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Abstract—In the operation of networked control sys-
tems, where multiple processes share a resource-limited
and time-varying cost-sensitive network, communication
delay is inevitable and primarily induced by, first, inter-
mittent sensor sampling to restrict non-urgent transmis-
sions, and second, resource management to avoid con-
tentions, excessive traffic, and data loss. In a heteroge-
neous scenario, where control systems may tolerate only
specific levels of sensor-to-controller latency, delay sen-
sitivities need to be considered in the design of control
and network policies to achieve the desired performance
guarantees. We propose a cross-layer optimal co-design of
control, sampling and resource management policies for an
NCS consisting of multiple stochastic linear time-invariant
systems which close their sensor-to-controller links over
a shared network. Aligned with advanced communication
technology, we assume that the network offers a range of
latency-varying transmission services for given prices. The
performance of the local closed-loop systems is measured
by a combination of linear-quadratic Gaussian cost and
a suitable communication cost, and the overall objective
is to minimize a defined social cost by all three policy
makers. We derive optimal control, sampling and resource
allocation policies under different cross-layer awareness
models, including constant and time-varying parameters,
and show that higher awareness generally leads to per-
formance enhancement at the expense of higher computa-
tional complexity. This trade-off is shown to be a key feature
to select the proper interaction structure for the co-design.

Index Terms— Networked control systems, cross-layer
awareness model, joint optimal design, latency-varying
transmission links, link capacity constraint.

I. MOTIVATION AND INTRODUCTION

The design and operation of networked control systems

(NCSs), wherein multiple control loops exchange informa-
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tion between their sensors, controllers and actuators via a

common communication network, requires a major rethink-

ing to respond to the growing requirements from current

and future applications. The introduction of communication

technologies that provide demand-driven serviceability with

adjustable parameters and prices, together with novel ap-

proaches to virtually program network functions and adaptable

network features, have created a significant potential to bring

control and networking architectures to a whole new level

[1], [2]. This generally means moving from the traditional

throughput-oriented and latency-minimizing data transmission

with asymptotic-type performance guarantees, to smart data

coordination schemes that consider real-time requirements and

limitations of both the service providers and service recipients.

In the context of NCSs, this calls for novel sampling,

control and resource management architectures that incorpo-

rate the wide range of opportunities provided by the net-

work infrastructure, such as adaptive service allocation, virtual

programmability, adjustable channel reliability and latency,

to maximize quality-of-control (QoC), while minimizing the

cost of network usage. Emerging NCS applications, such

as networked cyber-physical systems (Net-CPS), autonomous

driving and Industry 4.0, often involve a large number of

networked entities, each with time-varying requirements to

fulfill specific tasks. The concept of “network” in such systems

has gone beyond a simple shared communication channel to

a general representation of evolving inter-layer dependencies

[3]. This creates a large potential to develop novel interactive

approaches for real-time distributed sampling, networking and

control, such that the individual entities become aware of

networking opportunities, and coupling constraints and incor-

porate them in decision making, while the network is also

aware of the demands and the task criticality of the entities and

optimally allocate services and adjust the inter-dependencies.

A. Contributions

In this article, we propose jointly optimal communication

and control policies for a general NCS model consisting

of multiple delay-sensitive heterogeneous stochastic control

systems closing their sensor-to-controller links via a shared

communication network, under various inter-layer awareness

assumptions. Each sub-system is controlled by two local deci-

sion makers: a delay-sensitive controller that determines how
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fast state information should be sent to the plant controller, and

a plant controller that maximizes control performance, mea-

sured by a linear-quadratic-Gaussian (LQG) cost. The network

offers various transmission services, for fixed prices, through

multiple capacity-limited channels each with a distinct and

deterministic latency. Transmission requests from sub-systems

are arbitrated by a resource manager to avoid exceeding the

link capacities. Resource arbitration is optimally performed

such that the average sum of local LQG cost functions

undergoes the minimum deviation compared to the resource-

unlimited case, over a finite time horizon. We study scenarios

each entailing a specific class of inter-layer awareness (one-

directional and bi-directional awareness of time-varying and

constant parameters) among the three decision makers, and

derive the resulting jointly optimal policies. We show that

performance of the joint design is associated with the level

of delay-sensitivity tolerances and the awareness structure. In

general, higher awareness results in lower local and social

costs at the expense of higher computational complexity of the

resulting optimization problem. We also observe that the extent

of performance improvement is firmly tied to the particular

awareness model. Our major contributions in this article are:

1) introducing a general model of NCS including hetero-

geneous control loops and variety of network services,

with evolving interactions between control and network

layers leading to enhanced joint performance.

2) investigating various awareness models for control and

network layers and studying the interaction effects on

the structure and performance of the optimal co-design.

3) deriving jointly optimal policies from awareness-based

social optimization problems including performance-

complexity comparisons w.r.t. the awareness model.

B. Related works

The problem of joint control and communication design in

NCSs has been an active research topic for the last two decades

in both control and communication communities [4], [5]. Two

rather distinct perspectives in addressing it have evolved: from

the communication perspective where maximizing quality-of-

service (QoS) is the major objective, requirements of control

systems are often abstracted in the form of transmission

rate, delay, and packet loss, with less attention given to the

application dynamics and their real-time necessities [6], [7].

Numerous design methodologies are proposed including pro-

tocols for QoS-enhacing medium access control (MAC) [8],

[9], resource allocation [10], [11], scheduling and routing [12],

[13], and queuing management [14], [15]. On the other hand,

from the control perspective the aim is to maximize QoC, and

the communication network is usually abstracted as maximum-

rate and delay-negligible single-hop channels. Many design

approaches for sampling, estimation and control over shared

networks are proposed to enhance QoC while reducing the rate

of transmission, including event-triggered schemes [16]–[18],

self-triggered schemes [19], [20], and adaptive/predictive data

transmission and control models [21], [22]. For more sophisti-

cated models of communication networks with data loss, delay

and resource constraints, attempts have been made mostly

on co-design architectures that guarantee stability rather than

optimality [23], [24]. Altogether, the efforts have often led

to design frameworks that either consider no evolving cross-

layer coupling or presume interactions in average form, with

performance guarantees mostly valid in the asymptotic regime.

The design of cross-layer architectures for NCSs that con-

sider active interactions between distributed components of

control and communication layers to be aware of each others

conditions, capabilities, and requirements to achieve joint opti-

mal quality-of-control-and-service, not only asymptotically but

also over finite time horizons, is less studied in the literature.

A major issue to address this is optimal timeliness, i.e., when

is the best time to make a specific action such as sampling,

transmission or actuation. This problem is addressed in the

control community mainly for data sampling over single-

service communication support leading to optimal event-based

technique to restrict unnecessary transmission [25], [26], and

prioritized MAC protocols to distribute resources based on

urgency [27], [28]. These approaches consider some measured

or observed quantity of the control system, such as estimation

error, as the triggering function. For multiple-loop non-scalar

NCS, though, finding the optimal triggering law without major

simplifications of the network layer is challenging. Moreover,

resource allocation is often performed randomly or based on

apriori given parameters but not based on dynamic awareness

of interacting layers. In addition, the resulting performances

of the proposed approaches are often addressed asymptotically

over infinite horizon. To the best of our knowledge, a sys-

tematic approach that proposes a cross-layer optimal design

of control, sampling and resource management strategies to

maximize QoC for multi-loop NCSs with a shared network of

various service opportunities is not presented in the literature.

C. Notations

We denote expectation, conditional expectation, transpose,

floor and trace operators by E[·], E[·|·], [·]⊤, ⌊·⌋ and Tr(·),
respectively. For a ≥ 0, define the indicator 1(a) = 0 if

a = 0, and 1(a) = 1 if a > 0. X ∼ N (µ,W ) represents

a multivariate Gaussian distributed random vector X with

mean vector µ and covariance W ≻ 0, where A≻B denotes

A−B is positive definite. The Q-weighted squared 2-norm

of a column vector X is denoted by ‖X‖2Q , X⊤QX . A

time-varying column vector X i
t includes an array of variables

belonging to sub-system i at time t, while we define X i
[t1,t2]

,

{X i
t1
, X i

t1+1, ..., X
i
t2−1, X

i
t2
}, and X i,{X i

0, X
i
1, ... }.

II. NCS MODEL: CONTROL & COMMUNICATION LAYERS

We consider an NCS consisting of N synchronous stochas-

tic linear time-invariant (LTI) controlled processes exchanging

information over a common resource-limited communication

network with resource management capabilities (see Fig. 1).

