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Abstract

The amount of generated video data grows at ever-increasing rates dominating the
majority of internet traffic. Therefore, the ability to automatically analyze video data
effectively and efficiently is of great importance for numerous applications. The main
goal of this thesis is to automatically capture visual and audio information from videos
by using deep learning algorithms and keeping efficiency as a primary concern.
Specifically, this thesis focuses on the high-level task of human activity recognition
spanning the tasks of action recognition, hand gesture recognition, spatiotemporal
action localization and audio-visual active speaker detection. Following the historical
evolution of human activity recognition research, the contributions in this thesis are
presented in three chapters.

Firstly, we present video analysis with frame-level features. We initially compare
different spatiotemporal modeling techniques operating on frame-level features extracted
by 2D CNNs. Next, in order to incorporate motion information to frame-level features,
we present a data level fusion strategy, Motion Fused Frames, and demonstrate its
advantages on hand gesture recognition task.

Secondly, we present video analysis with clip-level features. We initially propose a
unified CNN architecture, You Only Watch Once (YOWO), benefiting clip-level features
extracted by 3D CNNs for real-time spatiotemporal action localization task. However,
3D CNNs contain significantly more parameters and computational complexity compared
to 2D CNNs. To address this drawback, we present families of resource efficient 3D
CNN architectures for efficient video processing. Afterwards, for video-based Human
Computer Interaction (HCI) applications that remain idle most of the time, we present
a two-level hierarchical architecture, where a lightweight detector activates a heavyweight
classifier only when it detects a hand gesture. Such an approach provides considerable
savings on power and memory budget. Lastly, we address the challenges of operating 3D
CNN architectures on video streaming applications without redundant computations by
proposing Dissected 3D CNN architecture.

Thirdly, we present video analysis with audio-visual features. Audio and visual
modalities contain complementary information for various video analysis applications.
We focus on the audio-visual active speaker detection task and introduce several
practical guidelines that result in the three-stage ASDNet architecture.

The content in this thesis covers the last decade of human activity recognition research
that intensely benefited from the progress of deep learning algorithms, specifically CNNs.
In order to enable further research on the field, we also publicly release three new datasets
on gesture and action recognition.
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Zusammenfassung

Die Menge an generierten Videodaten wächst mit höheren Raten und dominiert den
Großteil des Internetverkehrs. Daher ist es für viele Anwendungen sehr wichtig,
Videodaten effektiv und effizient automatisch zu analysieren. Das Hauptziel dieser
Arbeit ist die automatische Erfassung visueller und akustischer Informationen aus
Videos, mithilfe möglichst effizienter Deep-Learning-Algorithmen. Insbesondere
konzentriert sich diese Arbeit auf die übergeordnete Aufgabe der menschlichen
Aktivitätserkennung, welche Aktionserkennung, Handgestenerkennung, raumzeitliche
Aktionslokalisierung und audiovisuelle Aktivsprechererkennung umfasst. Nach der
historischen Entwicklung der Forschung zur Erkennung menschlicher Aktivitäten
werden die Beiträge dieser Arbeit in drei Kapiteln präsentiert.

Zuerst stellen wir die Videoanalyse mit Frame-Level-Features vor. Wir vergleichen
zunächst verschiedene raumzeitliche Modellierungstechniken, die auf
Frame-Level-Fea-tures arbeiten, die mithilfe von 2D-CNNs extrahiert wurden. Um
Bewegungsinformationen in Frame-Level-Features zu integrieren, präsentie-ren wir als
Nächstes eine Fusionsstrategie auf Datenebene, Motion Fused Frames, und
demonstrieren deren Vorteile bei der Handgestenerkennung.

Zweitens präsentieren wir die Videoanalyse mit Clip-Level-Features. Wir schlagen
zunächst eine vereinheitlichte CNN-Architektur vor, You Only Watch Once (YOWO),
die von 3D-CNNs extrahierte Clip-Level-Features für raumzeitliche
Aktionslokalisierung in Echtzeit nutzt. 3D-CNNs enthalten jedoch im Vergleich zu
2D-CNNs deutlich mehr Parameter und Rechenkomplexität. Um diesen Nachteil zu
beheben, präsentieren wir Familien von ressourceneffizienten 3D-CNN-Architekturen
für eine effiziente Videoverarbeitung. Anschließend präsentieren wir für videobasierte
Human Computer Interaction (HCI)-Anwen-dungen, die die meiste Zeit im Leerlauf
bleiben, eine zweistufige hierarchische Architektur, bei der ein schlanker Detektor einen
aufwendigen Klassifikator nur dann aktiviert, wenn er eine Handbewegung erkennt.
Ein solcher Ansatz bietet beträchtliche Einsparungen bei Energie und Speicherbudget.
Zuletzt stellen wir die Dissected 3D-CNN-Architektur vor, die noch effizienter ist,
indem sie die beim Betrieb von 3D-CNN-Architekturen in
Video-Streaming-Anwendungen redundanten Berechnungen vermeiden.

Drittens präsentieren wir Videoanalysen mit audiovisuellen Features. Akustische und
visuelle Modalitäten enthalten sich gegenseitig ergänzende Informationen für
verschiedene Videoanalyseanwendungen. Wir konzentrieren uns auf die Aufgabe der
audiovisuellen aktiven Sprechererkennung und stellen mehrere praktische Richtlinien
vor, die zur dreistufigen ASDNet-Architektur führen.

Diese Dissertation umfasst das letzte Jahrzehnt der Forschung zur Erkennung
menschlicher Aktivitäten, welche stark vom Fortschritt des maschinellen Lernens,
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insbesondere von CNNs in tiefen neuralen Netzen, profitiert hat. Um weitere
Forschungen auf diesem Gebiet zu ermöglichen, veröffentlichen wir außerdem drei neue
Datensätze zur Gesten- und Aktionserkennung.
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Chapter 1

Introduction

As the saying goes, a picture is worth a thousand words. By nature, humans are visual
creatures. Since the beginning of time, people have communicated with cave carvings to
tell stories and record history, pictograms to transmit ideas, paintings to express feelings.
How about videos? Considering the fact that a one-minute video contains more than a
thousand pictures, a video can convey a massive amount of information.

Research on computer vision has been critical considering the increasingly growing
amount of visual data. Video data specifically is being generated at ever-increasing rates
dominating the internet traffic. Cisco predicts that internet video traffic will constitute
82% of all internet traffic (both consumer and business) by 2022, up from 75% in 2017 1.
It is also predicted that close to 1 million minutes of video will traverse the internet
at each second for various applications such as gaming, surveillance, Virtual Reality
(VR), Augmented Reality (AR), Video-on-Demand (VoD), etc. The majority of created
video content is centered around humans. Human-centric video perception is all about
analyzing video content and understanding all possible human-related information within
it, such as estimating human pose, estimating 3D body shape, recognizing a hand gesture,
localization of an action, re-identification of a person from walking style, recognizing a
face, etc.

With the vast amount of video data available, there is a continual need for powerful
video perception algorithms. However, video applications run on a diverse set of devices
having limitations on power, compute and memory. In addition, video data needs to
be processed in real-time for most of these applications. Therefore, developed video
perception algorithms need to be efficient in order to be applicable to a broader set of
hardware.

This thesis addresses deep learning based human activity recognition by keeping
efficiency as a primary concern. We investigate human activity recognition by
specifically focusing on video analysis with frame-level features (Chapter 3), video
analysis with clip-level features (Chapter 4) and audio-visual video analysis
(Chapter 5). Fundamentals of deep learning such as how convolution operation works,
optimizers, or loss functions are excluded from the scope of this thesis. Curious readers
can refer to [1] for an introduction to the fundamentals of deep learning.

This chapter is organized as follows: Section 1.1 presents the goals of this thesis.
Section 1.2 introduces the tackled challenges. Section 1.3 presents the contributions
produced during this thesis. Finally, Section 1.4 explains the organization of the thesis.

1Cisco Visual Networking Index: Forecast and Trends, 2017–2022, White Paper.
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Figure 1.1: Decomposition of human activities depending on their complexity level. Adapted
from [2].

1.1 Goals

The main goal of this thesis is to automatically capture audio and visual information
from videos by using deep learning algorithms and keeping efficiency as a primary
concern. Specifically, this thesis focuses on the high-level task of human action
recognition. According to [2], human activities are grouped under six categories
depending on their complexity level: (i) gestures, (ii) atomic actions, (iii)
human-to-object or human-to-human interactions, (iv) group actions, (v) behaviors,
and (vi) events. These categories are visualized in Fig. 1.1. We must note that these
categories are not mutually exclusive. For example, human-human and human-object
interactions can also be atomic actions, as in the case of the AVA dataset [3]. In this
thesis, we span the majority of these categories by mostly working on action
recognition, hand gesture recognition, spatiotemporal action localization, and
audio-visual active speaker detection tasks. Fig. 1.2 shows some examples of human
activities from the datasets which are used within the scope of this thesis.

Following the historical evolution of human activity recognition research, we have
grouped our contributions in three chapters. Firstly, we focus on video analysis with
frame-level features. There are in general two drawbacks of this approach: (i) Each
extracted feature represents only the corresponding frame, hence cannot contain the
pixel-level motion information between consecutive frames, which is critical for motion
intensive actions and gestures. (ii) There needs to be a spatiotemporal modeling
mechanism to make reasoning on the extracted frame-level features. We aim to
compare various spatiotemporal modeling techniques in Section 3.2. Moreover,
Section 3.3 aims to incorporate motion information to frame-level features. It must be
noted that frame-level feature extraction is efficient since extracted features can be
cached and used for future timestamps in the applied spatiotemporal modeling
technique. Moreover, for the reason that the consecutive frames mostly contain very
similar information, sparse sampling can be applied to reduce computational
complexity even further.

Secondly, we focus on video analysis with clip-level features. Our initial goal is to
show how clip-level features extracted by 3D CNNs can be used for real-time
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Figure 1.2: Example activities with different complexity levels. Samples for atomic actions and
human-object interactions are taken from AVA dataset [3]. Samples for gestures
are from Jester dataset [4]. Samples for behaviors, human-human interactions are
from Kinetics dataset [5]. Samples for sport events are from UCF101 dataset [6].

spatiotemporal action localization task, which is explained in Section 4.2. However, the
main drawback of extracting clip-level features is that it requires a lot more parameters
and computation for the used deep learning models compared to frame-level feature
extraction. Motivated with this, our second goal has been creating resource efficient 3D
Convolutional Neural Network (CNN) architectures in Section 4.3. Although these
architectures reduce complexity and the number of parameters considerably, the
complexity can still be further reduced by deactivating these architectures when they
are not needed. With this motivation, we aim to investigate a two-level hierarchical
framework that consists of a lightweight detector and heavyweight classifier for the
task of hand gesture recognition as described in Section 4.4. The architecture proposed
in Section 4.4 is also designed with the motivation to address the challenges of online
recognition of hand gestures. However, it cannot be used for the tasks where the
heavyweight classifier needs to be always kept active. For such cases, many works opt
to extract clip-level features with a sliding window approach, either with a small
temporal stride or larger stride. In the former case, there is severe resource waste due
to reprocessing frames in the overlapping regions, which are already processed in the
previous timestamps. In the latter case, there is an information loss since relations
between some of the frames are not exploited. Motivated by these drawbacks,
Section 4.5 addresses these drawbacks and aims to reduce computation by proposing a
new 3D CNN architecture for online video processing applications.

Thirdly, we focus on audio-visual video analysis. Audio is often overlooked for video
understanding tasks. However, it can provide complementary and discriminative
information to the visually captured features. For the tasks of speech recognition,
emotion recognition, active speaker detection, visual and auditory cues are equally
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Figure 1.3: Example variations in video data. The top row illustrates variations in terms of
human subjects and camera views. The bottom row illustrates variations in terms
of video modality (from left to right: RGB, joint, depth, infrared). Examples are
taken from the NTU RGB+D dataset [7].

important and should be taken into account for the creation of an effective
architecture. Section 5.2 aims to address the task of Audio-Visual (AV) active speaker
detection in the wild with the objective to provide several guidelines to create an
effective detection architecture.

1.2 Challenges

Humans recognize actions in videos effortlessly, even in very complex scenarios.
However, this is still a very difficult task for machines. Videos are perceived by
machines as incoming video frames each consisting of a set of pixels and corresponding
audio signal represented by changing level of electrical voltage. Therefore, recognizing
human activities from videos requires translation of this data into meaningful
representations. In recent years, deep learning models, particularly CNNs, have
achieved astounding success on this task. Nonetheless, human activity recognition from
videos is a popular research area since the following challenges still exist.

1.2.1 Data Challenges

Scarcity of annotated data. Excellent performance of CNNs in object detection and
classification tasks has created an increasing trend to apply them also other computer
vision areas including video analysis. This, however, comes at an additional cost of
acquiring sufficient annotated data, which is indispensable for the successful training of
CNN models. Despite the recent availability of large-scale video datasets such as
Sports-1M [8], ActivityNet [9], Kinetics [5], AVA [3], MiT [10], CNN architectures still
shows improvement with additional new data. However, the manual annotation of very
large-scale datasets requires a great amount of time investment, sometimes also domain
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Figure 1.4: Hierarchical nature of an activity in terms of temporal granularity. Adapted
from [11].

expertise. Moreover, manual annotation will always be prone to human errors. These
challenges created a motivation in the research community to move towards active
learning, semi-supervised learning and unsupervised learning.

