, like compression or expansion of
the fluid, but can be neglected for M < 2. For our case, there is no non-conservative
force, and M < 2, hence f and volume viscosity � can be neglected. We can expand the
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relation as:

I
as +

rp

⇢
� 2⌫r(r · u) + ⌫(r⇥ !)�

2(r · u)rµ

⇢
� ! ⇥

rµ

⇢
= 0.

although as will be shown later that r · u is small comparing to other terms, we still
keep it in our equation.

⌫(r⇥ !) = ⌫(r⇥ (r⇥ u))

= ⌫(r(r · u)�r
2
u)

Hence
I
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⇢
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2
u�
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⇢
� ! ⇥

rµ

⇢
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Inserting Equation3.19 into the last term of Equation3.16, we have:
I
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(3.20)
The control region A is fixed on the plate, hence both ⌦ and a should be expressed in

the body fixed coordinate system. Transformation of the vectors onto the non-inertial
frame is the first step to evaluate the rate of change of circulation in the control region.
In order to clarify the rotating-pitching system, the schematic sketch of the coordinate
system is shown in Figure 3.16. A vector I

v = [vX , vY , vZ ] in the inertial system can be
expressed as b

v = [vx, vy, vz] in the non-inertial system through two transformations:

1. A rotation of angle  about the Z-axis of the inertial coordinate system due to the
rotating angular velocity ⌦, denoted as [TR];

2. a rotation of the angle ✓ about the non-inertial y�axis due to pitching motion at
angular velocity ✓̇, denoted as [Tp].

And
b
v = [Tp][TR]

I
v (3.21)

Considering the rotating and pitching case, the rotating angular velocity of the rigid

body I⌦Rotating =
�
0 0 ⌦

�T
, and the pitching angular velocity of the rigid body

⌦
0
pitching =

�
0 ✓̇ 0

�T
. The transformation matrix, based on the coordinate system

depicted in Figure 3.16:
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and
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3.4 Analysis of the phenomenon

Figure 3.16: Schematic sketch of the coordinate system

Hence the angular velocity of the rigid body expressed in the body fixed coordinate
system is:

b⌦ = [Tp][TR]
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Hence the angular acceleration:

b
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A (3.25)

For the current case, the pitch control is expressed in the rotated coordinate system as
Equation 3.1. Insert Equation 3.1 into Equations 3.24, 3.25, we have:
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3 Method

Acceleration E↵ect

The third term in Equation (3.16) can be re-written as:
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And for the surface acceleration in Equation (3.19):
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Note that in order to compare with the acceleration of the fluid, we have kept the same
form of the expressions for the x,y,z components.

Coriolis e↵ect

The Coriolis term only exists in the fluid area, and it has no contribution to the
surface vorticity flux. Recall Equation(3.17), using Kelvin-Stokes theorem, note that�
⌦x ⌦y ⌦z

�
is independent of x,y,z, we have:
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Here n̂ is
�
0 1 0

�

Centrifugal e↵ect and centripetal e↵ect

The centrifugal e↵ect contributes to the fluid part �
H
@A acends and the centripetal e↵ect

contribute to the surface part
R
@Abound

as,cends. For centrifugal e↵ect, similar to what
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3.4 Analysis of the phenomenon

we did for the Coriolis term, using Kelvin-Stokes theorem, and note that
�
⌦x ⌦y ⌦z

�

is independent of x,y,z, we have:
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And for centripetal e↵ect, the direction of the line integral is counter-clockwise, hence
along the upper surface of the airfoil, the integral is from left to right, or the positive
direction of x axis. Here we have a constrain for x and z, along the surface, z/c =
g(x/c + 1/4), x 2 [�c/4, 3c/4], where c is the chord length. With such constrain, we
have ds =

�
dx 0 g

0(x/c+ 1/4)dx
�
. Insert this relation into the line integral of the

surface vorticity flux, we have:
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with c
0
1 representing the position on the airfoil surface where the LEV boundary ends.

Replace x0/c + 1/4 with t and using c1 2 [0, 1] to replace c
0
1, the first term of the

right-hand-side (RHS) can be re-written as:

Z c01

�c/4

⇥
⌦x⌦yy0 + ⌦x⌦zcg(x0/c+ 1/4)� (⌦2

y + ⌦
2
z)x0

⇤
dx

=

Z c1

0


c⌦x⌦yy0 + c

2⌦x⌦zg(t)� c
2(⌦2

y + ⌦
2
z)

✓
t�

1

4

◆�
dt

= c⌦x⌦yy0t

�����

c1

0

+ c
2⌦x⌦z

Z c1

0
g(t)dt� c

2(⌦2
y + ⌦

2
z)

✓
t
2

2
�

t

4

◆�����

c1

0

(3.30)
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3 Method

The second term of the RHS can be treated the same way:
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Note that g(0) = 0, insert Equation 3.30 and Equation 3.31 into Equation 3.29, we have:
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When it is a flat plate without thickness, g(t) = 0 and the terms with g(c1) vanish.
These terms are actually the thickness e↵ect. Depending on the value of c1, this term
has di↵erent values. The contribution of the centripetal force to the circulation change
rate doesn’t need the information of the flow field. Indeed, with only motion parameters
and geometry parameters, one can calculate its contribution to the rate of change of the
circulation.

Angular acceleration

The angular acceleration contributes to the fluid part
H
@A aangds and it contributes to the

surface flux part
R
@Abound

as,angds. For centrifugal e↵ect, similar to what we did for the

Coriolis and centrifugal term, using Kelvin-Stokes theorem, and note that
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3.4 Analysis of the phenomenon

Together with Equation 3.25, we have:
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with
RR

A dA = 0.00463, this term is a pure pitching motion induced e↵ect. It represents
the development of an apparent solid-body rotation in the presence of a time-varying
pitch angular velocity (⌦̇y).

Similar to the centripetal e↵ect, we evaluate the angular acceleration on the surface
of the blade.
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3 Method

Re-evaluation of the vorticity transport function

Insert Eq. 3.18 and Eq. 3.19 into Eq. 3.16, note that the line integral of @A = @Afluid+
@Asurface, the terms that influence the vorticity variation can be rewritten as:
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(3.34)

Here the acceleration terms are cancelled out on the surface, the contribution of the
surface variables to the total circulation change of the control volume comes only from the
surface term in the planar variation

R
@As

(u ·n@A)!yds and the viscous term
R
@As

⌫r(r ·

u) · ds.

3.5 Lower order Model for dynamic stall on a rotating blade

B
ased on the blade element theory, the Beddoes-Leishman dynamic model [65] can
be integrated into a three-dimensional model to evaluate the lower order model.

As is shown in Figure 3.17, the lower-order model consists of three main processes,
namely the estimation of the inflow field, the calculation of the unsteady loads of two-
dimensional airfoil, and the correction of three-dimensional e↵ect based on Prandtl’s
lifting line theory [129]. We are going to provide improvement directions for such a
lower-order model based on the numerical investigation.
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Figure 3.17: Schematics of the modelling process: dynamic stall events on a single rotating
blade.





4 General characteristic of dynamic stall on
the rotating system

4.1 Force and moment

T
here is a marginal di↵erence in both thrust and pitching moment coe�cients in
terms of the maximum values as shown in Figure 4.1. The stall event occurs later

for the k�! SST turbulence model, and the pitching-up moment in the post-stall phase
is relatively smaller. This indicates di↵erences of the detailed fluid structure in the stall
regime; this will be studied in detail in the future but not within the scope of current
study. Nevertheless, the overall trends of the curves are similar to each other, and we
are using the numerical results of the SA turbulent model to illustrate the dynamic stall
events on the rotating-pitching blade.

Figure 4.1: Comparison of thrust and pitching moment coe�cients of the blade within one
revolution by di↵erent turbulence models: Spalart–Allmaras (SA) and the k � !

SST turbulence model.

Sectional force coe�cients are shown in Figure 4.2 at radial locations r/R = 0.607,
0.785 and 0.928. The plot shows an apparent di↵erence between radial locations in both
stall onset time and stalled value. Both CnM

2 and CmM
2 show an earlier stall for

outboard locations. However, the extreme CnM
2 and stalled value of CmM

2 do not
take place at the outermost location. Both thrust and pitching moment curves in the
post-stall phase oscillate distinguishably compared to their inboard counterparts.
Figure 4.3 is the rotor map of both sectional normal force and moment coe�cients.