Each process i ∈ N , {1, . . . , N} comprises of a physical

plant Pi, a delay-sensitivity controller Si, and a feedback

control unit consisting of a state feedback controller Ci and

an estimator Ei. The dynamics of the plant Pi, i ∈ N, is

described by the following stochastic difference equation:

xi
k+1 = Aix

i
k +Biu

i
k + wi

k, (1)
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Fig. 1: Multiple LTI control loops exchange information with their respective controllers

over a shared resource-limited communication network that can offer an array of latency-

varying transmission services for different prices. (Z−d is the delay operator).

where xi
k∈R

ni

represents sub-system i’s state vector at time-

step k∈N ∪ {0}, ui
k∈R

mi

denotes the corresponding control

signal, wi
k ∈ R

ni

the stochastic exogenous disturbance, and

Ai∈R
ni×ni

and Bi∈R
ni×mi

describe the system and input

matrices, respectively. To allow for heterogeneity, Ai and Bi

matrices can be different across the NCS, i.e., Ai 6= Aj and

Bi 6=Bj , i, j∈N. The disturbances are assumed to be random

sequences with independent and identically distributed (i.i.d.)

realizations wi
k ∼N (0,Σi

w), ∀k and i∈N, and Σi
w ≻ 0. The

initial states xi
0’s are also presumed to be randomly selected

from any arbitrary finite-moment distributions with variance

Σi
x0

. For simplicity, we assume that the sensor measurements

are perfectly noiseless copies of the state values1.

A. Communication system model

To support the information exchange between each plant

and its control unit, a resource-limited communication net-

work provides cost-prone latency-varying transmission ser-

vices. Precisely, the communication network consists of a set

of multiple distinct one-hop transmission links, denoted by

L , {ℓ0, ℓ1, . . . , ℓD}, where ℓd represents the transmission

link with deterministic service latency of d time-steps, and

|L|=D+1. Define the set D, {0, 1, . . . , D} and the vector

∆, [0, 1, . . . , D]⊤. Hence, if xi
k is sent to the controller Ci at

time-step k through the transmission link ℓd with d-step delay,

d ∈ D, then xi
k will be received at Ci at time-step k + d.

A finite-valued service price λd ∈ R≥0 is assigned to each

ℓd ∈ L that is paid by the service recipient. Collectively, Λ ,

[λ0, λ1, . . . , λD]⊤ denotes the link prices such that shorter

delay induces higher price, i.e., λ0 > λ1 > . . . > λD ≥ 0.

Denote cd∈N as the transport capacity of a certain link ℓd ∈
L, which entails the link ℓd has sufficient bandwidth resources

to transport at most cd number of data packets belonging to

cd number of distinct control systems. Being serviced with ℓd
means that all those control systems will experience an equal

delay of d time-steps. The data packet containing the state

information of the ith control system includes a R
ni

-valued

vector of real numbers. The resource constraint on the number

1The results of this article extend, with lengthy but straightforward math-
ematical efforts, to noisy measurements if noise is an i.i.d. process.

of data packets that can be serviced, is stated as

cd < N, ∀ d ∈ D. (2)

Although, not all sub-systems can transmit through one certain

link, we assume that the total capacity of all distinct transmis-

sion links is sufficient to service all sub-systems, via multiple

transmission links, at every time-step k ∈ {0, 1, . . .}, i.e.,
∑

d∈D
cd ≥ N. (3)

B. Distributed policy-makers & decision variables

We now introduce the three cross-layer policy makers and

their corresponding decision outcomes for the underlying

NCS, schematically depicted in Fig. 1, as follows:

1) Delay-sensitivity: At the beginning of each sample cycle

k a local controller called “delay controller” decides on delay-

sensitivity of its corresponding sub-system by selecting one of

the transmission links ℓd ∈ L. We define the binary-valued

vector θik , [θik(0), . . . , θ
i
k(D)]T as the delay controller’s

decision variable of sub-system i at time-step k, where each

element of θik is determined as follows:

θik(d)=

{

1, link ℓd selected to transmit xi
k at time k,

0, link ℓd not selected.
(4)

We assume that each local delay controller selects only one

of the transmission links per time-step, therefore, we have

∑D

d=0
θik(d) = 1, ∀ k ∈ {0, 1, . . .}, ∀ i ∈ N. (5)

2) Control input: The control unit of each local sub-system

includes a feedback controller Ci and an estimator Ei, which

are assumed collocated. At every time k, the control command

ui
k∈R

mi

is the outcome of a causal and measurable law γi
k(·),

given the available information at Ci. In the absence of the state

information xi
k , the collocated estimator Ei may calculate the

state estimate x̂i
k if it is required for the computation of ui

k.

3) Resource allocation: The constraint (2) implies that if the

number of requests to utilize a specific transmission link ℓd
exceeds the capacity cd, not all requests can be accordingly

serviced. Assume that a centralized network manager coor-

dinates the resource allocation among sub-systems. In case
∑N

i=1 θ
i
k(d)> cd for a certain link ℓd, it decides which sub-

systems will be serviced via the link ℓd and which ones

are reassigned to new transmission links. According to (3),

no scheduled data packet is dropped due to capacity limi-

tation, as there will be another transmission link with free

capacity to be assigned. We define the binary-valued vector

ϑi
k , [ϑi

k(0), . . . , ϑ
i
k(D)]⊤ as the decision outcome of the

centralized resource allocation mechanism that determines im-

plementable transmission links for sub-system i. The element

ϑi
k(d) ∈ {0, 1} is similarly defined as in (4), except that it

is determined by the network manager after receiving the

requests from all the sub-systems. If at a time k,
∑N

i=1 θ
i
k(d)≤

cd, ∀d∈D, then ϑi
k=θik, ∀i∈N. Otherwise, if m requests are

received for a certain link ℓd such that m =
∑N

i=1 θ
i
k(d) > cd,

new transmission links will be assigned to m − cd of those

requests. This means for every sub-system j of those cd sub-

systems, ϑj
k = θjk holds. If a sub-system j̄ belonging to the
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remaining set of m− cd sub-systems had requested a certain

link ℓd̄, but instead was serviced with a different link ℓd̃, then

ϑj̄
k(d̃) 6= θj̄k(d̃) and ϑj̄

k(d̄) 6= θj̄k(d̄), while for the rest of the

links ℓd : ∀d ∈ D \ {d̃, d̄}, we have ϑj̄
k(d) = θj̄k(d).

Since the ultimate link assignment is made by the network

manager, state information received at the controller at time k,

denoted by Yi
k, is determined by ϑi. Define yik−d(d) = xi

k−d

if ϑi
k−d(d)=1, and yik−d(d)=∅ if ϑi

k−d(d)=0, then

Yi
k = {yik(0), y

i
k−1(1), . . . , y

i
k−D(D)}, (6)

where, to avoid notational inconvenience, we define ϑi
−1(d)=

ϑi
−2(d)= . . .=ϑi

−D(d)=0 for all d ∈ D.

Out of order delivery is a common phenomenon that may

happen depending on the selected resource allocation policy.

Assume state xi
0 is sent with delay 5 and xi

1 is sent with

zero delay, then xi
1 will arrive before xi

0. However, out of

order arrival will be adequately handled while constructing

the state estimate and computing the control input. If a stale

state measurement arrives at the controller while a fresher one

is available, or if both arrive simultaneously, the incorporation

of the stale information will have no effect on improving the

optimal control input, i.e., excluding the stale information in

estimating the system state does not result in loss of optimality

as the local control systems are fully observable. Note that the

exclusion of stale measurements comes as the solution of the

optimization problems in section IV, and we do not need to

assume dropout of stale information. Hence, without delving

into the details, one can intuitively confirm that the optimal

delay link profile should impose the least communication cost2

for outdated measurements. This naturally emerges as the

solution of the optimization problems described later.

III. PROBLEM FORMULATION: JOINT OPTIMIZATION

In this section, we formulate a cross-layer joint optimization

problem and discuss its structural characteristics w.r.t. to the

policy makers. The three decision makers are 1) local plant

controllers that computes the control input ui
k, i ∈ N, at

time-step k, 2) local delay controllers where the decision

outcome θik determines the link ℓd∈L through which xi
k will

be transmitted, and 3) resource manager to compute ϑi
k that

determines whether θik can be accordingly serviced.

We assume that individual control systems have no knowl-

edge of each other’s parameters or decision variables. Let

Ii
k, Īi

k, and Ĩk denote the sets of accessible information for

the plant controller, delay controller, and resource manager,

respectively. (These sets are characterized in Section IV where

the information structure at each policy maker is discussed.).

Then, at every time k, the plant control, delay control, and

resource allocation policies are measurable functions of the

σ-algebras generated by their corresponding information sets,

i.e., ui
k = γi

k(I
i
k), θ

i
k = ξik(Ī

i
k), and ϑk = πk(Ĩk). Note that,

γi and ξi represent local policies corresponding to a specific

sub-system i, while π is computed centrally and includes the

resource allocation profile for all i ∈ N. The local objective

function of each sub-system i ∈ N, denoted by J i, consists

2Due to the constraint (5) each sub-system is forced to pay a communication
cost of at least λD per time-step.

of its own LQG part plus the communication cost in average

form over the finite horizon [0, T ], as follows:

J i(ui, θi)=E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

k=0
‖xi

k‖
2
Qi

1
+‖ui

k‖
2
Ri+θi

⊤

kΛ
]

(7)

where, Qi
1� 0, Qi

2� 0, and Ri≻ 0 represent constant weight

matrices for the state and control inputs, respectively.