Variation in video data. A common challenge in all deep learning applications is that
the trained model needs to generalize to all variations of data. By nature, visual data
contain several variations such as illumination conditions, different viewpoints,
occlusion, deformations, difficult background conditions, and intra-class variations.
Moreover, visual data might be captured via various sensors and be provided in
different modalities such as RGB, depth, infrared and thermal. For example, Fig. 1.3
illustrates variations of different subjects and viewpoints in the top row and different
modalities in the bottom row. Regarding human activities, the temporal dimension of
the data also creates variations such as performing an action with different speeds.
Similarly, the audio component of videos also contains several variations such as
sampling frequency, different reverberation characteristics of the recording
environment, and different accents or talking styles of actors. Since CNNs are
data-driven architectures and their performance is highly correlated with the quality
and quantity of the used dataset, the data curation for the given task needs to be
exercised correctly without being biased to any specific variation. Although data
augmentation techniques provide some variations on data, a proper dataset should
contain data with all possible variations.

Taxonomy of human actions. Human actions can be defined based on the different
temporal granularity and context. For the first, a person’s action at a time can be defined
differently according to the used temporal level. For example, the hierarchical nature
of an activity in terms of temporal granularity is shown in Fig. 1.4. At the duration
of ‘A to B’ in Fig. 1.4, the action of a person can be attributed to any six activities.
For the latter, an action defined with a verb or phrase might lead to different human
movements, poses and interactions. Fig. 1.5 shows the example of riding action under
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riding in car riding a motorbike riding a horse riding a bicycle

Figure 1.5: Examples of riding action in different contexts are highlighted with purple
rectangles. Samples are taken from AVA dataset [3].

four different contexts. Therefore, the definition of a taxonomy for human actions is a
challenge that researchers are still trying to address [12, 13].

1.2.2 Implementation Challenges

Large and complex neural network architectures. In order to improve accuracy, the
trend in the computer vision community is to build larger and more complex Deep Neural
Network (DNN) architectures. When the AlexNet [14] won the ImageNet challenge in
2012, it only contained 60 million parameters and achieved 63.3% top-1 classification
accuracy. The best performing architecture on ImageNet dataset is currently CoAtNet-7
architecture [15] with 2.44 billion parameters and achieves 90.88% top-1 accuracy. Such
large architectures require bigger Graphical Processing Unit (GPU)s to fit in that very
few people have possession of. Moreover, as the number of parameters increases, there
is the risk of overfitting the architecture to the training set of the used dataset.

Platform-related constraints. Trained DNN architectures need to be deployed to a
platform in order to be used. Therefore, the DNN architecture needs to be designed
considering the memory, compute power, thermal properties of the target platform.
Most of the time, additional pruning and quantization of the model are also required for
the deployment.

1.2.3 Challenges at Online Operation

Video processing DNN architectures are mostly designed for offline applications in
contrast to the fact that most of the video applications require online operation.
Therefore, before designing a DNN architecture, the following challenges of online
operation need to be taken into consideration.

Recognition of dynamic actions. The main challenge of the recognition of dynamic
actions, specifically gestures, is that there is not any direct signal, as in audio, stating
the start and the end of dynamic actions. Moreover, dynamic gestures mostly contain
very similar preparation and retraction stages and differ only at their nucleus stages
[16]. Therefore, it is very critical to capture the nucleus part of the gestures in order to
recognize them successfully.
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Single-time recognition. For video applications such as Human-Computer
Interaction (HCI) systems, the single-time recognition of actions and gestures is
crucial. For example, for a gesture-based infotainment system in a car, swipe right
gesture should be recognized only once by the system to switch to the next song and
not to the second next song.

Fast reaction time. For several video processing tasks requiring online operation, fast
reaction time is critical in order to provide more engaging and effective user interaction.
According to studies, the range of acceptable variation of delay between performing an
action and receiving a visual feedback should be no more than 0.1 to 0.2 seconds [17].
Therefore, for these kinds of applications, DNN architectures should be designed to have
low complexity for faster inference and dynamically update their predictions with each
new coming video frame.

1.3 Contributions

In this section, we present our contributions as publications, software and dataset releases
that have been created during the course of this PhD project. Seven of our publications
are detailed in several sections of the main body of this thesis, whereas three publications
will be detailed in the appendix.

1.3.1 Publications

The work during this PhD led to the following publications:

• O. Köpüklü, F. Herzog, and G. Rigoll. Comparative analysis of CNN-based
spatiotemporal reasoning in videos. In International Conference on Pattern
Recognition, 2021. [18] (Section 3.2)

• O. Köpüklü, N. Köse, and G. Rigoll. Motion fused frames: Data level fusion
strategy for hand gesture recognition. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018. [19] (Section 3.3)

• O. Köpüklü, X. Wei, and G. Rigoll. You only watch once: A unified CNN
architecture for real-time spatiotemporal action localization. In arXiv, 2021. [20]
(Section 4.2)

• O. Köpüklü, N. Köse, A. Gunduz, and G. Rigoll. Resource efficient 3d
convolutional neural networks. In IEEE International Conference on Computer
Vision Workshops, 2019. [21] (Section 4.3)

• O. Köpüklü, A. Gunduz, N. Köse, and G. Rigoll. Real-time hand gesture
detection and classification using convolutional neural networks. In IEEE
International Conference on Automatic Face and Gesture Recognition, 2019. [22]
(Section 4.4)
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• O. Köpüklü, S. Hörmann, F. Herzog, H. Cevikalp, and G. Rigoll. Dissected
3D CNNs: Temporal skip connections for efficient online video processing. In
Computer Vision and Image Understanding, 2022. [23] (Section 4.5)

• O. Köpüklü, M. Taseska, and G. Rigoll. How to design a three-stage
architecture for audio-visual active speaker detection in the wild.” In IEEE
International Conference on Computer Vision, 2021. [24] (Section 5.2)

• O. Köpüklü, Y. Rong, and G. Rigoll. Talking with your hands: Scaling hand
gestures and recognition with CNNs. In IEEE International Conference on
Computer Vision Workshops, 2019. [25] (Appendix A)

• O. Köpüklü, T. Ledwon, Y. Rong, N. Köse, and G. Rigoll. Drivermhg: A multi-
modal dataset for dynamic recognition of driver micro hand gestures and a real-
time recognition framework. In IEEE International Conference on Automatic Face
and Gesture Recognition, 2020. [26] (Appendix B)

• O. Köpüklü, J. Zheng, H. Xu, and G. Rigoll. Driver anomaly detection: A dataset
and contrastive learning approach. In IEEE Winter Conference on Applications
of Computer Vision, 2021. [27] (Appendix C)

• O. Köpüklü, A. Gunduz, N. Köse, and G. Rigoll. Online dynamic hand gesture
recognition including efficiency analysis. In IEEE Transactions on Biometrics,
Behavior, and Identity Science, 2020. [28]

• O. Köpüklü, M. Babaee, S. Hörmann, and G. Rigoll. Convolutional neural
networks with layer reuse. In IEEE International Conference on Image
Processing, 2019. [29]

• O. Köpüklü, and G. Rigoll. Analysis on temporal dimension of inputs for 3d
convolutional neural networks. In IEEE International Conference on Image
Processing, Applications and Systems, 2018. [30]

• H. Cevikalp, B. Uzun, O. Köpüklü, and G. Ozturk. Deep compact polyhedral
conic classifier for open and closed set recognition. In Pattern Recognition, 2021.
[31]

• N. Köse, O. Köpüklü, A. Unnervik, and G. Rigoll. Real-time driver state
monitoring using a CNN based spatio-temporal approach. In IEEE International
Conference on Intelligent Transportation Systems, 2019. [32]

• M. Babaee, Y. Zhu, O. Köpüklü, S. Hörmann, and G. Rigoll. Gait energy
image restoration using generative adversarial networks. In IEEE International
Conference on Image Processing, 2019. [33]

• S. Hörmann, M. Knoche, M. Babaee, O. Köpüklü, and G. Rigoll. Outlier-robust
neural aggregation network for video face identification. In IEEE International
Conference on Image Processing, 2019. [34]
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• M. Kayhan, O. Köpüklü, M. H. Sarhan, M. Yigitsoy, A. Eslami, and G. Rigoll.
Deep attention based semi-supervised 2d-pose estimation for surgical instruments.
In International Conference on Pattern Recognition, 2021. [35]

• F. Kälber, O. Köpüklü, N. Lehment, and G. Rigoll. U-net based zero-hour
defect inspection of electronic components and semiconductors. In International
Conference on Computer Vision Theory and Applications, 2021. [36]

• H. Saribas, H. Cevikalp, O. Köpüklü, and B. Uzun. TRAT: Tracking by attention
using spatio-temporal features. In Neurocomputing, 2022. [37]

• Y. Feng, S. Wu, O. Köpüklü, X. Kang, and F. Tombari. Unsupervised monocular
depth prediction for indoor continuous video streams. In arXiv, 2019. [38].

1.3.2 Software and Dataset Contributions

Software. The code for the seven sections and three appendixes of this thesis are
publicly released:

• STModeling: The code and pretrained models of various spatiotemporal modeling
mechanisms for video analysis are released as a part of this theses as described in
[18] (Section 3.2).
https://github.com/fubel/stmodeling

• Motion Fused Frames: The code and pretrained models of a data level fusion
strategy for hand gesture recognition are released as a part of this theses as
described in [19] (Section 3.3).
https://github.com/okankop/MFF-pytorch

• YOWO: The code and pretrained models of a unified CNN architecture for real-
time spatiotemporal action localization are released as a part of this theses as
described in [20] (Section 4.2).
https://github.com/wei-tim/YOWO

• Efficient-3DCNNs: The code and pretrained models of various resource efficient
3D convolutional neural network architectures are released as a part of this theses
as described in [21] (Section 4.3).
https://github.com/okankop/Efficient-3DCNNs

• Real-time-GesRec: The code and pretrained models of a two-level hierarchical
convolutional neural network architecture for real-time hand gesture detection and
classification are released as a part of this theses as described in [22] (Section 4.4).
https://github.com/ahmetgunduz/Real-time-GesRec

• Dissected-3D-CNNs: The code and pretrained models of Dissected 3D CNN
architecture are released as a part of this theses as described in [23] (Section 4.5).
https://github.com/okankop/Dissected-3D-CNNs
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• ASDNet: The code and pretrained models of a three-stage architecture for audio-
visual active speaker detection in the wild are released as a part of this theses as
described in [24] (Section 5.2).
https://github.com/okankop/ASDNet

• SHGD: The code for scaling hand gestures and recognition with CNNs is released
as a part of this theses as described in [25] (Appendix A).
https://github.com/yaorong0921/GeScale

• DriverMHG: The code of a real-time recognition framework for dynamic
recognition of driver micro hand gestures is released as a part of this theses as
described in [26] (Appendix B).
https://www.ei.tum.de/mmk/drivermhg/

• DAD: The code and pretrained models for driver anomaly detection are released
as a part of this theses as described in [27] (Appendix C).
https://github.com/okankop/Driver-Anomaly-Detection

In addition, the code for the following publications that are completed during this
PhD but whose details are not covered within this thesis are also publicly released:

• LRUNet: The code and pretrained models of a layer reusing approach for CNNs
are released, whose details are described in [29].
https://github.com/okankop/CNN-layer-reuse

• DC-EPCC: The code of deep compact polyhedral conic classifier for open and
closed set recognition is released, whose details are described in [31].
https://github.com/bdrhn9/dc-epcc

• SSL-2D-Pose: The code of a deep attention based semi-supervised 2d-pose
estimation for surgical instruments is released, whose details are described in [35].
https://github.com/mertkayhan/SSL-2D-Pose

Datasets. Three datasets are publicly released during this PhD:

Scaled Hand Gesture Dataset
Scaled Hand Gesture Dataset (SHGD) is released with the publication of [25]
(Appendix A) and publicly available at https://www.ei.tum.de/mmk/shgd/. SHGD
contains 15 single hand gestures, each recorded for infrared (IR) and depth modalities.
Each recording contains 15 gesture samples (one sample per class). There are in total
324 recordings from 27 distinct subjects in the dataset. Recordings of 8 subjects are
reserved for testing, which makes 30% of the dataset. Every subject makes 12 video
recordings using two hands under 6 different environments, which are designed for
increasing the network robustness against different lighting conditions and background
disturbances. Subjects perform gestures while observing a computer screen, where the
gestures were prompted in random order. Videos are recorded at 45 frames per second
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(fps) with a spatial resolution of 352×287 pixels. Each recording lasts around 33
seconds. Single static gestures in SHGD are referred as gesture-phonemes. In [25], we
propose a methodology to scale hand gestures by forming them with predefined
gesture-phonemes, and a CNN based framework to recognize hand gestures by learning
only their constituents of gesture-phonemes.

Driver Micro Hand Gesture Dataset
The Driver Micro Hand Gesture (DriverMHG) dataset is released with the publication of
[26] (Appendix B) and publicly available at https://www.ei.tum.de/mmk/drivermhg/.
The driver micro gestures are performed within very short time intervals at spatially
constrained areas. The dataset is recorded with the help of 25 volunteers (13 males and
12 females) using a simulator, which consists of a monitor, a Creative Blaster Senz3D
camera featuring Intel RealSense SR300 technology, a Logitech G27 racing controller,
whose wheel is replaced with a truck steering wheel and the OpenDS driving simulator
software. The dataset is recorded in synchronized RGB, infrared and depth modalities
with the resolution of 320 × 240 pixels and the frame rate of 30 fps. For each subject,
there are in total 5 recordings each containing 42 gestures for 5 different gestures together
with other and none gestures for each hand. Each recording of a subject was recorded
under different lighting conditions. We randomly shuffled the order of the subjects and
split the dataset by subject into training (72%) and testing (28%) sets.