Force coe�cients are non-dimensionalized by sound speed. The maximum CnM
2 appears

in the region 0.6 < r/R < 0.85, 350� <  < 35�, which is in the pitching-down phase.
While the relative high value (orange area) begins at  = 300�, ✓ = 21.89� " (pitching
up) and remains until  = 60�, ✓ = 12.21� # (pitching down). The negative normal force
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4 General characteristic of dynamic stall on the rotating system

(a) (b)

Figure 4.2: Sectional force coe�cients at selected radial locations, r/R = 0.607, 0.785 and
0.928. (a): sectional normal force coe�cient CnM

2; (b): sectional pitch moment
coe�cient CmM

2.

also exists near blade tip at azimuth angle 330� <  < 30�, which is a result of the tip
vortex; it appears at the blade root as well, which is the attributed reverse flow region
and the strong root whirl flow, the latter a pure result of the abrupt cut of the blade
model at the root. The minimum CmM

2 (pitch down moment) appears at r/R = 0.72,
 = 20�, which is in the pitching-down phase well beyond the maximum pitch angle.
The relatively small value (blue region) starts from  = 300� and ends near  = 30�,
which is consistent with the change of normal force, and this indicates that the dynamic
stall occurs in this region. The maximum CmM

2(pitching-up moment) appears at blade
tip, 90� <  < 110�, where a normal shock exists on the suction surface, see Figure 4.4
. Cm = 0 is contoured with a bold line in the rotor map. The rugged line shows the
recovery of Cm occurs inboard first while very late at radial locations 0.6 < r/R < 1.

4.2 Vortex structure

4.2.1 Leading edge vortex

S
ince dynamic stall events are closely associated with the vortex generating and shed-
ding on the upper surface of a blade, we show the vortex structures on the rotating

blade at di↵erent azimuth angles in Figure 4.5.
An ⌦-shaped vortex structure is visible in the snapshots (b)  = 300�, ✓ = 21.89� "

(c)  = 315�, ✓ = 22.65� ", which is similar to the observations for a pitching finite wing
by Kaufmann [130], and also similar to what [131] called the ⇤-type arch vortex. A
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4.2 Vortex structure

(a) (b)

Figure 4.3: Rotor map of sectional force coe�cients. (a): CnM
2 sectional normal force coe�-

cient normalised by sonic speed; (b): CmM
2 sectional pitch moment coe�cient.

Figure 4.4: Pressure coe�cient of a slice on the blade at radial position r/R = 0.714, 0.821 and
0.928, azimuth angle  = 90�.

similar observation is also reported by [97]. Unlike on a pitching finite wing, as soon as
the ⌦-shape vortex is shed, the leading edge vortex (LEV) comes into interaction with
the blade tip vortex to a great extend, and even an inclined arch vortex appears at the
tip, see (e)  = 345�, ✓ = 22.1� #.

4.2.2 Tip vortex

I
n order to see the interaction of the leading-edge vortex and the tip vortex, we take
slices at several chord-wise locations near the tip region (0.94 < r/R < 1.125), and

integrate !x,±!y in this region where !x > 0, which is the main contribution to the tip
vortex in cases that are free from strong interaction. The circulation in the y-direction

63



4 General characteristic of dynamic stall on the rotating system

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Vortex structure shown by iso-surface of Q criterion (Q = 5000 s
�2) shaded by

pressure coe�cient cp referenced to forward flight speed. For each subplot, top:
blade tip, bottom: blade root. The blade border is shown with the black rectangle.
Azimuth positions:  = (a) 270�; (b) 300�; (c) 315�; (d) 330�; (e) 345�; (f) 0�;
(g) 30�; (h) 39�. The inertial coordinate is plotted here.

indicates the mixture of LEV in the tip vortex region. This result is plotted in Figure 4.6
with selected azimuth angles.
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4.2 Vortex structure

The consequent strong interaction of the LEV and tip vortex dominates the flow
behavior of the post-stall phase. There are mainly four stages in this phase, symbolized
by the shedding of LEV at the tip area. The 1st stage begins at  = 300�, when
the LEV accumulates at the blade-tip’s leading-edge, which is shown as the increasing
integration of negative y circulation ��y; the LEV starts shedding at  = 317� as the
peak of ��y moves rearward, and at the place where this peak locates, the circulation
in the x-direction �x in the tip region is also relatively larger. As the separated DSV
moves downstream and outboard, the tip vortex at x/c = 0.957 is elevated and distorted.
Alongside the rearward movement of ��y, +�y grows in the vicinity of the tip surface.
This explains why the negative Cn exists at the tip region on the rotor map of CnM

2.
The second stage begins at  = 0� when the previous main DSV is transported o↵ of
the trailing edge; another LEV is accumulated at the leading edge. In this stage, the
tip vortex at x/c = 0.952 is no longer obvious, but the net circulation in the x-direction
increases. This means, in the tip region that there exists a more di↵used vorticity field
rather than the conventional concentrated structure. As the LEV grows over the chord,
the tip vortex is not apparent; nevertheless, it increases continuously in this area. From
this time on, the LEV sheds and entrains the tip vortex, forming a large separation
region over the tip area. Finally,  = 35.96� marks the end of previous shedding of LEV
and the beginning of the next shedding of LEV at the tip area. A reversely rotating
tip vortex is generated beneath the mixture layer of the separated leading-edge vortex
and tip vortex at x/c = 0.952. In the near wake, the tip vortex locates more outboard
compared to the 1st stage, and a pair of counter rotating vortices is obvious. At azimuth
 = 53.96�, the interaction of LEV and tip vortex begins to disentangle at x/c = 0.418.
Another growing and shedding of LEV at the tip area is observed, but in this stage there
is no strong interaction with the tip vortex. It enters the recovery stage.

The interaction of the leading edge vortex with the tip vortex represents three impor-
tant features:

• The leading-edge vortex is not “pinned” by the tip vortex, which is contrary to
the observations for a pitching wing;

• There is a strong correlation of circulation in the x-direction and the chord-wise
location of DSV. This can be explained as a result of lower pressure created by the
DSV, which induced higher velocity around the tip.

• The concentrated tip vortex is entrained into LEV during the pitching-down phase,
and a pair of counter-rotating vortices is observed in the near wake of the blade.

Chang et al. [133] measured the tip wake in the near field of an oscillating wing; he
discovered the hysteresis behaviour of the tip vortex, and a more di↵used tip vortex dur-
ing a down-stroke compared with the up-stroke. Current numerical simulation complies
with the observation of pitching wing.

65



4 General characteristic of dynamic stall on the rotating system

Figure 4.6: Snapshots of the flood contour of vorticity field !x and the contour of !y in blade
tip area (0.94 < r/R < 1.125) at di↵erent chord-wise sections; The circulation
�i± =

RR
S ±!idA, where S is the tip region where !x > 0, i = (x, y). Azimuth

positions:  = (a) 318�; (b) 330�; (c) 357�; (d) 18�; (e) 36�; (f) 54�.

4.2.3 Swell structure and vortex cores

T
he location of vortex cores over the blade is plotted in Figure 4.10, which is extracted
based on the eigenmodes of the velocity vectors [132].

Another significant feature shown in Figure 4.5 is the conical structured LEV on the
rotating blade, which is very similar to what Ozen [134] shows on a rotating plate.
This conical shaped structure is treated as a more stable LEV, “pinned” at the leading
edge [69], if we look at slices taken along the chord-wise direction. Ellington [69] explains
that the stability of LEV on rotating wing is due to the span-wise flow, which transports
vorticity to the tip and inhibits the growth of LEV, hence the critical circulation beyond
which the LEV will detach from the leading edge is not reached. In addition, this can
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4.2 Vortex structure

explain the phenomenon observed by [51], who concluded that vortex evolution varies
with radial positions on the blade, namely, at some locations, LEV sheds into dynamic
stall vortex (DSV), while, in other places, only a secondary vortex is generated. When the
phenomenon inspected from a three-dimensional perspective, this conclusion is just an
incomplete description of the ⌦-shaped vortex outboard and the conical vortex structure
inboard. That is to say, the detached DSV is rather a part of the arch vortex, which
attaches to the blade surface with two “legs”; and this is due to the stability of the
conical LEV structure in which no DSV is shed and observed inboard.
The special phenomenon of the rotating and pitching blade is the vortex generated

inboard which can be seen in Figure 4.5b–f ( = 300� ⇠ 360�, ✓ = 21.89� "⇠ 20.92� #)
as a swelling part within the conical LEV region inboard the blade, and it appears on
di↵erent radial locations and grows in size while moving outboard. This swell structure
creates a relative higher pressure on the blade, as is shown in Figure 4.7 where a shallow
grey area at r/R = 0.4875 is encompassed by a darker area. This is a result of the
alleviated LEV, when compared with the one at r/R = 0.625, where the LEV stays
close to the upper surface of the blade. From the x plane slice, one can easily identify
the detachment of the vortex structure. This structure corresponds to what Raghav
et al. [51] observed on their retreating blade that inboard LEV didn’t generate a DSV
but a secondary vortex. As the swell structure moves outboard, it carries the vorticity
that arched away from the surface and hence at that radial location no shedding of the
LEV occurs. The span-wise flow also contributes to the outboard moving of the swell
structure.

Figure 4.7: The swell structure on the blade, represented with x and y slices. Left: slices at
r/R = 0.488 and 0.625; Right: slice at x/c = 0.183.

