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Abstract—This article proposes a distributed control method-
ology for the coordination of multiple connected and automated
vehicles (CAVs). Each vehicle computes its local trajectory based
on a model predictive control (MPC) law and communicates the
result with other relevant vehicles. In an iterative negotiation
process, planned trajectories are optimized within a sampling
time step. Inspired by the Jacobi over-relaxation (JOR) algo-
rithm, we develop a distributed Jacobi over-relaxation algorithm
(DJOR) for vehicle coordination. The modified algorithm exploits
the structure of the distributed problem setting in which coupling
occurs only in a bilateral way. Besides being able to guarantee
any-time feasibility that implies collision-freeness, the algorithm
scales well, unlike the standard JOR algorithm. The DJOR
algorithm allows for significantly less conservatism in the choice
of the update weightings. As a result, much faster convergence
rates can be expected. Furthermore, the collision avoidance
guarantee is extended for unforeseen scenarios such as emergency
braking. Using an exact penalty function formulation ensures
that the distributed optimization problem remains feasible even
in previously unforeseen cases. Numerical simulations of an
intersection crossing scenario illustrate the presented approach
and show its benefits in comparison with standard traffic rules
and a centralized computation.

Index Terms—Distributed model predictive control, Multi-
vehicle systems, Environmental uncertainty, Feasibility, Jacobi al-
gorithm, Scalability.

I. INTRODUCTION

THE rapid development of autonomous cars reveals a
huge potential for increasing traffic safety, efficiency, and

comfort. A significant contribution to these benefits arises from
the ability of connected and automated vehicles (CAV) to share
intended driving data with surrounding traffic participants.
Substantial scenarios in order to coordination multiple CAVs
are platooning [1], merging [2], intersection crossing [3],
and navigating in parking environments [4]–[6]. The control
community has worked intensively on solutions to these chal-
lenges. Often optimization-based methods (in a distributed
fashion) are utilized to solve the coordination problem. Due
to computational expensive solutions or a high amount of
information exchange, most of the existing approaches lack
in real-world applicability. To achieve this, the methods have
to be safe and efficient in their intention, feasible to compute
and communicate, as well as easy to implement.
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Fig. 1: Coordination Scenario.

Taking this into account, we propose a distributed trajectory
negotiation method for vehicles with decoupled heterogenous
dynamics and inter-vehicle coupling constraints. While fol-
lowing a pre-computed reference path, vehicles negotiate their
intended trajectories with surrounding vehicles. Each vehicle
applies online model predictive control (MPC) optimization
problems for efficient driving decisions. These trajectory deci-
sions are shared with neighbor vehicles and taken into account
for consecutive decisions. A local update-step modification of
the trajectories before sharing ensures system-wide feasible
computations at any-time of the negotiation process. This
implies a collision-free and communication-efficient solution
with fast convergence. The local updates guarantee a scal-
abel and easy to implement methodology considering real-
world applications. Proposed trajectories refer geometrically to
common areas, named conflict zones. An example is the case
of intersecting lanes, as illustrated in Fig. 1. The negotiation
process is fully distributed between vehicles, while we assume
a given decision on the crossing sequence at conflict zones.

A. Related Work

Significant contributions for multi-vehicle coordination have
been proposed by solving the problem of automated intersec-
tion crossing. Initially, [7] suggested a protocol where vehicles
approaching an intersection send a reservation request to an
intersection manager. If access is granted, they cross according
to the plan. If the previous reservation request was denied, they
resubmit the request. Optimization-based control, in particular
distributed MPC, is a relevant method to solve multi-vehicle
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coordination problems, as it enables combined consideration
of dynamical vehicle and safety constraints, as well as global
coordination performance interests. Therefore, it has been
widely applied in the literature, e.g., [8]–[10]. Coordination
problems of several autonomous vehicles can be solved by
restricting a local vehicle’s position space with respect to an in-
tersection area. The method proposed in [11] enables iteration-
free and parallel computation for intersection crossing which
is extended towards more general coordination scenarios in
[12]. Alternatively, it has been proposed to coordinate vehicles
referring to predicted crossing times of certain conflict areas.
While authors of [13] compute analytical solutions to vehicles’
exit times of intersection areas using Hamiltonian functions,
authors of [14] compute occupancy time slots using constraint
optimal control problems. Above literature and the problem
setup of multi-vehicle scenarios suggest the applicability of
distributed control strategies to these problems. A general
overview of distributed optimization methods is presented
in [15]. Guaranteeing feasibility of distributed optimization
computations is in general not a trivial task. Feasibility in
such setups can be ensured through sequential computations
[16], [17], robust MPC formulations [18], or iterative algo-
rithms [19], [20]. These approaches commonly come with the
drawbacks of lacking in scalability, tending to conservative
solutions, and resulting in communication extensive processes,
respectively. The proposed methods in this article aim at
overcoming these drawbacks to ensure applicability.

Unlike vehicle platooning or similar cooperative tasks with
a fixed vehicle topology, coordination scenarios require a
combinatoric vehicle sequence decision, i.e., in which order
vehicles are sorted to merge or cross. Often, the sequence
decision is assumed to be pre-defined, or simple heuristic
rules are applied, such as first-come-first-served. In contrast,
[21] discusses a modification of a consensus-based auction
algorithm to suggest a crossing sequence for vehicles at
intersections. [22] introduces heuristics in the framework of
priority graphs, which encode vehicle sequences that are
proven to be deadlock-free. Authors of [23] use mixed integer
quadratic programs (MIQPs) to determine an approximate of
the optimal crossing sequence. While pure huristic solutions
can lead to significantly sub-optimal solutions, optimization-
based methods quickly tend to be not implementable for large-
scale systems. The approach in this article also depends on a
pre-defined vehicle sequence decision. Therefore, we apply
a scheduling problem (resource-constraint-project-scheduling)
to compute this sequence, which has been introduced in [24]
and suggests a trade-off between optimality and scalability of
the solution.

A crucial property of multi-vehicle coordination is to
guarantee safety even in the case of unforeseen scenarios.
Therefore, it is common to plan with additional brake-safe
distance to avoid collision with other traffic participants, e.g.,
proposed by [25] in a decentralized MPC setup, and through a
safe velocity interval formulation without predictive methods
in [26]. In [27] the authors propose a robust MPC formulation
accounting for worst case actions of other vehicles in an
intersection crossing scenario. Alternatively, [28], [29] design
least restrictive supervisors using scheduling to intervene only

if a driver would enter an unsafe set with his own action.
A remaining challenge is how to handle the reaction to
unforeseen events in distributed optimization for constraint-
coupled problems. Even if a brake-safe distance is considered,
a violation of a hard coupling-constraint due to an unforeseen
event leads to infeasibility of the optimization problems.

B. Contributions

This article contributes by presenting a holistic multi-
vehicle coordination approach with rear-end and side collision
avoidance independent of a vehicle’s prediction horizon length.
The distributed iterative negotiation process based on Jacobi
updates is any-time feasible, i.e., can be interrupted after each
iteration with a guaranteed network-wide feasible solution.
The distributed computational load and the possibility to stop
iterating at any time are important properties for real-world
implementations, which becomes clearly visable in experi-
ments [30]. A Jacobi over-relaxation (JOR) decomposition
for input-constraint distributed MPC problems is discussed in
[31], which has been applied to general constraint optimization
problems in [32] and to multi-vehicle coordination problems
in [33]. We extend the JOR to a distributed Jacobi over-
relaxation (DJOR) algorithm, which scales, different to the
JOR, independently of the number of participating vehicles
and iterates fully distributed, i.e., without the necessity of a
central update step. Additionally, we extend previous work
by ensuring collision avoidance for unforeseen events through
prioritizing safety over the coordination process using exact
penalty functions.

