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Abstract

Balancing safety and efficiency when navigating in dense traffic remains an open challenge in au-

tonomous driving. Safety envelopes restrict the allowed planning region and yield interpretable

safety, yet, by not adjusting to the behavior of other participants, they sacrifice efficiency in dense

traffic. Interactive planners anticipate the reactions of other traffic participants during planning

which increases efficiency. Modeling safety is accomplished in a probabilistic manner. However,

achieving a meaningful collision risk with such formulations is computationally too demanding

in online planning. This thesis presents risk-constrained interactive online planning satisfying a

specifiable maximum percentage of safety envelope violations over time. A specifiable envelope

violation risk serves as an interpretable parameter balancing safety and efficiency. A compre-

hensive definition of risk requires coverage of other participants’ microscopic behavior, which

is achieved by defining behavior hypotheses partitioning a behavior space. A game-theoretic

planning approach based on Monte Carlo Tree Search (MCTS) uses these behavior hypotheses

to predict other traffic participants probabilistically. Using a robustness measure improves con-

vergence by predicting worst-case outcomes to the autonomous vehicle with priority during the

search. The frequency of safety envelope violations of human drivers in dense traffic inspires

the development of an interpretable risk measure. A risk-constrained action selection strategy

is developed for the MCTS planner to generate plans satisfying a specified envelope violation

risk. Online risk-constrained planning is accomplished with variants of the MCTS planner par-

allelizing and warm starting the search tree with prior learned experiences encoded into neural

networks. The approach is shown in simulation to be superior to state-of-the-art interactive

planners in dense traffic with uncertainty about the microscopic behavior of other participants.

It enables to balance safety and efficiency in an interpretable manner. These properties are

preserved when applying experience-based and parallelized online planning.
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Zusammenfassung

Eine offene Herausforderung bei der Navigation von autonomen Fahrzeugen in dichtem Verkehr

ist die Abwägung zwischen Sicherheit und Effizienz. Sicherheitsküllkurven schränken den er-

laubten Navigationsbereich ein und bieten interpretierbare Sicherheit. Da sie sich jedoch nicht

an das Verhalten anderer Verkehrsteilnehmer anpassen, führen sie zu ineffizientem Verhalten in

dichtem Verkehr. Interaktive Planer integrieren die Reaktionen anderer Verkehrsteilnehmer in

die Planung und steigern so die Effizienz. Dabei modelieren sie Sicherheit mit probabilistischen

Methoden. Die Berechnung eines aussagekräftigen Kollisionsrisikos mit solchen Formulierungen

ist jedoch zur Laufzeit rechnerisch zu anspruchsvoll. In dieser Arbeit wird eine risikobeschränkte

interaktive Planung vorgestellt, die einen vorgebbaren maximalen Prozentsatz an Verletzungen

der Sicherheitshüllkurve über die Zeit berücksichtigt. Ein spezifizierbares Hüllkurvenverlet-

zungsrisiko dient als interpretierbarer Parameter, der Sicherheit und Effizienz gewichtet. Eine

umfassende Definition des Risikos erfordert die Berücksichtigung des mikroskopischen Ver-

haltens der anderen Verkehrsteilnehmer, was durch die Definition von Verhaltenshypothesen,

die einen Verhaltensraum partitionieren, erreicht wird. Ein spieltheoretischer Planungsansatz,

der auf einer Monte Carlo Baumsuche (MCTS) basiert, verwendet diese Verhaltenshypothesen,

um andere Verkehrsteilnehmer probabilistisch vorherzusagen. Ein Robustheitsmaß evaluiert

vorrangig nachteilige Zustände des autonomen Fahrzeuges während der Vorwärtssuche und

verbessert hierdurch deren Konvergenz. Die Häufigkeit von Verletzungen der Sicherheitsküllkur-

ven bei menschlichen Fahrern in dichtem Verkehr ist Grundlage für die Entwicklung einer in-

terpretierbaren Risikometrik. Es wird eine risikobeschränkte Aktionsauswahlstrategie für den

MCTS-Planer entwickelt, die Pläne generiert, die ein bestimmtes Hüllkurvenverletzungsrisiko

erfüllen. Weiterhin wird eine risikobeschränkte Planung zur Laufzeit erreicht durch Paral-

lelisierung des MCTS-Planers und Initialisierung des Suchbaums mit zuvor mit neuronalen

Netzen erlernten Erfahrungen. Eine simulative Studie zeigt, dass der vorgestellte Ansatz im

dichten Verkehr mit Unsicherheit über das mikroskopische Verhalten der anderen Verkehrsteil-

nehmer aktuellen interaktiven Planern überlegen ist. Er gewichtet dabei Sicherheit und Effizienz

auf interpretierbare Weise. Diese Eigenschaften bleiben auch bei der Anwendung erfahrungs-

basierter und parallelisierter Planung zur Laufzeit erhalten.

v





Contents

1 Introduction 1

1.1 Balancing Safety and Efficiency in Autonomous Driving . . . . . . . . . . . . . . . 2

1.1.1 Deterministic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivating Interpretable Risk for Interactive Planning . . . . . . . . . . . . . . . . 5

1.3 Contributions to Risk-Constrained Interactive Planning . . . . . . . . . . . . . . . . 6

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 State of the Art in Interactive Planning for Autonomous Driving 11

2.1 Interactive Planning within Autonomous Driving Architecture . . . . . . . . . . . 11

2.2 Interactive Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Planning Integrating Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Probabilistic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Multi-Agent Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Interactive Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Learning and Performance of Interactive Planning . . . . . . . . . . . . . . . . . . . 21

3 Game- and Robustness-Based Interactive Planning in Behavior Spaces 25

3.1 Review on Ad-Hoc Coordination in Multi-Agent Systems . . . . . . . . . . . . . . 25

3.1.1 Introduction to Stochastic Bayesian Games . . . . . . . . . . . . . . . . . . . 26

3.1.2 Review on Designing Agent Type Spaces . . . . . . . . . . . . . . . . . . . . 27

3.2 Interactive Planning as Stochastic Bayesian Game . . . . . . . . . . . . . . . . . . . 28

3.2.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Behavior Spaces for Interactive Behavior Prediction . . . . . . . . . . . . . . . . . . 31

3.3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



Contents

3.3.2 Behavior Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Hypothesis Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Leveraging the Sum Posterior for Modeling Intra-Driver Variations . . . . 36

3.3.5 Sampling-Based Action Density Approximation . . . . . . . . . . . . . . . . 39

3.4 Robust Stochastic Bayesian Game (RSBG) . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Sample Complexity of the Stochastic Bayesian Game in Behavior Spaces . 40

3.4.2 Motivation for Combining Robustness with Agent Behavior Hypothesis . . 41

3.4.3 Review of Robustness-Based Optimality . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Model Definition and Sample Complexity Reduction . . . . . . . . . . . . . 43

3.5 Planning for the Robust Stochastic Bayesian Game . . . . . . . . . . . . . . . . . . . 44

3.5.1 Review of Monte Carlo Planning under Environment Uncertainties . . . . 45

3.5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Root Sampling of Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.4 Worst-Case Action Selection of Other Agents . . . . . . . . . . . . . . . . . 48

3.5.5 Ego Action Selection And Rollout Policy . . . . . . . . . . . . . . . . . . . . 49

4 Risk-Constrained Interactive Planning in Behavior Spaces 51

4.1 Developing an Interpretable Risk Formalism . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Leveraging Human Safety Statistics as Interpretable Risk Formalism . . . . 52

4.1.2 Formalizing the Interpretable Risk of Safety Envelope Violations . . . . . . 53

4.1.3 Defining the Problem of Risk-Constrained Interactive Safety . . . . . . . . . 55

4.2 Risk-Constrained Robust Stochastic Bayesian Game (RC-RSBG) . . . . . . . . . . . 56

4.3 Planning for the Risk-Constrained Robust Stochastic Bayesian Game . . . . . . . . 58

4.3.1 Review of Constrained-Based Decision-Theoretic Models and Solvers . . . 58

4.3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Backpropagating Risk Estimates for Worst-Case Action Selection . . . . . . 60

4.4 Selecting Ego-Actions using Risk-Constrained Stochastic Policy Optimization . . . 62

4.4.1 Background on Solving Constrained Partially Observable Markov Decision

Processes (C-POMDPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Comparison Between Solving C-POMDPs and RC-RSBGs . . . . . . . . . . 63

4.4.3 Updating Lagrange Multipliers Using Gradient Estimates . . . . . . . . . . 63

4.4.4 Risk-Constrained Stochastic Action Selection . . . . . . . . . . . . . . . . . . 64

4.5 Defining Safety Envelopes For Interactive Planning . . . . . . . . . . . . . . . . . . 66

4.5.1 Envelope Violation Indicator for Lane Changing Scenarios . . . . . . . . . . 66

4.5.2 Envelope Violation Indicator for Intersection Scenarios . . . . . . . . . . . . 68

5 Experience-Based and Parallelized Risk-Constrained Planning 71

5.1 Review on Accelerating Online Planning with Prior Experience . . . . . . . . . . . 72

5.2 Value-Guided Risk-Constrained Planning . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Offline Training of Value Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Supervised Learning and Loss Function Definition . . . . . . . . . . . . . . 74

5.3.2 Neural Network Input Features . . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



Contents

5.3.3 Compromising Generalization and Inference Time in Experience Learning 76

5.4 Collecting Exploration-Distribution-Aligned Offline Experiences . . . . . . . . . . 78

5.4.1 Approximating the Online Exploration Distribution . . . . . . . . . . . . . 79

5.4.2 Collecting Experiences With Offline Planning . . . . . . . . . . . . . . . . . 80

5.5 Parallelized Implementation of Risk-Constrained Planning . . . . . . . . . . . . . . 81

6 Evaluation 83

6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Benchmarking Interactive Planning using BARK . . . . . . . . . . . . . . . 83

6.1.2 Evaluation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.3 Benchmarking Effects of Inaccurate Microscopic Behavior Prediction . . . . 87

6.1.4 Setup of RSBG, RC-RSBG and Baseline Planners . . . . . . . . . . . . . . . . 89

6.1.5 Benchmarking Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Evaluating Behavior-Space- and Robustness-Based Planning . . . . . . . . . . . . . 92

6.2.1 Comparing Hypotheses Design Parameters . . . . . . . . . . . . . . . . . . 93

6.2.2 Comparing Robustness- and Non-Robustness-Based Exploration . . . . . . 95

6.2.3 Comparing Behavior-Space and Intent-Based Prediction . . . . . . . . . . . 98

6.2.4 Comparing the RSBG Planner against Non-Belief-Based Baselines . . . . . 100

6.3 Evaluating Risk-Constrained Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Analyzing Risk-Constrained Stochastic Policies . . . . . . . . . . . . . . . . 102

6.3.2 Evaluating the Performance of the RC-RSBG Planner . . . . . . . . . . . . . 104

6.3.3 Studying the Practicality of Interpretable Risk to Balance Safety and Effi-

ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Evaluating Experience-Based and Parallelized Risk-Constrained Planning . . . . . 108

6.4.1 Evaluating the Computational Demands of the RC-RSBG Planner . . . . . 108

6.4.2 Comparing Parallelization of Single- and Multi-Objective Planning . . . . . 109

6.4.3 Comparing Experience- and Rollout-Based Exploration . . . . . . . . . . . 110

6.5 Summary of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Future Work 113

7.1 Improving Behavior Spaces and Hypotheses . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Integration of Other Uncertainty Types . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Modeling the Influence of Solution Inaccuracy onto Risk . . . . . . . . . . . . . . . 116

7.4 Real-World Navigation with Adaptation of Risk and Behavior Spaces . . . . . . . 117

7.5 Assuring Safety using the Interpretable Risk Formalism . . . . . . . . . . . . . . . 118

8 Conclusion 121

A Appendices 123

A.1 Intelligent Driver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Creation of Intelligent Driver Model Joint Distribution Data . . . . . . . . . . . . . 123

A.3 Derivation of Sample Complexity of SBGs . . . . . . . . . . . . . . . . . . . . . . . 124

A.4 Derivation of Sample Complexity of RSBGs . . . . . . . . . . . . . . . . . . . . . . . 124

ix



Contents

A.5 Traffic Parameters of the Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.6 Scenario Examples for RSBG and Baseline Planners . . . . . . . . . . . . . . . . . . 125

A.7 Examples of Left Turning with the RC-RSBG Planner . . . . . . . . . . . . . . . . . 128

A.8 Experiment Setup for Restricting the Planning Time . . . . . . . . . . . . . . . . . . 129

A.9 Parameters and Results of Experience Generation and Training . . . . . . . . . . . 130

Abbreviations 133

Symbols 135

List of Figures 137

List of Tables 139

List of Algorithms 141

Bibliography 143

x



1
Introduction

Balancing safety and efficiency is a significant challenge regarding autonomous driving. In the

upcoming decades, automation levels will increase from assistance systems, e.g., lane-keeping

and traffic jam assistants, already introduced in the market, to partly and fully automated

driving [1]. The potential benefits arising out of these revolutionizing technologies will certainly

fundamentally influence our everyday lives [2]. In general, automated driving promises an

increase in safety. In contrast, higher levels of automation will progressively improve efficiency

in mobility bringing a high level of comfort and reduction of travel cost to passengers [3].

Higher automation levels require Autonomous Vehicles (AVs) to solve increasingly complex

driving tasks, exemplified in Fig. 1.1, being characterized by close interaction with humans and

uncertainty about human driving styles. Navigating efficiently in such dense traffic situations

requires planning approaches modeling the reactions of other participants during planning.

However, such interactive planners miss a suitable mechanism to balance safety and efficiency.

In dense traffic, accidents have reduced severity due to decreased speed. Humans can thus

avoid a too conservative driving style by not strictly adhering to physically required safe dis-

tances [6, 7]. They anticipate interactions between traffic participants to maintain the overall

traffic flow. Highly automated vehicles will significantly affect the efficiency of mixed traffic [8].

When motion planners of AVs adhere to a strictly safety-oriented driving style neglecting un-

certainty and interactions, this fosters abrupt safety maneuvers. Such sudden maneuvers reduce

Turning into crowded main road Merging into crowded main road

Figure 1.1.: Examples for dense traffic situations demanding an interpretable way to balance safety and
efficiency in a planning component of an Autonomous Vehicle (AV). Backgrounds taken from [4, 5].
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Balancing
safety and efficiency

Deterministic
approaches

Potential fields
Gaussian models

Mahalanobis distance
Squared difference

...

Physics-based
Time-to-collision

Responsibility-sensitive safety
Reachable sets

...

Probabilistic
methods

Risk-based
Collision state probability
Collision event probability

Reward/cost weighting
Sampling-based planning
Reinforcement learning

Figure 1.2.: Overview of concepts to balance safety and efficiency in motion planning for AVs.

the enjoyment of driving and negatively affect the acceptance of these systems [9]. Even more

critical, abrupt braking interrupts the traffic flow and facilitates dangerous reactions of other

participants, which may provoke rear-end crashes [10–12]. It thus seems plausible to equip AVs

with an understanding of the risk of interactions with other road users. However, developing

an everyday societal awareness and acceptance of the risks of AVs [13, 14] requires developing

technical concepts to enable risk to be used within interactive motion planning. Though there

exist interactive planning approaches which find efficient decisions in dense traffic [15], they do

not integrate meaningful risk measures.

This thesis contributes risk-constrained interactive planning for AVs to balance their safety

and efficiency when navigating in dense traffic. In particular, the presented concept fills the gap

of having available a meaningful risk definition for automated driving in dense traffic at speeds

below 50 km h−1 where a lower accident severity justifies making trade-offs between safety and

efficiency. For applicability in dense traffic, an interactive planning approach based on Monte

Carlo Tree Search (MCTS) is developed, which constrains the risk of violating safety envelopes

while considering the uncertainty about the behavior of other participants. It uses probabilistic

predictions to cover the variety of human driving styles based on defining a behavior space of

other participants and reduces the complexity of MCTS by evaluating worst-case outcomes of

the AV with priority. Further, the proposed approach applies offline learning of prior experiences

and parallelization to enable online planning.

1.1. Balancing Safety and Efficiency in Autonomous Driving

Existing approaches to balance safety and efficiency of AVs can be differentiated into two major

directions [16], deterministic and probabilistic methods (cf. Fig. 1.2).

1.1.1. Deterministic Approaches

Deterministic approaches for balancing safety and efficiency do not incorporate probability infor-

mation from current or past observed states. Instead, they design a metric function that quantifies

the degree of safety based on currently observable dynamic properties of the environment [17].

Potential fields are metrics that decay with increasing distance between ego vehicle, and other

participants [18–20]. They provide a continuous evaluation of safety in the current state. By

2
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Other vehicle Other vehicle

Past motion
Rear safe distance

CollisionSudden braking

Autonomous vehicle

Figure 1.3.: Potentially unsafe situations in dense traffic due to conservative driving. During a left turn
of the AV, its leading vehicle (green) brakes. To avoid violating the rear safe distance, the AV performs a
sudden braking maneuver. Being not expected by the oncoming other vehicle (grey), it collides with the
AV.

fitting the potential field to human driving data, an understanding of different levels of risk is

obtained [18, 21]. Physics-based metrics employ a physically-realistic model of other participants’

dynamics to categorize the current state into safe or unsafe. Simpler models categorize based

on the time-to-collision [22]. More complex approaches check violation of a safety envelope

which is defined using lateral limits [23], lateral and longitudinal limits [24, 25], or reachable

sets [26, 27].

A possibility to arrive at a balance of safety and efficiency with potential fields is to integrate

them as continuous cost criteria into the optimality function of the motion planner [18]. Such

concepts are applied for both interactive [28–30] and non-interactive planners [31]. Physics-based

approaches do not aim to balance safety and efficiency. Instead, they strictly prioritize safety by

forcing the ego trajectory to stay within the safety envelope [24, 32]. Tuning the safety envelope

by adapting physical parameters such as accelerations and response times, e.g., using human

driving data [33, 34], or online from observed behavior [22] provides a certain balance of safety

and efficiency. Nevertheless, not applying the true physical limits as parameters softens the strict

safety guarantees given by these approaches. Non-interactive planning frequently uses envelope

restrictions to target safe motion planning [26, 35].

Cost terms and safety envelopes disregard the probability of encountered traffic situations.

Thus, these concepts prevent the definition of a risk metric that relates the parameterization of

the envelope or cost function to the statistics of safety violations in the environment. Further, a

common argument against the use of envelope restrictions in dense traffic is that it fosters overly

cautious behavior [36]. Humans do not always adhere to fail-safe planning assumptions and

violate, e.g., the safe distance to front vehicles in dense traffic [32, p. 136]. In some situations,

this may even counteract the original safety objective when human drivers react in a dangerous

way to a conservative driving style. Several studies [10–12] show that compared to humans,

AVs are involved over-proportionally into low severity accidents where the AV is hit at the rear

end by a human driver. These analyses suggest that overly cautious driving of AVs may not

be a meaningful safety goal in low severity situations characterized by high traffic density and

interactivity between participants (cf. Fig. 1.3).

3



1. Introduction

Potential ego motions

Uncertain prediction

2 31

Figure 1.4.: Probabilistic notion of safety under uncertain behavior of other traffic participants. The uncer-
tainty of predicted motion states increases with prediction time. The figure depicts a prediction marginal-
ized over time. The calculation of the collision risk Pcol(x) considers the uncertainty of future states. In this
example, the collision risk decreases from ego motions 1) to 3), Pcol(1) > Pcol(2) > Pcol(3).

1.1.2. Probabilistic Methods

Probabilistic methods to balance safety and efficiency in motion planning include information

about the probability of unsafe states (cf. Fig. 1.4). A common approach is to define a risk

measure that serves as a constraint in the planner’s optimality function. Parts of this review are

based on previous work presented in [37].

In the functional safety sense, the term risk is probabilistic and defined as the combination of

the probability of occurrence of harm and the severity of that harm [38]. Existing probabilistic

risk definitions often consider collision as harmful events in risk-based planning approaches

[38–41]. Probabilistic collision risk is used in [42] to model lane changing by applying risk

measures to value distributions. These concepts arose in finance and are applied to robotics and

autonomous driving [42, 43]. Constraining motion planning by collision risk is proposed in [39]

for a Partially Observable Markov Decision Process (POMDP) planner and in [38] to incorporate

various uncertainties into a Model Predictive Control (MPC) algorithm. Müller and Buchholz

[44] constrain the risk of violating the safe distance. A qualitative calculation of risk based on

Fuzzy sets is given in [45]. The presented approaches make use of the Collision State Probability

(CSP), the probability of spatial overlap at discrete times [46].

Three aspects are missing in existing probabilistic risk definitions. 1) The employed prediction

of other participants during planning does not effectively cover behavior variations and identify

harmful states, which may cause underestimating the actual risk. 2) The CSP considers occur-

rences of harmful states at discrete time points. It thus neglects the continuity of the driving

environment. In contrast, the risk definition in the functional safety sense applies normalization

by the driven time or miles in the environment. The Collision Event Probability (CEP) being bet-

ter suited to express the duration aspect has been used in post-analysis of planned motions [47]

and in planning approaches requiring a pre-generation of risk maps [48]. 3) Collision probability

can only serve as a safety measure if its approximation during planning is in the order of fatal

events per driving hour, Pfatal≈10−6/h [49]. However, satisfying such magnitudes requires an

unrealistically large number of prediction samples of other participants’ behavior. This drawback

makes a risk metric defined over collision as a harmful event infeasible for online planning.

Additionally, prescribed approaches apply long-term, i.e., maneuver-based prediction of other

participants neglecting interactions. Interactive planners anticipate how others react to the ego-

motion already during planning which is especially meaningful in dense traffic [50]. However,

4



1.2. Motivating Interpretable Risk for Interactive Planning

they lack a meaningful definition of safety. Existing interactive planners employ single-objective

optimality criteria with manual or data-based cost tuning to avoid collisions [51–56]. They max-

imize the expected return, which combines collision cost and success reward over predicted

future states. This optimality criterion can be regarded as a probabilistic approach to balance

safety and efficiency. Sampling-based planners are common approaches to dealing with uncer-

tainty in interactive planning. However, they exhibit combinatorial complexity over the number

of participants and explored motion primitives (cf. Sec. 2.5). Implementing risk constraints into

multi-objective interactive planners increases computational complexity even further. Learning

plans offline, before execution, e.g., using constrained dynamic programming in a discretized

state space [57] partly circumvents this problem. However, such approaches do not easily gener-

alize to non-learned environments.

1.2. Motivating Interpretable Risk for Interactive Planning

In summary, existing approaches to balance safety and efficiency in motion planning cannot

meet the requirements for dense traffic characterized by high uncertainty about the behavior

of other participants and their inherent interactivity. A prioritization of safety with secondary

consideration of efficiency based on safety envelope restrictions [32] is meaningful for traffic

with higher severity. In dense traffic, these concepts foster conservative driving with potentially

dangerous reactions of humans [10–12]. Probabilistic risk criteria are promising as a safety

goal in dense traffic. However, existing probabilistic definitions of risk miss computational

feasibility, coverage of behavior uncertainty, and interpretation regarding statistically measured

safety violations in the environment. Interactive planning algorithms enable the generation of

efficient plans in dense traffic to avoid conservative driving. However, they lack a meaningful

specification of risk. Partly since risk-based optimality additionally increases the already higher

computational complexity of interactive compared to maneuver-based planning.

The goal of this thesis is, therefore, the development of a risk definition and accompanying

interactive motion planner for AVs to balance safety and efficiency under the presence of behavior

uncertainty, which overcomes the discussed drawbacks of existing risk definitions. Firstly, a

comprehensive definition of such a risk measure must cover all variations of other participants’

behavior. Secondly, apart from referring to safety violations in the current traffic situation, it must

consider the accumulation of risk for all potential future traffic cases. By that, the risk definition

achieves that the safety violations averaged over the whole driving time are quantitatively related

to the specified risk level given as a parameter to the motion planning algorithm. Thirdly, it shall

not be based on collisions as harmful events since it is computationally infeasible to calculate

acceptable levels of collision risk during online planning. The previous demands on a suitable

risk measure for interactive planning are subsumed under the term interpretable risk formalism:

Interpretable risk formalism: A risk formalism is interpretable if a quantitative mapping exists between

specified risk and the observed safety statistic of planned motions under this formalism.

This concept does not rely on a specific definition of safety or efficiency and is conceptualized

in Fig. 1.5. An AV, also denoted in the remainder of this thesis, the ego vehicle, wants to perform
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Figure 1.5.: Concept of an interpretable risk formalism. Executing a planned motion in the environment
potentially yields unsafe outcomes due to behavior variations of other participants. An interpretable risk
formalism defines a quantitative mapping between the optimality criterion used by the motion planner
and the resulting safety statistic.

a left turn from a side road into the main road. There is oncoming human traffic on both

lanes. The motion of the ego vehicle is planned according to a certain optimality criterion given

the scene description of its surroundings. Assuming the ego vehicle can repeatedly follow the

planned motion in the same situation, the variation in human driving behavior yields different

safety outcomes in each of these cases. An interpretable risk formalism provides a defined

mapping from specified risk to statistically averaged safety outcomes.

1.3. Contributions to Risk-Constrained Interactive Planning

This thesis develops an interpretable risk formalism that allows specification of a maximum

envelope violation risk, defined as the maximum percentage of driven time a safety envelope

is allowed to be violated. The formalism requires an additional optimality constraint to be

integrated into an interactive planner. The resulting multi-objective interactive planning ap-

proach generates plans for which the specified maximum risk follows the statistically observed

percentage of envelope violations. The uncertainty in human driving behavior is covered by

using sample-efficient probabilistic predictions in behavior spaces. The planner integrates offline

learning of prior experience and parallelization to reduce the computational demands during

online planning.

Specifically, this thesis presents the Risk-Constrained Robust Stochastic Bayesian Game (RC-

RSBG), which models risk-constrained interactive planning under behavior uncertainty in a

game-theoretic manner. This novel decision theoretic model extends the Stochastic Bayesian
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Game (SBG) [58], game-theoretically modeling irrational behavior with robustness-based opti-

mality of the Robust Markov Decision Process (RMDP) and ideas from the Constrained POMDP

(C-POMDP). Along the chapters of this thesis a variant of Simultaneous-Move MCTS (SM-

MCTS) is developed solving the RC-RSBG. A comprehensive definition of risk requires coverage

of other participants’ microscopic behavior, which is achieved by defining behavior hypothe-

ses partitioning a behavior space. Given posterior beliefs over the behavior hypothesis, other

participants’ motions can be predicted probabilistically during SM-MCTS. The search employs

worst-case action selection within behavior hypotheses to improve sample efficiency and back-

propagation of time-normalized envelope violations to ensure consistency of the risk estimate.

A risk-constrained action selection strategy in the SM-MCTS ensures the satisfaction of the risk

formalism. Online risk-constrained planning is accomplished with variants of the MCTS planner

parallelizing and warm starting the search tree with prior learned experiences encoded into

neural networks.

Therefore, this thesis presents the following five major contributions to the field of interactive

motion planning for AVs:

1. Coverage of behavior variations: To define risk metrics over behavior uncertainty which

are interpretable with respect to hazard statistics in the environment, the prediction model

must use a sample space covering all continuous variations in behavior occurring poten-

tially in the environment. The proposed interactive planning approach applies behavior

spaces with an accompanying design process splitting behavior spaces into behavior hy-

potheses. Using this design process in combination with a specific type of posterior belief

update, the interactive prediction of other traffic participants covers their expected contin-

uous behavior variations in the environment.

2. Sample-efficient interactive planning: Interactive planning requires evaluation of the

planned ego-motion together with all potential reactions of other participants. The num-

ber of combinations of ego and other vehicles’ motions becomes infinite when predict-

ing continuous behavior variations. Therefore, this thesis contributes a decision-theoretic

model that integrates worst-case optimality over behavior hypothesis. Planning under this

model using SM-MCTS sample-efficiently explores combinations of ego and other vehi-

cles’ motions violating a risk constraint while avoiding conservative solutions obtained by

worst-case considerations over the entire behavior space.

3. Interpretable risk for interactive planning: The proposed approach integrates an inter-

pretable risk constraint into interactive planning. Inspired by how often humans violate

safety envelopes statistically, this thesis formalizes the risk of violating a safety envelope

over time. The proposed interactive planning approach finds an optimal motion plan which

adheres to a maximum envelope violation risk given the uncertainty in other participants’

behavior. By integrating the duration of safety envelope violations into the risk formal-

ism, the proposed risk definition becomes statistically interpretable concerning the actual

statistic of envelope violations observed in the environment. A multi-objective interactive

planning approach is presented, which integrates the risk formalism using constrained
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Figure 1.6.: Contributions within the structure of this thesis.

policy optimization within the SM-MCTS.

4. Online risk-constrained planning: This thesis contributes a risk-constrained interactive

planner capable of generating plans under real-time constraints. Existing concepts acceler-

ating online planning with learned prior experience and parallelization are well understood

for single-objective planning. This thesis contributes an adaptation and analyses of these

concepts for the multi-objective setting. It presents a concept to benefit from a priori learned

value functions to improve the performance of the risk-constrained planner and shows

that parallelizing the search has greater benefits in multi-objective planning compared to

single-objective planning. As a result, online risk-constrained interactive planning becomes

computationally feasible.

5. Comparative benchmark: This thesis provides an extensive comparative study on interac-

tive planning. It analyzes a variety of state-of-the-art sampling-based interactive planners

against the proposed approach. Apart from a qualitative analysis of specific driving situa-

tions, this work provides statistical evaluations over multiple scenarios and two scenario

types to assess the efficiency and interpretability of the risk formalism. Therefore, an

OpenSource benchmarking framework, BARK (Behavior Benchmark), is contributed to

systematically evaluate the effects of prediction uncertainty on the statistically observed

envelope violation risk.

1.4. Structure of the Thesis

The main contributions of this thesis are structured as depicted in Fig. 1.6. The thesis starts with

Chapter 2 on related work in interactive planning. After positioning interactive planning within

the context of an AV architecture, the remaining related work sections discuss the previous work

of each contribution. Chapter 3 then introduces the RSBG, a game-theoretic model combining

robustness-based optimality with the SBG modeling irrational behavior in gameplay. This chap-

ter contributes the coverage of continuous behavior variations and sampling-efficient interactive

planning using a variant of SM-MCTS. The following Chapter 4, proposes the interpretable

risk formalism, and an extended game-theoretic model the RC-RSBG which integrates the risk

formalism into the RSBG. It describes how to interactively plan under this risk formalism by
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extending the SM-MCTS from Chapter 3 to solve the RC-RSBG. Chapter 5 then presents a paral-

lelized variant of the RC-RSBG planner and how to learn and apply prior experiences to achieve

online planning capability. Chapter 6 provides chapter-wise a comparative benchmark of each

proposed contribution. Future work extending the work described in this thesis is provided in

Chapter 7. The main outcomes of this thesis are summarized in Chapter 8.
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2
State of the Art in Interactive Planning for

Autonomous Driving

This chapter presents related work on interactive planning algorithms for AVs. The integration

of such planning concepts into the architecture of AVs is explained in Sec. 2.1. Sec. 2.2 describes

existing concepts to predict other traffic participants in interactive planning. Probabilistic and

multi-agent interactive planning is the focus of Sec. 2.3. Sec. 2.1 describes how existing optimality

criteria of interactive planners are used to balance safety and efficiency. Previous concepts to

reduce the computational demands of interactive planning are presented in Sec. 2.5.

2.1. Interactive Planning within Autonomous Driving

Architecture

Sense-plan-act is a well-known architectural software concept in robotics to implement au-

tonomous systems interacting with an environment [59]. Similar functional tasks are realized in

so called software driving stacks of AVs [60] by a perception, planning and control unit [61, 62]

(cf. Fig. 2.1). This separation provides a simplistic perspective onto the often more interwoven

architectural concepts [63–67]. The perception component integrates raw sensor data, preprocess-

ing, and feature detection and fuses multiple sources of preprocessed sensor data, e.g., coming

from lidars, radars, cameras, and localization measurements, into an abstract representation of

the environment [61]. The fused representation contains the perceived road geometry and static

and dynamic objects in a grid- or object-based form [68]. Additionally, the representation is often

augmented with uncertainty information modeling potential errors in the state [69] and road

boundary estimates [70]. Thereby, using a high-definition predefined map of the environment

improves the quality of the fusion process. The task of the planning layer is to create a drivable

trajectory consisting of a time-stamped sequence of future dynamic states [71]. The created

trajectory must adhere to the non-holonomic constraints of the vehicle [72] to be trackable by a

subsequent trajectory following controller [73, 74]. Apart from this classical architecture, end-to-

end planning tries to establish a learning-based paradigm to replace all architectural components
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Figure 2.1.: Planning approaches within simplified functional architecture of AVs (inspired by Schwarting
et al. [15]). The perception layer creates a fused environment representation. The planning layer performs
higher level mission planning and either 1) uses combined decision making and motion planning or 2)
interactive planning to generate a drivable trajectory passed to the control layer. In contrast, end-to-end
approaches 3) learn to drive directly based on sensor data.

[75, 76]. Due to substantial difficulties in achieving safety with such approaches [77], they are

not further reviewed here.

The planning layer receives the fused environment representation and additional map infor-

mation. It commonly consists of a mission planner managing the route from the current location

of the Autonomous Vehicle (AV) to the routing target [61]. Given this route and the environ-

ment representation, a subsequent layer computes the drivable trajectory in a receding horizon

fashion, limiting the required duration and length of the planned motion [15].

Planning for AVs has a large body of research and industrial applications [15, 78, 79]. However,

no go-to solution exists for finding a safe, comfort-optimizing trajectory irrespective of the cur-

rent traffic situation and integrating the various types of perception and behavior uncertainties.

Existing functional architectures and methodological variants of the planning layer divide into

two major concepts [15]: 1) Interactive behavior planning and 2) decision making and motion

planning. In the latter approach, the decision making component decides for a maneuver class,

i.e., homotopic variant [80, 81] for which the motion planner generates a drivable trajectory

(cf. Fig. 2.2). It is thus also frequently referred to as maneuver-based planning. A popular variant

in this category is path-velocity decomposition. The decision-making computes a static path

describing a track the AV should follow [78]. The resulting path does not integrate the time

domain. To adhere to the dynamic constraints of the vehicle, the motion planner generates a

drivable trajectory closely following the preplanned path [82]. Path-velocity decomposition is

especially meaningful in static environments, e.g., in valet parking [83, 84]. Though variants

exist to apply this concept in dynamic environments, it is limited to slow-moving obstacles, e.g.,

pedestrians [56].

In highly dynamic environments characterized by faster moving objects, it becomes neces-

sary to directly plan a feasible trajectory within the allowed free space in the current planning

horizon, considering the time-dependency of motions. The decision making layer then passes

also dynamic information with the maneuver variant [85] and evaluates prediction uncertainty

to select a homotopy [81]. Assuming that other vehicles’ motions are independent of the ego
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: Trajectories

A A

B B

Figure 2.2.: Homotopic variants A and B in two traffic situations. Trajectories belong to the same homotopic
variant or maneuver class if there exists a continuous mapping to transform between the trajectories [80].

vehicle’s movements within the planning horizon, the time-state space divides into higher-cost

areas that include collision states and regions with proximity to other participants as well as

regions of lower cost. The planner then finds an optimal cost-minimizing trajectory using opti-

mization [71, 86, 87], sampling [88] or selection from a predefined trajectory set [89]. Separating

the selection of maneuver variants and the planning process greatly simplifies the resulting

planning problem, which lowers computational demands of maneuver-based planning. How-

ever, dense traffic impedes selecting the best homotopy without the availability of the planned

motion. Additionally, with increasing traffic density, the available low-cost planning space is

reduced or even vanishes, restricting the reasonable trajectories to a set of conservative driving

motions.

Interactive planners model the interactions between traffic participants during the planning

process [50]. Stating how the ego-motion affects others’ reactions and this, in turn, the available

drivable space reveals an increased solution space for finding a feasible plan. In general, the

evaluation of reactions of other participants during planning increases computational demands

compared to maneuver-based planning [15]. However, as discussed in Sec. 1.1, interactive plan-

ning is a necessary pathway to allow for seamless integration of AVs into dense traffic. The

following sections discuss related work on interactive planning divided into how approaches

interactively predict, plan, balance safety and efficiency, and improve computational feasibility

in real-time applications.

2.2. Interactive Prediction

Planning algorithms require an accurate prediction model of other traffic participants [90]. Em-

ployed models must cover the variations in human driving behavior. These behavior variations

arise at different abstraction levels. Human driving intents define the near-term goals of a driver

on a higher level with a discrete set of labels. Thereby, a near-term goal is defined either for the
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route of the ego vehicle, e.g., by modeling intents “turn left” or “go straight” [91], or concerning

another traffic participant, e.g., with intents “give way” or “take way” [55]. Apart from higher-

level goals, humans show two forms of continuous microscopic behavior variations, intra-driver,

and inter-driver variability [92]. The intra-driver variability comprises the time-dependency of

the behavior of a single driver, whereas the inter-driver variability includes differences of driving

styles between humans [93]. Both forms of variations are subject to randomness and vary in

a continuous manner [94]. Fig. 2.3 visualizes the relations between these concepts. Maneuver-

based prediction focuses on applications in maneuver-based planning approaches [39, 81, 95, 96]

and is not further reviewed here. Prediction usable in interactive planning requires a meaningful

definition of the microscopic behavior of other participants and must take low computational

resources. Given these requirements, the prediction concepts employed by existing interactive

planners differentiate into three major directions.