This swell structure seems to be a result of the Coriolis force on the rotating blade
at first thought, but we carefully examined the pressure force and the Coriolis force
of the conical LEV slices at several spanwise locations and found out that the Coriolis
force is too small to a↵ect the vortex structure. The swell structure shown in Figure 4.5
exists at  = 270� near the root corner, prior to the formation of the ⌦-type vortex.
Indeed, the structure appears even earlier in this simulation at  = 245�, but it doesn’t
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4 General characteristic of dynamic stall on the rotating system

have any obvious e↵ect on the pressure distribution on the blade’s surface. The growth,
however, does have an impact on the pressure distribution later on as shown in Figure 4.7.
The reason why this structure appears first inboard is still unclear. Smith et al. [78]
mentioned that a greater magnitude inertial Coriolis force that pulls the LEV core away
from the leading edge exists when the a rotating wing is positioned closer to the rotation
axis, which might help to explain the phenomena. We evaluated forces in the x-direction
on the slices of the vortex structure, as shown in Figure 4.8a. Following the divergence
theorem, we evaluated the pressure force on the slices of the vortex core:

�Fp =

I

C
pd~s =

ZZ

S
rpdA (4.1)

�Fpx =

ZZ

S

@p

@x
dA (4.2)

The Coriolis force exerted on the vortex core can be evaluated as�FCor =
RR

⇢aCordA.
The ratio of the Coriolis force to the pressure force is plotted in Figure 4.8b. At blade
root, this value in y-direction increases from 0.1 to 12, and it keeps a value around 1
for non-dimensional radial locations where r/R < 0.6. The maximum value is at the
brink of the swell structure, which seems that the Coriolis force is an important factor
that balances the swell structure as it moves outboard. This value in x- and z-directions
increases first to and then show a continuously decreasing trend as r/R increases. What
the plot shows is consistent with Smith’s [78] argument and the Coriolis force plays in-
deed an important role on the rotating system. It is reasonable to explain the emergence
of the swell structure as a result of the relative larger FCor,x and FCor,z at root region. As
shown in Fig. 4.9, the Coriolis force in x-direction pulls the vortex towards trailing-edge
and the force in z-direction lifts the core upwards. And the Coriolis force in y-direction
drives the structure moving outboard.

Since the position of the swell structure influences the sectional pitching moment,
we thereby extracted the vortex cores and plot its x position against azimuth angle  
in Figure 4.10. The lighter color represents an aft position of the vortex core, which
results in a negative pitching moment component. In Figure 4.2 at a radial location
r/R = 0.607,  = 340�, there is a small kink on both CnM

2 and CmM
2 curves; In

Figure 4.10, we see that, at  = �21�(or 339�), the vortex core at r/R = 0.62 is
located well beyond the line of the nearby LEV cores. The lighter color formed an edge
in the contour map that represents the trajectory of the swell structure as it moves
afterward as well as outward. We define this ridge as the position of the swell structure
(r/R)swell when (1) @(x/c)V ortexCores/@(r/R) = 0, (2) @2(x/c)V ortexCores/@

2(r/R) < 0,
in radial locations (3) (r/R) < 0.8, where (x/c)V ortexCores is the scatter plot of the
normal projection of the vortex cores on the blade in Figure 4.10. This value (r/R)swell

can be estimated as a quasi-uniform-acceleration movement on the blade:

(r/R)swell =
1

2
a
?
swell� 

2 + ⌘µ cos( )� + r0. (4.3)
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4.3 Separation points

(a) (b)

Figure 4.8: Comparison of the pressure force and the Coriolis force in vortex cores. (a) area
of integration, where Q > 0; (b) ratio of Coriolis force and pressure force in 3
directions �FCor/�Fpx.

Figure 4.9: Schematics of the generation of the swell structure near the root of the blade.

The first term is the centrifugal e↵ect, the second term is the contribution of the yawing
e↵ect, with ⌘ representing a lower flow speed in vicinity of the blade’s upper surface,
and the third term is the initial position of this vortex structure on the blade. In our case,
the white dotted line in Figure 4.10 gives an approximation of the trajectory using the
expression mentioned above for the movement, and a

?
swell = 0.25, ⌘ = 0.8, r0 = 0.3426.
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4 General characteristic of dynamic stall on the rotating system

Figure 4.10: Left: Location of the vortex cores over the blade in radical region r/R = 0.3 ⇠

1.0 evolving along azimuth. Dotted line is a curve r/R = 1/2 ⇥ 0.248� 2 +
0.16 cos( )� + 0.3426, � in rad. Right: Projection of vortex cores on the
blade upper surface at selected azimuths.

Figure 4.11: Rotor map of chord-wise separation xSep/c and attachment xAttach/c locations.
The direction of the free stream is from  = 180� to  = 0�, and the rotating
direction is counterclockwise.

4.3 Separation points

B
ased on the methods mentioned in section 3.4.1, the classical skin friction criterion
is chosen to extract the separation points on the blade at di↵erent azimuth angles.
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4.3 Separation points

The skin friction lines are plotted in Fig. 4.12 and the extracted separation points and
attachment points are plotted in Figure 4.11.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Snapshots of the skin friction lines cf . For each subplot, the blade is placed the
same way as in Figure 4.5, with the top side being blade tip and bottom being
blade root, the left side being the blade leading edge, and the right side being the
trailing edge. Azimuth positions are:  = (a) 270� (b) 300� (c) 315� (d) 330�

(e) 345� (f) 0� (g) 30� (h) 39�.

The leading-edge separation of boundary layer starts outboard and inboard both at
 = 230�, while, at mid-span r/R = 0.6, this starts at  = 250�. Together with the
attachment points, we see that, between azimuth angle  = 240� and  = 270�, the flow
re-attaches immediately beyond the separation points, which indicates the existence of
attached leading edge vortex. When the blade enters the third quadrant, the attachment
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4 General characteristic of dynamic stall on the rotating system

points begin to move downstream, but the starting azimuth is highly dependent on the
radial location. For example, at r/R = 0.89, the vortex begins to grow leeward very early
while, at r/R = 0.5, the vortex remains at the leading edge for a long time. Note that
the growth of LEV starts at both ends of the blade and propagates toward mid-span.

A helicopter blade may not show the same character, for example simulation by [98],
shows a rather inboard to outboard propagation of the growth of LEV, in which 7A
rotor has a linear twist �8.3deg/R meaning larger pitch angle inboard. In this case, the
pitch angle is the same for di↵erent radial stations, and we observed a double directional
propagation of the growth of LEV. Costes et al. [135] mentioned that, in the vicinity of
wing tip, the flow is attached due to tip vortex induced flow as the wing pitches. And
this holds for the azimuth angles before  = 330�. As is already shown in Figure 4.6
that there exists a strong correlation of tip vortex strength �x and the leading edge
vortex strength �y�, and it is indeed this interaction of LEV with tip vortex makes the
LEV no longer staying attached at tip. At  = 90�, we can see a light-coloured region
out board, where the separation occurs between x/c = 0.121 and x/c = 0.223, far away
from the other leading edge separation positions. Figure 4.13 shows the Mach contour,
pressure coe�cient cp and skin-friction coe�cient in the x-direction cfx at radial location
r/R = 0.898 at this azimuth angle. On the upper surface of the blade section, cfx drops
from positive to negative and crosses 0 at x/c = 0.12, where the �Cp shows a sharp
decrease. This separation is obviously a product of shock wave. Based on the discussion
above, we can categorise the rotor map into four regions, namely fully attached region
(F.A.), leading-edge separation region (L.S.), fully separated region (F.S.) and a shock
induced separation region (SI). These regions are plotted in Figure 4.14.

Figure 4.13: Mach contour of the slice r/R = 0.898 and the corresponding pressure coe�cient
cp, skin-friction in the x-direction cfx on the blade section, azimuth angle  =
90�. On the upper surface, cfx drops from positive to negative and crosses 0 at
x/c = 0.12, where the Cp shows a sharp increase.
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4.4 Comparison of stall on the rotating blade and non-rotating 2-D pitching airfoil

Figure 4.14: Rotor map of separation regions. F.A. is the fully attached region; L.S. is the
region where the LEV is attached, and the conical vortex structure on the rotating
blade is present; F.S is the fully separated region due to the shedding of DSV; SI
is the shock induced separation region.