The overall objective for the underlying NCS is to maximize

the average performance of all sub-systems under the resource

constraint (2). This cannot simply be obtained by taking the

average of the sum of the local cost functions (7) because

the local decision variable θik might not be realized due to

the resource limitations. More precisely, the time that a state

information is received at a controller might not always be

the time decided by its delay controller. In fact, the cost

function (7) is achievable for a certain sub-system i only if

ϑi
k = θik, ∀k∈ [0, T ]. However, if the capacity of one or more

transmission links are exceeded by the number of requests,

the resource manager adjusts some of those requests, which

eventually changes the realization of the control signal ui
k and

consequently the value of the local cost J i(ui, θi).
We formulate the system (commonly called social) cost J

as the average difference between the sum of J i’s from the

resource manager (given ϑi
k’s) and local sub-systems’ (given

θik’s) perspectives, i.e., knowing ϑk=πk(Ĩk), we have

J =
1

N

∑N

i=1
E

[

J i(ui, ϑi)− min
ui,θi

J i(ui, θi)
]

, (8)

and J i has been adjusted after resource allocation as

J i(ui,ϑi)=E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

k=0
‖xi

k‖
2
Qi

1
+‖ui

k‖
2
Ri+ϑi⊤

kΛ
]

(9)

Note that, J i(ui, θi) is computed locally independent of the

decisions for sub-systems j 6= i, while J i(ui, ϑi) is computed

after central resource allocation is performed. The resources

are allocated such that, w.r.t. the sub-systems preferences, the

closest possible services are provided and J is minimized.

In addition to the delay controllers that determine the real-

time sensitivity of the control loops w.r.t. transmission latency,

we introduce a latency-tolerance bound for each sub-system

such that the allocated transmission links should remain within

that given bound. To diversify this static sensitivity for each

sub-system, we define αi and βi (∈ D) representing the

maximum allowable delay tolerances. This specifies that a sub-

system i can tolerate imposed deviations from the selected

latency d only within the set {d−αi, . . . , d, . . . , d+βi}3. In a

real scenario, low latency-tolerance bounds would correspond

to very precise machines with very fine sampling periods.

The ultimate goal is finding the optimal policies γi,∗
k (Ii

k),
ξi,∗k (Īi

k) and π∗
k(Ĩk) that jointly minimize the social cost J :

min
γi,ξi,π

J (10a)

s. t. ui
k = γi

k(I
i
k), θik = ξik(Ī

i
k), ϑk = πk(Ĩk), (10b)

− αi ≤ (ϑi
k − θik)

⊤∆ ≤ βi, i ∈ N, (10c)
∑N

j=1
ϑj
k(d) ≤ cd, d ∈ D, k∈ [0, T − 1]. (10d)

3To avoid notational inconvenience, the network manager only takes into
account the feasible tolerances of this set that also belong to D. Moreover,
for a nontrivial set, we assume at least one non-zero αi and βj , i, j ∈ N.
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Constraint (10c) specifies that if at time k, θik(d)=1, then the

network manager allocates an available resource only from the

set of links {ℓmax{0,d−αi}, . . . , ℓmin{d+βi,D}} to sub-system i.
The ultimate links from the allowable ones are selected by the

resource manager such that the social cost J is minimized.

Note that problem (10) might not have a feasible solution for

all cd. We derive a sufficient feasibility condition in form of a

lower bound for the link capacities cd, d ∈ D, in Section IV.

Solving problem (10) is challenging due to the couplings

between the decision variables. In fact, θik is the best choice,

from the perspective of sub-system i, to make the balance

between its LQG cost and communication price. However,

delay controller decisions may go through changes because of

resource limitations. Note that, the control input ui
k is explic-

itly affected by θik in the absence of the resource limitations,

but if ϑi
k 6= θik, then ui

k will have a different realization. This

means the realization of ui,∗
k computed from the problem (7)

might be different from that being computed from the prob-

lem (9) even if both are computed from the same control

law. Moreover, any decision of ϑi
k is clearly θk-dependent.

Further, as we discuss later, θik+1 might also be a function

of ϑi
[0,k]. Altogether, problem (10) is nontrivial due to inter-

dependencies and cross-layer constraints, hence we need to

identify relevant conditions under which it can be decomposed.

IV. AWARENESS MODELS & OPTIMAL CO-DESIGN

Structural properties of the joint optimal policies are cor-

related with the cross-layer awareness model which charac-

terizes the information sets Ii
k, Ī

i
k, Ĩk. We discuss directed

awareness models for two different sets of information under

which the couplings between ui
k, θik and ϑi

k are examined:

“constant model parameters” and “dynamic variables”. In the

rest of the article, awareness of the constant model parameters

for the network layer, if assumed, entails the knowledge of

{Ai, Bi, Q
i
1, Q

i
2, R

i,Σi
w,Σ

i
x0
}, ∀i ∈ N. Note that, {αi, βi}’s

are known to the network layer. The local delay and plant

controllers are also assumed to have the knowledge of their

own model parameters {Ai, Bi, Q
i
1, Q

i
2, R

i,Σi
w,Σ

i
x0
, αi, βi}

as well as the constant network parameters {Λ,L}. In reality,

information accessibility for each decision maker can be

coordinated by a data center or through local servers.

To discuss awareness of dynamic variables, it is essential

to have a clear picture of the order of generating variables

in one sample cycle, e.g., k → k+1. At the beginning of

a sample time k, the system state xi
k is updated according

to the dynamics (1), and then the delay controller generates

θik, based on the policy ξik(Ī
i
k) to determine the transmission

link through which xi
k is to be communicated. System state

xi
k together with the service request θik is then forwarded to

the network to be serviced. The resource manager receives

this information from all sub-systems and checks whether the

number of requests for each link is exceeding its capacity. It

then computes ϑi
k, according to the policy πk(Ĩk), and xi

k is

transmitted through the link determined by ϑi
k. The control

signal ui
k is computed from the control law γi

k(I
i
k)

4, xi
k+1 is

4In case the information set Ii
k

is not updated, i.e. if no new state
information belonging to sub-system i is scheduled to be delivered at time k,
the control signal is updated based on a model-based estimation of xi

k
.

Plant

controller

Delay

controller

Network

manager

Application layer

Network layer

ϑi
kϑi

k

ui
k

θik

θik

Network model parameters

System model parameters

Here cycle k begins

Fig. 2: Cross-layer interaction model: magenta arrows represent awareness of constant

parameters. For network layer, awareness of system parameters, if assumed, includes

{Ai, Bi, Q
i
1, Q

i
2, R

i,Σi
w ,Σi

x0
, αi, βi}, ∀i ∈ N. For control loops, network

parameters {L,Λ} are known. If ϑi
k is available for the delay controller (violet arrow)

we call the delay-control policy reactive, otherwise, it is called impassive.

afterward updated and the pattern repeats over next samples.

At the controllers, the following awareness model of the

dynamic variables is valid throughout the article. Knowledge

of the model parameters of sub-system i is assumed for Ci.
Reminding (6), the information set Ii

k at time k is as

Ii
k = {Yi

0, ...,Y
i
k, θ

i
0, ..., θ

i
k, ϑ

i
0, ..., ϑ

i
k, u

i
0, ..., u

i
k−1}. (11)

As in Fig. 2, the information set Ii
k in (11) specifies that the

plant controllers are aware of the outcomes of the other two

policies ξi[0,k] and πi
[0,k], from t=0 up to current time t=k.

For that, we assume a dedicated low-bandwidth and error-free

acknowledgement channel exists to inform the controllers at

every time k about θik and ϑi
k (see Fig. 1). This practically can

be done via broadcast or encoded acknowledgement signals.

To determine the awareness structure for the resource man-

ager, we consider the following assumption:

Assumption 1: The resource allocation law πk is rendered

independent of the local plant control policies γi
[0,k−1], i∈N.

Assumption 1 declares a one-directional dependence be-

tween the plant control and resource allocation policies (see

Fig. 2), i.e., γi
k’s are explicit functions of ϑi

k, but πk does not

incorporate ui
[0,k−1]’s, i∈N, in determining ϑi

k. Although this

results in the resource allocation being independent of local

control laws, πk depends on θi[0,k] which itself is effected by

the control signals. In other words, the local delay controllers

generate θik’s such that an averaged equilibrium is achieved

between maximizing the control performance and minimizing

the communication cost. Since πk is an explicit function

of θi[0,k]’s, the effect of optimizing control performance is

indirectly considered in resource allocation. hence, the ex-

plicit dependence between the plant control and the resource

manager policies that requires full knowledge of ui
[0,k−1]’s,

i ∈ N at the resource manager, is avoided. This assumption,

nonetheless, leads to a considerable complexity reduction in

computing the optimal policies π∗
k and γi,∗

k (Section IV-A).