Driver Anomaly Detection Dataset
The Anomaly Detection (DAD) dataset is released with the publication of [27]
(Appendix C) and publicly available at https://www.ei.tum.de/mmk/dad/. For the
dataset recording, 31 subjects are asked to drive in a computer game performing either
normal driving or anomalous driving. Each subject belongs either to the training or to
the test set. The training set contains recordings of 25 subjects and each subject has 6
normal driving and 8 anomalous driving video recordings. Each normal driving video
lasts about 3.5 minutes and each anomalous driving video lasts about 30 seconds
containing a different distracting action. In total, there are around 550 minutes
recording for normal driving and 100 minutes recording of anomalous driving in the
training set. The test set contains 6 subjects and each subject has 6 video recordings
lasting around 3.5 minutes. Anomalous actions occur randomly during the test video
recordings. Most importantly, there are 16 distracting actions in the test set that are
not available in the training set. Because of these additional distracting actions, the
networks need to be trained according to open set recognition task and distinguish
normal driving no matter what the distracting action is. The complete test set consists
of 88 minutes of recording for normal driving and 45 minutes of recording of anomalous
driving. The test set constitutes the 17% of the complete DAD dataset. The size of the
DAD dataset is around 95 GB.
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1.4 Organization

This thesis contains six chapters including this introduction chapter and an appendix at
the end. The rest of the thesis is organized as follows:

Chapter 2 introduces the literature review focusing on action recognition, gesture
recognition, spatiotemporal action localization, audio-visual active speaker detection
tasks, and corresponding available datasets.

Chapter 3 presents video analysis with frame-level features. First, motivations for
using frame-level features are mentioned in Section 3.1 and possible drawbacks and
advantages are elaborated. Then, in Section 3.2, different spatiotemporal modeling
techniques, which are necessary in order to create reasoning on the extracted features,
are analyzed and compared in terms of resource efficiency and performance on action and
gesture recognition tasks. Lastly, we provide a data level fusion strategy in Section 3.3
for the hand gesture recognition task in order to incorporate motion information into
the extracted frame-level features.

Chapter 4 presents video analysis with clip-level features. Similar to the previous
chapter, we start with providing motivations for using clip-level features in Section 4.1
and elaborating on possible drawbacks and advantages. Then, Section 4.2 presents
a unified spatiotemporal action localization architecture that makes use of clip-level
features. To reduce the cost of extracting clip-level features, resource efficient 3D CNN
architectures are introduced in Section 4.3. These architectures are inflated versions of
some famous resource efficient 2D CNN architectures and evaluated for their capacities to
learn complex classes, abilities to capture motion patterns, and applicability of transfer
learning. Afterwards, in order to save computations for vision-based applications that
the system remains idle for most of the time such as HCI systems, a two-level hierarchical
framework is presented in Section 4.4. Lastly, in order to address the drawbacks of
applying 3D CNNs at online video streaming applications, a new 3D CNN architecture
is proposed in Section 4.5.

Chapter 5 presents video analysis with audio-visual features. It first provides
motivations for using audio-visual features in Section 5.2.1 and elaborates on popular
tasks that leverages audio and visual features jointly. Then, the task of Audio-Visual
Active Speaker Detection (AV-ASD) is presented in Section 5.2.

Chapter 6 concludes our work and points out open problems and future work.
In the appendix, we provide our dataset contributions on action and gesture

recognition tasks. Specifically, Appendix A introduces Scaled Hand Gesture Dataset
(SHGD) where a scaling mechanism for hand gestures is explained and a recognition
mechanism with CNNs is proposed. Appendix B introduces Driver Micro Hand
Gesture (DriverMHG) dataset for dynamic recognition of driver micro hand gestures.
Lastly, Appendix C introduces Driver Anomaly Detection (DAD) dataset for the
recognition of safe and anomalous driving patterns of the drivers.
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Chapter 2

Literature Review

This chapter provides a literature review on action recognition, gesture recognition,
spatiotemporal action localization, audio-visual active speaker detection tasks, and
popular datasets, which are the focus of this thesis.

2.1 Action Recognition

In this section, we survey the research on video-based action recognition. We first briefly
present the representation based approaches before the deep learning era. Then we
provide a comprehensive review of deep learning based methods on action recognition.

2.1.1 Hand-Crafted Features Based Methods

Representation of human actions in videos is a challenging problem since actions in videos
can vary depending on the camera view, actor’s pose, speed of motion, etc. A successful
action representation method should take an input video and create a discriminative
and representative feature vector. This section briefly reviews the hand-crafted feature
representations under the categories of holistic and local representations; and action
classifiers that turn these representations into class labels. We refer readers to [39, 40] for
detailed surveys covering hand-crafted feature representations based action recognition.

2.1.1.1 Holistic Representations

Holistic representations refer to feature vectors that contain the information of an
entire human subject including human body pose and movements. In [41], in order to
encode dynamic human movements into static images, Motion Energy Image (MEI)
and Motion History Image (MHI) are proposed. MEI is a binary image sequence
indicating where the motion is occurring, whereas MHI shows how the motion is
happening by allocating higher intensities to more recent movements. These two
methods are applied to silhouette images as shown in Fig. 2.1 (left). A similar
approach is applied for gait recognition in [42] by proposing Gait Energy Image (GEI).
Different from MEI and MHI, GEI is calculated by averaging the binary silhouette
sequence of a complete gait cycle of a person as shown in Fig. 2.1 (right).

In order to create view invariant and more robust representations, MEI and MHI
are extended to 3D volumes by [43] and [44], respectively. [43] represent actions using
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key frame, MEI and MHI gait cycle and GEI

Figure 2.1: (left) Examples of a key frame in a video, corresponding motion energy image
(MEI) and motion history image (MHI) [41]. (right) Examples of gait cycles and
corresponding gair enery image (GEI) at the end [42].

Figure 2.2: (left) Examples of spatiotemporal evolutions of jumping-jack, walk and run
actions [43]. (right) Examples of motion history volume (MHV) for sit down, walk
and kick actions [44].

silhouette images to construct space-time volumes as shown in Fig. 2.2 (left). [44] uses
motion history volume (MHV) for representing actions as shown in Fig. 2.2 (right).

As an alternative approach to global action representation, motion information can
also be computed using optical flow algorithms [45, 46, 47, 48]. Optical flow represents
the apparent motion of objects, surfaces, and edges between two consecutive frames of
a video. In [49], the horizontal and vertical axes of optical flow are half-wave rectified
into four non-negative channels, which are then used in a nearest-neighbor querying
framework to classify actions.

Although holistic representations have been popular between the middle of 1990s and
early 2000s, there has been a shift towards local representations based action recognition,
which will be explained in the next section.

2.1.1.2 Local Representations

Local representations refer to feature vectors that contain the salient motion information
of local regions of a human subject. The works based on local representations widely
used either Space-Time Interest Points (STIPs) [50, 51, 52] or motion trajectories [53,
54, 55, 56].

STIPs [50] has been the pioneering work on local representations based action
recognition. In [50], Harris corner detector [57] has been extended to 3D Harris
detector, which identifies points in space-time dimensions with large spatial variations
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Figure 2.3: (left) Examples of local space-time neighborhoods for corresponding space-time
interest points [63]. (right) Example trajectories of the SIFT salient points for four
actions. [64].

and erratic motions. Cuboids are used from pixels around STIPs, as shown in
Fig. 2.3 (left) Similarly, in [58], the Hessian detector is extended to its 3D version for
action recognition. There have been other STIPs detectors that have extended their
2D counterparts to histograms of 3D gradient orientations (HOG3D) [59] and local
trinary patterns [60]. In [52], Gabor filters are used to detect STIPs. In order to deal
with the cases where STIPs are too rare in the video, [51] proposes to separate spatial
and temporal filtering. Optical flow and gradients are also used to describe motion and
apperance information. For instance, for a set of found interest points between two
frames, computed optical flow is aggregated in histograms, named histograms of flow
(HOF) in [61] that is later combined with histograms of oriented gradient (HOG) [62]
to recognize complex human actions.

The major drawback of STIPs is that they cannot capture long-term temporal
information. Tracking these interest points over long time duration, called feature
trajectories, is the straightforward solution to this problem [65, 53, 64]. In [53],
trajectories are extracted from interest points with KLT tracker [45]. [64] proposes to
use SIFT descriptors [66] around interest points and use Markov chaining to determine
feature trajectories, as shown in Fig. 2.3 (right). For the creation of trajectories,
multiple features can be aggregated as in [56, 55, 67] that use Trajectory [68], HOF
[61], HOG [62] and motion boundary histogram (MBH) [69] features.

2.1.1.3 Classification

Once the representations for the actions are computed, there remains only the
classification problem. In other words, correct action labels need to be assigned to a
given video input based on its extracted representation. Direct approaches have been
actively used to recognize actions using off-the-shelf classifiers such as k-nearest
neighbor (k-NN) [43, 63] or support vector machines (SVMs) [64, 56, 55, 67]. However,
these approaches accept fixed-size input feature vectors and cannot function with sets
of varying size feature vectors. Therefore, an aggregation mechanism is required to
transform local descriptors into fixed-size, discriminative descriptors. Aggregation
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methods of Bag-of-Visual Words (BoV) [70] and Fisher Vector (FV) encoding [71] have
been actively used to aggregate features as in [72, 61, 43] and [73, 74], respectively.
There are also sequential approaches that aim to capture temporal evolution of actions
such as hidden Markov models (HMMs) [75] and conditional random fields (CRFs) [76]
as in [77] and [78], respectively.

Although research on action recognition was dominated by hand-crafted features based
approaches till the beginning of 2010s, recent research is overwhelmingly dominated by
deep learning based approaches that will be discussed in the next section.

2.1.2 Deep Learning Based Methods

Ever since AlexNet [14] won the ImageNet Challenge (ILSVRC 2012 [79]), CNNs have
dominated the majority of the computer vision tasks such as super-resolution [80],
image denoising [81], and classification [82]. The success of AlexNet was a
breakthrough for vision-based recognition tasks and is the point in history where the
interest in deep learning increased rapidly [83]. Today, vision-based recognition
approaches are dominated by the use of CNNs. After their success on image
recognition, they have been explored also for video analysis tasks. A lot of work has
proven that deep CNNs are capable to handle action recognition [84, 85, 86]. In this
section, we review deep learning based action recognition methods using frame-level
features and clip-level features.

2.1.2.1 Methods Based on Frame-Level Features

Due to the success of 2D CNNs in static images, video analysis approaches initially
applied also 2D CNNs. There were two main motivations for this: (i) There were plenty
of 2D CNN architectures [14, 87, 88, 89, 90], and these architectures could be pretrained
using the very large-scale ImageNet dataset [82]. (ii) There were not large enough action
recognition dataset that can be used to train a deep CNN architecture from scratch.
Accordingly, initial approaches opt to extract features with ImageNet pretrained 2D
CNN architectures and apply a spatiotemporal (ST) modeling mechanism afterwards
for action recognition.

The simple application of MLP for the input of concatenation of frame-level features
already produces competitive results [19, 91]. In [92], Temporal Segment Network (TSN)
is proposed that divides a video into uniformly divided segments and extracts frame-level
features from a randomly selected frame within each segment. Then, these extracted
features are fed to an MLP to modify their dimension to class number. A consensus
method is applied over these features such as evenly averaging, maximum, and weighted
averaging to get final class scores. Similarly, Temporal Relation Network (TRN) is
proposed in [91], which keeps the order of the extracted features intact and tries to
discover possible temporal relations at multiple time scales.

The major drawback of working with frame-level features is that the extracted features
cannot capture motion information within consecutive video frames. In order to address
this problem, a two-stream approach is proposed in [93]. In context stream, a single video
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frame is fed to a 2D CNN, whereas on the temporal stream stacked optical flow frames
are fed to a 2D CNN by modifying its initial convolutional layer. Extracted features
are passed through MLP and softmax layers and averaged to get final class scores. This
fusion scheme is called late fusion. In [94], different fusion schemes are investigated for
the two-stream architectures. These methods rely on separately processing the spatial
and temporal components of the video, which can be a disadvantage. To address the
problem of capturing motion information, we propose Motion Fused Frames (MFFs)
[19] that applies data level fusion strategy of optical flow and RGB modalities such that
extracted frame-level features also contain motion information. These features are fed to
a two-layer MLP to get final class scores. This approach has been explained in detail in
Section 3.3. To facilitate information exchange among neighboring frames, a temporal
shift module (TSM) is introduced in [95], which can be inserted into 2D CNNs to shift
part of the channels along the temporal dimension. TSM is a dynamic architecture and
a causal version of it can be created by applying only single-sided shifting operation.