The remainder of this article is organized as follows. Sec-
tion II introduces the coordination formulation and the open-
loop optimal control problems. Thereafter, the iterative DJOR
algorithm is introduced in Section III where also any-time
feasibility and scalability properties are derived. Section IV
extends the approach with the ability of handling uncertain
environments, and Section V discusses numerical examples
applying the proposed methodology.

Notation: Throughout this article xpk|tq indicates a predic-
tion of state x for time k computed at time t, and xp: |tq
refers to all elements of this vector. The set of integers Ia:b

is defined by ta, a ` 1, ..., bu, and Ia:b “ H if a ą b. } ¨ }1,
} ¨ }2, } ¨ }8 are the 1-, 2-, and infinity-norm, respectively. The
weighted 2-norm is denoted by }x´ x̂}2Q “ px´ x̂q

TQpx´ x̂q
with appropriate dimensions of vectors x, x̂ and matrix Q. The
cardinality of a set S is denoted by |S|, and the i-th element
of a vector v is indexed with rvsi. tviuiPS is a set collecting
all vectors vi with indices i contained in the set S.

II. MULTI-VEHICLE COORDINATION FORMULATION

In this section, we introduce the multi-vehicle coordination
model. First, we define conditions for inter-vehicle collision
avoidance, and thereafter we state a central optimization prob-
lem including these conditions for the complete coordination
scenario. Lastly, we decompose the centralized problem into
local optimization problems which can be applied in each
vehicle’s control unit.
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Throughout the article, we make the following assumptions.
i) Local optimization problems are assumed to be pre-informed
about the combinatoric vehicle sequence decisions, which re-
sult in a given communication structure of respective vehicles
in the scenario. In the article, this is envisioned to be provided
by a central infrastructure node as illustrated in Fig. 3 and
discussed in [24]. Alternatively, distributed sequence decisions
could replace the central infrastructure node.

ii) At the time a vehicle joins the distributed negotiation
process, discussed in Section III, we assume that if the vehicle
is traveling behind another vehicle it keeps a brake-safe
distance to its predecessor. This is a natural assumption, as also
human drivers would behave in the same way. The brake-safe
distance will only be violated in unpredicted scenarios which
for instance cause emergency braking. This is formalized in
Assumption 1.

iii) During the negotiation process predicted vehicle trajec-
tories will be referenced to geometrical zones on the road
network (conflict zones CZ). It is assumed that at the time
a vehicle joins the distributed negotiation process it is able
to propose a feasible trajectory that would lead to a full-
stop before entering the respective zone. This requires to start
the inter-vehicle communication with enough distance to such
zones and is formalized in Assumption 2.

A. Collision Avoidance Condition

Assume a set of vehicles V “ t1, 2, ..., Nvu moving along
pre-defined paths on a road network. The path of Vehicle
i P V is described by a set of NWi

discrete waypoints
Wi “ tpp1

x, p
1
yq
T , ..., pp

Nwi
x , p

Nwi
y qT u with positions in the

2D x ´ y´plane. The reference point of the vehicle is
assumed to be located at the center front of the vehicle. Let
πi : I Ñ R2, with interval I “ r1, NWi

s, describe a C1-curve
which connects all waypoints Wi. Furthermore, assume that
πi can be perfectly tracked by Vehicle i.

Fig. 1 illustrates the coordination scenario for two vehicles,
as introduced in the following. We represent a vehicle by a
rectangular bounding-box Bippiptq, Li,x, Li,yq with parame-
ters piptq Ă πi, which is the vehicle’s time-dependent position
on its path, as well as Li,x and Li,y , which describe the
length and width of the box (compare Fig. 1), respectively. By
variable t P N0 we denote the discrete time scale. Given the
path and vehicle representation, we define Vehicle i’s distance
state dni ptq with the arc-length from a curve segment of πi,
such that

dni ptq “

$

’

’

&

’

’

%

ż n

m

‖ π
1

ipsq ‖2 ds, if m πi
ÝÑ n

´

ż n

m

‖ π
1

ipsq ‖2 ds, if n πi
ÝÑ m,

(1)

with πipmq “ piptq, πipnq P Wi a target reference waypoint
on the curve, and π

1

ipsq the derivative of πi at s. Notation
m

πi
ÝÑ n means that πipmq is located before πipnq following

the curve in driving direction and n
πi
ÝÑ m accordingly. In

other words, dni ptq describes the distance from the current
vehicle position to a certain point n measured along the path.
For example, in Fig. 1 dai ptq, which is described formally

below, is the distance from the vehicle to the beginning of
the conflict zone CZk.

Collisions between vehicles are avoided if

Biptq X Bjptq “ H, @t, i, j P V, i ‰ j. (2)

Areas where vehicle paths intersect, merge, and diverge are
essential for coordinating vehicles on a road network. This
is commonly the case at intersections, where condition (2)
leads to areas in the 2D plane which can be accessed only
by a single vehicle at a time. We refer to these zones as
conflict zones CZi Ă R2, for i P I1:Ncz

with a total number
of conflict zones Ncz in the coordination space. These conflict
zones will serve as reference areas to guarantee a safe multi-
vehicle coordination. Now, let Vehicle i crosses CZk before
Vehicle j, then a collision avoidance condition with regard to
the vehicles’ distance states is

dbi ptq ` Li,x ` dj,s ď daj ptq. (3)

Here, dj,s is a scenario-dependent safety distance for Vehicle j
defined in (7), dbi ptq is the distance of Vehicle i to the exit
of CZk, defined according to (1), with b describing the first
waypoint of Wi outside of CZk in driving direction, i.e.,

b “ min
qPI1:Nwi

q (4)

s.t. q̂ ď q ď NWi

ppqx, p
q
yq
T R CZk

ppq̂x, p
q̂
yq
T P CZk.

Similarly, daj ptq is the distance of Vehicle j to the entrance of
CZk, i.e.,

a “ max
qPI1:Nwi

q (5)

s.t. 1 ď q ď q̂

ppqx, p
q
yq
T R CZk

ppq̂x, p
q̂
yq
T P CZk.

We assume that from both dbi ptq ` Li,x ď 0 and dai ptq ě 0
follows Biptq X CZk “ H. Thus, we neglect the possible
skew of a vehicle in this notation. The simplification can be
compensated by designing Li,x or the size of CZk considering
appropriate spare dimensions. Let tbi be the time-instant just
after Vehicle i leaves CZk (exit-time), such that

dbi pτ
b
i q “ ´Li,x and tbi “

R

τ bi
Ts

V

(6)

holds, where τ bi P R`0 is the exact continuous time solution
and Ts the discrete sampling time.

Given the fact that vehicles move on pre-defined lanes on
a road network, a time-dependent validity of constraints on
the distance state can be specified dependent on different
maneuvers. Therefore, we define the following four cases
which distinguish the directions in which Vehicles i and j
approach CZk (in-lane) and in which they leave it (out-lane)
in the first row, the time instances for which the distance
constraints need to be considered in the second row, and the
definition of safety distance in (3) in the third row:
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c1:

$

’

&

’

%

from same in-lane to same out-lane
(3) holds @t
dj,s “ dj,stop ´ d

b
i ptq ` d

a
i ptq

(7a)

c2:

$

’

&

’

%

from same in-lane to different out-lane
(3) holds for t ă tbi
dj,s “ dj,stop ´ d

b
i ptq ` d

a
i ptq

(7b)

c3:

$

’

&

’

%

from different in-lane to same out-lane
(3) holds for t ě tbi _ daj ptq ą dj,s holds for t ă tbi
dj,s “ dj,stop

(7c)

c4:

$

’

&

’

%

from different in-lane to different out-lane
daj ptq ą dj,s holds for t ă tbi
dj,s “ dj,stop,

(7d)

with dj,stop Vehicle j’s stopping distance, discussed in
Section IV. The second row in Fig. 2 illustrates exemplary
geometric configuration for each of the four cases above.