4.4 Comparison of stall on the rotating blade and non-rotating
2-D pitching airfoil

I
n order to understand the di↵erences of dynamic stall between a rotating blade section
and a pitching airfoil with the same harmonic pitching, the force coe�cients and

the Q contours of both cases are plotted in Figure 4.15. This span-wise location is
exactly the center of the ⌦-type dynamic stall vortex. The numerical investigation of a
pitching airfoil satisfying equation (1) is explained in detail by [136]. The main di↵erences
between the pitching airfoil (2D case) and the section of the three-dimensional rotating
blade (3DR case) include: (1) the magnitude of the force coe�cients (both Cn and Cm)
di↵er significantly in the pitching-up phase; (2) the onset of the stall of the pitching
airfoil is, in terms of the pitch angle, earlier than the blade section.
The maximum normal force coe�cient Cn of the airfoil is 1.85 while the value of the

blade section is only 1.16. In the process when the leading-edge vortex grows, there is
an obvious increase of the slope Cn↵ , while this is not observed on the blade section.
The normal force of the pitching airfoil stalls at 16.67�, and the blade section stalls at
20�. In the post-stall stage, normal force coe�cients Cn are relative close to each other.
The extreme value of the moment coe�cient Cm of the 2D case is �0.425, while the
counterpart on the rotating blade is only �0.145. The moment stall of the blade section
lags behind that of the pitching airfoil, and is relatively milder.
Four characteristic points on the normal force curve are selected and correlated with

the vortex structure in Fig. 4.15, namely (a) early stage when the normal force stall
onset occurs on the pitching airfoil, and moment stall onset on the blade, with only
leading edge separation, (b) the 1st local maximum Cn in one revolution, (c) the first
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4 General characteristic of dynamic stall on the rotating system

local minimum of Cn for both the pitching airfoil and the slice at r/R = 0.898 on the
blade, and finally (d) the maximum angle of attack. From (a) to (c), the pitching airfoil
goes through stall onset, LEV growing to cover the whole upper surface of the airfoil
and growing trailing edge vortex(TEV) that comes along with the detachment of the
LEV. However, the stall process on the blade doesn’t seem to occur until time (c). LEV
is not present on the blade at (a), and after the LEV begins to grow, the Cn begins to
drop immediately. The LEV occupies less than half of the chord on the blade at time
(b) while Cn has reached the local maximum. And even at time (c), the dynamic stall
vortex is still concentrated at the leading edge, although it is lifted o↵ from the surface.
Indeed the process from (a) to (d) is the process of moment stall, which agrees with the
evolution of the vortical structures.

Actually this decrease of Cn is an e↵ect of the arced ⌦-shaped vortex structure. Di-
rectly under the arced vortex, the normal force coe�cient Cn shows the stalled feature.
Unlike the 2D case, the vortex is not convected away, rather it still connects with the
LEV. Fig. 4.16 shows the local Cn and Cm, which is non-dimensionalised by the local
free stream velocity Uloc = ⌦r+µ⌦R sin( ). It is shown that only at r/R = 0.898 there
is a slight decrease in Cn while Cns at both r/R = 0.82 and 0.92 do not stall in the
upward pitching phase.

The vorticity !y of the counter-clockwise rotating vortex over the upper surface of the
airfoil in Figure 4.15 is integrated and plotted in Figure 4.17. This value interprets the
total strength of the DSV and TEV for one revolution. The two curves have a similar
trend, in the early stage of upward pitching phase, the curves of the circulation are quite
flat. Then, after a slight decrease they surge up and in the downward pitching phase,
they attenuate in oscillation. There are still three major di↵erences:

(1) The maximum circulation of the DSV in 2D case is larger;

(2) The oscillation of the 2D case in the downward pitching scenario is stronger and
the vortex strength of the 2D case is obviously larger;

(3) There is a delay of 8.1� for the 3D rotating blade case when comparing the point
when the LEV strength begins to grow.

The first point may be explained as the lack of a third dimension for the vortex to
grow, resulting in a concentration of vorticity. The second point may be explained
as the continuing transportation of the vorticity. At the early upward pitching phase
(4�  ✓  11�), the circulation of the 3D slice is clearly smaller which may also be the
e↵ect of the continuous transportation of vorticity. The third point can be explained as
the combined e↵ect of the induced velocity field Vi in the rotating environment and the
outward transportation of vorticity by the radial flow. The induced velocity field means
that the e↵ective angle of attack on a rotor blade is di↵erent from that on a pitching
airfoil: ↵eff = ✓( ) � Vi(r, )/U(r, ); Additionally, the outward transportation of
vorticity means that, unless an increase of �net is present, the circulation over the blade
section will not increase. Here,

��net = lim
�!0

(
RR

S v�tdA)�y, r/R!0.898� � (
RR

S v�tdA)�y, /R!0.898+RR
S �ydA

+��other (4.4)
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Figure 4.15: Up: Comparison of Sectional force coe�cients on blade at r/R = 0.898 with the
numerical simulation of non-rotating pitching blade and pitching airfoil. Down:
vortical structure on pitching airfoil and the slice at radial location r/R = 0.898
of the rotating blade, shown as a contour of Q at selected pitch angles shown in
the force plot. For rotating blade, these pitch angles correspond to azimuth angle
(a)  = 264.0�, (b)  = 279.0�, (c)  = 291.0�, (d)  = 315.0�, (e)  = 33.0�.
The coordinate in the slice of the rotating blade is inertial.

“0.898�” is the side of the blade section towards root, and ”0.898+” is the side of
the blade section towards tip.

RR
S v�tdA is the flux caused by the spanwise flow and

�y
RR

S dA is the volume between the two measured surface, hence �y = v�t. Assume
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4 General characteristic of dynamic stall on the rotating system

Figure 4.16: Sectional force coe�cients Cn and Cm at di↵erent radial locations, r/R = 0.82,
0.898 and 0.92.

Figure 4.17: Integration of vorticity over the upper surface (0  x/c  2.25, 0 < z/c < 2) of
the pitching airfoil and the slice of the rotating blade, with solid lines representing
the upward pitching and dashed lines the downward pitching. The circulation
�y =

RR
S !ydA, integrated in region S, S : Q > 0.

that v is constant across the integration area, the equation can be rewritten as:

lim
�t!0

��net
�t

= lim
�y!0

v
�y, r/R!0.898� � �y, /R!0.898+

�y
+ lim
�t!0

��other
�t

(4.5)
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This is an approximation of the term
RR

A(�v
@!y

@y )dA in vorticity transport function,
Equation 3.16.

Nevertheless, the explanation for the di↵erences between the pitching airfoil and the
blade slice is based on Ellington’s [69] assumption that the span-wise flow plays a sig-
nificant role, which may not be true as is already shown by previous research that
span-wise flow isn’t even su�cient to stabilise the LEV on the rotating blade [72]. The
other terms of Eq. 3.16 need to be examined to confirm the assumption or provide a
more comprehensive explanation.

Blade element momentum theory (BEMT) is the lower order model that is widely used
to predict the loads on the rotor disk. The in-flow sub-model is used for determining the
e↵ective angle of attack (AoA) for the blade elements. If we take the Drees linear inflow
model [45] and implement the momentum analysis on the rotor for our case, we can
get the modelled induced AoA as shown in Figure 4.18(a), (b). At the radial location
r = 0.898, the induced AoA ↵i has a maximum value of 2.6�, which is much smaller
than 8.1�. Hence, the evaluation of transported circulation is another modelling factor
to relate the stall event on the blade section to that on the pitching airfoil.

(a) (b)

Figure 4.18: Induced AoA according to BEMT, ↵i = Vi/U(r, ); (a) rotor map of ↵i; (b) ↵i

at r/R = 0.898.

4.5 Comparison of the simulation results with di↵erent
turbulence models

T
he analyses are mainly based on the simulation with SA turbulence model. In this
section, we are going to compare the SA-model-based simulation result with the k-!-

model-based one. Figure 4.19 shows the net thrust coe�cients and y moment coe�cients
for both turbulence models with standard point-cloud refined wake region and k-! model
with cylindrical refined wake region as described in 3.2.2. We evaluate the sensitivity
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Figure 4.19: Comparison of the net thrust coe�cients and y moment coe�cients of the rotor.

of the net thrust coe�cient CT and the net moment coe�cient Cmy as:

� =

vuut 1

N

NX

 i

⇣
C

seq compare
T, my � C

std seq
T, my

⌘
, (4.6)

where std seq denotes the standard sequence, the time history of CT or Cmy of the sim-
ulation with standard point-cloud refined wake and k-! SST turbulence model, and
seq compare represents the time history of the simulation with either SA model or a cylin-
drical refined wake region. The result is summarised in Table 4.1. Hence we can draw
the following conclusions:

• Both CT and Cmy are more sensitive to the wake refinement methods than the
turbulence model when the other variable is fixed.

• CT is less sensitive than Cmy when either wake refinement method is changed or
another turbulence model is implemented.

Table 4.1: Sensitivity of CT and Cmy to wake refinement methods and turbulence models.

Sensitivity to Wake refinement method Turbulence model ratio
�CT 2.00⇥ 10�4 1.88⇥ 10�4 1.06
�Cmy 5.09⇥ 10�4 3.68⇥ 10�4 1.38

Table 4.2: Sensitivity of Cn and Cm at r/R = 0.898 to wake refinement methods and turbulence
models.

