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Abstract

The Fujitsu A64FX and the inclusion of Arm’s SVE have shown promising results in the field
of HPC. Especially for numerical applications, the novel extension of the Aarch64 ISA has
been shown to yield significant performance boosts for applications that are correctly ported
to Arm architectures. This work extends the matrix multiplication kernel generator PSpaMM
to allow generating SVE instructions and analyzes the measured results. We benchmark
multiplication kernels generated by PSpaMM containing SVE and NEON instructions, as
well as matrix multiplication kernels generated by LIBXSMM. We show that SVE-based
kernels can provide a performance boost of a factor of 6.3 for small matrix multiplication
kernels when compared to PSpaMM’s NEON kernels. Benchmarks including dense-by-sparse
multiplication kernels show that the SVE kernels achieve increased performances by a factor
of 3.8 compared to their NEON counterparts. Finally, we observe that PSpaMM’s SVE
generator can compete performance-wise with the more optimized math library LIBXSMM.
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1 Introduction

Historically, the x86 instruction architecture set (ISA) was predominantly used for high
performance computing (HPC) systems [44]. This family of ISAs, which has been originally
developed by Intel, implements a complex instruction set computer (CISC) architecture.
The CISC architecture aims to perform tasks using as few instructions as possible [8]. To
achieve this, CISC-based processors are able to perform multiple operations after interpreting
a single instruction. The execution of a CISC instruction therefore takes multiple cycles
[10]. CISC based processors were able to improve their performance in the last decades by
increasing the amount of transistors per CPU while simultaneously decreasing the size of
the transistors [44]. However, the rise in processing capabilities is followed by higher heat
generation and power consumption [44]. Therefore, more power needs to be used to combat
the heat generation, which further increases the amount of power that a processor consumes
[44].

As an alternative, reduced instruction set computer (RISC) architectures only include
simple instructions that the processor can execute during a single clock cycle. Consequently,
programmers need to write more lines of assembly code for RISC processors compared to
implementing the same code for CISC processors [10]. Arm is a family of RISC architectures
designed for processors that are employed in different environments, for example in low
power environments and smartphones. During the last decade, a lot of effort has been made
to develop Arm processors that can perform more compute intensive tasks, especially in
relation to High Performance Computing (HPC) [44]. In 2019, Fujitsu finished developing a
new Arm based CPU, the Fujitsu A64FX [45]. This Arm based processor was then used to
build the “Fugaku” supercomputer in collaboration with RIKEN. Since 2020, Fugaku has
taken the first place on the Top500 list three times in a row [41]. This list, ranking the 500
fastest supercomputers in the world by measuring their peak performance in FLOP/s, has
otherwise been dominated by systems that primarily utilize GPU accelerators.

One HPC application that can potentially make use of the Fujitsu A64FX processor is
SeisSol [38], a seismic wave propagation solver that simulates seismic wave phenomena and
earthquake dynamics. There are numerous papers that explain in detail how SeisSol works
and how it has been optimized [7, 23]. The software utilizes code generators to create matrix
multiplication kernels. For example, PSpaMM [34] is a generator specifically created for
SeisSol [6]. The code generator is currently run on Intel’s x86 many-core processor Intel Xeon
Platinum 8174 with AVX-512 and the Marvell ThunderX2 with Arm NEON. However, the
latest developments in HPC have made the A64FX, including the Scalable Vector Extension
(SVE), an interesting target for developing a new code generator that returns Arm based
SVE assembly.

The goal of this thesis is to extend the aforementioned code generator PSpaMM to create
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inline assembly for small matrix multiplication kernels specifically targeted at the Fujitsu
A64FX using Arm’s novel SVE instruction set. The generated assembly is tested using
matrices that are commonly used in SeisSol. Furthermore, the performance of the generated
code will be measured and compared to inline assembly generated by PSpaMM. Chapter 2
discusses general information related to RISC-based architectures, Fujitsu’s A64FX, and
the fundamental differences between NEON and SVE, whereas chapter 3 discusses general
algorithmic ideas that can be used in matrix multiplications. In chapter 4, we present
advantages of several loop optimization techniques and how to implement them, as well as
discuss the key differences between PSpaMM’s NEON generator and the new SVE generator.
We analyze the results of benchmarks that test the performance of the generated SVE
kernels in chapter 5. Finally, chapter 6 concludes this thesis with a summary and gives an
outlook on possible future research.




¥

2 Background

2.1 RISC vs CISC

There are numerous ways in which RISC and CISC processors differ. Some of these key
properties are the length of the encoded instructions and the design goals of the respective
processor architectures [8]. The instructions used in RISC processors have a fixed encoding
length and can be categorized into two types, load/store instructions and operations which
exclusively work on registers [21]. On the contrary, instructions used by CISC processors are
of variable length depending on their complexity [8]. There are more than two instruction
types available as well, since CISC operations allow referencing memory directly inside of
an operation instead of having to first load the data into a register [21]. In addition, each
processor architecture has different design goals. CISC processors aim to keep a program’s
length to a minimum by performing as much work as possible per instruction, whereas RISC
processors usually generate more lengthy code while being able to execute single instructions
faster than CISC-based processors [21].

In order to better understand the key difference between RISC and CISC, i.e. the complexity
of the instructions, we will look at an example. Let A, B denote the names of two registers
in either architecture type and let i:j denote part of the memory where the value of a
matrix at the i** row and j* column. Listing 2.1.1 and 2.1.2 contain a side-by-side view
of pseudo-code which multiplies two values of a matrix and stores the result back into the

matrix.
MULT 4:3, 3:5 1| LOAD A, 4:3
2| LOAD B, 3:5
3| PROD A, B
STORE A, 4:3
Listing 2.1.1: Pseudo MULT instruction Listing 2.1.2: Pseudo MULT instruction

on CISC processor on RISC processor

The instruction in listing 2.1.1 is known as a complex instruction. It can operate directly
on memory cells without having to load the values into registers or explicitly call a store
instruction. In this example, the first source operand also serves as the destination. An
advantage of the CISC approach is that the compiler can easily translate high-level code
into low-level instructions [8]. If we assign the value of the memory cell 4:3 to z and the
value of 3:5 to y, the instruction in listing 2.1.1 is equal to x = x * y.

Listing 2.1.2 depicts the same code as as listing 1, but instead uses a RISC approach.
In this case, the processor has to explicitly load the values into two registers and multi-
ply these values using a (pseudo-)instruction called PROD, before it can store the result
back into memory. Although this approach may give the impression that the compiler
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and the processor have to do more work, this strategy also comes with advantages. Each
RISC instruction requires roughly the same amount of time to be executed, i.e. one clock
cycle [8]. Therefore, the RISC version of the code takes around as long as the CISC version [§].

Another advantage of the RISC approach is that instruction-pipelining becomes possi-
ble because the instructions take a similar amount of time to be executed [8]. An instruction
pipeline enables the processor to execute different parts of consecutive instructions at the
same time [13]. Figure 2.1.1 depicts a 5-stage pipeline consisting of the following stages:
Instruction Fetch, Instruction Decode and Register Fetch, Execute, Memory Access, and
Register Write Back. If the pipeline is at full capacity, the processor can execute all five
stages simultaneously in one clock cycle. However, the execution of each instruction must
be at a different stage. In an ideal scenario, pipelining keeps all data processing elements
busy, thus effectively increasing the rate at which instructions are processed (see 2.1.1). In
practice, however, instructions can depend on the results of previous instructions and have
to halt their execution while waiting for the previous instruction to finish. This is commonly
referred to as a stall and can significantly decrease the speed of a processor [9]. Modern
processors can hide stalls by making use of their “out-of-order resources”, meaning that
they can change the order in which instructions are executed to minimize the amount of
pipeline stalls [9].

Instruction execution in 5-stage pipeline
Execution

clock _r\_(_\_r\_r\_rLr\_r\_rLr\_f_\_(_!_r
i & @ & & @ @ @ i i

2 |.@ |
nstruction 1 1F | 1D | Ex £ MEM | W

Ingtruction 2 |F l D { Ex |MEMIﬂI
InstructinnSé IF { D | EX IMEMlﬂI
netuction s 1F | 1D | Ex | mem |l
nstruction s IF | 1D | EX | mEM| WE |
nstructions  IF | 1D | EX | mEn |IAEY

Instruction 7 IF | [m] | Ex |MEM| _WEII

Figure 2.1.1: Ideal scenario of executing multiple instructions in a general 5-stage pipeline,
figure taken from [4]

Similar to other modern processors, the processor of the A64FX consists of more stages than
the example pipeline in figure 2.1.1. The seven-stage pipeline implemented in the A64FX
is shown in figure 2.1.2. A thorough explanation of the pipeline’s functionality would be
outside of the scope of this thesis. Therefore, we refer to an article published by Fujitsu
which contains a more detailed description [31].
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Figure 2.1.2: Diagram of the A64FX seven-stage pipeline, figure taken from [31]

2.2 A64FX

The Fujitsu A64FX is a processor that was jointly developed by Fujitsu and RIKEN Center
for Computational Science [28]. Additionally, Fujitsu collaborated with Arm to include
the Armv8 instruction set and the Scalable Vector Extension (SVE), which in turn lead to
Fujitsu contributing to the design of SVE [36]. The A64FX was used to build the Fugaku
supercomputer, which performs roughly 42 times more FLOPS [42] than Japan’s previous
supercomputer, commonly referred to as the “K computer” [35].

Figure 2.2.1 contains a cross-section of the processor. The A64FX has four connected
Core Memory Groups (CMG), each containing 12 compute cores and one assistant core.
Nevertheless, the A64FX we have access to for this thesis seems to lack assistant cores. Every
core has access to a separate L1 cache. However, there is only one L2 cache and memory
controller per CMG that is shared between all cores of that CMG. Each CMG can access a
separate high-bandwidth memory (HBM2), with each HBM2 offering a memory bandwidth
of 256 GB/s [36]. A closer look at the AG4FX specifications, as well as the specifications of
other processors used for SeisSol, is provided in table 2.2.1.