B. Centralized Coordination Model

In this subsection, we state the coordination task as a
centralized optimization problem considering longitudinal ve-
hicle movements along pre-defined paths modeled by linear
dynamics. For a single vehicle these time-discrete dynamics
are

ˆ

di
vi

˙`

loomoon

xipt`1q

“

ˆ

1 ´Ts
0 1

˙

looooomooooon

AiPR2ˆ2

ˆ

di
vi

˙

loomoon

xiptq

`

ˆ

´T 2
s

Ts

˙

looomooon

BiPR2ˆ1

ai
loomoon

uiptq

, (8)

with distance state di “ d
NWi
i representing the distance to the

end of Vehicle i’s path, vi its velocity, and ai its acceleration
input.

The centralized system is achieved by concatenating indi-
vidual vehicle models, such that we achieve the system and
input matrix

A “

¨

˚

˚

˚

˝

A1

A2

. . .
ANv

˛

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˝

B1

B2

. . .
BNv

˛

‹

‹

‹

‚

,

(9)
and the state and input vectors

xptq “

¨

˚

˝

x1ptq
...

xNv
ptq

˛

‹

‚

and uptq “

¨

˚

˝

u1ptq
...

uNv
ptq

˛

‹

‚

, (10)

respectively. Now, we formulate the centralized coordination
task as a finite horizon optimization problem

V ˚ “ min
x̄,ū

Nv
ÿ

i“1

Vi (11a)

s.t.
xpk ` 1|tq “ Axpk|tq `Bupk|tq k P It:t`M´1 (11b)
xpt|tq “ xptq (11c)
xpk|tq P X k P It`1:t`M (11d)
upk|tq P U k P It:t`M´1 (11e)

daj pk|tq ´ dj,stop ě 0

#

c3, c4
pi, jq P Tm

(11f)

dbi pk|tq ` Li,x ` dj,s ´ d
a
j pk|tq ď 0

#

c1, c2, c3
pi, jq P Tm

(11g)

m P I1:|T |, (11h)

where the optimization variables are defined by

x̄ “ pxpt` 1|tqT, ..., xpt`M |tqTq, (12)

and
ū “ pupt|tq, ..., upt`M ´ 1|tqq, (13)

for prediction horizon M . The objective function (11a) is the
sum of the local vehicle objectives

Vi “ }xipM |tq ´ x
r
i }

2
Pi
` (14)

t`M´1
ÿ

k“t

´

}xipk|tq ´ x
r
i }

2
Qipkq

` }uipk|tq}
2
Ripkq

¯

,

with constant state references xri and positive semi-definite
weighting matrices Pi and Qipkq, as well as a positive definite
input weighting matrix Ripkq. Constraint (11b) is the central
model containing all individual vehicle dynamics, (11c) is the
initial state, X and U are polyhedral sets. Let T be a given
tree in which a node is defined by a tuple pi, jq describing
the order of two vehicles (Vehicle i before j) and each path
from the root to a leaf node, Tm, describes a feasible crossing
sequence through a conflict zone, i.e.,

Tm “
`

pi, jq, pj, kq, pk, lq, ...
˘

, i, j, k, l P V. (15)

Thus, optimizing over the integer variable m determines the
best tree path with respect to (14). With a slight abuse of
notation, |T | describes the number of paths (feasible crossing
sequences) of T for a given scenario. Distance constraints
(11f)–(11g) are valid for certain time intervals which are
defined according to the Cases (7a) - (7d) and listed in Table I.
Furthermore, Fig. 2 illustrates the feasible di´dj configuration
space according to these distance constraints for a vehicle
order tuple pi, jq.

As (11a) is quadratic, (11b)–(11g) are linear, and (11h) are
integers, (11) is a mixed integer quadratic program (MIQP).
There are evident reasons why this problem is impractical to
be solved online in real applications. First, the problem is
computationally hard to solve, as scalability cannot be guaran-
teed through the central formulation, and the integer decision
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Fig. 2: Top row: feasible di ´ dj configuration space (blue shaded area) of coordination problem (11) for pi, jq. Bottom row:
exemplary vehicle constellation at an intersection. Right plot: geometric variables at an intersection.

TABLE I: Time intervals for distance constraints.

k P ... (11g),(18i) (18j) (11f) (18h)

c1: It`1:t`M It`1:t`M - -
c2: It`1:tbi

It`1:tbj
- -

c3: Itbi :t`M Itbj :t`M It`1:tbi
It`1:tbj

c4: - - It`1:tbi
It`1:tbj

introduces a further computational burden. Additionally, the
time intervals in Table I depend implicitly on the solution of
(11) what requires the computation of a multi-level optimiza-
tion. Solving such problems exactly is infeasible on real-time
platforms [23]. Second, (11) requires central knowledge of
all individual vehicle models, what is undesirable considering
privacy of vehicle data requirements. Third, trajectories are
safety-relevant decisions which are preferred to be computed
on-board of a vehicle in order to guarantee a safe behavior
even in the case of communication disruptions.

To overcome the drawbacks discussed above, we propose a
decomposition of (11) into local optimization problems solved
separately by each individual vehicle which is connected,
and sharing resulting information with neighboring vehicles.
The decomposition is designed to achieve computationally
feasible sub-problems where vehicle models are kept private
and trajectories can be verified locally to fulfill necessary
safety criteria.

C. Distributed Coordination Model

The diagonal structure of (9) immediately suggests a decom-
position of (11a) and (11b) into local sub-problems. However,
constraints (11f)–(11g) contain inter-vehicle relations. To de-
compose these, we repeat respective coupling constraints in
each coupled local sub-system and move the integer decision
(11h) to the central infrastructure node. A scheduling-based
method where m is computed in an approximate way given
vehicles’ trajectories is presented in [24]. In the following we
will assume a given integer decision m, i.e., the order in which

vehicles cross CZk. The crossing sequence can be represented
with a directed graph,

G “ pV, Eq , (16)

where the set of Vehicles V are the vertices and directed edges
pi, jq P E , with i, j P V , mean that Vehicle i crosses CZk

before Vehicle j. Given G, we define the set of neighbors of
Vehicle i,

Ni “ tPi,Siu, (17)

where the set of predecessors Pi contains nodes connected
via incoming edges to node i P V and similarly successors Si
nodes from outgoing edges.

Now, (11) can be decomposed into local quadratic program-
ming (QP) problems with coupling constraints between the
problems. Thus, a local QP problem of Vehicle i has the form

V ˚i “ min
x̄i,ūi

Vi (18a)

s.t.
xipk`1|tq “ Aixipk|tq `Biuipk|tq k P It:t`M´1 (18b)
xipt|tq “ xiptq (18c)
xipk|tq P Xi k P It`1:t`M (18d)
uipk|tq P Ui k P It:t`M´1 (18e)
xipt`M |tq P XT (18f)
uipt`M ´ 1|tq P UT , (18g)
dai pk|tq ´ di,stop ě 0 c3, c4, j P Pi (18h)

dbi pk|tq ` Li,x ` dj,s ´ d
a
j pk|tq ď 0 c1, c2, c3, j PSi (18i)

dbjpk|tq ` Lj,x ` di,s ´ d
a
i pk|tq ď 0 c1, c2, c3, j PPi, (18j)

with local optimization variables

x̄i “ pxipt` 1|tqT, ..., xipt`M |tq
Tq, (19)

ūi “ puipt|tq, ..., uipt`M ´ 1|tqq, (20)

and local polyhedral constraint sets (18d) and (18e). The
definition of terminal constraints (18f) and (18g) will be
discussed in Subsection III-B.
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Fig. 3: Distributed Architecture.

To solve decomposition (18) efficiently, two remaining chal-
lenges need to be taken into account. The coupling constraints
(18i)–(18j) are shared resources, i.e., Vehicle i optimizes the
distance state with respect to information from Vehicle j
and vice versa. Solving such problems in parallel requires
awareness to guarantee feasibility of the distributed system.
Additionally, the distance constraints are still implicit func-
tions of the time vehicles exit CZk. In the following section
we present a solution to guarantee feasibility for the shared
constraints while conducting parallel computations. Further-
more, we apply an approximation to remove the implicit
time dependency in order to provide computationally viable
problems.