Intent-based prediction tracks beliefs over intents of other drivers using different forms of

Bayesian inference. Pedestrian intents are modeled as hidden goal positions in a discretized

state space in [56] or using pose classification in [97]. Other works define driving intents over

preferences of lanes and track them using a Bayesian network [98, 99], or over route preferences

in an intersection and track beliefs with a Bayes classifier assuming Gaussian-distributed obser-

vations of routes depending on the vehicles’ locations [100]. Apart from intents related to map

properties, intents can also model the interactions between participants, e.g., yield and take way,

and be detected using probabilistic classifiers trained from data [55, 101]. An interaction-aware

model integrating lane and route preferences and maneuver-based interaction is proposed in

[102]. Joint inference of ego and other vehicles’ intents can resolve the interdependence be-

tween intents [51]. Beliefs over predefined high-level policy types, e.g., modeling gap keeping

or turning, are obtained using a change point detection algorithm in [103]. In [104], the authors

define policy types using a set of manually specified Kalman filters and predict with the Kalman

filter giving maximum posterior belief. Intents defined with temporal logic are used in [105]. To

define the microscopic behavior of a specific intent, the presented methods apply deterministic

predictions, e.g., car-following models [106] or add Gaussian noise to the predicted actions [55,

56, 100, 102], with parameters learned from data in [98], or they neglect microscopic randomness

at all [101, 103, 105]. Intent-based models focus on the first level of variations depicted in Fig. 2.3.

They do not explicitly model inter- and intra-driver variations nor adapt the microscopic pre-

diction to other observed drivers. Further, human intents are not physically measurable, making

specification of ground truth labels ambiguous. Though studies for ground truth labeling [107]

and integration of detected intent cues into motion planning [108] exist, the conduction of such

studies becomes infeasible for all types of intents and traffic scenarios.

Reward-based prediction models assume that participants act according to a reward function.

Global reward functions assume that each participant acts such that, depending on a coopera-

tiveness level, the reward of other participants is also maximized [51–53, 109, 110]. Independent

reward modeling assumes that the autonomous car and human drivers individually maximize

their rewards [28, 111]. In reward-based prediction, the microscopic motion model implicitly

arises by respecting the reward functions and based on the action space of other participants
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Figure 2.3.: Intents, inter- and intra-driver variations in human driving behavior. During a lane change of
an AV another vehicle can have two intentions. How yielding is performed depends on the driver which
leaves differing gap sizes varying continuously between smaller and larger gaps. An individual driver may
then choose to adapt the desired distance to the AV over time and show continuous variations in between
fast and slow adaptations.

being continuous [109, 112, 113], mainly discrete [52, 53] or making use of higher level poli-

cies over lower level actions [114]. The combination of cooperative models with intent-based

concepts is frequent. Inverse reinforcement learning can be used to learn weights of a linear

reward function to define distracted and attentive human driver types [28, 29]. The intents, yield

and no yield, define the action space in a cooperative model in [101], yet, with the underlying

microscopic models being deterministic. In [115], the authors assume the correctness of a co-

operative model if all meaningful reward parameterizations lead to the same homotopy class

for each other driver, respectively. If not, they trigger a fallback safety plan. Adapting to and

predicting microscopic behavior in reward-based models is accomplished by tracking beliefs

over the weights of a reward function [111] or the cooperativeness level [116], or by defining

specific parameters, e.g., to represent the aggressiveness of other drivers, in the reward function

[51]. Probabilistic microscopic driver models can improve search tree exploration in cooperative

planning [117, 118]. However, how such exploration enhancements soften the assumption of a

global reward function remains unclear. At the beginning of the search, the microscopic model

dictates the explorative behavior. Later in the search, the influence of reward-based exploration

starts to take over. Overall, reward-based prediction reduces the variety of human intra- and

inter-driver variations into a single or small set of parameters. Reward functions can be tuned

based on past observations [111, 119] and studies show coincidence of human merging behav-

ior with the assumption of global reward maximization [110]. However, the random nature of
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microscopic human behavior is not expressed using deterministic reward functions.

Neural networks are capable to predict trajectories [120–122] and actions [91]. Some of these

approaches are impractical for interactive planning due to applying end-to-end concepts [122] or

the computational demands of neural network inference [120, 122]. A learning-based interaction-

aware microscopic model is proposed in [91] and suggested by the authors to be used in

interaction-aware planning approaches. Using a small neural network allows for faster inference,

and the approach demonstrates to model subtleties in human driving variation. Nevertheless, it

predicts the action of only a single agent and does not integrate past state information into the

prediction. In [123], the authors apply inverse hierarchical reinforcement learning to represent

intents and the underlying trajectory distributions in a reward-based prediction approach.

Another class of prediction approaches employs classical driver models, e.g., used to simulate

car-following and lane-changing [106, 124]. Instead of using offline calibration [125], the ap-

proaches apply online adaptation of the continuous model parameters to achieve more accurate

predictions. Bayesian approaches to track parameter values are used in [126] estimating a single

parameter for the pedestrian walking direction. Estimating multiple parameters of car-following

models is performed in [127] in a framework of Bayesian reinforcement learning, in [128] using

regularized regression and in [129–131] using particle filtering. However, these models track the

probability that the past observed actions of other participants are expressed with one set of pa-

rameters. Intra-driver variations are therefore not genuinely represented with such approaches.

To account for intra-driver variations, i.e., changing model parameters of a single participant over

time, it requires estimation of the probability of ranges of parameters leading to the observed

past actions.

Overall, state-of-the-art methods focus on different aspects of human behavior predictions.

Defining risk for behavior uncertainty requires a comprehensive prediction model integrating

both inter- and intra-driver variations, including adaptation to past observed states. Chapter 3

presents a prediction model to target these requirements since they are only partially covered

by existing approaches.

2.3. Planning Integrating Interactions

Various terms exist to express that a planning algorithm takes into account the reactions of other

drivers during planning, e.g. interactive [50], cooperative [52, 53, 109, 112, 132], collaborative

[110], social-aware [111] or courtesy-aware [101]. Though, in multi-agent concepts collaboration

refers to cooperation without prior knowledge [133] both terms are frequently employed to

model the egoistic planning perspective in autonomous driving [52, 53]. This thesis refers to

approaches under these terms in the following as interactive planners.

In general, two levels of driver reactions exist. Interactions at the homotopy level model if

other drivers react to maneuvers of the AV, e.g., consider if another participant can yield if

the ego vehicle touches its lane proactively. Reactions within a homotopy represent how other

participants react to microscopic movements of the ego vehicle, e.g., consider how close other

drivers approach when the ego vehicle touches its lane proactively.
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There exist planning approaches which model interactions only at the homotopy level. Com-

pared to rule-based approaches for homotopy selection (cf. Sec. 2.1), interactive variants select

the optimal sequences of homotopic variants according to the combined expected utility [101], by

using Monte Carlo sampling [103] or hierarchical Monte Carlo Tree Search (MCTS) [53]. Other

approaches model partial observability within Partially Observable Markov Decision Process

(POMDP) planning to select between different maneuver variants [39] or define maneuver se-

quences using Linear Temporal Logic (LTL) in a belief Markov Decision Process (MDP) solved

with value iteration [105]. Both levels of interactions are considered in [134] separately by using

MCTS to define a higher level option policy over lower-level learned control policies. Other

concepts do not explicitly integrate reaction into the planning process. Instead, interactivity is

integrated by the use of an interactive prediction concept. In [111] the authors use the Model

Predictive Control (MPC) approach presented in [135] and parameterize the reward function

based on intent-specific beliefs. A similar approach is presented in [136]. Monte Carlo sampling

of trajectories distributed based on beliefs of microscopic behavior parameters and selection of

the reward-maximizing trajectory is used in [90].

An interactive planner should evaluate how its generated plan creates and affects available

homotopies in the current traffic situation to solve dense traffic situations. The above interactivity

concepts relying only on prediction or homotopy selection do not satisfy this requirement. When

separately planning on both levels, it is cumbersome to define meaningful homotopy types.

Therefore, a large body of work deals with a combined planning paradigm. These approaches

can be categorized into probabilistic and multi-agent concepts and are presented in the following.

2.3.1. Probabilistic Methods

Probabilistic planning searches for optimal plans that maximize the expected reward or cost over

predicted future environment states. Since the standard probabilistic decision models assume

that a single agent interacts with the environment, other traffic participants’ random behavior

is represented by stochastic environment transitions. Intent-based and microscopic prediction

models (cf. 2.2) are used in conjunction with well-known sequential decision-making frameworks

under this paradigm, as detailed in the following.

The MDP assumes that transitions to the next environment state depend only on the current

environment state and the applied action [137]. It is the fundamental decision-theoretic concept

in Reinforcement Learning (RL), a framework to learn an optimal sequence of decisions by

repeatedly interacting with the environment [138]. Using MDPs for interactive planning predicts

other participants only conditioned on the current environment state. The combination of Deep

Learning (DL) with RL allows for offline model-free learning of optimal plans in continuous

environments [139, 140] leading to a variety of planning approaches for AVs using Deep Re-

inforcement Learning (DRL) [131, 134, 141–146]. To reduce the errors in the optimality of the

plans obtained with DL, value iteration in discrete state spaces is applied in [57] or regression

methods in [147]. A drawback of using MDPs for planning for autonomous vehicles is that

MDPs do not model partial observability of the environment state. However, the future traffic

situation can often be more accurately predicted by taking into account hidden information, e.g.,
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about the intents of other traffic participants. Though recurrent neural networks can be trained

to infer hidden information from past states [148], their implicit representation of beliefs lacks

interpretability. Further, the learned policy implicitly assumes the behavior of other participants

simulated in the training process to be the microscopic prediction model. For obtaining inter-

pretability of the risk definition, it must be understood which behavior variations have been

encountered during training. However, this is not straightforwardly established with offline

training in simulation.

Intent-based prediction is often used with Partially Observable Markov Decision Process

(POMDP) planning integrating beliefs over intents. POMDPs model sequential decisions under

partial observability of the true environment state [137]. Different variants of belief-state planning

exist which incorporate beliefs into the planning process. An extensive overview is given in [149].

Especially relevant to this thesis is QMDP planning. It samples environment states from the

current intention belief and predicts the future environment states based on these sampled states

[130, 150, 151]. Predicting how beliefs change in future environment states allows the planner to

anticipate the information value of future states. This generates so-called information gathering

behavior [50]. Such behavior is meaningful for resolving situations in which the intention belief

is ambiguous. Since these approaches are computationally demanding, the complexity of the

problem is often reduced by planning with only longitudinal actions [56, 126]. A real-time

capable POMDP planner for different traffic situations also including perception uncertainty

is proposed in [50]. Learning-based approaches which integrate beliefs as input to a neural

network have advantages regarding computationally feasibility [116]. Presented approaches

use intention-based prediction models. Beliefs over behavior parameters are included in [130,

152]. However, existing POMDP planning approaches cannot plan given beliefs over continuous

ranges of parameters as they occur when modeling intra-driver behavior variations. Optimal

decisions under unknown parameters of the transition function in a MDP can be represented as

Bayes-Adaptive MDP (BAMDP). In [127], the authors use this paradigm to represent unknown

microscopic behavior parameters in an intersection scenario and solve it offline by framing the

problem as discrete POMDP. Yet, the approach requires offline planning in discrete state spaces

and omits time-variations of behavior parameters.

Overall, the benefit of probabilistic approaches is their natural integration of behavior un-

certainty into interactive planning. Yet, presented concepts show deficiencies concerning the

integration of beliefs over microscopic behavior variations.

2.3.2. Multi-Agent Methods

Multi-agent planning explicitly models each traffic participant as an agent within a multi-agent

environment or multi-agent game. In contrast, to decision-theoretic frameworks, which focus on

the self-interested decision-making of humans and bounded rationality due to limited planning

time or cognitive capabilities, game-theoretic concepts primarily assume that all agents act

rationally concerning the equilibrium of the game [153, 154].

In interactive planning for AVs, game-theoretic methods are the fundamental principle to plan

under reward-based prediction concepts. Thereby, the reward functions define a non-zero-sum
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game, i.e., a game with no clear winner. After solving the equilibrium strategies for all agents, the

strategy of the agent representing the AV defines the optimal ego vehicle plan. The computational

efforts to obtain these strategies rise with the number of agents due to the interdependence

of strategies. In [155], the authors, therefore, employ a Stackelberg game formulation which

assumes that one agent suggests a strategy and a single other agent adapts. The optimizations

are solved for higher-level actions and passed to a lower-level MPC planner. A similar two-

agent formulation is used in [29]. Another two-player concept using alternating gradient steps

over cost maps to model driver interactions is presented in [30]. In [119], the authors employ

an iterative method to resolve the leader-follower problem in a multi-agent Stackelberg game.

Belief tracking over a set of possible local equilibria is used to estimate the currently dominating

equilibrium in [156]. Presented methods support non-linear vehicle dynamic models. However,

this requires iterative approaches to solve the non-linear optimization problems.

In contrast, Mixed Integer Programming (MIP) allows to find optimal global solutions in multi-

agent problems [113], yet, it requires a linearized representation of the optimization problem.

Kessler and Knoll [112] sample independent motion trees for each participant using a discrete

set of motion primitives and use Mixed Integer Linear Programming (LP) (MILP) to solve for

optimal ego behavior. Planning in continuous action spaces with MIP requires linearized vehicle

models. In [109], the authors assume straight road segments and employ a triple integrator as a

vehicle model to be able to solve for optimal plans using Mixed Integer Quadratic Programming

(MIQP). A linearized bicycle model is presented in [157] and integrated in [113] into a linear

differential game. It is solved using MIQP to plan in a cooperative racing task under arbitrary

road curvatures.

However, current MIP formulations and solvers are limited when it comes to modeling uncer-

tainty. In [158], the authors formulate non-cooperative driving as a multi-agent dynamic game

in belief space and solve it using iterative Linear Quadratic Gaussian control (iLQG). By using

a linear formulation of the belief updates with Gaussian observation and dynamic models, the

complexity of the solver scales only linearly with the planning horizon compared to exponential

scaling with point-based POMDP solvers [158]. Nevertheless, the approach is limited to simple

belief representations that cannot represent non-linear belief updates over parameters of micro-

scopic behavior models. Intention parameters are integrated into a Bayesian Game formulation

in [51] and solved using non-convex optimization, yet, only in a discrete domain.

Arbitrary transition dynamics can be used with sampling-based multi-agent planning. Monte

Carlo sampling of velocity trajectories along predefined paths is used in [115]. Better exploration

of larger search spaces is achieved with MCTS having a long history in game-playing algorithms

[159]. In its multi-agent variant, denoted Simultaneous-Move MCTS (SM-MCTS) [160], agents

independently select actions in stages of the game. Lenz et al. [52] first apply this concept to

cooperative planning for AVs. Progressive widening of the discrete action set is applied in [114]

to target the problem of discrete action spaces. Compared to optimization-based approaches

which provide tighter bounds on optimality [113], SM-MCTS only eventually converges to the

optimal global solution given infinite search time [160]. However, global optimality is only ben-

eficial if the assumption of other agents acting rationally in the game transfers exactly to reality.
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This is an unprovable case in applications of AVs given the uncertainties about other partici-

pants’ behaviors (cf. Sec. 2.2). SM-MCTS supports arbitrary transition dynamics and benefits

from a decoupled action selection mechanism compared to single-agent probabilistic planning

approaches. However, presented work using SM-MCTS misses the integration of randomness in

the transition functions to be able to integrate the microscopic behavior variations.

Overall, state-of-the-art interactive planning lacks a holistic integration of inter- and intra-

driver behavior variations. In chapter 3, this thesis therefore proposes, the Robust Stochastic

Bayesian Game (RSBG) a game-theoretic model integrating beliefs over inter- and intra-driver

behavior variations and a novel SM-MCTS planner to solve this model.

2.4. Interactive Optimality Criteria

As discussed in Sec. 1.1 there exist non-probabilistic and probabilistic ways to balance safety

and efficiency in planning. In interactive planning, both approaches find frequent use.

Optimization-based interactive planning requires differentiable cost criteria and therefore of-

ten applies linear combinations of differentiable cost terms [28–30, 155]. Frequently employed

terms are Gaussian functions expressing the distance to other vehicles [28, 29], quadratic devia-

tion of desired speed [28], distance functions to model road and lane boundaries [29] or more

complex spatio-temporal cost maps [30]. The linear weights of these cost terms are often extraced

from data, e.g., by using Inverse Reinforcement Learning (IRL) [29, 111, 119]. A chance-term

weighting the collision probability is defined in [158] based on beliefs over position uncertainty.

In MIP planners, logical [109] or soft constraints [113] are used to prevent collisions, and com-

bined with additional constraints on the satisfaction of longitudinal and lateral safe distances

[161]. Presented optimization-based interactive planners use non-probabilistic ways to balance

safety and efficiency since the evaluation of the optimality criteria is not informed by the prob-

ability that a high- or low-cost event occurs. These approaches do not express the probabilistic

nature of an interpretable risk metric. Thus, they are not suited to achieve the interpretable risk

formalism proposed in Sec. 1.2.

Sampling-based interactive planners frequently use manually tuned rewards and costs to

balance collisions and goal-directed plans [52, 55, 127, 136]. Goal-directed plans are expressed

by penalizing deviations from the desired velocity [52, 55], deviations from the lane center [55],

large accelerations [52, 55] and an incorrect lane position [55]. Safety is expressed by giving large

negative rewards for collisions [52, 55], including longitudinal distances to other participants

[52] or assigning negative rewards if a physical safety measure, e.g., the Time-To-Collision (TTC),

falls below a threshold [162]. Sampling-based, e.g., POMDP, SM-MCTS and RL planners, use

a probabilistic approach to balance safety and efficiency. They consider the probability of state

transitions and accompanying rewards and costs in their expectation-based optimality criteria

[137]. The actual probabilities depend on the transition model given by the employed interactive

prediction model (cf. Sec. 2.2) and the exploration strategy used for sampling or during offline

training. Due to the use of single-objective optimality presented methods subsume safety and

efficiency criteria into a single value. The reward and cost criteria and the probability that
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the planned motion leads to unsafe states are connected to the expectation of future states.

However, other factors such as discounting future rewards and costs and the dependence of the

optimal planned motion on the amount of exploration affect the balance of safety and efficiency

unpredictably.

Other methods to integrate the safety criteria into an interactive planner use online verifica-

tion to monitor an RL planner, even supporting active learning in real driving situations [144].

However, by strictly prioritizing safety, the underlying interactive planning approach becomes

redundant, and the drawbacks in dense traffic discussed in Sec. 1.1 arise. A similar monitoring

approach using Responsibility-Sensitive Safety (RSS) for planning at the homotopy level is

proposed in [115]. In [130], the authors include collision-free motions into the action space of a

POMDP planner. Robust control approaches consider worst-case outcomes in their optimality

definition and are used in [163] to plan under the presence of inter-driver behavior variations.

However, these approaches rely on single-objective optimality. Model-checking approaches max-

imize the probability of a plan to satisfy an automaton specification [54] or constrain the proba-

bility that actions violate an LTL specification [57]. Nevertheless, both approaches apply discrete

state spaces. For continuous state spaces, previous work on risk-constrained interactive planning

focuses on finding an optimal sequence of maneuver variants at the homotopy level with risk

defined over collision events [39, 164, 165].

Overall, existing optimality definitions for interactive planning prevent integration of an in-

terpretable risk formalism (cf. Sec. 1.2). In chapter 4, this thesis therefore proposes the Risk-

Constrained Robust Stochastic Bayesian Game (RC-RSBG), a game-theoretic model which in-

tegrates an interpretable risk formalism over uncertainty of inter- and intra-driver behavior

variations.

2.5. Learning and Performance of Interactive Planning

To integrate the reaction of other participants during planning, interactive planners must evaluate

a large number of potential plans. The number of plans increases exponentially with the length of

the planning horizon and the number of traffic participants whose reactions should be considered

(cf. Fig. 2.4). Considerations of computational performance, therefore, play a crucial role in the

development of interactive planners.

Offline planning avoids computationally demanding evaluations of all potential plans dur-

ing online planning. Instead, it aims to precompute optimal plans for specific scenarios in

advance. Offline planning requires a suitable representation of state space and precomputed

plan to recover an appropriate optimal plan during the online planning and execution step.

Frequently, discrete state spaces and a tabular representation of the plan are used, in BAMDP

[127], constrained MDP [57] or multi-agent planning [51]. In [57], the authors suggest linear or

nearest-neighbor interpolation to extend tabular representations to continuous state spaces. In

[99], the authors use a decision tree to represent the state space with a finite set of α-vectors

in a POMDP value iteration algorithm. Online, they select the dominating α-vector based on

the current belief. Partial online replanning to account for inaccuracies in the precomputed
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Figure 2.4.: Exponential complexity of sampling-based interactive planning. The number of possible joint
actions of ego and other vehicles increases exponentially with the number of traffic participants. The
number of possible future state sequences, i.e., possible plans, increases exponentially with the length of
the planning horizon over the size of the joint action space.

plans is presented in [39]. The approach maintains the search tree for the online phase to avoid

a discrete representation. However, the authors leave open how to deal with discrepancies of

observed and precomputed states. Overall, a discrete model of the state space and plan becomes

problematic in dense traffic since a slight change of state can affect the optimality of a plan. The

significant difficulty with such offline planners is thus selecting an appropriate state and plan

representation.

Model-free RL in simulation is a form of offline planning. The use of neural networks to

represent a learned policy of an AV allows for continuous state [142–145] and action spaces

[166]. Online planning then benefits from neural networks’ relatively low inference time to

evaluate the learned policy online. Multiple inferences of the policy network may be required

to obtain a trajectory [167]. Even though DRL overcomes the problem of discretization in offline

planning, generalization of learned policies to arbitrary road layouts and traffic situations is still

ongoing research, e.g., in [141].

Strict online planning does not perform precomputation and applies different strategies to

allow for real-time capability. Exploration and guidance towards optimal plans is improved

by using denser [52, 55] and continuous [28, 29] reward specifications, by grouping similar

actions [114] or by using larger prediction time spans [99]. Reducing the size of the action space

[150], considering only longitudinal actions [56] and applying path velocity decomposition [115]

decreases the number of combinatorial options required to be evaluated by the planner. Other

strategies to reduce computational demands are to replace collision checks based on polygonal

hulls with an approximation of shapes using circles [112, 113] or to shorten the planning horizon

to the near future as, e.g., in [119]. Previous approaches are applicable irrespective of the applied
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planning approach.

Other strategies are applied only with specific planning methods to improve their real-time

capability. In receding horizon planning, initialization of the following planning step reuses past

calculations, which also helps to keep consistency between subsequent plans [50]. In sampling-

based approaches, this resorts to reusing parts of the search tree [50] whereas warm starting

can be used in optimization-based planning [113]. Sampling-based approaches can benefit from

multiple resources, e.g., CPU cores, by running various searches in parallel [168] or parallelizing

over a single tree requiring mutexes to lock critical paths [52].

Combinations of offline learning with online tree search achieved super-human playing

strength in the game of Go [169, 170]. In the context of interactive planning for autonomous

driving, related approaches exist to reduce computational demands and improve the anytime

capability of sampling-based planners. Microscopic prediction models are learned from human

driving data to guide exploration in a SM-MCTS planner in [117, 118]. A combined approach

to learning action probabilities and value functions in a reinforcement learning fashion while

generating demonstrations in simulation is presented in [171] for POMDP planning. A similar

approach in an end-to-end planning framework using grayscale images as input is presented in

[172].

Overall, achieving real-time capability with interactive planners requires combining the before-

mentioned concepts dependent on the planner type. However, it remains unclear how existing

concepts transfer to multi-objective interactive planning. Chapter 5, therefore, proposes perfor-

mance improvements for multi-objective, i.e., risk-constrained planning utilizing root paralleliza-

tion and offline learning.
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3
Game- and Robustness-Based Interactive Planning

in Behavior Spaces

This chapter proposes an interactive planning algorithm for AVs which leverages probabilistic

predictions of microscopic intra- and inter-driver behavior. It incorporates beliefs over behavior

hypotheses into a game-theoretic formulation, the Robust Stochastic Bayesian Game (RSBG) and

solves it using Simultaneous-Move MCTS (SM-MCTS). The main contributions of this chapter

are

• the formulation of the interactive planning problem as Stochastic Bayesian Game (SBG)

modeling irrationality in human driving behavior,

• the design of behavior hypotheses for the Stochastic Bayesian Game (SBG) using partition-

ing of behavior spaces for accounting for inter-driver behavior variations,

• the definition of sum posteriors over behavior hypotheses to model intra-driver behavior

variations,

• a novel game-theoretic model, the Robust Stochastic Bayesian Game (RSBG), which extends

the Stochastic Bayesian Game (SBG) with robustness-based optimality to reduce sample-

complexity when planning in continuous behavior spaces,

• a variant of SM-MCTS to approximately solve the Robust Stochastic Bayesian Game (RSBG).

The work presented in this chapter is based on [173]. The chapter starts with a review on

ad-hoc coordination in multi-agent systems in Sec. 3.1. The problem of interactive planning

and prediction using the SBG is developed in Sec. 3.2. Sec. 3.3 presents behavior spaces for

interactive behavior prediction. The integration of robustness-based optimality into the SBG is

given in Sec. 3.4. Finally, Sec. 3.5 develops the RSBG planner using SM-MCTS.

3.1. Review on Ad-Hoc Coordination in Multi-Agent Systems

The problem of interactive planning for autonomous driving can be represented as a non-

cooperative multi-agent system (cf. Sec. 2.3.2). The Autonomous Vehicle (AV), thereby, is an
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intelligent agent, interacting with to a large extend unknown other agents, the human drivers.

Background on the SBG which models interactions with irrational agents is given in the next

section. The following section then describes existing methods to define the behavior of other

agents in the SBG using agent behavior types.

3.1.1. Introduction to Stochastic Bayesian Games

The problem of on-the-fly interaction with unknown agents is introduced as ad-hoc coordination

in [133]. Among several approaches to solve the ad-hoc coordination problem [174, 175], the

type-based method has shown to be particularly useful. It uses a predefined set of agent types.

Each type commonly maps observation histories to probabilities over actions allowing to track

posterior beliefs over types by incorporating the probability of actions under each type [133,

176]. Albrecht and Ramamoorthy [154] formalize the type-based approach for solving the ad-hoc

problem as SBG. The model combines stochastic games, representing uncertainty in environ-

ment transitions, with Bayesian games. In the SBG, one controls a single agent, which uses a

hypothetical type space to reason about the behavior of other agents. Modeling planning for

AVs as SBG comes with two major benefits:

• Integration of belief information: Game-theoretic models assume that at some point

in the game, the strategies of all agents form a Nash equilibrium. At equilibrium, no

player can benefit from switching strategies. However, since multiple equilibria can exist,

a form of coordination, e.g., by communicating planned actions between agents, may be

needed to decide on a common equilibrium strategy [177, 178]. Bayesian games integrate

additional information in the form of beliefs over agent types [179]. Providing additional

information based on beliefs of agent types resolves the coordination problem. An example

in autonomous driving is belief tracking over reward functions (cf. 2.2).

• Modeling of irrationality: Assuming that humans drive strictly rational according to

game-theoretic payoff functions is questionable given that humans act irrationally in many

other parts of their life [180], e.g., in economic activities, they act under incomplete instead

of rational contracts [181]. In contrast, to Bayesian games, the SBG assumes that the type

space of other agents is unknown. By using a hypothetical type space, not necessarily

defined using payoff functions, the SBG models and adapts to the irrational behavior of

other agents.

Albrecht and Ramamoorthy [154] introduce the Harsanyi Bellman Ad-Hoc (HBA) algorithm

to plan optimal policies for the SBG. However, they focus on discrete state and action spaces.

Since modeling microscopic behavior variations requires continuity in both state and actions,

this thesis proposes a new optimality definition in Sec. 3.4 to improve sample efficiency of the

SBG when planning for AVs.
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3.1.2. Review on Designing Agent Type Spaces

Designing an appropriate type space, also denoted behavior hypothesis set or simply hypothesis

set in the remainder of this thesis, is crucial to ensure the validity of the SBG for modeling inter-

actions with unknown agents. Previous work frequently uses small hypothesis sets in simpler

domains defined by domain experts [133, 154]. Intention prediction of other drivers (cf. Sec. 2.2)

in a multi-agent setting [28] can also be regarded as using discrete sets of behavior hypotheses.

Integrating continuity into behavior hypotheses can be broadly categorized into approaches

using a parameterized set of hypotheses or learning the hypothesis set on the fly during task

completion. Methods in the former category either build a hypothesis set by sampling hypothe-

sis out of a parameterized hypothesis space [182] or adapt online the parameters of a predefined

set of hypotheses [176, 183]. However, such methods only consider a single parameter set for

each hypothesis and do not model types which cover a specific part of the parameter space. With

Q-learning, [174] or decision trees [184] the hypothesis set can be adapted on the fly avoiding the

definition of a continuous hypothesis model. However, an online adaptation of the hypothesis

set is impractical when the task is characterized by short interaction times as given in interactions

between human drivers.

Type-based methods provide an expressive way to model unknown behavior in a multi-agent

setting. They allow for fast adaptation to observed behavior and modeling the randomness of

microscopic behavior variations using stochastic types. However, in order to apply the type-based

approach to comprehensively model inter- and intra-driver behavior variations in interactive

planning, the designed type space must fulfill three key properties:

• Coverage of Variations: Microscopic behavior variations of human drivers are governed by

hidden factors, e.g., unknown parameters of the desired velocity or the desired distance to

leading vehicles [93]. Such hidden decision factors relevant to the behavior of an agent in a

specific situation must be included in an agent model. For this, the developed agent model

must reason within the space of possible decision factors. That means that for type-based

methods, the set of behavior hypotheses must cover all of these factors. Therefore, this

chapter presents a hypothesis design process in Sec. 3.3.3 over behavior spaces motivated

in Sec. 3.3.1 to cover the hidden factors defining microscopic behavior variations.

• Independence of Intents: The developed agent model must be independent of the higher-

level goals of the agents to avoid the definition of a goal space. For instance (cf. Sec. 2.2), the

intentions of human drivers are not directly measurable and are only estimated indirectly,

e.g., based on observed driving trajectories. The absence of measured intents prevents

the definition of an all-encompassing space of intents. The causal model of microscopic

behavior presented in Sec. 3.3.2 avoids that the agent model depends on intents.

• Time-Changing Behavior: The developed agent model must support modeling of chang-

ing behavior over time to account for intra-driver variations. Using the sum posterior to

estimate the beliefs over types can be interpreted as an or combination of past observa-

tions. Sec. 3.3.4 shows that such a belief estimation accounts, in addition to inter-driver

variations, also for intra-driver variations.
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Presented properties are related to the desirable properties of agent models proposed in [185].

3.2. Interactive Planning as Stochastic Bayesian Game

This section formalizes the problem of interactive planning for AVs using the Stochastic Bayesian

Game (SBG). It starts with the definition of the SBG, followed by separate problem definitions

for interactive prediction using behavior hypotheses and the planning of optimal policies under

the SBG. Lastly, this section discusses the assumptions coming with the proposed formulation.

3.2.1. Model Definition

The proposed model considers traffic environments structured by lane and road boundaries

with a certain number of vehicles within the field of view of the AV. Examples of two scenarios

and the state space definition are depicted in Fig. 3.1. Interactive planning in such environments

can be formally defined as SBG consisting of

• a set of N interacting vehicles or agents. Each agent j has a fully observable dynamic state

ot
j = (xt

j , yt
j, velt

j , αt
j) at time t with xt

j and yt
j denoting the Cartesian coordinates, velt

j the

velocity and αt
j the orientation with respect to the center of the jth vehicle’s rear axis. The

ego agent is denoted with index j = i,

• a joint environment state ot = (ot
1, ot

2, . . . , ot
N , M) ∈ O fully observable by all agents includ-

ing the current map state M consisting of road and lane layout and geometry,

• a continuous action space for each other vehicle at
j ∈ Aj and the agents’ joint action

at = (at
1, at

2, . . . , at
N) ∈ A with joint action space A. The ego agent uses the action space Ai,

• an environment transition function Tenv : O × A → O which defines the next environment

state ot+1 ∈ O based on the current state ot ∈ O and applied joint action at ∈ A,

• and for each agent j

– a true type space θ∗j ∈ Θ∗j ,

– a true stochastic policy πj : Ho × Θ∗j → [0, 1] which depends on the observation

action history Ht
o ∈ Ho up to time t, Ht

o = (o0, a0, o1, a1, . . . , ot),

– a reward function uj : O × A → R,

– and a prior true type distribution ∆∗j : Θ∗j → [0, 1].

The game starts at time tstart. Each agent samples randomly a type from its prior distribution

θ∗j ∼ ∆∗j . Iteratively all agents choose actions according to their polices at
j ∼ πj(Ht

o, θ∗j ) at each

time step t and transition to the next environment state ot+1 according to the environment

transition function. This process continues until a terminal criterion, e.g., the ego agent reaches

a target lane, is satisfied.

This work implements a deterministic transition function using longitudinal accelerations

along the lane center for other vehicles’ actions. The ego action set consists of the motion
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Figure 3.1.: Definition of the state space for the SBG. A collection of N = 4 agents is given in a merging and
left turning scene. Vehicles can fully observe a joint environment state ot = (ot

1, ot
2, . . . , ot

N , M) consisting of
fully observable dynamic states ot

j = (xt
j , yt

j , velt
j , αt

j) at time t and static map information M.

primitive actions lane following with constant accelerations and lane changing implemented by

a lane following controller assuming single track vehicle dynamics, and gap keeping based on

the Intelligent Driver Model (IDM) [186].

3.2.2. Prediction Problem

The AV controls a single agent, i. It knows the action space and can fully observe past actions

of the other agents and the joint environment state by having access to the observation-action

history Ht
o. However, the true type space Θ∗j , true policies πj and prior true type distribution ∆∗

are unkwown to the AV. Instead, the AV applies

• a hypothetical type space Θ and a set of stochastic policies for other agents j ̸= i, i.e.,

behavior hypothesis πθk : Ak ×Ho → [0, 1], θk ∈ Θ, k ∈ {1, . . . , K} with Ak being the

action space of hypothesis k. In the remainder of this thesis, the set of stochastic policies is

also referred to as hypothesis set.

• a hypothetical prior type distribution ∆ : Θ → [0, 1] which defines prior probabilities P(θk)

of the hypothetical types for belief tracking. The prior P(θk) specifies the initial probability

of type k before the start of the game.

Given the observation-action history for all other agents at time t, the planning component

tracks posterior beliefs Pr(θk|Ht
o, j) over the hypothetical types θk for each agent j. These beliefs

in combination with the set of stochastic behavior hypothesis define a mixture distribution π̂j

predicting the microscopic variations in human driving behavior for each other agent j:

π̂j(aj|Ht
o) = ∑

∀k
Pr(θk|Ht

o, j) · πθk (aj|Ht
o) (3.1)

The difficulty lies in designing a hypothesis set and belief update to cover human drivers’

intra- and inter-driver behavior variations. This chapter approaches this problem and presents

behavior spaces for interactive behavior prediction in Sec. 3.3.
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3.2.3. Planning Problem

Given the microscopic prediction model defined in Eq. (3.1), the planner must find an optimal

policy πi : Ai ×Ho → [0, 1] maximizing the reward of the ego agent ui. Such an optimal policy

in an SBG is defined with the HBA algorithm using a combination of belief-weighting and

Bellman updates [154]. In the remainder of this thesis, an index −i denotes all agents except

i. Concatenation is also denoted at the index level, giving, e.g., for the joint action a=ai,−i. The

optimal policy of the AV according to the HBA algorithm [154] follows the optimality criterion

at
i = argmaxai

E(Ht
o, ai), where

E(Ho, ai) = ∑
θ−i∈Θ−i

Pr(θ−i|Ho) ∑
a−i∈A−i

QR(Ho, ai,−i) ∏
j ̸=i

aj∈a−i

(θk ,j)∈θ−i

πθk (aj|Ho) (3.2)

is the expected cumulative reward for agent i taking action ai after observing the last state o

in history Ho. The sum over posterior beliefs is thereby taken over the possible combination

of types for all agents θ−i ∈ Θ−i with Pr(θ−i|Ho) = ∏(θk ,j)∈θ−i
Pr(θk|Ho, j). The joint action

space of other agents A−i =×(θk ,j)∈θ−i
Ak is defined for a specific combination of types. The

probability that a joint action of other agents a−i arises is given by multiplying hypotheses action

probabilities for each agent in the current combination of types θ−i. The Bellman part of HBA is

QR(Ho, a) = ui(o, a) + γ max
ai∈Ai

E(
〈

Ho, a, o′
〉

, ai) (3.3)

and defines the expected cumulative future reward of agent i when joint action a is executed

in observation state o after history Ho. Future rewards are discounted by γ. The concatenation

of action and observation to the previous history is denoted with ⟨·⟩. This thesis employs

a deterministic joint transition function. Therefore, the expectation over potential subsequent

states o′, as provided in [154], is dropped in this definition of QR(·).

Monte Carlo Tree Search (MCTS) can be used to find approximate solutions to this problem

[187]. Yet, the HBA algorithm in Eq. (3.2) and (3.3) is defined for a discrete action space only.

Finding an optimal policy is impeded when the action space of the other agents is continuous

since this results in an infinite size of the joint action space. Thus, this thesis proposes a sample-

efficient variant of the SBG, the RSBG, integrating robustness-based optimality, in Sec. 3.4, and an

accompanying SM-MCTS to find approximate solutions for the RSBG. The presented approach

focuses on planning under continuous action spaces of other agents. The ego agent uses a set of

discrete actions as in the original HBA algorithm.

This chapter uses a single-objective optimality criterion assuming the reward function ui

encodes collisions and successfully reaching a goal state. The following Chapter 4 extends the

planning problem to the multi-objective domain and includes the interpretable risk definition.
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3.2.4. Model Assumptions

The problem formulation comes with the following assumptions. The SBG assumes full observ-

ability of the environment state. Therefore, the game-theoretic model applied in this thesis does

not take into account perception uncertainty. The SBG supports stochastic environment transi-

tion functions. However, this thesis applies deterministic environment transitions. It, therefore,

does not take into account execution uncertainties arising from deviations between planned and

executed trajectory.