Sensitivity to Wake refinement method Turbulence model ratio
�Cn 7.62⇥ 10�3 4.50⇥ 10�2 0.17
�Cm 1.73⇥ 10�3 1.33⇥ 10�2 0.13
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Figure 4.20: Up: Comparison of normal force and moment force coe�cients of di↵erent grid
strategies and turbulence models; Down: Comparison of the vortex cores in the
wake region. left: standard point-cloud refined wake region; right: cylindrical
refined wake region.

Figure 4.20 shows the di↵erences of the normal and moment coe�cients at radial
r/R = 0.898. The red and blue curves are almost identical. It is obvious that both
sectional force and moment coe�cient Cn and Cm are more sensitive to the turbulence
model than to the wake refinement methods. We use the same equation (Eq. 4.6) to
evaluate the sensitivity, and the values are summarised in Table 4.2, the values agree

79



4 General characteristic of dynamic stall on the rotating system

with our intuition. This seems to contradict the conclusions we draw for CT and Cmy,
but if we examine the magnitude of the sensitivity, the sensitivities of the net force is of
the same magnitude, that is, �CT , wake : �CT , turbulence model = 1.063, while that of the
chord-wise force is almost one magnitude smaller, �Cn, wake : �Cn, turbulence model = 0.17.
Hence we can conclude that:

• Both sectional Cn and Cm are more sensitive to the turbulence model than the
wake refinement methods when the other variable is fixed.

• Sectional coe�cients are more sensitive to the turbulence model than the net thrust
or moment coe�cients.

• Since dynamic stall events are highly radial dependent, the selection of turbulence
model is hence more important than the refinement of the method.

We shown in Fig. 4.21 the di↵erence between the k-! turbulence case with cylindrical
refinement method and the SA case with point-cloud standard refinement method. It is
seen that in the post-stall stage, the discrepancy are more obvious than the un-stalled
azimuths. And the discrepancy increases with the radial location r/R. Fig. 4.22 shows
the di↵erence of the vortex cores’ locations on the blade. At  = 300�, the xc value
of the vortex cores at r/R = 0.9 predicted by SA model is more aft-ward, which is
corresponding to an early drop of Cn and the zc value at r/R = 0.9 by SA is smaller,
hence a larger Cn after the lift-o↵ of the ⌦-shaped vortex is presented in Fig. 4.20.
Moreover, the swell structure seems to move slower if the turbulence model SA is used.
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Figure 4.21: Comparison of the sectional force coe�cients CnM
2 and CmM

2 between two
simulations.

Figure 4.22: Comparison of the vortex core locations on the blade between two simulations.
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5 Understanding dynamic stall on the
rotating blade: Vorticity transport
analysis

5.1 Vorticity transport analysis on the rotating blade

B
ased on the vorticity transport analysis method described in Section 3.4.3 in Chap-
ter 3 , the terms in Eq. 3.34 are evaluated for each azimuth angle, and the result

is plotted in Fig. 5.1. The planer variation
H
@A(u · n)!yds is broken into 5 components,

namely the five boundaries as described in Fig. 3.15. The line integration of pressure
gradient is split into the part in the fluid and the part on the wall, with the latter rep-
resenting the contribution of wall vorticity flux. The acceleration term in the fluid partR
f a · ds is plot as a whole, and the contributions of centrifugal e↵ect, Coriolis e↵ect is
discussed later. The span-wise convection part and the vorticity tilting terms are also
plotted in lighter colours.

It is obvious that the planer variation and the pressure gradient are the most dominant
terms throughout the whole revolution. The red curve represents the large scale of vortex
going through bound 2, and positive value means the leading edge vortex ( the � of which
has a negative sign) are convecting through this boundary line, the scale of the vortex
reaches 0.33c. The vorticity convection and tilting are only obvious after  = 260�, when
the leading edge vortex begins shedding. They enters great oscillation in the post-stall
phase, and seems to always have negative signs. Or in other words, the vorticity tilting
and the span-wise convection of the vorticity are highly correlated. We can then expand
the modelling of the circulation in the third dimension from Eq.2.9 with blade elements’
circulations:

@�

@t
� v

@�

@y
+ �̇tilting = �̇ (5.1)

if this correlation exists, �̇tilting = g(�v
@�
@y ), we can then improve the lower order model

in the third dimension.

Fig.5.1(b) shows the di↵erence between the summation of split terms and the direct
evaluation of @�/@t, the error comes from the large values of the vorticity field and the
numerical integration of these values, as well as the di↵erence method used to evaluate
the circulation’s change rate due to inadequate number of snapshots of flow fields in one
revolution. We are going back to discuss it later.
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5 Understanding dynamic stall on the rotating blade: Vorticity transport analysis

(a) (b)

Figure 5.1: (a) Contribution of di↵erent terms to the circulation change in the control volume.
(b) Comparison of the summation of the terms and d�/dt

The Contribution of pressure gradient and the e↵ect of Compressibility

The pressure gradient has two distinct phases: in the azimuth range  2 [15�, 222�], the
pressure gradient act as a “source”, which contributes to the accumulation of the negative
!y; while in the range  2 [222�, 15�], the pressure gradient acts as a “sink”, hindering
the strength of leading edge vortex. This might from intuition contradict the surface
vorticity flux theory, which states that a negative value of the pressure gradient

serves as the source for the leading edge vortex, since the LEV is growing in
the phase period  2 [230�, 270�]. However, when the LEV is lifted o↵ from the blade
surface, vorticity with positive sign is generated underneath it. And our integration of
the pressure gradient along the surface is thus a representation of the net contribution of
both the “source” and the “sink” of the LEV. On the other hand, the stronger the LEV,
the stronger the induced vortex comes along with it. And here, this term represents the
strength of the induced vorticity by the LEV, indirectly showing the strength of

the LEV.

One has to be very careful treating the term
H rp

⇢ ·ds, which equals 0 for incompressible
flow. By comparing this term with 0 doesn’t imply the compressibility e↵ect, since the
compressibility e↵ect also influences the viscous term, ⌫r2

u, in which there is the term
rp
⇢ . As is derived in Section 3.4.3, the net contribution of the pressure gradient term is

only the integration of pressure gradient in the flow field, namely �
R
f

rp
⇢ ds. Fig. 5.1

shows this term at di↵erent radial locations, and since the free-stream Mach number
M1 varies along the radial direction, the compressibility e↵ect can be seen from the
peak value of �

R
f

rp
⇢ ds. As the radial location moves outwards, M1 increases, and the

peak of this term decreases. Or in other words, the increasing compressibility results in a
decreasing strength of the leading edge vortex. This agrees with what Patrick [39] reports
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5.1 Vorticity transport analysis on the rotating blade

on the compressibility e↵ect. Notice that in the advancing phase, the compressibility
e↵ect strongly augments the LEV, which results in shock-induced separation as discussed
in Chapter 4.

Figure 5.2: Pressure gradient contribution to vorticity change at di↵erent radial locations:
Compressibility e↵ect with respect to the vorticity transport analysis

Vorticity tilting and span-wise convection

We have plotted the integral of vorticity tilting vs. the integral of span-wise convection
in Fig. 5.1. The linear regression model gives a standard deviation of 0.0262, and the
determination coe�cient r2 = 0.9123.
This also means, the summation of these 2 terms yields a very small value, comparing

to the planar variation. Hence the assumption in the previous chapter that the large
oscillation of force coe�cients is a pure result of the span-wise convection of the y
vorticity should be extended by adding the contribution of the tilting term.

Rotational acceleration e↵ect

The acceleration terms has a positive contribution to @�/@t in the azimuth angles  2

[75�, 285�], although it is very small comparing with other terms, but is significantly
larger than the viscous term in the flow field, and comparing to a 2D case, this term
increases significantly in the 3D rotating case. A positive contribution acts as a “sink”
for the leading edge vortex, and this “sink”, larger than the span-wise convection term
in azimuth angles  2 [100�, 250�], is responsible for the stability of the conical shaped
leading edge vortex on the rotating blade. This term changes its sign when the dynamic
stall begins, which serves as a“source” for the leading edge vortex.

85



5 Understanding dynamic stall on the rotating blade: Vorticity transport analysis

Figure 5.3: Correlation between the span-wise convection term and the tilting term.

The three components of the acceleration terms at radial location r/R = 0.898 are
plotted separately in Fig. 5.4. The contribution of the Coriolis force is far more larger
than the other 2 terms, which agrees with what is concluded by Jardin et. al. [79,80], that
Coriolis e↵ect plays a key role in lift generating on a rotating wing, while the centrifugal
force has a marginal e↵ect. And our current case shows that under the condition of
compressibility, such conclusion holds for the azimuth angle in phase  2 [70�, 283.5�].