III. ITERATIVE JACOBI NEGOTIATION

Every vehicle runs a local MPC unit where it solves its
distributed finite horizon QP problem (18) in each iteration
step. Fig. 3 illustrates the distributed computation architecture.
The MPC law uses the optimized input uipt|tq as control
input and neglects the remaining optimization results for its
local system, but shares the optimization result px̄i, ūiq with
neighboring vehicles. In the next time step, (18) is again
solved with updated state measurements in a receding horizon
fashion.

In the following, we present the detailed distributed MPC
computation in form of a DJOR algorithm derived from [34,
Ch. 2.4]. To simplify notation, we state the equivalent problem
of (18) as

z˚i “ argmin
zi

Vi pziq (21a)

s.t. Aizi ´ bi ď 0 (21b)

Ad
ijzi ` Cdijzj ´ bdij ď 0, j P Ni, (21c)

with zi “ px̄i, ūiq, constraints (18b)–(18h) collected in (21b),
and coupling constraints (18i)–(18j) in (21c). Observe that
coupling between system variables occurs only in coupling
constraints and only in bilateral form, i.e., a constraint between
system variable of the Vehicle i and a neighboring Vehicle j.

Similarly, we achieve

pz˚,m˚q “ argmin
z,m

Nv
ÿ

i“1

Vi pziq (22a)

s.t. Az ´ b ď 0 (22b)

Ad
mz ´ b

d
m ď 0 (22c)

m P I1:|T |, (22d)

for (11) with z “ px̄, ūq, (22b) representing (11b)–(11e), and
(22c) containing (11f)–(11g).

A. Distributed Over-Relaxation Algorithm

The DJOR algorithm iteratively negotiates between Vehicles
i P V towards a solution, while an interruption after each
iteration results in a feasible solution. Therefore, let zplqi be
the solution after the l-th inter-sampling iteration between t
and t ` 1, ẑi a feasible initial candidate at the beginning of
iterations, and z˚i the result of a local optimization problem
(18). Algorithm 1 summarizes the DJOR procedure, where the

Algorithm 1 Distributed Jacobi Over-Relaxation

1: clock Ð t
2: Initialization:
3: lÐ 0
4: @i P V : receive zplqj “ ẑj , j P Ni

5: repeat
6: Computation:

7: @i P V in parallel: compute z˚i

ˆ

!

z
plq
j

)

jPNi

˙

8: determine next iterate with ωi ě 0, ωi ` ωj “ 1:

z
pl`1q
i “ ωiz

˚
i

ˆ

!

z
plq
j

)

jPNi

˙

` p1´ ωiqz
plq
i (23)

9: Synchronization:
10: share zpl`1q

i with Vehicles j P Ni

11: lÐ l ` 1
12: until l ą lmax _ Vi

´

z
pl´1q
i

¯

´ Vi

´

z
plq
i

¯

ă γ @i P V
13: apply uipt|tq, @i P V to local vehicle systems
14: clock Ð t` 1

update variable ωi defines the degree of over-relaxation and
γ a termination condition. Solving the optimization problems
and the iterative updates can be conducted fully distributed
with trajectory exchange between neighboring vehicles after
each iteration. To illustrate this, compare (23) with

zpl`1q
´

ωi, z
˚
i , z

plq
¯

, i P V, ωi ě 0,
Nv
ÿ

i“1

ωi “ 1, (24)

which states the structure of the standard JOR update step.
It requires central knowledge of z and depends on the total
number of vehicles Nv .

In the next subsection we present the construction of ini-
tial candidates ẑj , which is an essential point to guarantee
feasibility. Thereafter, we discuss the properties Feasibility,
Scalability, and Convergence of Algorithm 1.
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B. Feasible Initial Guess

At the beginning of a time step each vehicle suggests a
feasible initial candidate ẑi for the inter-sampling iterations,
which will be shared with its neighboring Vehicles j P Ni. In
general it is difficult to determine candidates which preserve
feasibility among the complete distributed system because in
our setup local vehicles do not have information about their
neighbors’ dynamical capabilities. To resolve this, authors of
[31], [32] propose using the system’s steady-state as terminal
constraint since they handle stabilizing problems such as
spring-damper systems. In order to be applicable in a multi-
vehicle scenario this idea requires adjustments. Therefore, we
use a stand-still condition as terminal constraints (18f) and
(18g), such that

XT “ txi|vi “ 0u Ă Xi and UT “ 0 Ă Ui. (25)

Now, we suggest the following initial candidate for the up-
coming time step t` 1

ẑip: |t`1q “
´

z
plq
i pt`1: t`M |tq, px

1T
i , u

1
iq

¯

, (26)

with the last negotiation result zplqi from time step t and the
stand-still extension px

1T
i , u

1
iq “ pdipt`M |tq, 0, 0q.

However, it is not the actual target to bring all vehicles to
stand-still. To this end, the terminal condition will be solely
used to guarantee system-wide feasibility, while stand-still
is not desired to be applied during a nominal coordination
scenario. In the MPC framework only the first element of
the computed trajectory is applied and all remaining elements
are discarded. Thus, we want to ensure the computation of a
nominal driving behavior in the beginning of the trajectory,
while the stand-still (braking) action is moved to the back of
the trajectory as far as possible. To do this, the time-dependent
weights

Qipkq rRipkqs “

#

Qni rR
n
i s for 1 ď k ă kbrake

0 for kbrake ď k ďM,
(27)

are applied in (14), with kbrake at the latest possible time-
instant for which a vehicle can reach XT and UT for a desired
trajectory z̃i, which is the solution of (18) without (18f) and
(18g). In (27), Qni and Rni are constant weighting matrices for
the nominal behavior. A set-projection algorithm can be used
to calculate kbrake and the interested reader is referred to [33]
for a detailed presentation of this method.

C. Algorithmic Properties

First, we provide algorithmic properties with respect to Case
c1 where vehicles arrive at a conflict zone CZk from the
same in-lane and also leave it on the same out-lane. We will,
thereafter, generalize the results to Cases c2,c3, and c4 in
Subsection III-D.

1) Feasibility: This paragraph shows that each iteration in
Algorithm 1 results in a recursive feasible solution for local
vehicle problems (18).

Lemma 1. Given globally feasible initial solutions
z
p0q
i , with i P V , the iterations (23) are feasible for

any Vehicle i and respective neighbor Vehicles j P Ni.

Proof. Based on the assumption of feasible initial solutions
z
p0q
i , with i P V , suppose all subsystems conducted a local

optimization and compute the combination in (23). Select any
subsystem i and any coupled constraint in (21c) for j P Ni,
then it holds that

˜

z
p1q
i

z
p1q
j

¸

“

˜

ωiz
˚
i ` p1´ ωiqz

p0q
i

ωjz
˚
j ` p1´ ωjqz

p0q
j

¸

“

˜

ωiz
˚
i ` ωjz

p0q
i

ωjz
˚
j ` ωiz

p0q
j

¸

(28)

“ ωi

˜

z˚i
z
p0q
j

¸

` ωj

˜

z
p0q
i

z˚j

¸

.

Both solution vectors in the last line are feasible with respect to
the coupled constraint. This is because in the first vector z˚i is
feasible as (21) is a QP problem and thus there exists a unique
solution. zp0qj are feasible for the problem (by assumption)
and thus z˚i

`

z
p0q
j

˘

is a feasible (and optimal) solution. A
similar argumentation holds for the second vector. Due to
linearity of the constraints with respect to zj and zi, the
convex combination with ωi ` ωj “ 1 is also a feasible
solution for (21c). The feasibility guarantee for l ą 1 follows
by induction. This completes the proof.

Remark 1. For readability, we simplify the notation of
z˚i

´

z
p0q
j

¯

by omitting its neighbor dependency in (28) and
similar for z˚j .