Several works consider perception [41, 50, 188] and execution uncertainty [189, 190] in plan-

ning. The Interactive Partially Observable Markov Decision Process (POMDP) (I-POMDP) is a

multi-agent model which models both uncertainty in the observability of the physical states and

uncertainty about the behavior types of other agents. This allows to express nested beliefs [149]

such as “I belief that you belief that I will change lane.”. Though, the I-POMDP is more general

than the SBG, there are additional computational difficulties when solving the model for an

optimal plan [153]. This thesis focuses on a systematic understanding of how uncertainty about

microscopic behavior variations affects efficiency and safety. Integration of other uncertainty

concepts is discussed as future work in Sec. 7.2.

The number of vehicles defining agents within the SBG is reduced to the N− 1 vehicles nearest

to the AV. Other vehicles are not considered in the state transition function, i.e., assumed to be

non-existent. This thesis employs a discrete set of ego actions. Other work already introduced a

variant of MCTS which enables continuous action spaces for the ego agent [114].

This thesis focuses on modeling vehicle-to-vehicle interactions and does not consider other

traffic participants, e.g., pedestrians. It thus employs an agent-independent type space Θ and

prior type distribution ∆ reflecting that all hypotheses are equally likely for any human driver.

In contrast, the original formulation of the SBG [58] uses agent-dependent definitions.

3.3. Behavior Spaces for Interactive Behavior Prediction

This section presents a concept that models the influences of intents and other hidden factors

onto the microscopic intra- and inter-driver behavior variations. The concept designs behavior

hypotheses by partitioning a behavior space thereby avoiding an explicit definition and labeling

of driving intentions.

3.3.1. Motivating Example

Fig. 3.2 provides a motivation for behavior spaces. The AV VA wants to change onto a lane

being occupied by an oncoming rear vehicle VR and another front vehicle VF. A common, yet

unsatisfying, approach in interactive prediction (cf. Sec. 2.2) is to model the intent of the rear

vehicle VR as yielding or taking way and then incorporate this information into planning.

The average human would associate an intent “yielding” with opening up a gap for another

vehicle, and the intent “not yielding” with the contrary of not opening a gap. To avoid the explicit

definition of intents, one can look for other cues which are sufficient to predict the evolvement
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Figure 3.2.: Motivating example for behavior spaces. The yielding intent of rear vehicle VR can be expressed
independently of the defined leading vehicle VF (1.a and 2.a) or VA (1.b and 2.b) in a microscopic driver model.
Relevant is how the desired safe distance ddesired being a model parameter relates to the minimum required
merging gap LA and a safety margin ϵ. Behavior spaces make use of this consideration to specify intention-
independent prediction models.

of the scene for a small time duration. Such cues are hidden parameters of microscopic driver

models specifying continuous behavior variations in human driving. The desired time headway

Tdesired of a rear vehicle VR to a leading vehicle VL is such a parameter in the car-following model

IDM [186] (cf. App. A.1). It specifies a velocity-dependent safe distance ddesired = Tdesired · velt
R

under stationary conditions influenced by the current velocity velt
R of the rear vehicle. A common

approach in interactive prediction is to model different intents by assuming a different leading

vehicle VL during model evaluation [55], VL=̂VF or VL=̂VA. The following cases exist influencing

the lane changing option of the AV in different ways:

1. Giving way:

a) Front vehicle leading (VL=̂VF): If the desired time headway is such that ddesired to the

front vehicle is by a safety margin ϵ larger than the length of the AV LA, a lane change

is viable.

b) Autonomous vehicle leading (VL=̂VA): If the desired time headway is such that

ddesired to the AV is larger than a safety margin ϵ, a lane change is viable.

2. Taking way:

a) Front vehicle leading (VL=̂VF): If the desired time headway is such that ddesired to

the front vehicle is by a safety margin ϵ smaller than the length of the AV LA, a lane

change is not viable.

b) Autonomous vehicle leading (VL=̂VA): If the desired time headway is such that

ddesired to the AV is smaller than a safety margin ϵ, a lane change is not viable.

Fig. 3.3 visualizes the joint distribution f (accIDM, Tdesired) over the output acceleration, accIDM,

of the IDM model and the time headway Tdesired for the two options of choosing a leading
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Figure 3.3.: Comparison of IDM outputs for the two intent parameterizations discussed in Fig. 3.2. A
distribution f (accIDM, Tdesired) is obtained by adding small uniform noise to relative positions (R-A: rear-
autonomous, R-F: rear-front) and velocities and is given for different front-rear distances between vehicles.
An IDM parameterized with leading vehicle being the front vehicle on the same lane (VL=̂VF) can cover
acceleration outputs of an IDM parameterized with leading vehicle being the AV (VL=̂VA) when varying
the time headway Tdesired. Details on the data generation are given in App. A.2.

vehicle. According to the definition of the SBG (cf. Sec. 3.2.1), the AV is able to observe the past

actions and dynamic state of the rear vehicle and must infer the hidden information from these

observations. Thus, the desired time headway and the chosen leading vehicle are not observable.

However, the joint distributions indicate that it is sufficient to estimate Tdesired based on an

IDM parameterized to take way, i.e., applying VL=̂VF. When varying Tdesired, the model also

covers the outputted accelerations of the model parameterized to yield. This redundancy allows

representing intents implicitly by a variation of the continuous model parameter. In addition,

microscopic variations are explicitly predicted by the microscopic model.

The next section uses this finding to formalize a behavior space model for interactive predic-

tion.

3.3.2. Behavior Space Model

The behavior space model assumes that a hypothetical policy and an accompanying behavior

space definition exist for a specific driving scenario.

Definition 3.1 (Hypothetical Policy) A hypothetical policy is a deterministic policy

π∗ : Ho × Bt
j → Aj (3.4)

with bt
j ∈ Bt

j being the jth agent’s behavior state at time t and Bt
j ⊂ RNB its behavior space of dimension

NB. The definition of the hypothetical policy and the behavior space are such that the behavior state bt
j is a

physically interpretable quantity.

Agent j acts within its behavior space Bt
j by selecting a behavior state bt

j from Bt
j in each
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Figure 3.4.: Causal diagram to model the conditional dependence of intentions, behavior space and state,
and actions for other agents j. Behavior spaces Bt

j are affected by intent states it
j and span a range of

possible behavior states bt
j upon which the other agent’s policy depends.

time step before choosing an action according to π∗. The other agents’ behavior spaces Bt
j

and their current behavior state bt
j are not observable. In this model, the intention of an agent

j at time t, defined using intention states it
j ∈ I , e.g., in the previous example it

j = “yield” or

it
j = “take way”, have a causal effect on the behavior space of an agent. Causal models define

an interventional type of conditional distribution instead of the observational variant [191]. The

observational distribution P(Bt
j |it

j) can only exist if the joint distribution P(Bt
j , it

j) exists. This is

not the case since intention states it
j are physically undefined and therefore not measurable. The

interventional distribution of behavior spaces P(Bt
j |do(it

j = “yield”)) is obtained in a controlled

experiment when an agent acts under a defined intent.

The causal diagram in Fig. 3.4 illustrates the relations between the random variables in the

behavior space model that accounts for

• inter-driver variations by integrating agent-dependent behavior spaces Bt
j affected by intents,

• intra-driver variations by time-dependent behavior states selected from agent-dependent and

time-dependent behavior spaces Bt
j .

However, experiments to obtain an interventional distribution require accurate models of

intents which may be cumbersome to define and ambiguous or incomplete depending on the

complexity of the traffic situation. It becomes clear that the definition of the actual behavior

hypotheses set should not rely on the definition of intents. To avoid the definition of intention

models, the behavior space model relies on the desirable property of physically interpretability

of behavior states. An expert can define a full behavior space B , comprising the individual

behavior spaces Bt
j (Bt

j ⊂ B), by looking at the physically realistic situations. For instance, for

the motivating example in Fig. 3.2, it is straightforward to define the physical boundaries of a

behavior state modeling the desired time headway, b=̂Tdesired, between agent j and i during lane

changing with the one-dimensional behavior space B = {b|b ∈ [0, dmax/velmin]} where dmax is

the maximum sensor range and velmin the minimum physically feasible velocity of the modeled

front vehicle. The next section presents a design process to define hypothesis sets based on the

full behavior space B .
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3.3.3. Hypothesis Design Process

The standard type-based method [154] defines each type θk such that it can closely match a

single unknown policy πj of another agent j. The following approach defines a collection of

hypotheses, each covering a certain part of the continuous behavior space B . Thus, multiple

hypotheses equally participate in representing an unknown policy πj.

Specifically, a uniform partition of the full behavior space B = B1 ∪ B2 ∪ . . . ∪ BK, ∀l ̸=
k : Bl ∩ Bk = ∅ is used forming K hypothesis πθk : Ho × Ak → [0, 1], k ∈ {1, . . . , K}*. The

probability distribution over actions is defined in terms of the hypothetical policy π∗ and the

part of the behavior space Bk assigned for hypothesis k.

The behavior space model presented in the previous section defines that an agent selects a

behavior state bt
j in each time step from its behavior space Bt

j . It is unknown how this selection

is performed. The selection process could be expressed time-dependently using a stochastic

process model, e.g., Gaussian processes. Such a model would require fitting or belief tracking of

model parameters. However, a fast adaptation of such model parameters to observed intra-driver

behavior variations seems unrealistic based on a few past observations. Instead, a more general

approach is to assume that other agents uniformly sample a behavior state bt
j ∼ U (Bt

j) in each

time step. Given this assumption, a uniform probability density is defined over a part of the

behavior space Bk as

fk(b) =





1
|| Bk ||V

b ∈ Bk

0 else
(3.5)

with || · ||V measuring the volume of a space.

Definition 3.2 (Behavior Hypothesis k) Given a full behavior space B partitioned into K hypotheses

behavior spaces Bk, the corresponding densities fk, and a hypothetical policy from Def. 3.1, the behavior

hypothesis k is defined as

πθk (aj|Ht
o) = Pr({b | ∀b ∈ Bk, π∗(b, Ht

o) = aj}) (3.6)

with Pr(·) denoting the probability of a set of behavior states under density fk. The action space of the

behavior hypothesis k becomes

Ak = {aj| ∀b ∈ Bk, π∗(b, Ht
o) = aj}. (3.7)

The action space Ak is continuous, since different behavior states typically imply different

actions. Fig. 3.5 visualizes exemplarily the design of a hypothesis set according to the proposed

method.

Classical driver models are often overdetermined with respect to the model parameters when

observing the action only, e.g., the IDM [129]. Therefore, different parameter configurations yield

the same outputted action. Given an abstract measure | · | of how many samples sufficiently

represent a continuous space, the sample sizes of action and behavior space are approximately

*This thesis applies a uniform partitioning whereas the approach also supports other forms of partitioning, e.g., to
obtain a higher belief resolution for certain parts of the behavior space
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Figure 3.5.: Hypotheses design in behavior spaces. The two-dimensional full behavior space B covers
realistic values of the desired time headway Tdesired and desired velocity vdesired of an IDM model for
vehicle VR in a merging situation. The full behavior space B is partitioned arbitrarily into K = 12 parts.
Each hypotheses πθk (aj|Ht

o) is defined over a single part Bk assuming uniform sampling of behavior states

bt
j ∼ fk(b) within a hypothesis.

equal |Ak| ≈ | Bk| for lower-dimensional behavior spaces, e.g., over a single parameter such as

Tdesired. For higher-dimensional behavior spaces, i.e., over multiple parameters of the IDM, the

sample size of the action space is much smaller compared to the sample size of the behavior

space, |Ak| ≪ | Bk|. Ideally, the behavior space is designed such that |Ak| ≈ | Bk| to achieve

optimal separation between the hypothesis.

The advantage of defining a hypothesis set over a range of parameters compared to using

regression or belief tracking over a single parameter set as, e.g., in [128] is twofold:

• Both approaches must fix some driver model parameters due to over-determinism and

estimate the remaining parameters. When estimating a single parameter set, the method

is more sensitive to incorrect settings of other parameters. In contrast, employing beliefs

over a parameter range better tolerates inaccuracies of the other model parameters.

• The parameter range of a single hypothesis accounts for intra-driver variations within

the hypothesis behavior space Bk. The next section 3.3.4 shows how multiple hypotheses

express time dependence of behavior states by using a specific posterior update. In contrast,

single parameter sets cannot express time dependence.

Given the definition of the hypothesis set, the following section describes how to track poste-

rior beliefs over hypotheses.

3.3.4. Leveraging the Sum Posterior for Modeling Intra-Driver Variations

The posterior belief Pr(θk|Ht
o, j) represents how each behavior hypothesis πθk (aj|Ht

o) contributes

to the microscopic prediction of an agent j as defined in Eq. (3.1). Albrecht [179] defines the
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posterior, related to classical Bayes filtering [59, 137], as a combination of the likelihood of the jth

agent’s actions in the history of observations, denoted as L(Ht
o|θk, j), and the prior probability

of a hypothesis P(θk) as

Pr(θk|Ht
o, j) =

L(Ht
o|θk, j) · P(θk)

∑θ̂k∈Θ L(Ht
o|θ̂k, j) · P(θ̂k)

(3.8)

and proposes three approaches and useful applications for likelihood calculation: 1) Product

posterior 2) Sum posterior and 3) Correlated Posterior. In [179], the likelihood calculation for the

product posterior is defined as

L(Ht
o|θk, j) = ∏

at′
j ∈Ht

o

πθk (at′
j |Ht′

o ), (3.9)

with at′
j ∈ Ht

o denoting the actions of agent j in observation history Ht
o. For the sum posterior, it

is formulated as

L(Ht
o|θk, j) = ∑

at′
j ∈Ht

o

g(t− t′)πθk (at′
j |Ht′

o ) (3.10)

with g(·) being a time-dependent weighting factor to reduce the influence of more past action

probabilities onto the posterior estimate.

According to [179], product posteriors converge to a pure type distribution which is helpful

in the case of agents having a fixed type, i.e., a type that does not change over time. Sum

posteriors converge under certain conditions to a mixed (and pure) type distribution, modeling

that agent types change over time. The correlated posterior extends the sum posterior to express

the correlation of types between agents. In the behavior space and hypotheses model presented

in the previous section, an agent’s actual type is not represented by a single hypothetical type

but a combination of types, i.e., behavior hypotheses. The product posterior is, therefore, an

invalid choice since it is zeroed under changing types. Further, the model assumes that an

agent’s behavior space Bt
j is independent of other agents’ behavior. Dependence exists only via

the action-observation history Ht
o. It is thus not required to model correlations in the posterior

calculation.

The sum posterior in combination with hypotheses designed according to Sec. 3.3.3 is most

suitable to account for intra-driver variations which is discussed in the following. Fig. 3.6 vi-

sualizes three special cases how the unknown behavior space of an agent Bt
j can be positioned

relative to the hypothesis behavior spaces for a time span T = {t1, . . . , t2, . . . , t3}:

1. Bt
j ⊆ Bk, ∀t ∈ T: The unknown behavior space Bt

j is a subset of the behavior space Bk of

a single hypothesis πθk (at
j |·) for all times. In this case, time-dependence is modeled using

uniform sampling of behavior states, as discussed in the previous section. The posterior

calculation does not influence the modeling of time dependence in this case. The posterior

belief can be correct after observing a single action at time t = t′.

2. Bt
j ⊆ (Bk ∪ Bk′ ∪ . . .), ∀t ∈ T: The unknown behavior space Bt

j is a subset of the union
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Figure 3.6.: Capturing intra-driver variations using sum posteriors. (1) The posterior belief over hypotheses
Pr(θk|Ht′

o , j) can be correct after one time step if the unknown behavior space of agent Bt
j is a subset of

kth hypothesis behavior space Bk. (2) If Bt
j covers multiple hypothesis behavior spaces Bk and Bk′ the

sum posterior achieves an Or combination of probabilities. (3) When Bt
j changes over time summing

of probabilities achieves only a gradual shift. The examples assume optimal separation of hypotheses
(cf. Sec. 3.3.3).

of two or more parts of the behavior space Bk, Bk′ , . . . for all times. The following con-

sideration assumes that at time t′ an agent j samples a behavior state bt′
j from Bt

j , being

also in Bk, and at time t′′ > t′ samples a behavior state bt′′
j from Bt

j , being also in Bk′ .

This yields under the condition of near optimal separation of hypotheses discussed in the

previous section for the probability of observing the agent’s action under these time steps,

πθk (at′
j |·)≫ π

θk′ (at′
j |·) and πθk (at′′

j |·)≪ π
θk′ (at′′

j |·). Summing the probabilities of each type

yields a balanced posterior with Pr(θk|Ht′
o , j) ≈ Pr(θk′ |Ht′

o , j) at time t′′. The summing op-

eration can be interpreted as an Or combination of probabilities. Using this interpretation,

one observes that a belief for a specific type θk reflects how likely it is that the unknown

agent behavior space falls partly into the hypothesis behavior space (Bt
j ∩ Bk). Multiple

beliefs in a sense cover the unknown behavior space of another agent.

3. Bt
j ⊆ Bk, ∀t : t1 ≤ t < t2 and Bt

j ⊆ Bk′ , ∀t : t2 ≤ t < t3: The unknown behavior space

Bt
j changes after some time, being first a subset of hypothesis behavior space Bk and then

from t ≥ t2 a subset of hypothesis behavior space Bk′ . Such changes can, e.g., arise due to a

changing intent of agent j and occur over a longer time horizon. Before the change, action

probabilities are higher for hypothesis k, πθk (at
j |·)≫ π

θk′ (at
j |·) ∀t : t1 ≤ t < t2 and after the

change higher for hypothesis k′, πθk (at
j |·) ≪ π

θk′ (at
j |·), ∀t : t2 ≤ t < t3. Ideally, the belief

Pr(θk′ |Ht′
o , j) = 1 immediately at time t = t2 as it would be the case with product-based

posteriors zeroing out the other posterior belief. The summing operation achieves only a

gradual shift of the beliefs. It requires the history to contain more actions observed after the

change of Bt
j than before to zero out Pr(θk|·, j). This time lag can be adjusted by reducing
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Figure 3.7.: Histogram approximation of probability density πθk (aj|Ht
o) of kth behavior hypotheses. For

Nsamples behavior states bz, which are sampled uniformly from the hypothesis behavior space Bk, the action
az is calculated based on the hypothetical policy az = π∗(bz, Ht

o). The probability density over the action
space Aj is approximated using a histogram.

the influence of past observed actions onto the belief using the time-dependent weighting

factor g(·). Therefore, the likelihood calculation considers only the last LH observed actions

at time t with

g(t′) =





1.0 t′ > t− LH

0.0 t′ ≤ t− LH

(3.11)

Overall, there is a trade-off between getting coverage of the current unknown behavior

space of agent Bt
j and fast adaptation to a change of this space.

These exceptional cases are more theoretical to understand the sum posterior’s capabilities to

represent intra-driver variations. In actual applications of belief tracking, arbitrary mixtures of

the presented cases occur.

3.3.5. Sampling-Based Action Density Approximation

To actually calculate the sum posterior during interaction with other agents, the probability

density πθk (aj|Ht
o) must be given according to Eq. (3.6). It can be seen as the probability density

of a function of uniform random variables. The input to the hypothetical policy is the uniform

density over the hypothesis behavior space fk. In the case of classical driver models, e.g., the IDM,

the hypothetical policy π∗, is a non-linear, non-reversible mapping between behavior state and

action, π∗(b, Ht
o) = at

j. Analytical calculations of the density become cumbersome or infeasible

for a higher dimensional behavior space, i.e., comprising multiple model parameters.

Instead, a histogram is used to approximate the probability density πθk (aj|Ht
o). The action

space Aj is decomposed into bins of equal width ∆wb. Then, the hypothetical policy is eval-

uated for behavior states bz, z ∈ {1, . . . , Nsamples} sampled from the uniform density bz ∼ fk

(cf. Sec. 3.3.3) which gives a collection of actions az. The ratios of actions within the bins over

the total number of actions define a histogram (cf. Fig. 3.7). Though, a density πθk (at
j |Ht

o) can

then be obtained by dividing the ratios through the width of the bins, this step is not necessary

due to the normalization of posteriors given in Eq. (3.8). The limits of the action space Aj are

determined by the vehicles’ feasible actions, e.g., given by longitudinal acceleration limits when

using the IDM as hypothetical policy.

Such a density estimation must be performed at each time step for each agent and hypotheses

based on the current history Ht
o. These computations could be accelerated by parallelizing the

sampling process and the individual posterior updates in an actual application.
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3.4. Robust Stochastic Bayesian Game

This section first analyzes the sample complexity of planning with the Harsanyi Bellman Ad-

Hoc (HBA) algorithm (cf. Sec. 3.2.3) in continuous behavior spaces. It then motivates and

integrates robustness-based optimality into the Stochastic Bayesian Game (SBG) giving the

Robust Stochastic Bayesian Game (RSBG), and shows that the integration yields reduced sample

complexity when planning under continuous behavior variations of other drivers.

3.4.1. Sample Complexity of the Stochastic Bayesian Game in Behavior
Spaces

With the definition of the behavior hypotheses set and the tracking of posterior beliefs, the

AV is able to interactively predict continuous behavior variations. However, approximating a

solution to the HBA algorithm (cf. Sec. 3.2.3) with Simultaneous-Move MCTS (SM-MCTS) is

computationally demanding for a continuous space of joint actions. To get further insight into

the problem, the sample complexity of Eq. (3.2) and Eq. (3.3) can be calculated for the proposed

hypothesis definition. Given that the full behavior space B is decomposed into K equal parts Bk

to define the hypotheses set and assuming a near optimal separation of hypotheses (cf. Sec. 3.3.3),

the sample size of the action space of hypothesis k is

|Ak| ≈ | B|/K. (3.12)

For a specific combination of types θ−i, the joint action space of other agents is defined as

cartesian product of the hypotheses action spaces, A−i =×(θk ,j)∈θ−i
Ak, and its sample size is

|A−i|=
N−i

∏
j=1
|Ak| ≈ (| B|/K)N−i (3.13)

with N−i=N−1 being the number of other agents. Solving the SBG with SM-MCTS applies root

sampling of the current combination of hypotheses θ−i from the posterior beliefs before the start

of a search iteration [187] to then use it for forward prediction during tree search. The number of

possible sampling options is |Θ−i|=KN−i . At a single search iteration, joint actions are sampled

from the joint action space A−i at selection, expansion and rollout steps. The sample complexity

thus is |A−i|Tp to achieve a balanced search tree with depth Tp for a single combination of types.

Including root sampling, the asymptotic worst-case sample complexity of the HBA algorithm

solved with SM-MCTS in behavior spaces becomes

O(|Θ−i| · |A−i|Tp)
cf. A.3
= OSBG(| B|N−iTp KN−i−N−iTp). (3.14)

The ego action space Ai is seen as a constant and is therefore dropped from the analysis.

Increasing K reduces the sample complexity since N−i − N−iTp is always negative given that

Tp > 1. Nevertheless, it exponentially depends on the prediction depth Tp and the number of other

agents N−i over the sample size of the behavior space | B| which reduces the applicability of the
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SBG in interactive planning for AVs.

The following section motivates a more-sample efficient optimality criterion for interactive

planning in behavior spaces.

3.4.2. Motivation for Combining Robustness with Agent Behavior
Hypothesis

This section motivates the integration of robustness-based optimality into the SBG. Fig. 3.8

depicts a lane-changing scenario for which a hypotheses set is defined based on the methodology

of Sec. 3.3. The full behavior space over the desired time headway Tdesired is partitioned into two

hypotheses. Each joint action space, Am
−i, m ∈ {1, . . . , 4} for one of the four combination of types

(|Θ−i| = 4) contains an infinite number of possible joint actions which must be considered in the

tree search.

The key idea to reduce the sample complexity of the SBG is to prioritize evaluation of joint

actions fulfilling specific criteria. In the context of autonomous driving, it is reasonable to priori-

tize joint actions which sacrifice safety, i.e., which lead to worst-case outcomes for the AV. In the

example, such a situation occurs when during lane changing of the AV (VA), the rear vehicle (VR)

desires a small distance to the AV. In contrast, the front vehicle (VF) aims for a large gap to its

leading vehicle. In that case, the gap available for a merge of the AV decreases significantly, and

an unsafe situation, e.g., a collision, may become likely. Sampling such worst-case joint actions

with priority can reduce sample complexity since it does not require evaluating all possible joint

actions.
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However, the following argumentation shows that considering worst-case outcomes over the

full behavior space B is similar to predicting other participants using reachable sets. The behavior

states b ∈ B span a set of physically reachable states given that each behavior state b maps to

a physical action a according to the hypothetical policy a = π∗(b, Ht
o), and the full behavior

space is designed to comprise all physically realistic behaviors. Planning which only considers

the worst-case prediction within the set of physically reachable states is similar to planning

under reachable sets. As motivated in Sec. 1.1.1, set-based prediction yields conservative driving

in dense traffic, potentially leading to the freezing vehicle symptom. Also, such an approach

completely neglects the information about the behavior of other drivers available from the

posterior beliefs over hypotheses.

One observes in the example that there exists for each combination of hypotheses a single,

worst-case joint action aworst
m concerning the ego agent. Further, this joint action consists of

subjective worst-case actions of the other agents from the action spaces AR
worst and AF

worst. The

sample complexity is reduced by letting each agent select a subjective worst-case action within its

hypothesis action space. This decoupled action selection provides a meaningful approximation

of the global worst-case joint action in dense traffic scenarios. Integration of belief information

over hypothesis is achieved with this concept since, due to root sampling of combinations of

types, worst-case joint actions are selected proportionally to the beliefs.

Considering the worst-case outcome over a parameter space in decision making is also referred

to as robustness-based optimality. A review of decision-theoretic models applying this concept is

given in the next section. Sec. 3.4.4 then reduces the sample complexity of the SBG by formalizing

combined robustness- and game-based planning as Robust Stochastic Bayesian Game (RSBG).

3.4.3. Review of Robustness-Based Optimality

The robustness of a plan or policy to continuous modeling errors has long been studied in the

control and reinforcement learning community [192–195]. The Robust Markov Decision Process

(RMDP) framework searches for a solution which is optimal under the worst-case parameter

realizations of a (possibly continuous [196]) set of parameters of the transition function, denoted

uncertainty set. The main challenge with the robustness criterion is finding an uncertainty set

which avoids overly conservative policies [197, 198].

Combinations of robust optimization and Bayesian decision making have been investigated in

reinforcement learning [197] and game theory [199]. The latter approach denoted Robust game

theory, applies the worst-case operation over the type space to omit dependency on posterior type-

beliefs in the expected value calculation. In contrast to their work, the RSBG applies the worst-

case operation over the parameter space of each individual type k. The parameter space corresponds

with the above hypothesis design process to the behavior space part Bk for hypothesis k. The

posterior beliefs are not omitted, but are used to weight the worst-case returns each obtained

under a different combination of types.

A Robust Markov Decision Process (RMDP) models uncertainty about the parameters of the

transition function p in an MDP [193]. It can be viewed as a two-agent stochastic game where

an adversary attempts to minimize the expected return of the controlled agent i by selecting
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the transition function p inducing the worst-case outcome. The robust Bellman equation [196] is

defined as

QR(ai, o) = r(o, ai) + γ max
a′i

inf
p∈P

Ep[QR(a′i, o′)].

In the multi-agent case, the worst-case assumption is applied over the other agents’ joint action

giving the robust Bellman equation

QR(a, o) = r(o, a) + γ max
ai∈Ai

min
a−i∈A−i

QR(ai,−i, o′) (3.15)

with minimax learning objective [194]. Its formulation of robustness is related to the RSBG

presented in the following section.

3.4.4. Model Definition and Sample Complexity Reduction

Sec. 3.4.2 suggests to apply decoupled worst-case action selection for the SBG to reduce sample

complexity. The conservativeness of a pure robustness-based optimality criterion can be avoided

by combining the optimality criteria of the robust Bellman equation (cf. Eq. (3.15)) and the SBG

(cf. Eq. (3.2) and Eq. (3.3)). The resulting RSBG lets other agents act adversarially only within

their hypothesis by defining the worst-case operation over the hypotheses action spaces Ak.

Definition 3.3 (Robust Stochastic Bayesian Game (RSBG)) Given an SBG with state, action and

agent definitions according to Sec. 3.2.3, the RSBG uses a different optimality criterion with the expected

cumulative reward for the ego agent i being defined as E(Ho, ai) =

∑
θ−i∈Θ−i

Pr(θ−i|Ho)

[
min

a−i∈A−i

QR(Ho, ai,−i)

] decoupled
action

selection=

∑
θ−i∈Θ−i

Pr(θ−i|Ho)

[
QR(Ho, ai,−i) : a−i = (aj, . . .)∀j, aj= argmin

a′j∈Ak
a′−j∼A−j

QR(Ho, (ai, a′j, a′−j))

]
.

(3.16)

whereas the definition of the Bellman equation remains unchanged as in Eq. (3.3).

The worst-case selection over the joint hypothesis action space A−i is simplified based on the

motivation of Sec. 3.4.2. Each other agent j selects individually a worst-case action aj with respect

to the ego agent’s return QR out of the agent’s hypotheses action space Ak given by the type

combination θ−i. Agent j is not informed by the actions of other agents and chooses its worst-

case action in a decoupled manner. The joint action in the minimizing operation thus includes

for the respective other agents −j random actions a′−j sampled from their joint action space A−j

given by the type combination θ−i, and consists of the ego agent’s, agent j’s and other agents’

−j actions. Concatenation of the individual worst-case actions of each other agent defines the

joint worst-case action a−i used in the evaluation of QR(Ho, ai,−i).

Given the optimality definition of the RSBG, its sample complexity is derived similarly as for

the SBG in Sec. 3.4.1. The minimum operation has a sample complexity equal to the sampling
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Figure 3.9.: Comparison of asymptotic worst-case sample complexities of ORSBG and OSBG. To compare
over a specific factor, other parameters are kept constant with K = 8, | B| = 16, N−i = 3 and Tp = 10. In
all cases, the RSBG shows reduced sample complexity. When K = | B|, the sampling complexities become
equal. The complexity calculations assume a balanced search tree. In practice, meaningful tree exploration
reduces the actual required samples during planning for the SBG and RSBG.

size of the hypothesis action space |Ak| since each other agent independently determines its

worst-case action. The asymptotic worst-case sample complexity of the RSBG therefore is

O(|Θ−i| · |Ak|Tp)
cf. A.4
= ORSBG(| B|Tp KN−i−Tp). (3.17)

The dependency of the sample complexity on the sample size of the behavior space is thus reduced

by a factor N in the exponent compared to OSBG. This reduction of sample complexity is important

to enable interactive planning over continuous microscopic behavior variations. Fig. 3.9 gives

details how the sample complexities of RSBG and SBG behave for different influencing factors.

The RSBG not only reduces the sample complexity, but it also changes the optimality of

plans becoming in principle more conservative than with the SBG. However, in the context of

autonomous driving, this is meaningful. On the one hand, the conservativeness of the policy

can be controlled via the number of defined types. Further, prioritizing the sampling of unsafe

situations is also favorable for risk-constrained planning. The next section presents a variant of

SM-MCTS to find approximately optimal solutions to the RSBG.

3.5. Planning for the Robust Stochastic Bayesian Game

This section first reviews planning under uncertainty with Monte Carlo methods. It then presents

a variant of SM-MCTS to interactively plan with the RSBG.
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3.5.1. Review of Monte Carlo Planning under Environment Uncertainties

Monte Carlo Tree Search (MCTS) is a well-known tree search algorithm interleaving node

selection, expansion and backpropagation steps in each search iteration [159]. Due to its anytime

property, it is especially relevant in applications of online planning. Different variants of MCTS

are widely applied to plan under uncertainties in game- and decision-theoretic models.

To deal with imperfect information of state in stochastic games, there exist determinization

and information set approaches [159]. Determinization samples multiple perfect information

games with fully observable initial game states from the stochastic game. It averages the results

from non-probabilistic planning applied over each deterministic game [200]. Information sets

include multiple determinized states with the same information value to select a move in the

game [201]. Both approaches do not take into account belief information.

For single-agent models, e.g., Partially Observable Markov Decision Processes (POMDPs),

different online planning approaches exist to consider partial observability of environment states.

Point-based value iteration [202] approximates the belief value function for a finite set of belief

points relying on the convexity property of the belief value function. It requires explicit modeling

of the probability distributions and becomes infeasible in large state spaces [203]. Monte Carlo

approaches simulate environment state transitions using a generative model enabling implicit

definition of probability distributions. Partially Observable Monte Carlo Planning (POMCP)

selects actions using Upper Confidence bound applied to Trees (UCT) in an MCTS algorithm

to plan for POMDPs. Starting at the root observation state, being sampled from the current

posterior belief, it predicts action-observation histories with a generative model. The resulting

search tree represents future beliefs based on history nodes [203]. The Adaptive Belief Tree

(ABT) planner improves online planning by reusing the search tree even when the generative

and observed model deviate [204]. The Determinized Sparse Partially Observable Tree (DESPOT)

[205] diminishes the curse of dimensionality of POMDP planning by holding a reduced set of

action-observation histories characterized by fixed action sequences. Presented algorithms do

not directly transfer to continuous state and action spaces. When using progressive widening

[206] to balance exploration and exploitation, these algorithms find the policy of a simplified

POMDP, the QMDP model which assumes full observability of states after one prediction step

[137]. To avoid this behavior, the authors in [151] search over belief states instead of action-

observation histories when using progressive widening. Bayesian optimization is used in [156,

207] to implement continuous actions in an MCTS planner for POMDPs. Continuous state spaces

are represented by higher level features to enable use of value iteration POMDP solvers in [208,

209].

Simultaneous movements of agents form another source of uncertainty. These can be ac-

counted for by using independent search trees which are not informed by the moves of other

players [201, 210]. In general, mixed strategies are optimal in simultaneous movement settings.

UCT selects actions deterministically based on action-values and counts. In SM-MCTS a de-

coupled variant, Decoupled Upper Confidence Bound (DUCB), is applied which selects actions

independently for each player. However, DUCB yields a pure strategy, whereas action selection

using Exponential-Weight Algorithm for Exploration and Exploitation (EXP3) [211] converges
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to a Nash equilibrium in simultaneous move settings [212] as formally analyzed in [160]. Coun-

terfactual Regret Minimization (CFR) is a planning technique for imperfect information games

which chooses an action proportionally to the regret of not selecting the action in a previous

visit of the state [213]. CFR has the drawback of having to evaluate the whole game tree in each

search iteration. To reduce memory and computational demands, Monte Carlo variants of CFR

consider only portions of the game tree in each iteration [214], employ abstracted games [215]

or make use of pre-trained neural networks [216].

Planning given beliefs over agent behavior types or environment transition functions similarly

applies variants of MCTS [187, 217]. The Bayes-Adaptive MDP (BAMDP) models beliefs over

unknown parameters of the environment transition function in a single agent model. The SBG

models beliefs over unknown types of other agents. The Bayes-Adaptive Monte Carlo Planning

(BAMCP) algorithm proposed by [217] transfers the POMCP algorithm to BAMDPs. Bayes-

Adaptive planning with Function Approximation (BAFA) extends BAMCP to continuous state

spaces by online learning of a Q-function parameterized on the state-action history [218]. A

formulation of the BAMDP as discrete POMDP is used in [127] to enable offline planning over

a discrete set of uncertain parameters sampled from the prior distribution. In contrast, BAFA

avoids belief discretization and achieves online performance by using interpolation between

online learned belief Q-functions [218]. A drawback of BAFA is that it generalizes between beliefs

with function approximation. Ad-hoc coordination, e.g., modeled as SBG, is related to planning

for BAMDPs. However, ad-hoc coordination additionally considers simultaneous movements of

multiple agents. Research in this domain focuses on games with a discrete action and state space

and planning using value iteration [154] or MCTS [187, 219, 220]. In continuous state spaces, as

discussed for POMDP and BAMDP planning, feature encoding and function approximation are

similarly applied [174].

The following sections present a SM-MCTS planner for the RSBG in continuous state and

action spaces as well as large belief spaces over hypotheses sets and relate it to presented work

in planning under uncertainty.

3.5.2. Overview

Planning for the RSBG is based on SM-MCTS. The planning algorithm receives the last observed

state ot and the beliefs over the hypotheses for each agent Pr(θk|Ht
o, j), ∀j. It iteratively employs

selection, expansion, rollout and backpropagation in each search iteration until exceeding a

maximum number of iterations Niters or search time Tsearch. Fig. 3.10 gives an overview of these

steps with algorithmic details given in Alg. 1 and Alg. 2. Actions are chosen independently

in stages similar to [52, 53] in selection, expansion and rollout steps. With the resulting joint

action, the next observation state o′ is predicted from the node’s current observation o with the

environment transition function (cf. Sec. 3.2.1). The prediction time span τpredict increases linearly

with the search depth d with minimum prediction time span τa. In contrast to previous work

[52, 53] applying SM-MCTS to interactive planning for AVs, separate selection mechanisms are

used for ego and other agents in EgoActionSelection and OtherActionSelection.

Each selection strategy returns actions ai or aj at stage nodes ⟨Ho⟩. Stage nodes are uniquely

46



3.5. Planning for the Robust Stochastic Bayesian Game
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Figure 3.10.: Main planning steps of the RSBG planner using a variant of SM-MCTS. The search method
receives the current observed environment state ot and posterior beliefs for each agent and hypothesis
Pr(θk|Ht

o, j) ∀j. In a stage-wise manner, ego and other agents choose individual actions with the joint action
defining the transition to the next stage nodes ⟨·⟩ in selection, expansion and rollout steps. Returns are
backpropagated and the next search iteration starts. The prediction time span increases with search depth
d according to τpredict = d · τa.

indexed by the sequence of observations and joint actions leading to the node. Concatenation

of the history is expressed as ⟨H′o⟩ = ⟨Ho, (ai, aj), o′⟩. The selection algorithms are detailed in

Sec. 3.5.4 and 3.5.5.

The complexity of online belief state planning in continuous state and action spaces demands

low dimensional belief spaces, e.g., given with intent-based beliefs in autonomous driving [55].