Recurrent neural networks are a natural choice for processing varying length video
sequences, and several modern architectures have been proposed for action recognition
in videos. Long Short-Term Memory (LSTM) [96] has been used in various video
understanding tasks. In [97], LSTM is employed after CNN-based feature extraction on
the individual frames to learn spatiotemporal components and apply the architecture
on the UCF101 dataset [6]. In [98], vanilla LSTM architecture is modified to learn
spatiotemporal domains for action recognition using 3D skeleton data. Gated
Recurrent Unit (GRU) [99] is a popular variant of LSTM architecture which is actively
used in video recognition tasks such as [100]. There have been many other variants of
LSTM architecture, which are summarized in [101]. Another recurrent method is the
Differentiable RNN [102] generated by salient motion patterns in consecutive video
frames.

Although LSTM structure is proven to be stable and powerful in modeling long
range temporal relations in various studies [103], [104], it handles spatiotemporal data
using only full connections where no spatial information is encoded. Convolutional
LSTM (ConvLSTM) [105] addresses this problem by using convolutional structures in
both the input-to-state and state-to-state transitions. ConvLSTM is first introduced
for precipitation nowcasting task [105], and later used for many other applications such
as video saliency prediction [106] and medical segmentation [107].

Fully Convolutional Networks (FCN) are another approach to use for spatiotemporal
modeling of frame-level features. FCN is first proposed for the image segmentation task
[108] and currently the majority of segmentation architectures are based on FCNs. Later
on, FCN architectures have been used at many other tasks such as object detection [109],
[110]. As the name implies, FCN is a neural network that only performs convolution
operations that can be applied on top of frame-level features for action recognition.

Recently, Transformer architectures [111] are producing astounding results on
natural language processing tasks, making them the de-facto choice. This success
motivated vision community to use them for their applications such as image
classification [112, 113], object detection [114] and video instance segmentation [115].
For action recognition, several Transformer-based architectures are proposed. In [116]
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proposes to use a Transformer-based architecture on skeleton data for action
recognition. [117] uses a Transformer architecture to model person-specific contextual
cues for action recognition and localization. TimeSFormer [118] and ViViT [119] are
also Transformer-based architectures that treats video as a sequence of patches
extracted from patches. Multiscale Vision Transformers (MViT) is proposed in [120],
which aims to connect the of multiscale feature hierarchies with the Transformer
model. Most relevant to action recognition based on frame-level features is the Video
Transformer Network (VTN) architecture that uses a Transformer encoder, specifically
Longformer [121], in order to learn temporal relationships between frame-level features
[122].

In Section 3.2, we analyze and compare various techniques for ST modeling of the
features extracted by a 2D CNN from sparsely sampled frames of action and gesture
videos. Although frame-level processing of videos provides several advantages, their
performance lags behind approaches that apply clip-level video processing, specifically
using 3D CNN architectures, which will be reviewed next.

2.1.2.2 Methods Based on Clip-Level Features

Capturing motion information with optical flow modality is computationally expensive.
A video is a 3D tensor with two spatial and one temporal dimensions, and motion
information lies between the video frames over the temporal dimension. Therefore, a
natural choice to extract motion information is to operate convolutions on space and
time, also known as 3D convolutions. 3D CNN architectures are proposed for the first
time in [123]. However, the proposed architecture was shallow containing only two 3D
convolution layers.

3D CNNs contain significantly more parameters compared to their 2D counterparts
making them more challenging to train and prone to overfitting. With the availability
of large-scale datasets such as Sports-1M [8], ActivityNet [9], Kinetics [5, 124, 125],
AVA [3], MiT [10], HACS [126], etc., the overfitting problem has been resolved. Ever
since then, there have been plenty of 3D CNN architectures to achieve better
accuracies at video classification tasks such as C3D [85], I3D [127], R(2+1)D [128],
P3D [129], SlowFast [130], etc. The effect of dataset size is investigated in [131]
together with the performance of the 3D versions of widely-used architectures such as
ResNet [88], DenseNet [89], ResNext [90]. In Section 4.3, we investigate the 3D
versions of popular resource efficient architectures for video classification tasks [21].
The SlowFast architecture in [130] explores the trade-offs of different spatial, temporal,
and channel resolutions in the Slow and Fast pathway of the architecture. X3D is
proposed in [132], which is a spatiotemporal architecture expanded from a tiny spatial
network by multiple axes in space, time, width and depth in order to ensure good
computation and accuracy trade-off.

The spatiotemporal modeling mechanism reviewed in the previous part can still be
applied on top of clip-level features in order to capture long-term temporal information.
For example, [133] proposes an architecture that uses a 3D CNN to extract clip features
followed by an LSTM for online gesture recognition.
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It must be noted that all the 3D CNN architectures mentioned above are designed
for offline operation as they operate with a fixed number of input frames. Moreover,
the number of floating point operations (FLOPs) is in the order of 10s-100s GFLOPs
at inference time, which is too costly for online operation. To address this problem,
in Section 4.5, we propose Dissected 3D CNNs [23], where the intermediate volumes
of the network are dissected and propagated over depth (time) dimension for future
calculations, substantially reducing the number of computations at online operation.
Recently, [134] proposes Continual 3D CNNs that process videos frame-wise rather than
clip-wise while benefiting from pretrained weights of popular 3D CNNs.

3D CNNs have dominated the research on video action recognition providing
state-of-the-art results until recently. The current trend in action recognition is
applying Transformer-based architectures [119, 120, 135], which achieve new
state-of-the-art results.

2.2 Gesture Recognition

The requirements for video gesture recognition are very similar to action recognition.
Therefore, literature review about action recognition in Section 2.1 is also valid for
gesture recognition. In this section, we briefly review deep learning based gesture
recognition.

Similar to action recognition, there has been several hand-crafted features based
methods [136, 137] followed by deep learning based methods [133, 138, 139, 140, 22] for
gesture recognition. In [141], an architecture with twelve streams focusing on hands is
proposed. [133] focuses on online gesture recognition problems and proposes an
architecture that is trained with connectionist temporal classification (CTC) [142] loss.

Video-based hand gesture recognition is mostly applied to HCI systems, where most
of the time the system remains idle. To address this problem, in Section 4.4, we
propose a two-level hierarchical architecture consisting of a lightweight gesture detector
and a heavyweight gesture classifier [22]. Detector always remains active checking the
availability of gestures, and if a gesture is detected the classifier gets activated to
classify the performed gesture. We also address other challenges of online gesture
recognition such as early and sing-time recognition

2.3 Spatiotemporal Action Localization

Spatiotemporal action localization task can be divided into object detection and action
recognition subtasks. Literature review on action recognition is already provided in
Section 2.1. Here, we will review deep learning based detection architectures and
spatiotemporal action localization architectures.

For object detection in images, R-CNN series extract region proposals using selective
search [143] or Region Proposal Network (RPN) [109] in the first stage and classify the
objects in these potential regions in the second stage. Although Faster R-CNN [109]
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achieves state-of-the-art results in object detection, it is hard to implement it for real-
time tasks due to its time-consuming two-stage architecture. Meanwhile, YOLO [110]
and SSD [144] aim to simplify this process to one stage and have outstanding real-time
performance. For action localization in videos, due to the success of R-CNN series,
most of the research approaches propose first detecting the humans in each frame and
then linking these bounding boxes reasonably as action tubes [145, 146, 147]. Two-
stream detectors introduce an additional stream on the base of the original classifier for
optical flow modality [146, 148, 149]. Some other works produce clip tube proposals
with 3D CNNs and achieve regression as well as classification on the corresponding
3D features [147, 148], thus region proposal is necessary for them. In a recent work
[150], authors propose a 3D capsule network for video action detection which can jointly
perform pixel-wise action segmentation along with action classification. However, it is
too expensive in terms of computational complexity and number of parameters since it
is a U-Net [151] based 3D CNN architecture.

In Section 4.2, we present YOWO [20], a unified CNN architecture for real-time
spatiotemporal action localization in video streams. YOWO is a single-stage
architecture with two branches to extract temporal and spatial information
concurrently and predict bounding boxes and action probabilities directly from video
clips in one evaluation.

2.4 Audio-Visual Active Speaker Detection

In this section, we present the literature review on beep learning based AV-ASD task
in two parts: (i) audio-visual feature extraction in various applications, and (ii)
contributions that address active speaker detection in the wild and its challenges.

2.4.1 Audio-visual feature extraction

Video. The literature review for deep learning based video feature extraction is
provided in Section 2.1. Application of 3D CNNs [85, 127, 129, 128, 130, 131, 21, 132]
for visual ASD task is favorable since 3D convolutions can inherently capture
pixel-wise motion information within frames, which is critical to recognize mouth
activity of active speakers.
Audio. A common approach to extract features in speech and audio research in different
applications, is to use CNN and Recurrent Neural Network (RNN) with log-Mel or Short-
Time Fourier Transform (STFT) spectrograms as inputs [152]. The popularity of these
fixed transforms is due to their success in traditional speech and audio processing and
the fact that they extract relevant information from first principles. Furthermore, the
image-like configuration of the spectrograms allows employing network architectures
well-known from computer vision applications. Particularly, in AV-ASD, this allows to
use similar audio and video backbone architectures [153, 154].

Based on the interpretation of CNN as a data-driven filterbank, researchers have
applied CNN directly on the audio waveforms to capture discriminative information for
the task at hand [155, 156]. Such an approach in the context of AV-ASD has been used
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for an audio backbone in [157]. However, these approaches need much more data and
computational resources than the ones exploiting spectrograms. With the goal to exploit
the best from both worlds, researchers have come up with learnable, but yet constrained
transformations of raw audio data. Examples include Harmonic CNN used for music
tagging, and the SincNet architecture proposed in [158]. The latter was successfully
used in several audio applications [159, 160, 161].
Fusion. The extracted modality-specific features can be combined at data level [19],
feature level [162] or decision level [93]. Data level fusion is not an option since audio and
visual modalities come from different domains. Feature level fusion stands as the best
option since fused features still need to be processed for context and temporal modeling
afterwards.

2.4.2 Active speaker detection in the wild

Audio-visual active speaker detection is a specific case of source separation [163, 164],
where audio and visual signals are leveraged jointly to assign a speech segment to its
speaker. For this task, initial approaches [165, 166] use datasets collected in controlled
environments. With the availability of AVA-ActiveSpeaker dataset [167], the research
community was able to shift towards active speaker detection in the wild.

Audio-visual feature extraction is the first step in top-performing frameworks for
active speaker detection task [167, 154, 153, 168, 169]. A two-backbone approach has
established itself as a standard architecture due to its versatility [93]. With a good
audio-visual feature extraction and RNN-based temporal modeling, the authors
in [168] achieved competitive performance on the AVA-ActiveSpeaker dataset.
Temporal modeling constitutes an integral part of recent active speaker detection
pipelines [167, 154, 168, 169]. Often neglected is the context information that can be
obtained by modeling inter-speaker relationships. Researchers have only recently
proposed methods to exploit the context information[154, 153].

In Section 5.2, we present a new architecture called ASDNet [24] based on a series of
controlled experiments, which would act as a practical guideline for audio-visual active
speaker detection.

2.5 Datasets

Properly annotated, large-scale datasets are indispensable for effective utilization of
deep CNN architectures. The effect of dataset size on the performance of 3D CNN
architectures is investigated on [131].

UCF101 [6] and HMDB-51 [173] datasets are two popular video action recognition
benchmarks, which are actively used at early 2010s. However, neither of them is large
enough to train a deep 3D CNN architecture from scratch without overfitting. With the
availability of Sports-1M dataset [8], deep 3D CNN architectures such as C3D [85] can be
trained from scratch. Later on, several large-scale datasets [9, 5, 124, 125, 3, 10, 126] have
been publicly made available. Kinetics dataset [5] has been specifically popular among
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Dataset Task # Videos # Classes Frame Rate

Jester [4] Gesture Rec. 148092 27 12 fps
nvGesture [133] Gesture Rec. 1532 25 30 fps
ChaLearn LAP IsoGD [170] Gesture Rec. 47933 249 10 fps
EgoGesture [171] Gesture Rec. 24161 83 30 fps

Something-Something-V2 [172] Action Rec. 220847 174 –
Kinetics-600 [124] Action Rec. 495547 600 –
UCF101 [6] Action Rec. 13320 101 25 fps
ActivityNet [9] Action Rec. 19994 203 –

UCF101-24 [6] ST Loc. 3207 24 25 fps
J-HMDB-21 [173] ST Loc. 928 21 30 fps
AVA [3] ST Loc. 430 80 25-30 fps

AVA-ActiveSpeaker [167] AV-ASD 262 2 25-30 fps

Table 2.1: Summary of datasets that have been used in this thesis. The number of segmented
gesture clips is reported for EgoGesture dataset.

Jester Dataset nvGesture Dataset

Figure 2.4: Examples from the Jester [4] and nvGesture [133] datasets.

action recognition researchers that most of the new architectures are benchmarked on
this dataset.

In this thesis, several datasets are used for the tasks of action recognition, gesture
recognition, spatiotemporal action localization, and audio-visual active speaker
detection. The summary of the used datasets is shown in Table 2.1. For the rest of this
section, we will give the details of each used dataset.

Jester.
Jester dataset is currently the largest available dataset, which has recently been available
[4]. It is a large collection of densely labeled video clips that shows humans performing
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ChaLearn LAP IsoGD Dataset EgoGesture Dataset

Figure 2.5: Examples from the ChaLearn LAP IsoGD [170] and EgoGesture [171] datasets.

predefined hand gestures in front of a laptop camera or webcam. The videos are recorded
at 12 frames per second with the resolution of 100 pixels height and variable width.
There are in total 148,092 gesture videos under 27 classes performed by a large number
of crowd workers. The dataset is divided into three subsets: training set (118562 videos),
validation set (14787 videos), and test set (14743 videos). Some examples from the Jester
dataset are shown in Fig. 2.4. In this thesis, the Jester dataset is used in Sections 3.2,
3.3 and 4.3.