Algorithm 1 iterates in between two sampling time steps.
At the beginning of each iteration it requires initial candidates
which are feasible solutions for the local optimization prob-
lems (21). Therefore, the following lemma proves feasibility
for a time step transition t` 1 by using trajectory candidates
(26).

Lemma 2. The trajectory candidate ẑip: |t` 1q from (26) is
feasible for (21) at iteration l “ 0 and time step t` 1.

Proof. The last iteration of time step t, z
plq
i pk|tq with

k P It:t`M was feasible according to Lemma 1. Thus,
z
plq
i pk|tq with k P It`1:t`M will be feasible at time step t` 1

as model uncertainty is neglected. It holds that zipt`M |tq P
XT ˆ UT . Furthermore, the final element of ẑip: |t ` 1q,
px
1T
i , u

1

iq P XT ˆ UT , extends the stand-still condition. This
concludes that (26) is feasible for (21).

For Case c1 we make the following assumption on the inter-
vehicle distance:

Assumption 1. If Vehicle j is driving on the same lane behind
Vehicle i, they are traveling with an inter-vehicle distance
dinterpk|tq ą dj,stop, k P It:t`M .

Definition 1. An MPC problem computed with (18) is recur-
sive feasible if

xipk|tq P Xi, k P It:t`M ^ xipt`M |tq P XT^
uipk|tq P Ui, k P It:t`M´1

ñ Duipk|t`1q P Ui, k P It`1:t`M such that

xipk|t`1q P Xi, k P It`1:t`M`1 ^ xipt`1`M |t`1q P XT .
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Theorem 1. Let Case c1 and Assumption 1 hold. Given
Lemma 1 and Lemma 2, each iteration of Algorithm 1 leads to
a recursive feasible solution for all Vehicles i in G with local
problems (21).

Proof. Replacing dj,s in (18i) with the definition from (7a)
gives

daj ptq ´ pd
a
i ptq ` Li,xq ě dj,stop. (29)

Given Assumption 1 and following a similar argumentation
for (18j) ensures the existence of feasible solutions zp0qi and
z
p0q
j for i, j P V of problem (21). Following inter-sampling

iterations remain feasible for local problems i according to
Lemma 1. Moreover, following the reasoning in Lemma 2,
feasible trajectories exist for time step transitions t Ñ t ` 1.
Consequently, Definition 1 is fulfilled for all Vehicles i P V
with problems (21) interacting according to Algorithm 1.

2) Scalability: The standard JOR algorithm requires a
centralized update step (24). Moreover, through the condition
řNv

i“1 ωi “ 1 the speed of convergence depends on the number
of vehicles in the network G.

Note that, in general, the neighbor sets in (17) contain
several vehicles, i.e., |Pi| ě 1 and |Si| ě 1. This results in a
negotiation between several interdependent vehicles according
to (18h) – (18j). However, applying (18) with Algorithm 1
enables a scalable and fully distributed computation, as guar-
anteed by the following theorem.

Theorem 2. ωi “ 0.5, @i P V is a valid choice for the step
size in (23) independent of G.

Proof. By construction of the coordination problem, it
holds for the central inter-vehicle distance constraints
Ad
m “ pαijq P t´1, 0, 1upˆq and thus

‖ Ad
m ‖8“ max

iPI1:p

ÿ

jPI1:q

| αij |“ 2.

This means that a distance constraint at an optimization stage
is shared at most by two vehicles. Consequently, each of
such constraints, i.e., each row in (22c), is shared between
a Vehicle i P V and at most one other Vehicle j P Ni in the
distributed setup. For such a setup, we know from Lemma 1
that the DJOR update (23) between Vehicles i and j is feasible.
For any neighbor permutation i, j P V and i ‰ j (where
indices may mutually vary), ωi “ ωj “ 0.5 thus fulfills the
convexity condition ωi ` ωj “ 1.

Remark 2. Knowing that Vehicle i is predecessor of Vehicle
j and at the same time Vehicle j is successor of Vehicle i for
all pairs pi, jq P E and all prediction time steps k, enables
the relaxing of condition ωi “ ωj “ 0.5 to the more general
condition ωi ` ωj “ 1, ωi ą 0, ωj ą 0.

3) Convergence: Convergence for the overall system is
guaranteed by the fact that local cost functions are decoupled
as well as the following proposition.

Proposition 1. The DJOR iterations (23) applied to the
distributed systems (21) converge for lÑ8.

Proof. First, we show monotonicity between two iteration
steps of individual decoupled vehicle costs:

Vi

´

z
pl`1q
i

¯

“ Vi

´

ωiz
˚
i ` p1´ ωiqz

plq
i

¯

ď ωiVi pz
˚
i q ` p1´ ωiqVi

´

z
plq
i

¯

ď ωiVi

´

z
plq
i

¯

` p1´ ωiqVi

´

z
plq
i

¯

“ Vi

´

z
plq
i

¯

.

This holds for all Vehicles i P V . The first line applies
(23), the second line follows from convexitiy of the cost
functions, and the third line follows from optimality of local
problems (21). As all individual quadratic cost functions Vi
are bounded below, V is also bounded, and thus convergence
can be guaranteed as lÑ8.

D. Fulfillment of Coordination Conditions

This subsection discusses the extension of the feasibility
results of Algorithm 1 to the coordination Cases c2, c3, c4. In
the first step, we present an approximate solution to compute
the crossing time steps.

1) Crossing time approximation: To avoid the computation
of a multi-level optimization problem, we utilize the receding
horizon nature of MPC. This enables an approximation of the
exit time defined in (6) by referring to the trajectory computed
at the previous time step t´ 1 such that

t̃bi :“

$

’

&

’

%

8, if dbi pt`M |t´ 1q ` Li,x ą 0

argmin
dbi pk|t´1qď´Li,x

dbi pk|t´ 1q, else,

(30)
and we substitute tbi “ t̃bi with its approximation.

2) Case distinction: For Case c2, where Vehicles i and j
approach from the same lane (Vehicle i driving in front of
Vehicle j) but leave CZk on different lanes, Theorem 1 is still
valid, as the initial conditions do not change. The difference
is solely that constraints (18i) and (18j) are not formulated for
the complete prediction horizon, but only from time step t`1
until time step tbi .

In Case c3 vehicles approach from different lanes and merge
onto the same lane in CZk. Thus, coupling constraints are
not required until the time of merging, i.e., only from tbi until
t`M (assuming Vehicle i crosses before Vehicle j). Constraint
(18h) ensures consistency of the vehicle order by guaranteeing
that a vehicle remains in front of the conflict zone CZk until
its predecessor has predicted to have crossed it, in what we
assume to be a feasible solution:

Assumption 2. dbjpt0 ` M |t0q ě dj,stop is feasible for
Vehicle j, with t0 being the time of starting the negotiation
according to Algorithm 1 with its neighbor vehicles.

This enables the feasibility guarantee for Case c3.

Theorem 3. Let Case c3 and Assumption 2 hold. A partial
coupling along the horizon, Itbi :t`M , of constraints (18i)–(18j)
results in feasible solutions for Vehicles i and j.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 9

Proof. Let Vehicle i cross CZk before Vehicle j. For the case
tbi “ 8, i.e., the horizon of Vehicle i does not yet predict to
cross the conflict zone CZk, the set Itbi :t`M “ H is empty and
problems (18) of Vehicles i and j are not coupled through (18i)
and (18j). Without coupling, it follows feasibility for the local
problem (18a)–(18g) of the first Vehicle i. Furthermore, given
Assumption 2 we can also guarantee feasibility for Vehicle j
with problem (18a)–(18h).

If the prediction of Vehicle i crosses CZk at time step t´1,
i.e., tbi ď t `M according to (30), it follows with Lemma 2
that the same solution will be a feasible candidate at time
step t. Before i and j become coupled, (18h) was feasible for
Vehicle j.