In contrast, the proposed definition of the RSBG inherently comes with a vast belief space of

size N · K comprising beliefs for each combination of agent and type. Intent beliefs should be

distinct, e.g., to encode clearly that other participants yield or take way. Beliefs over hypotheses

in behavior spaces can be ambiguous since, per definition of these, multiple beliefs represent the

actual microscopic behavior of another driver. Given this particular structure and meaning of the

belief space, the AV must not show information gathering behavior. It is therefore meaningful

to resort to QMDP planning with the RSBG. Root sampling of behavior hypotheses causes this

approximation and is discussed in Sec. 3.5.3.

For ease of presentation, a recursive formulation of the planning algorithm is presented. The

actual implementation uses a sequential call of selection, expansion, rollout, and backpropagation

steps.

Algorithm 1 Main search method of the RSBG planner.
function Search(ot, Pr(·|Ht

o, ·))
repeat

for j = 1 . . . N−i do
θ′j ∼ Pr(·|Ht

o, j) ▷ Root sampling of hypotheses (cf. 3.5.3)

S imulate (⟨ot⟩, {θ′1, . . . , θ′N−i
}, 1)

until MaxIterations ( ) or TimeOut ( )
return EgoActionSelection (⟨ot⟩) ▷ Greedy action selection (cf. 3.5.5)
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Algorithm 2 Simulation step of the RSBG planner integrating selection, expansion and rollout.
function S imulate(⟨Ho⟩, {θ′1, . . . , θ′N−i

}, d)
if d > dmax or IsTerminal(⟨Ho⟩) then

return 0 ▷ Terminal state or maximum search depth reached
if F irstNodeVisit (⟨Ho⟩) then

InitNodeStatistics ( ) ▷ Zeroing of action values and counts
return RandomRollout(⟨Ho⟩, {θ′1, . . . , θ′N−i

}, d) ▷ Perform rollout (cf. 3.5.5) for newly expanded node

ai ←EgoActionSelection(⟨Ho⟩)
for l = 1 . . . N−i do

a−il ←OtherActionSelection(⟨Ho⟩, l, θ′l )

τpredict ← d · τa ▷ Search-depth-dependent prediction time
(o′, r)← EnvironmentMove(Ho, (ai , a−i), τpredict) ▷ Prediction given joint action a = (ai , a−i)

R′ ←S imulate(⟨Ho, (ai , aj), o′⟩, {θ′1, . . . , θ′N−i
}, d + 1) ▷ Recursive selection and expansion

R← r + γ · R′
N(⟨Ho⟩)← N(⟨Ho⟩) + 1
N(⟨Ho⟩, ai , i)← N(⟨Ho⟩, ai , i) + 1 ▷ Backpropagation for UCT selection (cf. 3.5.5)
QR(⟨Ho⟩, ai , i)← QR(⟨Ho⟩, ai , i) + (R−QR(⟨Ho⟩, ai , i))/N(⟨Ho⟩, ai , i)
for l = 1 . . . N−i do

N(⟨Ho⟩, a−il , l)← N(⟨Ho⟩, a−il , l) + 1 ▷ Backpropagation for worst-case selection (cf. 3.5.4)
QR(⟨Ho⟩, a−il , l)← QR(⟨Ho⟩, a−il , l) + (R−QR(⟨Ho⟩, a−il , l))/N(⟨Ho⟩, a−il , l)

return R

Separation of ego and others’ action selection

3.5.3. Root Sampling of Hypotheses

The BAMCP algorithm [217] applies root-sampling of parameters of the transition function.

The RSBG planner employs root-sampling of types of other agents (cf. Alg. 1) which has the

same effect of influencing the transitions to the next predicted environment states. In a discrete

action and state-space BAMDP, action-observation histories are a sufficient statistic to implicitly

represent the beliefs over transition parameters [217]. However, sampling the same actions and

states from the belief becomes unlikely in continuous state and action spaces, making histories

insufficient as a belief statistic. Without explicit tracking of beliefs in the nodes of the search

tree, root sampling then leads to a QMDP approximation [151]. However, as discussed in the

previous section, QMDP planning is a meaningful compromise in the context of RSBG planning

in behavior spaces.

3.5.4. Worst-Case Action Selection of Other Agents

The RSBG defined in Sec. 3.4, lets each other agent j select individually a worst-case action aj

with respect to the ego action-value function from the agent’s hypothesis action space. Obtaining

the minimizing action requires knowledge about how the action influences the ego return. An

exact calculation is not possible since the ego return depends on the future actions of all agents,

including the actual ego policy. Instead, the worst-case actions are iteratively approximated

during the search. For this, the expected action-returns with respect to the ego agent’s reward

function, QR(⟨Ho⟩, aj, j) are maintained separately for each other agent j during back-propagation

steps. The action selection of other agents switches between

• action sampling from the current root-sampled behavior hypothesis of that agent, aj ∼
πθ′j

(·|Ho). A new ego return for the sampled action is obtained after backpropagation, and
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Algorithm 3 Worst-case action selection of other agents
function OtherActionSelection(⟨Ho⟩, j, θj)

if |Aj(⟨Ho⟩)| ≤ k0 N(⟨Ho⟩)α0 then ▷ Progressive widening
aj ∼ πθj

(·|Ho) ▷ Sampling from current root-sampled hypothesis

Aj(⟨Ho⟩)← Aj(⟨Ho⟩) ∪ {aj} ▷ Adding to set of expanded actions
return aj

else
aj ← argmina′j∈Aj (⟨Ho⟩)QR(⟨Ho⟩, a′j , j) ▷ Worst-case action selection

return aj

• worst-case selection among the set of previously expanded actions Aj(⟨Ho⟩), i.e., selecting

the action which minimizes the ego return QR(⟨Hs⟩, aj, j).

Progressive widening [206] with parameters k0 and α0, is used to switch between these mech-

anisms. Depending on the number of expanded actions |Aj(⟨Ho⟩| and the node visit count

Nj(⟨Ho⟩), a new action is sampled from the hypothesis (cf. Alg. 3). This approach ensures

sufficient exploration of Ak to discover the subjective worst-case action.

Each expanded action in Aj(⟨Ho⟩) is affiliated with a specific hypothesis. Due to root sampling,

these affiliations are distributed according to the posterior belief over hypotheses for that agent.

The probability that a worst-case action is from the action space of a particular hypothesis

is thus proportional to its posterior belief showing that this action selection strategy satisfies

approximately the optimality criterion of the RSBG given in Def. 3.3. The authors of this thesis

propose hypotheses-based worst-case action selection in [173] to avoid the approximative nature

of the previous strategy. However, further research for Chapter 4 showed that the selection

mechanism motivated here has the same benefits to approximate robustness-based optimality

while avoiding frequent action changes between search iterations which, in SM-MCTS, can cause

an insufficient depth of the search tree.

3.5.5. Ego Action Selection And Rollout Policy

A common strategy to select actions in MCTS is UCT [221] which selects an ego action ai at

stage node ⟨Ho⟩ maximizing

QUCT(⟨Ho⟩, a′) = QR(⟨Ho⟩, a′) + κ ·
√

2 ln N(⟨Ho⟩)
N(⟨Ho⟩, a′, i)

. (3.18)

with N(⟨Ho⟩) being the total visit count of the node, N(⟨Ho⟩, a′, i) being the ego agent’s selec-

tion count of action a′ from previous search iterations and κ a parameter balancing exploration

Algorithm 4 Ego action selection using return normalization and UCT.
function EgoActionSelection(⟨Ho⟩)

if NotAllActionsExpanded() then
return RandomUnexpandedAction()

Rmin ← mina′∈Ai
QR(⟨Ho⟩, a′, i)

Rmax ← maxa′∈Ai
QR(⟨Ho⟩, a′, i)

ai ← argmaxa′∈Ai

Rmin−QR(⟨Ho⟩,a′ ,i)
Rmax−Rmin

+ κ ·
√

2 ln N(⟨Ho⟩)
N(⟨Ho⟩,a′ ,i)

return ai
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Algorithm 5 Random rollout using root-sampled behavior hypotheses.
function RandomRollout(⟨Ho⟩, {θ′1, . . . , θ′N−i

}, d)
if d > dmax or IsTerminal(⟨Ho⟩) then

return 0
ai ∼ U (Ai)
for l = 1 . . . N−i do

ajl ←OtherActionSelection(⟨Ho⟩, l, θ′l )

τpredict ← d · τa

(o′, r)← EnvironmentMove(Ho, (ai , aj), τpredict)
return r + γ·RandomRollout(⟨Ho, (ai , aj), o′⟩, {θ′1, . . . , θ′N−i

}, d + 1)

and exploitation. Action return values QR(⟨Ho⟩, a′) are normalized between [0, 1] by dynami-

cally adapting normalization bounds based on the minimum and maximum of current return

estimates. Function EgoActionSelection in Alg. 4 implements this selection step.

When multiple players select actions simultaneously and independently using Decoupled

Upper Confidence Bound (DUCB), its deterministic nature can cause convergence to only local

Nash equilibria [222] due to not all possible joint actions being sufficiently explored. In such cases

EXP3 is often a better option [159, 201, 210, 222] as discussed in Sec. 3.5.1. However, selecting

other agents’ actions partially at random in the RSBG planner ensures sufficient variation of

the ego returns and exploration of the joint action space. Therefore, UCT action selection is a

viable option. Further, it has frequently been applied in existing interactive planning approaches

for AVs [114, 117]. In Chapter 4 this ego action selection mechanism is replaced to enable

risk-constrained planning.

The random rollout is a common approach to calculate heuristic values in MCTS at newly

expanded nodes with the major advantage of not relying on any domain knowledge [159].

Algorithm 5 shows the rollout implementation used in the RSBG planner. In each rollout step,

the ego action is sampled from the discrete set of ego actions. For each other agent, an action is

sampled from the agent’s root-sampled behavior hypothesis. The joint actions are executed until

reaching a terminal state of the environment or the maximum search depth. The discounted

cumulative reward is returned.
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4
Risk-Constrained Interactive Planning in

Behavior Spaces

This chapter presents the RC-RSBG planner, an interactive planning approach satisfying an

interpretable risk formalism (cf. Sec. 1.2). It generates plans for which the observed statistic of

safety envelope violations corresponds to the specified risk of violating a safety envelope given

uncertainty about the behavior of other drivers. Specifically, this chapter

• develops an interpretable risk formalism defining the time-normalized risk of violating a

safety envelope under uncertainty of other traffic participants’ behavior,

• defines the Risk-Constrained Robust Stochastic Bayesian Game (RC-RSBG) integrating the

interpretable risk formalism into the Robust Stochastic Bayesian Game (RSBG) presented

in Chapter 3 to model risk-constrained interactive decisions under behavior uncertainty,

• extends the RSBG planner from Chapter 3 to solve the RC-RSBG. The RC-RSBG planner

integrates risk-constrained ego action selection making use of a Constrained POMDP

(C-POMDP) solver and backpropagation of risk estimates,

• defines safety envelopes for lane changing and intersection scenarios to be used with the

RC-RSBG planner.

The work presented in this chapter is based on [173]. The chapter starts with motivating and

formalizing the interpretable risk formalism in Sec. 4.1. The following Sec 4.2 presents the

RC-RSBG. The accompanying risk-constrained interactive planner is outlined in Sec. 4.3 with

the risk-constrained stochastic policy optimization being detailed in Sec. 4.4. Finally, Sec. 4.5

develops the definitions of the safety envelopes.

4.1. Developing an Interpretable Risk Formalism

This section motivates an interpretable risk formalism based on human safety violations in dense

traffic. It formalizes such safety violations as envelope violation risk and defines the problem of

risk-constrained interactive safety.
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4.1.1. Leveraging Human Safety Statistics as Interpretable Risk Formalism

As discussed in Sec. 1.1 and 2.4, optimality criteria used in existing interactive planning ap-

proaches prevent an integration of interpretable risk. This section motivates an interpretable

risk formalism by considering the safety statistics of human drivers in dense traffic. According

to traffic laws, a driver must keep a sufficient safety distance from other drivers [6]. Analytical

calculations of safe distances, which guarantee collision-freeness when all drivers adhere to

them, are given in [223].

However, humans do not always adhere to legal safety in dense traffic. In [224], the authors

evaluate the percentage of safe distance violations in the NGSIM dataset. They find a low number

of violations. Pek et al. [7] integrate the response time of human drivers into the safe distance

formulation and analyze the percentage of safe lane changes in the NGSIM dataset. Their more

realistic safe distance formulation reveals that “only 39.83 % of the lane changes are classified

as safe”. Since the recorded traffic data is during the early morning, the rush hour presumably

caused denser traffic. Therefore, their results can be interpreted as humans keeping a certain

balance between safety and efficiency in dense traffic by violating safe distances during lane

changes. Esterle et al. [6] analyze the percentage of violations per driven time in traffic situations

where an ending lane requires vehicles to merge. They find in situations extracted from the

INTERACTION dataset that human drivers do not keep a safe distance in 4 % to 8 % of driven

time and detect that around 25 % of lane changing situations are unsafe. The above studies focus

on the violation of longitudinal safety.

More complicated legal definitions of safety are also violated by human drivers. Pek [32]

analyzes the number of failed plan verifications in a test drive through inner-city areas. The

safety of a plan is defined using reachable sets in combination with fail-safe motion planning.

They find that 1.64 % of scenarios cannot be verified as safe, with the majority of cases arising

due to violations of the safe distance. Presumably, the number of violations is much lower in

this case since it is averaged over the whole test route, which considered varying traffic density

and maneuvers, i.e., lane changes, but also car-following situations.

The presented analyses show that humans violate formal definitions of safety, e.g., defined

based on safe distances or more complex safety envelopes in certain traffic situations. Humans

seem to balance safety and efficiency in a comprehensible way by

• adhering to a legal definition of safety in most cases. This situation can also be denoted as

staying within a safety envelope given by the legal definition. The presented studies reveal

that the violations are not equally distributed among scenarios. During lane changing, an

increased amount of violations occurs compared to car-following situations.

• accepting the risk of violating the legal safety definition. Humans possibly compromise

the uncertainty about the reactions of other drivers and the safety of the situation. Given

the presented studies, it is therefore meaningful to assume that humans behave such that a

formal safety definition is violated with some probability β over the driven time. Humans

may make such a compromise (β > 0) only in low severity situations, e.g., dense traffic

with low average traffic speed. They may adjust β to tune safety versus efficiency and
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: Only stopping trajectory available

: Collision

: Violating part of trajectory

Pcol
!
≤ 10−7

Pviolate
!
≤ β

: Restricted region
: Predicted trajectories

Probabilistic collision risk

Safety envelope restriction Interpretable Risk

Figure 4.1.: The interpretable risk formalism is motivated by human safety statistics in dense traffic.
The interactive planner generates a policy which satisfies a specified maximum risk of violating a safety
envelope β. It combines definitions of legal safety, which may cause conservative driving by restricting the
allowed planning region, with probabilistic risk estimations. Yet, it avoids employing the collision risk Pcol,
which is infeasible to calculate in an interactive planning approach, to express safety (modified graphic
from [37], ©2021 IEEE).

avoid conservative driving in congested traffic. In higher severity traffic, e.g., on highways,

they adhere to strict safety (β = 0).

Based on these considerations, a human-inspired risk concept for interactive behavior planning

is stated:
“The ego vehicle behaves such that the percentage of

time a legal safety definition is violated is smaller

than a given risk threshold.”

A time-dependent risk measure is essential to achieve an interpretable risk formalism which

is discussed further in the following section.

The severity of violating legal safety is not straightforwardly defined since such a violation

does not necessarily lead to a hazardous event, e.g., a collision on which to base the definition

of severity. Nonetheless, the term risk is used since it stands for a level of safety given by the

maximum probability of violating a safety envelope over time. Fig. 4.1 motivates the proposed

risk formalism from a different perspective. The formalism combines legal definitions of safety

with inexact probabilistic predictions used in interactive planning into a unique concept to

balance safety and efficiency.

4.1.2. Formalizing the Interpretable Risk of Safety Envelope Violations

A time-based formulation of the probability of violating a safety envelope is essential to achieve

an interpretable risk formalism. Considering safety violations only at specific states during

planning yields a differing safety statistic when the observed states and states visited during

planning deviate. To avoid this and achieve a defined mapping between a specified risk level and
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t′

O
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Terminal state

F1
o

F2
o

F3
o

F4
o

Envelope violating states

Collision states

Envelope violating time

Collision violating time

τa τa τat
Figure 4.2.: Example for envelope violation and collision risk calculation. The future observation sequences
F1−4

o start from state ot. It is assumed that these sequences occur with probabilities P(F1−3
o ) = 0.3 and

P(F4
o ) = 0.1. The sequences end in terminal states. Sequence F4

o ends in a terminal collision state. When
a state violates the safety envelope or collides the respective transition from the previous state in the
sequence is marked as envelope or collision violating. Since sequence F1

o shows two and sequences F3−4
o

show one envelope violation, we obtain ρenv(·) = 0.3 · 2τa
3τa

+ 0.3 · 0τa
3τa

+ 0.3 · 1τa
3τa

+ 0.1 · 1τa
2τa

= 0.35. The only

sequence showing a collision violation is F4
o giving ρcol(·) = 0.3 · 0τa

3τa
+ 0.3 · 0τa

3τa
+ 0.3 · 0τa

3τa
+ 0.1 · 1τa

2τa
= 0.05

(graphic from [37], ©2021 IEEE).

the observed safety statistic, the period between two states evaluated during planning must be

incorporated into the risk formalism. Event-based risk formulations [46] represent such a setting

by modeling that the harmful event, i.e., the envelope violation, occurs over some time. For the

computation of event probabilities, complete trajectories of ego and other participants must be

available. This requirement seems to contradict interactive settings in which behavior policies

model interactions between participants on a fine-grained time scale. The following definition of

a violation risk overcomes these difficulties. It handles interactivity and provides a time-based

definition of risk.

Definition 4.1 (Violation risk) Given the current environment state ot ∈ O , behavior policies πi and

πj, a safety violation indicator f : O → {0, 1} indicating a violation of a formal safety definition in

observation state o′ ∈ O , then the violation risk is defined as:

ρ(ot, πi, πj, f ) = E
Fo∼P

ot ,πi ,πj

[
∑

z=|Fo|−1
z=1 f (Fo(z)) · τa

|Fo| · τa

]
(4.1)

The expectation is defined over the distribution Pot ,πi ,πj over future observation sequences Fo =

(ot, ot+τa , ot+2τa , . . .) starting from current environment state ot. This distribution is influenced

by ego and other agents’ policies. The upper sum represents the violation duration within

the observation sequence Fo with |Fo| being the length of the sequence and Fo(z) giving the

z-th observation within the sequence. The lower term is the total duration of the sequence.

The fraction of these terms yields the percentage of time the safety envelope is violated for

one sequence. A sequence ends in a terminal state. The temporal resolution of this fraction

is determined by the action duration τa. For fixed ego policy πi, the expectation provides the
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time-based violation risk under unknown behavior of other participants πj.

Calculation of the violation risk can apply an arbitrary safety indicator function, e.g., for

detecting safety envelope violations or collisions. Fig. 4.2 provides an example of envelope and

collision risk calculations. The next section uses the definition of the violation risk to formalize

the problem of risk-constrained interactive safety under behavior uncertainty.

4.1.3. Defining the Problem of Risk-Constrained Interactive Safety

Given the definition of the violation risk in Eq. (4.1), risk-constrained interactive safety under

behavior uncertainty is defined using two risk constraints as follows.

Definition 4.2 (Risk-constrained interactive safety) Given an indicator function for safety envelope

violations fenvelope, the interactive planner generates a goal-directed policy πi in the current environment

state ot under unknown behavior πj of other participants which achieves a safety envelope violation risk

lower than a specified allowed risk level β

ρ(ot, πi, πj, fenvelope) =̂ ρenv(ot, πi, πj)
!
≤ β. (4.2)

Further, given an indicator function for collision detection fcollision, it achieves a near-zero collision risk

ρ(ot, πi, πj, fcollision)=̂ρcol(o
t, πi, πj)

!≈ 0 (4.3)

The first constraint formalizes the maximum allowed risk of violating a safety envelope over

time motivated in Sec. 4.1.1. However, given only this constraint there would exist a gap in

the definition of optimality since in certain situations different ego behaviors, πi and π′i , can

provoke an equal envelope violation risk ρenv(ot, πi, πj) = ρenv(ot, π′i , πj) (cf. Fig. 4.3). There-

fore, an additional collision risk is introduced to solve ambiguous situations by preferring ego

behaviors with less probability of collision over time. Existing approaches applying collision

risk (cf. Sec. 1.1) accept that solely a collision constraint expresses safety. In the definition of

risk-constrained interactive safety, collision risk is required to be close to zero only to resolve

ambiguities. The proposed risk formulation is independent of the goal formalism, i.e., the actual

reward settings, and does not require a specific definition of the safety envelope, e.g., it could

be based on safe distance measures or reachability analysis. The implementations of indicators

used in this work are detailed in Sec. 4.5.

An interactive planner satisfying risk-constrained interactive safety must optimize a multi-

objective criterion integrating the safety envelope and collision risk constraints and the goal-

directed optimality criterion. Thereby, it must correctly approximate the observation sequence

distribution given that the behavior of other agents is unknown. The following section extends

the RSBG presented in Sec. 3.4 to satisfy the definition of risk-constrained interactive safety.
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πi(·|ot)

π′i(·|ot)

t + τa

envelope violatedenvelope violated

envelope violated envelope violated

t + 2τa t + 3τa t + 4τaCurrent state ot

unsafe region

Figure 4.3.: Definition gap without near-zero collision risk constraint. Two policies πi and π′i can have
an equal envelope violation risk due to violating the unsafe region in two of four predicted future states
(ρenv(ot, πi, πj) = ρenv(ot, π′i , πj) =

2τa
4τa

= 0.5). Introducing a near-zero constraint on collision risk resolves
this ambiguity. It prefers policy πi which cuts the safe distance of the oncoming vehicle at larger longi-
tudinal distance and by that achieves lower collision risk (ρcol(ot, πi, πj) < ρcol(ot, π′i , πj)). The envelope
violation risk expresses the safety aspect whereas the collision risk constraint serves to resolve ambiguities.
This combined definition circumvents that solely the collision risk expresses safety.

4.2. Risk-Constrained Robust Stochastic Bayesian Game

To define the Risk-Constrained Robust Stochastic Bayesian Game (RC-RSBG), constraint equa-

tions must be added to the optimality definition of the RSBG. The optimal policy of constrained

Markov problems is often stochastic [225]. Therefore, the expected return of the RSBG is rede-

fined to be dependent on a stochastic ego policy π, as

Eπ (Ho) = Eai,−i

[
Qπ

R(Ho , ai,−i)

]

with ai∼ π(·|Ho),

θ−i∼ Pr(·|Ho),

a−i= (aj,wc, . . .)∀j : aj,wc= argmin
a′j∈Ak

a′−j∼A−j

Qπ
R (Ho, (ai , a′j, a′−j))

(4.4)

The expectation is defined over the distribution of joint actions of the ego and other agents.

Similar to the RSBG other agents choose worst-case actions out of the agent’s hypotheses action

space Ak given by the type combination θ−i.

The Bellman equation integrating the stochastic policy thereby is

Qπ
R(Ho, a) = ui(o, a) + γ · Eπ (

〈
Ho, a, o′

〉
) (4.5)

Next, the risk constraints for safety envelope violation and collision are integrated into the

RSBG. For this, the mixture distribution π̂j,wc is defined as

π̂j,wc(aj|Ho) = ∑
∀k

Pr(θk|Ho, j) · δ(aj − aj,wc) (4.6)

with δ(aj − aj,worst) being a Dirac function located at the hypothesis-specific worst-case action

56
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aj,wc. The mixture distribution models the unknown behavior of other agents πj in the constraints

defined in Eq. (4.2) and Eq. (4.3). Due to the coverage-based definition of the prediction model

over a behavior space, interpretability of the risk formalism remains even when the true behavior

of others is not known. The worst-case action selection mechanism within a hypothesis motivated

in Sec. 3.4.2 can be improved in a multi-objective problem domain. The calculation of aj,wc

considers only the ego agent’s envelope and collision violations without taking into account the

ego agent’s return. A mean cost action-value function is defined as

Q
π ,π̂j,wc

C
(Ho, a) =

fenvelope(o′) + fcollision(o′)
2

+ γ ·Ea′∼π ,π̂j,wc∀j Q
π ,π̂j,wc

C
(
〈

Ho, a, o′
〉

, a′) (4.7)

giving a combined violation value when the agents execute joint action a, transition from state o

to o′ and from thereon follow policies πi and π̂j,wc. Given this definition, the worst-case actions

are selected based on Q
π ,π̂j,wc

C
. As shown in Chapter 3, worst-case action selection reduces sample

complexity for continuous action spaces of other agents. In a constrained optimality setting, it

also helps to improve exploration of the joint actions that violate the given risk constraints.

With the above definitions, the optimality of RC-RSBGs is defined as follows.

Definition 4.3 (Optimality of RC-RSBGs) The RC-RSBG applies similar state, action and agent def-

initions as the RSBG given in Def. 3.3. Its optimal stochastic policy πi maximizes the expected cumulative

reward, πi = argmaxπ Eπ (Ht
o), defined as

Eπ (Ho) = Eai,−i

[
Qπ

R(Ho , ai,−i)

]

with ai∼ π(·|Ho),

θ−i∼ Pr(·|Ho)

a−i= (aj,wc, . . .)∀j : aj,wc= argmin
a′j∈Ak

a′−j∼A−j

Q
π ,π̂j,wc

C
(Ho, ai,j′ ,−j′ )

(4.8)

subject to the risk constraints

ρenv(ot, πi, π̂j,wc)
!
≤ β

ρcol(o
t, πi, π̂j,wc)

!≈ 0
(4.9)

with ρenv as in Eq. (4.2), ρcol as in Eq. (4.3), π̂j,wc as in Eq. (4.6) and Q
π ,π̂j,wc

C
as in Eq. (4.7).

The RC-RSBG is a constrained stochastic decision problem and its optimal policy is therefore

in general stochastic [225]. A stochastic policy may seem counter-intuitive in the context of

autonomous driving since its lack of determinism impedes arguing safety. Yet, also human

drivers show randomness in their microscopic behavior. Such microscopic variations may help

them to resolve dense driving situations. A stochastic policy similarly models such variations

while the risk constraints take care of defining safety.

The mutual dependence between the stochastic ego policy and the worst-case actions chosen

57



4. Risk-Constrained Interactive Planning in Behavior Spaces

by other agents in the RC-RSBG impedes solving it optimally. Tiebraking can, however, be

accomplished in an iterative planning procedure by using the violation values QC of the previous

search iteration. The next sections extend the RSBG planner presented in Sec. 3.5 and develop

such a mechanism to approximately solve the RC-RSBG.

4.3. Planning for the Risk-Constrained Robust Stochastic

Bayesian Game

This section starts with reviewing related work on solving constraint decision-theoretic models.

It then gives an overview of the RC-RSBG planner and discusses the backpropagation of risk

estimates.

4.3.1. Review of Constrained-Based Decision-Theoretic Models and Solvers

This section reviews the suitability of existing single- and multi-objective decision-theoretic

models and planning algorithms to integrate risk constraints.

Single-objective approaches are provided with only a single return signal from the environ-

ment to model constraints. Risk-sensitive models use risk measures applied to the distribution

over the return to base decisions on the probability of worst-case outcomes [43]. Risk-sensitive

models are preferable with respect to solution complexity since they can either be solved of-

fline with distributional reinforcement learning [226–229] or online using a combination of

parallelized Monte Carlo sampling and stochastic optimal control [230]. Other single-objective

decision models guarantee a certain minimum return [231] with certain probability [232]. So-

lutions to such models are found with variants of Partially Observable Monte Carlo Planning

(POMCP) planning and additional linear optimization steps [232]. Overall, single-objective mod-

els provide interpretability of constraints only when restricted states are always terminal, e.g.,

collision states, and provoke a single negative reward. When instead multiple negative and pos-

itive returns are accumulated, it becomes challenging to interpret the constraint quantitatively.

The interpretable risk formalism (cf. Sec. 4.1.2) relies on accumulated violation costs and can

thus not be expressed with single-objective models.

Multi-objective decision models integrate constraints by using mainly one of the following

three concepts. Firstly, safe-reachability formulations avoid reward definitions by requiring that

the probability of reaching a safe state is above a particular threshold [233]. Secondly, chance-

constrained policies maximize the return while restricting the probability of visiting undesired

states [234]. Chance-Constrained MDPs are employed in optimization-based trajectory planning

[235, 236] or reinforcement learning [57]. For Chance-Constrained POMDPs (CC-POMDPs), Risk-

bounded AO* (RAO*), an offline search-based planner, is applied [39, 164, 237] and adaptations

of the Adaptive Belief Tree (ABT) planner [165]. Thirdly, in constrained problems, the policy

maximizes the return while satisfying constraints on the expected costs [238]. Cost thereby

defines an additional information signal coming from the environment. Optimal policies for

Constrained MDPs are found iteratively by adapting the weighting of two separate cost and
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RSBG Planner RC-RSBG Planner SM-MCTS

Beginning of the
Search Iteration

Sampling of hypothesis for
each other agent

Sampling of hypothesis for
each other agent,
Gradient-based update of
Lagrange multipliers

-

Selection Ego action: UCB,
Others’ actions: Worst-case
action within hypothesis
concerning the ego return

Ego action: Risk-constrained
stochastic policy
optimization,
Others’ actions: Worst-case
action within hypothesis
concerning the combined ego
envelope and collision cost

Ego action: UCB,
Others’ actions: UCB

Expansion,
Rollout

Ego action: Random,
Others’ actions: Random
within hypothesis

Ego action: Random,
Others’ actions: Random
within hypothesis

Ego action: Random,
Others’ actions: Random

Back-
propagation

Update of 1) ego return,
2) others’ returns concerning
the ego agent

Update of 1) ego return,
2) ego horizon-normalized
envelope violation and
collision risk and 3) others’
combined cost concerning the
ego agent

Update of 1) ego return and
2) others’ returns

Table 4.1.: Comparison of RC-RSBG, RSBG (cf. Sec. 3.5) and SM-MCTS (cf. Sec. 3.5.1) planners.

return value functions [239] and constrained policy optimization [240]. Planning algorithms for

Constrained POMDPs (C-POMDPs) use approximate Linear Programming (LP) in an interpo-

lated belief space [241], Mixed Integer LP (MILP) in the dynamic programming updates [242],

or a combination of offline planning with online branch-and-bound tree search [243]. Lee et al.

[238] formulate the C-POMDP as POMDP by applying a LaGrange formalism. They extend the

action selection of the POMCP planner with LP steps to output a stochastic policy. A Lagrange

formalism is also used to solve Constrained Markov games in [244]. Chance-constrained models

can be expressed using cost-constrained formulations by defining expected costs over the action-

observation histories [234]. A naive approach which assigns a cost of one to risky states to model

chance-constraints in a cost-constrained problem holds only when such states are additionally

defined as terminal [237].

Summing over envelope violations in a single future observation sequence in the definition of

the interpretable risk formalism (cf. Sec. 4.1.2) is related to an accumulation of costs. Approaches

from the field of cost-constrained planning are therefore well suited to solve the RC-RSBG. The

RC-RSBG planner, presented in the following sections, integrates a risk-constrained ego action

selection mechanism based on the C-POMDP planner by Lee et al. [238].

4.3.2. Overview

The RC-RSBG planner is a constrained variant of SM-MCTS suitable for risk-constrained interac-

tive planning. It targets the difficulties of planning under risk constraints when the satisfaction

of constraints depends on the ego plan and the reactions of other traffic participants. Tab. 4.1

summarizes the differences between the RC-RSBG, RSBG and SM-MCTS planners.

The definition of the RC-RSBG in Def. (4.3) yields a strong interdependence between risk

constraints, optimal ego policy, and worst-case predictions of other agents. The RC-RSBG planner
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Algorithm 6 Simulation step of the RC-RSBG planner (with changes to the RSBG planner highlighted).

function S imulate(⟨Ho⟩, {θ′1, . . . , θ′N−i
}, d)

if d > dmax or IsTerminal(⟨Ho⟩) then
return [0, 0, 0, 0, 0]

if F irstNodeVisit (⟨Ho⟩) then
InitNodeStatistics ( )
return RandomRollout(⟨Ho⟩, {θ′1, . . . , θ′N−i

}, d)

ai ∼EgoPolicyOptimization(⟨Ho⟩, κ, v)
for l = 1 . . . N−i do

ajl ←OtherActionSelection(⟨Ho⟩, l, θ′l )

τpredict ← d · τa

(o′, r)← EnvironmentMove(Ho, (ai , aj), τpredict)

[R′,T′env, T′col, T′tot, C′]←S imulate(⟨Ho, (ai , aj), o′⟩, {θ′1, . . . , θ′N−i
}, d + 1)

[R, Tenv, Tcol, Ttot]← [r + γ · R′,
T′env + fenvelope(o′) · τpredict,

T′col + fcollision(o′) · τpredict,

T′tot + τpredict] ▷ Backpropagation of violation durations
(cf. 4.3.3)

N(⟨Ho⟩)← N(⟨Ho⟩) + 1
N(⟨Ho⟩, ai , i)← N(⟨Ho⟩, ai , i) + 1
QR(⟨Ho⟩, ai)← QR(⟨Ho⟩, ai) + (R−QR(⟨Ho⟩, ai))/N(⟨Ho⟩, ai , i)
ρenv(⟨Ho⟩, ai)← ρenv(⟨Ho⟩, ai) + (Tenv/Ttot − ρenv(⟨Ho⟩, ai))/N(⟨Ho⟩, ai , i) ▷ Envelope risk update
ρcol(⟨Ho⟩, ai)← ρcol(⟨Ho⟩, ai) + (Tcol/Ttot − ρcol(⟨Ho⟩, ai))/N(⟨Ho⟩, ai , i) ▷ Collision risk update
for l = 1 . . . N−i do

N(⟨Ho⟩, ajl , l)← N(⟨Ho⟩, ajl , l) + 1

C ← [ fenvelope(o′) + fcollision(o′)]/2 + γ · C′

QC(⟨Ho⟩, ajl , l)← QC(⟨Ho⟩, ajl , l) + (C−QC(⟨Ho⟩, ajl , l)/N(⟨Ho⟩, ajl , l) ▷ Mean violation update

return [R, Tenv, Tcol, Ttot, C]

finds an approximately optimal solution by resolving these interdependences in an interactive

planning approach. For this, the RC-RSBG planner changes the RSBG planner (cf. Sec. 3.5) by

• Horizon-normalized backpropagation: To obtain accurate action-risk estimates, backprop-

agation additionally maintains the planning horizon reached in the curent search iteration.

• Risk-based worst-case action selection: The worst-case action selection is defined over the

backpropagated risk estimates.

• Risk-constrained ego action selection: Ego actions are selected from a stochastic pol-

icy satisfying the risk-constraints. The algorithm is inspired by planning for C-POMDPs

presented in [238].

The former two changes are discussed in the following Sec. 4.3.3. Risk-constrained ego action

selection is then presented in Sec. 4.4.

4.3.3. Backpropagating Risk Estimates for Worst-Case Action Selection

In addition, to return estimates QR, the RC-RSBG planner maintains envelope violation and

collision action-risks concerning the ego agent in each stage node. For this, the planner sepa-

rately backpropagates the violation durations for safety envelope Tenv and collision Tcol occurred
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Algorithm 7 Random rollout of the RC-RSBG planner (with changes to the RSBG planner highlighted).

function RandomRollout(⟨Ho⟩, {θ′1, . . . , θ′N−i
}, d)

if d > dmax or IsTerminal(⟨Ho⟩) then
return [0, 0, 0, 0, 0]

ai ∼ U (Ai)
for l = 1 . . . N−i do

ajl ←OtherActionSelection(⟨Ho⟩, l, θ′l )

τpredict ← d · τa

[R′, T′env, T′col, T′tot, C′]←RandomRollout(⟨Ho, (ai , aj), o′⟩, {θ′1, . . . , θ′N−i
}, d + 1)

[R, Tenv, Tcol, Ttot, C]← [r + γ · R′,
T′env + fenvelope(o′) · τpredict,

T′col + fcollision(o′) · τpredict,

T′tot + τpredict,

fenvelope(o′) + fcollision(o′)]/2 + γ · C′]
return [R, Tenv, Tcol, Ttot, C]

Algorithm 8 Worst-case action selection for other agents in the RC-RSBG planner
(with changes to the RSBG planner highlighted).

function OtherActionSelection(⟨Ho⟩, j, θj)
if |Aj(⟨Ho⟩)| ≤ k0 Nj(⟨Ho⟩)α0 then

aj ∼ πθj
(aj|Ho)

Aj(⟨Ho⟩)← Aj(⟨Ho⟩) ∪ {aj}
return aj

else
aj ← argmaxa∈Aj(⟨Ho⟩)QC(⟨Ho⟩, a, j) ▷ Worst-case action selection over combined risk estimate

return aj

within the current iteration’s selection, expansion (cf. Alg. 6) and rollout step (cf. Alg. 7). Fur-

ther, it backpropagates the absolute planned horizon Ttot of the current iteration. These values

correspond to the upper and lower term of the ratio defined in Eq. (4.1) and are used to update

the ego-action risk estimates ρenv(⟨Ho⟩, ai) and ρcol(⟨Ho⟩, ai) during the backpropagation step

in each traversed node. The other agents individually maintain a mean action-cost estimate QC

defined according to Eq. (4.7). It represents the combined envelope and collision costs of the ego

agent for the action ajl selected by another agent. Note that the prediction time τpredict increases

with prediction depth, and therefore the backpropagated violation risk can become less accurate

with increasing search depth. However, it rarely occurs that a tree state is not violating while an

intermediate state between the tree states is violating the safety envelope. Due to using a time-

based risk estimate, the violation risk is therefore likely being overapproximated which is in favor

of the target of constraining the risk. This consideration again strengthens the importance of

time-based risk estimates in interactive planning. A state-based risk estimate would not take into

account differences due to varying prediction time steps. The return estimates QR are updated

as usual.