Extensive tests were executed to benchmark the performance of the A64FX. Researchers at
RIKEN executed different benchmarks and applications on the A64FX containing either
compute-/memory-bandwidth-intensive kernels or different memory access patterns [28].
They also chose data set sizes that allowed the tests to access the main memory rather than
only the caches. The best results are usually seen when performing tests that benefit from a
high memory-bandwidth. The researchers accredit this to the fact that performing a high
enough number of computational instructions using the 512-bit vectors of the A64FX can
benefit from the high memory bandwidth of the processor’s HBM2 memory. Additionally,
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Tofu 1o
28Gbps 2 lanes 10 ports PCle Gen3 16 lanes

CMG specification
13 cores

L2$ 8MiB

Mem 8GiB, 2566GB/s

Figure 2.2.1: Block diagram of the Fujitsu A64FX, figure taken from [27]

the processor’s computing performance was shown to scale well as the number of threads
increases [28].

Jackson et al. show that the A64FX generally outperforms other similar processors when
executing benchmarks and applications that are commonly used in HPC [20]. The paper
shows that the researchers were able to execute multiple applications and benchmarks on the
A64FX without changing the code while also receiving good performances when executing
these programs on the processor. Furthermore, when comparing the A64FX’s performance
to that of the P100 and V100 GPUs when executing the “Nekbone” benchmark, which is
a standard poisson equation solver, the processor outperforms the GPUs when using the
Fujitsu compiler with the fast maths flag -Kfast enabled. However, they note that some of
the benchmarks and applications performed worse on the A64FX compared to other Arm or
Intel processors. Nonetheless, Jackson et al. point out that the right optimizations for a tar-
get architecture could lead to significant performance gains [20]. Moreover, Fujitsu’s A64FX
specifications show that the processor can reach 90% of the theoretical peak performance of
2.7 TFLOPS when executing the double precision general matrix multiplication (DGEMM)
and 80% of the peak memory bandwidth of 1024 GB/s when executing a STREAM triad [14].

Since the A64FX is a processor that was released only recently, the amount of performance-
related research is limited [28]. Nevertheless, there are a few more papers that can be
referenced for further performance comparisons of the A64FX with other, similar processors.
Brank et al. [5] executed a variety of benchmarks using the A64FX, ThunderX2, and the Intel
Xeon E5-2660 v3 and compared the obtained performance results. The researchers conclude
that the A64FX performs best when executing applications that are memory-bandwidth
reliant and can make use of SVE. However, the obtained results from the A64FX were worse
when executing benchmarks with a more complex control flow or memory access pattern.
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Hardware Specification AG64FX ThunderX2 CN9980 | Xeon Platinum 8174
ISA Armv8.2-A+SVE Armv8.1-A + NEON Intel AVX-512
Number of Cores 48 + 2-4 assistant cores | 32 physical - 128 logical | 24 physical - 48 logical
Frequency 1.8 - 2.2 GHz 2.0 - 2.5 GHz 3.1-3.9 GHz
SIMD Width 512 bits 128 bits 512 bits
L1I Cache 3 MiB (64 KiB/core) 1 MiB (32 KiB/core) n/a
L1D Cache 3 MiB (64 KiB/core) 1 MiB (32 KiB/core) n/a
L2 Cache 32 MiB (8 MiB/CMG) | 8 MiB (256 KiB/core) 24 MB (1MB/core)
L3 Cache None 32 MiB 33 MB
Cache-Line Size 256 bytes * 64 bytes n/a
Process Technology 7 nm CMOS FinFET 16 nm CMOS FinFET n/a
Memory Bandwidth 1,024 GB/s 160 GB/s n/a

Table 2.2.1: Comparison of the hardware specification of the A64FX [15], ThunderX2 CN9980
[43], and Intel Xeon Platinum 8174 [19] processors. Information marked with a

* has been taken from processors that we can access on a cluster provided by
the Leibniz Rechenzentrum (LRZ)

They further mention that the right optimizations can help to receive better performances [5].
Gupta et al. evaluated the performance of the runtime system “High Performance ParalleX”
[22] (HPX), which aims to address common challenges found in HPC like scalability and
efficiency, using a variety of benchmarks on different processors, including the A64FX. In
their paper, they show that the Fujitsu processor outperforms all other tested processors in
benchmarks that test memory-bandwidth, execution time, and GLUPs/s [16].

2.3 Scalable Vector Extension

The Arm Scalable Vector Extension (SVE) does not expand the existing advanced SIMD
instruction set architecture, but it is a relatively new extension introducing new A64 in-
struction encodings [39]. SVE is a vector length agnostic (VLA) instruction set introducing
new vector registers named Z0 to Z31 that can contain 8-, 16-, 32-, or 64-bit elements [?
|. These vector registers are separate from the existing 128-bit advanced SIMD registers
named VO to V31. A vector’s length is implementation dependent and can vary between
128 bits and 2048 bits in increments of 128 bits [40]. This means that we can write code
once and execute it on different processors that implement SVE for varying vector lengths
without recompiling the code or having to know the exact vector length for each processor.

Additionally to the 32 new vector registers, SVE introduces 16 predicate registers PO
to P15. These predicates are used to determine which vector elements are active while
executing a predicated instruction [40]. Vector elements are also often referred to as lanes.
Predicates can be used to manage loops using SVE instructions. Further insight into SVE is
available in [40]. The reference manual containing the exact instructions can be downloaded
from [1].

In order to better understand the new registers introduced by SVE, we will look at an exam-
ple code snippet of inline assembly in C++. This code snippet contains SVE instructions
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that perform an element-wise multiplication of two arrays and add the resulting elements
onto a third array. All three arrays have the same arbitrary length of n > 0 elements. To
keep the example code as small as possible, the loads of the input variables and the list of
ouput, input, and clobbered registers is omitted.

void array_mul (double* A, doublex B, double* C, long length) {{
__asm__ __volatile__(
/* setup code that loads the pointers to the beginning of
* A, B, C into the registers x0, x1, x2 respectively,
* while x3 contains the length of the arrays */

"mov x4, xzr\r\n"

"LOOP%=:\r\n"

"whilelo p0.d, x4, x3\r\n"

"1d1d z0.d, p0/z, [x0, x4, LSL #3]\r\n"
"1ld1d zl.d, p0/z, [x1, x4, LSL #3]\r\n"
"ld1d z2.d, p0/z, [x2, x4, LSL #3]\r\n"
"fmla z2.d, p0O/m, z0.d, zl.d\r\n"

"stld z2.d, pO, [x2, x4, LSL #3]\r\n"
"incd x4\r\n"

"b.cc LOOP%=\r\n"

/* listing of the output, input, and clobbered registers */

1

Listing 2.3.1: SVE example

The example code in listing 2.3.1 contains inline assembly of an element-wise array multipli-
cation. Let VL be the vector length at which SVE is implemented. For the A64FX we have
VL = 8. The registers x0, x1, and x2 contain the pointers to the arrays A, B, and C. Register
x3 contains the length of the arrays. Line 7 uses the xzr register to move the number 0
into x4. The purpose of the special register xzr is to have access to a register containing a
constant 0 without wasting a general-purpose register. Line 9 takes a predicate and fills
it with true or false values. Setting an element of a predicate to true or false actually
means setting the element to either 1 or 0, respectively. To do this, the whilelo instruction
repeatedly performs x4 + 4 < x3 while incrementing i from 0 to VL - 1. The i*® element
of the predicate register p0 is set to true, if x4 4+ ¢ < x3 evaluates to true. Otherwise, the
corresponding element in pO is set to false. The whilelo instruction, however, does not
actually alter the value stored in x4.

Lines 10 to 12 perform predicated loads. Each instruction loads up to VL = 8 double ele-
ments from an array stored at xk 4+ x4 x 8 and stores the elements in zk.d, with k € {0, 1, 2}.
The .d suffix of the SVE vectors indicates that the vectors contain 64-bit elements. The
load instructions all use “zeroing predication”, which means that inactive vector elements in
zk.d are filled with zeros. An element is considered inactive if the corresponding element
of the used predicate is set to false. Therefore, loads only access memory if an element of
the used predicate is set to true. This ensures that loading a vector with elements from
memory does not access more memory than intended. Using the same predicate register for
all loads also guarantees the same number of elements are loaded into each vector register.
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Line 13 performs a simple element-wise “fused multiply add” instruction z2 = z2 + z0 * z1.
Additionally, the used predicate register indicates that the inactive elements of z2 are filled
with zero.

The store instruction in line 14 behaves similarly to the previous load instructions. However,
only the active elements of 22 are stored back into memory.

Line 15 simply increments x4 by the number of double words, i.e. 64-bit elements, a
vector can hold. Because the A64FX has 512-bit long vectors, the instruction always incre-
ments a register by 8. In our example, this instruction is used to update the number of
processed array elements contained in x4.

Lastly, line 16 performs a branch instruction back to the top of the loop under the condition
that the last element of the predicate p0 created by whilelo is true. Another branching
condition that we could use is .any, which executes a branch if any predicate element was
set to true by the previous predicate-setting instruction. We can omit an otherwise needed
compare instruction right before the branch, because only the whilelo instruction actually
updates the condition flags. All other instructions executed within the loop do not modify
the values of the condition flags.

Although the code performs one unnecessary loop traversal if the length of the arrays
is a multiple of 8, we would not see a significant increase in runtime. This is due to the
fact that the predicate register p0 would have all elements set to false by the whilelo
instruction. This in turn entails that the loads do not actually access the memory, because
all inactive elements of the vector registers will be set to 0. Analogously, the fmla and
store instructions would not be performed. Finally, the register x4 would be incremented
one more time before reaching the branch instruction, which is not executed since the last
element in the predicate pO is set to false.

The example shows that the programmer does not have to think about how many ele-
ments can fit in a vector or how many elements are left to be processed. The correct usage
of predicates eliminates the need to incorporate these values into the code, which is one of
the main properties of VLA code. In addition to that, the predicates introduced by SVE
make including a “tail loop” at the end of the code above obsolete. When implementing the
same function using NEON inline assembly for example, the loop would be able to contain
two array elements per vector register. If the length of the arrays was not a multiple of two,
we would not be able to fully load a vector register without loading data from outside the
arrays. This makes including a tail loop necessary in order to be able to process the last few
elements of each array.