Having Assumption 1, we introduce the dynamic variables

included in the resource manager’s information set Ĩk, as

Ĩk = {θ0, . . . , θk, ϑ0, . . . , ϑk−1}. (12)

We also discuss the resource allocation with (Sec. IV-B) and

without (Sec. IV-C) knowledge of the control systems model
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parameters. For the purpose of comparison, we discuss the

scenario that the network manager does not take into account

the local delay sensitivities in computing ϑi
k’s, i.e., it allocates

resources among sub-systems knowing neither the constant

{αi, βi}’s nor θi[0,k]’s, ∀i ∈ N (see Sec. IV-D). This is an

important observation which shows how the local and social

cost functions change w.r.t. the individual delay sensitivities.

For delay controllers, we introduce two design approaches,

so called impassive and reactive delay control policies, each

representing a distinct model of awareness of the dynamic

variables (Fig. 2). We derive the resulting joint optimal delay

control and resource allocation policies in Sections IV-B and

IV-C. Before that, to determine the structure of the optimal

plant control policy γi,∗
k , i ∈ N, we need to introduce the

maximum amount of information that can be available at the

ith delay controller at a time k5. The set Īi
k contains, at most,

information about the following dynamic variables:

Īi
k = {θi0, ..., θ

i
k−1, ϑ

i
0, ..., ϑ

i
k−1, u

i
0, ..., u

i
k−1}. (13)

A. Certainty equivalence and optimal plant controller

Having the sets Ii
k, Ĩk and Īi

k introduced in (11)-(13), and

reminding Assumption 1, we state the following theorem:

Theorem 1: Given Ii
k, Ĩk and Īi

k in (11)-(13) and under the

Assumption 1, the optimal plant control law γi,∗
k , i∈N, w.r.t.

(10) is of certainty equivalence form with the control inputs

computed from the following linear state feedback law

ui,∗
k = γi,∗

k (Ii
k) = −Li,∗

k E[xi
k|I

i
k], i ∈ N, (14)

Li,∗
k =

(

Ri +B⊤
i P i

k+1Bi

)−1
B⊤

i P i
k+1Ai, (15)

where, P i
T =Qi

2 and P i
k solves the below Riccati equation

P i
k=Qi

1+A⊤
i

[

P i
k+1−P i

k+1Bi

(

Ri+B⊤
i P

i
k+1Bi

)−1
B⊤

i P
i
k+1

]

Ai.

Proof: See the Appendix-A.

Remark 1: In the absence of the constraint (2), the resource

allocation becomes redundant as ϑi
k = θik, ∀i ∈ N and ∀k ∈

[0, T ]. Hence, from (32), we have minγi,ξi,π J = 0.

Corollary 1: Under the optimal certainty equivalence con-

trol law (14)-(15), the optimal cost-to-go V i,∗
k equals

V i,∗
k = ‖E

[

xi
k|I

i
k

]

‖2
P i

k

(16)

+ E

[

‖eik‖
2
P i

k

+
∑T−1

t=k
‖eit‖

2
P̃ i

t

∣

∣

∣
Ii
k

]

+
∑T

t=k+1
Tr(P i

tΣ
i
w),

where, eik , xi
k−E

[

xi
k|I

i
k

]

, and P̃ i
t = Qi

1+A⊤
i P

i
t+1Ai−P i

t .

Moreover, the estimator, at time-step k, is given as follows

E
[

xi
k|I

i
k

]

=
∑min{D,k+1}

j=0
bij,k E

[

xi
k|x

i
k−j , u

i
0, ..., u

i
k−1

]

, (17)

where, bi0,k = ϑi
k(0), and for all j ∈ D and k ≥ D, we have

bij,k =
∏j−1

d=0

∏d

l=0
[1− ϑi

k−d(l)][
∑j

d=0
ϑi
k−j(d)], (18)

and for, k < D, bi1,k, ..., b
i
k,k’s are defined as in (18), bik+1,k=

∏k
d=0

∏d
l=0[1−ϑi

k−d(l)], and for notational convenience, we

define bik+2,k= ...=biD,k=0, and E[xi
k|x

i
−1, I

i
k] , E[xi

k|I
i
0].

5Later we discuss that (13) corresponds to the reactive delay control
approach and introduce the information set for the impassive approach.

LTI dynamics

LTI dynamics

Īi
k

Ĩk Ii
k

ξik
πk γi

k

ui
k

ϑi
k

xik+1

θik

Īi
k+1 Ĩk+1 Ii

k+1

ξik+1
πk+1 γi

k+1
ui
k+1

ϑi
k+1 xik+2θik+1

Centralized resource manager

Fig. 3: Awareness model of the impassive delay control approach. Blue arrows represent

policies’ cross-awareness within one time-step. Red arrows show a policy maker’s self-

awareness. Green arrows depict state cross-awareness from one time-step to the next.

Proof: The proof is similar to the proofs of Theorem 1

and Proposition 1 in [29] and hence omitted for brevity.

Remark 2: Theorem 1 shows that the optimal control law

is certainty equivalence (14), yet ui,∗
k , i.e., the control law’s

realization, is computed based on E[xi
k|I

i
k] which is function

on ϑi
[k−D+1,k], see (17). We discuss in the next section that, if

the delay controller is impassive, V i,∗
k is estimated according

to θi[0,k−1]. Thus, if at a time t∈ [k−D, k−1], ϑi
t 6= θit, the

delay controller computes E[V i,∗
k ] as if θit is realized. Hence,

E[V i,∗
k (γi,∗, ξi)] 6=E[V i,∗

k (γi,∗, π)], despite similar γi,∗ laws.

B. Optimal delay control and resource allocation policies

We now derive optimal delay control and resource allocation

policies (ξi,∗k , π∗
k) under the following two awareness models of

the dynamic variables. In this section, we assume the constant

model parameters of all sub-systems are accessible for the

network manager. Resource allocation without knowledge of

constant parameters is studied in Section IV-C.

1) Impassive delay control: We call the delay control policy

an impassive process if the decision on θik’s is made inde-

pendent of ϑi
[0,k−1], i.e., the delay controller is passive w.r.t.

the resource manager’s decisions. Hence, it decides on θik’s

knowing nothing about possible re-allocation by the resource

manager. Therefore, the information set Īi
k upon which θik =

ξik(Ī
i
k) is computed impassively (see Fig. 3) becomes

Īi
k = {θi0, ..., θ

i
k−1, u

i
0, ..., u

i
k−1}. (19)

Note that, although ϑi
[0,k−1] is not incorporated in computing

θik, the variable ϑi
k depends on {θ0, . . . , θk}. Moreover, the

results of Theorem 1 hold for Īi
k in (19), as we have Īi

k⊆Ii
k.

Theorem 2: Consider the problem (10) and let γi,∗, i ∈ N
follow the certainty equivalence law (14)-(15). Given Īi

k and

Ĩk in (19) and (12), the jointly optimal impassive delay control

and resource allocation policies are offline solutions of the

following constrained mixed-integer linear-programs (MILP)

θi,∗[0,T−1] = argmin
ξi
[0,T−1]

J i(γi,∗, ξi[0,T−1](Ī
i
[0,T−1])) = (20)

argmin
ξi
[0,T−1]

T−1
∑

t=0

[

θi
⊤

t Λ+

τ i
t

∑

l=0

τ i
t

∑

j=l

b̄ij,tTr(P̃ i
tA

l−1T

i Σi
wA

l−1
i )

]

s. t. b̄ij,t =
∏j−1

d=0

∏d

l=0
[1− θit−d(l)][

∑j

d=0
θit−j(d)],

∑D

l=0
θit(l)=1,

∑τ i
t

j=0
b̄ij,t=1,

∑D

j=t+2
b̄ij,t=0,
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and,

ϑ∗
[0,T−1]=argmin

π[0,T−1]

1

N

N
∑

i=1

J i(γi,∗, π[0,T−1](Ĩ[0,T−1]))= (21)

argmin
π[0,T−1]

1

N

N
∑

i=1

T−1
∑

t=0



ϑi⊤

t Λ+

τ i
t

∑

l=0

τ i
t

∑

j=l

bij,tTr(P̃ i
tA

l−1T

i Σi
wA

l−1
i )





s. t. − αi ≤ (ϑi
t − θi,∗t )⊤∆ ≤ βi, b

i
j,t as defined in (18),

∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D, t ∈ [0, T − 1].

where, τ it ,min{D, t+ 1} and P̃ i
t is defined in Corollary 1.

Proof: See the Appendix-B.