NVIDIA Dynamic Hand Gesture Dataset (nvGesture).
The nvGesture dataset [133] contains 25 hand gesture classes, each intended for human-
computer interfaces and recorded by multiple sensors and viewpoints. There are 1532
weakly segmented videos in total, which are performed by 20 subjects at an indoor car
simulator with both bright and dim artificial lighting. The dataset is randomly split by
subjects into training (70%) and test (30%) sets, resulting in 1050 training and 482 test
videos. Videos are captured by a SoftKinetic DS325 sensor with a frame rate of 30 fps.
Since the gesture videos are weakly segmented, some parts of the videos do not contain
any gesture. Some examples from the nvGesture dataset are shown in Fig. 2.4. In this
thesis, the nvGesture dataset is used in Sections 3.3 and 4.4.

ChaLearn LAP IsoGD.
ChaLearn LAP IsoGD dataset [170] includes 47933 presegmented RGB-D gesture
videos each representing one gesture only. There are 249 gesture classes performed by
21 different individuals. The dataset has been divided into three sub-datasets having
35878, 5784 and 6271 videos for training, validation and testing, respectively. Videos
are captured by a Kinect device with a frame rate of 10 fps. Some examples from the
ChaLearn dataset are shown in Fig. 2.5. In this thesis, the ChaLearn dataset is used in
Section 3.3.
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Putting something into something.

Pushing something so that it falls off the table.

Moving something closer to something.

Figure 2.6: Examples from the Something-Something-V2 [172] dataset.

EgoGesture.
EgoGesture dataset is a recent multi-modal large-scale dataset for egocentric hand
gesture recognition [171]. This dataset is created not only for segmented hand gesture
classification, but also for online recognition of hand gestures in continuous data.
There are 83 classes of static and dynamic gestures collected from 6 diverse indoor and
outdoor scenes and from 50 distinct subjects. Dataset videos are recorded with the
resolution of 640 × 480 and with the frame rate of 30 fps. The dataset splits are
created by distinct subjects with a ratio of 3:1:1 resulting in 1239 training, 411
validation and 431 testing videos, having 14416, 4768 and 4977 gesture samples,
respectively. Some examples from the EgoGesture dataset are shown in Fig. 2.5. In
this thesis, the EgoGesture dataset is used in Section 4.4.

Something-Something-V2.
The Something-Something-V2 dataset is a collection of segmented video clips that show
humans performing pre-defined basic actions with everyday objects [172]. It allows
researchers to develop machine learning models capturing a fine-grained understanding
of basic actions. The dataset consists of 220847 video clips under 174 classes, which is
split into training, validation and test sets containing 168913, 24777 and 27157 videos,
respectively. Some examples from the Something-Something-V2 dataset are shown in
Fig. 2.6. In this thesis, the Something-Something-V2 dataset is used in Section 3.2.
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Kinetics Dataset UCF101 Dataset

Figure 2.7: Examples from the Kinetics [5] and UCF101 [6] datasets.

Kinetics.
Kinetics dataset is first introduced in [5] containing 400 human action classes, with at
least 400 video clips for each action. Video clips are collected from YouTube videos and
each lasts around 10 seconds with a variable resolution and frame rate. The actions
in the Kinetics dataset are human-focused covering a wide range of classes including
sports activities, playing musical instruments, human-object interactions and human-
human interactions. The initial version of the dataset is referred as Kinetics-400 since it
contains 400 distinct classes. Later on, versions of Kinetics-600 [124] and Kinetics-700
[125] are released containing 600 and 700 classes, respectively. Kinetics-400, Kinetics-
600 and Kinetics-700 contain 306245, 495547 and 650317 video clips, respectively. Some
examples from the Kinetics dataset are shown in Fig. 2.7. In this thesis, the Kinetics-600
dataset is used in Sections 4.3 and 4.5.

UCF101.
UCF101 [6] is a widely-used dataset for human action recognition consisting of 101
action classes. There are in total 13320 video clips each belonging to one of the five
class categories: human-object interaction, body-motion only, human-human
interaction, playing musical instruments and sports. Video clips are collected from
YouTube and have the resolution of 320 × 240 and frame rate of 25 fps. Some
examples from the UCF101 dataset are shown in Fig. 2.7. In this thesis, the UCF101
dataset is used in Section 4.3.

ActivityNet.
The ActivityNet dataset [9] is a large-scale video benchmark for human activity
understanding. It contains 203 activity classes with an average of 137 untrimmed
videos per class and 1.41 activity instances per video that are annotated with temporal
boundaries. The videos are collected from YouTube and in total 849 hours long.
Version 1.3 of the dataset, which is the one used in this thesis, contains 19994 videos in

25



Chapter 2 Literature Review

AVA Dataset UCF101-24 Dataset

Figure 2.8: Examples from the AVA [3] and UCF101-24 [6] datasets.

total and divided into training, validation and test with the ratio of 2:1:1. The
ground-truth annotations for the test set videos are not publicly available. In this
thesis, the ActivityNet dataset is used in Section 4.5.

UCF101-24.
UCF101-24 is a subset of UCF101 dataset [6]. Out of 101 classes of UCF101 dataset, 24
action classes are annotated with spatiotemporal bounding boxes for 3,207 videos. Each
video clip belongs to only a single action category. However, there might be multiple
action instances in each video, which have the same class label but different spatial and
temporal boundaries. Videos are not densely annotated. On average, each video contains
1.5 action instances covering around 70% of video duration. Some examples from the
UCF101-24 dataset are shown in Fig. 2.8. In this thesis, the UCF101-24 dataset is used
in Section 4.2.

J-HMDB-21.
J-HMDB-21 is a subset of the HMDB-51 dataset [173] and consists of 928 short videos
with 21 action categories in daily life. Each video is well trimmed and has a single action
instance across all the frames. We report our experimental results on the first split. In
this thesis, the J-HMDB-21 dataset is used in Section 4.2.

AVA.
AVA is a video dataset of spatiotemporally localized Atomic Visual Actions (AVA). The
AVA dataset contains 80 atomic visual actions, which are densely annotated for 430
15-minute video clips, where actions are localized in space and time. The annotations
are person-centric and provided at the sampling frequency of 1 Hz. Every person in
the sampled frame is annotated with person’s bounding box and labeled with an action
corresponding to person’s pose, with person-object interaction actions (if any) person-
person interaction classes (if any). This results in 1.58M action labels. AVA is a heavily
imbalanced dataset having long-tailed distribution. According to ActivityNet evaluation
guidelines, only the most frequent 60 action classes of the AVA dataset are used at
evaluations. Some examples from the AVA dataset are shown in Fig. 2.8. In this thesis,
the AVA dataset is used in Section 4.2.
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Figure 2.9: Examples from the AVA-ActiveSpeaker dataset [167]. Green and red bounding
boxes imply speaking and not speaking classes, respectively.

AVA-ActiveSpeaker.
The AVA-ActiveSpeaker dataset [167] is the first audio-visual active speaker dataset
collected in the wild. It contains 262 15-minute videos from Hollywood movies,
recorded at 25-30 fps, 120 of which are used for training, 33 for validation, and 109 for
testing. The videos consist of 3.65 million human-labeled frames, where face crops
belonging to the same speaker are aggregated to create face tracks, and each face crop
is annotated with speaking or not-speaking label. This results in 38.5 hours of face
tracks with the corresponding audio signal. The number of speakers in the videos is
time-varying, and a significant portion of face crops has a resolution less than 100
pixels, making the dataset considerably challenging. Some examples from the
AVA-ActiveSpeaker dataset are shown in Fig. 2.9. In this thesis, the
AVA-ActiveSpeaker dataset is used in Section 5.2.
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Chapter 3

Video Analysis With Frame-Level Features

This chapter presents video analysis with frame-level features. Specifically, we work on
action and gesture recognition tasks on video streams that require temporal reasoning
of the spatial content from different time instants, i.e., spatiotemporal (ST) modeling.
In Section 3.2, we make a comparative analysis of different ST modeling techniques for
action and gesture recognition tasks. Since CNNs are proved to be an effective tool as
a feature extractor for static images, we apply ST modeling techniques on the features
of static images from different time instants extracted by 2D CNNs. All techniques are
trained end-to-end together with the CNN feature extraction part and evaluated on
two publicly available benchmarks: The Jester and the Something-Something datasets.
The Jester dataset contains various dynamic and static hand gestures, whereas the
Something-Something dataset contains actions of human-object interactions. The
common characteristic of these two benchmarks is that the designed architectures need
to capture the full temporal content of videos in order to correctly classify actions and
gestures.

Extraction of features from individual frames with 2D CNNs cannot capture motion
information within consecutive video frames. Therefore, in Section 3.3, we present
Motion Fused Frames (MFFs), a data level fusion strategy that is designed to fuse
motion information into static images to represent the ST states of actions better.

3.1 Introduction

Deep learning has dominated computer vision research, spanning tasks such as image
classification, object detection, action recognition, etc. Currently, nearly all state-of-the-
art solutions for these tasks employ deep learning based architectures, specifically CNNs.
Due to lack of large-scale video datasets, 2D CNNs that are pretrained on ImageNet
dataset [82] have been actively used for video understanding tasks. With the availability
of large-scale datasets, specifically Kinetics dataset [5], 3D CNNs have replaced 2D
CNNs for video understanding tasks since 3D CNNs can capture the ST patterns in
videos inherently without requiring additional mechanisms. However, their drawback
is that the input size should always remain the same for 3D CNNs such as 16 or 32
frames, which makes them not suitable for capturing temporally varying actions. This is
not a problem for activity recognition tasks for Kinetics [127] or UCF101 [6] datasets, as
videos can be successfully classified using even very small snippets of the complete video.
However, there are tasks where the designed architectures need to observe the complete
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Figure 3.1: Frame-level video analysis architecture. One input video containing an action or
gesture is divided into N segments. Afterwards, equidistant frames (m1,m2, ..
mN ) are selected from the segments and fed to a 2D CNN for feature extraction.
Extracted features are fed to a ST modeling block, which produces the final
class score of the input video. In this example, action of taking something from
somewhere is depicted, which is taken from the Something-Something-V2 dataset
[172].

video at once in order to make correct predictions. For these tasks, 2D CNN based
architectures are still useful as the complete videos can be sparsely sampled with the
desired number of segments, and features of the selected frames can be extracted. Still,
these architectures need an extra mechanism to provide ST modeling of the extracted
features.

Section 3.2 aims to analyze and compare various techniques for ST modeling of the
features extracted by a 2D CNN from sparsely sampled frames of action videos. Fig. 3.1
depicts the used ST modeling architecture. A complete action video is divided into a
predefined number of segments. From each segment, a frame is selected (randomly in
training and equidistant in testing) and fed into the 2D CNN to extract its features. In
order to understand which type of action is performed, a ST modeling technique is used.
Although analyzed techniques have been used in several works in the literature, there
has not been any comparative analysis to highlight the advantages of each ST modeling
technique. Section 3.2 tries to fill this gap by comparing each technique in terms of
efficiency (i.e. number of parameters and floating point operations) and classification
accuracy. Section 3.2 is based on our publication Comparative Analysis of CNN-based
Spatiotemporal Reasoning in Video [18].
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The main advantage of applying a video analysis method based on frame-level features,
as in Fig. 3.1, is resource efficiency. Computed frame-level features can be cached in a
queue to be used at the deployed ST modeling technique for online operation. Since
the information within consecutive frames is nearly the same, sparse sampling can be
applied. Moreover, resource efficient 2D CNN architectures [87, 174, 175, 176, 177]
can be used for feature extraction. On the other hand, the major drawback of such
an architecture is that it lacks capturing motion information within frames since every
frame-level feature is extracted independently. Section 3.3 tries to resolve this setback
by proposing a data level fusion strategy of optical flow and RGB modalities. Section 3.3
is based on our publication Motion Fused Frames: Data Level Fusion Strategy for Hand
Gesture Recognition [19].

3.2 Spatiotemporal Modeling Mechanisms

In this section, we have analyzed several ST modeling techniques: Multi-Layer
Perceptron (MLP) based techniques such as simple MLP, Temporal Relational
Network (TRN) and Temporal Segment Network (TSN), Recurrent Neural Network
(RNN) based techniques such as vanilla RNN, gated recurrent unit (GRU), long
short-term memory (LSTM), bidirectional LSTM (B-LSTM) and convolutional LSTM
(ConvLSTM) techniques, Transformer based techniques, and finally fully convolutional
network (FCN) techniques. Fig. 3.1 illustrates the applied frame-level video analysis
architecture. First, a video clip V that contains a complete action is divided into N
segments. Each segment is represented as Sn ∈ Rw×h×c×m of m ≥ 1 sequential frames
with 224 × 224 spatial resolution and c = 3 channels. RGB modality is used in all the
trainings. Afterward, within segments, equidistant frames are selected and passed to a
2D CNN model for feature extraction. Extracted features are first pooled and
transformed to a fixed size of 256 (except for TSN where features are transformed to
number-of-classes) via a one-layer Multi-layer Perceptron (MLP) except for
ConvLSTM and 3D-FCN techniques. For these two techniques, no pooling is applied
at the feature extraction and the number of channels is transformed to 256 by using a
1× 1 2D convolution layer.