Numerous tests have been performed to evaluate the performance of Arm’s SVE. Pohl
et al. observed in a series of benchmarks that SVE reaches roughly 90% of the performance
that Arm’s NEON reaches [33]. They accredit this performance loss to the predication of
the instructions. For these benchmarks, the vector length used by SVE was set to 128 bits,
which corresponds to the length of a NEON vector. Furthermore, the paper compares the
auto-vectorization rates of the SVE and NEON ISAs with the help of 151 different loop
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patterns. The researchers show that the GCC compiler was able to vectorize 66 loops using
both SVE and NEON. An additional 16 loops were vectorized exclusively with SVE, whereas
no loops could be vectorized only using NEON instructions. In other words, the compiler
was able to auto-vectorize 24.2% more loops when using SVE compared to NEON. The
paper accredits this to the fact that SVE supports predication, as well as gather and scatter
instructions, all of which have been missing in NEON [33].

However, a survey on Arm processors suggests that SVE achieves a speedup of up to
3x and 7x for a vector length of 128 bits and 512 bits respectively, compared to using NEON
and its 128-bit registers [44]. It is important to note that the tests in [33] were performed
on the gemb simulator, whereas the tests performed in [44] measured the performance of
SVE with a model that was executed on a processor that is not related to an existing one.

Finally, researchers at RIKEN concluded that increasing the vector length used by the
processor, as is possible with processors implementing SVE, can lead to performance im-
provements if the program contains large amounts of arithmetic operations [24]. However,
enough physical registers need to be available, otherwise the performance might get worse.
If memory bandwidth presents a bottleneck to the performance of a program, increasing the
vector length will have a significant impact on the performance. In general, SVE seems to
be useful when trying to find the most suitable vector length, because the ISA can be run
on processors with different vector lengths without having to adjust the code [24].

10
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In this section, we will explore different algorithmic ideas that are used in “PSpaMM” and
discuss their strengths and weaknesses. To keep the notations in this thesis consistent, we
are going to introduce specific notations as shown in table 3.0.1.

Parameters Description
A B Input Matrices
C Result Matrix
X,y Vectors of size n
n,k,m Integers > 1
nxk Dimensions of A
kxm Dimensions of B
nxm Dimensions of C

Table 3.0.1: Common parameters used in this thesis

3.1 Matrix-Matrix multiplication

There are numerous ways to multiply two matrices. Each approach has its own advantages
and use cases. These approaches include the naive approach and an outer-product-based
formulation. There are other more complex approaches which can perform matrix multipli-
cations in less asymptotic time. However, in the context of this thesis, we will take a closer
look only at the first two approaches. We provide code examples for matrix multiplication
approaches. To keep it simple, we will assume that in both cases the data is stored sequen-
tially in memory using a one-dimensional layout.

3.1.1 Naive Approach

The most commonly taught matrix multiplication algorithm is the naive approach. In order
to calculate C' = AB, we need to iteratively multiply each row of A with each column of B.
To compute an element c¢; ; of the result matrix C, we need to calculate the dot product
of the i row of A and the j'' column of B. Let a; = [a;1, ..., a; ;] and bj = [byj, ..., by j]
denote the i*" row and j** column of A and B, respectively. The dot product of two vectors
is defined as

11
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Y1 n
z-y=axyl = (w1, -, @) | :Z:ml*yZ (3.1.1)
yn| =

Using the above equation, we can now establish a formula for the naive matrix multi-
plication with

ajn o aig| |bi1 oo bim
ap1 - Ank bk,l T bk,m
k k
Doiq01i*bin o Y i a1 *bim
k k
Zi:l Apq * bi,l T Zi:l Qnp g * bi,m

To better understand the naive approach, we introduce a general example of a matrix
multiplication using the parameters n = k = m = 3. In this case, calculating the result of
the multiplication is defined as

ain a1z a13| (b1 b2 b3
C = AB = a271 a272 az.3 b271 b272 bg’g (313)
as1 asz2 aszz| |bz1 b32 b33

(a1,1b11 + a12b21 +a13b3.1) (ar,1b1,2 + a12b22 + a13b32) (a1,1b1,3 + a12b23 + a1,3b33)
= [(ag1b1,1 + a22b21 +az3b31) (az1bi2 + ag2bas + az3bz2) (a2,1b1,3 4+ a2b23 + az3b33)
(a31b11 + az2ba1 +assbs1) (az1bi2+ as2bao + azsbs2) (as1bi 3+ az bz + as3bss)

Listing 3.1.1 shows a typical implementation of the naive approach in C+4 consisting
of three for-loops. The outer loop iterates over the rows of A, whereas the intermediate
loop iterates over the columns of B and the rows of C, respectively. The innermost loop
calculates the dot product of the (ni + 1)** row of A and the (mi + 1)"* column of B and
stores the intermediate results in the accumulator. The calculation is done by executing a
series of “fused-multiply-add” instructions, which are counted as two FLOPS each. Finally,
the result of the dot product is written into the corresponding cell of the result matrix C.

12
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// assume that the matrices A, B, C of type double are defined as in section 3
for (int ni = 0; ni < n; ++ni) {
for (int mi = 0; mi < m; ++mi) {
for (int ki = 0; ki < k; ++ki) {
Clni*n + mi] += A[ni*n + ki] * B[ki + mi*m];

}

Listing 3.1.1: C++ example code for a naive matrix multiplication

We can see in listing 3.1.1 that the naive algorithm performs a total of 2 % k£ arithmetic
instructions for each execution of the innermost loop. This loop in turn is executed n *x m
times, resulting in a total of 2 x n * k * m FLOPS for the naive approach. Furthermore,
the algorithm uses 2 * k load instructions every time the innermost loop gets traversed and
n % m * k store instructions, causing a total of 2knm 4+ nmk memory accesses. In cases
where n = k = m, i.e. all matrices are square, this approach yields O(2 * n3) = O(n?)
FLOPS, O(2 xn3) = O(n?) loads, and O(n?) stores. One common way to quickly improve
the runtime performance of the naive approach is to introduce an accumulator variable,
which we will refer to as sum. We can assign sum = C[ni * n + mi| before entering the
innermost loop, replace the store instruction into the matrix C with the accumulator, and
finally store the accumulated result into C with C'[ni *n + mi] = sum after exiting the inner
loop. This way, we can reduce the amount of store instructions by a factor of k to a total of
n % m.

3.1.2 Quter Product

Contrary to the naive approach presented in section 3.1.1, the following matrix multiplication
algorithm makes use of the “outer product”. While the multiplication of two vectors using
the dot product returns a scalar, the result of the outer product is a matrix. The calculation
of the outer product of any two vectors can be defined as

T T1*Y1r T1*Y2 ... T1*Ym

) T2 *Yp Toa*Ya ... T2*Yn
r@y=1aly= : ly1, y2, ooy Ym] = : : . : . (3.1.4)

Tn Ipn*Y1 Tp*xY2 ... Tp*Ym

In contrast to the dot product in equation 3.1.1, the sizes of the two vectors z and y
in equation 3.1.4 may differ when calculating the outer product. This is possible because
instead of a scalar result, a n x m matrix is created. The i*" column of the result of x ® y is
equivalent to z x y;. Likewise, the i*" row of z ® y corresponds to x; * y. With the above
equation, we can now establish a formula for a general matrix multiplication using the outer
product. Let a; and b; denote the i*" column and row of the matrices A and B, respectively.
The matrix C; is used to store the intermediate results of the outer product. With this, we
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can write the multiplication of A and B as
k k
C=AB=) Ci=) a;®b;. (3.1.5)
i=1 i=1

When comparing the example equation 3.1.3 with the same general matrix multiplica-
tion using the outer product in equation 3.1.6, we can see that the end result remains the
same, only the approach differs.

a1l ar2 ai13| |big biz2 big
C = AB = CL271 azo a3 b271 b272 b273 (316)
azq aszz asz3| [b31 b32 b33

a;1bi1 aiabie a11b13 a12ba1 ai2bao  a12ba3 a13b31 ai3bs2 aiszbss
= |ag1b11 ag1bi2 a21bi13| + |a22b21 az2b22 asobas| + [as3bs as3bse az3b33
az1bi1 azibia a3 1bys] azaba1  agobao  az2bo3 az3bs1 aszsbzz as3bss

For the sake of completeness, the general formula for an outer product based matrix multi-
plication is defined as

k k
C:ZCi:Zai®bi (3.1.7)
=1 =1

ajg b1 o0 a1 xbim ai g *bg1 o a1 * by,
= : : +oeF : '

Qp, 1 * bl,l crr Qpl X bl,m Qp | * bk,l crr Qpk x bk,m

Although basing a matrix multiplication on equation 3.1.5 can seem unintuitive at first, Pal
et al. discuss the advantages of this approach and have developed a sparse matrix multi-
plication accelerator based on the outer product formulation [32]. Some of the advantages
of this formulation include maximizing memory reuse as well as avoiding repeating reads
to non-zero elements. Additionally, this approach minimizes the number of load and store
instructions. After multiplying a column from A and the corresponding row from B using

the outer product, we do not use these values again and can remove them from the cache
[32].
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// assume that the matrices A, B, C of type double are defined as
// in section 3
for (int ki = 0; ki < k; ++ki) {
// load ki-th column/row of A/B
double*x a = load_column(A, n, k, ki);
double* b = load_row(B, k, m, ki);
for (int mi = 0; mi < m; ++mi) {
for (int ni = 0; ni < n; ++ni) {
Clni + mi*m] += al[ni] * b[mil;
}
¥

Listing 3.1.2: C++4 example code of an outer product based matrix multiplication

The findings in [32] regarding loads and stores can be reproduced with the code example in
listing 3.1.2. The outer loop loads the ki*" column and row of matrices A and B, respectively,
into separate arrays. The arrays a and b are loaded using two functions which take as input
a matrix, the matrix dimensions, and the current state of the outer loop-variable. We will
assume that calling these functions does not significantly impact the performance of the
matrix multiplication. We can compare these functions with a functionality called “array
slicing”, which is provided by the python package “numpy”. This package would allow us to
load the vectors by calling a = A[:, ki] and b = B[ki,:]. The outer product approach implies,
given a sufficiently large cache, that these vectors stay in local memory while executing the
intermediate loop. Additionally, these vectors are not reused in later parts of the calculation,
which means that the contents of the vectors a and b can be removed from the local memory
after exiting the intermediate loop.