The sign of the Coriolis-e↵ect-contributed circulation change rate (@�@t
��
aCor

) alters at
 = 283.5� during the stall gestation period, after the stall occurs. The separation
type discussed in Section 4.3 shows that for r/R = 0.898, the L.E. separation begins
at as early as  = 240�, and F.S. begins at as late as  = 300�: they are not linked
to the azimuth angle when @�

@t

��
aCor

changes its sign. Moreover, the rotor map shown
in Fig. 4.11 indicates that when azimuth angle  = 283.5�, the re-attachment point
moves to x/c = 0.4 at r/R = 0.898. It is likely that this “re-attachment point” is a key
factor that influences the sign of @�

@t

��
aCor

. Moreover, the yaw e↵ect aroused span-wise
flow may also have an important e↵ect on the aforementioned sign-change. For phase
angle 90� <  < 270�, the span-wise component of the yaw flow is negative, or towards
blade tip. The Coriolis term reaches its maximum value at  = 180�, this is also the
azimuth when the yaw-e↵ect-resulted span-wise flow reaches its maximum value.

In deed, this sign change is governed by Eq. 3.28, as shown in Fig. 5.4, the first term
of the Coriolis e↵ect plays a small role. Since |⌦x| ⌧ |⌦z|, and |@v/@z| > |@v/@x|, it is
then obvious that the term ⌦z(@v/@z) plays a crucial role for the Coriolis e↵ect. When
�⌦z(@v/@z) > 0, the Coriolis force acts as a “sink” that stabilises the LE vortex, vice
versa. In our case, ⌦z < 0, @v/@z > 0 is the prerequisite for a “sink”. As shown in
Fig. 5.5, at  = 180�, the relative spanwise velocity v increases to a positive extreme and
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5.1 Vorticity transport analysis on the rotating blade

Figure 5.4: Contribution of acceleration terms to the rate change of circulation @�
@t at radial

location r/R = 0.898. With the light blue curve representing the first term of the
Coriolis acceleration: 2⌦y

H
@A u · n@Ads.

then decreases linearly, which is due to the fact that the velocity of the rotational frame
increases linearly with |z|. This led to the large portion of the control volume showing
the characteristic @v/@z > 0. At azimuth angle  = 270�, we see that at leading edge,
the relative span-wise flow shows a negative @v/@z in enlarged regions in the control
volume, while at azimuth angle  = 360�, at leading edge, the velocity profile shows
@v/@z < 0 for the majority upper part.
Note that the velocity profile in Fig. 5.5 is the relative velocity in y direction, hence

the profile shape does not indicate the separation or re-attachment points on the cross-
section. However, within the LEV, the vorticity tilting entangles the in-plane and the
span-wise velocity. A sound conclusion can be drawn as: the coupling of the yaw-e↵ect-
resulted span-wise flow and the growing up of the LEV results in the sign-change of the
term @�

@t

��
aCor

.

Stabilisation or de-stabilisation?

The stability of the vortex system on the airfoil going through dynamic stall lacks a strict
definition. A vague definition of the stability of the conical vortex system on a rotating
wing can be found on previous research like Jardin et al. [79] , Wolfinger et al. [137]
to be associated with the attachment of the leading edge vortex. However, when the
topic is extended to dynamic stall, the vague definition is no longer su�cient. Since for
a complete period of a deep dynamic stall process, the LEV will shed. On the other
hand, the control of dynamic stall with momentum flows by Starikovskiy et al. [138]
or plasma actuator by Singhal et al. [139] aim at a smaller hysteresis of both Cn and
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(a) (b) (c)

Figure 5.5: Relative velocity profile in y direction at r/R = 0.898 at di↵erent azimuth angles:
(a) = 180�; (b) = 270� and (c) = 0(360)�. Due to the inverse of z axis, the
coloured lines (v profile) that lean towards (at right side) or extend away (at left
side) from the black solid line have the characteristic @v/@z > 0.

Cm. This smaller hysteresis can mean a more ‘stable’ vortex system over the pitching
airfoil. Therefore, in this sense, the definition of the vortex system‘s stability should be
associate with both Cn and Cm. After the detachment of the LEV, the stability denotes
a less oscillation of both Cn and Cm curves in the post-stall stage. A stability e↵ect
factor ⌘� can be defined to present the relative sign and the relative magnitude of the
term in vorticity transport analysis:

⌘� =
(@�/@t)i · ���@(�/@t)i · �

�� ·
|(@�/@t)i|P
i

��(@�/@t)i
�� (5.2)

in which, the first term represents if the ith term of the vorticity transport function aug-
ments or damps the circulation � in the planar region, and the second term implies the
proportion of the ith term’s absolute value among the summation. Note that the abso-
lute values are used for summation, the summation doesn’t equal to the total rate change
of circulation. By using the absolute value, the relative magnitude can be compared. On
the other hand, the vortex resultant force Cn,v may be denoted by the di↵erence of the
linear approximation of the blade cross-section Cn, linear = Cn↵(✓( ) � ↵i( )) and the
total normal force coe�cient integrated by the pressure force, with ✓ representing the
pitch angle, and ↵i denoting the rotor induced angle of attack approximated by linear
inflow model described in Section 4.4. The comparison of the vortex generated force
coe�cient and the stabilisation parameter for Coriolis term, centrifugal term and the
net convection and tilting term are analysed and plotted in Fig. 5.6 .

The comparison of Cn,v and ⌘� at r/R = 0.898 shows that in the range 2 [70�, 283.5�],
the Coriolis term has an opposite sign to the net circulation, and in the meantime the
vortex resultant force is larger than 0. It means during this period, the Coriolis term
has the e↵ect to decrease the vortex resultant force over the airfoil, a stabilisation ef-
fect. After the LEV detaches from the leading edge, the vortex resultant force Cn,v < 0,
while the Coriolis term increases the magnitude of the circulation over the airfoil upper
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5.1 Vorticity transport analysis on the rotating blade

Figure 5.6: Comparison of �Cn in orange and stabilisation parameter ⌘� for Coriolis term,
centrifugal term and the net of span-wise convection and vorticity tilting terms,
where �Cn is the di↵erence between the cross-sectional normal force coe�cient
and the linear approximation of the normal force. The definition of the individual
terms can be found in Eq. 3.34.

surface, which is a compensation for the loss of the normal force. Hence in this phase,
the Coriolis force also has a stabilisation e↵ect in terms of the normal force coe�cient.
This conclusion cannot be easily extended to the moment coe�cient. Since the move-

ment of the vortex on the upper surface of the blade can result in a shift of the pressure
centre. There are, however, no direct equations that state the individual contribution of
the terms to the total pressure centre. Nevertheless, the vorticity change rate field can
have a weighted-average position x⇠:

x⇠ =

RR
x!̇dSRR
!̇dS

(5.3)

this weighted average position x⇠ represents the “centre” of the vorticity field. If x⇠ < 0,
the majority of the vorticity concentrate within the first quarter chord region. Together
with ⌘� , the e↵ect of individual terms to the moment coe�cient term can be compre-
hended. The e↵ect of vorticity change rate due to the Coriolis acceleration is plotted
in Fig. 5.7. The magnitude is very small and oscillating near 0. As a result, it has a
neutral influence on the moment coe�cient.
Based on the discussion above, we have a clearer idea about how the circulation in

the control region is a↵ected by the di↵erent terms. To conclude:

• The rotating system has a generic e↵ect to create a span-wise flow that has a
potential stabilising e↵ect on leading edge vortex.
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5 Understanding dynamic stall on the rotating blade: Vorticity transport analysis

Figure 5.7: Comparison of Cm in orange and combined stabilisation parameter x⇠·⌘� for Coriolis
term.

• The mechanism of the stabilisation e↵ect lies NOT ONLY in the convection of
vorticity, but ALSO in the creation of a “sink” by the normal gradient

of span-wise flow.

• This mechanism is a direct result of Coriolis term.

• Coriolis term can also lead to a “source” for the leading edge vortex when the

yaw angle aroused span-wise flow is towards blade tip or the separation

region enlarges. This happens during the dynamic stall process, after

the shedding of the first dynamic stall vortex.

• After the shedding of the DSV, the Coriolis acceleration provides a “source” for
the LEV, which stabilises the vortex system on the rotating blade by com-

pensating the separation/vortex-resulted Cn coe�cient. And hence for
the whole revolution, Coriolis e↵ect has a stabilisation e↵ect for the vortex

system.

5.2 Comparing with 2D case: Vorticity transport analysis on a
pitching airfoil

T
he vorticity transport analysis is also carried out for the 2D pitching case, and the
terms in Eq. 3.34 are plotted in Fig. 5.8.