Next, we propose a sufficient, but not necessary, capacity

condition for cd, d∈D, ensuring that the reallocated resources

remain within {ℓmax{0,d−αi}, . . . , ℓd, . . . , ℓmin{d+βi,D}}, and

the MILP (21) is feasible. Selected cd’s should additionally

satisfy the constraints (2) and (3) to ensure that the problem

(10) is non-trivial, and to avoid packet drop out. We demon-

strate in Section V that this condition is indeed conservative.

Corollary 2: The MILP problem (21) is feasible if (3) is

satisfied and ∀d∈D, the following sufficient condition holds

cd ≥

⌊

N

1+ 1
N
[hd(α, β)]

⌋

, (22)

with, hd(α, β) =
∑

i∈N1
1(dαi) +

∑

j∈N2
1((D − d)βj) +

1(d)
∑

l∈N3
1(dαl)+1(D−d)

∑

l∈N3
1((D−d)βl), where we

have N1 = {i ∈ N|αi 6=0, βi=0}, N2 = {j ∈ N|αj =0, βj 6=
0}, and N3 = {l ∈ N|αl, βl 6=0}, with |N1|∪|N2|∪|N3| = N .

2) Reactive delay control: We call the delay control policy

reactive if the decisions on θik’s are per-time made incorpo-

rating the knowledge of ϑi
[0,k−1]. Thus, the information set

Īi
k upon which θik = ξik(Ī

i
k) is computed, needs to contain

ϑi
[0,k−1], hence Īi

k coincides with (13).

Theorem 3: Consider the optimization problem (10). Let

γi,∗, i ∈ N follow the certainty equivalence law (14)-(15).

Given the information sets Īi
k and Ĩk, respectively, in (13)

and (12), the optimal reactive delay control law is computed

online from the following constrained MILP

θi,∗[k,T−1]= argmin
ξi
[k,T−1]

J i(γi,∗, ξi[k,T−1](Ī
i
[k,T−1])) = (23)

argmin
ξi
[k,T−1]

T−1
∑

t=k



θi
⊤

t Λ+

τ i
t

∑

l=0

τ i
t

∑

j=l

b̃ij,tTr(P̃ i
tA

l−1T

i Σi
wA

l−1
i )





s. t. b̃i0,t = θit(0), b̃ij,t ≤
∑j

l=0
ϑi
t−j(l), j∈{1, . . . , τ it},

∑D

l=0
θit(l)=1,

∑τ i
t

j=0
b̃ij,t=1,

∑D

j=t+2
b̃ij,t=0, t≥k.

where, τ it and P̃ i
t are similarly defined as in Theorem 2, and

b̃ij,t=
[

[1−θit(0)]
∏j−1

d=1

∏d

l=0
[1−ϑi

t−d(l)]
][

∑j

d=0
ϑi
t−j(d)

]

,

with
∏0

d=1

∏d
l=0[1− ϑi

t−d(l)] , 1, for notation convenience.

Moreover, the optimal resource allocation law is computed

online from the following constrained MILP

ϑ∗
[k,T−1] = argmin

π[k,T−1]

1

N

∑N

i=1

∑T−1

t=k

[

ϑi⊤

t Λ (24)

+
∑τ i

t

l=0

∑τ i
t

j=l
bij,tTr(P̃ i

tA
l−1T

i Σi
wA

l−1
i )

]

s. t. − αi ≤ (ϑi
t − θi,∗t )⊤∆ ≤ βi, b

i
j,t as defined in (18),

∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D, t ∈ [k, T − 1].

Proof: Derivation of optimal policies in Theorem 3

follows similarly to that of Theorem 2 and hence omitted.

The major differences are summarized in the Remark 3.

Remark 3: In Theorem 3, the reactive delay controller is

aware of ϑi,∗
[0,k−1] and incorporates them in deciding θi,∗[k,T−1].

Hence, unlike Theorem 2, here we solve a per-time-step MILP.

Technically, the online nature of the MILP (23) is reflected in

the time-varying b̃ij,t that results in a time-varying θi,∗[k,T−1].

Comparing it with b̄ij,t in Theorem 2, we see that for each

time k, θi,∗[k,T−1] depends on ϑi,∗
[k−D,k−1], while in Theorem

2 the same decision was dependent only on θi,∗[k−D,k−1]. The

MILP problem (24) also becomes online as it needs to satisfy

the time-varying constraint −αi ≤ (ϑi
t − θi,∗t )⊤∆ ≤ βi.

Remark 4: The optimal impassive delay control and re-

source allocation variables (θ∗[0,T−1], ϑ
∗
[0,T−1]) in Theorem 2

require offline MILPs (20) and (21) of complexity O(NdT ),
while the same variables of the reactive approach in Theorem 3

require online MILPs (23) and (24) of complexity O(NdT 2).
This confirms that both approaches incur linear complexity

growth w.r.t. to the number of sub-systems and the number

of transmission links. However, complexity of the reactive

approach grows quadratically with the time horizon T while

the respective growth rate for the impassive approach is linear.

Remark 5: According to (17), the state estimation at the

controller is performed using the freshest received state infor-

mation, hence, if an outdated state arrives while a fresher one

is available, the former will not be used. In addition, both local

and social objective functions (7)-(8) include communication

costs. Therefore, to reduce the total cost, the delay controllers

and the resource manager try to avoid transmission decisions

that lead to out of order delivery of state information. This

is reflected in the formulated MILPs in Theorems 2 and 3.

This is, however, unavoidable due to the constraint (5) that

forces each sub-system to select one delay link ℓd ∈ L
while the maximum delay D is finite. Intuitively, many of

transmissions with D-step delay would not have been executed

if the sub-systems had the option to remain open-loop and

select no transmission. Hence, outdated information appearing

at subsequent time-steps are discarded if a fresher data exists.

Corollary 3: Let the performance of the local policy co-

design (γi,∗, ξi,∗, π∗) for the impassive and reactive ap-

proaches be denoted, respectively, by J i,∗
Im and J i,∗

Re , defined

in (7), and also denote the social performance of the overall

joint design (γ∗, ξ∗, π∗) by J∗
Im and J∗

Re, defined in (8). Let

γi,∗, ξi,∗ and π∗ of the impassive approach be computed as

(14), (20) and (21), and of the reactive approach as (14), (23)

and (24), respectively. Then, J i,∗
Re ≤ J i,∗

Im and J∗
Re ≤ J∗

Im.
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Proof: Please see Appendix -C.

C. Optimal resource allocation without model awareness

In an NCS, the individual entities may not be willing to

share the specifications of their dynamical model or their

objective functions with the communication service provider.

Within our problem formulation, this essentially means that

the network manager does not have the knowledge of constant

parameters {Ai, Bi, Q
i
1, Q

i
2, R

i,Σi
w,Σ

i
x0
}, i ∈ N. Technically,

having no knowledge of the constant parameters (except

αi, βi) the local cost functions J i are not computable for

the network manager, hence the optimal resource allocation

policy cannot be obtained from the problem (10a). More

precisely, although the local policies γi,∗’s and ξi,∗’s can still

be computed from (14), (20), and (23), for impassive and

reactive approaches, respectively, π∗ cannot be obtained from

the either problems (21) and (24). Let the information set Ĩk
the network manager be defined as in (12) but excluding the

knowledge of the constant parameters of all sub-systems ex-

cept αi, βi’s. Then the best the network manager can perform

is to allocate resources such that, given αi, βi’s, the average

deviation between the delay control and resource allocation

decisions is minimized, which is the first term in the MILPs

(21) and (24). Hence, the optimal resource allocation for the

impassive approach will be obtained from

ϑ∗
[0,T−1] = argmin

π[0,T−1]

1

N

∑N

i=1

∑T−1

t=0
ϑi⊤

t Λ (25)

s. t. − αi ≤ (ϑi
t − θi,∗t )⊤∆ ≤ βi, i ∈ N,

∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D, t ∈ [0, T − 1],

and for the reactive approach, is obtained from

ϑ∗
[k,T−1] = argmin

π[k,T−1]

1

N

∑N

i=1

∑T−1

t=k
ϑi⊤

t Λ (26)

s. t. − αi ≤ (ϑi
t − θi,∗t )⊤∆ ≤ βi, i ∈ N,

∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D, t ∈ [k, T − 1],

where, θi,∗t in (25) is the solution of the impassive approach

(20), while in (26) is solution of the reactive approach (23).

From (25) and (26), in the absence of the constant model

parameters the resource manager only optimizes the commu-

nication cost, and that the allocated resource to remain within

the sensitivity constraint (10c). This results in a solution for ϑ
that tends to select the transmission links that incur the least

communication cost ignoring that such selections may severely

affect the control cost. To counter that, in the reactive approach

where the delay controller can adjust its link selection profile

in response to the resource allocation policy, each system

changes their θi,∗k drastically for the future time-steps to

request for faster links aiming to reduce the control cost.