Now, for Vehicle i’s problem we know from (18i):

dbi pt
b
i q ` Li,x

loooooomoooooon

ď0

ď daj pt
b
i q ´ dj,s

loooooomoooooon

ě0

, (31)

where the left side of the inequality follows from the con-
dition that vehicles become coupled and the right side from
Vehicle j’s constraint (18h). The same argumentation holds
from Vehicle j’s perspective referring to constraint (18j). The
feasibility of activated coupling constraints for prediction steps
Itbi :t`M between vehicles i and j follows from the reasoning
in Theorem 1.

The discussion for the scenario where Vehicle j crosses
CZk before Vehicle i, follows analogously.

Feasibility for Case c4 follows directly from Assumption 2.

IV. ENVIRONMENTAL UNCERTAINTY HANDLING

In Section III we proposed a distributed negotiation al-
gorithm for multi-vehicle coordination which guarantees a
feasible, and thus safe solution after each iteration step. The
algorithmic guarantees are provided in absence of model
and environmental uncertainties. Long prediction horizons are
desirable for increasing the performance of the coordination
procedure as, e.g., the approximation (30) will become more
accurate with longer horizons. Yet, predicting the environment
of an autonomous vehicle with the required confidence will
only be possible for shorter horizons. Reacting to uncertain
events in the environment, such as a pedestrian appearing in
a vehicle’s sensor view, might require deviating from the plan
with respect to the long horizon which has been agreed on with
other vehicles in the network. This can cause infeasiblity in the
network due to a possible violation of the coupling constraints
(18i)–(18j). However, it does not mean that such a violation of
the long horizon plan leads to an unsafe behavior, as vehicles
travel with a safety distance di,s between each other and they
can still react locally to unforeseen events.

We propose to induce this local reaction behavior by re-
laxing the coupling constraints in the form of exact penalty
functions. If possible, vehicles will fulfill the formulated inter-
vehicle coupling constraints and conduct the long horizon plan
negotiated with its neighboring vehicles. Whenever unforeseen
events occur and no feasible agreement with the neighboring
vehicles can be found, vehicles can violate the coupling
constraints to conduct, for example, an emergency braking
maneuver. Thus, a prioritization of safety over coordination is

achieved. After such a local reaction the vehicles automatically
recover from the coupling constraint violation and return to a
network-wide feasible solution.

In the following, we introduce the concept of exact penalty
functions and thereafter describe how they are integrated into
the DJOR algorithm.

A. Exact Penalty Functions

First, we recast the local QP problem (21) in an optimization
problem with soft constrained inter-vehicle distances:

z˚i“ argmin
zi

Vi pziq ` δi
∥∥ ÿ

jPNi

`

Ad
ijzi ` Cdijzj ´ bdij

˘` ∥∥
1

(32a)
s.t. Aizi ´ bi ď 0, (32b)

with penalty weight δi P R and
”

`

Ad
ijzi ` Cdijzj ´ bdij

˘`
ı

n
:“

max
´

“

Ad
ijzi ` Cdijzj ´ bdij

‰

n
, 0
¯

, (33)

where index n indicates the n-th element of vector
Ad
ijzi ` Cdijzj ´ bdij . Let λ˚i be the Lagrangian vector corre-

sponding to the feasible and optimal solution z˚i of (21).

Theorem 4. If δi ą }λ˚i }8, then the minimizers z˚i and z˚i
are identical.

Proof. See [35, Theorem 14.3.1]

How to compute apropriate values of δi in an MPC setting
is discussed in [36], [37].

The non-smoothness of the 1-norm in Problem (32) ensures
its exactness with respect to the original Problem (21), yet a
non-smooth optimization problem cannot be computed using
standard algorithms. Therefore, an equivalent problem is for-
mulated using the slack variables vector εi to become a QP
problem again which can be efficiently solved [38], [39]:

z˚i “ argmin
zi,εi

Vi pziq ` δi}εi}1 (34a)

s.t. Aizi ´ bi ď 0 (34b)

Ad
ijzi ` Cdijzj ´ bdij ď rεisl, j P Ni, l P I1:|Ni| (34c)

´εi ď 0. (34d)

B. Integration in Jacobi Negotiation

If a solution to (21) exists, then this solution will be
(exactly) found by (34). If no solution exists, (34) will compute
the closest possible solution, i.e. the solution with the least
possible constraint violation. This means it will attempt to keep
the coupling distances to its neighbor vehicles, represented by
(34c), whenever possible and violates it only if necessary due
to, e.g., environmental uncertainties.

Given the responsibility of a vehicle to avoid a collision
with its preceding vehicle and the fact that the predecessor’s
dynamics are not known locally by the following vehicle, a
collision can be avoided if the inter-vehicle distance is larger
than the required stopping distance. In an offline manner, we
can compute the stopping distance of Vehicle j (which is
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assumed to be scheduled behind Vehicle i), such that it holds

dj,stop “ min
zj ,tstop

diptstopq (35a)

s.t. (18b), (18d), (18e) (35b)
tstop P I0:M (35c)
vjpt̄q “ 0 t̄ P Itstop:M (35d)
vjp0q “ vmax (35e)
djp0q “ 0, (35f)

where it is assumed that the horizon is large enough, such that
the optimization problem has a solution, vmax is the maximum
allowed velocity in the scenario, and zj is determined by
choosing ujptq “ minuPUju until the vehicle stops.

Remark 3. Computing the stopping distance offline with (35)
leads to reasonable values for low-speed maneuvers (e.g., up
to 30km{h). To reduce the conservatism for higher speed
driving (35) can be computed online by replacing (35e) with
the current velocity vjptq and zj with the vehicle’s current tra-
jectory. Additionally, the Responsibility-Sensitive Safety (RSS)
framework suggests rules for inter-vehicle distances [40], with
reduced conservatism as also assumptions on the braking
dynamics of the predecessor vehicle are considered.

A potential constraint violation needs to be considered in the
DJOR negotiation to guarantee collision avoidance between
vehicles. A slack variable unequal to zero, εi ą 0, after the
local optimization (line 7 in Algorithm 1) indicates that the
coupling constraints need to be violated. If this is the case, the
negotiation step (23) has to be modified by choosing ωi “ 1
to ensure the validity of the stopping distance di,s.

After an unexpected event, (34) will automatically recover
by computing a solution which fulfills the coupling constraints
again as soon as possible. Once εi “ 0 holds, the recovery
is completed and the negotiation can be switched back to
ωi “ 0.5.

Remark 4. Constraint softening, such as exact penalty func-
tions, is commonly applied to all constraints and used to avoid
infeasibilities of the optimization problem triggered thorough
model uncertainties or sensor noise. In this article, however,
we soften solely the coupling constraints to emphasize the
methodology of avoiding coordination infeasibilities.

Algorithm 2 summarizes the essential steps of the proposed
multi-vehicle coordination procedure.

V. NUMERICAL EXAMPLES

Numerical simulations were conducted to illustrate the
performance and functionality of the methodology introduced
in this article. The simulation PC contains an Intel Core i5
double core processor with 2.5GHz and 8GB RAM memory.
Simulations were conducted with MATLAB and its quadprog
solver to compute the QP problems.

Table II summarizes the applied simulation parameter for
each of the following subsections, where xri,v is the state
reference value referring to the velocity state, and similar for

Algorithm 2 Overall Coordination Procedure

1: Given di,stop from (35), ẑip: |t` 1q form (26) @i P V
2: Central Infrastructure:
3: Determine crossing sequence (16) and t̃bi with (30)
4: Share Ni and respective Cases (7) with vehicles i P V
5: Local Vehicles:
6: Conduct Steps 2 – 13 of Algorithm 1
7: if εi “ 0 (at Step 8) then
8: ωi “ 0.5
9: else

10: ωi “ 1

the constraint set Xi,v . The column labeled with ID indicates
the vehicle IDs. In all setups the sampling time was Ts “ 0.1s.