For the 2D case, the terms in the 3rd dimension vanish. In Eq. 3.18, the Vorticity
tilting and convection vanish, simply due to v = 0. And for the acceleration term, due
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(a) (b)

Figure 5.8: (a) Contribution of di↵erent terms to the circulation change in the control volume.
(b) Comparison of the summation of the terms and d�/dt

to the same reason v = 0, the Coriolis e↵ect only reduced to:

I

@A
aCor · ds = 2⌦y

I

@A
u · n@Ads

and because ⌦x = 0 and ⌦z = 0, the centripetal e↵ect on the surface reduces to:

1
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finally the angular accelerating term can be written as:
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These terms contribute only a small value in the net change rate of the circulation in
the control volume, as is shown in Fig. 5.8.
The planar variation of the circulation is similar to the rotating blade, with negative

vorticity input at boundary 0 and outward-convection at boundary 1. When dynamic
stall begins and the separation region extends to a larger scale, the negative vorticity
leaves the control region from boundary 2. The pressure gradient is similar in the upward
pitching phase before the stall occurs, but fundamentally di↵erent when the separation
occurs. After reaching the maximum value, which is related to the strongest LEV induced
vortex or the start of dynamic stall, this pressure gradient term drops drastically into
negative value, which is related to the sudden recovery of the moment coe�cient and
the complete o↵-board DSV. While on the rotating blade, this term gradually grows
to its maximum value (the maximum LEV induced vorticity on the surface) and drops
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5 Understanding dynamic stall on the rotating blade: Vorticity transport analysis

gently. This is also associated with the vortex structure discussed earlier: the LEV is
not detached completely on the rotating blade, rather it is still connected to the LE
via two “legs”. This structure prevents the drastic oscillation and allows the continuous
growth of LEV induced vorticity.

The di↵erence of the planar variation on bound 1 between the two cases are also a
result of the varying inflow velocity. With decreasing velocity from  = 90� to  = 270�,
this term

R
1(u · n@A)!yds also decreases.

5.3 E↵ect of the radial locations

5.3.1 Contribution of di↵erent terms at di↵erent radial locations

T
he vorticity transport analysis is carried out at di↵erent radial locations and the
di↵erence of the contribution of di↵erent terms are plotted in Fig. 5.3.1. The maxi-

mum absolute value of the planar variation at boundary 1 is larger at outboard, while at
boundary 0 it is slightly larger at inboard. The vorticity flux through boundary 2 almost
vanishes r/R = 0.785, which complies with the fact that the LEV never grows into such
a big scale as is for r/R = 0.898 and r/R = 0.928. And indeed, this value

R
2(u·n@A)!yds

is mostly obvious at r/R = 0.898, since this is the location of the symmetric axis of the
⌦-shaped vortex.

The pressure gradient e↵ect is already discussed in previous section, with decreasing
maximum value and postponed azimuth angle for a sign change as radii r/R increases.
The vorticity tilting and span-wise convection of the vorticity is small until  = 275�

at r/R = 0.785, while these terms show up before  = 250� at r/R = 0.928, which
indicates a higher 3D e↵ect outboard. Most interestingly, after the dynamic stall occurs,
the span-wise convection is negative at r/R = 0.785, while stays positive for quite a wide
range of phase angles at r/R = 0.928, and it starts from negative, oscillating strongly
at r/R = 0.898.

(a) (b)

Figure 5.9: (a) Contribution of di↵erent terms to the circulation change in the control volume
at r = 0.785. (b) Contribution of di↵erent terms to the circulation change in the
control volume at r = 0.928
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5.3 E↵ect of the radial locations

5.3.2 Vorticity tilting and vorticity convection terms at di↵erent radial
locations

(a) (b)

Figure 5.10: (a) Correlation of vorticity tilting and span-wise convection at radii r = 0.785.
(b) Correlation of vorticity tilting and span-wise convection at r = 0.928

W
e now examine the e↵ect of the radial location on the linear slope. This k value
decreases (k < 0) first as r increases from r/R = 0.785 to r/R = 0.898 and then k

increases. Recall the di↵erence behaviour of the span-wise convection term between the
region r/R 2 [0.785, 0.898] and r/R 2 [0.898, 0.928] as discussed in previous section,
the summation of these two terms hence have the same e↵ect for the circulation change
rate at the early stage of the dynamic stall: at r = 0.785 ⌃ = �0.036�convection > 0,
and at r = 0.898, ⌃ = �0.024�convection > 0, while at r = 0.928, this value ⌃ =
0.133�convection > 0. As a result, we have the conclusion: immediately after the shedding
of the DSV, the span-wise convection together with the vorticity tilting act as a “sink”
for the negative circulation in the control volume. The net e↵ect of these two terms are
plotted in Fig. 5.3.2. Interestingly, the net e↵ect of the span-wise terms plays a role of
“source” before the shedding of the DSV, while sometimes acting as a “sink” during the
post-stall phase. This is actually contrary to what Ellington [69] has proposed, on the
rotating system, the net e↵ect of the span-wise terms, including the convection
of span-wise vorticity and the tilting of the vorticity from other dimensions, augments

the leading-edge vortex, which is actually an unstable factor for the maintenance
of the LEV on the blade. However, these terms seem to hinder the drastic oscillation (a
strong secondary vortex) on the rotating system.

5.3.3 Rotational acceleration at di↵erent radial locations

T
he rotational acceleration e↵ect on the change rate of the circulation in the control
volume at di↵erent radial locations are plotted in Fig. 5.12. It is obvious that there

are only marginal di↵erence for the angular acceleration term and the centrifugal term
at di↵erent radial locations. And the Coriolis term show similar behaviours at di↵erent
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Figure 5.11: Net contribution of the span-wise terms, namely v@!y/@y and !x@v/@x+!z@v/@z

to the change rate of circulation in the control volume.

radial locations in the unstalled regime, roughly  2 [73.5�, 274.5�] (the stall on-set
depends on the radial location). In the post-stall phase, there is only a phase delay
between r/R = 0.898 and r/R = 0.928, while the value at r/R = 0.628 shows di↵erent
trend in phase angles  2 [0, 73.5�].

Figure 5.12: Rotational acceleration e↵ect on the change rate of the circulation in the control
volume at di↵erent radial locations

5.4 Swell Structure and Vorticity transport analysis

T
he vorticity transport analysis was also carried out for the slices from r/R 2 [0.27, 0.7],
and the result is plotted in Fig. 5.13. The vorticity convection term v@!y/@y and

vorticity tilting term !x@v/@x+!z@v/@z cross each other at around r/R = 0.326, which
corresponds to the central point of the swell structure as defined in previous chapter.
To the root side of this cross-section, the convection term plays as a source, and vor-
ticity tilting acts as the sink, balancing the leading edge vortex. To the tip side of this
cross-section, the vorticity tilting plays as a source and the convection term acts as a
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sink. Out of the swell structure region, the convection term mainly act as a sink, that
balances the planer variation of the LEV circulation.

(a) (b)

Figure 5.13: Vorticity transport analysis around the swell structure between r/R 2 [0.27, 0.7],
at azimuth angle  = 285�. (a) Analysis result of the control areas as described
in Fig. 3.15; (b) Acceleration components.

The swell structure, or the coherent vortical structure is the result of the vorticity
tilting and vorticity convection in the radial direction. The convection term is also
important in that at some radial locations, to the root side, �̇convection is negative while
to the tip side, it becomes positive. The curves show a similar trend when r/R > 0.65,
where the leading edge vortex lifts o↵ from the surface. This should be a common
character of the three-dimensional LEV.
Another interesting point is the value of acceleration term afluid, which is negative

in the region 0.25 < r/R < 0.70, even at the places where the LEV remain attached.
This a�rms the hypothesis that the blade-tip orienting span-wise component of the free
stream has a direct relation with the negative Coriolis term. The value of aCor, as well
as the summation of all acceleration components, is larger at the root region as shown
in Fig. 5.13(b). It is a reasonable assumption that the Coriolis term is a major source
for the generation of the swell structure at root.

5.5 Error sources in the vorticity transport analysis

T
he vorticity transport analysis is aimed to qualitatively understand how the rotating
system a↵ects the dynamic stall process. The reconstruction (the split and summa-

tion of di↵erent terms derived from Naiver-Stokes equation ) of the change rate of the
circulation in the control volume doesn’t align 100% with the direct time di↵erentiation
of the circulation. In order to provide data-base for lower-order models, it is very im-
portant to understand where this di↵erence comes from, and the experimental data can
then be used and processed for the modelling of lower-order models for dynamic stall on
a rotating system.
The dominant e↵ects leading to this deviation are:
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• The extreme large value of !y at shear layer is the main source of the error. Due to
the di↵erence between the line to extract data and the normal direction, which is
the growth direction of the numerical grid, the interpolation introduces the error.
The former is starting from a cell 7 ⇥ 10�7m, and our extracting line to extract
the data has an interval of 0.67⇥ 10�7m. Although the interval is small enough to
resolve the extreme value on the line, bound 1 is not the normal direction.

• Another error comes from the reconstruction of the vorticity field by the post-
processing algorithm, by comparing the rotational component written by DLR-
TAU output and the reconstructed vorticity field has a di↵erence, especially the
extreme values in the shear layer.[show the compare]

• The numerical method for line integral is another source of error. The pressure
gradient term:

Z

bound n

rp

⇢
·ds =

X

i

⇢
1

⇢0

✓
@p

@x

◆

0

+
1

⇢1

✓
@p

@x

◆

1

�
�xi

2
+


1

⇢0

✓
@p

@z

◆

0

+
1

⇢1

✓
@p

@z

◆

1

�
�zi

2

�

where the subscripts 0, 1 denote the two end points of the segment of i. And the
planar convection term:
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since at bound 0 and bound 1, the !y gradients are very large, we used the mid
value of the vorticity !y to estimate the planar convection terms.