Other agents select actions (cf. Alg. 8) similar to the RSBG planner by using a combination of

worst-case selection and progressive widening. Progressive widening ensures that new actions

are explored. In the other case, other agents select actions maximizing the combined envelope

violation and collision cost of the ego agent QC.
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4.4. Selecting Ego-Actions using Risk-Constrained Stochastic

Policy Optimization

This section presents the risk-constrained ego action selection of the RC-RSBG planner. The

algorithm is inspired by the C-POMDP solver presented in [238].

4.4.1. Background on Solving Constrained Partially Observable Markov
Decision Processes (C-POMDPs)

An optimal policy π of a Constrained POMDP (C-POMDP) [238, 242] maximizes the expected

return Vπ
R while with satisfying M constraints ĉ = {ĉm}m=1,...,M for the expected costs Vπ

C =

{Vπ
Cm
}. A belief-state Markov Decision Process (MDP) formulation of C-POMDPs can be given

as [238]

max
π

Vπ
R (b0) = Eπ

[ ∞

∑
t=0

γtr(bt, at)
∣∣∣b0
]

s.t. Vπ
Cm

(b0) = Eπ

[ ∞

∑
t=0

γtcm(b
t, at)

∣∣∣b0
]
≤ ĉm ∀m

(4.10)

with cm(bt, at) being the immediate cost of action at in belief-state bt at time t.

Lee et al. [238] adapt the POMCP algorithm [203] to solve C-POMDPs. The following ex-

planation is based on their work. They replace the constrained problem with the problem of

minimizing Lagrange multipliers λ = {λm}m=1,...,M in a dual LP formulation of the C-POMDP.

When thinking of Lagrange multipliers as constants, this formulation is equal to finding an

optimal policy maximizing a scalarized reward function

r(bt, at)− λTc(bt, at) (4.11)

in an unconstrained belief-state MDP. The optimal value function V∗λ of this unconstrained

POMDP can be solved for any λ using a standard POMDP solver, e.g., POMCP. The optimal

lambda must thereby satisfy

min
λ≥0

[
V∗λ(b

0) + λTĉ
]
. (4.12)

By decomposing the combined value function V∗λ, the previous Eq. (4.12) can be rewritten as

min
λ≥0

[
Vπ∗λ

R (b0)− λTVπ∗λ
C + λTĉ

]
(4.13)

with π∗λ being the optimal stochastic policy for the scalarized reward function for a specific

value of λ.

Lee et al. [238] propose an iterative procedure to solve the dual problem defined by Eq. (4.13).

They update the Lagrange multipliers iteratively at the beginning of each Monte Carlo Tree

Search (MCTS) iteration using gradient descent ∆λm ∼ QCm − ĉm, ∀m, treating the optimal

policy π∗λ to be constant. In selection steps actions are sampled from a stochastic policy which
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is calculated by solving a linear program given the current estimate of λ. Further theoretical

details on the algorithm are found in Lee et al. [238].

4.4.2. Comparison Between Solving C-POMDPs and RC-RSBGs

The C-POMDP planning approach outlined previously inspires the ego action selection mech-

anism of the RC-RSBG planner. Three differences arise in the context of multi-agent planning

under risk constraints:

• QMDP approximation: With a similar motivation as discussed for the RSBG planner in

Sec. 3.5.2, the RC-RSBG planner applies a QMDP approximation. Lee et al. [238] evaluate

the C-POMDP planner in classical POMDP benchmarks and Atari game play. This work

extends the approach to continuous action-observation spaces and applies it to interactive

planning for AVs.

• Normalization over the planning horizon: Calculating the violation risk in Eq. (4.1) re-

quires the distribution of future observation sequences and normalization with the re-

spective length of each observation sequence. The required information is available in an

MCTS planning approach. Each sequence of visited tree states during a single planning

iteration corresponds to a future observation sequence. With an increasing number of iter-

ations, these sequences of visited states approximate the distribution of future observation

sequences. The respective sequence lengths are obtained during backpropagation. The C-

POMDP planner in [238] is based on MCTS and can therefore be adapted straightforwardly

to planning under violation risk constraints.

• Avoidance of constraint updates: In [238], the cost constraints are updated during in-

teraction in the environment before each planning step based on the cost estimates and

action probabilities of the previous time step. The authors argue that these updates ensure

consistency of specified constraints and observed expected costs over an episode with

multiple planning steps. However, when an executed action has a small probability in the

planned stochastic policy, an extensive constraint update occurs with this approach, which

causes sudden changes of the planned behavior in real-world applications. The advantage

of time-normalized constraints, as given in the definition of the violation risk, is that the

time-dependency cancels out, avoiding the need for constraint updates.

With these differences in mind, the envelope violation risk ρenv and collision violation risk

ρcol in the RC-RSBG correspond to two cost terms (M = 2) with constraints β and 0, and the

Lagrange multipliers λenv and λcol, in the C-POMDP formulation of Sec. 4.4.1.

4.4.3. Updating Lagrange Multipliers Using Gradient Estimates

Similar to [238], the search method of the RC-RSBG planner (cf. Alg. 9) performs gradient updates

of the Lagrange multipliers λenv and λcol at the beginning of each search iteration. An ego action

ai is sampled from the root stochastic policy with ai ∼ EgoPolicyOptimization (⟨ot⟩, 0, 0).
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Algorithm 9 Gradient-updates of Lagrange multipliers in the RC-RSBG planner
(with changes to the RSBG planner highlighted).

function Search(ot, Pr(θk |Ht
o, ·))

λenv, λcol ← [1, 1]
repeat

for j = 1 . . . N−i do
θ′j ∼ Pr(θk |Ht

o, j)

S imulate (⟨ot⟩, {θ′1, . . . , θ′N−i
}, 1)

ai ∼ EgoPolicyOptimization (⟨ot⟩, 0, 0)
λenv ← λenv + αn[ρenv(⟨ot⟩, ai)− β]
λcol ← λcol + αn[ρcol(⟨ot⟩, ai)− 0]
Clip λenv, λcol to range [0, 10]

until MaxIterations ( )
ai ∼ EgoPolicyOptimization (⟨ot⟩, 0, v )

return ai

The calculation of the stochastic policy is described in the next Sec. 4.4.4. The action-risk estimates

ρenv(⟨ot⟩, ai) and ρcol(⟨ot⟩, ai) at the root node are evaluated under this action sample and a

gradient descent is performed to update the Lagrange multipliers with

λenv ← λenv + αn[ρenv(⟨ot⟩, ai)− β]

λcol ← λcol + αn[ρcol(⟨ot⟩, ai)− 0].
(4.14)

The gradient update takes into account the difference between the expected violation risks

under the current stochastic policy and the desired envelope violation constraint β and collision

violation constraint zero. The gradient step size αn is chosen inversely proportional to the

current iteration number αn ∼ 1/IterationNum(). After the gradient update, the Lagrange

multipliers are clipped as proposed in [238] to the range [0, Rmax−Rmin
ϵ(1−γ)

]. Using ϵ = 1 [238] and,

e.g., a discount factor γ = 0.9, and reward bounds, Rmax = 1.0 and Rmin = 0.0, the clipping

range reduces to [0, 10].

4.4.4. Risk-Constrained Stochastic Action Selection

The RC-RSBG planner samples from a stochastic policy πi in the selection, expansion and rollout

steps, and in the main search method (cf. Alg. 6, 7 and 9). The calculation of the stochastic policy

is similar to the algorithm for C-POMDPs presented in [238]. It is summarized in Alg. 10 and

detailed in the following.

The stochastic policy maximizes a combined action-value including the current estimate of

Lagrange multipliers and an UCT exploration term (cf. Eq. (3.18)):

Q⊕λ (⟨Ho⟩, a) = QR(⟨Ho⟩, a, i)− λenv · ρenv(⟨Ho⟩, a)− λcol · ρcol(⟨Ho⟩, a) + κ

√
ln N(⟨Ho⟩)

N(⟨Ho⟩, a, i)
(4.15)

with exploration parameter κ.

To account for inaccuracies in return and risk estimates, not only the maximizing action, but
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Algorithm 10 Stochastic ego-policy optimization of the RC-RSBG planner
(with changes to the RSBG planner highlighted).

function EgoPolicyOptimization(⟨Ho⟩, κ, v)
if NotAllActionsExpanded() then

return UniformPolicy ( )

Q⊕λ (⟨Ho⟩, a)← QR(⟨Ho⟩, a)− λenv · ρenv(⟨Ho⟩, a)

λcol · ρcol(⟨Ho⟩, a) + κ
√

ln N(⟨Ho⟩)/N(⟨Ho⟩, a , i)

a∗ ← arg maxa Q⊕λ (⟨Ho⟩, a)
A∗ ← Add other actions to a∗ to consider exploration differences using Eq. (4.16)
πi ← Solve linear program defined in Eq. (4.19) over A∗ to obtain stochastic policy
return πi

an extended action set

A∗ =
{

a∗z

∣∣∣∣|Qλ(⟨Ho⟩, a∗z )−Qλ(⟨Ho⟩, a∗)| ≤ v ·
(√

ln N(⟨Ho⟩, a∗z , i)
N(⟨Ho⟩, a∗z , i)

+

√
ln N(⟨Ho⟩, a∗, i)

N(⟨Ho⟩, a∗, i)

)}

(4.16)

serves as support for the stochastic policy. Building the action set uses tolerance parameter v
to include, based on action selection counts, further actions apart from the return-maximizing

action a∗ = arg maxa Q⊕λ (⟨Ho⟩, a). The value differences are thereby evaluated over the action-

values

Qλ(⟨Ho⟩, a) = QR(⟨Ho⟩, a, i)− λenv · ρenv(⟨Ho⟩, a)− λcol · ρcol(⟨Ho⟩, a) (4.17)

without added exploration term.

The stochastic ego-policy with support A∗ must satisfy the risk constraints with

∑
ai∈A∗

πi(ai|⟨Ho⟩) · ρenv(⟨Ho⟩, ai)
!
≤ β, and

∑
ai∈A∗

πi(ai|⟨Ho⟩) · ρcol(⟨Ho⟩, ai)
!
= 0.

(4.18)

Inaccuracies in the Monte Carlo value estimates and the collision constraint of zero prevent

calculation of a policy always exactly satisfying these constraints. The following linear program

min
{ϵ+env, ϵ−env, ϵ+col, ϵ−col}

λenv · (ϵ+env + ϵ−env) + λcol · (ϵ+col + ϵ−col)

s.t. ∑
l:a∗l ∈A∗

wl · ρenv(⟨ot⟩, ai) = β + (ϵ+env − ϵ−env)

∑
l:a∗l ∈A∗

wl · ρcol(⟨ot⟩, ai) = 0 + (ϵ+col − ϵ−col)

∑
l:a∗l ∈A∗

wl = 1

ϵ+env, ϵ−env, ϵ+col, ϵ−col, wl ≥ 0

(4.19)

proposed in [238] accounts for estimation errors. It introduces the error variables ϵ+col, ϵ−col, ϵ+env

and ϵ−env, in addition to the variables wl representing the action probabilities of the stochastic
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policy. It is solved in each call to EgoPolicyOptimization. The returned stochastic policy

then approximately satisfies the envelope violation and collision risk constraints defined by the

RC-RSBG. In rare cases, the linear program is not feasible given a node’s current risk estimates.

In this case, a deterministic policy is returned favoring the action with lowest collision risk.

4.5. Defining Safety Envelopes For Interactive Planning

The policy generated by the RC-RSBG planners satisfies the problem of risk-constrained inter-

active safety. This section presents implementations of indicator functions fenvelope to detect the

violation of a safety envelope. The indicators should support computationally fast evaluation

due to being repeatedly called in expansion and rollout steps. First, an envelope violation indi-

cator for lane changing is defined, separately evaluating longitudinal and lateral violations. The

following section then extends the indicator to support the evaluation of turning scenarios in

intersections.

4.5.1. Envelope Violation Indicator for Lane Changing Scenarios

Longitudinal Violation

Rizaldi et al. [223] propose a model to guarantee longitudinal safety between a rear vehicle VR at

longitudinal position st
r and another vehicle VF located in front at longitudinal position st

f > st
r,

driving with velocities velt
f and velt

r at time t. The model assumes that the front vehicle performs

a sudden emergency brake with maximum deceleration acct′
br,max, ∀t′ ≥ t and the rear vehicle

reacts after response time Tr, react by applying maximum deceleration acct′
br,max, ∀t′ ≥ t + Tr, react.

The authors distinguish four cases of relative stopping positions between vehicles by comparing

braking durations to full standstill between both vehicles. If all four cases are satisfied at time

t, the model guarantees longitudinal safety given that the above assumptions on response time

and deceleration limits hold.

The formulation of Rizaldi et al. [223] is related to the Responsibility-Sensitive Safety (RSS)

model [24], but less restrictive in the given application. RSS allows the ego vehicle to apply

maximum acceleration during the response period giving more restrictive envelopes. In contrast,

Rizaldi et al. [223] include the case that the front vehicle brakes with less acceleration than the

ego vehicle, potentially allowing to maintain a smaller safe distance. Both approaches are similar

when assuming no ego acceleration during the response time and equal minimum and maximum

braking accelerations. Planning for the ego vehicle gives controllability of the ego action and

therefore allows to apply the less restrictive formulation of Rizaldi et al. [223].

A function vlon. safe(a, b, ot) is defined to represent the longitudinal envelope violations in the

indicator definition. It returns true if vehicle a violates longitudinal safe distance ssafe,ab with

respect to its front vehicle b, or vice versa vehicle b violates longitudinal safe distance ssafe,ba

with respect to its front vehicle a in observation state ot according to the model of Rizaldi et al.

[223].
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∆d1, ∆d2

No violation ( fenvelope, lane change(ot) = 0)

∆s1
∆s2

ssafe,1i ssafe,i2
∆d1, ∆d2

∆s1 ∆s2

Violation ( fenvelope, lane change(ot) = 1)

dsafe,1i , dsafe,2i

ssafe,1i ssafe,i2

dsafe,1i , dsafe,2i

fenvelope, lane change(ot) =

true︷ ︸︸ ︷
ssafe,1i ≥ ∆s1 &

false︷ ︸︸ ︷
dsafe,1i ≥ d1 |

false︷ ︸︸ ︷
ssafe,i2 ≥ ∆s2 &

false︷ ︸︸ ︷
dsafe,2i ≥ d2

=⇒ false | false = false

fenvelope, lane change(ot) =

true︷ ︸︸ ︷
ssafe,1i ≥ ∆s1 &

true︷ ︸︸ ︷
dsafe,1i ≥ d1 |

false︷ ︸︸ ︷
ssafe,i2 ≥ ∆s2 &

true︷ ︸︸ ︷
dsafe,2i ≥ d2

=⇒ true | false = true

Figure 4.4.: Example calculation of the indicator function for a lane changing scenario. A violation is
indicated if longitudinal and lateral safe distances, ssafe,xi and dsafe,xi, exceed relative longitudinal and
lateral distances, ∆sx and ∆dx, for a single other vehicle.

Lateral Violation

The formulation of Rizaldi et al. [223] does not include lateral safety. Therefore, the lateral safe

distance definition of RSS [24] serves to check lateral envelope violations. For two vehicles V1

and V2, with lateral velocities v1 and v2 defined with respect to the center line of V1’s lane, the

safe lateral distance according to RSS* is

dsafe, 12 =

[
v1 + v1,T

2
· T1, react +

v2
1,T

2 · acct
lat, min

−
(

v2 + v2,T

2
· T2, react −

v2
2,T

2 · acct
lat, min

)]

+

(4.20)

Thereby, V1 is located in driving direction on the left side of vehicle V2, and v1,T = v1 + T1, react ·
acct

lat, max and v2,T = v2 + T2, react · acct
lat, max. This safe distance formulation applies if the two

vehicles accelerate within the response times T1, react and T2, react towards each other laterally

with maximum accelerations of acct
lat, max. After the response time, they must brake laterally

with at least acct
lat, min. The assumption of RSS that vehicles accelerate towards each other with

acct
lat, max yields restrictive envelopes. Similar to the longitudinal safe distance formulation, it

is meaningful to assume zero acceleration during the response period, giving acct
lat, max = 0

for both the ego and other vehicles. Planning for the ego vehicle gives controllability over its

acceleration. For other vehicles, it is assumed that they do not deviate laterally from their center

lines.

A function vlat. safe(a, b, ot) is defined to represent the lateral envelope violations in the indica-

tor definition. It returns true if vehicle a violates the lateral safe distance defined in Eq. (4.20) in

observation state ot under the above assumptions.

*The µ-lateral velocity used for the definition in [24] is not relevant for the definition of the safety envelope in this
work.
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∆d2

No violation ( fenvelope, intersection(ot) = 0)

∆s1 ∆s2

Violation ( fenvelope, intersection(ot) = 1)

ssafe,1i

ssafe,2i

∆d1=0
dsafe,2i

dsafe,1i

∆d2

∆s1

ssafe,1i

ssafe,2i

∆d1=0

dsafe,2i

dsafe,1i ∆s2

fenvelope, intersection(ot) =

false︷ ︸︸ ︷
ssafe,1i ≥ ∆s1 &

true︷ ︸︸ ︷
dsafe,1i ≥ d1 |

true︷ ︸︸ ︷
ssafe,2i ≥ ∆s2 &

false︷ ︸︸ ︷
dsafe,2i ≥ d2

=⇒ false | false = false

fenvelope, intersection(ot) =

false︷ ︸︸ ︷
ssafe,1i ≥ ∆s1 &

true︷ ︸︸ ︷
dsafe,1i ≥ d1 |

true︷ ︸︸ ︷
ssafe,2i ≥ ∆s2 &

true︷ ︸︸ ︷
dsafe,2i ≥ d2

=⇒ false | true = true

Figure 4.5.: Example calculation of the indicator function for an intersection scenario. A violation is
indicated if longitudinal and lateral safe distances, ssafe,xi and dsafe,xi, exceed relative longitudinal and
lateral distances, ∆sx and ∆dx, for a single other vehicle.

Indicator Definition

An indicator function checking the violation of the safety envelope at time t in lane changing is

then defined as

fenvelope, lane change(ot) =





1 if ∃j ∈ {1, . . . , N−i}, vlon. safe(j, i, ot) & vlat. safe(j, i, ot)

0 else
(4.21)

An envelope violation occurs if both longitudinal and lateral violations coincide with any of the

other vehicles. Fig. 4.4 gives examples of violating and non-violating envelopes in lane changing.

Parameters of this envelope definition are the maximum acceleration and deceleration of the ego

vehicle and other vehicles accmax, ego and accmax, other, and the response times of ego Tego, react

and other vehicles Tother, react. The lateral and longitudinal maximum accelerations required for

calculating lateral and longitudinal safe distances are obtained from accmax, ego and accmax, other

by Frenet transformation and assuming a single-track vehicle model.

4.5.2. Envelope Violation Indicator for Intersection Scenarios

Fig. 4.5 depicts a left-turning situation of the ego vehicle at an intersection with the main road

being occupied by oncoming cars. The safe distance formulation of Rizaldi et al. [223] is only

valid when the front and rear vehicle partially occupy the same lane. This condition does not

hold in an intersection scenario when the ego vehicle has not yet entered the intersection. This

section extends the indicator definition of the previous section to this situation.

In intersections, different longitudinal orderings between the crossing vehicles exist. These

depend on the time points of passing the intersecting area and can be used to extend the

longitudinal safe distance formulations presented previously to intersections [24]. However,
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determining such orderings is not meaningful in interactive planning since the reactions of

the vehicles onto each other determine the actual ordering. Shalev-Shwartz et al. [24] define a

safe distance formulation for the unstructured situation based on a comparison of physically

feasible trajectories. Such concepts are related to reachable set formulations (cf. Sec. 1.1.1) and

are computationally too demanding to be applied with the RC-RSBG planner.

An efficient approach for longitudinal safe distance calculation avoiding comparison of lon-

gitudinal distances to the crossing point to estimate the ordering of vehicles is to assume that

the ego vehicle, turning into the main road, virtually occupies the lane of another oncoming

vehicle. The virtual ego vehicle has a longitudinal distance and velocity obtained via a Frenet

transformation with respect to the center line of the other car. A safe longitudinal distance is

then calculated as if both the ego and the other vehicle’s route are in complete contact as given

in the lane-changing case. The lateral safe distance formulation remains unchanged.

Apart from this adaptation of the longitudinal safe distance formulation, the indicator function

for evaluating violation of the safety envelope in intersection scenarios fenvelope, intersection is

similarly defined as in the lane changing case. Examples of violating and non-violating envelopes

in the intersection scenario are given in Fig. 4.4.
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5
Experience-Based and Parallelized

Risk-Constrained Planning

This chapter presents enhancements of the Risk-Constrained Robust Stochastic Bayesian Game

(RC-RSBG) planner that enable online planning. Existing concepts accelerating single-objective

planning with learned prior experience and parallelization are transferred and adapted to the

multi-objective case. Specifically, this chapter contributes

• value-guided exploration which integrates prior experience into the RC-RSBG planner and

benefits from the increase of information available in multi-objective planning,

• an input feature representation and architecture of neural networks to learn prior value

experiences for interactive planning in a supervised training process,

• a data generation process which distributes the demonstration data for supervised learning

similarly to the exploration distribution confronted with during online planning,

• a parallelized implementation of the RC-RSBG planner to additionally reduce computa-

tional demands.

The work presented in this chapter is based on [245] proposing experience-based planning

for static environments and [246] evaluating neural network input representations for value

function learning. It starts with a review on accelerating online planning with prior experiences

in Sec. 5.1. Integration of prior experiences into the RC-RSBG planner is described in Sec. 5.2.

Sec. 5.3 discusses training and representation of prior experiences using neural networks. The

data generation process is developed in Sec. 5.4. Finally, Sec. 5.5 outlines the benefits of a

parallelized implementation of the RC-RSBG planner.
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5.1. Review on Accelerating Online Planning with Prior

Experience

This section gives an overview of selected related work in domains other than autonomous

driving that use offline experiences to improve and accelerate exploration in online planning.

The focus is thereby on methods that separate offline experience collection and online planning.

Early work in this domain focuses on manually tuned heuristics. Knowledge about the prob-

ability of expert moves is incorporated into UCT action selection with progressive bias [247,

248]. It prioritizes expert moves in the UCT formula. Prioritization degrades with increasing

node visit count. Progressive history [249] additionally includes information about the reliability

of the domain knowledge. Both concepts assume that the optimality of moves is independent

of the environment state. Pattern matching prioritizes moves that agree with patterns of the

environment state [250]. Follow-up work by Gelly and Silver [251] showed that using a linear

function approximator, predicting action-values and learned from self-play, improves playing

strength over Go programs with only manually tuned heuristics. It integrates learned action

values either as default selection policy or for initialization of node action-values. Silver et al.

[252] present Dyna-2, which combines offline learning of a permanent experience memory with

online correction using a transient memory for sample-based search.

This early work on combining Monte Carlo Tree Search (MCTS) with learned policy and value

networks supported one of the breakthroughs in artificial intelligence. AlphaGo, which uses a

combination of supervised learning and self-play, managed to beat the best human players in the

game of Go [169]. AlphaGo’s successors learn completely from self-play [170] and also master

other games such as Chess and Shogi. Related ideas using learned value and policy estimates

predominantly to adapt the UCT selection formula are also applied to Atari gameplay [253].

The authors in [254] express the combination of UCT action selection with learned stochastic

policies as regularized policy optimization and, based on this, derive several improvements to

the action selection procedure of AlphaZero.

Other forms to integrate prior experiences into sampling-based online planning are presented

next. In [255], the authors compare various machine learning approaches such as linear regres-

sion, decision trees, and neural networks for predicting the solvability of card games in order to

accelerate a depth-first search planner. Offline learned winning probabilities are used in [256]

to switch between action selection and backpropagation in MCTS and in [257] to predict the

return at the end of a random rollout. Li et al. [258] trained a neural network with supervised

learning to estimate a correction factor for a standard heuristic. Pareekutty et al. [259] use value

iteration to iteratively create a quality grid map online during planning to guide the node ex-

pansion of a Rapidly Exploring Random Tree (RRT) planner. Online experience creation is also

used in [218] to approximate value functions for belief-state planning in Bayes-Adaptive MDPs

(BAMDPs). The approach extends Bayes-Adaptive Monte Carlo Planning (BAMCP) discussed in

Sec. 3.5.1 to continuous state spaces. The authors combine beliefs with function approximation

by using belief particles as feature inputs to the value function. In discrete imperfect information

environments, e.g., the game of heads-up no-limit poker, an abstracted representation of the
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probability distribution over others players’ cards can be directly used as a feature input for a

neural network function approximator [216].

Previous work on data generation for learning experiences is sparse. Self-play is meaningful

in domains of game playing [170, 257], yet, not straightforwardly applicable to autonomous

driving. The authors in [260] present a data collection process that samples initial states from

distributions of potential environments and lets the planning agent act under mixtures of a

random and learned policy to collect action values of each encountered environment state. The

approach is related to the approach presented in Sec. 5.4, yet, has been evaluated only in discrete,

grid environments.

Overall, existing work focuses on single-objective planning domains. In these domains, prior

experience is straightforwardly integrated into UCT action selection by weighting the explo-

ration term [117, 118, 171, 251]. Interactive planning for autonomous driving also applies this

concept [117, 118, 171]. This is reasonable when the stochastic policy is obtained from a soft-

max calculation over action-values [251] or based on action-counts [254] and therefore expresses

count-based or value-based action preferences from prior search runs. In contrast, the RC-RSBG

planner outputs a truly stochastic policy not associated with action-counts but obtained from

solving a linear optimization problem to fulfill envelope and collision risk constraints. It is thus

not reasonable to combine the stochastic policy of the RC-RSBG planner with the exploration

term of the combined reward and cost action values in procedure EgoPolicyOptimization.

It remains unclear what concepts to use for the RC-RSBG planner, and generally in multiobjec-

tive planning, to benefit from offline learned experiences. Further, existing work misses a data

generation process for offline experience learning tailored to the domain of autonomous driving.

5.2. Value-Guided Risk-Constrained Planning

This section presents an approach to guide the search of the RC-RSBG planner by prior ex-

periences available in the form of value estimates. Warm starting [159] is a concept to guide

the exploration of an MCTS algorithm with prior knowledge by initializing the node’s action

values at node creation. This concept is applied to UCT action selection in [251]. Warm starting

is also meaningful with the RC-RSBG planner. It provides valid information to calculate the risk-

constrained policy in procedure EgoPolicyOptimization directly after node initialization.

In the RC-RSBG planner, given prior experience in form of action-returns Qprior
R (o, ai), envelope

action risks ρ
prior
env (o, ai) and collision action risks ρ

prior
col (o, ai) for a search state o, warm starting

initializes a node ⟨Ho⟩ with

QR(⟨Ho⟩, ai)← Qprior
R (o, ai)

ρenv(⟨Ho⟩, ai)← ρ
prior
env (o, ai)

ρcol(⟨Ho⟩, ai)← ρ
prior
col (o, ai)

(5.1)

with o being the last state in action observation history Ho. This initialization is performed in

procedure InitNodeStatistics (cf. Alg. 6).
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The initialization with experiences replaces the role of the rollout heuristics guiding the

search. The rollout step can thus be dropped to reduce computational demands. The newly

initialized risk and return values are not included in the backpropagation. Backpropagation

of the prior knowledge information would lead to an incorrect normalized risk estimate. The

backpropagated planning horizon length does not fit the normalization already inserted in the

prior risk estimates. Therefore, the prior knowledge is only used for warm starting such that

action selection in subsequent node visits benefits from this information. That is a potential

limitation of warm starting in the case of the RC-RSBG planner.

5.3. Offline Training of Value Experiences

This section presents supervised learning of value experiences with Neural Networks (NNs),

designs meaningful input features for the neural network, and discusses relevant properties of

NN architectures used for experience learning.

5.3.1. Supervised Learning and Loss Function Definition

The prior experience about return and risk values is represented by a NN trained using super-

vised learning. The training data set Dtrain consists of experience tuples

e(o) =
(
(ii, i1, i2, . . . , iN−i )︸ ︷︷ ︸

NN input features

, (5.2)

(q1, q2, . . . , qWi )︸ ︷︷ ︸
Return action values

, (5.3)

(ρ1
env, ρ2

env, . . . , ρ
Wi
env)︸ ︷︷ ︸

Envelope violation risks

, (5.4)

(ρ1
col, ρ2

col, . . . , ρ
Wi
col)︸ ︷︷ ︸

Collision violation risks

)
(5.5)

which contain 1) the agent-specific neural network input features extracted from state o and 2)

the action value estimates for the three value types, the return values, the envelope violation risks

and the collision violation risks which are represented individually for each of the Wi = |Ai|
ego actions. The creation of the training data is explained in Sec. 5.4.

The value function network gv predicts all three value types

gv(ii, i1, i2, . . . , iN−i )→
[
Qprior

R , ρ
prior
env , ρ

prior
col

]
(5.6)

based on the NN input features. The supervised training of the NN uses maximum log-likelihood

estimation and stochastic gradient descent over batches sampled from the training data set [261].

Specifically, the training applies a mean squared error loss MSE(p, q) = 1
N ∑N

i=0(p(i)− q(i))2

calculated between the outputted return action values Qprior
R , envelope violation action risks

ρ
prior
env and collision action risks ρ

prior
col , and the respective value information in the experience
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tuple, (q1, q2, . . . , qWi ), (ρ1
env, ρ2

env, . . . , ρ
Wi
env) and (ρ1

col, ρ2
col, . . . , ρ

Wi
col).

5.3.2. Neural Network Input Features

A large body of work exists on the definition of appropriate neural network feature represen-

tations encoding traffic environments. Commonly included features are the absolute state of

the ego vehicle and relative states to other vehicles [134, 144]. Position information is either

explicitly encoded using separate features [134, 144] or implicitly using a grid-based environ-

ment representation [141, 145]. Generalizing to different maps requires features that represent

lane and road information [141]. Relational [141] or graph-based representations [166] aim at

better generalization. Since there is a trade-off in experience learning between achieving a low

inference time of the neural network and good generalization for states not in the training

data, the feature representation defined in the following relies on absolute and relative state

properties. Graph-based and grid-based features require specific neural network architectures,

increasing inference time. The influence of architecture on inference time is further discussed in

the following Sec. 5.3.3.

The RC-RSBG planner employs a belief-based prediction of other traffic participants, also

suggesting to condition the prediction of prior experiences onto belief information. Though

adding beliefs can increase the accuracy of learned experiences, generalization is impeded since

adding beliefs increases the size of the NN input space. For instance, given a hypotheses set

size of K = 16 and considering N−i = 4 other agents in the input representation, leads to an

additional number of K · N−i = 64 input features to represent all belief information. Taking

beliefs as neural network input features thus rather worsens the prediction capability due to the

curse of dimensionality. Instead of using belief information, the uncertainty over the behavior of

other drivers is thus incorporated into the data generation process presented in Sec. 5.4.

Therefore, the input of the neural networks consists of a non-belief-based feature representa-

tion extracted from predicted environment state ot. The ego agent features are defined as

ii = (si, di, αF
i , vellon

i , vellat
i , lanei) (5.7)

and consist of the absolute Frenet state with si and di being the longitudinal and lateral co-

ordinates, and vellon
i and vellat

i , being the longitudinal and lateral velocity with respect to the

center line of the ego vehicle’s current lane. Further, the representation includes the orientation

αF
i with respect to the center line and information about the current lane with lanei being a lane

index. The lateral ego coordinate has a positive sign when being on the left side of the center

line in travel direction of the lane and a negative sign on the opposite side. The lateral velocity

is positive when the ego vehicle steers from right to left in driving direction and negative when

steering from left to right.

The representation of other agents includes the differences between the Frenet coordinates

and velocities of the respective agent j and the ego vehicle obtained with respect to the ego

center line:

ij = (∆sj, ∆dj, ∆vlon
j , ∆vlat

j ) (5.8)
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Figure 5.1.: Extraction of neural network input features from environment states.

The coordinate differences are calculated between the closest points of the ego and other vehicles’

shapes, thereby also considering the shape orientations. If an overlap of the shapes in either

longitudinal or lateral direction exists, the respective coordinate is zeroed.

The extraction of features is visualized in Fig. 5.1. All features are normalized to the range

[-1.0, 1.0] before being passed to the neural network.

5.3.3. Compromising Generalization and Inference Time in Experience
Learning

The inference of the neural network gv, i.e., a full forward pass through the network given a

feature vector as input, occurs at each initialization of a newly expanded node in the RC-RSBG

planner. Since the total available search time is limited, the inference time restricts the num-

ber of achievable iterations. On the other hand, a higher inference time, i.e., a lower number

of iterations, can be acceptable if the prior experience significantly improves exploration. This

compromise must be appropriately considered when defining a neural network architecture for

gv. In the field of autonomous driving, classical network architectures used to predict behavior

policies and action values in, e.g., reinforcement, experience, or imitation learning, can be decom-

posed into layers processing the input representation to generate an intermediate representation,

and output layers generating the policy and value information. Input representations mostly

consist of either fully connected layers [134, 144] or convolutional layers processing grid features

[142, 143, 262] or separately convoluting individual agent features [171]. The output processing

mostly consists of fully connected layers [134, 142–144] or head networks to separately predict
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Figure 5.2.: Inference times and the number of network parameters for characteristic neural network archi-
tectures for experience-learning. For the application of experience learning with single batch evaluations
on a CPU, a larger fully connected network (“FCNLarge”) is superior to architectures with additional head
networks (suffix “Head”) and convolutional input processing (prefix “CNN”) regarding inference time and
number of available trainable parameters.

values and policies [171].

The suitability of different architectures for experience learning is evaluated in the following

by comparing inference times and the number of trainable parameters for four types of neural

network architectures*. They all represent the value network gv, yet, each has a specific archi-

tectural characteristic. The input dimensions are set according to the feature definitions of the

previous sections. The input space consists of 6 ego features and 4× 4 other agent features. The

network predicts three value functions, which yields for an action space of size 8, a total number

of 3× 8 = 24 linear network outputs. Specifically, the evaluation compares the architectures

• FCNSmall/FCNLarge: Fully connected network with 3× 64 (Small) or 3× 128 (Large)

ReLU layers.

• FCNHead: Equal to FCNLarge except it adds three separate head networks with 2× 16

fully connected ReLU layers to separately process action-value functions.

• CNNHead: Equal to the FCNHead with convolutional processing of other agents’ input

features using two convolutional layers of size 32. The architecture is related to [171].

The inference is performed using the C++ CPU-Pytorch-API v1.9.0 on an Intel 3.2 Ghz CPU with

computations restricted to a single core. The inference times are averaged over 10000 network

passes with uniformly drawn input data in the range 0 to 1. The results are depicted in Fig. 5.2.

The inference times of fully connected architectures are significantly lower. Adding separate

head networks at least doubles the inference time. Adding convolutions requires at least three

times the inference time given by the fully connected architectures. It seems that single batch

evaluation of fully connected networks on CPUs† better benefits from hardware optimizations

*The architectures are based on the variants developed within the supervised thesis [263].
†GPU computation would require a multi-threaded implementation queuing newly explored states, which are then

processed in batches. These implementations are reasonable in applications without strict computational limits, e.g.,
in Game playing [170]. Yet, at a low computational budget, batch processing may waste time in filling the queue
without guiding exploration.
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than more complex architectures though having to process a more significant number of param-

eters. The minor difference in inference time between FCNSmall to FCNLarge underlines the

benefits of hardware optimization, given that FCNSmall has around one fourth of the parameters.

Overall, an increase in the number of available trainable parameters should, in theory, allow

generalizing better assuming an optimal training process. Therefore, the low inference time of

the FCNs and a large number of trainable parameters make these kinds of architectures superior

for the application of learning experiences. The architecture FCNLarge is, therefore, chosen to

represent the value network gv.

5.4. Collecting Exploration-Distribution-Aligned Offline

Experiences

This section presents an offline data collection process for supervised learning of experiences

to achieve equal distributions over environment states during offline training and online explo-

ration.

The principle of likelihood maximization in supervised learning relies on the training data

Dtrain being similarly distributed as the validation data Donline confronted with during ap-

plication [261]. This requirement is fulfilled in the context of experience learning by ensuring

that

ftrain
!≈ fonline. (5.9)

The states in the training data should be similarly distributed as the states for which an experi-

ence is inferred during online planning. The exploration distribution fonline is a combination of

the distribution over environment states st ∼ fenv visited during online planning and interacting

with the environment, and the distribution of predicted search states o′ ∼ fexplore(·|ot) which is

conditioned on the current observation ot.

Thereby, the environment state st = (st
i , st

1, st
2 . . . , st

N−i
) consists of the agent states st

j = (ot
j , Bt

j).

As defined in Sec. 3.2.1, the observation states ot
j comprise the observable dynamic properties of

an agent. The behavior spaces Bt
j are estimated using belief tracking. As discussed in Sec. 5.3.2

belief information is not part of the neural network input representation. Instead, by varying Bt
j

in the set of simulated states st
j in the generated dataset, the distribution over unknown behavior

spaces is modeled and implicitly considered in the learned experiences.

A two step process is proposed to collect a data set Donline approximately distributed according

to fonline:

• Distribution Approximation: Sec. 5.4.1 presents a sampling-based process to obtain a

collection of fully observable states approximately distributed according to fonline.

• Experience Planning: Sec. 5.4.2 explains how a variant of the RC-RSBG planner exploits

full observability of states to obtain accurate return value, envelope violation and collision

risk estimates for each collected state.
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Figure 5.3.: Overview of the data generation process. First, to approximate the exploration state distribution
sequential online planning steps are performed for a set of sampled scenarios. Secondly, the visited tree
states are extracted and additional offline planning approximates the value experiences of these states.
Behavior variations are represented in the data set by randomly sampling agent behavior spaces and
behavior states.