Similar to the naive approach in listing 3.1.1, the innermost loop contains a single FMA
instruction, accounting for 2 x n FLOPS for each time the loop is executed. Since the inner
loop is entered k x m times, the multiplication of two matrices takes a total of 2nkm FLOPS,
thus resulting in the same amount of executed arithmetic instructions as the naive approach.
However, since the columns and rows of A and B are only loaded once, we have a total
of nk + km load instructions. Finally, there are n stores in the innermost loop, resulting
in n *x k * m stores to the matrix C. By including a vector ¢ that acts as an accumulator
for each column of C, we could move stores to the matrix C outside of the computation
loop, thus decreasing the amount of stores to memory by a factor of n, resulting in O(k * m)
stores. Comparing the number of instructions needed for both approaches of the matrix
multiplication, we can see that the outer product formulation can provide a performance
increase regarding runtime due to the lower number of memory accesses.

3.2 Storage Formats

When processing data, it is common to store it in some kind of array or matrix. This way we
can easily access the stored data, divide the data that needs to be processed into subsets, or
sort the values in a certain way. Naturally, the more data we have, the more memory we need
in order to store it. Matrices that are used in certain applications, for example in PSpaMM
which generates a matrix multiplication based on the outer product formulation seen in
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chapter 3.1.2, sometimes contain a lot of zeros. When using the outer product, a high number
zeros stored in one of the input matrices entails that we will perform a multiplication with 0
many times, as well as store the resulting zeros into an intermediate matrix. This redundant
calculation can take up a large part of the overall runtime, depending on the ratio of zeros to
non-zeros. If the matrix dimensions are large enough and the amount of zeros stored exceeds
a certain threshold, we can make use of different storage formats in order to exclusively store
non-zero values. Matrices that are used in practical applications tend to have only up to
5—15% of their entries filled with non-zero values, which usually justifies the use of a storage
format. The following subsections present a summary of some of the formats that can be used.

3.2.1 Compressed Sparse Row Storage

The first storage format that is commonly used is the “compressed sparse row” (CSR) format.
This storage format essentially takes a matrix and compresses it row for row, discarding the
zero values while keeping the non-zeros and storing them consecutively into a new array.
Because of this, we lose information about the row and column indices of the non-zeros but
in return, we need to occupy less memory space to store these values. We have to introduce
additional arrays which we can use to infer the row and column indices of the matrix val-
ues, so that we can continue to calculate correctly with this compressed version of the matrix.

Let A denote an arbitrary array with dimensions m x n. The first additional array is
used to store the column index of the non-zero values. This means that the " element of
the column index array col_ind stores the column index of the i*" non-zero stored in the
value array non_zeros. The second array that we need to introduce is called row_ptr. This
array allows us to infer the amount of non-zero values of each row of the original matrix. To
do this, we need to subtract the i element from the (i + 1)* element. The result is the
amount of non-zeros that were stored in the i*" row. If the i*" row of A contains only zeros,
we have row_ptr[i] = row_ptr[i+1] and, therefore, row_ptr[i4+1] — row_ptr[i] = 0. Assuming
that the original matrix A has dimensions n X m with k non-zero values, the memory space
that the CSR format takes up can be calculated as follows. The first two arrays contain k
elements each, whereas the third array stores n + 1 elements. Therefore, storing the matrix
A in CSR requires storing 2k +n + 1 elements, while storing the entire matrix A would take
up n ok m memory space.

For better understanding, we will focus on a small example matrix that will be stored
in CSR format. The size of the example matrix would not warrant the use of the CSR
format. Nonetheless, it suffices to illustrate the storage format. A larger example can be
found in [13].

70 -200
01 0 40
A=19 2 0 0 0 (3.2.1)
00 8 00
00 0 00
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Let the matrix A (equation 3.2.1) denote a sparse matrix with n = m = 5. The new
arrays that are introduced using the CSR storage format are shown in table 3.2.1.

nonzeros |7 -2 1 4 9 2 8
col_ind 1 3 2 4 1 2 3
rowptr |0 2 4 6 7

Table 3.2.1: Arrays needed to construct a CSR version of matrix A from 3.2.1

The first array contains the non-zeros of A, whereas the second array is used to store
the respective column indices. Finally, the last array helps us to calculate the number of
non-zeros in each row of A. If we were to use A as the left-hand side multiplicand in a naive
matrix product, we would infer the values of the first row as follows, assuming that the array
indices are 1-based: we first calculate row_ptr[2] — row_ptr[1] = 2 to obtain the number of
non-zeros of the first row. With this information, we now know that a;1 =7 and a; 3 = -2,
while all other a;, = 0 for k = {2,4,5}.

3.2.2 Compressed Sparse Column Storage

The compressed sparse column (CSC) storage format works analogously to the CSR format.
The only difference is that we now transform our original n X m matrix column by column
and rename the third storage-array to col_ptr. Although the concepts remain the same for
both formats, there are cases where we would prefer one storage format over the other. If A
is a “tall” matrix, i.e. n >> m, then we could use CSC in order to keep the col_ptr array
small. If A is a “wide” matrix however, meaning that n << m, we could store A using CSR.
Finally, if A is square, we are free to choose one of the two formats.

To illustrate how CSC storage works, we will reuse the example from section 3.2.1. Let A
denote the same matrix using 1-based indices as in equation 3.2.1. Table 3.2.2 shows the
arrays constructed by CSC.

nonzeros |7 9 1 2 -2 8 4
row_ind 1 3 2 3 1 4 2
col_ptr 0 2 4 6 7

Table 3.2.2: Arrays needed to construct a CSC version of matrix A from 3.2.1
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Similar to the example in table 3.2.1, the non_zeros array contains the non-zero values in
matrix A, the difference being that A is processed column by column. The second array
stores the row index of each corresponding non-zero, whereas the third array is used to
determine the amount of non-zeros for each column, similar to the CSR format.

Other comparable storage formats include the block sparse row (BSR) and block sparse
column (BSC) storage formats. They work similarly to CSR and CSC. Although each
sub-matrix must have the same shape, there are implementations where this constraint is
relaxed. These additional storage formats are mentioned in the sparse matrix multiplication
generator PSpaMM, albeit only by name [34]. Since explaining these more thoroughly would
exceed the bounds of this thesis, we refer to [12] for more information.

3.2.3 Coordinate Storage

The storage format that is currently being used for sparse matrices in PSpaMM is the
coordinate storage format. Similar to the other presented formats, we introduce three
new arrays. The first array stores the non-zero values, whereas the other two contain the
corresponding row and column indices. If the original n x m matrix has k non-zeros, the
coordinate storage format now stores 3k elements. Therefore, using this format is only
helpful in saving memory space if the ratio of total number of elements n * m to the number
of non-zeros k is k < 5. As the ratio between k and nm decreases, more memory space can
be saved by using this format. Naturally, if the sparse matrix contains too many non-zero

values, we should continue working with the original matrix.

One practical implementation in which the coordinate format can be found is called the
“Matrix Market” exchange format [29]. The goal of this format is to provide a simple
standardised way of storing, exchanging, and parsing matrices. Additionally, the format
can be extended to fit the needs of more complex applications. The information needed to
reconstruct a sparse matrix is stored in “.mtx” files. Listing 3.2.1 shows an example mtx file
constructed using the following sparse matrix:

0 9 2 0000
0 1 0 4000
392 0 00 80

A=10 0 16 00 0 0 (3.2.2)
0 2 0 0020
(0 10 8 00 0 0]
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%hMatrixMarket matrix coordinate real general
comments

11 //<- m n nnz
9
-2
1

8

4
39
2
-16
2
10
8
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Listing 3.2.1: Example .mtx file generated for the matrix A in equation 3.2.2

The first line in listing 3.2.1 is the header line. It contains information about the type of
object stored in the file, the type of data stored, the storage format, as well as potential
symmetry patterns. In this case, the header tells us that the file contains a matrix stored in
coordinate format containing real entries. Other possible data types include integer and
complex values. The symmetry pattern is denoted as “general”, meaning that the matrix is
asymmetric.

Lines two to four reserve space for possible comments we may want to include. The
comments can consist of zero or more comment lines, meaning that if we do not want to
include a comment, the reserved space is reduced to one line containing a single %-sign.

The line following the comment section stores information about the dimensions of the
matrix and its number of non-zeros. In our example, the matrix represented by the mtx file
has m = 6 rows, n = 7 columns, as well as nnz = 11 non-zero entries.

The rest of the file is nnz lines long. Each line denotes a pair of row and column in-
dices, as well as the value stored in the corresponding matrix cell. Mtx files use 1-based
indexing, meaning that the top left element of a matrix A is located in A[1] [1].
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4 Implementation

In this section, we will explore different loop optimization techniques that are implemented
in PSpaMM, as well as discuss the key differences between the two Arm generators and
how we modified the NEON generator to be able to return inline assembly containing SVE
instructions. Additionally, we will talk about some problems we encountered during the
implementation.

4.1 Loop Optimization

PSpaMM makes use of several loop optimization techniques. These optimizations increase
the performance of the generated inline assembly, for example by promoting data locality
and thus reducing the number of cache misses. We will discuss these advantages and how
the optimizations can be applied using an example loop (listing 4.1.1).

// Initialization of arrays a, b with some values
for (int i = 0; i < length; ++i) {

alil = al[i] + b[il;
}

Listing 4.1.1: Unoptimized example loop performing a simple vector addition
Loop Tiling

Loop tiling, also known as loop blocking, is another way of transforming the iteration
space of a loop [3]. This optimization divides a loop into blocks of equal size by splitting
it into two separate loops. The outer loop iterates over the number of blocks, whereas the
inner loop processes an individual block. In the case of our SVE-based generator, the block
size used for loop tiling is chosen such that it divides the iteration space perfectly. This
ensures that we do not have to process an otherwise existing overhead in case the last block
does not fully fit the end of the iteration space. Furthermore, loop tiling can hint to the
compiler that the loop body can be optimized using vector instructions.