Assume a system asked for a fast link, e.g. with delay zero,

due to its task criticality, however, the network manager does

not realize the urgency due to not being capable of estimating

the control cost and allocates a higher latency transmission

link (say d=2) which optimizes only the communication cost.

The system will then be forced to select a low delay link again

since its past request is not served accordingly. This approach

thus leads to higher total cost of control and communication

compared to the scenario that the resource manager knows the

constant model parameters. Furthermore, when constant model

parameters are assumed unknown, the reactive approach per-

forms significantly better than its impassive counterpart since

the systems will be generally unhappy of this agnostic resource

allocation, hence respond with a significantly different θ∗k than

the prescribed ϑ∗
k that leads to a very different ϑ∗

k+1 than ϑ∗
k.

D. Delay-insensitive optimal resource allocation

For the purpose of benchmarking and comparing the two

methods presented in the previous sections, we propose an-

other ad-hoc approach by extending the work of [29] to a

multi-agent scenario. More specifically, the approach presented

in this section adopts a formulation that does not consider the

delay sensitivity in the formulation, rather solely interested in

the capacity constraint. This means that the resource manager

ignores the knowledge of θi[0,k] and {αi, βi}’s, i∈N, however,

knows the constant model parameters of all sub-systems. We

define constant weights wi > 0 such that
∑N

i=1 wi = 1. The

network manager then prioritizes each sub-system based on

wi and optimizes the MILP at every time-step k, i.e.,

ϑ∗
[k,T−1]= argmin

π[k,T−1]

N
∑

i=1

wi E

[

V i,∗
k (γi,∗, πi)+

T−1
∑

t=k

ϑi⊤

t Λ
∣

∣Ĩk

]

=

argmin
π[k,T−1]

N
∑

i=1

T−1
∑

t=k

wi

[

ϑi⊤

t Λ+

τ i
t

∑

l=0

τ i
t

∑

j=l

bij,tTr(P̃ i
tA

l−1T

i Σi
wA

l−1
i )

]

s. t.
∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D, t ∈ [k, T − 1]. (27)

Notice that since there is no coupling between ϑt and θt
contrasting to the formulations in (24) and (26), ϑ∗

[k,T−1] can

be found from ϑ∗
[0,T−1] without solving (27) for all k. In fact if

ϑ∗
[0,T−1] is the solution of (27) for k = 0, then the part ϑ∗

[t,T−1]

of ϑ∗
[0,T−1] is the solution of (27) for any k = t. Furthermore,

any feasible solution of (24) is a feasible solution for (27), and

hence, often the delay-insensitive approach results in a lower

social cost than the delay-sensitive MILP in (24). However,

the lower social cost in this approach is obtained at the

expense of higher deviations between the desired links and

the allocated ones since no constraint of the form −αi ≤
(ϑi

t− θi,∗t )⊤∆ ≤ βi exists to restrict the deviation between ϑi
t

and θi,∗t . Hence, the social performance is expected to improve,

however, certain individual sub-systems suffer as their link

allocation is far from the ones requested. This trade-off needs

to be attended for the resource manager to be sufficiently

responsive to timeliness sensitivity of local sub-systems.

V. SIMULATION RESULTS

We consider an NCS consisting of 10 homogeneous stable

and 10 homogeneous unstable sub-systems. The system and

input matrices for the unstable and stable groups are Au =
[

1.01 0.2
0.2 1

]

, As =
[

0.5 0.1
0.6 0.8

]

, and Bu = Bs =
[

0.1 0
0 0.15

]

, respec-

tively. The disturbance is Gaussian distributed with mean and
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variance as N (0, 1.5I2). The LQG cost parameters for all sub-

systems are identically set as Qi
1=Qi

2=Ri= I2, and T =20
is the total time horizon of the simulations.

The network supports the control loops via 6 transmission

links with delays of d ∈ [0, 1, 2, 3, 4, 5] time-steps associated

with the cost Λ= [25, 17, 11, 7, 4, 1]. We assume cd = 6, ∀d,

and αi=βi=3, ∀i∈{1, . . . , 20}. Note that cd=6 satisfies the

individual and total capacity constraints (2) and (3), however,

does not meet the sufficient feasibility condition (22) for d=
{0, 5}6 and yet is a valid choice for this simulation setup,

which shows (22) is sufficient but not a necessary condition.

MA W/o MA DI
0

5000

10000

15000

20000

25000

30000

LQG_cost_reactive

Comm_cost_reactive

Social_cost_reactive

LQG_cost_impassive

Comm_cost_impassive

Social_cost_impassive

Fig. 4: Optimal LQG costs, Communication costs and Social costs for different

approaches. MA: with model awareness (Sec. IV-B), W/o MA: without model awareness

(Sec. IV-C), DI: delay-insensitive (Sec. IV-D).

We illustrate the optimal delay control and link allocation

for each sub-system using the discussed approaches: 1) with

model awareness, 2) without model awareness, and 3) delay-

insensitive approach, as presented in sections IV-B, IV-C, and

IV-D, respectively. For the first two approaches, we employ

both reactive and impassive methods to perform optimal co-

design and compare their outcomes. As discussed in Corollary

3, we demonstrate that the reactive method performs no worse

than the impassive method and may often perform significantly

better, due to the dynamic coupling between θ and ϑ. Since

such coupling does not exist in the delay-insensitive case,

reactive and impassive methods yield identical results.

In Fig. 4, we illustrate the control, communication and

social costs for the above-mentioned approaches, where the

cost values are cumulative w.r.t. time, i.e., not time-averaged.

We observe that the awareness of the constant model param-

eters leads to a significant performance improvement when

compared with no model awareness scheme. However, as

also discussed in Section IV-C, the superiority of the reactive

approach over the impassive counterpart is far better for the

case without model awareness. This can be observed in Fig.

4 for both local cost and the social cost values. In fact,

one needs to contemplate whether to employ the reactive

approach when the network is aware of the constant model

parameters of the control systems, due to the insignificant

overall performance augmentation achieved at the expense of

the extra computational complexity imposed (see Remark 4).

Fig. 5 shows the transmission link utilization profile (defined

6According to (22), cd≥10 for d={0, 5} and cd≥6 for d={1, 2, 3, 4}.

in 28) where we only provide the plot for the impassive and

reactive scenarios when the network manager is not aware of

the constant model parameters (Section IV-C).

ρi(t) =
# of utilization of Link i up to time t

N(t+ 1)
. (28)

Fig. 5: Link utilization over time under capacity constraints without model awareness

based approach. Top: reactive method, bottom: impassive method.

According to (28),
∑N

i=1 ρi(t) = 1 at every time t, that is

also reflected in Fig. 5. For the case without model awareness,

the network manager only cares about the communication cost

and hence the cheaper links are utilized, as can be seen in

Fig. 5. Notice that link 3 is used more than link 4 due to

the coupling constraints between θt and ϑt in (25) and (26).

The sub-systems which requested for the link ℓ0, can not be

assigned to any link beyond ℓ3 since βi=3. Thus, the majority

of the requests for link ℓ0 were assigned to ℓ3 and the rest were

assigned to ℓ2 (ℓ1 is more expensive). Similarly, the majority

of the requests for ℓ5 are assigned to ℓ5 and the rest to ℓ4, etc.

We also studied this problem for the case with model

awareness, and we noticed that the difference in the link

utilization is minor between the two impassive and reactive

approaches (as also corroborated by the cost difference in Fig.

4). In fact, the link utilization, in this case, changes only after

time t=15. This observation brings out the question whether it

makes sense to adopt the computationally expensive reactive

approach over the simple impassive approach for this little

improvement. Based on this observation, one may be tempted

to adopt reactive approach in an intermittent fashion, i.e.,

instead of solving (24) for every k, do so at k= t1, t2, . . . , tℓ
where 0 < t1 < . . . < tℓ < T . An interesting yet challenging

research question is how to determine t1, . . . , tℓ. One may

perhaps adopt an event-based strategy to solve for these

quantities, we, however, leave this as a future research.

Next we study the average deviation between the requested

θ∗ and the allocated ϑ∗, computed by the following formula

∆i(t) =

∑N
i=1

∑t
k=0 |(ϑ

i,∗
k − θi,∗k )⊤∆|

N(t+ 1)
. (29)

We report the average deviation result for all three approaches

in Fig. 6. The figure also shows that the average deviation is

generally higher for the delay-insensitive approach compared

to both delay-sensitive scenarios of reactive and impassive,

confirming the explanations in the Section IV-D.
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Fig. 6: Average deviation in the allocated links as computed by (29).