For feature extraction, two different CNN models are used: (i) SqueezeNet [87] with
simple bypass and (ii) Inception with Batch Normalization (BNInception) [178]. The
reason to choose these models is that the performance of the investigated ST modeling
techniques can be evaluated with a lightweight CNN feature extractor (SqueezeNet) and
a relatively more complex and heavyweight CNN feature extractor (BNInception). In
this way, CNN-model-agnostic performance of evaluated techniques can be observed.

Extracted features are finally fed to a ST modeling block, which produces the final class
scores of the input video clip. Next, we are going to investigate different ST modeling
techniques in detail that are used in this block.

30



Chapter 3 Video Analysis With Frame-Level Features

Figure 3.2: Simple MLP technique.
Extracted features are
concatenated keeping their order
same to form N dimensional
vector. This vector is fed to a
2-layer MLP to get final class
scores.

Figure 3.3: Temporal Segment Network
(TSN) architecture. Extracted
frame features are transformed
to Number-of-classes dimension
and averaged to get class
conditional scores.

3.2.1 Multilayer Perceptron (MLP) Based Techniques

MLP based ST modeling techniques are simple but effective to incorporate temporal
information. These techniques make use of MLPs once or multiple times. Extracted
features are then fed to these MLP based ST modeling blocks keeping their order
intact. The intuition is that MLPs can capture the temporal information of the
sequence inherently without knowing that it is a sequence at all.

3.2.1.1 Simple MLP

As illustrated in Fig. 3.2, extracted features are concatenated preserving their order.
Then, the concatenated single N × 256 dimensional vector is fed to a 2-layer MLP with
512 and Number-of-classes dimensions. Finally, the output is fed to a softmax layer to
get class conditional scores. This is a simple but effective approach. Combined with
other modalities such as optical flow, infrared and depth, competitive results can be
achieved [19].

3.2.1.2 Temporal Segment Network (TSN)

TSN aims to achieve long-range temporal structure modeling using sparse sampling
strategy [92]. When the original paper was written, TSN achieved state-of-the-art
performance on two activity recognition datasets, namely the UCF101 [6] dataset and
the HMDB [173] dataset.

The original TSN architecture uses the optical flow and RGB modalities, as well as
different consensus methods such as evenly averaging, maximum, and weighted
averaging. Among them, evenly averaging achieved the best results in the original
experiments. Therefore, we have also experimented with evenly averaging for RGB
modality only.

The corresponding TSN approach is depicted in Fig. 3.3. Unlike other ST modeling
techniques, the extracted frame features are transformed into a fixed size of number-
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Figure 3.4: Illustration of Temporal Relation Networks. Features extracted from different
segments of a video by a 2D CNN are fed into different frame relation modules.
Only a subset of the 2-frame, 3-frame, and 4-frame relations are shown in this
example (4 segments), as there are higher frame relations included according to the
segment size.

of-classes instead of 256. Afterward, all extracted features are averaged and fed to a
softmax layer to get class conditional scores.

Although TSN achieved state-of-the-art performance on UCF101 and HMDB
benchmarks at the time, it achieves inferior performance in the Jester and
Something-Something benchmarks. The reason is that averaging causes loss of
temporal information. This does not create a huge problem for the UCF101 and
HMDB benchmarks as temporal order is not critical for these. Correct classification
can even be achieved using only one frame of the complete video. However, the Jester
and Something-Something datasets require the incorporation of the complete video in
order to infer correct class scores.

3.2.1.3 Temporal Relation Network (TRN)

TRNs [91] aim to discover possible temporal relations between observations at multiple
time scales. The main inspiration for this work comes from the relational reasoning
module for visual question answering [179]. The pairwise temporal relations (2-frame
relations) on the observations of the video V are defined as follows:

T2(V ) = hφ

∑
i<j

gθ(fi, fj)

 , (3.1)

where the input is the features of the n selected frames of the video V = {f1, f1, ...,
fn}, in which fi represents the feature of the ith frame segment extracted by a 2D CNN.
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Figure 3.5: M-layered architecture of
Recurrent Neural Networks.

Figure 3.6: The data flow for Bidirectional
LSTM architecture. .

Here, gθ and hφ represent the feature fusing functions, which are MLPs with parameters
θ of size 256 and φ of size Number-of-classes, respectively. These two-frame temporal
relations functions are further extended to higher frame relations, but the order of the
segments should always be kept same in order to learn temporal relations inherently.
Finally, all frame relations can be incorporated in order to get a single final output
MTN (V ) = T2(V ) + T3(V ) + ... + TN (V ), which is referred as multiscale TRN, where
each Td captures temporal relationships between features of d ordered frames. Fig. 3.4
depicts the overall TRN architecture.

3.2.2 Recurrent Neural Networks (RNN) Based Techniques

Recurrent neural networks (RNNs) consist of recurrently connected hidden layers which
are capable of capturing temporal information. Furthermore, they allow the input and
output sequences to vary in size. It is important to note that the hidden layer parameters
do not depend on the time step but are shared across all RNN slices. The ability to
keep information from previous time steps makes the hidden layer work like a memory.
General M-layered RNN architecture is depicted in Fig. 3.5.

In our experiments, we use two different vanilla RNNs, based on the hyperbolic tangent
activation function, and the rectified linear unit (ReLU) activation function, respectively.
Vanilla RNN with hyperbolic tangent activation function can be described by following
equations:

ht = tanh (Whhht−1 +Wxhxt) , (3.2)

yt = Whyht. (3.3)

Generally, we feed the output of the last node to a fully connected layer to obtain a
vector size of the number of classes in the dataset. We also proceed in the same manner
for all other RNN types except for the Bidirectional LSTM.

The output gate decides what the next hidden state should be

3.2.2.1 Long Short-Term Memory (LSTM)

LSTMs [96] are recurrent neural networks consisting of an input gate, a forget gate,
an output gate, a cell state, and a hidden state. The input gate it decides how much
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the current xt contributes to the overall output. The cell state ct is responsible for
remembering the previous state information, and also uses the results of the forget gate
ft, which decides how much of the previous cell state ct−1 flows into the current cell. As
the name suggests, the forget gate can completely erase the previous state if necessary.
Finally, the output gate ot determines the next hidden state ht using the current cell
state ct and previous hidden state ht−1. Following the formulation in [104], the LSTM
cell can be described by the following equations:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) , (3.4)

ft = σ (Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf ) , (3.5)

ct = ft ◦ ct−1 + it ◦ tanh (Wxcxt +Whcht−1 + bc) , (3.6)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct + bo) , (3.7)

ht = ot ◦ tanh (ct) , (3.8)

where ‘◦’ denotes the Hadamard product; W and b refer to weight matrices and bias
vectors, respectively; σ and tanh refer to sigmoid and hyperbolic tangent functions,
respectively.

3.2.2.2 Gated Recurrent Units (GRU)

GRUs [99] are very similar to LSTMs and consist of two gates: an update gate zt and
a reset gate rt. However, unlike LSTMs, GRUs do not have their own memory control
mechanism. Instead, the entire hidden layer information is directed to the next time
step. The advantage of GRUs compared to LSTMs is their simplicity in structure, which
significantly reduces the number of parameters to be learned. GRU can be described by
the following equations:

zt = σ (Wxzxt +Whzht−1 + bz) , (3.9)

rt = σ (Wxrxt +Whrht−1 + br) , (3.10)

h̃t = tanh (Wxhxt +Whh(rt ◦ ht−1) + bh) , (3.11)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (3.12)

where ‘◦’ denotes the Hadamard product; h̃t and ht represent the intermediate memory
and output, respectively.

3.2.2.3 Bidirectional LSTM (BLSTM)

BLSTMs [180] are a special form of LSTMs, but are trained in both directions. The
fully connected layer is obtained by concatenating two halved outputs h1,1 and hm,2,
namely the first output of the positive time direction and the last output of the negative
time direction. The data flow for BLSTM architecture is depicted in Fig. 3.6. We also
investigate the effect of the hidden size by reducing it to half of the hidden size value we
used for the other RNN-structures. This allows us to make meaningful comparisons with
the latter. The reduction of the hidden layer size means that the vector size remains
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unchanged before the last fully connected layer. Consequently, the same number of
output neurons is used for the classification.

3.2.2.4 Convolutional LSTM (ConvLSTM)

The main drawback of conventional LSTM (also GRU and vanilla RNN) in handling
spatiotemporal data is that input-to-state and state-to-state transitions are made by
full connections, where no spatial information is encoded. To overcome this drawback,
convolutional LSTM proposes to use convolutional structures for the mentioned
transitions. The main equations of ConvLSTM are given as follows:

it = σ (Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi) , (3.13)

ft = σ (Wxf ∗ xt +Whf ∗ ht−1 +Wcf ◦ ct−1 + bf ) , (3.14)

ct = ft ◦ ct−1 + it ◦ tanh (Wxc ∗ xt +Whc ∗ ht−1 + bc) , (3.15)

ot = σ (Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ ct + bo) , (3.16)

ht = ot ◦ tanh (ct) , (3.17)

where ‘∗’ and ‘◦’ denote the convolution operator and Hadamard product, respectively.
In order to make use of ConvLSTM technique for ST modeling, we have made some
modifications. First, to keep spatial resolution, we have removed the final pooling layer
of our feature extractor 2D CNN. Then, the output features are concatenated in time
dimension forming a D×W×H tensor. The last output of ConvLSTM is average pooled
and fed to a final fully connected layer and a softmax layer to get class conditional scores.

3.2.3 Transformer Based Techniques

Transformer [111] architectures have dominated the natural language processing tasks
due to their strength in capturing temporal relations with a self-attention mechanism.
Motivated by the recent application of Transformer based architectures to vision tasks
[112, 115, 116, 119, 122], we have also used a Transformer based ST modeling technique.

Figure 3.7: Illustration of the applied Transformer based ST modeling technique.
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Layer/Stride Filter size Output size

Input 1×N×256
Conv1/s(1,2) 3×3 64×N×128
Conv2/s(1,2) 3×3 64×N×64
Conv3/s(1,2) 3×3 128×N×32
Conv4/s(1,2) 3×3 128×N×16
Conv5/s(1,2) 3×3 256×N×8

Conv6/s(1,1) 1×1 NumCls×N×8
AvgPool/s(1,1) N×8 NumCls

Table 3.1: Details of 2D fully convolutional ST modeling architecture.

Fig. 3.7 illustrates the used Transformer based ST modeling approach. We first apply
a linear projection layer, which is a simple linear layer, to project each frame-level
feature from 256 to 768 dimensions. Following popular architectures [112, 122], we
prepend a class token, which is a learnable embedding, in front of the sequence of the
projected features. Afterwards, we add position embeddings to the projected features
to provide positional information. Position embeddings are learnable 1D embeddings
with the size of 1024. In the Transformer encoder, we have used the famous BERT
[181] architecture with only 3 successive transformer layers, each having 12 attention
heads, layer normalization (LN) [182], and MLP blocks. At the position where class
embeddings are inserted, the output of the Transformer encoder is fed to a 2-layer MLP
with 1024 and Number-of-classes dimensions.

3.2.4 Fully Convolutional Network (FCN) Based Techniques

As the name implies, all of the layers of a fully convolutional network are convolutional
layers. FCNs do not contain any linear (fully connected) layers at the end, which is the
typical use for the classification task. In order to utilize FCNs as a ST modeling
technique, output features coming from the 2D CNNs can be concatenated over a
dimension such that convolution operation can be performed over the concatenated
tensor. If the features are pooled, concatenated features form a 2D tensor over which
2D convolutional layers can operate. If pooling is not applied at the feature extraction
stage, concatenated features form a 2D tensor over which 3D convolutional layers can
operate.

3.2.4.1 2D-FCN

The inputs to 2D-FCN are the concatenated feature vectors of each segment resulting in
N×256 such that each row represents features from a segment. The input volume enters
a series of 2D convolutions with stride (1, 2), which keeps the temporal dimension (i.e.
the number of segments) intact throughout convolution operations. The kernel size is
set to 3×3 with the same padding for all convolutions. After applying five convolutions,
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Layer/Stride Filter size Output size

Input 256×D×W×H
Conv1/s(2,1,1) 3×3×3 64×D/2×W×H
Conv2/s(2,1,1) 3×3×3 128×D/4×W×H
Conv3/s(2,1,1) 3×3×3 256×D/8×W×H

Conv4/s(1,1,1) 1×1×1 NumCls×D/8×W×H
AvgPool/s(1,1,1) D/8×W×H NumCls

Table 3.2: Details of 3D fully convolutional ST modeling architecture.

2D convolution with 1 × 1 kernel is applied where the number of channels equals the
number of classes. Finally, average pooling with N ×8 is applied to get class conditional
scores. After each convolution, batch normalization and ReLU are applied. The details
of the used 2D-FCN are given in Table 3.1.