The resulting data set is split using percentage ptrain into a training Dtrain and test data set Dtest.

The above steps are detailed in the following and visualized in Fig. 5.3.

5.4.1. Approximating the Online Exploration Distribution

Two sampling processes are interwoven to collect samples approximately distributed according

to fonline. The first process samples scenarios from a scenario distribution. The second performs

sampling-based online planning steps within these scenarios. The set of all expanded tree states

79



5. Experience-Based and Parallelized Risk-Constrained Planning

is then approximately distributed according to fonline.

Specifically, the distribution over visited states st ∼ fenv is approximated by sampling multiple

initial scenario states st=0
m ∼ fenv(·|t = 0), m = {1, . . . , M} from a manually defined initial state

distribution. Apart from sampling physical properties, e.g., initial positions and velocities of

vehicles, random subsets of the full behavior space B are sampled as unknown behavior spaces

of other agents Bj (cf. Sec. 3.3). After beginning from the initial scenario state, the ego vehicle

repeatedly performs belief updates with subsequent RC-RSBG planning steps. The planner

thereby applies a fixed number of search iterations Ncol
iters in each planning step. Given the

planned action, the simulation proceeds to the next environment state st
m until reaching the

terminal criterion of the scenario, e.g., the goal or a maximum number of steps NS. Uncertainty in

the behavior of other traffic participants is simulated by letting them sample a behavior state from

their behavior space in each time step and then choose an action according to the hypothetical

policy. This generates around M · NS visited state samples approximately distributed according

to fenv. Note that each state st
m also includes information about behavioral variations in form of

the agents’ behavior spaces Bt
j .

After a planning step in state st
m, the expanded states are retrieved from the MCTS search

tree. The expanded and visited states of all scenarios form together with the behavior spaces

of other agents given from st
m, a collection of fully observable states S col = {st,l,m}, st,l,m =

(ot,l,m, B1, . . . , BN−i
), 0 ≤ t ≤ NS, l ∈ {1, . . . ,Ncol

iters}, m ∈ {1, . . . , M}. The tree state expanded in

iteration l during planning for visited environment state st
m is denoted with ot,l,m.

The combination of scenario sampling and planning can be considered as marginalizing the

conditional dependence on the environment states out of the exploration distribution:

fonline(o) =
∫

O
fexplore(o|o′) fenv(o′)do′. (5.10)

With this simplified consideration, the collected set of states S col can be seen as being approxi-

mately distributed according to fonline.

5.4.2. Collecting Experiences With Offline Planning

For each state st,l,m in the set of collected states S col , value experiences are obtained by applying a

second offline planning step. Given that the collected states st,l,m include the true behavior spaces

of other participants, a variant of the RC-RSBG planner is used predicting other participants

using their true behaviors πj. After planning for Nest
iters iterations, the return and violation risk

values, QR(⟨ot,l,m⟩, ai), ρenv(⟨ot,l,m⟩, ai) and ρcol(⟨ot,l,m⟩, ai) for all ai ∈ Ai are extracted at the root

node. Together with the NN input features of the observable state ot,l,m within st,l,m this defines

an experience tuple according to Sec. 5.3.1.

As motivated in Sec. 5.3.2, the input representation of the NN used for experience prediction

excludes belief information. Nevertheless, the generated experiences encode uncertainty about

the behavior variations as outlined in the following. The set of collected states likely contains

tuples s and s′ with similar observations (o ≈ o′ : o ∈ s, o′ ∈ s′), but differing behavior spaces

of other participants (Bj ̸= B′j : Bj ∈ s, B′j ∈ s′). Therefore, experiences are generated for
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differing behavior of another participant at near equal observed states. In the training process,

likelihood maximization results in learning the expected value over the variations in behavior.

This approach serves as a meaningful approximation to an eventually more accurate but tedious

training and inference of experiences integrating belief information.

There are various parameters to adjust in the data generation process. The parameters NS

and M affect the size of the dataset. Choosing a higher number of initial states M and a lower

number of search iterations Ncol
iters more correctly approximates the environment distribution. In

contrast, choosing a larger number of iterations leads to a more accurate approximation of the

exploration distribution. The number of iterations for calculating the experiences is in general

larger than the number of iterations to collect states, Nest
iters > Ncol

iters since the parameter Nest
iters

tunes the accuracy of the estimates.

5.5. Parallelized Implementation of Risk-Constrained Planning

Parallelized planning implementations use multiple threads or cores to perform the planning

task concurrently, which is especially meaningful in sampling-based planning approaches such

as MCTS. Parallelization of the RC-RSBG planner can be employed in addition to value-guided

exploration to improve online planning capability further.

Several approaches exist to parallelize the implementations of MCTS. An overview is given

in [159]. In root-parallelization, each thread runs a separate search on an individual tree.

After searches have finished, the root statistics are averaged to extract the final plan. Leaf-

parallelization applies separate threads to obtain a more accurate roll-out estimate. In tree-

parallelization, a single search tree is shared among threads. Mutex-based locking mechanisms

are required to avoid inconsistency in the node statistics due to parallel updates. There exist also

tree-parallelization variants with a lock-free mechanism [264] which require specifically adapted

implementations.

Overall, the scalability of parallel implementations to a large number of threads is limited as,

e.g., analyzed for gameplay in [265]. In the case of tree- and leaf-parallelization, available search

time is wasted when waiting for other threads to finish their roll-out task or to unlock mutexes.

Root-parallelization avoids such computational overhead allowing to spend all available com-

putational resources on actual planning. This efficiency is beneficial in applications of online

planning for AVs.

However, root-parallelization suffers from degradation of the averaged plan, as explained in

the following. It is not straightforward to tune the amount of exploration when applying root

parallelization. When limiting the search time available to each thread, a sufficient search depth

is only achieved by reducing exploration. Reduced exploration can lead to each thread finding

only a locally optimal root policy. Averaging these policies’ action returns to obtain the final

policy does not necessarily yield a more optimal plan. Rather the resulting policy can become

suboptimal. An example in the context of interactive planning for AVs is as follows. One MCTS

primarily explored goal states, e.g., reaching the target lane. Its resulting policy thus represents

a goal-driven plan. Another MCTS explored collision states. Its resulting policy thus encodes
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passive driving. If the averaged policy passively tries to be goal-directed, it may be more unsafe

than the individual policies.

Additional information in a multi-objective planning formulation can potentially overcome

the degradation with root-parallelization. Therefore, it is promising to analyze how a root-

parallelized variant of the RC-RSBG planner performs under limited search time. It uses Nth

parallel threads each running an RC-RSBG planner. Each thread t provides an estimate of

return values, envelope violation risks and collision violation risks, Qt
R(⟨ot⟩, ai), ρtenv(⟨ot⟩, ai)

and ρtcol(⟨ot⟩, ai) for all ai ∈ Ai extracted from the root node ⟨ot⟩ after its search has finished.

After calculating action-wise the mean over the root node estimates of each thread

QR(⟨ot⟩, ai)← 1/Nth ∑
∀t

Qt
R(⟨ot⟩, ai)

ρenv(⟨ot⟩, ai)← 1/Nth ∑
∀t

ρtenv(⟨ot⟩, ai)

ρcol(⟨ot⟩, ai)← 1/Nth ∑
∀t

ρtcol(⟨ot⟩, ai)

(5.11)

the final planned stochastic policy is obtained by applying Alg. 10 to the mean estimates QR,

ρenv and ρcol.
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6
Evaluation

This chapter contributes an extensive simulative evaluation of the Robust Stochastic Bayesian

Game (RSBG) and Risk-Constrained Robust Stochastic Bayesian Game (RC-RSBG) interactive

planners. It starts with a description of the experiment setup in Sec. 6.1. The setup is based on

the OpenSource benchmarking framework BARK contributed alongside this thesis. The section

presents scenarios, baseline planners, and a concept to systematically benchmark interactive

planning under unknown microscopic behavior variations of other participants. Each of the

following sections then evaluates contributions of one of Chapters 3, 4, and 5. First, the benefits

of interactive and robustness-based planning in behavior spaces with the RSBG planner are

analyzed in Sec. 6.2. Sec. 6.3 evaluates the interpretability of the risk formalism integrated

into the RC-RSBG planner. Finally, the benefits of experience-based parallelized planning are

investigated in Sec. 6.4. Parts of this chapter are based on previously published work in [37, 173,

266].

6.1. Experiment Setup

The experiment setup is based on the simulation framework BARK, an acronym for Behavior

BenchmARK. BARK was developed in the context of this thesis as joint work with colleagues

and is available as open-source software*. The next section highlights some of the core features

of BARK as published in [266]. Sec. 6.1.2 presents the evaluation scenarios. The simulation of

inaccurate microscopic behavior prediction is discussed in Sec. 6.1.3 followed by a description

of the baseline interactive planners in Sec. 6.1.4.

6.1.1. Benchmarking Interactive Planning using BARK

BARK provides a software framework for the systematic evaluation and improvement of behav-

ior models. BARK defines the behavior Bi
t of an agent i at time t as its desired future sequence of

physical states encoding the agent’s strategy to reach a short-term goal, e.g., changing lane. A

behavior may deviate from the executed motion in the environment due to errors in trajectory

*https://github.com/bark-simulator/bark/
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Bi
k ←Agent::Behave(ObservedWorldi

k)

ei
k+1 ← Agent::Execute(Bi

k)

ObservedWorldi
k

World::Step(∆t)

Agenti

e1,...,N
k+1

worldk

worldk+1

Benchmark Runner

Figure 6.1.: BARK’s simulation loop is handled by the benchmark runner holding the current world state at
discrete world time k. In each iteration, the benchmark runner calls World::Step(∆t). This function generates
an ObservedWorld for each agent and passes it to the agent’s internal BehaviorModel which generates a
behavior Bi

k. The behavior is passed to the agent’s ExecutionModel calculating the next executed agent state
ei

k+1. The next world state at time tk+1 = tk + ∆t integrates the updated agent states for all agents N and
is returned to the Benchmark Runner (graphic from [266], ©2020 IEEE).

tracking or environmental influences. The core idea of BARK is to apply the same behavior

model implementation to

1. plan the ego-motion of the Autonomous Vehicle (AV),

2. predict the motion of other, potentially human-driven, vehicles,

3. forward simulate an agent in a purely virtual environment.

For example, a traffic model, such as the Intelligent Driver Model (IDM) [186] can, on the one

hand, be used to populate a simulation with agents but also as a generative model to predict

other agents’ motion from the viewpoint of the ego vehicle. Experiments in BARK shall be fully

reproducible, independent of the frequency at which the simulation runs. To ensure this, BARK

models the world as a multi-agent system with agents performing simultaneous movements in

the simulated world. At fixed, discrete world time-steps, each agent plans its behavior using an

agent-specific behavior model, which only has access to the agent’s observed world but not the

simulator’s simulated world. The concept of simultaneous movement ensures that a behavior

model can plan based on reproducible input information. It avoids timing artifacts that may

occur in message-passing, middleware-based simulation architectures. Fig. 6.1 visualizes the

core concept of BARK’s simulation model.

BARK uses behavior models not only for behavior planning but also for predicting other

agents in the world. For example, the observed world of each planner derives from the actual

world. All agents in this observed world behave according to their prediction configuration.

Fig. 6.2 visualizes BARK’s observed world model. The concept of an observed world allows

configuring the planner’s prediction differently from the actual environment to systematically

examine planning failures caused by inaccurate internal predictions of other traffic participants.

The following sections take a more detailed look at the BARK components.
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ObservedWorld0

ObservedWorld1

World

Observe(Agent1)

Observe(Agent0)

PerturbationsAgent Observing Agent

Figure 6.2.: Each agent in BARK uses an observed world for defining its behavior. In each observed
world, there is one observing agent (depicted in blue) from whose perspective the observation is being
made. Perturbations can be introduced by, e.g., exchanging the other agents’ behavior models and model
parameters in the observed world (graphic from [266], ©2020 IEEE).

World and ObservedWorld Model The BARK World model contains the map, all objects, and

agents. Static and dynamic objects are represented in the form of object lists. The ObservedWorld

model, on the other hand, reflects the world that an agent perceives. BARK’s ObservedWorld

model accounts for the fact that the observing agent has no access to the actual (world) behavior

model of other agents. BARK can model different degrees of observability by either restricting

access to the world behavior model or by only perturbing the parameters of the world behavior

model.

Agent Models As shown in Fig. 6.1, an agent i in BARK provides two main interfaces:

• Bi
k ←Agent::Behave(ObservedWorldi

k): calls the agent-specific behavior model, which gener-

ates a behavior trajectory Bi
k = (bi

1, bi
2, . . . , bi

L), being a sequence of desired future physical

agent states bi
l = (t, x, y, θ, v) between current simulation world time tk and at least the

end time of the simultaneous movement bi
L(t) ≥ tk + ∆t. The time discretization of the

behavior trajectory can be arbitrary.

• ei
k+1 ← Agent::Execute(Bi

k): calls the agent-specific execution model determining the agent’s

next state ei
k+1 in the world based on the generated behavior trajectory Bi

k. An additional

execution model allows to systematically examine the robustness of behavior planners

against execution errors. This is not the focus of this thesis (cf. Sec. 3.2.4) and thus perfect

execution is simulated using BARK’s interpolation-based execution model.

To implement these two main interfaces, an agent holds the following additional agent-specific

information:

• GoalDefinition: BARK considers agents to be goal-driven. It provides an abstract goal

specification with various inherited agent goals, e.g., geometric goal regions or lane-based

goals. Each agent contains a single goal definition instance.
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• RoadCorridor: When an agent is initialized, it computes the set of roads and corresponding

lanes required to reach its goal. The topology information on how roads are connected

is extracted from the map. Also, the geometric information of the map, such as lane

boundaries, is being discretized. This precomputation avoids computational overhead

during simulation.

• Polygon: A 2D polygon defines the shape of the agent.

Scenario and Scenario Generation A BARK scenario contains a list of agents with their initial

states, behavior, and execution models and a goal definition for each agent. Further, it contains

a map file in the OpenDrive† format. Behavior benchmarking is supported by specifying for

each scenario which agent is considered the ‘controlled’ agent during the simulation. A BARK

scenario does not explicitly specify how agents will behave over time, e.g., by predefined maneu-

vers or trajectories. This concept allows simulating interactive scenarios in which other agents

react to the controlled agent’s behavior.

BARK provides a scenario generation module for configuring sets of scenarios. Different

scenario sets can be constructed specifying the distribution of agent states, their behavior and

execution models, and goal definitions.

Benchmarking For the systematic development of behavior models, BARK supports large-

scale evaluation of behavior models over a collection of scenario sets contained in a benchmarking

database. Serializing the database before starting benchmarks ensures that scenarios remain

reproducible across different systems‡.

BARK provides a BenchmarkRunner to evaluate specific behavior models with different pa-

rameter configurations over the entire benchmarking database. The evaluation is based on an

abstract evaluator interface calculating a Boolean, integer, or real-valued metric based on the

current simulation world state. Evaluators can be used not only for benchmarking but also

internally by the behavior models, e.g., for the reward calculation in search or reinforcement

learning-based planners.

The BenchmarkRunner runs each scenario of the database evaluating world states of the sim-

ulation. It terminates the scenario run based on criteria defined with respect to the evaluators.

The quantitative results are dumped into a database allowing to query evaluation results for

individual scenarios and parameter settings. BARK also provides a distributed benchmark runner

to perform evaluations in parallel on multiple cores and clusters. Distributed processing is es-

pecially beneficial for computationally expensive planning algorithms such as the variants of

Simultaneous-Move MCTS (SM-MCTS) presented in this thesis.

Software Design BARK has a monolithic, single-threaded core written in C++. The core of

BARK is wrapped in Python, including pickling support for all C++ types. Scenario generation

†http://www.opendrive.org/
‡BARK supports adjusting random seeds in the scenario generation. However, differing implementations and versions

of pseudorandom number generators across systems may yield differing scenarios using the same random seed.
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and benchmarking, and service methods for parameter handling and visualization are imple-

mented in Python. A simulation cycle is entirely deterministic, which enables the simulation

and experiments to be reproducible and is essential to conduct systematic research in interactive

planning.

6.1.2. Evaluation Scenarios

This thesis proposes an interpretable risk concept for interactive planning. The main application

and motivation of the approach are to navigate efficiently in low speed (30 km h−1 to 50 km h−1),

low severity, dense traffic. The following two scenarios have complementary difficulties and thus

serve well to analyze the interactive planners proposed in this thesis:

• Freeway enter: In a double merge, the ego vehicle wants to enter the freeway on the left

occupied lane. Other vehicles drive only on the left lane. The merging scenario evaluates

if the interactive planner appropriately coordinates both lateral and longitudinal actions

simultaneously. The number of traffic participants to consider during planning is low,

and it is mostly sufficient to consider two homotopies, merging behind or before another

car. The scenario successfully terminates when the ego vehicle is close to and oriented

along the centerline of the left lane with the ego velocity being larger than 18 km h−1. The

allowed duration to successfully change the lane is Tmax = 6.0 s.

• Left turn: The ego vehicle wants to turn left from a side into the main road and has to cross

two occupied lanes. The left turn scenario evaluates if the interactive planner predicts a

notable gap between vehicles coming from both sides. The amount of homotopies, i.e., gaps

to take, is generally much larger than for freeway enter. More vehicles must be considered,

which increases exploration complexity. However, the ego agent chooses from a reduced

action set with only longitudinal accelerations in this scenario. The scenario successfully

terminates when the ego vehicle passes the turning lane with the ego velocity being larger

than 18 km h−1. The allowed duration to successfully perform the left turn is Tmax = 10.0 s.

The simulation applies a step time of ∆t = τsc = 0.2 s for both scenario types. The scenario

properties, e.g., initial distances between vehicles and velocities, are sampled uniformly. Ad-

justing the sampling ranges results in varying types of traffic densities and difficulties of the

scenarios. The parameters are given in App. A.5. Introducing randomness in behavior into the

scenarios is explained in the following section.

6.1.3. Benchmarking Effects of Inaccurate Microscopic Behavior Prediction

By using behavior models both for simulation and prediction, BARK allows to systematically

analyze how inaccurate predictions affect the performance of the RSBG and RC-RSBG planners.

Specifically, inaccurate predictions are modeled in simulation by calling the BARK simulation

function World : :Step(∆t) in the

1. BenchmarkRunner to progress to the next scenario state with ∆t = τsc, and in the
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2. EnvironmentMove function used in expansion and rollout steps (cf. Alg. 2 and Alg. 6)

to predict the next state with ∆t = τpredict. In this case, multiple forms of predictions

are modeled by replacing the behavior models of observed agents before the call to

World : :Step(τpredict):

• Macro-Actions: The agent performs a macro action, e.g., lane changing or constant

acceleration, selected from a set of predefined actions. The ego behavior is always of

this form. For other agents, this behavior is used in the case of the Cooperative baseline

defined in Sec. 6.1.4.

• Full Information: The next agent state is predicted with the behavior model used in

simulation as in case 1). This approach models prediction with full information about

the behavior of other participants.

• Hypotheses-based: The next agent state is predicted with a behavior hypothesis of

the respective agent. This approach simulates interactive prediction using stochastic

behavior hypotheses.

The replacement of behavior models does not affect the prediction’s dynamic, geometric, or other

properties. Thus, this approach allows to systematically analyze effects of inaccurate prediction of

only the behavior of other participants.

Inaccurate prediction of intra- and inter-driver behavior is analyzed by determining a single

behavior model for simulation, which also defines the hypothetical policy π∗ of the behavior

hypotheses. The simulation then uses the full range of model parameters to simulate variability

in driving behavior. The hypotheses-based prediction, in turn, is defined only over a reduced

range of parameters. Specifically, simulation and prediction use the IDM (cf. App. A.1). In the

simulation, microscopic variations are simulated using two types of sampling processes applied

1) during the scenario generation and 2) during the simulation as follows:

• Inter-driver variations: Boundaries of behavior variations [bl
j,min, bl

j,max], l ∈ {1, . . . , 5}
are sampled from uniform distributions differently for each agent and scenario (Bj ⊆
B∗5D) from a 5-dimensional true behavior space B∗5D defined over the IDM parameters.

Thus, the range of allowed IDM parameters is different for all agents and scenarios. The

parameters minimum and maximum boundary widths ∆min/∆max specify the minimum

and maximum allowed widths of the sampled parameter ranges. This avoids unrealistic

large intra-driver variations simulated according to the following concept.

• Intra-driver variations: In each simulation step, a true behavior state b is sampled uni-

formly from the boundaries of behavior variations b ∼ U (Bj). Thus, the true behavior

state, i.e., the parameters of the IDM of other agents, constantly change during simulation.

The ego agent can not observe these changing behavior states.

This sampling concept simulates the relationship of behavior spaces and behavior state given

by the causal model of behavior spaces (cf. Sec. 3.3.2). The prediction of the RC-RSBG planner

is then hypotheses-based. It uses the same behavior model as in simulation, i.e., the IDM to
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B∗5D B1D,Head. B1D,Vel. B2D

Param bl [bl
min,bl

max] ∆min/∆max

vdesired [m/s] see App. A.5 0.5 / 1.0 9.5 [5.0, 15.0] [5.0, 15.0]
Tdesired [s] [0.5, 2.0] 0.1 / 0.3 [0.0, 4.0] 1.25 [0.0, 4.0]
smin [m] see App. A.5 0.1 / 0.5 1.25 1.25 1.25
v̇factor [m/s2] [1.5, 2.0] 0.1 / 0.3 1.75 1.75 1.75
v̇comft [m/s2] [1.5, 2.0] 0.1 / 0.3 1.75 1.75 1.75

Table 6.1.: Boundaries of the simulated true behavior space B∗5D, the two 1-dimensional full behavior
spaces B1D,Head. and B1D,Vel. defined over the single IDM parameter Tdesired and vdesired respectively, and
the 2-dimensional variant B2D defined over both parameters.

predict other agents, yet, with the full behavior space B being defined only over a subset of the

parameters of the simulated behavior space B∗5D.

Sec. 3.3.1 motivates the definition of behavior spaces over a subset of parameters of classical

driving models, e.g., the IDM and focuses thereby on the desired time headway Tdesired. Another

interesting parameter in the IDM applicable for designing a behavior space is the desired velocity

vdesired. The evaluation considers three types of full behavior spaces, two 1-dimensional variants

B1D,Head. and B1D,Vel. defined over the single IDM parameter Tdesired and vdesired respectively,

and a 2-dimensional variant B2D defined over both parameters. The definitions of the simulated

behavior space and the 1D and 2D full behavior spaces are given in Tab. 6.1. Thereby, the

remaining parameters of the IDM are set experimentally around the respective mean parameter

range of the simulated behavior space. Preliminary experiments showed that the planning

performance is not greatly affected when keeping these parameters within meaningful bounds.

6.1.4. Setup of RSBG, RC-RSBG and Baseline Planners

The evaluation compares the RSBG and RC-RSBG planner to several baseline interactive plan-

ners:

• SBG is similar to RSBG apart from applying random action selection among Aj(⟨Ho⟩, θ′j)

in Alg. 3. It represents SM-MCTS approaches solving the Stochastic Bayesian Game (SBG)

[184, 187] with hypotheses defined over behavior spaces.

• MDP does not incorporate belief information over hypotheses. Instead it uses a single

hypothesis, K = 1, over the full behavior space, B1 ≡ B , to predict other participants with

random action selection in Alg. 3. Since it models stochastic transitions independent of

prior states, this planner type is referred to as Markov Decision Process (MDP).

• RMDP uses a single hypothesis, B1 ≡ B , similar to the MDP baseline, with worst-case

action selection for other agents. Since it models stochastic transitions independent of prior

states, yet, selects the transition function parameters, i.e., the behavior states, provoking

worst-case outcome, it is referred to as Robust Markov Decision Process (RMDP) (cf. 3.4.3).

• IntentSBG uses two intent-based behavior hypothesis, θ0 = “yield” and θ1 = “no yield”

(K = 2). These apply an IDM model. For “give way”, the model is parameterized to take

into account vehicles on other lanes as front vehicles. For “take way”, it only considers
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vehicles touching the own lane. Microscopic variations within the intents are defined

using sampling from the full behavior space B1D,Head. defined in Sec. 6.1.3. Belief tracking

employs the product posterior.

• Cooperative selects actions for ego and other agents with UCT thereby applying a combined

cooperative reward function. Details are given in the explanation of the reward parameter-

ization below. This baseline shall model cooperative interactive planning using SM-MCTS

as presented in [52, 53, 114].

• FullInfo variants, e.g., RC-RSBGFullInfo, are equal to SBG, RSBG, respectively RC-RSBG

planners, but have access to the actual behavior policies πj to apply these during prediction.

These baselines estimate an upper bound on the performance in the ideal, unrealizable

case of having full knowledge over the unknown behavior spaces Bj of other participants.

The following paragraphs give details on applied action spaces, reward settings, and other

parameters employed in the evaluation.

Action Space

Planners RSBG, MDP, IntentSBG, RMDP, SBGFullInfo and RSBGFullInfo use UCT action selec-

tion for the ego agent (cf. Alg. 4), the cooperative approach additionally for the other agents. The

planners RC-RSBG and RC-RSBGFullInfo apply risk-constrained planning with risk-constrained

ego action selection (cf. Sec. 4.3).

All planners use an equal ego action space. For the freeway scenario, it consists of the macro

actions lane changing, lane keeping at constant accelerations, v̇i={−5,−2, 0, 2, 5}[m/s2] and

gap keeping based on the IDM. For the left turn scenario, it consists of only the longitudinal

accelerations v̇i={−5, 1, 5}[m/s2]. The cooperative approach employs the respective action space

also to predict the other agents.

Envelope and Collision Indicators

The parameters of the envelope violation indicator (cf. Sec. 4.5) are set to accmax, ego = 5 m s−2

and accmax, other = 5 m s−2. To be able to draw parallels between the human violation risk

(cf. Sec. 4.1.1) and the RC-RSBG planning results, the response times are set to Tego, react = 1 s

and Tother, react = 1 s which are common response times of human drivers.

The evaluations of the single-objective planners, e.g., the RSBG planner, in Sec. 6.2 apply an

indicator fcollision, that indicates a collision when another vehicle overlaps with a static safety

boundary of 0.5 m around the ego vehicle. By introducing a static safety boundary, the analysis

follows approaches that introduce safety by negatively rewarding, not the collision, but the

violation of a safety margin. This indicator is applied for all planners evaluated in Sec. 6.2. When

fcollision evaluates to true for a newly expanded tree state, i.e., the state violates the static safety

margin, the state is assumed to be terminal.

In the evaluation of risk-constrained planning in Sec. 6.3, fcollision indicates actual collisions.

Switching from the detection of static safety margin violations to a detection of an actual collision
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in the planning evaluations is important to analyze if the weak constraint on the collision risk

(cf. Sec. 4.1.3) is sufficient. It shall serve to resolve ambiguities while constraining the envelope

violation risk can target safety. This indicator is applied for all planners evaluated in Sec. 6.3

and 6.4.

Reward Setting

The RC-RSBG and RC-RSBGFullInfo planners apply the simplistic reward function

ui(o, a) = 1.0 · GoalReached(o′) (6.1)

which gives a positive reward when the ego agent transitions into a goal state o′ when joint

action a is executed by the agents in observation state o. The RC-RSBG planners also support

more complex reward functions, e.g., based on deviations from the desired velocity. Though such

reward functions implicitly influence the microscopic nature of the planned behavior, they can

be helpful to improve exploration, which is impeded using a sparse goal-based reward setting.

Nevertheless, the simplistic reward function is applied to avoid that results are influenced by

the reward parameterization when evaluating risk-constrained planning.

The single-objective planners apply one of the following two reward functions:

• The reward function

ui(o, a) = 0.1 · GoalReached(o′)− 1.0 · fcollision(o′) (6.2)

considers only collisions and goal reaching and is applied for the evaluations in Sec. 6.2.

• A reward function modeling risk-awareness is defined as

ui(o, a) = 0.1 · GoalReached(o′)− 0.1 ·
fenvelope(o′) · τpredict

β · TPlan
− 1.0 · fcollision(o′). (6.3)

It is designed such that it fully erases the goal reward when the predicted envelope vio-

lation duration ∑∀t′≤TPlan
fenvelope(·)τpredict within the planning horizon TPlan, exceeds the

allowed violation β · TPlan. It is applied in the evaluations of risk-constrained planning in

Sec. 6.3 and Sec. 6.4.

The Cooperative planner applies a global reward function uglob,j(o, a) combining the agent’s

individual reward uj(o, a) with the other agents’ rewards (including the ego agent), m ̸= j, using

cooperation factor c:

uglob,j(o, a) = 1/N
[
(1− c) · uj(o, a) + c · ∑

∀m ̸=j
um(o, a)

]
(6.4)

Thereby, uj(o, a) and um(o, a) are calculated for the respective agent using one of the previous

defined reward functions. The cooperation factor is set to c = 0.1.
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Other Parameters

All planners use the fundamental prediction duration τa = 0.2 s, a maximum search depth of

dmax = 10 which gives TPlan = ∑dmax−1
d=1 d · τa = 11 s due to the linearly increasing prediction

duration τpredict = d · τa. The number of nearest agents considered during search, is set to

N−i = 3 for the freeway enter and N−i = 6 for the left turn scenario. The parameters of the

histogram approximation are ∆wb = 0.1 m s−2 and Nsamples = 10000. The history length for

sum posterior tracking is set to LH = 20. The IntentRSBG uses a shorter history of LH = 5 to

reduce sensitivity of the product posterior to small likelihood values as discussed in Sec. 6.2.3.

The exploration constant is κ = 1.4 in case of UCT action selection, and κ = 10.0 in case of the

RC-RSBG planner. The filter factor is set to v = 3.5.

6.1.5. Benchmarking Metrics

The evaluation applies the following metrics to compare the performance of the planners.

• Psuc [%]: The percentage of scenario trials the ego vehicle reached the scenario goal within

the allowed simulation time.

• Pcol [%]: The percentage of scenario trials the ego vehicle collided, i.e, the shape of the

vehicles overlap.

• Pstat. safe [%]: The percentage of driven time the indicator fcollision indicated a collision in a

scenario averaged over all trial scenarios. Note that, in Sec. 6.2, Pstat. safe ̸= Pcol due to the

definition of fcollision using a static safe distance boundary.

• Tsuc [s]: The average time to reach the goal for successful trials.

• β∗, [1]: The observed envelope violation risk is the percentage of simulation time the

envelope is violated, β∗ = 1
N∫ ∑∀∫

∑ot∈∫ fenvelope(ot)·τa

L(∫ )·τa
with ot ∈ ∫ giving the simulated states,

L(∫ ) the executed length of the scenario ∫ , and N∫ the total number of scenarios.

• tw [s]: The expected waiting time, tw = ∑∞
k=0(Tmaxk + Tsuc) · (PsucPk

max) defines the ex-

pected time to solve a scenario. The calculation assumes that the ego vehicle encounters

solvable scenarios with probability Psuc and duration Tsuc and unsolvable scenarios with

probability Pmax = 1− Psuc− Pcol with duration equal to the allowed simulation time Tmax.

The metric for a specific evaluation setting is calculated over a fixed set of 200 sampled scenarios.

The collection of scenarios is sampled once and remains equal for a specific evaluation. Though

the benchmarking collects all of the above metrics, each evaluation depicts only the metrics that

reveal the most distinct performance differences.

6.2. Evaluating Behavior-Space- and Robustness-Based Planning

This section evaluates the concepts proposed in Chapter 3. It starts with analyzing the per-

formance of the RSBG planner for different parameters of the hypotheses design process in
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Figure 6.3.: Percentage of successful trials Psuc and static safe distance violations Pstat. safe of the RSBG
planner for different types of behavior spaces and number of hypotheses K. Safe distance violations are
reduced when the behavior space is designed over the relevant behavior parameters of a scenario. The
parameter Tdesired dominates at higher traffic density (freeway enter) whereas at lower traffic density (left
turn) vdesired and Tdesired perform equally.

Sec. 6.2.1. Afterwards, Sec. 6.2.2 evaluates the effectiveness of robustness-based interactive plan-

ning. Finally, Sec. 6.2.3 compares the RSBG and the IntentRSBG planner.

6.2.1. Comparing Hypotheses Design Parameters

The quality of the behavior hypotheses designed according to Sec. 3.3.3 depends on the definition

of the full behavior space B and the numbers of hypotheses K. Thus, the performance of the

RSBG planner is compared for the two scenario types, the behavior spaces defined in Sec. 6.1.3

and varying K ∈ {4, 16, 64} for a fixed number of 10000 search iterations.
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Figure 6.4.: Tracked posterior beliefs over time for variations of behavior space dimension, type and number
of hypothesis in the freeway enter and left turn scenario. A subset of tracked beliefs is shown with matching
belief and vehicle colors. Increased hatch density depicts higher beliefs for the 2D behavior space.

For these different configurations, Fig. 6.3 depicts the percentage of successes and static safe

distance violations. Concerning the success rates, there are no clear performance differences

in both scenarios for different configurations of the hypotheses set, i.e., varying the behavior

space type and the number of hypotheses. Yet, the percentage of static safe distance violations is

nearly doubled for B1D,Vel. compared to B1D,Head. in freeway enter. It slightly increases for B2D
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for K = 4 and K = 64. The left turn scenario does not show these significant differences in static

safe distance violations.

Next, a qualitative analysis of tracked posterior beliefs over time in Fig. 6.4 shall give a deeper

understanding of the cause of the quantitative results. Fig. 6.4a compares beliefs for different

number of hypotheses in the left turn scenario. Regardless of the number of hypotheses K used

to partition the behavior space, the highest tracked posterior beliefs cover equal parts of the

behavior space.

The results support the motivation from Sec. 3.3.4 and show that the sum posterior is helpful

to capture the unknown behavior spaces of other agents by using an Or combination of proba-

bilities. The belief distribution is independent of the number of hypotheses, which may cause

that the success and violation percentages of the RSBG planner only marginally depend on K.

The differences in beliefs for different behavior space types are analyzed for the freeway enter

scenario in Fig. 6.4b. The freeway enter scenario has higher traffic density and smaller distance

between vehicles compared to the left turn scenario. Higher traffic density lets the parameter

Tdesired dominate in the output of the IDM. At time t = 0.8 s shortly before the ego vehicle enters

the left lane the posterior beliefs for B1D,Head. and B1D,Vel. of the green and violet vehicles are

concentrated on small parts of the behavior space. At the time t = 3.4 s the ego vehicle has

entered the left lane and started to interact with the other vehicles. The beliefs of the violet

vehicle with B1D,Head. are distributed towards lower values of Tdesired. In contrast, the beliefs

over vdesired remain concentrated at small parts of the behavior space. Using behavior space

B1D,Head., therefore, allows in this situation to better extract subtle information about the micro-

scopic behavior variations than using B1D,Vel.. Since errors in microscopic prediction can cause

higher safe distance violations, this potentially explains the higher static safe distance violations

obtained with B1D,Vel.. The beliefs for B2D seem to qualitatively reflect the 1D beliefs over B1D,Vel.

and B1D,Head. along the specific dimensions at time t = 0.8 s. A diversification of the beliefs at

time t = 3.4 s as given with B1D,Head. is not observed. Possibly, the additional uncertainty over

vdesired impedes to capture meaningful beliefs over Tdesired. At first glance, it seems that multidi-

mensional behavior spaces better represent microscopic behavior variations due to modeling a

larger set of unknown parameters. However, when keeping the number of hypotheses constant, a

lower resolution results in each behavior space dimension for multidimensional behavior spaces.

The reduction of resolution outweighs the advantages of multidimensional behavior spaces in

addition to certain parameters negatively impacting information capturing.

Overall, the evaluation reveals the benefits of the sum posterior for belief tracking in behavior

spaces and underlines the usefulness of the parameter Tdesired to capture relevant behavior

variations in dense interactive traffic situations supporting the motivation of behavior spaces in

Sec. 3.3.1. The following evaluations choose the 1D behavior space B1D,Head. with K = 16.

6.2.2. Comparing Robustness- and Non-Robustness-Based Exploration

The RSBG introduced in Sec. 3.4 integrates robustness-based optimality to reduce sample-

complexity when predicting continuous behavior variations in interactive planning. This section

evaluates how this criterion improves planning performance in dense interactive traffic.
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Figure 6.5.: Comparison of robustness- and non-robustness-based planning. Robustness-based planners
(RSBG and RSBGFullInfo) sample-efficiently detect worst-case outcomes with respect to the ego reward
function. Detection of worst-case outcomes is more relevant at higher traffic density reducing the percentage
of static safe distance violations in the freeway enter scenario whereas at lower traffic density, differences
to non-robustness-based planners (SBG and SBGFullInfo) are reduced.

First, a quantitative analysis compares the RSBG planner with its non-robustness-based vari-

ant, the SBG planner. The evalation also includes the baselines RSBGFullInfo and SBGFullInfo

to evaluate the benefits of robustness-based planning when predictions are fully accurate. To

investigate sample efficiency the number of search iterations is reduced to 1000. Since the sample

complexity depends on the number of hypotheses K (cf. Sec. 3.4.1 and 3.4.4), the evaluation is

performed for K = 4 and K = 16.

Fig. 6.5 depicts the percentage of successes and static safe distance violations. In freeway

enter, the RSBGFullInfo planner achieves 5%, the RSBG planner around 2% for K = 4 and 1%

for K = 16 less static safe distance violations than the non-robustness-based planners. In left

turn, the FullInfo planners achieve near similar performance. The RSBG also provokes less static

safe distance violations than the SBG planner. These differences indicate that the robustness

criterion helps to detect worst-case outcomes sample-efficiently at a lower iteration number.