// make sure that the array lengths are divisible by the block size
int blocksize = 5

3| assert ((length % blocksize) == 0)
for (int ii = 0; ii < length; ii += blocksize) {
for (int i = ii; i1 < ii + blocksize; ++i) {
alil = al[il + b[il;
}

}

Listing 4.1.2: Loop tiling with a block size of 5
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Listing 4.1.2 shows an optimized version of our example loop using loop tiling. The
outer loop iterates over the whole length of the arrays in steps of size blocksize, effectively
fixating the block we are going to process. The inner loop then processes an individual
block. Generally, we apply loop tiling to increase data locality and cache reuse [3], which
consequently reduces the amount of time consuming cache misses. The resulting performance
boost can vary drastically depending on the chosen block size [26]. The best performing
block size is hard to determine as it highly depends on the processor’s caches and the memory
accesses performed in the loop [26]. Nevertheless, finding the right block size can be a key
factor to ensure high performances, especially when multiplying dense matrices [3].

Loop Unrolling

The first optimization is called “loop unrolling”. For this technique, we take a part of
the iteration space of a loop and replace it with explicit instructions [3]. This is especially
advantageous when the loop body is particularly small and the number of iterations is high.
This holds true for our example loop if we set n = 100, 000. If the loop body contains only
a few simple instructions, the majority of the execution time is spent incrementing the
iteration variable and performing “end-of-loop” checks. Loop unrolling allows for a higher
number of executed instructions before incrementing the loop variable and testing whether
we have reached the end of the loop [17].

// make sure that the array lengths are divisible by the unroll factor
assert ((length % 5) == 0)
for (int i = 0; i < length; i += 5) {

alil = ali] + Db[il;

ali+1] = afl[i+1] + Db[i+1];
ali+2] = al[i+2] + b[i+2];
al[i+3] = al[i+3] + b[i+3];
ali+4] = al[i+4] + b[i+4];

Listing 4.1.3: Loop unrolling with an unroll factor of 5

Listing 4.1.3 contains our example loop after being unrolled by a factor of 5. We now
perform 5 arithmetic instructions per loop iteration. Thus, we only need to increment ¢
and perform end of loop checks a total of % times. Compilers can also further optimize
the loop by pre-calculating the offsets of every memory access within the loop body. This
leads to compilers being able to generate more efficient code [25]. Similar to loop tiling,
unrolling a loop can provide a hint to the compiler that the loop body can be optimized
using vectorization, i.e. replacing the instructions with “single instruction multiple data”
(SIMD) instructions [17].

A larger unroll factor implies that fewer branch instructions need to be performed when
executing the loop [25]. Since branch instructions are rather expensive compared to the
simple arithmetic instructions in the loop body, we can expect a performance boost. Ad-
ditionally, compilers are able to fully unroll a loop. This is presumably the most efficient
way to traverse a loop, since all potential branch and loop-control-related instructions are
removed. However, fully unrolling a loop comes with a disadvantage. The size of the file
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containing the loop grows linearly with the unroll factor due to the increasing length of the
loop body. If we were to completely unroll the example loop while setting length = 100.000,
the file would grow by 100.000 lines of code. Nevertheless, this is not a problem in the case
of files generated by PSpaMM, because the matrices used in the multiplications are rather
small (matrix dimensions < 100) and we are not restricted by file size.

Register Blocking

Another loop optimization implemented in PSpaMM is called “register blocking”. It works
similarly to loop tiling. However, the block size is chosen with the number of available
registers in mind instead of the cache size [25]. Additionally, we unroll the inner computation
loop of a block and ideally increase data reuse within the unrolled loop [25]. Since we would
not see the benefits of register blocking when applying the technique to our example loop,
we will look at the following excerpt of a file generated by PSpaMM.

// Block GEMM microkernel
// Load A register block @ (d=0,r=0)

"1ldid z2.d, p7/z, [x0, 0, MUL VLI\r\n" // A [0,0] [0,0]
"1ld1d z3.d, p7/z, [x0, 1, MUL VL]\r\n" // A [0,0] [8,0]

"ldird z4.d, p7/z, [x1, 0]l\r\n" // B[O0,0][0,0]
"add x11, x1, #544\r\n" // move to next element of B
"ldird z5.d, p7/z, [x11, 0]\r\n" // B[0,0][0,1]
"add x11, x1, #1088\r\n" // move to next element of B
"ldird z6.d, p7/z, [x11, 0]\r\a" // B[0,0]1[0,2]
"add x11, x1, #1632\r\n" // move to next element of B
"ldird z7.d, p7/z, [x11, 0]\r\n" // B[0,01[0,3]
"add x11, x1, #2176\r\n" // move to next element of B
"ldird z8.d, p7/z, [x11, 0]\r\n" // B[0,0][0,4]
"add x11, x1, #2720\r\n" // move to next element of B
"ldird z9.d, p7/z, [x11, 0]\r\a" // B[0,0][0,5]

| "add x11, x1, #3264\r\n" // move to next element of B
"ldird z10.d, p7/z, [x11, 0l\r\n" // B[0,01[0,6]
"add x11, x1, #3808\r\n" // move to next element of B
"ldird z11.d, p7/z, [x11, 0]\r\n" // B[0,0][0,7]
"fmla z16.d, p7/m, z2.d, z4.d\r\n" // C[0:8,0] += A[0:8,0]1xB[0,0][0,0]
"fmla z18.d, p7/m, z2.d, z5.d\r\n" // C[0:8,1] += A[0:8,0]1*B[0,0][0,1]
"fmla z20.d, p7/m, z2.d, z6.d\r\n" // C[0:8,2] += A[0:8,0]1*B[0,0][0,2]
"fmla z22.d, p7/m, z2.d, z7.d\r\n" // C[0:8,3] += A[0:8,0]1xB[0,0][0,3]
"fmla z24.d, p7/m, z2.d, z8.d\r\n" // C[0:8,4] += A[0:8,0]1*B[0,0][0,4]
"fmla z26.d, p7/m, z2.d, z9.d\r\n" // C[0:8,5] += A[0:8,0]1*B[0,0][0,5]

5| "fmla z28.d, p7/m, z2.d, z10.d\r\n" // Cl[0:8,6] += A[0:8,0]1xB[0,0][0,6]
"fmla z30.d, p7/m, z2.d, z1l.d\r\a" // C[0:8,7] += A[0:8,0]*B[0,0][0,7]
"fmla z17.d, p7/m, z3.d, z4.d\r\n" // C[8:16,0] += A[8:16,0]1*B[0,0][0,0]
"fmla z19.d, p7/m, z3.d, z5.d\r\n" // C[8:16,1] += A[8:16,0]*B[0,0][0,1]
"fmla z21.d, p7/m, z3.d, z6.d\r\n" // C[8:16,2] += A[8:16,0]*B[0,0][0,2]
"fmla z23.d, p7/m, z3.d, z7.d\r\n" // C[8:16,3] += A[8:16,0]1*B[0,0][0,3]
"fmla z25.d, p7/m, z3.d, z8.d\r\n" // C[8:16,4] += A[8:16,0]*B[0,0][0,4]
"fmla z27.d, p7/m, z3.d, z9.d\r\n" // C[8:16,5] += A[8:16,0]1%*B[0,0]([0,5]
"fmla z29.d, p7/m, z3.d, z10.d\r\n" // C[8:16,6] += A[8:16,0]1*B[0,0][0,6]
"fmla z31.d, p7/m, z3.d, zl1l.d\r\n" // C[8:16,7] += A[8:16,0]*B[0,0][0,7]

Listing 4.1.4: Excerpt of inline assembly generated by PSpaMM
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Listing 4.1.4 contains part of the generated inline assembly for multiplying two dense
32 x 32 matrices A and B and adding the result to a matrix C. Comments that contain
matrix accesses with two sets of brackets use the following naming convention. The first pair
of brackets denotes the absolute coordinates of the top left element of a matrix block. This
is used as a starting point to process the block. The second set of brackets indicates the
coordinates of an element relative to the first element of a block. Registers p0 — p7 represent
the SVE predicates. The position of the vector registers used for FMLA instructions have the
following meaning: the first register acts as the addend as well as the result vector, whereas
the other two vector registers are multiplied and added to the result register.

The excerpt shows that register blocking aims to reuse data loaded into registers as much
as possible. While registers z16 to z31 were filled with values from C earlier in the file,
we can see that the registers used to hold values from A are reused 8 times in this block
micro-kernel, while vectors containing elements from B are reused 2 times. Although not
shown to keep the example short, vectors storing the results are reused several times in
different “block gemm microkernels” before they are stored back into main memory. This
technique helps us avoid redundant data accesses, therefore allowing faster processing of
matrix elements.

4.2 Key Differences of SVE Generator

Although both the NEON and SVE ISA are part of the Arm family of RISC architectures,
rewriting the NEON-based generator such that it returns SVE instructions is not a trivial
task. Since we cannot perform a one-to-one mapping from NEON instructions to SVE
instructions, we first had to examine in more detail how the NEON generator approaches
creating the inline assembly. Then, we were able to select the relevant SVE instructions and
rewrite parts of the generator where necessary in order to have it return correct SVE inline
assembly. In this subsection, we will discuss the key aspects in which the SVE generator
differs from its NEON counterpart, how we implemented necessary changes, and how we
solved problems that occurred.

Vector register and block size

One of the major changes that SVE brings is the vector register size. While SVE al-
lows processors to implement the ISA for a vector length between 128 and 2048 bits, the
A64FX comes with a maximum vector size of 512 bits. Compared to the 128 bit NEON vector
registers, we can store four times more elements in a single vector. Naturally, this means that
a SVE register can now hold up to 8 double precision and 16 single precision elements, while
NEON registers can only store 2 double and 4 single precision values. The change in vector
length also affects the largest possible blocks we can use to process matrices. These blocks
are defined by the block size parameters bm and bn, which denote the dimensions of the
bm x bn submatrices of C. These parameters also determine how many elements of a column
and row of A and B, respectively, we need to process. The block size, with bm * bn being as
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large as possible, is determined with respect to the following inequality with v_size being the
maximum number of elements a vector can hold: (bn + bk) x (bm/v_size) + bn + 2 <= 32.
Since SVE provides 32 registers, the left hand side of the equation must not exceed 32.
Otherwise, some registers would need to be loaded multiple times during one “block gemm
microkernel” as seen in section 4.1, defeating the purpose of register blocking.