3.2.4.2 3D-FCN

In order to make use of spatial information, similar to ConvLSTM, we have not used a
pooling layer at the end of feature extractor 2D CNN, and output features are
concatenated in the depth dimension to create D×W ×H tensor. This tensor enters a
series of 3D convolutions with stride (2, 1, 1) in order to keep the spatial resolution the
same. The kernel size is set to 3 × 3 × 3 with the same padding for all convolutions.
After applying three convolutions, 3D convolution with 1 × 1 × 1 kernel is applied to
reduce the number of channels to the number of classes, which is pooled later to get
class scores. After each convolution, batch normalization and ReLU are applied. The
details of the used 3D-FCN are given in Table 3.2.

The proposed approach is in fact very similar to rMCx models in [128] except for that
3D convolutions are applied at the very end. It is again similar to ECO architecture
[183], but 2D features in ECO architecture are extracted again at an early stage of the
2D CNN feature extractor. Although 3D CNN architectures can be used for varying
video lengths, we can use 3D convolution layers as a ST modeling technique since we
are using a fixed segment size for all the input videos.

3.2.5 Comparative Analysis

The proposed ST modeling techniques are evaluated on two publicly available
benchmarks: (i) The Jester dataset that contains dynamic and static hand gesture
videos, (ii) the Something-Something dataset that contains videos of various
human-object interactions. The common aspect of both these videos is that the
proposed recognition architectures need to analyze the full content of the video in
order to make a successful recognition, which makes them perfect benchmarks for
analyzing ST modeling techniques.
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Figure 3.8: Histograms of the duration of video clips in Jester [4] (left) and Something-
Something-V2 [172] (right) datasets.

3.2.5.1 Datasets

The details of the Jester [4] and Something-Something-V2 [172] datasets are already
provided in Section 2.5. In addition, we provide the histograms for the duration of
video clips in Jester and Something-Something-V2 datasets in Fig. 3.8. The duration
of gesture clips in the Jester dataset is concentrated between 30 - 40 frames. However,
the Something-Something dataset has videos with relatively varying temporal durations
between 20 and 70 frames, which is the reason why 3D CNN architectures accepting
fixed-size inputs are not suitable for this benchmark. In order to recognize video clips
correctly, the used architectures should incorporate information coming from all parts
of the videos.

3.2.5.2 Training Details

Given the ST modeling architecture in Fig. 3.1, the CNN architecture used to extract
frame features plays a critical role in the performance of the overall architecture. In
order to get CNN-model-agnostic performance of the applied ST modeling techniques,
the SqueezeNet and BNInception models are used. For both models, the input frames
with resolution of 224×224 are used and the features are transformed to 256-dimensional
vectors (Number-of-classes-dimensional vectors for only TSN) via an MLP after the
global pooling layer except for ConvLSTM and FCN3D. For these two ST modeling
approaches, spatial resolution (13 × 13 and 7 × 7 for SqueezeNet and BNInception) is
preserved by removing the final pooling layer, and 1 × 1 convolution layer is used to
transform the number of channels to 256. For recurrent architectures, always single
hidden layer is used with the hidden state dimension of 256. The only exception is for
Bidirectional LSTM, where we used a hidden state dimension of 128 in order to have the
same dimension before the final fully connected layer. For all experiments, CNN models
that are used for frame-level feature extraction are initialized with ImageNet pretraining
weights and all models are trained end-to-end.
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Learning: Stochastic gradient descent (SGD) with standard categorical cross-entropy
loss is applied. For momentum and weight decay, 9 × 10−1 and 5 × 10−4 are used,
respectively. The learning rate is initialized with 1 × 10−3 and reduced twice with a
factor of 10−1 after validation loss converges.

Regularization: Several regularization techniques are applied in order to reduce
over-fitting and achieve a better generalization. Weight decay of γ = 5× 10−4 is applied
to all parameters of the architecture. A dropout layer is applied after the global pooling
layer of 2D CNN architectures with a ratio of 0.3. Moreover, data augmentation of
multiscale random cropping is applied for both datasets and random horizontal flip
is applied for the Something-Something dataset. Random horizontal flipping is not
performed for the training of the Jester dataset since this changes the annotations of
some classes.

Implementation: The complete ST modeling architecture is implemented and
trained end-to-end in PyTorch. We make our code publicly available at
https://github.com/fubel/stmodeling for the reproducibility of the results.

3.2.5.3 Resource Efficiency Analysis

For real-time systems, the resource efficiency of the applied ST modeling techniques is
as essential as the achieved classification accuracy. Therefore, we have investigated the
number of parameters and floating point operations (FLOPs) of each technique, which
can be found in Table 3.3. For all calculations, we have used 8-segment for the Jester
dataset.

Out of all ST modeling techniques, TSN comes for free since it requires no
parameters and there is only averaging operation. However, temporal information is
lost due to averaging, which results in inferior performance compared to simple-MLP
or TRN techniques.

Transformer based approach is the most costly technique in terms of the number
of parameters, although it achieves the best performance on the Something-Something
dataset. It contains around 48 M parameters and requires 194 MFLOPs. Its performance
is worse than ConvLSTM and 3D-FCN on the Jester dataset since the latter ones keep the
spatial resolution of the extracted features, which is critical to capture motion patterns.

ConvLSTM and 3D-FCN do not employ pooling at the end of the feature extraction,
hence require relatively high number of FLOPs. Specifically, ConvLSTM is the most
costly technique in terms of the number of FLOPs. The number of FLOPs for SqueezeNet
is 132/72 = 3.48 times higher than BNInception due to the output resolution of feature
maps. In terms of the number of parameters, ConvLSTM and 3D-FCN contain 4.73 M
and 1.56 M parameters, respectively.

On the other hand, the resource efficiency of the feature extractors (i.e. 2D CNNs) is
also important. The BNInception architecture contains 10.27 M parameters and requires
2049 MFLOPs to extract features of a frame with resolution 224× 224. On the other
hand, the SqueezeNet architecture contains only 0.72 M parameters and requires 269
MFLOPs to extract the features of a same-resolution frame.
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Model MFLOPs Params
Accuracy (%)

Jester (8 seg.) Something (8 seg.) Something (16 seg.)

Squeez. BNIncep. Squeez. BNIncep. Squeez. BNIncep.

Simple-MLP 1.07 1.06M 87.28 92.80 31.89 46.35 33.96 47.01
TSN 0.001 0.00M 72.84 82.74 20.91 37.28 22.15 36.22
TRN-multiscale 6.00 2.34M 88.39 93.20 33.73 46.91 34.38 47.73

RNN tanh 1.06 0.14M 70.51 79.53 16.12 25.17 14.48 21.64
RNN ReLU 1.06 0.14M 78.33 88.15 21.40 36.01 15.84 24.88
LSTM 4.24 0.53M 84.28 90.80 25.24 39.04 28.25 42.83
GRU 3.18 0.40M 83.10 90.86 25.40 40.69 30.24 43.31
B-LSTM 3.19 0.40M 84.87 91.12 25.04 39.35 27.88 42.41
ConvLSTM 1850.10/6380.93 4.73M 89.57 93.38 31.31 46.40 32.86 46.64

2D-FCN 77.19 0.56M 88.11 93.64 27.72 39.17 29.95 40.56
3D-FCN 152.32/525.36 1.56M 90.19 94.07 37.10 46.66 37.59 47.37

Transformer 194.10 47.87M 88.52 92.86 36.48 48.25 38.75 49.21

Table 3.3: Comparison of different ST modeling techniques over classification accuracy,
number of parameters and computation complexity (i.e., number of Floating Point
Operations - FLOPs). Methods are evaluated using 8 and 16 segments on validation
sets of Jester-V1 and Something-Something-V2 datasets. The number of parameters
and FLOPs are calculated for only ST modeling blocks excluding CNN feature
extractors for Jester dataset using 8 segments. FLOPs values of ConvLSTM and
3D-FCN are reported separately for BNInception (left) and SqueezeNet (right) since
their spatial resolution is 7×7 and 13×13, respectively.

3.2.5.4 Results Using Jester Dataset

For the Jester dataset, the spatial content for all classes is the same: A hand in front of
a camera performing a gesture. Therefore, a designed architecture should capture the
form, position, and motion of the hand in order to recognize the correct class.

Comparative results of different ST-modeling techniques for the Jester dataset can be
found in Table 3.3. Inspired from [19], we have used eight segments for this benchmark
as it achieves the best performance for MFF architecture. Compared to BNInception,
architectures with SqueezeNet have 5-10% inferior classification accuracy for the same
ST modeling technique. However, the technique-wise comparison remains similar within
the same 2D CNN backbone.

Out of all ST modeling techniques, TRN-multiscale, 3D-FCN and ConvLSTM stand
out for classification accuracy. Considering the resource efficiency, the simple-MLP
model can also be preferred over TRN-multiscale. Surprisingly, RNN based methods
except for ConvLSTM, which come to mind first for modeling sequences, perform
worse than these techniques.

The superiority of ConvLSTM over other RNN based techniques and superiority of 3D-
FCN over 2D-FCN validates the importance of the spatial content. Transformer based
approach, which is recently the most popular sequence modeling approach, also performs
worse than the ConvLSTM and 3D-FCN. On the Jester dataset, the best performing
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technique is 3D-FCN in terms of accuracy. However, preserving the spatial resolution
brings the burden of increased computation and number of parameters. As expected,
TSN yields the lowest classification accuracy as the averaging operation causes a loss of
temporal information.

3.2.5.5 Results Using Something-Something Dataset

Compared to the Jester dataset, the Something-Something dataset contains much more
classes with more complex spatial content. In order to identify the correct class label,
the designed architectures need to extract the spatial content and temporally link this
content successfully. Therefore, the frame feature extractors (i.e., 2D CNNs) are critical
for the overall performance.

Comparative results of different ST-modeling techniques for the Something-Something
dataset can be found in Table 3.3. Besides the 8-segments architectures, we have also
made experiments for 16-segments architectures as the spatial complexity of the dataset
is higher compared to Jester. Due to this complexity, architectures with SqueezeNet have
10% to 15% inferior classification accuracy compared to architectures with BNInception.

Compared to 8-segments, 16-segments architectures perform better. However,
performance improvement is not as drastic as the effect of feature extractors. This
shows that the main complexity of this task comes from the complexity of scenes, not
the complexity of finer temporal details. In order to get better performance on the
Something-Something dataset, more complex architectures with deeper and wider
structures can be preferred.

Out of all ST modeling techniques, Transformer based approach achieves the best
classification accuracy for the 16-segments case. However, its computational complexity
is significantly higher compared to RNN based and MLP based approaches. 3D-FCN
and ConvLSTM also achieve close to Transformer based approach in terms of accuracy,
but require significantly more number of FLOPs. TRN-multiscale also stands out for
its balance between resource efficiency and accuracy. All RNN based techniques achieve
8-15% worse compared to Transformer based approach. Similar to the Jester dataset,
Vanilla RNN and TSN yield the lowest accuracies showing the importance of temporal
information for this task.

3.2.6 Summary

In this section, we have analyzed various techniques for CNN-based spatiotemporal
modeling techniques and compared them based on a consistent 2D CNN feature
extraction of sparsely sampled frames. The individual methods were then evaluated on
the Jester and Something-Something datasets. It has been shown that the results
heavily depend on the CNN models that are used for feature extraction and the
number of used frames. For the Jester dataset, the 3D-FCN technique achieves the
best results using both SqueezeNet and BNInception. On the Something-Something
dataset, Transformer based approach outperforms all other techniques. It has also been
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shown that simple vanilla RNNs are unable to understand the complex spatiotemporal
relationships of the data. All the more complex RNNs tested perform very similarly.

Interestingly, the TSN model, which showed state-of-the-art performance on the
UCF101 and HMDB benchmarks, performs rather poorly in our experiments, which
shows the importance of maintaining the temporal information. Among all techniques,
Transformer based approach contains the highest number of parameters and requires
the highest FLOPs. Moreover, ConvLSTM and 3D-FCN require a relatively high
number of parameters and FLOPs compared to RNN and MLP based techniques, since
they do not employ pooling at the feature extractor and preserve spatial resolution.
While some models like Transformer, TRN, LSTM, GRU, and B-LSTM can benefit
from an increase in the number of segments, Vanilla RNNs and the TSN model can
suffer from overfitting. One possibility for future research would be to develop resource
efficient ST modeling techniques that preserve the spatial resolution of the extracted
features.
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3.3 Incorporation of Motion Information to Frame-Level
Features

This section addresses the problem of capturing motion information for video analysis
methods with frame-level features.

Acquiring spatiotemporal states of actions is the most crucial step for action
classification. In this section, we propose a data level fusion strategy, Motion Fused
Frames (MFFs), designed to fuse motion information into static images as better
representatives of spatiotemporal states of actions. MFFs can be used as input to any
deep learning architecture with very little modification on the network. We evaluate
MFFs on hand gesture recognition tasks using three video datasets - Jester, ChaLearn
LAP IsoGD and NVIDIA Dynamic Hand Gesture Datasets - which require capturing
long-term temporal relations of hand movements. Our approach obtains very
competitive performance on Jester and ChaLearn benchmarks with the classification
accuracies of 96.28% and 57.4%, respectively, while achieving state-of-the-art
performance with 84.7% accuracy on the NVIDIA benchmark.

This section is based on our publication Motion Fused Frames: Data Level Fusion
Strategy for Hand Gesture Recognition [19].

3.3.1 Motivation

Action and gesture recognition have become very popular topics within the computer
vision field in the last few years, especially after the application of deep learning in this
domain. Similar to other areas of computer vision, the recent work on action and gesture
recognition is mainly based on Convolutional Neural Networks (CNNs).