In freeway enter for the SBG planner and in left turn for the RSBG planner the static safe

distance violations reduce with increasing K which may be caused due to the dependence of the

sample complexities onto K. Both ORSBG and OSBG exponentially decrease with K with a larger

decrease of OSBG for a fixed number of other agents (cf. Fig. 3.9). However, there is no direct

connection between sample complexity and safe distance violations. The differences in the belief

representation and the exploration characteristic for different hypotheses also affect the overall

planning performance. The left turn scenario has a lower traffic density. Detecting microscopic

variations that lead to a worst-case, unsafe outcome plays a minor role, and a different factor
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Figure 6.6.: Comparison of exploration depths of robustness-based (RSBG) and non-robustness-based
(SBG) planning. Top: Predicted search states of the ego vehicle and selected other agents for RSBG and
SBG planners in specific simulation states. Bottom: Differences between predicted states and current state
for other participants considered in the search at a specific time step for c) left turning and d) freeway
entering.

contributes to the planning performance. Worst-case action selection concerning the ego-reward

also negatively values states avoiding the scenario goal. This explorative behavior results in a

more goal-directed exploration in the left turn scenario, which increases the success rate of the

RSBGFullInfo planner. However, it provokes more static safe distance violations than in freeway

enter.

Next, a qualitative analysis provides further insights into why robustness-based planning helps

predict worst-case outcomes at lower iterations. Fig. 6.6 compares the predicted states within

the search trees of RSBG and SBG planners. The RSBG planner achieves a larger search depth.

It shows larger predicted times ∆t (cf. Fig. 6.6a and 6.6b) and predicted longitudinal velocities

∆v and distances ∆s for other vehicles (cf. Fig. 6.6c and 6.6d). Robustness-based planning allows

for deeper exploration since agents are more likely to repeatedly select the same action during

subsequent search iterations when it is a worst-case action instead of randomly sampling from
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previously expanded actions. These exploration differences qualitatively explain the benefits of

robustness-based planning observed in the previous quantitative analysis.

The analysis reveals that the robustness criterion sample efficiently detects worst-case out-

comes, especially in denser traffic. However, it also suffers from the fundamental problem

of single-objective optimality criteria: It cannot differentiate between the worst-case outcome

“collision” and “not reaching the goal”. These results underline the need for a multi-objective

optimality criterion separately dealing with efficiency and safety. Robustness-based planning

can then help to sample-efficiently plan given such a criterion when considering worst-case

outcomes only for the violation risk (cf. Sec. 4.3.3).

6.2.3. Comparing Behavior-Space and Intent-Based Prediction

Another motivation to apply behavior spaces for prediction is to circumvent the definition

of intents (cf. Sec. 3.3.2). The following evaluation shall compare behavior-space-based and

intent-based prediction in interactive planning. For this, the performance of the RSBG planner

is compared to the IntentRSBG planner for a fixed number of 10000 search iterations. Two

types of simulated reactions of other participants are evaluated which may have different effect

on the planning performances: 1) Other participants do not show any yielding behavior, i.e.,

intents are not simulated for other participants, 2) Other participants show yielding intents with

variations of intents over time. For the latter case, the IDM is extended to simulate the intents it
j ∈

{“give way”, “take way”}. For the intent “give way”, vehicles on other lanes, for the intent “take

way” only vehicles overlapping with the driving corridor are considered as front vehicles. To

simulate variations of intents over time, intents remain fixed for a certain time duration ∆tgive way

and ∆ttake way before switching to the respective other intent. The durations are sampled from

two uniform distributions ∆tgive way ∼ U (2 s, 5 s) for freeway enter and ∆tgive way ∼ U (5 s, 6 s)

for left turn and ∆ttake way ∼ U (1 s, 2 s) for both scenarios.

Fig. 6.7 depicts the percentages of successes and collisions. The RSBG outperforms the

IntentRSBG planner, both in the case “with intent simulation” and “w/o intent simulation”

and in both scenario types. In the case “w/o intent simulation”, it reaches a higher number of

successful trials and provokes equal or fewer collisions. In the case “with intent simulation”,

IntentRSBG can benefit from better prediction and increases its success percentage while, how-

ever, provoking a larger amount of collisions. In contrast, the success percentage is reduced

for the RSBG planner in left turn, while no collisions occur. The decrease of successful trials

in the case “with intent simulation” is due to other vehicles partly blocking the intersection

when “yielding” is active, which is a limitation of the IDM in intersection scenarios. Overall,

these differences reveal that a purely intent-based prediction cannot reliably cope with situa-

tions where other participants do not clearly show a certain intent. Even if other drivers act

according to a simulated intent model, accurately predicting microscopic variations, as given by

behavior-space-based prediction, is of higher importance than correctly detecting and predicting

intents.

Next, a qualitative analysis provides further insights. Fig. 6.8 compares how RSBG and

IntentRSBG solve a freeway entering scenario with simulated intents. In Fig. 6.8a, the beliefs
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Figure 6.7.: Comparison of the performances of the RSBG and IntentRSBG planners evaluated in freeway
enter and left turn scenarios with and w/o simulation intents. Behavior-space-based (RSBG) outperforms
intent-based (IntentRSBG) planning since it enables prediction of microscopic behavior variations being
crucial to solve dense interactive scenarios.

of the RSBG planner for vehicle seven start to shift towards lower values of Tdesired when the

ego vehicle becomes the front vehicle of vehicle seven between scenario times t = 1.6 s and

t = 2.2 s, reflecting how vehicle seven interacts on a microscopic level with the ego vehicle. This

information facilitates completing the scenario at time t = 3.2 s. In contrast, the IntentRSBG

planner models the microscopic behavior of an intent by sampling from the full behavior space

B1D,Head. and is thus not able to adapt quickly to a change in the traffic situation. It waits until

the ambiguity in intents is resolved at time t = 3.2 s to start merging. However, its deficiency in

detecting microscopic variations almost provokes a collision.

Another drawback of intent-based prediction observed during preliminary experiments is its

lack of robustness against inaccurate likelihood functions. The product posterior used to track

beliefs over intents is sensitive to errors in the definition of the stochastic behavior hypotheses. A

low probability of a specific intent within the histories of probabilities maintained for each intent

hypothesis multiplicatively influences the belief at later time steps. Under certain circumstances,

the beliefs of both intents become zero. Such a loss of belief information does not occur with the

sum posterior.

Overall, the evaluation shows that hypotheses defined over behavior spaces in combination

with the sum posterior better predict the microscopic behavior variations in dense interactive

traffic than purely intent-based models. The concept avoids the definition of intent hypotheses

and still succeeds in scenarios where intents change over time, which is an example of a shift of

the unknown behavior spaces of other agents, Bt
j ̸= Bt′

j (cf. Sec. 3.3.2 and Sec. 3.3.4).
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Figure 6.8.: Comparison of scenarios solved with RSBG and IntentRSBG planners. The beliefs over micro-
scopic behavior variations given with behavior-space-based prediction allow the RSBG planner to more
quickly change the lane. Having available only binary beliefs over intents impedes to detect fine-grained
motions of other participants leading to a delayed and unsafe lane change with the IntentRSBG planner.

6.2.4. Comparing the RSBG Planner against Non-Belief-Based Baselines

This section compares the RSBG planner using belief-based prediction against the baseline

planning algorithms presented in Sec. 6.1.4 which do not take into account belief information.

The planners are evaluated in two variants, one using a limited planning time of 1 s and the

other a fixed number of 20k search iterations.

The percentages of successes and collisions are depicted in Fig. 6.9. The RSBG planner outper-

forms the baseline planners in freeway enter. It achieves a higher success rate for both analyzed

variants than the MDP and RMDP planner while provoking equal or fewer collisions. The Co-

operative planner has a lower success percentage. In the left turn scenario, the MDP planner

achieves the highest success percentage. However, for 1 s planning time, it collides frequently,

whereas the RSBG planner avoids collisions at an only marginally decreased success percentage.

When fixing the number of iterations, the planners can explore the problem space further, which

increases success rates for RSBG, RMDP and MDP planners. The Cooperative planner has a

drastic drop in performance compared to freeway enter and shows a large collision percent-
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Figure 6.9.: Comparison of non-belief-based baseline and RSBG interactive planners. Incorporating belief
information (RSBG) improves performance in dense interactive scenarios.

age. Examples of how scenarios evolve are given for all planners and the two scenario types in

App. A.6.

The differences in performance can be explained as follows. Freeway entering, due to higher

traffic density, requires a more fine-grained prediction of microscopic behavior variations, yet,

compared to left turning, selecting the best homotopic variant is manageable. In contrast, in left

turn, it is more relevant to accurately predict the potential turning gap, i.e., determine the best

homotopy. The MDP planner achieves an average performance in both scenarios. Not adapting

to the behavior of others and randomly predicting over the entire behavior space fosters passive

behavior (freeway enter) or requires a large number of search iterations to prevent collisions (left

turn, max. iterations). The worst-case prediction of RMDP over the entire behavior space leads

to passive behavior and inaccurate microscopic predictions causing collisions (freeway enter).

The Cooperative planner in this thesis uses the same action space for ego and other agents.

Suppose the action space for other agents does not accurately cover the actual behavior, in this

case, simulated with the IDM. In that case, the Cooperative assumption does not hold provoking

collisions (left turn). Incorporating belief information increases the prediction accuracy and, by

that, improves the detection of merging gaps (freeway enter). Further, it helps to reduce collisions

at a lower number of available search iterations (left turn). The analysis shows that belief-based

planning is an essential ingredient to plan interactively in dense traffic.

The analyses in this and previous sections show remaining collisions for all analyzed planners,

even though the planners already consider violating a static safety margin as the collision

event. The safety margin and reward specification do not map in an interpretable manner to

the collision statistic. These findings underline the need for the proposed interpretable risk
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Figure 6.10.: Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level β = 0.1.
The planned stochastic policy πi balances action-risk estimates, ρenv(⟨ot⟩, ai) and ρcol(⟨ot⟩, ai) yielding an
expected envelope risk ρ

exp.
env fulfilling the risk constraint β = 0.1 while the expected planned collision risk

ρ
exp.
col is close to zero and higher returns QR(⟨Ho⟩, ai) are preferred. A lower risk level results in the ego

vehicle slowly approaching the target lane.

formalism (cf. Chapter 4). It is evaluated in the following section.

6.3. Evaluating Risk-Constrained Planning

This section evaluates the concepts proposed in Chapter 4. It starts with analyzing qualitatively

the policies generated by risk-constrained stochastic policy optimization in Sec. 6.3.1. Sec. 6.3.2

compares the RC-RSBG to the baseline planners. Finally, the interpretability of the proposed risk

formalism and its capability to balance safety and efficiency are evaluated in Sec. 6.3.3.

6.3.1. Analyzing Risk-Constrained Stochastic Policies

First, scenarios driven with the RC-RSBG planner are qualitatively analyzed in the freeway

enter scenario for differing envelope violation risk levels β = 0.1 in Fig. 6.10 and β = 0.6 in

Fig. 6.11. The planned stochastic policy πi (black bars) correctly balances envelope and collision

action-risk estimates, ρenv(⟨Ht
o⟩, ai) (vertically-striped bars) and ρcol(⟨Ht

o⟩, ai) (dotted bars) such

that the expected planned envelope risk ρ
exp.
env (dashed red) fulfills the respective risk constraint

β (blue) while the expected planned collision risk ρ
exp.
col (dotted red) is close to zero. Given
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Figure 6.11.: Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level β = 0.6. As
presented in Fig. 6.10, yet, a higher risk level results in an abrupt cut-in of the ego vehicle directly in front
of its rear vehicle.

these constraints, the planned policy prefers actions with higher expected action-return values

QR(⟨Ho⟩, ai) (diagonally-striped bars).

The RC-RSBG planner can generate two types of stochastic policies. On the one hand, if feasi-

ble, it plans a deterministic policy, i.e., a stochastic policy with a single action taking probability

one, such that the expected risk of a single action matches the specified risk level (Fig. 6.10,

t = 2.0 s) or falls below the specified risk level (Fig. 6.11, t = 1.6 s). On the other hand, if a deter-

ministic policy cannot satisfy the constraints, a stochastic policy is planned to balance ρ
exp.
env and

ρ
exp.
col such that the expected envelope and collision risk do not exceed the constraints (Fig. 6.10,

t = 0.4 s & Fig. 6.11, t = 0.6 s).

At a lower specified risk (β = 0.1) the ego vehicle conservatively approaches the target lane

(cf. driven trajectory in Fig. 6.10, t = 2.0 s) by going straight shortly before crossing the lane

boundary. Such behavior is similar to how human drivers sometimes indicate to other drivers

the desire to change lanes. Interestingly, the risk level β = 0.1 for which this behavior arises is

around the percentage of envelope violations of human drivers during lane changes of 4 % to

8 % (cf. Sec. 4.1.1). In contrast, at a higher allowed risk level (β = 0.6, cf. Fig. 6.11), the ego vehicle

performs a cut-in at high velocity shortly before the other rear vehicle. Similar differences in

behavior are observed for the left turn scenario in App. A.7. Overall, a natural behavior arises

solely by constraining the allowed envelope violations over time without tuning safe distance
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Figure 6.12.: Performance of the RC-RSBG and baseline planners in the freeway enter scenario.

margins or other cost terms.

The above findings reveal that the RC-RSBG planner correctly implements the risk-constrained

optimality criteria from Sec. 4.1.2 using a stochastic policy. The qualitative differences in ego

behavior for different risk levels show that the interpretable risk formalism balances the safety

and efficiency of the planned behavior. Quantitative analyses are given in the following sections.

6.3.2. Evaluating the Performance of the RC-RSBG Planner

Next, the performance of the RC-RSBG planner is evaluated over increasing envelope risk con-

straint β. For the single-objective baseline approaches, the risk-aware reward function defined

in Eq. (6.3) is applied. All planners apply a fixed number of 20k iterations. Results are given in

Fig. 6.12 for the freeway enter and in Fig. 6.13 for the left turn scenario.

The success percentages of RC-RSBG and RCRSBGFullInfo planners increase steadily from

β = 0.01 to β = 0.4. Risk levels β > 0.4 do not further increase the successes. Thereby, the average

time to reach the goal steadily decreases. With higher β the RC-RSBG planner increasingly relies

on the accuracy of the prediction model and lesser on the safety provided by the envelope

restriction. In the case of prediction model inaccuracies, this provokes collisions for β≥0.2.

The RCRSBGFullInfo planner does not show any collision in freeway enter due to having full

access to the actual behavior of other participants. In left turn, however, it collides for β≥0.2, yet,

achieves an overall high success rate.

For the baseline planners, the success rates decline partly when increasing β, e.g., from β = 0.01
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Figure 6.13.: Performance of the RC-RSBG and baseline planners in the left turn scenario.

to β = 0.1 for RMDP in freeway enter, or for MDP from β = 0.01 to β = 0.1 in left turn. A steady

increase is thus not observable. The time to reach the goal remains near-constant. In freeway

enter, the performance of the MDP planner drops drastically compared to using the simplistic

reward function without risk (cf. Sec. 6.2.4). The Cooperative planner can not benefit from the

risk-aware reward and still collides frequently in left turn. In contrast, by benefiting from belief

information, the RSBG planner manages to achieve near equal success rates in freeway enter

than the RC-RSBG planner and provokes fewer collisions than the RC-RSBG planner for β≥0.2.

In summary, the risk-aware reward function used by the single-objective baseline planners does

not reveal a clear relation between β and the safety (Pcol) and efficiency (Psuc and Tsuc) statistics.

In contrast, such a relation is observable with the RC-RSBG and RCRSBGFullInfo planners.

With the risk-aware single-objective reward function, the action return is always reduced when

an action violates the safety envelope, independent of the chosen β, and the planner always

tries to reduce envelope violations independent of the actual constraint. In contrast, with the

RC-RSBG and RCRSBGFullInfo planners, such a violating action can still be preferred as long as

the constraint is satisfied. The difference in optimality assumptions explains the more passive

behavior generated by the single-objective planners with lower success and collision percentage

for higher risk levels. This finding indicates the usefulness of multi-objective optimality to

integrate risk constraints and supports the motivation and definition of the interpretable risk

formalism (cf. Sec. 4.1).
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Figure 6.14.: Comparison of observed envelope violation risks. When satisfying the interpretable risk
formalism (RC-RSBG and RCRSBGFullInfo), the specified risk level reflects the observed risk. Single-
objective specifications of risk (RSBG) cannot achieve such an interpretable relationship.

6.3.3. Studying the Practicality of Interpretable Risk to Balance Safety and
Efficiency

This section further analyzes how β balances safety and efficiency by looking at the observed

envelope violation risk β∗ and the expected scenario waiting time tw for the results of the

previous section.

The mean envelope violation risk (cf. Fig. 6.14, bottom) is equal to the allowed risk (β∗ ≈ β)

for β ≤ 0.2 in freeway enter for RC-RSBG and RC-RSBGFullInfo and β ≤ 0.4 in rural left turn for

RC-RSBGFullInfo. The correspondence of risk levels indicates that the interpretable risk formalism

and planning approach reflects the observed risk. In contrast, the RSBG planner does not show any

interpretable correlation between β∗ and β.

Starting from β ≥ 0.2 in freeway enter, and β ≥ 0.4 in left turn, the observed risk β∗ saturates

and does not increase further. On the one hand, this is reasonable in a traffic environment

since above a certain β efficiency can not be improved further by more frequently violating the

envelope. On the other hand, this shows that the RC-RSBG planner interprets the risk level as

an actual constraint since the observed risk is fully exploited for lower allowed risk.

Analyzing the distribution of the observed envelope violation risk (cf. Fig. 6.14, top) reveals

that for β < 0.4, in some scenarios, the allowed envelope violation risk is exceeded. The oc-

currence of such outliers is in line with the interpretable risk formalism, defined using an

expectation over uncertain future observations, and underlines the stochastic nature of the gen-
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Figure 6.15.: Comparison of scenario waiting times. The waiting time is based on the results of Fig. 6.12
and Fig. 6.13. The expected time to solve a scenario smoothly declines when satisfying the interpretable
risk formalism (RC-RSBG and RCRSBGFullInfo). Such a continuous decline is not observed with single-
objective specifications of risk (RSBG).

erated ego behavior. This stochastic interpretation of safety is in contrast to safety formulations

which altogether forbid envelope violations and assume strict determinism of the environment

and policy (cf. Sec. 1.1.1).

The waiting time (cf. Fig. 6.15) subsumes the metrics Psuc and Tsuc to provide a comprehensive

measure indicating efficiency, while Pcol (cf. Fig. 6.12 and Fig. 6.13) represents the safety measure.

Interestingly, the collision results suggest to choose β ≤ 0.1 to avoid collisions in freeway enter

which resembles the time-based safety envelope violation risk of humans during lane changing,

βhuman ≤ 10% [6]. Similarly also the left turn scenario requires β ≤ 0.1 to prevent collisions.

The waiting time declines smoothly with increasing β for β ≤ 0.4 in freeway enter and over

the full range of β in left turn for RC-RSBG and RC-RSBGFullInfo planners. In contrast, the

single-objective planning with the RSBG planner does not show such a continuous decrease of

the waiting time.

Overall, the proposed risk formalism and RC-RSBG planner provide an interpretable way to

balance safety and efficiency given

• the relation of the risk level β to the human safety statistics (cf. results in Sec. 6.3.1 and

Sec. 6.3.2),

• the option to compromise collisions (cf. results in Sec. 6.3.2) and efficiency (cf. Sec. 6.3.3)

using β, and

• the correspondence between specified and observed envelope violation risk (cf. results in

Sec. 6.3.3).

Given the quantitative results for β = 0.1 (no collisions, medium success, and waiting time)

and the qualitative analysis (natural lane changing and turning behavior, similar safety statistics

as humans to prevent collisions) in previous sections, the risk level is fixed to β = 0.1 for the

following evaluations.
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Figure 6.16.: Comparison of planning times and expanded nodes. The planning time of the RC-RSBG
planner is significantly increased compared to the RSBG planner due to the multi-objective nature of risk-
constrained interactive planning.

6.4. Evaluating Experience-Based and Parallelized

Risk-Constrained Planning

This section evaluates the concepts proposed in Chapter 5. Sec. 6.4.1 analyzes computational

demands of the RC-RSBG planner. The performance benefits of root-parallelization are evaluated

in Sec. 6.4.2. Sec. 6.4.3 analyzes how risk-constrained planning can be accelerated with prior

experiences through value initialization.

6.4.1. Evaluating the Computational Demands of the RC-RSBG Planner

Multi-objective planning comes with additional computational demands since it requires solving

a constrained optimization problem repeatedly during planning (cf. 4.3.1). Solving the linear

program in the stochastic action selection procedure of the RC-RSBG planner requires more than

200 µs§.

This section analyzes how the additional computational demands of multi-objective planning

affect the RC-RSBG planner. Fig. 6.16 depicts the planning times and number of expanded nodes

of the RC-RSBG and RSBG planners when performing a fixed number of 20k search iterations.

The number of expanded nodes, i.e., tree states, is comparable for both planner types yet, sig-

nificantly lower than the number of iterations, especially in the left turn scenario. This difference

is due to the number of expanded nodes not increasing further when all valid, i.e., non-terminal

collision or success states, have been explored. Subsequent iterations only perform action selec-

tion steps to refine the node statistics. The lower number of valid states in the left turn scenario

arises due to the lower action space and the driving area of the ego vehicle being more restricted

than in the freeway enter scenario.

The planning time of the RC-RSBG planner increases, as expected, significantly compared

to the RSBG planner for a fixed number of iterations due to the overhead of solving the linear

program in each selection step. Interestingly, a significant difference in planning times between

the left turn and freeway enter scenario is observable with the RC-RSBG planner. This difference

exists potentially due to a differing number of performed action selection steps. In the left turn

§Using a C++ implementation based on https://developers.google.com/optimization on an Intel 3.2 Ghz CPU.
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Figure 6.17.: Comparison of parallel multi- and single-objective planners. The success percentage of the
RC-RSBG planner (multi-objective) steadily increases with the number of parallel MCTS while the observed
risk satisfies the risk constraint β = 0.1. Such benefits from parallelization are not observed with the RSBG
planner (single-objective).

scenario, the search tree contains fewer expanded nodes which increases the number of executed

action selection steps due to the constant iteration number. In contrast, in freeway enter, the

search tree contains an increased number of expanded nodes. The planning time reduces since

the linear program is not solved when new states are created in the expansion step.

Overall, the planning time of the RC-RSBG planner increases significantly due to the multi-

objective nature of the planning problem. This drawback limits the applicability of the RC-RSBG

planner in an actual AV. For this, the planning component should achieve an update frequency

below 200 ms. The following sections evaluate how to reduce the planning time of the RC-RSBG

planner without sacrificing performance.

6.4.2. Comparing Parallelization of Single- and Multi-Objective Planning

This section compares the benefits of root-parallelization in multi-objective and single-objective

planning. For this, the performances of root-parallel implementations of the RC-RSBG and RSBG

planner are evaluated over an increasing number of parallel MCTS while restricting the total

allowed planning time to the desired update frequency of 200 ms. The exploration parameters

are adjusted as in the previous evaluations. Fig. 6.17 depicts the success rates and the observed

risk. Collisions did not occur in all evaluated settings. The results for 20k iterations from Sec. 6.3

and 6.4.1 for β = 0.1 are given as a reference for planning without time constraints. Details on

the experiment setup with limited planning time are given in App. A.8.

A drop of the success rate compared to the reference results occurs for both planners in freeway

enter when limiting planning time to 200 ms (number of parallel MCTS is one). Nevertheless,

only the RC-RSBG planner reaches the reference performance for 64 MCTS. In left turn, the RC-

RSBG planner manages to outperform the reference result significantly. The success percentage
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increases steadily with the number of parallel MCTS. It seems that parallelization has larger

benefits in scenarios that require a more accurate prediction of the correct homotopic variants,

e.g., in left turn, but do not demand a detailed microscopic prediction, as, e.g., required in

freeway enter. Increasing the number of parallel MCTS with single-objective planning, i.e., the

RSBG planner, achieves a marginal gain in performance in freeway enter but completely loses

performance in the left turn scenario.

Comparing the observed risk to the specified risk level β = 0.1 shows that the risk constraint

is still satisfied with root-parallelization. It seems that the reference planner and the single MCTS

with limited planning time fulfill the constraint more conservatively, i.e., with lower deviations

around the mean of the observed risk. However, parallelization exactly meets the constraint

for 64 MCTS in freeway enter. In left turn, the constraint is satisfied for 4 and 16 and slightly

violated for 64 MCTS.

The above results underline the advantages of parallelizing multi-objective planning, i.e., the

RC-RSBG planner, motivated in Sec. 5.5. Given the additional risk information, a final plan

can be better combined from parallel search runs and fulfill both the goal-directed and the

risk-constrained optimality specifications.

6.4.3. Comparing Experience- and Rollout-Based Exploration

This section evaluates experience-based risk-constrained planning. For each scenario type, ex-

perience data is generated according to the data generation process described in Sec. 5.4 and a

neural network gv is trained to predict value experiences according to Sec. 5.3. Details on the

training process, parameters, and results are given in App. A.9.

The warming starting of search nodes with learned value experiences replaces rollout-based

exploration. Further, preliminary experiments revealed that warm starting allows omitting count-

based exploration, i.e., setting the exploration parameter κ = 0, and only exploring via the

stochastic action policy. Thereby, the filter factor controlling the support of the stochastic ego

policy is reduced to v = 0.2 given the higher initial accuracy of the risk and return estimates

with warm starting. In rare cases, when inputting learned risk estimates, the linear program

solver requires unlimited computation time without categorizing the problem as unsolvable.

Thus, the available solver time is limited to 2 ms for the experience-based planner.

The evaluation compares the performances of two experience-based (EB) variants of the RC-

RSBG planner, 1) a single and 2) a parallelized variant with 64 MCTS, each with restricted

planning time of Tsearch = 200 ms. Additionally, two rollout-based results are given as a ref-

erence, 1) the variant with maximum iterations Niters = 20 k evaluated in Sec. 6.3 and 2) the

planning-time-restricted single MCTS variant evaluated in the previous Sec. 6.4.2 and 6.4.1. The

success and collision percentage, and the observed risk and number of performed iterations for

the above EB and rollout variants are depicted in Fig. 6.18. Details on the experiment setup with

restricted planning time are given in App. A.8.

EB planning can nearly double the success percentage compared to non-EB planning in

freeway enter. The parallelized variant avoids collisions. In left turn, no benefits of experience-

based planning regarding success and collision percentage arise compared to the parallelized
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Figure 6.18.: Comparison of the experience- and rollout-based RC-RSBG planner. Experience-based plan-
ning significantly increases success rate in scenarios with a larger action space (freeway enter). In scenarios
with a smaller action space (left turn) no benefits are observable compared to solely parallelizing the search.

rollout-based planner. In both scenarios, EB planning more accurately fulfills the risk constraint

β = 0.1 than the rollout-based variant 2).

The results show that warm starting in combination with the presented data generation and

learning of prior experiences is a meaningful technique to guide the search of the RC-RSBG

planner. Significant benefits of EB planning arise in scenarios requiring larger action spaces as

given in freeway enter. Here, warm starting helps reduce the support of the stochastic policy,

which narrows the width of the search tree. These benefits cannot arise in scenarios with lower

action space as in left turn. Additionally, the worse performance of EB in left turn can be

explained due to a worse training result in left turn compared to freeway enter. Details are

given in App A.9. Nevertheless, solely parallelizing the search is already sufficient in left turn

to achieve a satisfying online planning performance.

Prior experiences enable online planning. Though EB planning spends computation time on

the inferences of the value network, it avoids the computational demands of the rollout step.

The number of performed search iterations of the rollout-based parallel variant is by order

of magnitude lower than for the experience-based parallel variant indicating a reduction of

computation time when performing neural network inference instead of a rollout step in each

iteration.

Overall, the evaluations in Sec. 6.4.2 and Sec. 6.4.3 show that parallelized and experience-

based variants of the RC-RSBG planner each have advantages in specific scenario domains

for accelerating risk-constrained planning. The results suggest a potential applicability of the

RC-RSBG planner to enable real-time risk-constrained interactive planning in AVs.
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6.5. Summary of the Evaluation

In summary, the evaluation contributes three significant findings.

The evaluation shows that the RSBG planner outperforms existing non-belief-based planners to

navigate through congested traffic successfully. It thereby benefits from sample-efficient planning

due to robustness-based optimality and prediction using behavior hypotheses in behavior spaces

superior to intent-based prediction approaches. A static safety margin to account for planning

and prediction inaccuracies and the risk-based reward setting of the single-objective RSBG and

baseline planners cannot provide an interpretable way to balance safety and efficiency.

The evaluation of the RC-RSBG planner reveals that the risk level β balances safety and

efficiency in an interpretable manner. The qualitative analysis shows that the AV performs lane

changing and left turning in a natural, human-like way at a risk level of β = 0.1. The quantitative

analysis shows the correspondence between specified and observed risk levels and a continuous

increase of efficiency and decrease of safety when raising the risk level. For risk level β = 0.1,

no collisions are provoked in the statistical analyses for the freeway enter and left turn scenario.

Since the risk level β = 0.1 is in the range of human time-normalized safety envelope violations

(cf. 4.1.1), this resembling indicates that the proposed risk formalism may indeed be connected

to the human understanding of risk in the evaluated scenarios.

The evaluation of the experience-based and parallelized RC-RSBG planner reveals that risk-

constrained interactive planning works under limited planning time. Experience-based and

parallelized planning increases efficiency while ensuring the satisfaction of the risk constraint.

Thereby, parallelization was shown to be beneficial when the scenario type requires deeper ex-

ploration of the problem space along the time dimension. In contrast, experience-based planning

was found to improve efficiency in scenarios requiring a larger action space.

Overall, the evaluation demonstrates that the RC-RSBG planner enables an AV to balance

safety and efficiency in an interpretable manner when navigating through simulated dense

traffic scenarios with uncertainty about other participants behavior. These properties of the RC-

RSBG planner are preserved in an online planning situation, restricting the available planning

time.
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Future Work

This chapter outlines research directions carrying forward the work presented in this thesis.

Sec. 7.1 discusses how to improve the design of behavior spaces and hypotheses. The integration

of perception and execution uncertainty is discussed in Sec. 7.2. Sec. 7.3 proposes to model

errors in the optimality of a plan as epistemic uncertainty within the risk formalism and planner.

Necessary research to transfer the Risk-Constrained Robust Stochastic Bayesian Game (RC-

RSBG) planner to real AVs are presented in Sec. 7.4. Sec. 7.5 proposes research tasks utilizing the

interpretable risk formalism to argue about the probability of collision from a safety engineering

perspective.

7.1. Improving Behavior Spaces and Hypotheses

The results in Sec. 6.2.1 show a link between planning performance and behavior parameters,

e.g., Tdesired, used to design the behavior space. Future research should further investigate how

the hypothetical policy and the behavior space connect to the RC-RSBG planning performance

and how prediction using behavior spaces compares to the prediction and planning capability

of other interactive planners.

Analytical Hypothetical Policies A possible research direction in this regard is investigating

different designs of analytical models for the hypothetical policy. The comparison should include

classical driver models, i.e., variants of the Intelligent Driver Model (IDM) [267, 268] and other

lane following models [269, 270], but also models outputting lateral actions such as the MOBIL

model [271] and assess the usefulness of each driver model for behavior-space-based prediction.

Classical driver models often require tuning multiple parameters leaving unclear what param-

eters mainly dominate during interactions. Artificial analytical driver models could provide

better understandable models by employing only a single hidden behavior parameter for each

considered direction of movement to achieve optimal separation of hypotheses (cf. Sec. 3.3.3).

Such a single parameter could express the desire to move into a certain longitudinal or lateral

direction and be inspired by physical concepts such as friction or inertia. Ideally, such a model
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would transfer to different types of participants and predict other vehicles’ lane changes and

behavior variations of pedestrians and bicyclists.

Learning Hypothetical Policies The hypothetical policy can also be learned from human

driving data. For this, the learned hypothetical policy, predicting human driving actions, must

be based on a compact latent space with only a few continuous parameters. As a starting

point, latent architectures, e.g., using autoencoders [272], can be combined with neural-network-

based prediction [91]. After learning, the learned latent space defines the behavior space and

hypotheses set. Other input features may remain. Preliminary research tasks are to develop

a meaningful neural network architecture and latent feature training process and establish a

connection between the size of the latent space and prediction accuracy for different learned

models. Fig. 7.1 depicts a possible architecture and training process.

Evaluation of Prediction Capabilities Future evaluations should compare the planning perfor-

mances for different hypothetical policies and designs of behavior spaces and integrate recorded

human driving data to judge the quality of behavior-space-based prediction in real-world situa-

tions. The INTERACTION dataset [273] is already partly integrated into BARK. It consists of a

variety of dense interactive traffic situations. The accuracy of the prediction can be measured by

evaluating the prediction probability given by the mixture distribution over hypotheses (cf. (3.1))

at the ground truth human driving action from the next simulation step.

Detailed Baseline Planner Evaluation Performance differences between MDP, RMDP, coop-

erative and intent-based planners are given and analyzed in the evaluation. Nevertheless, future

work should improve the understanding of the prediction capabilities and limitations obtained

with each model. A comprehensive parameter study should analyze the benefits and drawbacks

of each prediction model when, e.g., varying traffic densities, cooperativeness level of the coop-

erative planner, behavior-spaces of MDP and RMDP planner. The analysis should also evaluate

the benefits of belief-state planning compared to the QMDP approximation used in this thesis

when applying intent-based prediction.

7.2. Integration of Other Uncertainty Types

This thesis focuses on the definition of and planning under an interpretable risk given the

uncertainty of other participants’ behaviors. Nevertheless, in real-world driving (cf. Fig. 2.1), the

risk of violating safety envelopes is also influenced by uncertainties about sensed ego and other

participants’ states and the presence of objects, e.g., invisible due to occlusions. Further, controller

uncertainties, e.g., inaccurate state tracking and delays in execution, influence the observed risk.

Future work should investigate the influence of perception and execution uncertainty on the

interpretable risk and how to integrate these uncertainties into the RC-RSBG planner.
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Figure 7.1.: Representation of hypothetical policies using neural networks. During training, the latent space
combines state features with encoded behavior features and learns to represent action variations in the data
given the randomness over the full behavior space B = [0, 1]. The decoding stage helps to find a compact
latent space. The trained network becomes the kth hypothesis by sampling from only the kth partition of
the behavior space.

Consideration during Planning A first option is modeling that the perception and execution

uncertainty change the observation sequence distribution used in the definition of the viola-

tion risk (cf. Def. 4.1). Currently, the observation sequence distribution depends only on the

participants’ policies. Therefore, an open research task is to integrate perception uncertainty

available in the form of belief information over the observed states of ego, other and occluded

vehicles into the risk formalism. In principle, the observable initial states at the beginning of

all observation sequences must be replaced with a belief distribution over initial states. The

execution uncertainty adds variations to the states in the observation sequences. Planning under

such an adapted risk formalism could integrate state beliefs with root sampling and execution

uncertainty by applying a stochastic environment transition function EnvironmentMove.

When realizing this option for integrating perception and execution uncertainty, the primary re-

search task is to make the integration computationally feasible, e.g., by extending and improving

the worst-case action selection.

Probabilistic Safety Envelopes A second option is to limit the available action space of the RC-

RSBG planner based on probabilistic safety envelopes defined for the perception and execution

uncertainties. The envelope definitions from Sec. 4.5 guarantee safety only in the case of accurate

state estimates. Recent work by the author of this thesis in [274] proposes a safety envelope

definition that provides a maximum risk of violating the actual safety envelope given uncertainty

in the state estimates of other participants (cf. Fig. 7.2). Future research should investigate how

such probabilistic envelopes, also extendable to execution uncertainties, can restrict the available

set of actions of the RC-RSBG planner. The overall risk of violating a safety envelope could be

combined probabilistically.
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Without perception uncertainty

unsafe region

With perception uncertainty

unsafe region under uncertainty

Figure 7.2.: This thesis neglects perception uncertainty and defines safety envelopes using physical limits of
vehicle dynamics (top). Probabilistic safety envelopes, recently proposed by Bernhard et al. [274], deal with
perception uncertainty. By allowing only actions fulfilling these envelopes, the RC-RSBG can additionally
incorporate perception, and similarly also execution uncertainties. Picture taken from [274].

Evaluating Inaccuracies in Perception and Execution The approaches from the proposed

research directions should then systematically be benchmarked. For this, as a starting point,

BARK has already been extended to simulate perception inaccuracies in [274]. Similarly, a

simulative analysis of execution uncertainties can be implemented in BARK.

7.3. Modeling the Influence of Solution Inaccuracy onto Risk

This thesis’ risk definition and risk-constrained planner focus on how aleatory uncertainty,

i.e., the randomness inherent to the environment due to prediction uncertainty, influences the

risk level. The thesis analyzes the efficiency of robustness-based planning to detect worst-case

outcomes and shows that prior experiences and parallelization enable online risk-constrained

planning. However, it remains open how these concepts quantitatively affect the optimality of a

plan and influence the observed envelope violation risk. An important future research direction

is thus modeling the optimality of the solution as a form of epistemic uncertainty and integrating

it into the risk formalism and RC-RSBG planner. Risk-constrained planning integrating epistemic

uncertainty would, for instance, make the Autonomous Vehicle (AV) behave more safely to avoid

envelope violations caused by insufficient exploration of the search space. Three research tasks

are proposed as a starting point aiming at the integration of epistemic uncertainty into the

RC-RSBG planner.

Representation This task aims to find an interpretable representation of epistemic uncertainty

for action-return and action-risk estimates. For such a definition to be meaningful, it must

integrate into the aleatory risk definition. Thereby, the interpretability of the risk definition and

validity of the planning approach must be preserved. As a starting point, this task compares

the effectiveness of probabilistic approaches applying, e.g., histograms or Gaussian models [275]

with interval concepts often used to characterize epistemic uncertainty [276].
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Backpropagation This task investigates how to backpropagate the epistemic uncertainty during

MCTS. It may be inspired from existing work backpropagating epistemic uncertainty in MCTS

using Bayesian approaches [275] or variance information [277], and from the field of risk analysis,

which combines aleatory and epistemic uncertainties in fault tree [278] and sensitivity analysis

[276].