Predicate registers

As discussed in section 2.3, the predicates introduced by SVE enable us to take a VLA
approach to rewriting the generator. We realised that we can avoid using “predicate counted
loop” instructions like whilelo, which are usually needed to dynamically determine how
many vector elements a predicated instruction is supposed to use. Instead, we statically
initialized all predicate registers pO to p7 using the following naming convention: the register
pk would have its first k + 1 elements set to true. The remaining elements are set to false.
Let k € {0,...,7}. The instruction ptrue pk.d, VL(k+1) initializes a predicate register
according to the introduced naming convention. This way, we can omit using whilelo every
time we start processing a block.

In the end, we decided to implement a different naming convention after realising that the
block size used to generate a file does not change. Therefore, we only need to initialize
either one or two predicate registers as follows. The first predicate we need is the “all-true”
predicate. This predicate is always needed in our implementation as it is used to load an
element of B and broadcasting it into all elements of a vector. If bm is at least 8, we use
the all-true predicate to load a whole vector with elements of A or C where necessary, as
seen in the code excerpt 4.1.4. The second predicate register we may need is the ”overhead”
predicate. Let k& = bm mod v_size. Then, if k # 0, the overhead predicate will have its first
k elements set to true. The all-true and overhead predicates are always initialized as p7 and
pO respectively, using ptrue p7.d, ALL and ptrue pO.d, #k.

The new naming convention allows us to extend the generator to single precision more easily.
The old naming convention would make it necessary to use all 16 predicate registers. However,
arithmetic SVE instructions only allow p0O to p7 to be used as valid predicates. Therefore,
we would have been forced to include “predicate counted loop” instructions in the case
of single precision multiplications, which is why we decided to use the new naming convention.

Broadcasting scalar values

Unlike the NEON ISA, the FMLA instruction provided by SVE does not allow for the multi-
plication of a vector and a scalar value [1]. This means that we need to broadcast the scalar
elements loaded from the matrix B into vector registers before we can multiply them with a
vector of A using FMLA. Although there are instructions we could use to explicitly broadcast
a scalar value into a vector, this would entail executing one broadcasting instruction for every
scalar loaded from B. Alternatively, we decided to use the 1dird instructions. This instruc-
tion loads an element from memory and simultaneously broadcasts it into a vector register.
This means that we need to execute one less instruction every time we process an element of B.
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Loads and stores

The logic behind computing the immediate offsets used to load and store values from
memory is similar to the NEON generator. One difference is that SVE does not offer ”store
pair” or ”load pair” (stp/ldp) instructions. Nevertheless, we do not need an alternative to
these instructions, because the A64FX allows us to load/store up to 8 double precision values
at once, whereas ldp/stp can only load/store 4 double precision values. In the case of sin-
gle precision, SVE can load/store 16 elements, whereas NEON can only load/store 8 elements.

Another key difference between SVE and NEON memory accesses is the way immedi-
ate offsets are used. The instructions ld1d/st1d load/store consecutive elements according to
the true/false values stored in the utilized predicate. Instead of passing the immediate offsets
directly to the memory access instructions, we need to divide the offset by the number of
bytes that a vector register takes up in the main memory. For the A64FX, a vector is 64 bytes
long. If we define k = offset/64, we can execute loads using 1d1d zn.d, pm/z, [xj, k,
MUL VL] with MUL VL indicating that k is multiplied by the vector length in bytes before
being added to the adress stored in the general purpose register xj. The only restriction
for k is k € {—8,...,7}. If this is not the case, we need to explicitly increment xj before
we can access the main memory. The same restrictions apply to the store instruction st1d [1].

4.3 Compiler Related Errors

While testing the SVE-based generator, we came across a problem that seems to be related
to specific versions of the gcc compiler. When using gec 8.4.1, which represents the default
on the BEAST cluster, the test suite we provide is executed without errors. However, using
newer versions of gcc breaks a few test cases. In particular, we discovered that using gcc
10.2.1 and gcc 11.0.0 leads to a segmentation fault which did not occur when using gcc
8.4.1. We can use gdb to see where the segmentation fault occurs. Some of the information
provided in the tables below is highlighted to increase readability.

Program received signal SIGSEGV, Segmentation fault.

gemm ref (C=0x4dc400, B=0x4c6840, A=0x4c35c0, BETA=0.20000000000000001, ALPHA=0, LDC
=32, LDB=2576980378, LDA=32, K=50, N=80, M=32) at testsuite.cpp:73

73 Clrow + col*LDC] += ALPHA * A[row + s*LDA] * B[s + col*LDB];

Listing 4.3.1: Segmentation fault as reported by gdb

As seen in listing 4.3.1, the segmentation fault occurs when we try to calculate C' = C + AB.
Using backtracking, i.e. the “bt” command provided by gdb, we receive more details about
which functions were called before the error occurred.
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#0 gemm.ref (C=0x4dc400, B=0x4c6840, A=0x4c35c0, BETA=0.20000000000000001, ALPHA=0,
LDC=32, LDB=2576980378, LDA=32, K=50, N=80, M=32) at testsuite.cpp:73

#1 post (M=M@entry=32, N=N@entry=80, K=KQ@entry=50, LDA=LDAQ@entry=32, LDB=2576980378,
LDB@entry=50, LDC=LDC@entry=32, ALPHA=ALPHAQentry=0, BETA=BETAQentry
=0.20000000000000001, A=AQentry=0x4c35c0, B=BQ@entry=0x4c6840, C=CQ@entry=0x4e1440,
Cref=Cref@entry=0x4dc400, DELTA=DELTA@entry=9.9999999999999995e-08) at testsuite
.cpp:156

#2 0x0000000000403ad8 in main () at testsuite.cpp:357

Listing 4.3.2: Further information using gdb backtracking

In listing 4.3.2, three functions are called before the segmentation fault occurs. From
the bottom up, the first one is main() which is responsible for executing the test cases. The
post () function is used to compare our generated result with a reference result. Finally,
gemm_ref () calculates the reference result used in post(). The information provided by
gdb tells us that upon entering post(), the parameter LDB was passed with a value of 50
(LDB@entry=50). The error occurs after the call to our generated inline assembly function
and the call to the calculation of the reference solution for the same test case. Between these
two calls, the value of the parameter LDB is altered, leading to faulty memory accesses when
calculating the reference solution. Although the issue seems obvious, we can not explain
why the value changed. We can see in listing 4.3.3 that between entering post() and calling
gemm _ref(), the value of LDB is only adjusted if LDB is 0. However, the value LDB should
be changed to is not the same as the value that is passed when calling gemm ref(), as seen
in listing 4.3.2.

int post(unsigned M, unsigned N, unsigned K, unsigned LDA, unsigned LDB, unsigned
LDC, double ALPHA, double BETA, double*x A, double* B, doublex C, double* Cref,
double DELTA) {
if (LDB == 0) {
LDB = K;

gemm_ref (M, N, K, LDA, LDB, LDC, ALPHA, BETA, A, B, Cref);

for(int 1 = 0; i < M; i++) {
for(int j = 0; j < N; j++) {
//test if the difference between the result C and reference Cref
exceeds a threshold DELTA
if(std::abs(C[i + j * LDC] - Cref[i + j * LDC]) > DELTA)
return O;
return 1;

}

Listing 4.3.3: post() function used to calculate the reference and compare with our solution

LDB represents the leading dimension of the input matrix B and is necessary to correctly
access a matrix that was transformed from a two-dimensional matrix into a one-dimensional
matrix. For a m x n matrix, the leading dimension ldb must be at least as large as n,
therefore Idb > n must evaluate to true. When converting a two-dimensional matrix B
into a one-dimensional array b, n elements of a row of B are consecutively stored into (db
elements of the new array b. This means that the m x n matrix is converted into an array
of size m x ldb. The new array b can contain more values than B if ldb > n. However, these
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cells are not addressed when accessing elements of b, because accessing element B[i] [j]
is equivalent to accessing b[1*LDB + j]. Placeholder values stored in the transformed matrix

1db 1db 1db
b= [Bl,lw--7Bl,n7*,--'7*,B2,1;~-7B2,n,*,--',*,‘--7Bm,1,---;Bm,m*,---,*]
ldb*m

are denoted by a ’*’ when Idb > n.

When using gce versions higher than 8.4.1, including an optimization level higher than -01
led to the aforementioned problem of the parameter LDB being altered. Using -01 or lower
in the makefile resulted in the testsuite being executed without any parameters changing
their values. We managed to further narrow down the source of our problem and found that
the compiler flags ~-fschedule-insns and -fschedule-insns2 are likely to be the root
cause. Compiling the tests using the optimization level -02 while explicitly deactivating
the two flags, i.e. including -fno-schedule-insns and -fno-schedule-insns2, the issue
disappeared and the tests were executed without errors. Another way to fix this problem is to
include the extended asm qualifier __inline__ in our generated inline assembly as described
in [18]. By adding this qualifier, the error disappears without us having to explicitly disable
the aforementioned compiler flags.

Unfortunately, we cannot be certain where the error lies. We ultimately decided to include
the __inline__ qualifier at the start of our generated inline assembly, as we find this solution
easier and more compact compared to disabling certain compiler flags.
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5 Results

In this chapter, we will discuss our measured results and evaluate whether extending PSpaMM
to generate SVE inline assembly was successful. For this, we measured the executed floating
point operations per seconds (flop/s) for both SVE and NEON generators. Aditionally,
we benchmarked matrix multiplication functions generated by LIBXSMM [11], a library that
specializes in, among other things, dense matrix operations. The matrices used for the
benchmarks are dense and sparse square matrices. During this chapter, we refer to the
NEON version and the SVE version of PSpaMM as the “NEON generator” and “SVE
generator”, respectively. The LIBXSMM release we used for the performance measurements
is version 1.16.3. The benchmarks containing the different kernels are compiled using gcc
11.0.0 and the following optimization flags:

// NEON

-std=c++17 -0fast -march=armv8.2-a -mcpu=a64fx

// SVE and LIBXSMM

-std=c++17 -0Ofast -march=armv8.2-a+sve -mcpu=a64fx -msve-vector-bits=512

Listing 5.0.1: Compiler flags used for benchmarks

5.1 Simple Benchmarks With PAPI

In order to accurately test the performances of the aforementioned GEMM generators, we
decided to use the “Performance Application Programming Interface”, commonly referred
to as PAPI, for our benchmarks. A guide on how to properly set up the application can be
found in [30]. PAPI provides a simple interface that helps us read performance counters for
a range of hardware systems. Additionally, PAPI enables us to specify code regions that we
want to monitor instead of having to measure the performance of an entire program.
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1| Available PAPI preset and user defined events plus hardware information.