5.6 Improvement of lower-order modelling for blades under
high loads

A
s is shown in this chapter, the source of the circulation on a three-dimensional ro-
tating system include mainly 2 parts:

• The combined e↵ect of span-wise convection and the vorticity tilting;

• The Coriolis acceleration introduced “sink” and “source”.

The two aspects cover the “swell structure” mentioned in Chapter 4. In theory,
there is no need to model another vortex that grows inboard and moves outboard.

The first part can be modelled with the correlation that is set up in section 5.1, and
the second part, Coriolis e↵ect needs more data for modelling. Further consideration is
then the modelling of the span-wise flow velocity.
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6 Conclusions and outlook

6.1 The contribution of the current thesis

W
ith the aim to further understand the three dimensional dynamic stall event on
a relatively simply blade, the numerical experiment of a single rotating blade is

designed to have a rectangular/untwisted geometry. The blade is set to 0 tilt angle
and placed in the free stream with a 0.2Utip velocity. The collective and cyclic pitch
controls are selected such that the dynamic stall takes place on the rotating blade in
the fourth quadrant of the revolution. The pitch controls are based on the result of the
comprehensive analysis tool CAMRAD II. The numerical investigation of the dynamic
stall on a rotating blade is mainly based on the result of Spalart-Allmaras turbulence
model, with brief comparison with the result of k � ! turbulence model.
The time history of the sectional force Cn and moment Cm are examined on each

radial location, and the vortex structures on the rotating blade are examined. Several
important features that are yet not reported in previous research can be concluded as:

1. A strong interaction of the DSV and the tip vortex is observed and described in
detail for this case. Contrary to observations of a pitching wing, the LEV on a
rotating pitching blade is not pinned by the presence of the tip vortex, but rather
the shedded DSV drastically interacts with the tip vortex, yielding a pair of counter
rotating vortices in the near wake; the slices also indicate a di↵used tip vortex in
the near wake, whether this di↵usion is caused by the pure pitch-down e↵ect as
observed for the pitching wing or if it is further di↵used by the interaction of the
tip vortex is not yet clear.

2. Despite an ⌦-shaped vortex outboard, a swell vortex structure is observed to gen-
erate mostly inboard and to move outboard while gaining vorticity and size, which
plays an important role after the shedding of the first DSV.

3. The presence of the swell structure is an outcome of the Ro e↵ect inboard, similar
to the low Re counterparts. The Coriolis force is comparable at the blade root
to the pressure force, and hence is reasonable to be the main cause. The onset
mechanism of the swell structure is proposed to be the e↵ect of a stronger Coriolis
force in x- and z-direction at the root region.

4. By tracing the vortex cores over the suction side of the blade, it is proposed to
use a quasi-uniform-acceleration movement to describe the position of the swell
structure, and the parameters were given for this special case.
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5. By comparing the force coe�cients on an outboard radial location with pitching
airfoil, it is shown that unique vortical structures exist in the vicinity of the blade
surface in the 3D Rotating cases and the detachment of the leading-edge vortex is
postponed on the blade section. The di↵erence of the detaching angle of attack is
as much as 8 deg, which cannot be explained by the induced velocity field of the
rotating environment predicted by linear inflow model.

6. By integrating the counter-clockwise rotating vorticity above the upper surface of
the pitching airfoil and blade section, it is shown that there is a stronger dynamic
stall vortex that magnified both the normal force and the moment, and a stronger
circulation in the recovery stage for the 2D simulation.

The separation points of one revolution of the rotating blade are carefully examined.
The criteria to determine the separation locations on the blade surface are discussed, two
di↵erent methods, namely shape factor and cf , are compared, and the separation types
are recognised with the latter criterion. Di↵erent from previous papers, the current case
shows mainly flow separation starting from the leading edge separation, or the shock-
induced separation, while separation starting from the trailing edge is not observed.

Besides the conventional analysis, vorticity transport analysis is carried out for a pla-
nar control volume at three di↵erent radial locations, r/R = 0.785, 0.898 and .0928. This
analysis method was previously employed to analyse the unsteady bio-aerodynamics,
which includes the rotating and pitching of wings. And the current thesis implements
this method on the analysis of the dynamic stall event on a rotating blade at high Re
and M number, and the hypotheses of the rotation e↵ect are confirmed:

1. With increasing r/R, the increasing compressibility e↵ect is associated with a
decreasing strength of leading edge vortex.

2. The span-wise convection of vorticity comes along with vorticity tilting from the
other two dimensions, and the correlation between the two terms are presented
with linear regression model in this dissertation, �̇tilting = k�̇convection + C. The
linear regression model parameters vary with radial locations, with the symmetry
plane of the ⌦-typed vortex as the boundary. Inboard of the boundary, the linear
slope k (k < 0) decreases, or the vorticity tilting is more dominating than the
convection; and outboard of the boundary, the slope (k < 0) increases, or the
vorticity convection is more dominating than the vorticity tilting.

3. The combined e↵ect of span-wise convection of vorticity and the vorticity tilting
in the current case show an unstable-source for the leading-edge vortex. The
summation of the two terms serve as a “source” for the LEV for the three selected
radial locations before the detachment of the LEV. But it seems to stabilise the
circulation after the shedding of the DSV, resulting in a relatively weaker secondary
vortex compared to the 2-dimensional case.

4. The main rotating e↵ect is the Coriolis e↵ect, which has a dominant value com-
paring with other two terms: centrifugal e↵ect and angular acceleration. Before
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the shedding of LEV, this Coriolis acceleration acts as a “sink” for the LEV, or
it stabilises the vorticity that is entrained into the LEV. After the dynamic stall
onset, this term becomes a “source” of the LEV, which seems to balance the circu-
lation in the control volume after the shedding of the LEV. It is hence concluded
the Coriolis e↵ect plays a stabilisation role throughout the revolution of dynamic
stall event.

5. The mechanism of Coriolis e↵ect is discussed, that is the presence of the span-wise
flow and the “sink” and “source” created by its normal gradient. This term does
not show drastic variation along the radial location.

6. The di↵erence of 2D and 3DR case lies mainly in the span-wise convection &
vorticity tilting, as well as the Coriolis e↵ect. The di↵erent time histories of the
pressure gradient term of the vorticity transport equation in the 2D and 3DR cases
indicate the di↵erence in the vortex systems for both cases.

6.2 On the improvement of a lower-order model and outlook
for experiment

T
wo additional terms can be added into the popular Blade-Element-Method and the
2D semi-empirical dynamic stall model.

1. The span-wise convection and vorticity tilting terms can be modelled as: 1) �̇convection =
�v̄@�/@y, and 2) �̇tilting = k�̇convection +C, in which v(y), k(y) and C(y) need to
be modelled further.

2. The Coriolis e↵ect created “sink” need to be modelled, �̇Coriolis = g(v). Other
rotational acceleration terms can be estimated with Eq. 3.32 and Eq. 3.33 for each
radial location.

Based on the preliminary numerical investigation on the single rotating blade in this
thesis, experiments on the rotating blade can focus on the following aspects:

1. Pressure sensors can be placed at the radial locations r/R = 0.898 (where the
symmetric plane of the ⌦-typed vortex lies), r/R = 0.7 (where the most drastic
moment stall occurs), r/R = 0.928 (where only slight stall takes place). These
experiment data can then be used as standard data to calibrate turbulence models,
mesh, and lower-order models.

2. Experiment with Stereo Particle-Image Velocimetry for y planes can focus on the
topology of the vortex at these locations, and the one for x planes can focus on the
span-wise velocity. The correlation of the velocity fields can then be post-processed
to carry out the vorticity transport analysis, and utilised for lower-order models.

Further experiment research or numerical simulation can further extend to two-bladed
rotor, blades with twist, blades with di↵erent platform geometries, as well as tip vortex
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induced stall. Vorticity transport analysis is a powerful method to understand the mech-
anism of the revolution of the vortex system, and it is also worth of implemented on
these issues. With more accumulated data, the lower-order model can also be improved.

6.3 On the control of dynamic stall on helicopter blades

A
t last but not the least, on the control of dynamic stall on helicopter blades, methods
that changes the normal gradients of the span-wise flow can be also investigated.

As is discussed in the previous chapter, the Coriolis acceleration has a stabilisation e↵ect
on the vortex system by altering the normal gradient of the span-wise relative flow. As a
result, changing the flow structure in the span-wise direction can also has a potential to
control dynamic stall on the helicopter blades, in addition to the popular investigations
that focus on the chord-wise flow. The methods include modifying blade twists, active
momentum flow in the span-wise direction and so on.
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