A. Prediction Horizon Evaluation

In the first step, we evaluate the influence of the prediction
horizon length M on the coordination procedure. Therefore,
two vehicles are simulated to cross a common CZk in a
scenario setup as shown in Fig. 1 with local MPC laws
(18) and the negotiation according to Algorithm 1. Fig. 4
illustrates the resulting vehicle distance-state in the d1 ´ d2

configuration space for Cases c3 and c4 with horizon lengths
M “ 30, 50, 100 and Vehicle 1 crossing CZk before Vehicle 2.
For each horizon length the distributed optimization results in
a feasible and safe coordination. Yet, increasing M leads to
a smoother coordination result, since the exit time tbi in (30)
can be evaluated earlier than that with shorter horizons. This
becomes visible through the dots in Fig. 4 which show the
terminal states for respective planning steps.

B. Coordination Performance in an Intersection Crossing Sce-
nario

The considered intersection scenario is illustrated in Fig.
5. We assume a set of autonomous vehicles crossing the
intersection along pre-defined paths, where all possible paths
are drawn in the figure. Vehicles communicate with an in-
frastructure unit which computes the crossing sequence for
the intersection area once vehicles enter a certain scheduling
zone (compare Fig. 3). The intersection area is divided into
five conflict zones. To take this into consideration, we extend
the introduced coordination concept for a single conflict zone
by repeating constraints (18h)–(18j) for each conflict zone
CZk, k P I1:5 in the intersection area which a vehicle passes.

To evaluate the performance, we simulate 200 randomly
generated scenarios. In each scenario 6 vehicles are placed
on incoming lanes E and W towards the intersection (Ve-
hicles 1, 2, 3 on lane E, Vehicles 4, 5, 6 on lane W) with
random initial distances, between 15m and 65m, to the
intersection zones and a minimum initial inter-vehicle distance
of 5m, as well as stand-still initial conditions. Furthermore, the
maneuvers, i.e., right turn, straight, left turn, are determined
randomly for each vehicle and scenario. For each of the 200
test cases five different control methods are simulated: (i)
overpass, where no interaction between vehicles is required;
(ii) centralized: the result (11) with a given decision m; (iii)
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TABLE II: Simulation Parameters

ID
Parameter M xri,v Qn

i Rn
i Ui Xi,v UT

i XT
i,v di,s ωi lmax δi

Subsection V-A

Value 1 - 7m{s diag(0, 5) 1 r´7m{s2, 4m{s2s r0m{s, 9m{ss (25) (25) 2m 0.5 4
2 - 8.5m{s ” ” ” ” ” ” ” ” ”

Subsection V-B
1, 4 50 5m{s diag(0, 5) 12 r´7m{s2, 4m{s2s r0m{s, 9m{ss (25) (25) 2m 0.5 -

Value 2, 5 ” 6m{s ” ” ” ” ” ” ” ” -
3, 6 ” 7m{s ” ” ” ” ” ” ” ” -

Subsection V-C
1 50 7m{s diag(0, 5) 10 r´7m{s2, 4m{s2s r0m{s, 10m{ss (25) (25) 2m 0.5 4 4e3

Value 2 ” 8m{s diag(0, 10) ” ” ” ” ” ” ” ” ”
3 ” 9m{s diag(0, 50) ” r´5m{s2, 4m{s2s ” ” ” ” ” ” ”
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Fig. 4: Trajectories for varying horizon lengths M in the
d1 ´ d2 configuration space for vehicles 1 and 2 crossing
CZk in Cases c3 (top) and c4 (bottom), with safety boundaries
according to Fig. 2. Vehicle 1 crosses before vehicle 2. Solid
lines are the actual distance states, and dots show the terminal
states for each planning step.

Jacobi 4´iter, applying problems (18) with Algorithm 1 and
lmax “ 4; (iv) Jacobi 1´iter, the same as (iii) with lmax “ 1;
and (v) traffic rules, where vehicles have to yield the right-
of-way which in these scenarios is the case for left turns (if
two vehicles want to turn left at the same time lane E is
prioritized). The crossing sequence in (ii), (iii), and (iv) is
computed according the scheduling rule introduced in [24].

Crossing order
scheduling

N

E

S

W

CZ3

Intersection

CZ1

CZ4 CZ5

CZ2

Fig. 5: Intersection Scenario.

Fig. 6 and Fig. 7 show a single example test case by
comparing control method (iii) and (v). Thereby, Fig. 6
illustrates the distance trajectories, while Fig. 7 plots the
intersection scenarios for both approaches with the vehicles’
predictions at time t “ 7.0s and t “ 9.4s, respectively.
The example shows that the inter-vehicle coordination using
the Jacobi approach enables crossing the intersection more
efficient (faster), compared to the rule-based approach.

The overall evaluation of the 200 test cases is summarized in
Fig. 8. The left plot shows the average percentage increase of
the control methods (ii)–(v) (bars from left to right) compared
with the overpass method (i), which is the lower bound for the
performance measures. As performance measures the average
crossing time, i.e., the time it takes until all vehicles have
crossed the intersection area, and the average cumulative
acceleration effort, i.e the sum of all absolute acceleration
values from all vehicles, are evaluated. The right plot illustrates
the average computation time of the centralized computation
(ii) and methods (iii) and (iv), where each sub-stack (in 4-iter
and 1-iter) corresponds to the mean computation time of a
single vehicle.
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The crossing time evaluation shows similar results for
methods (ii)–(iv). The crossing time itself is not the foremost
optimzation objective, which becomes visible as the average
central methods (ii) finds longer results than (iii), the 4-
iter method. However, methods (ii)–(iv) result in significantly
shorter crossing times than the traffic rule method (v). The
acceleration effort is the lowest for the central computation
result (ii) which is about 20% less than in the traffic rule
simulation (v). Also, a performance improvement effect of
increased inter-sampling iterations of the Jacobi approach be-
comes visible by comparing method (iii) and (iv). Investigating
the computation time reveals a significant benefit from using
distributed optimization. While a centralized computation con-
sumes on average 480ms, 4 inter-sampling iterations require
between 30ms and 40ms, and a single iteration between 8ms
and 9ms for each vehicle. Remember that the solution for each
vehicle in methods (iii) and (iv) can be computed in parallel.
The low computation times of the distributed implementations
leave significant room for the inter-vehicle communication
within a sampling time interval of Ts “ 100ms.

C. Uncertainty Simulation

This subsection illustrates simulation results with exact
penalty functions on the inter-vehicle coupling constraint. We
model three vehicles moving in a platoon with the follow-
ing order: Vehicle 1 Ñ Vehicle 2 Ñ Vehicle 3. At time
t “ 5s Vehicle 2 conducts an emergency braking maneuver
with a2 “ a2,min “ ´ 7m{s2, which is shown in the top
middle plot of Fig. 9. Before this maneuver, Vehicles 2 and 3
drive with minimum inter-vehicle distance d3,s “ 2m (lower
plot of Fig. 9). Lower braking capability of vehicle 3, i.e.,
a3,min “ ´ 5m{s2, would lead to infeasible solutions of
the distributed optimization without softened constraints due
to an inter-vehicle constraint violation. Fig. 10 shows how
the respective slack variable ε3 becomes active during the
braking phase and the automatic recovery after t “ 7.9s. Once
the distributed system has recovered into a feasible area, the
negotiation continues as it would in the nominal case (with
hard coupling constraints) due to the exactness of the penalty
function.

VI. CONCLUSION

In this article, we have introduced an iterative coordination
methodology for connected and automated vehicles using
distributed model predictive control computations with dis-
tributed Jacobi over-relaxation (DJOR) updates, which ensure
feasibility after each inter-sampling iteration step. We have
shown that through the specific problem setup the algorithm
scales well independently of the interaction topology. The
coordination is conducted with respect to conflict zones. The
inter-vehicle coupling is softened using exact penalty functions
to prioritize safety in unforeseen scenarios over the coordina-
tion performance, while feasibility is preserved at all times.
The methodology is illustrated and evaluated by numerical
simulations including an intersection crossing scenario.