11 Name Code Avail Deriv Description (Note)
12| PAPI_L1_DCM 0x80000000 Yes No Level 1 data cache misses
13| PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses

15| output shortened to increase readability

17| PAPI_FP_OPS 0x80000066 Yes Yes Floating point operations

18| PAPI_SP_OPS 0x80000067 Yes Yes Floating point operations; optimized to count
scaled single precision vector operations

19| PAPI_DP_OPS 0x80000068 Yes Yes Floating point operations; optimized to count
scaled double precision vector operations

20| PAPI_VEC_SP 0x80000069 No No Single precision vector/SIMD instructions
21| PAPI_VEC_DP 0x8000006a No No Double precision vector/SIMD instructions
22| PAPI_REF_CYC 0x8000006b No No Reference clock cycles

24/ 0f 108 possible events, 36 are available, of which 16 are derived.

Listing 5.1.1: Information received by calling papi_avail

PAPI provides numerous preset events, a set of processor events that are commonly
used to fine-tune the performance of an application. We receive information about the
current hardware and the performance counters that PAPI can process by executing
./papi/src/install/bin/papi_avail. Although not all counters are available for the
A64FX, we can still use PAPI to count the number of executed floating point operations, as
seen in listing 5.1.1.

The benchmarks are generated using a python script that returns a c++ wrapper pro-
gram which is responsible for setting up the matrices, as well as initializing PAPI and
executing the functions we want to monitor. Listing 5.1.2 shows how we measure the
performance of a single matrix multiplication.
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#include <papi.h>
/* multiple function and variable declarations declarations */

// initialize the PAPI library

int retval = PAPI_library_init (PAPI_VER_CURRENT);

if (retval!=PAPI_VER_CURRENT) { // handle error }

// setup matrix pointers

/* zero the accumulators x*/

acc_real_time = 0.0; acc_proc_time = 0.0; acc_mflops = 0.0; acc_flpops = O0;

/* execute our generated GEMM function <repetitions> times */

for (int i = 0; i < repetitions; ++i) {
// copy pointers for benchmarking purposes
/* start measuring flops counter here */
if ( (retval = PAPI_flops_rate(PAPI_FP_OPS, &real_time, &proc_time, &flpops, &
mflops)) < PAPI_O0K ) { // handle error I}
// execute our generated functions
/* stop measuring flops counter here */
if ( (retval = PAPI_flops_rate(PAPI_FP_OPS, &real_time, &proc_time, &flpops, &
mflops)) < PAPI_O0K ) { // handle error }
/* accumulate measurements x/
acc_real_time += real_time; acc_proc_time += proc_time; acc_mflops += mflops;
acc_flpops += flpops;
// free copied pointers

}

// compare result of generated function with a reference result

// free remaining pointers and write measurements averaged for repetitions into a
.csv file

Listing 5.1.2: Benchmarking of a single generated matrix multiplication

First, we need to initialize the PAPI library using PAPI library_init() before calling
any other functions provided by PAPI. The initialization also tests if the installed PAPI
version is up to date. To monitor the performance of our code, we would normally use
low-level events that count for example the accesses to different cache levels. Since we
only want to measure the flop/s performed by the A64FX, we can make use of a high-level
function that simplifies the process of reading the “floating point operations” counter, namely
PAPI flops_rate(). This function can be used to measure the amount of executed double
or single precision floating point operations, as well as all types of floating point operations.
Before entering the repetition loop, we introduce different accumulator variables to store
intermediate results. The repetition loop executes our generated function multiple times.
This helps us reduce measurement errors that could occur if we were to execute our generated
function only once. We surround our function with two separate calls to PAPI_flops_rate()
to measure the executed flops within this code region. Afterwards, we add the measurements
onto accumulators, because calling PAPI flops_rate() in the next loop iteration resets the
measurement variables. After exiting the loop, we clean up the pointers, compare the result
of our function to a reference result, and write the measurements done by PAPT into a csv file.

The aforementioned benchmarks were performed on the A64FX provided by the BEAST
cluster. The matrices used for dense-by-dense measurements are filled with randomized
values between 0.00001 and 1000 [34]. For dense-by-sparse multiplications, we pass a mtx
file that contains information about the sparse matrix. If the file does not exist, we generate
one which we can use to make sure that redundant executions of the same benchmarks
yield the same results. As a result, the sparsity patterns are created at random. We take
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the average of the measured results by dividing them by the parameter repetitions. To
measure the highest possible performance, the input matrices A and B are kept in the cache
for the duration of the repetition loop.

5.2 Benchmarking Results

While testing the performance of the SVE-based generator, we came across an additional
restriction caused by the fixed size of ARM instructions. If the size of the generated files
exceeds a certain threshold, we receive the following error message when trying to compile
the benchmarks: /tmp/ccGOHLkk.s: 1260609: Error: conditional branch out of
range. This error occurs when we try to branch to a label that is too far away from the
current position of the program counter. According to the Arm documentation [2], the range
of a conditional branch instruction is restricted to +1 MB. Since all Arm instructions have a
fixed size of 4 bytes, we may run into this problem when generating matrix multiplications
for large matrices. Due to loop unrolling, the generated file size can be rather large. If the
loop cannot be fully unrolled, the branch instruction at the end of the function has to be
executed. This branch would move the program counter to a label at the top of the function,
which then might exceed the maximum allowed offset. Nevertheless, we have encountered
this problem only using square matrices with dimensions m, k,n > 176. Matrices used in
PSpaMM usually do not exceed m, k,n <= 100, which is why we do not think that this
issue is relevant in practice. Nevertheless, choosing block sizes that are smaller than the
ones returned by max_arm_sve.py may very well solve this problem, because we noticed
during testing that smaller block sizes typically lead to shorter files.

While benchmarking generated functions containing SVE instructions, we noticed that
the total number of executed flops often did not match our expectations. To be more precise,
if the dimensions of the matrices used during a benchmark were not a multiple of 8, i.e.
the SVE vector length for the A64FX, PAPI would report an excess of flops. For example,
when we generate a function for matrices with m = k = n = 2, we know that the processor
executes 16 arithmetic instructions as discussed in section 3.1.1. However, PAPI reports
that 64 flops were executed. This “overcounting” is caused by the fact that the performance
counter is incremented without taking the number of active elements in the vector registers
into account. Instead, the counter is incremented under the assumption that the whole
vector register is active. This means that for every FMLA instruction, the flop counter is
incremented by 16. To obtain results that are not affected by this overcounting, we decided
to increase the sizes of the matrices used in the SVE benchmarks in steps of 8. Matrix sizes
in NEON benchmarks, however, are incremented in steps of 2, because the NEON related
measurements were not affected by this.

First, we measured the A64FX’s performance using PSpaMM’s NEON-based generator
with matrix dimensions increasing in steps of 2 to set a baseline for later performance
comparisons. Figure 5.2.1 shows that for dimensions between 2 and 64, the performance
scales well to a peak of about 120 GFLOP/s. Afterwards, the measured performance starts
oscillating between 110 and 130 GFLOP/s up until matrix dimensions of 96. From this
point on, the performance becomes even more volatile. The measurements then vary in a
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Figure 5.2.1: Scaled performance of PSpaMM’s NEON generator on A64FX

range of 80 and 130 GFLOP/s. In the worst case, we observe a performance loss of about
39% between two tests. The peak performance of the NEON generator is approximately
130 GFLOP/s and was measured for a matrix dimension of 96. Similar results were ob-
tained during an earlier thesis about matrix multiplication kernels on Arm architectures [37].

Figure 5.2.2 shows the results of PSpaMM'’s performance using SVE-based multiplica-
tion kernels. This time, we tested the performance of our new SVE generator using matrices
with increasing dimensions in steps of 8. The results scale well for matrix dimensions
between 8 and 104, with an outlier at 80. For larger matrix sizes, the performance starts
to vary heavily between 2 tests, ranging between 600 and 800 GFLOP/s. We observed
the most significant performance loss to be about 25% moving from dimensions=136 to
dimensions=144. We measured the peak performance of our SVE generator to be approxi-
mately 800 GFLOP /s for test cases where the matrix dimensions were set to 104, 120, or
136.

In order to determine how well our SVE extension for PSpaMM holds up compared to
other more specialized math libraries, we additionally benchmarked DGEMM functions
generated by LIBXSMM. Although the library primarily targets Intel architectures [11],
we confirmed that the library was also able to generate multiplication kernels using Arm
SVE. This was done by executing objdump on a binary-dump of the generated kernels, as
described in [11]. We included an excerpt of the assembly provided in the object dump
in listing 5.2.1. Additionally, we tested whether the computations performed in the gener-
ated kernels were correct. We found that for the test cases used in our benchmarks, the results
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Figure 5.2.2: Scaled performance of PSpaMM’s SVE generator on A64FX

Generator . ”— .,
. - * ~,
—8— LIBXSMM e '"”’\ /‘ \ / s e
'S [ ]

800 Vi

GFLOP/s
&
[=]

100 /

8 24 40 56 72 88 104 120 136 152 168
Dimensions

Figure 5.2.3: Scaled performance of LIBXSMM on A64FX
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calculated by LIBXSMM kernels were correct for all dimensions, except for the very last
test where dimension=176. Nevertheless, we decided to keep the results of measuring
LIBXSMM kernels to provide an additional application to compare our SVE generator to.

command: objdump -D -b binary -m aarch64 -M reg-names-atpcs <filename>.mxm

cc: 85804001 ldr z1, [x0]

do: 91010000 add x0, x0, #0x40

d4: 85c0e020 ldird {z0.d4}, p0/z, [x1]

ds8: 91010021 add x1, x1, #0x40

dc: 65e00038 fmla z24.d, p0/m, zl1.d, z0.d
e0: 85c0e020 ldird {z0.d4}, p0/z, [x1]

e4d: 91010021 add x1, x1, #0x40

e8: 65e00039 fmla z25.d, p0/m, zl.d, z0.d
ec: 85c0e020 1dird {z0.d}, p0/z, [x1]

fO: 91010021 add x1, x1, #0x40

£4: 65e0003a fmla z26.d, p0/m, z1.d, z0.d
£8: 85c0e020 ldird {z0.d4}, p0/z, [x1]

fc: 91010021 add x1, x1, #0x40

100: 65e0003b fmla z27.d, p0/m, z1.d, z0.d

Listing 5.2.1: Excerpt of SVE assembly generated by LIBXSMM

Figure 5.2.3 shows that the performance of the LIBXSMM kernels develop similarly to our
SVE generator. The performance scales well with the matrix size increasing from 8 to 88.
For larger matrix dimension, the measured performance starts to vary between 800 and 900
GFLOP/s, representing performance differences of up to 11% between matrix sizes. Finally,
the variation in performance stabilizes by a small amount starting at matrix sizes of 136.
For matrices of this size, the performances vary between 840 and 900 GFLOP/s.