Prior Experiences and Parallelization This task, on the one hand, analyzes how parallelization

affects epistemic uncertainty. It should establish a quantitative connection between the number

of parallel searches and the accuracy of the value estimates, which could be used to adjust the

appropriate number of parallel searches automatically. On the other hand, this task investigates

how to integrate epistemic uncertainty from the prior learned experiences, e.g., inferred with

Bayesian neural networks [279] into experience-based planning. Such methods could deepen the

understanding of how experience training results connect to the performance of the RC-RSBG

planner.

7.4. Real-World Navigation with Adaptation of Risk and

Behavior Spaces

This thesis focuses on and evaluates scenario-based planning. However, in the real world, the

AV must consecutively navigate in the environment requiring the planning module to handle

transitions between different scenario types, e.g., switching from a left turning to a lane following

scenario type. Though one could set up the RC-RSBG planner with a continuous reward function,

e.g., based on a velocity potential function, to avoid handling transitions, it makes sense to adjust

risk and behavior spaces to the current situation.

Scenario Management The first research task aims to develop a higher-level scenario manage-

ment module. It should detect the scenario type, e.g., based on the road layout, and select a goal

definition and meaningful risk level. The selection can either be taken from a database and be

adapted online to the observed traffic parameters such as traffic density and velocities or match

more complex dynamic definitions of maneuver templates [280].

Behavior Space Management A second research task should develop a management mod-

ule that adapts the hypothetical policy and behavior space to the encountered scenario type.

For instance, one could design different hypothetical policies and behavior spaces given the

approaches in Sec. 7.1. An idea to select the optimal model during online planning may be

inspired by the concept of behavioral hypotheses testing presented for the Stochastic Bayesian

Game (SBG) in [179]. Beliefs over hypotheses provide a relative measure of likelihood. In con-

trast, hypothesis testing analyzes if a hypothesis set’s absolute measure of truth is correct. The

approach in [179], in principle, performs a statistical hypotheses test using a score function with

parameters learned during the interaction process. A hypothetical policy and behavior space are

rejected if the p-value of the test is below a specified significance level.
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Application on a Real Vehicle In a third major research task, extensions are developed for the

RC-RSBG planner to run it as interactive planner within a complete AV architecture (cf. Fig. 2.1).

This requires developing a trajectory smoother generating a trajectory out of the discrete action

plan with more comfortable, continuous acceleration changes. However, smoothing can affect the

optimality of the original discrete plan and the achieved risk level. Research should thus go into

modeling the smoothing process either beforehand as epistemic uncertainty during planning

(cf. Sec. 7.3) or developing an action space consisting of time-space corridors such that an action

sequence defines the allowed region in which to plan a drivable trajectory subsequently. Another

task is to analyze and improve the consistency of plans generated by the RC-RSBG planner under

real-world conditions, characterized by sensing noise and deficiencies in trajectory tracking, and

to analyze if the capability of online risk-constrained planning shown in simulation transfers to

real-world situations.

7.5. Assuring Safety using the Interpretable Risk Formalism

This thesis proposes an interpretable risk formalism that constrains the time-normalized risk of

violating a safety envelope. A risk level β = 0.1 avoids collisions in the evaluation. However, an

open research question is how to assure from a safety engineering perspective that the amount of

hazardous events, i.e., severe collisions in dense traffic, is acceptable for risk level β = 0.1. In the

future, the dependence between the risk level as well as the severity and probability of collisions

should be further analyzed to establish a safety argumentation based on the interpretable risk

formalism. The following ideas are related to the safety concept outlined for risk-based safety

envelopes by Bernhard et al. [274]. The developed approach should focus on arguing safety for

traffic situations with low accident severity, as it is given, e.g., in slow, dense traffic. By that, it

complements safety argumentations for high severity traffic given by fail-safe trajectory planning

[32] or Responsibility-Sensitive Safety (RSS) [24]. Three major research tasks can contribute to

such argumentation.

Concept of an Argumentation A first research task details the following idea for a safety

argumentation. The envelope definitions in Sec. 4.5 guarantee an absence of collisions when

the AV satisfies the safety envelope. However, humans frequently violate envelopes without

provoking collisions [6]. The evaluation in Sec. 6.3 supports this observation when setting the

interpretable risk level to β = 0.1. Given the probability Pviolate→col(m) that a safety envelope

violation results in a collision during maneuver m, one can define the collision probability Pcol(m)

of the ego agent during maneuver m when other vehicles do not violate their safety envelopes. For

instance, when, for m = “lane changing” and β = 0.1 in dense traffic, Pviolate→col(m) = 10−3,

then Pcol(m) = β · Pviolate→col(m) = 10−4.

Measuring Pviolate→col(m) Determining and arguing that Pviolate→col(m) reliably holds in dif-

ferent encountered instances of a maneuver is the goal of the second research task. For this, for

large amounts of scenarios recorded with digital infrastructures such as Providentia [281] and
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generated in simulation, it must be analyzed under which circumstances envelope violations

lead to a collision. Specifically, these analyses should include different parameterizations of the

safety envelope definition, e.g., varying response times and maximum accelerations, and evalu-

ate different traffic densities and velocities. For a safety argumentation to be accepted by legal

authorities, different values of Pviolate→col(m) must then eventually be standardized similarly to

exposure rates of different maneuvers given in the safety standard ISO26262 [282].

Severity of Safety Envelope Violations The risk formalism and RC-RSBG planner developed

in this thesis consider if an envelope is violated or not. Metrics measuring how an envelope

is violated, e.g., the severity of envelope violations [283], should be integrated into the risk

definition and the RC-RSBG planner in a third research task. This integration can be achieved

by changing the envelope indicator function to return continuous values, e.g., the severity of an

envelope violation. The risk-constrained action selection of the RC-RSBG planner is based on

solving a Constrained POMDP (C-POMDP), and thus supports straightforwardly the satisfaction

of constraints for continuous cost criteria. Better estimates of probabilities Pviolate→col(m) can

potentially be achieved when considering also the severity of envelope violations.

Overall, assuring the safety of AVs in dense traffic is a major challenge. Striving for a statistical

relationship between envelope violations and accidents provides a step forward in solving this

challenge.
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8
Conclusion

This thesis develops an interpretable risk formalism and integrates it into an interactive planning

algorithm for AVs. The approach balances safety and efficiency when navigating dense traffic,

given uncertainty about other traffic participants’ behaviors. The developed risk formalism

includes both inter- and intra-driver behavior variations and provides a quantitative mapping

between specified risk and observed safety statistics of the Autonomous Vehicle (AV). The

presented risk-constrained interactive planner is capable of online planning.

First, this thesis deals with the problem of interactive planning given uncertainty about other

participants’ microscopic inter- and inter-driver behavior variations. It presents a concept to

probabilistically predict microscopic variations using a combination of behavior hypotheses

partitioning a behavior space and the sum posterior for belief tracking. The chapter then de-

velops the Robust Stochastic Bayesian Game (RSBG), a game-theoretic model, which integrates

robustness-based optimality to plan sample-efficiently using Simultaneous-Move MCTS (SM-

MCTS) under continuous behavior variations of other participants.

Secondly, inspired by the statistics of human safety envelope violations, an interpretable risk is

defined as the allowed maximum percentage of safety envelope violations over time. Planning

under this risk formalism is modeled as Risk-Constrained Robust Stochastic Bayesian Game

(RC-RSBG). A risk-constrained interactive planner is presented that integrates backpropagation

of time-normalized risk estimates and risk-constrained stochastic ego action selection imple-

menting a Constrained POMDP (C-POMDP) solver. The chapter concludes with safety envelope

definitions for lane changing and intersection scenarios.

Thirdly, the thesis presents two concepts to reduce computational demands of the RC-RSBG

planner. On the one hand, it develops warm starting with prior learned return and risk estimates

to guide the node expansions of the RC-RSBG planner, and an accompanying data generation

process and the learning of prior experiences. On the other hand, it discusses the benefits of

parallelized planning in multi-objective problem domains as given with the RC-RSBG planner.

A statistical evaluation against various baseline interactive planners in the contributed sim-

ulation framework BARK then underlines the benefits of the proposed concepts. Prediction

using hypotheses defined in behavior spaces increases success rate compared to planning with

non-belief- and intent-based prediction. Robustness-based optimality better explores worst-case
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outcomes by increasing the search depth. The interpretable risk measure serves to balance

safety and efficiency. The specified allowed percentage of envelope violations correspond to the

observed averaged envelope violations in simulation. Parallelized implementations of the RC-

RSBG planner and integration of prior experiences result in improved efficiency while avoiding

collisions, even when restricting the available planning time to real-time demands.

This thesis shows that certain aspects of the behavioral safety of an AV in dense traffic, i.e., its

statistics of safety envelope violations, can be specified and statistically be interpreted with the

proposed risk-constrained interactive planner. In domains like autonomous driving, statistical

interpretability of the safety and other performance criteria will play an increasingly important

role in enabling legal authorities to judge the quality of a system’s behavior. Recent research [284]

suggests that reward may be enough to define general artificial intelligence comprehensively. In

contrast, this thesis shows that multi-objective optimality provides major benefits to achieve the

requirement of statistical interpretability. An overall outcome of the future work presented in

the previous chapter should, therefore, be to understand further the differences between single-

and multi-objective planning to balance safety and efficiency in domains inside and outside of

AVs.
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A.1. Intelligent Driver Model

The Intelligent Driver Model (IDM) [93, 186] is a microscopic driver model that calculates a

longitudinal acceleration accIDM for a rear vehicle VR with

accIDM = v̇max

[
1−

(
velR

vdesired

)4
−
(

∆s∗(velR, ∆velt)

∆s

)2]
. (A.1)

It integrates a free-road term which relates a parameter for the desired velocity vdesired to the

current velocity of the IDM vehicle, velR. An interaction term relates the desired gap

∆s∗(velR, ∆velt) = smin + velR · Tdesired +
velR · ∆vel

2
√

v̇factor · v̇comft
(A.2)

depending on rear velocity velR and relative velocity ∆vel between front and rear vehicle, to the

current longitudinal gap ∆s between front and rear vehicle. Further parameters of the model

are the desired time headway Tdesired, the minimum spacing smin, the acceleration factor v̇factor,

the comfortable braking v̇comft and the maximum allowed acceleration v̇max. Extreme values

of the accelerations can result when ∆s becomes small. The maximum possible deceleration

and acceleration are thus limited to physical feasible vehicle accelerations with limit parameters

v̇lim,+and v̇lim,-.

A.2. Creation of Intelligent Driver Model Joint Distribution

Data

To create the joint distribution over the IDM output given in Fig. 3.3, a rear vehicle VR is located

around s0 = 0, an AV VA at s0 = 15 m and a front vehicle at VF at s0 = 30 m. The vehicle lengths

are LA = 4. All IDM parameters, except Tdesired, are kept constant with vdesired = 50 km h−1,

v̇factor = 1.7 m s−2, smin = 1.0 m, v̇comft = 1.7 m s−2 and v̇max = 5.0 m s−2.
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The velocities of the vehicles are sampled uniformly as velR ∼ U (30 km h−1, 30.1 km h−1),

velA ∼ U (32 km h−1, 32.1 km h−1) and velF ∼ U (35 km h−1, 35.1 km h−1). The position of the

rear vehicle is also slightly varied uniformly with s0 ∼ U (0 m, 0.1 m).

To generate the joint distributions f (accIDM, Tdesired), the desired time headway Tdesired is

varied in steps of 0.01 s between 0.0 s and 4.0 s. For each value of Tdesired, for each relative

distance to the rear vehicle s = s0 + ∆s, ∆s = {−5, 0, 5}[m/s], and for each of the two cases that

either VA or VF are set as leading vehicle, the output of the IDM model (cf. App. A.1) is collected

for 1000 velocity samples.

A.3. Derivation of Sample Complexity of SBGs

Given that |Θ−i|=KN−i and |A−i| ≈ (| B|/K)N−i , one obtains

|Θ−i| · |A−i|Tp ≈ KN−i ·
[( | B|

K

)N−i
]Tp

=

= KN−i · | B|N−iTp · K−N−iTp =

= | B|N−iTp · KN−i−N−iTp

(A.3)

A.4. Derivation of Sample Complexity of RSBGs

Given that |Θ−i|=KN−i and |Ak| ≈ | B|/K, one obtains

|Θ−i| · |Ak|Tp ≈ KN−i ·
[ | B|

K

]Tp

=

= KN−i · | B|Tp · K−Tp =

= | B|Tp KN−i−Tp

(A.4)
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A.5. Traffic Parameters of the Evaluation

Sampling range Behavior space boundary

Section Scenario ∆s velj [m/s] smin [m] vdesired [m/s]

6.2.1, 6.3, 6.4 Freeway enter [15, 25] [8, 14] [2.0, 2.5] [8, 14]
Left turn [30, 35] (top lane)

[15, 30] (bottom lane)
[8, 14] [4.0, 4.5] [8, 14]

6.2.2 Freeway enter [5, 10] [13, 14] [0.5, 1.0] [13, 14]
Left turn [15, 20] (top lane)

[15, 20] (bottom lane)
[13, 14] [2.0, 2.5] [13, 14]

6.2.3 Freeway enter [8, 12] [8, 14] [0.5, 1.0] [8, 14]
Left turn [30, 35] (top lane)

[15, 30] (bottom lane)
[8, 14] [2.0, 2.5] [8, 14]

6.2.4 Freeway enter [5, 10] [8, 14] [0.5, 1.0] [8, 14]
Left turn [15, 20] (top lane)

[15, 20] (bottom lane)
[8, 14] [2.0, 2.5] [8, 14]

Table A.1.: Traffic parameters used in the evaluation.

The performance characteristics the RSBG and RC-RSBG planners become especially evident

under certain traffic conditions. Therefore, the scenario parameters affecting traffic density and

driver aggressiveness are adapted depending on the evaluation. The changes in parameters

between evaluations are given in Tab. A.1. The initial scenario state is given by sampling longi-

tudinal distances between vehicles ∆s and velocities of other vehicles velj. The behavior space

boundaries are partly adapted. The acceleration limits of the other drivers are v̇lim,+=−5 m s−2

and v̇lim,+=5 m s−2 in freeway enter. In the left turn scenario, larger braking of other drivers is

allowed with v̇lim,+=−8 m s−2. The larger smin and deceleration in left turn compared to freeway

enter enabled oncoming vehicles to brake such that enough space is left for the ego vehicle to

cross the intersection avoiding the vehicles blocking each other. This parameterization served the

purpose of the evaluation in this thesis and allowed to employ the IDM, being a car-following

model also in an intersection scenario. The initial ego velocity is zero in the left turn scenario

and sampled uniformly from [8, 14] [m/s] in freeway enter.

A.6. Scenario Examples for RSBG and Baseline Planners

Sec. 6.2.4 quantitatively compares the RSBG planner to non-belief-based planning approaches.

Fig. A.1 and Fig. A.2 depict, for the two scenario types, how the evaluated planner variants

executed a scenario when starting from the exact same initial scenario conditions.

The RSBG planner is the fastest in completing the freeway enter scenario. It completes the left

turn scenario directly after the MDP planner due to more cautiously approaching the vehicle

on the turning lane at time t = 5.0 s. The RMDP shows similar behavior in left turn and more

conservative behavior in freeway enter than the RSBG planner. The Cooperative planner acts

cautiously in freeway enter and provokes a collision in left turn at t = 4.0 s.
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Figure A.1.: Comparison of RSBG to baseline planners in freeway entering for Niters = 1k.
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Figure A.2.: Comparison of RSBG to baseline planners in left turn for Niters = 20k.
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A.7. Examples of Left Turning with the RC-RSBG Planner

This section extends the qualitative analysis of Sec. 6.3.1. Fig. A.3 and A.4 depict executed left

turn scenarios for risk level β = 0.1 and β = 0.6. At lower risk, the ego vehicle cautiously drives

into the intersection and lets an oncoming car pass at the top lane before turning left. At a higher

risk level, the ego vehicle more aggressively drives into the intersection and, thereby, takes the

right of way of the oncoming car on the top lane. The behavior observed with risk level β = 0.1

is sometimes taken by humans to cross a crowded intersection. Thereby, the human driver does

not cross the intersection in a single pass. Instead, it slowly enters to make the oncoming vehicles

at the bottom lane brake. Then, while occupying the bottom lane, it waits until a gap opens up

on the top lane to finish the turning maneuver. This two-step passing arises only by adjusting

the risk level to β = 0.1. In contrast, for β = 0.6 an aggressive, unsafe behavior occurs, in which

the ego vehicle performs a single maneuver without including an intermediate braking step.

a=5 a=1 a=-5
0

1 t = 5.60 s

a=5 a=1 a=-5
0

1 t = 9.00 s

ρ
exp.
env

β

ρ
exp.
col

πi(a|Ht
o)

ρenv(〈ot〉, a)

ρcol(〈ot〉, a)

QR(〈ot〉, a)

0

5

ve
l i

Figure A.3.: Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level β = 0.1.
The planned stochastic policy πi balances action-risk estimates, ρenv(⟨ot⟩, ai) and ρcol(⟨ot⟩, ai) yielding an
expected envelope risk ρ

exp.
env fulfilling the risk constraint β = 0.1 while the expected planned collision risk

ρ
exp.
col is close to zero and higher returns QR(⟨Ho⟩, ai) are preferred. A lower risk level results in the ego

vehicle passing the intersection in two steps, by first slowing entering the intersection and then giving right
of way to the oncoming vehicle on the top lane.
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Figure A.4.: Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level β = 0.6. As
presented in Fig. A.3, yet, a higher risk level results in the ego vehicle performing an aggressive, unsafe
maneuver taking the right of way from the oncoming vehicle on the top lane.

A.8. Experiment Setup for Restricting the Planning Time

The experiments run in distributed manner on an Intel® Xeon® CPU server with 50 cores @

2.40GHz and 264Gb of memory. Slightly different experiment outcomes can arise when limiting

the available planning time to Tsearch = 200 ms and repeating experiments with the same

planner configurations, scenario database, and equal random seeds. This nondeterminism is

due to variations in the actual processing available to the planning algorithms in the different

runs. Each experiment is repeated three times with the same conditions. Then, the analysis

employs the experiment run with the highest collision percentage. This process shall mitigate that

nondeterminism leads to a misinterpretation of the results.

Further, the parallelized implementation does not run multiple searches synchronously, e.g.,

using multiple parallel threads. Instead, all searches are run sequentially for the maximum

allowed processing time to prevent other factors, e.g., the memory bandwidth available to each

thread, influencing the results in a non-deterministic manner.
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Figure A.5.: Absolute prediction errors in freeway enter. The errors are shown over the longitudinal ego
coordinate si and lateral ego coordinate di for the combined test and train dataset and averaged over all
other state features and actions.

A.9. Parameters and Results of Experience Generation and

Training

For the data generation process, the number of initial scenario states is set to M = 100 for

freeway enter and, due to the higher allowed scenario duration, reduced to M = 30 for left

turn. The parameter maximum simulated scenario steps NS is set to the respective maximum

allowed scenario duration (cf. Sec. 6.1.2). The number of search iterations for state collection

is set to Ncol
iters = 100 while the number of iterations to calculate the experience values is set to

Nest
iters = 1000. The number of other agents considered in the feature representation is similar to

the number of agents considered by the RC-RSBG planner (cf. Sec. 6.1.4). The resulting data sets

of both scenarios are limited to the size 105.

The supervised learning with batch stochastic gradient descent applies an Adam optimizer

without weight decay with a learning rate of 0.001, a batch size of 128, and a train to test ratio

of 0.9. The parameters were found using grid-search hyper-parameter optimization. Training

runs for 106 steps with checkpointing every 5k steps. The checkpoint with the lowest test loss

Scenario Loss/Test Loss/Train Abs. Diff/Collision Abs. Diff/Envelope Abs. Diff/Return

Freeway enter 0.00187 0.00181 0.01165± 0.02739 0.01835± 0.03213 0.01687± 0.02964
Left turn 0.08576 0.08673 0.14713± 0.26042 0.14935± 0.22531 0.17799± 0.13003

Table A.2.: Quantitative experience training results.
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Figure A.6.: Absolute prediction errors in left turn. The errors are shown over the longitudinal ego coordi-
nate si and velocity vellon

i for the combined test and train dataset and averaged over all other state features
and actions.

is selected as the final network of each scenario type respectively. Tab. A.2 gives the resulting

train and test losses and the mean absolute errors calculated individually for the different value

types over the test data. Additionally, the mean absolute value differences are given for freeway

enter over longitudinal and lateral ego position in Fig. A.5, and for left turn over longitudinal

ego position and velocity in Fig. A.6 for the whole data set.

Analyzing the training results reveals that the prediction errors are significantly more promi-

nent for the left turn scenario. On the one hand, generalizing is impeded in the left turn scenario

since the larger number of considered traffic participants increases the dimension of the input

representation. Further, the feature representation based on Frenet coordinates may be subopti-

mal to represent traffic at an intersection. Lastly, a more complex structure of the value functions

may arise in the left turn scenario since long-term predictions play a more critical role. Learning

such value functions is impeded and yields more significant prediction errors.
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i Index denoting ego agent, i.e., the AV.

j Index denoting other agents, i.e., traffic participants.

N, N−i Total number and number of other agents N−i = N − 1.
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i , ot

j Observable states of the environment, of the ego and an-

other agents at time t.

O Space of observable environment states.

bt
j Behavior state of agent j at time t.

Bt
j Unknown behavior space of agent j at time t.

B Full behavior space for hypotheses design.

Bk Behavior space assigned to hypothesis k.
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j, A Joint action, action of agent j and action space.

x, y, α, vel Vehicle state in global coordinate system.
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o Action-observation history up to time t.

πi Policy of the ego agent.
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the space of possible type combinations Θ−i.
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ui, uj Utility function of ego and other agents.
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o) Posterior probability for hypothesis k for a single other

agent j, and for a combination of types for all other agents.

τa, τpredict Fundamental prediction duration and prediction duration

at current search depth.

⟨H′o⟩ Search tree node for action-observation history H′o.

O, ORSBG, OSBG Asymptotic worst-case sample complexities of RSBG and

SBG.

ρ, ρenv, ρcol Violation risk, envelope violation and collision violation

risk.

β Parameter specifying the maximum allowed safety enve-

lope violation risk of the RC-RSBG planner.

κ Exploration parameter used in UCT and risk-constrained

stochastic action selection.

v Tolerance parameter to increase support of stochastic ego

policy based on action counts.

f , fenvelope, fcollision Indicator functions returning violation of a general safety

measure, and specifically the violation of a safety envelope

and the occurrence of a collision.

Niters Maximum number of allowed search iterations.

Tsearch Maximum number of allowed search time.

136



List of Figures

1.1 Examples for dense traffic situations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of concepts to balance safety and efficiency in motion planning for AVs. 2

1.3 Potentially unsafe situations in dense traffic due to conservative driving . . . . . . 3

1.4 Probabilistic notion of safety under uncertain behavior of other traffic participants 4

1.5 Concept of an interpretable risk formalism . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Contributions within the structure of this thesis. . . . . . . . . . . . . . . . . . . . . 8

2.1 Planning approaches within simplified functional architecture of AVs . . . . . . . 12

2.2 Homotopic variants in two traffic situations . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Intents, inter- and intra-driver variations in human driving behavior . . . . . . . . 15

2.4 Exponential complexity of sampling-based interactive planning . . . . . . . . . . . 22

3.1 Definition of the state space for the Stochastic Bayesian Game (SBG) . . . . . . . . 29

3.2 Motivating example for behavior spaces . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Comparison of IDM outputs for two intent parameterizations . . . . . . . . . . . . 33

3.4 Causal diagram visualizing the behavior space model . . . . . . . . . . . . . . . . . 34

3.5 Hypotheses design in behavior spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Capturing intra-driver variations using sum posteriors . . . . . . . . . . . . . . . . 38

3.7 Histogram approximation of probability density πθk (aj|Ht
o) of kth behavior hy-

potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Motivation for robustness-based optimality in interactive traffic . . . . . . . . . . . 41

3.9 Comparison of sample complexities of ORSBG and OSBG . . . . . . . . . . . . . . . 44

3.10 Main planning steps of the RSBG planner . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Motivation of the interpretable risk formalism . . . . . . . . . . . . . . . . . . . . . 53

4.2 Example for envelope violation and collision risk calculation . . . . . . . . . . . . 54

4.3 Definition gap without near-zero collision risk constraint . . . . . . . . . . . . . . . 56

4.4 Example calculation of the indicator function for a lane changing scenario . . . . . 67

4.5 Example calculation of the indicator function for an intersection scenario. . . . . . 68

137



List of Figures

5.1 Extraction of neural network input features from environment states. . . . . . . . 76

5.2 Inference times and the number of network parameters for characteristic neural

network architectures for experience-learning . . . . . . . . . . . . . . . . . . . . . 77

5.3 Overview of the data generation process for experience learning . . . . . . . . . . 79

6.1 BARK simulation loop handled by the benchmark runner . . . . . . . . . . . . . . 84

6.2 BARK observed world concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Performance comparison of the RSBG planner for different types of behavior

spaces and number of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Tracked posterior beliefs over time for different hypotheses design parameters . . 94

6.5 Comparison of robustness- and non-robustness-based planning . . . . . . . . . . . 96

6.6 Comparison of exploration depths of robustness-based (RSBG) and non-robustness-

based (SBG) planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Comparison of the performances of the RSBG and IntentRSBG planner . . . . . . 99

6.8 Comparison of scenarios solved with RSBG and IntentRSBG planners . . . . . . . 100

6.9 Comparison of non-belief-based baseline and RSBG interactive planners . . . . . . 101

6.10 Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level

β = 0.1 for freeway entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.11 Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level

β = 0.6 for freeway entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.12 Performance of the RC-RSBG and baseline planners in the freeway enter scenario 104

6.13 Performance of the RC-RSBG and baseline planners in the left turn scenario . . . 105

6.14 Comparison of observed envelope violation risks . . . . . . . . . . . . . . . . . . . 106

6.15 Comparison of scenario waiting times . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.16 Comparison of planning times and expanded nodes of the RC-RSBG and RSBG

planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.17 Comparison of parallel multi- and single-objective planners . . . . . . . . . . . . . 109

6.18 Comparison of the experience- and rollout-based RC-RSBG planner. . . . . . . . . 111

7.1 Representation of hypothetical policies using neural networks. . . . . . . . . . . . 115

7.2 Concept of probabilistic safety envelope for perception uncertainty . . . . . . . . . 116

A.1 Comparison of RSBG to baseline planners in freeway entering for Niters = 1k. . . . 126

A.2 Comparison of RSBG to baseline planners in left turn for Niters = 20k. . . . . . . . 127

A.3 Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level

β = 0.1 for left turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.4 Analysis of the RC-RSBG planner’s risk-constrained stochastic policy at risk level

β = 0.6 for left turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.5 Absolute prediction errors in freeway enter . . . . . . . . . . . . . . . . . . . . . . . 130

A.6 Absolute prediction errors in left turn . . . . . . . . . . . . . . . . . . . . . . . . . . 131

138



List of Tables

4.1 Comparison of RC-RSBG, RSBG and Simultaneous-Move MCTS (SM-MCTS) plan-

ners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Boundaries of the behavior spaces used in the evaluation . . . . . . . . . . . . . . . 89

A.1 Traffic parameters used in the evaluation. . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Quantitative experience training results. . . . . . . . . . . . . . . . . . . . . . . . . . 130

139





List of Algorithms

1 Main search method of the RSBG planner. . . . . . . . . . . . . . . . . . . . . . . . 47

2 Simulation step of the RSBG planner integrating selection, expansion and rollout. 48

3 Worst-case action selection of other agents . . . . . . . . . . . . . . . . . . . . . . . 49

4 Ego action selection using return normalization and UCT. . . . . . . . . . . . . . . 49

5 Random rollout using root-sampled behavior hypotheses. . . . . . . . . . . . . . . 50

6 Simulation step of the RC-RSBG planner . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Random rollout of the RC-RSBG planner . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Worst-case action selection for other agents in the RC-RSBG planner . . . . . . . . 61

9 Gradient-updates of Lagrange multipliers in the RC-RSBG planner . . . . . . . . . 64

10 Stochastic ego-policy optimization in the RC-RSBG planner . . . . . . . . . . . . . 65

141





Bibliography

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner. “Three Decades

of Driver Assistance Systems: Review and Future Perspectives.” In: IEEE Intelligent Trans-

portation Systems Magazine 6.4 (2014), pp. 6–22.

[2] A. Nikitas, E.T. Njoya, and S. Dani. “Examining the Myths of Connected and Autonomous

Vehicles: Analysing the Pathway to a Driverless Mobility Paradigm.” In: International

Journal of Automotive Technology and Management 19.1-2 (2019), pp. 10–30.

[3] L. Lim and A.M. Tawfik. “Estimating Future Travel Costs for Autonomous Vehicles (AVs)

and Shared Autonomous Vehicles (SAVs).” In: vol. 2018-November. IEEE Conference on

Intelligent Transportation Systems, Proceedings, ITSC. 2018, pp. 1702–1707.

[4] Left turn. Google Earth 9.148.0.0. (3/23/20). Munich, Germany. 48°06’50”N 11°29’07”E. Eye

Alt 544 m. GeoBasis-DE/BKG (©2009). http://www.earth.google.com. Oct. 2021.

[5] Merging. Google Earth 9.148.0.0. (3/23/20). Munich, Germany. 48°10’33”N 11°35’31”E. Eye

Alt 504 m. GeoBasis-DE/BKG (©2009). http://www.earth.google.com. Oct. 2021.

[6] K. Esterle, L. Gressenbuch, and A. Knoll. “Formalizing Traffic Rules for Machine Inter-

pretability.” In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS). 2020,

pp. 1–7.

[7] C. Pek, P. Zahn, and M. Althoff. “Verifying the Safety of Lane Change Maneuvers of

Self-Driving Vehicles Based on Formalized Traffic Rules.” In: 2017 IEEE Intelligent Vehicles

Symposium (IV). 2017, pp. 1477–1483.

[8] Y. Nishimura, A. Fujita, A. Hiromori, H. Yamaguchi, T. Higashino, A. Suwa, H. Urayama,

S. Takeshima, and M. Takai. “A Study on Behavior of Autonomous Vehicles Cooperat-

ing with Manually-Driven Vehicles.” In: 2019 IEEE International Conference on Pervasive

Computing and Communications (PerCom). 2019, pp. 212–219.

[9] I. Nastjuk, B. Herrenkind, M. Marrone, A.B. Brendel, and L.M. Kolbe. “What Drives the

Acceptance of Autonomous Driving? An Investigation of Acceptance Factors from an

End-User’s Perspective.” In: Technological Forecasting and Social Change 161 (2020).
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“Adaptive Behavior Generation for Autonomous Driving Using Deep Reinforcement

Learning with Compact Semantic States.” In: 2018 IEEE Intelligent Vehicles Symposium

(IV). IEEE, 2018, pp. 993–1000.

[142] David Isele, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fujimura. “Navigating

Intersections with Autonomous Vehicles Using Deep Reinforcement Learning.” In: CoRR

abs/ 1705.01196 (2017).

[143] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fujimura.

“Navigating Occluded Intersections with Autonomous Vehicles Using Deep Reinforce-

ment Learning.” In: 2018 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2018, pp. 2034–2039.

[144] Branka Mirchevska, Christian Pek, Moritz Werling, Matthias Althoff, and Joschka Boedecker.

“High-Level Decision Making for Safe and Reasonable Autonomous Lane Changing Us-

ing Reinforcement Learning.” In: 2018 IEEE 21st International Conference on Intelligent

Transportation Systems (ITSC). IEEE, 2018, pp. 2156–2162.

[145] Mustafa Mukadam, Akansel Cosgun, Nakhaei Alireza, and Fujimura Kikuo. “Tactical

Decision Making for Lane Changing with Deep Reinforcement Learning.” In: Conference

on Neural Information Processing (NIPS). 2017.

[146] X. Li, X. Xu, and L. Zuo. “Reinforcement Learning Based Overtaking Decision-Making

for Highway Autonomous Driving.” In: 2015 Sixth International Conference on Intelligent

Control and Information Processing. Nov. 2015, pp. 336–342.

154



Bibliography

[147] Branka Mirchevska, Manuel Blum, Lawrence Louis, Joschka Boedecker, and Moritz Wer-

ling. “Reinforcement Learning for Autonomous Maneuvering in Highway Scenarios.” In:

11. Uni-DAS e.V. Workshop Fahrerassistenz Und Automatisiertes Fahren. 2017.

[148] Shai Shalev-Shwartz, Nir Ben-Zrihem, Aviad Cohen, and Amnon Shashua. “Long-Term

Planning by Short-Term Prediction.” In: CoRR abs/1602.01580 (2016). arXiv: 1602.01580.

[149] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making.

MIT Press, 2022.

[150] Simon Ulbrich and Markus Maurer. “Probabilistic Online POMDP Decision Making for

Lane Changes in Fully Automated Driving.” In: 2013 IEEE 16th International Conference

on Intelligent Transportation Systems (ITSC). IEEE, 2013, pp. 2063–2067.

[151] Zachary Sunberg and Mykel J. Kochenderfer. “Online Algorithms for POMDPs with Con-

tinuous State, Action, and Observation Spaces.” In: Twenty-Eighth International Conference

on Automated Planning and Scheduling (ICAPS). 2018, pp.259–263.

[152] Zachary Sunberg and Mykel J. Kochenderfer. “Improving Automated Driving through

Planning with Human Internal States.” In: CoRR abs/2005.14549 (2020). arXiv: 2005.

14549.

[153] Trong Nghia Hoang and Kian Hsiang Low. “Interactive POMDP Lite: Towards Practical

Planning to Predict and Exploit Intentions for Interacting with Self-interested Agents.” In:

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. IJCAI

’13. AAAI Press, 2013, pp. 2298–2305.

[154] Stefan Albrecht and Subramanian Ramamoorthy. “A Game-theoretic Model and Best-

response Learning Method for Ad Hoc Coordination in Multiagent Systems.” In: Pro-

ceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems.

AAMAS ’13. St. Paul, MN, USA: International Foundation for Autonomous Agents and

Multiagent Systems, 2013, pp. 1155–1156.

[155] P. Hang, C. Lv, C. Huang, J. Cai, Z. Hu, and Y. Xing. “An Integrated Framework of

Decision Making and Motion Planning for Autonomous Vehicles Considering Social

Behaviors.” In: IEEE Transactions on Vehicular Technology 69.12 (2020), pp. 14458–14469.

[156] John Mern, Anil Yildiz, Zachary Sunberg, Tapan Mukerji, and Mykel J. Kochenderfer.

“Bayesian Optimized Monte Carlo Planning.” In: AAAI Conference on Artificial Intelligence

(AAAI). Vol. 35(13). 2021, pp. 11880–11887.

[157] Klemens Esterle, Tobias Kessler, and Alois Knoll. “Optimal Behavior Planning for Au-

tonomous Driving: A Generic Mixed-Integer Formulation.” In: 2020 IEEE Intelligent Vehi-

cles Symposium (IV). Oct. 2020, pp. 1914–1921.

[158] Wilko Schwarting, Alyssa Pierson, Sertac Karaman, and Daniela Rus. “Stochastic Dy-

namic Games in Belief Space.” In: CoRR abs/1909.06963 (2019).

155

https://arxiv.org/abs/1602.01580
https://arxiv.org/abs/2005.14549
https://arxiv.org/abs/2005.14549


Bibliography

[159] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-

ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Si-

mon Colton. “A Survey of Monte Carlo Tree Search Methods.” In: IEEE Transactions on

Computational Intelligence and AI in Games 4.1 (Mar. 2012), pp. 1–43.

[160] Viliam Lisy, Vojta Kovarik, Marc Lanctot, and Branislav Bosansky. “Convergence of Monte

Carlo Tree Search in Simultaneous Move Games.” In: Advances in Neural Information

Processing Systems 26. Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger. Curran Associates, Inc., 2013, pp. 2112–2120.

[161] F. Fabiani and S. Grammatico. “Multi-Vehicle Automated Driving as a Generalized Mixed-

Integer Potential Game.” In: IEEE Transactions on Intelligent Transportation Systems 21.3

(2020), pp. 1064–1073.

[162] Olivier Pietquin and Fabio Tango. “A Reinforcement Learning Approach to Optimize

the Longitudinal Behavior of a Partial Autonomous Driving Assistance System.” In: Pro-

ceedings of the 20th European Conference on Artificial Intelligence. IOS Press, 2012, pp. 987–

992.

[163] Edouard Leurent, Yann Blanco, Denis V. Efimov, and Odalric-Ambrym Maillard. “Ap-

proximate Robust Control of Uncertain Dynamical Systems.” In: CoRR abs/1903.00220

(2019).

[164] X. Huang, Sungkweon Hong, A. Hofmann, and B. Williams. “Online Risk-Bounded Mo-

tion Planning for Autonomous Vehicles in Dynamic Environments.” In: 2019 International

Conference on Automated Planning and Scheduling (ICAPS). Vol. 29(1). 2019, pp. 214–222.

[165] D. Li, Y. Wu, B. Bai, and Q. Hao. “Behavior and Interaction-Aware Motion Planning for

Autonomous Driving Vehicles Based on Hierarchical Intention and Motion Prediction.”

In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). 2020.

[166] Patrick Hart and Alois Knoll. “Graph Neural Networks and Reinforcement Learning

for Behavior Generation in Semantic Environments.” In: 2020 IEEE Intelligent Vehicles

Symposium (IV). 2020, pp. 1589–1594.

[167] Patrick Hart and Alois C. Knoll. “Using Counterfactual Reasoning and Reinforcement

Learning for Decision-Making in Autonomous Driving.” In: CoRR abs/2003.11919 (2020).
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