Guaranteed properties, including feasibility and scalability,
together with the distributed computation qualify the presented
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methods for real-world automated vehicle coordination sce-
narios. A proof-of-concept of such scenarios is the subject
of future work. Moreover, the proposed distributed problem
setting with its special structure is expected to match for many
other multi-agent coordination tasks. It would be of interest to
apply the DJOR algorithm and exploit its benefits in other
domains beyond multi-vehicle tasks.
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“Cooperative receding horizon conflict resolution at traffic intersections,”
in 53rd IEEE Conference on Decision and Control, pp. 2932–2937,
IEEE, 2014.

[17] A. Richards and J. How, “A decentralized algorithm for robust con-
strained model predictive control,” in Proceedings of the 2004 American
control conference, vol. 5, pp. 4261–4266, IEEE, 2004.

[18] M. Farina and R. Scattolini, “Distributed predictive control: A non-
cooperative algorithm with neighbor-to-neighbor communication for
linear systems,” Automatica, vol. 48, no. 6, pp. 1088–1096, 2012.

[19] M. Zanon, S. Gros, H. Wymeersch, and P. Falcone, “An asynchronous
algorithm for optimal vehicle coordination at traffic intersections,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 12008–12014, 2017.

[20] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A feasible mpc-based
negotiation algorithm for automated intersection crossing,” in 2018
European Control Conference (ECC), pp. 1282–1288, IEEE, 2018.

[21] F. Molinari and J. Raisch, “Automation of road intersections using
consensus-based auction algorithms,” in 2018 Annual American Control
Conference (ACC), pp. 5994–6001, IEEE, 2018.

[22] J. Gregoire, S. Bonnabel, and A. De La Fortelle, “Priority-based coor-
dination of robots,” 2014.

[23] R. Hult, M. Zanon, S. Gras, and P. Falcone, “An miqp-based heuristic
for optimal coordination of vehicles at intersections,” in 2018 IEEE
Conference on Decision and Control (CDC), pp. 2783–2790, IEEE,
2018.

[24] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “Combined scheduling
and control design for the coordination of automated vehicles at inter-
sections,” IFAC-PapersOnLine, vol. 51, no. 1, 2020.

[25] X. Qian, J. Gregoire, A. De La Fortelle, and F. Moutarde, “Decentralized
model predictive control for smooth coordination of automated vehicles
at intersection,” in 2015 European Control Conference (ECC), pp. 3452–
3458, IEEE, 2015.

[26] F. Belkhouche, “Collaboration and optimal conflict resolution at an
unsignalized intersection,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 20, no. 6, pp. 2301–2312, 2018.

[27] G. Schildbach, M. Soppert, and F. Borrelli, “A collision avoidance
system at intersections using robust model predictive control,” in 2016
IEEE Intelligent Vehicles Symposium (IV), pp. 233–238, IEEE, 2016.

[28] A. Colombo and D. Del Vecchio, “Least restrictive supervisors for inter-
section collision avoidance: A scheduling approach,” IEEE Transactions
on Automatic Control, vol. 60, no. 6, pp. 1515–1527, 2014.

[29] H. Ahn and D. Del Vecchio, “Semi-autonomous intersection collision
avoidance through job-shop scheduling,” in Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control,
pp. 185–194, 2016.

[30] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination
of automated vehicles at intersections: Theory and experiments,” IEEE
Transactions on Control Systems Technology, vol. 27, no. 6, pp. 2510–
2525, 2018.

[31] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pan-
nocchia, “Cooperative distributed model predictive control,” Systems &
Control Letters, vol. 59, no. 8, pp. 460–469, 2010.

[32] M. D. Doan, M. Diehl, T. Keviczky, and B. De Schutter, “A jacobi de-
composition algorithm for distributed convex optimization in distributed
model predictive control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4905–
4911, 2017.

[33] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A one-step feasible
negotiation algorithm for distributed trajectory generation of autonomous
vehicles,” in Proceedings of the Conference on Decision and Control
(CDC), 2019.

[34] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods, vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[35] R. Fletcher, Practical methods of optimization. John Wiley & Sons,
1987.

[36] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact
penalty functions in model predictive control,” in UKACC Int. Conf.
(Control 2000), (Cambridge), 2000.

[37] M. Hovd, “Multi-level programming for designing penalty functions for
mpc controllers,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 6098–
6103, 2011.

[38] N. M. de Oliveira and L. T. Biegler, “Constraint handing and stability
properties of model-predictive control,” AIChE journal, vol. 40, no. 7,
pp. 1138–1155, 1994.

[39] P. O. Scokaert and J. B. Rawlings, “Feasibility issues in linear model
predictive control,” AIChE Journal, vol. 45, no. 8, pp. 1649–1659, 1999.

[40] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” arXiv preprint arXiv:1708.06374,
2017.

Maximilian Kneissl is currently working as a
Research Engineer at DENSO AUTOMOTIVE
Deutschland GmbH in Eching, Germany. He re-
ceived his B.Sc., M.Sc., and Ph.D. degree in Elec-
trical and Computer Engineering from the Technical
University of Munich, Germany, in 2013, 2016, and
2021, respectively. The Ph.D. thesis was conducted
at the chair of Information-Oriented Control, De-
partment of Electrical and Computer Engineering,
Technical University of Munich, Germany, in collab-
oration with DENSO AUTOMOTIVE Deutschland

GmbH. His research interests include distributed control and planning for
cooperative vehicles in the field of autonomous driving, model-based system
engineering, and simulation methods for distributed control systems.

Adam Molin is currently a Technical Manager
at DENSO AUTOMOTIVE Deutschland GmbH in
Eching, Germany. Prior to that, he was a post-
doctoral researcher at the Department of Auto-
matic Control, Royal Institute of Technology (KTH),
Stockholm, Sweden, from 2014 to 2016. He received
his Diplom degree in electrical engineering in 2007
and his Doctor of Engineering degree in 2014,
both from the Department of Electrical Engineering
and Information Technology, Technical University
of Munich (TUM), Germany. His PhD thesis was

awarded with the Kurt-Fischer-Prize by the Department of Electrical Engineer-
ing and Information Technology, TUM, in 2014. His main research interests
include the development of testing and design methods for networked control
and cyberphysical systems with applications for automotive systems.

Hasan Esen is a Technical Manager in the Corpo-
rate R&D Department at DENSO AUTOMOTIVE
Deutschland GmbH. He is responsible for the com-
pany’s advanced control and system engineering
R&D activities in Europe. He received his PhD
in Control Engineering from the Technical Uni-
versity of Munich, Germany, MSc in Mechatron-
ics from Technical University of Hamburg-Harburg,
Germany, and a BSc in Mechanical Engineering
from Technical Universtiy of Istanbul, Turkey.

Sandra Hirche (M03-SM11-F20) received the
Diplom-Ingenieur degree in aeronautical engineer-
ing from Technical University Berlin, Germany, in
2002 and the Doktor-Ingenieur degree in electrical
engineering from Technical University Munich, Ger-
many, in 2005. From 2005 to 2007 she was awarded
a Postdoc scholarship from the Japanese Society for
the Promotion of Science at the Fujita Laboratory,
Tokyo Institute of Technology, Tokyo, Japan. From
2008 to 2012 she has been an associate professor at
Technical University Munich. She has been a TUM

Liesel Beckmann Distinguished Professor since 2013 and heads the Chair of
Information-Oriented Control in the Department of Electrical and Computer
Engineering at Technical University Munich. Her main research interests
include cooperative, distributed and networked control with applications in
human-robot interaction, multi-robot systems, and general robotics. She has
published more than 150 papers in international journals, books and refereed
conferences. Dr. Hirche has served on the Editorial Boards of the IEEE
Transactions on Control of Network Systems, IEEE Transactions on Control
Systems Technology, and the IEEE Transactions on Haptics.