APPENDIX

A. Proof of Theorem 1

According to the information sets Ii
k, Ĩk and Īi

k in (11)-

(13), and considering (7)-(8), we can re-state (10) as

min
γi,ξi,π

J=
1

N

∑N

i=1
E

[

min
γi,π

J i(ui, ϑi) − (30)

min
γi,ξi

E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

k=0
‖xi

k‖
2
Qi

1
+‖ui

k‖
2
Ri+ θi

⊤

k Λ

]]

.

where, for the first term of (30), we obtain the following due

to the one-directional independence of ϑi
k from ui

k

J i(ui, ϑi)=E

[

E

[

∑T−1

k=0
ϑi⊤

kΛ
∣

∣

∣
Ĩk

]]

+

E

[

E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

k=0
‖xi

k‖
2
Qi

1
+‖ui

k‖
2
Ri

∣

∣

∣
Ii
k, Ĩk

]]

.

We define V i
k = ‖xi

T ‖
2
Qi

2
+
∑T−1

t=k ‖xi
t‖

2
Qi

1
+‖ui

t‖
2
Ri . Since γi is

a local policy and its decision outcome ui is independent of

all sub-systems j 6= i, and moreover, π is independent of all

γi’s, the optimal cost-to-go can be expressed as

min
γi
[k,T−1]

π[k,T−1]

J i(ui, ϑi) = min
π[k,T−1]

E

[

min
γi
[k,T−1]

E
[

V i
k

∣

∣Ii
k

]

+ (31)

min
π[k,T−1]

E

[

∑T−1

t=k
ϑi⊤

t Λ
∣

∣Ĩk
]∣

∣

∣
Ĩk

]

For J i(ui, θi), we know Īi
k ⊆ Ii

k, ∀k, from (11) and (13).

Moreover, ui
k and θik are measurable w.r.t. Ii

k and Īi
k, re-

spectively. Therefore, employing the tower property7, and also

using the law of total expectation8, we re-write (7) as

J i(ui, θi)=

E

[

E

[

E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

k=0
‖xi

k‖
2
Qi

1
+‖ui

k‖
2
Ri+ θi

⊤

k Λ
∣

∣

∣
Ii
k

]

∣

∣

∣
Īi
k

]]

.

Hence, introducing Ci
k(u

i, θi) = V i
k +

∑T−1
t=k θi

⊤

t Λ, we obtain

min
γi
[k,T−1]

ξi[k,T−1]

J i(ui, θi)=E

[

min
ξi
[k,T−1]

E

[

min
γi
[k,T−1]

E
[

Ci
k(u

i, θi)|Ii
k

]

∣

∣

∣

∣

Īi
k

]]

7For a random variable X defined on a probability space with sigma-
algebra F , if E[X]<∞, then for any two sub-sigma-algebras F1⊆F2⊆F ,
E[E[X|F2]|F1]=E[X|F1] almost surely.

8If the random variable X is F -measurable, then E[E[X|F ]] = E[X].

Finally, we can re-express (30) as

min
γi,ξi,π

J =
1

N

∑N

i=1
E

{

min
π

E

[

min
γi

E
[

V i
0

∣

∣Ii
0

]

∣

∣

∣
Ĩ0

]

(32)

+min
π

E

[

∑T−1

k=0
ϑi⊤

k Λ
∣

∣

∣
Ĩ0

]

−min
ξi

E

[

min
γi

E

[

V i
0 +

∑T−1

k=0
θi

⊤

k Λ
∣

∣

∣
Ii
0

]

∣

∣

∣
Īi
0

]

}

.

The sole γi-dependent term in the above expression is

E[V i
0 |I

i
0], and this term is minimized only by the control law

γi. Therefore, for all k ∈ [0, T − 1], the following control law

solves the inner optimization problem minγi E
[

V i
0 |I

i
0

]

ui,∗
[k,T−1] = γi,∗

[k,T−1](I
i
k) = argmin

γi
[k,T−1]

E
[

V i
k |I

i
k

]

(33)

= argmin
γi
[k,T−1]

E

[

‖xi
T ‖

2
Qi

2
+
∑T−1

t=k
‖xi

t‖
2
Qi

1
+‖ui

t‖
2
Ri

∣

∣Ii
k

]

The last expression (33) is a standard LQG problem, and

the optimal law γi,∗
k and gain Li,∗

k in (14) and (15) are the

solutions of (33). (Full derivation can be found in [29].)

B. Proof of Theorem 2

Having Assumption 1, and knowing Īi
k ⊆ Ii

k, we begin

from (32). Recall that ϑi
[0,k−1] /∈ Īi

k, hence, to decide θik, the

delay controller presumes that the control signal is generated

according to θi[0,k−1] not ϑi
[0,k−1]. We derived the optimal

control policy in (32), therefore, the optimal impassive delay

control policy ξi,∗k (Īi
k) will be obtained by minimizing the

local LQG cost function J i(ui,∗, θi), i.e., ∀k ∈ [0, T − 1]

θi,∗[k,T−1]= argmin
ξi
[k,T−1]

E

[

V i,∗
k (γi,∗, ξi)+

∑T−1

t=k
θi

⊤

t Λ
∣

∣Īi
k

]

. (34)

Recalling Remark 2, we compute V i,∗
k (γi,∗, ξi) at the impas-

sive delay controller side. From the estimator dynamics (17)

and system dynamics (1), the estimation error eik evolves as

eik =
∑τ i

k

l=1

∑τ i
k

j=l
b̄ij,kA

l−1
i wi

k−l,

where bij,k in (17) is replaced by b̄ij,k because the delay con-

troller has no knowledge about the variables {ϑi
0, . . . , ϑ

i
k−1}.

Since Īi
k ⊆ Ii

k, it is, moreover, straightforward to compute

E[E[eike
i⊤

k |Ii
k]|Ī

i
k] = E[eike

i⊤

k |Īi
k], as follows:

E[eike
i⊤

k

∣

∣Īi
k] =

∑τ i
k

l=1

∑τ i
k

j=l
b̄ij,k E[A

l−1
i wi

k−lw
i⊤

k−lA
l−1⊤

i ]

=
∑τ i

k

l=1

∑τ i
k

j=l
b̄ij,kA

l−1
i Σi

k−lA
l−1⊤

i ,

where, Σi
k−l=Σi

x0
, k<l, and Σi

k−l = Σi
w, k ≥ l. Having this

and noting that Īi
0 = {Ai, Bi, Q

i
1, Q

i
2, R

i,Σi
w,Σ

i
x0
}, we can

rewrite E[V i,∗
0 (γi,∗, ξi)|Īi

0] as follows

E[V i,∗
0 (γi,∗, ξi)|Īi

0] = ‖E
[

xi
0

]

‖2
P i

0
+
∑T

t=1
Tr(P i

tΣ
i
w) (35)

+ Tr(P i
0

∑τ i
0

l=1

∑τ i
0

j=l
b̄ij,0A

l−1⊤

i Σi
x0
Al−1

i )

+
∑T−1

t=0
Tr(P̃ i

t

∑τ i
t

l=1

∑τ i
t

j=l
b̄ij,tA

l−1⊤

i Σi
t−lA

l−1
i ).
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As the only θi[0,T−1]-dependent term above is the last term,

the problem (34) can be expressed, initiating from k = 0, as

θi,∗[0,T−1]= argmin
ξi
[0,T−1]

E

[

V i,∗
0 (γi,∗, ξi) +

∑T−1

t=0
θi

⊤

t Λ
∣

∣Īi
0

]

=

argmin
ξi
[0,T−1]

T−1
∑

t=0

[

Tr(P̃ i
t

τ i
t

∑

l=1

τ i
t

∑

j=l

b̄ij,tA
l−1⊤

i Σi
t−lA

l−1
i ) + θi

⊤

t Λ

]

The constraints of the problem (20) are all linear and θik is

binary-valued, hence the above problem is a MILP. More-

over, it is independent from both the noise realizations and

ϑ[0,T−1], thus θ∗[0,T−1] can be computed offline. The constraint
∑D

l=0 θ
i
t(l) = 1 ensures that only one delay link is selected

per-time, while the last two constraints look after convenient

indexes for b̄ij,k for k≥D and k<D (see Corollary 1).

To find π∗, we use a similar procedure to that of computing

ξi,∗, except ϑi
k is now computed knowing the information

{θi,∗[0,k], ϑ
i,∗
[0,k−1]}, ∀i. We compute E[V i,∗

0 (γi,∗, π)|Ĩ0] that re-

sults in a similar expression as on the right side of the equality

in (35) with the exception being b̄ij,t replaced by bij,t. Hence,

from (32), and the constrain (10c)-(10d) we derive the optimal

resource allocation offline from the following MILP:

ϑ∗
[k,T−1]= argmin

π[k,T−1]

1

N

N
∑

i=1

E

[

V i,∗
k (γi,∗, πi)+

T−1
∑

t=k

ϑi⊤

t Λ
∣

∣Ĩk

]

=

argmin
π[k,T−1]

1

N

N
∑

i=1

T−1
∑

t=k

[

ϑi⊤

t Λ+

τ i
t

∑

l=0

τ i
t

∑

j=l

bij,tTr(P̃ i
tA

l−1T

i Σi
wA

l−1
i )

]

Since θi,∗[0,T−1] is computed offline from (20) independent of

ϑi
[0,T−1], we can set k = 0 above to complete the proof.