5.3 Interpretation

To compare the results more easily, we have combined the measurements of each generator
in figure 5.3.1. The first thing we notice is that the NEON based functions can hold up
performance-wise for matrix sizes up to 16 x 16. For matrices with dimensions of 24 or
larger, both the SVE generator and LIBXSMM outperform the NEON version by a large
margin. When comparing NEON’s peak performance, LIBXSMM and our SVE genera-
tor both outperform it by a factor of roughly 7 and 6.3, respectively. We expected both
generators to be faster than the NEON version, especially for larger matrix sizes, simply
because the A64FX implements SVE for a vector length of 512 bits, i.e. 4 times the vector
length of NEON registers. The results are still surprising since a performance boost this
large implies that the vector size is not the only reason. We can assume that the abil-
ity to process matrices in larger blocks also boosts the performance, as discussed in section 4.1.

For matrices larger than 64 x 64, we observe that the NEON generator reaches a per-
formance ceiling. The main reason for the plateauing performance is that the matrices used
for the benchmarks do not completely fit into the L1 cache for dimensions larger than 64.
Since the parameter § is set to 0 for all benchmarks, the DGEMM equation is simplified to
Cout = ax AB + B x Cy, = aAB. We never load values of C from memory into registers,
meaning that only A and B have to fit into the L1 cache. The L1d cache has a size of 64
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Figure 5.3.1: Combined results of NEON, SVE, and LIBXSMM

KiB/core and is able to hold a total of 8192 double precision values. Therefore, we can fill
the L1 cache with two 64 x 64 matrices. Larger matrices have to be partially stored in the
L2 cache first. Another factor that might lead to the observed performance ceiling may be
the size of the L1 instruction cache. We assume that the generated instructions do not fit
into the L1i cache anymore and have to be partially stored in the L2 cache. The L1i cache
of the A64FX is 64 KiB large per core, whereas Arm instructions are 4 byte long. Therefore,
we can fit 2'4 instructions into the instruction cache. However, the Arm documentation
specifies that the last 2 bits of all Arm instructions have to be 0, which could entail that
the L1i cache can fit 2'6 instructions. The specification also notes that sometimes the least
significant bit (LSB) is used to distinguish Arm and Thumb instructions, which would mean
that we can only fit 2'° instructions into the L1i cache. In the end, we cannot say with cer-
tainty whether the size of the instruction cache impacts the performance of the NEON kernels.

The performances for the SVE generator and LIBXSMM show a similar pattern for small
matrix sizes. For dimensions up to 64 x 64, we observe a steady increase in performance.
For larger matrices, the data does not fit into the L1 cache anymore, resulting in a lower
performance increase for larger problem sizes. The measurements for the SVE generator
seem to be an exception to the steady increase in performance for matrix sizes up to 64 x 64.
For this particular problem size, the relative performance gain compared to the preceding
problem size is lower than expected, although the data should still fit into the L1 cache. We

35



5 Results

assume that this is caused by a sub-optimal choice in block size for our SVE generator.

Both the LIBXSMM kernels and our SVE generator hit a performance ceiling for large
matrices starting at 104 x 104. Interestingly, the SVE generator achieves the same perfor-
mance as the LIBXSMM kernel for 104 x 104 matrices. The SVE generator and LIBXSMM
kernels achieve a peak performance of 813 GFLOP /s and 894 GFLOP /s, respectively, for
problem sizes of 120 x 120 and 136 x 136. For large matrices in general, we can observe
that both sets of benchmarks exhibit a similar performance pattern starting at matrices of
size 120 x 120. In the case of our PSpaMM kernels, we noticed during testing that for some
matrix dimensions, the parameter bm of the block size chosen by PSpaMM (see section 4.2)
was significantly smaller than for the previous test case. Therefore, we can assume that the
drastic performance losses for larger matrices are caused by a sub-optimal choice of block
size. The same is presumably true for the drops in performance seen in the LIBXSMM
kernels. Unfortunately, we cannot see which block sizes are chosen for LIBXSMM kernels,
meaning that we can only make assumptions as to why these drops occur. One possible
explanation for the different performances may be that LIBXSMM chooses more appropriate
block sizes for its computation kernels than PSpaMM.

Another possible reason might be that SVE instructions are ordered differently when
using our generator compared to LIBXSMM kernels. We noticed that the instructions in
the case of LIBXSMM are ordered such that a load instruction is immediately followed by
an add/fmla instruction (see listing 5.2.1). In the case of PSpaMM, we generate a block of
mutliple load/store instructions before generating a block of arithmetic instructions (listing
4.1.4). Due to a lower amount of out-of-order resources provided by the A64FX [28], the
ordering of instructions may impact the performance of our kernels.

We want to note that the benchmarks include matrices with dimensions that exceed the
sizes of matrices for which PSpaMM is used in practice. For real applications, matrices
usually do not exceed sizes of 100 x 100. Although Fujitsu claims that the peak performance
of the A64FX is 2.76 TFLOP /s for DGEMM [15], prior work related to PSpaMM measured
the peak performance of the processor that we access on the BEAST cluster to be at 1.7
TFLOP/s [37]. We will compare our results to both the theoretical and the measured peak,
because theoretical peaks are only, if ever, achieved under ideal conditions. The NEON
generator achieves 4.7% of the theoretical and 7.6% of the measured peak performance. The
LIBXSMM kernels reach 32.6% and 52.9%, whereas our SVE generator achieves 29.4% and
47.7% of the theoretical and measured peaks, respectively.

Finally, we executed a set of benchmarks using sparse matrices that are only filled by
5%. These sparse matrices are created using their corresponding mtx files. If the file does
not exist, we generate a new one with randomized indices and values. These mtx files are
used during benchmarking, thus we can expect the same performance each time we perform
benchmarks of our sparse PSpaMM kernels. Using sparse matrices will always result in lower
performance compared to benchmarking with dense matrices. Nevertheless, performing
dense-by-sparse multiplications is the main use case of PSpaMM, making the results shown
in figure 5.3.2 interesting as well. Similar to the dense case, the NEON-based kernels can
keep up with the performance of the SVE version for matrices with dimensions up to 40 x 40.
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Figure 5.3.2: Performance measurements of sparse kernels for NEON and SVE

When using larger matrices, the SVE kernels outperform their NEON counterparts. Similar
to the dense case with 80 x 80 matrices, the sparse multiplication kernels show an unexpected
rise in performance compared to the previous test case, but this time for 104 x 104 matrices.
Examining the peak performances, we can observe that the NEON kernels peak at around
80 GFLOP/s, whereas the SVE kernels peak at 310 GFLOP /s, which is 3.8 times larger.

37



6 Conclusion

In this section, we provide inspiration for future related work as to how PSpaMM may be
improved further and summarize our results. We discussed hardware-related specifications
of the A64FX and highlighted key differences between Arm’s NEON and SVE. Additionally,
we established fundamental matrix multiplication approaches and different storage formats.
Afterwards, we discussed different loop optimization techniques and how to implement them,
as well as layed out the key differences between PSpaMM’s NEON generator and the newly
added SVE generator.

Our results show that extending PSpaMM to generate SVE inline assembly leads to dense
multiplication kernels that perform at least as well as its NEON counterpart for small matrix
dimensions. For larger problem sizes, we showed that the SVE kernels are executed several
times faster than NEON kernels. In addition to this, we demonstrated that PSpaMM’s
performance can compete with matrix multiplication kernels generated by the Intel library
LIBXSMM for matrix dimensions up to 56 x 56. Although LIBXSMM kernels performed
better for larger input sizes, PSpaMM’s peak performance was only 9.1% lower than the
peak achieved by LIBXSMM. Both kernel generators exhibited similar patterns of perfor-
mance drops, presumably caused by a sub-optimal choice in block size as well as a lack of
“out-of-order” resources. Finally, we measured PSpaMM’s SVE kernel performance in the
case of dense-by-sparse multiplications to be faster by up to 3.8 times compared to sparse
NEON kernels generated by PSpaMM.

Promising ideas for future research include improving the algorithm used to choose a
block size suitable for a given set of matrices. Currently, block sizes are chosen simply
by searching for the largest block size that can be processed using the maximum number
of available vector registers. Future work can try to implement a block size algorithm
akin to more sophisticated ones used by GEMM generators like LIBXSMM. This may
reduce the drops in performance we can observe for SVE-based kernels using larger matrices.
Other approaches include reordering the way instructions are generated when processing
a block. We did not test whether reordering the SVE instructions significantly affects a
kernel’s performance, therefore future research may try this approach to potentially stabilize
PSpaMM’s performance for larger problem sizes.

We can expect that future processors implement SVE with a vector size of more than
512 bits. In this case, researchers will need to investigate the performance gains when
utilizing larger vectors, as well as potentially determining suitable vector lengths for different
sets of problem sizes. Although larger vectors generally entail that we can process more
elements at once, simply choosing the largest vector length available might not lead to
better performances for every problem size. PSpaMM can be used for this, because the SVE
generator is written in a way that it allows changing the internally used vector length to
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6 Conclusion

generate inline assembly for larger vectors. Finally, the SVE generator can be extended to
allow the processing of single precision values. Although we have extended PSpaMM in a
way that should allow switching between generating inline assembly for double and single
precision values, we did not manage to confirm that the single precision version is working
as intended.
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