C. Proof of Corollary 3

The control policy γi,∗ follows (14) for both impassive and

reactive scenarios, so we only compare the optimal cost values

of the joint policies (ξi,∗, π∗) from Theorems 2 and 3. Define

(θ̄i,∗, ϑ̄i,∗) and (θ̃i,∗, ϑ̃i,∗), respectively, as the joint optimal

impassive and reactive delay control and resource allocation

variables over time horizon [0, T ]. First assume θ̄i,∗ = θ̃i,∗,

then b̄ij,t= b̃ij,t,∀t must hold from (20) and (23), which leads

to ϑ̄i,∗= ϑ̃i,∗ from (21) and (24). As problems (20) and (23),

and (21) and (24) coincide, we have J i,∗
Re =J i,∗

Im and J∗
Re=J∗

Im.

Now assume θ̄i,∗ 6= θ̃i,∗. Since the information set Īi
[0,T−1]

in (19) for the impassive approach is a subset of its counterpart

in (13) for the reactive approach, any optimal solution of the

problem (20) can also be obtained from the problem (23) if

it is optimal for the latter. Hence, if θ̄i,∗ 6= θ̃i,∗, then θ̄i,∗

is not the optimal solution of problem (23), which implies

J i,∗
Re (u

i,∗, θ̃i,∗) < J i,∗
Im (ui,∗, θ̄i,∗). Now let ϑ̃i,∗ be the optimal

solution of the problem (24) such that ϑ̃i,∗ 6= ϑ̄i,∗ while

J∗
Re>J∗

Im. Recall that ϑ̄i,∗ is the optimal resource allocation in

response to θ̄i,∗ computed from (20), while we know if ϑ̃i,∗ 6=
ϑ̄i,∗, then θ̄i,∗ 6= θ̃i,∗. Knowing this, together with J∗

Re >J∗
Im,

implies that the joint policy (θ̄i,∗, ϑ̄i,∗) outperforms (θ̃i,∗, ϑ̃i,∗),
which requires J i,∗

Re (u
i,∗, θ̃i,∗)> J i,∗

Im (ui,∗, θ̄i,∗) to hold. This,

however, contradicts the previous condition ensuring that if

θ̄i,∗ 6= θ̃i,∗, then J i,∗
Re (u

i,∗, θ̃i,∗)<J i,∗
Im (ui,∗, θ̄i,∗), and hence the

condition J∗
Re>J∗

Im cannot be realized if ϑ̃i,∗ 6= ϑ̄i,∗.
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Before he was a postdoctoral researcher at the
Division of Decision and Control Systems, Royal
Institute of Technology (KTH). He completed his
Ph.D. in 2017 at the Department of Electrical
and Computer Engineering, Technical University
of Munich, Germany. He received his B.Sc. in
Mechanical Engineering from Sharif University
of Technology in 2008, and his Master degree
majoring in Systems, Control, and Robotics,

from KTH in 2010. His research interests include networked control
systems, cyber-physical systems, and stochastic systems.

Dipankar Maity is an Assistant Professor in the
Department of Electrical and Computer Engi-
neering at the University of North Carolina at
Charlotte. Prior to that, he was a Postdoctoral
Fellow at the Georgia Institute of Technology.
He received the B.E. degree in Electronics and
Telecommunication Engineering from Jadavpur
University, India in 2013, and the Ph.D. degree
in Electrical and Computer Engineering from the
University of Maryland at College Park, USA in
2018. During his Ph.D. he was a visiting scholar

at the Technical University of Munich (TUM) and at the KTH Royal
Institute of Technology Sweden. His research interests include temporal
logic based controller synthesis, control under communication con-
straints, intermittent-feedback control, stochastic games, and integration
of these ideas in the context of cyber-physical systems.

Sandra Hirche (M03-SM11-F’20) received the
Diplom-Ingenieur degree from Technical Univer-
sity Berlin in 2002 and the Doktor-Ingenieur
degree from Technical University Munich (TUM),
Germany, in 2005. From 2005 to 2007 she was
awarded a JSPS Postdoc scholarship at the
Fujita Laboratory, Tokyo Institute of Technology,
Japan. She became associate professor at TUM
in 2008. Since 2013 she is TUM Liesel Beck-
mann Distinguished Professor and heads the
Chair of Information-oriented Control in the De-

partment of Electrical and Computer Engineering at TUM. Her main
research interests include learning, cooperative, and networked control
with application in human-robot interaction, haptics, multi-robot systems,
and general robotics. She has published more than 200 papers in inter-
national journals, books and refereed conferences. She has received
multiple awards such as the Rohde & Schwarz PhD Award, the 2005
IFAC World Congress Best Poster Award, the Best Paper Award of the
2009 IEEE Worldhaptics, and the Outstanding Student Paper Award of
the 2018 IEEE Conference on Decision and Control. In 2013 she has
been awarded with an ERC Starting Grant on the “Control based on
Human Models” and in 2019 with an ERC Consolidator Grant on “Safe
data-driven control for human-centric systems”.

John S. Baras received the Diploma in Electri-
cal and Mechanical Engineering from the Na-
tional Technical University of Athens, Athens,
Greece, in 1970, and the M.S. and Ph.D. de-
grees in Applied Mathematics from Harvard Uni-
versity, Cambridge, MA, USA, in 1971 and 1973,
respectively. Since 1973, he has been with the
Department of Electrical and Computer Engi-
neering, University of Maryland at College Park,
MD, USA, where he is currently a Distinguished
University Professor. He is also a Faculty mem-

ber of the Applied Mathematics, Statistics and Scientific Computation
Program, and Affiliate Professor in the Fischell Department of Bioengi-
neering, the Department of Mechanical Engineering, and the Depart-
ment of Decision, Operations and Information Technologies, Robert H.
Smith School of Business. Since 2013, he has been Guest Professor at
the School of Electrical Engineering of the Royal Institute of Technology
(KTH), Sweden. From 1985 to 1991, he was the Founding Director of
the Institute for Systems Research (ISR) (one of the first six National
Science Foundation Engineering Research Centers). In 1990, he was
appointed to the endowed Lockheed Martin Chair in Systems Engi-
neering. Since 1992, he has been the Director of the Maryland Center
for Hybrid Networks (HYNET), which he co-founded. He is an IEEE
Life Fellow, SIAM Fellow, AAAS Fellow, NAI Fellow, IFAC Fellow, AMS
Fellow, AIAA Associate Fellow, Member of the National Academy of
Inventors (NAI) and a Foreign Member of the Royal Swedish Academy of
Engineering Sciences (IVA). Major honors and awards include the 1980
George Axelby Award from the IEEE Control Systems Society, the 2006
Leonard Abraham Prize from the IEEE Communications Society, the
2014 Tage Erlander Guest Professorship from the Swedish Research
Council, and a three year (2014-2017) Senior Hans Fischer Fellowship
from the Institute for Advanced Study of the Technical University of Mu-
nich, Germany. In 2016 he was inducted in the University of Maryland A.
J. Clark School of Engineering Innovation Hall of Fame. He was awarded
the 2017 Institute for Electrical and Electronics Engineers (IEEE) Simon
Ramo Medal, the 2017 American Automatic Control Council (AACC)
Richard E. Bellman Control Heritage Award, and the 2018 American
Institute for Aeronautics and Astronautics (AIAA) Aerospace Communi-
cations Award. In 2018 he was awarded a Doctorate Honoris Causa by
the National Technical University of Athens, Greece.

Karl H. Johansson is Professor with the School
of Electrical Engineering and Computer Science
at KTH Royal Institute of Technology in Sweden
and Director of Digital Futures. He received MSc
and PhD degrees from Lund University. He has
held visiting positions at UC Berkeley, Caltech,
NTU, HKUST Institute of Advanced Studies,
and NTNU. His research interests are in net-
worked control systems and cyber-physical sys-
tems with applications in transportation, energy,
and automation networks. He is a member of the

Swedish Research Council’s Scientific Council for Natural Sciences and
Engineering Sciences. He has served on the IEEE Control Systems
Society Board of Governors, the IFAC Executive Board, and is currently
Vice-President of the European Control Association. He has received
several best paper awards and other distinctions from IEEE, IFAC, and
ACM. He has been awarded Distinguished Professor with the Swedish
Research Council and Wallenberg Scholar with the Knut and Alice
Wallenberg Foundation. He has received the Future Research Leader
Award from the Swedish Foundation for Strategic Research and the
triennial Young Author Prize from IFAC. He is Fellow of the IEEE and
the Royal Swedish Academy of Engineering Sciences, and he is IEEE
Control Systems Society Distinguished Lecturer.