The temporal information in videos has been analyzed using different modalities such
as RGB, depth, infrared, and flow images as input. The results show that although each
of these modalities provides good recognition performances alone, the fusion analysis of
these modalities further increases the recognition performance [94, 93, 133].

The applied fusion strategy plays a critical role in the performance of multimodal
gesture recognition. Different modalities can be fused either on the data level, feature
level, or decision level. Feature and decision level fusions are the most popular fusion
strategies that most of the CNNs currently apply [94, 93]. Although they perform pretty
well on action and gesture recognition tasks, they have some drawbacks: (i) Usually a
separate network must be trained for each modality, which means the number of trainable
parameters is multiple times of a single network; (ii) at most of the time, pixel-wise
correspondences between different modalities cannot be established since fusion is only
on the classification scores or final fully connected layers; (iii) applied fusion scheme
might require complex modifications on the network to obtain good results.

The data level fusion is the most cumbersome one since it requires frame
registration, which is a difficult task if the multimodal data is captured by different
hardware. However, the drawbacks arising at the feature and decision level fusion
methods disappear inherently. Firstly, a single network training is sufficient, which
reduces the number of parameters multiple times. Secondly, since different modalities
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Figure 3.9: Motion Fused Frames (MFFs): Data level fusion of optical flow and color modalities.
Appending optical flow frames to static images makes spatial content aware of which
part of the image is in motion and how the motion is performed. Top: ’Swipe-right’
gesture. Bottom: ’Showing two fingers’ gesture.

are fused at the data level, pixel-wise correspondences are automatically established.
Lastly, any CNN architecture can be adopted with very little modification.

In this section, we propose a data level fusion strategy, Motion Fused Frames
(MFFs), using color and optical flow modalities for hand gesture recognition. MFFs
are designed to fuse motion information into static images as better representatives of
spatiotemporal states of actions. This makes them favorable since hand gestures are
composed of sequentially related action states, and slight changes in these states form
new hand gestures. To the best of our knowledge, it is the first time that data level
fusion is applied for deep learning based action and gesture recognition.

An MFF is generated by appending optical flow frames to a static image as extra
channels. The appended optical flow frames are calculated from the consecutive previous
frames of the selected static image. Fig. 3.9 shows two MFF examples: ’Swipe-right’
gesture (top) and ’showing two fingers’ gesture (bottom). In the top example of Fig. 3.9,
by looking at only the static image, one can infer the information of a lady holding her
hand upward. However, incorporating optical flow frames into the static images brings
extra motion information, which shows that the hand is actually moving from left to
right making it a swipe-right gesture.

We evaluated MFFs on three publicly available datasets, which are Jester Dataset
[4], ChaLearn LAP IsoGD Dataset (ChaLearn) [170] and NVIDIA Dynamic Hand
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Gesture Dataset (nvGesture) [133]. Our approach obtains very competitive
performance on Jester and ChaLearn datasets with the classification accuracies of
96.28% (2nd place in the leaderboard) and 57.4%, respectively, while achieving
state-of-the-art performance with 84.7% accuracy on the nvGesture dataset.

3.3.2 Related Work

The literature review on action and gesture recognition is already provided in Section 2.1
and Section 2.2, respectively. Here, we will provide related work on the fusion of multiple
modalities for action and gesture recognition.

Fusion of information from different modalities is also a common approach in CNNs to
increase recognition performance. There are three main variants for information fusion
in deep learning models: data level, feature level and decision level fusions. Within
each fusion strategy, still different approaches exist. For instance, for decision level
fusion, averaging [93, 133], concatenating [91] or consensus voting can be applied on the
scores of different modalities trained on separate networks. For the feature level fusion
case, features from different layers of the CNNs can be fused at different levels [94], or
different schemes can be proposed as in [162], which proposes a canonical correlation
analysis based fusion scheme.

Out of all fusion strategies, the data level fusion is the least used one so far since
data preparation requires effort especially when different hardware is used for different
modalities. However, it has very critical advantages over feature and decision level
fusions like training only a single network, or automatically establishing the pixel-wise
correspondence between different modalities. Thus, we propose a data level fusion
strategy, Motion Fused Frames, to draw attention to these advantages.

3.3.3 Methodology

In this section, we describe Motion Fused Frames and the network architecture used for
hand gesture recognition. Particularly, we first define MFFs and explain how to form
them. Then, we introduce the network architecture which takes advantage of this data
fusion strategy. Finally, we describe the training details on experimented datasets.

3.3.3.1 Motion Fused Frames

A single RGB image usually contains static appearance information at a specific time
instant and lacks contextual and temporal information about previous and next frames.
As a result, single video frames cannot represent the actual states of actions completely.

Motion fused frames are inspired to be better representatives of action states. As the
name implies, they are composed by fusing motion information into static RGB images.
Motion information is simply optical flow frames that are calculated from consecutive
previous frames, and the fusion method is achieved by appending optical flow frames to
RGB frames as extra channels, as illustrated in Fig. 3.9. Therefore, an MFF contains
(i) spatial content contained in RGB channels, and (ii) motion content contained in
opticalflow channels. Since optical flow images are computed from RGB images, the
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Figure 3.10: Network Architecture for N -segment 3-motion-1-frame MFF (N -MFFs-3f1c): One
input video is divided into N segments, and equidistant frames are selected from
the created segments. 3 optical flow frames calculated from previous frames are
appended to RGB frames as extra channels, which forms the Motion Fused Frames
(MFFs). Each MFF is fed into a CNN to extract a feature vector representing
the spatiotemporal state of the segment. Extracted features are concatenated at
the fusion layer and passed to fully connected layers to get class scores.

approach needs in fact only the RGB modality, which avoids the need for enhanced
sensors providing several modalities like depth and infrared images.

Blending motion information into contextual information, as in MFFs, ensures pixel-
wise correspondence automatically. In other words, spatial content is aware of which
part of the image is in motion and how the motion is performed.

The quality of motion estimation techniques plays a critical role in the performance
of gesture recognition. In [184], the performance of several optical flow estimation
techniques are tested to investigate the dependency of action recognition on the quality
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of motion estimation. It has been experimentally proved that Brox flow [48] performs
better compared to MPEG flow [185] and Farneback [47] techniques. Therefore, we
have computed horizontal and vertical components of optical flow frames using the
Brox technique. We have scaled optical flow frames according to the maximum of the
absolute values of horizontal and vertical components and mapped discretely into the
interval [0, 255]. Using this step, the range of optical flow frames becomes the same as
RGB images.

3.3.3.2 Network Architecture

In this study, we use a deep convolutional neural network architecture applied on
segmented video clips, as illustrated in Fig. 3.10. The architecture consists of 4 parts:
The formation of MFFs, a deep CNN to extract spatiotemporal features from MFFs,
the fusion of features from different segments and fully connected layers for global
temporal modeling, and finally a softmax layer for predicting class-conditional gesture
probabilities.

We first divide entire video clip V into N segments. Each video segment is represented
as Sn ∈ Rw×h×crgb×m of m ≥ 1 sequential frames of size w × h pixels with crgb = 3
channels. Then, within segments, equidistant color frames are selected randomly. Each
segment is transformed with M into an MFF mn by appending precomputed optical
flow frames to the selected color frames:

M : Rw×h×crgb×m → Rw×h×cmff ,

where mn =M(Sn).
(3.18)

The number of channels in an MFF can be calculated with cmff = crgb + n.cflow,
where n is the number of optical flow frames appended for each segment, and cflow
is the number of channels in flow frames that is equal to 2 containing horizontal and
vertical components. For instance, an MFF containing 3 flow and 1 color frames, as in
Fig. 3.9, has cmff = 3 + 3.2 = 9 channels. Each MFF mn is then transformed into a
feature representation fn by a CNN F :

F : Rw×h×cmff → Rq, where fn = F(mn). (3.19)

After extracting feature representations fn of each MFF, we concatenate them by
keeping their order intact:

(f1 ⊕ f2 ⊕ ...⊕ fN ) ∈ RN×q, (3.20)

where ⊕ refers to concatenation. We pass this vector into a two-layer multilayer
perceptron (MLP). The intuition behind this is that the MLP will be able to infer the
temporal features from the sequence inherently, without having to know that it is a
sequence at all. Finally, a softmax layer is applied to get the class-conditional
probabilities of each class. ReLU nonlinearity is applied between all convolutional and
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fully connected layers except for the final fully connected layer which has no
nonlinearity.

A network architecture dividing gesture videos into N segments and transforming each
segment into an MFF by appending n optical flow frames to 1 color image is referred as
N -MFFs-nf1c.

3.3.3.3 Training Details

The CNN architecture used to extract features from MFFs is critical for the
performance of the overall network, and it has been experimented that deeper
architectures like ResNet [88] perform slightly better results. However, we aim to
evaluate the effectiveness of the proposed data level fusion strategy, Motion Fused
Frames, in hand gesture recognition. Therefore, following the design choices of [186],
we adopted Inception with Batch Normalization (BNInception) [178] pretrained on
ImageNet as baseline architecture due to its good balance between accuracy and
efficiency. We also apply the same training strategies of partial-BN (freezing the
parameters of all Batch Normalization layers except the first one) and adding an extra
dropout layer after the global pooling layer in BNInception architecture. For fc6, fc7
and fc8 layers in Fig. 3.10, we used one-layer MLPs with 256, 512 and class-number
units, respectively.

For the Jester dataset, we modify the weights of the first convolution layer of the
pretrained BNInception model to accommodate MFFs. Specifically, the weights across
the RGB channels are averaged and replicated through the appended optical flow
channels. For ChaLearn and nvGesture datasets, training is started with the
pretrained models on the Jester dataset.

Learning. We use stochastic gradient descent (SGD) applied the to mini-batch of 32
videos with standard categorical cross-entropy loss. The momentum and weight decay
are set to 0.9 and 5 × 10−4, respectively. The learning rate is initialized with 1 × 10−3

for all the experiments. For the Jester dataset, the learning rate is reduced twice with
a factor of 10−1 after 25th and 40th epochs, and optimization is completed after 5 more
epochs. For the ChaLearn dataset, the learning rate is reduced twice with a factor of
4−1 after 15th and 30th epochs, and optimization is completed after 10 more epochs.
Finally, for the nvGesture dataset, the learning rate is reduced twice with a factor of 4−1

after 40th and 80th epochs, and optimization is completed after 20 more epochs. These
training rules are applied for the 8-MFFs-3f1c architecture and approximately the same
for the other architectures.

Regularization. We apply several regularization techniques to reduce over-fitting.
Weight decay (γ = 5×10−4) is applied to all parameters of the network. We use a dropout
layer after the global pooling layer (before fc6 in Fig. 3.10) of BNInception architecture.
For the Jester dataset, the dropout ratio in this layer is kept at 0.8 throughout the whole
training process. However, over-fitting is much more severe for ChaLearn and nvGesture
datasets since the average number of training samples per class is much smaller compared
to the Jester dataset (4391, 144 and 42 training samples per class for Jester, ChaLearn
and nvGesture datasets, respectively). Therefore, we apply an additional dropout layer
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after the fc7 layer for these datasets. The dropout ratio is initialized with 0.5 for both
dropout layers and increased to 0.8 and 0.9 when the learning rates are reduced. Gradual
increase of dropout ratio helps faster convergence while keeping over-fitting in control,
which helps to save a considerable amount of training time.

Data Augmentation. Various data augmentations steps are applied in order to
increase the diversity of the training videos: (a) Random scaling (±20%), (b) random
spatial rotation (±20◦), (c) spatial elastic deformation [187] with pixel displacement of
α = 15 and standard deviation of the smoothing Gaussian kernel σ = 20 pixels (applied
with probability 50%), (d) random cropping, scale jittering and aspect ratio jittering
as in [186], (e) flipping horizontally with probability 50% (for only ChaLearn dataset),
(f) temporal scaling (±10%) and jittering (± 2 frames) (for only nvGesture dataset).
All these data augmentation steps are applied online and the input is finally resized to
224× 224 for network training.

Implementation. We have implemented our approach in PyTorch [188] with a single
NVIDIA Titan Xp GPU. We make our code publicly available at https://github.com/
okankop/MFF-pytorch for the reproducibility of the results.

3.3.4 Experiments

The performance of the proposed approach is tested on three publicly available datasets:
Jester dataset, Chalearn LAP RGB-D Isolated Gesture dataset and NVIDIA Dynamic
Hand Gesture dataset. For the evaluation part, center cropping with equidistant frames
(middle frame in each segment) in the videos is used for all the datasets.

3.3.4.1 Results Using Jester Dataset

The details of the Jester dataset are provided in Section 2.5. We initially investigated
the effects of the number of appended optical flow frames on the performance of single
segment architectures (1-MFFs-nf1c). So, we took the complete gesture videos as one
segment and tried to classify them using a single RGB image with varying number of
appended optical flow frames. We started with 0 optical flow frames and gradually
increased it to 11. The results in the first part of Table 3.4 show that every extra optical
flow frame improves the performance further (from 63.60% to 82.93%). The performance
boost is significant for the very first optical flow frame with around 9% accuracy gain.

Secondly, we analyze the effects of the segment number selection for gesture videos.
Fixing the number of appended optical frames to 3, we have experimented with 2, 4, 6,
8, 10 and 12-MFFs architectures. The results in the second part of Table 3.4 show that
the performance increases as we increase the number of segments until reaching the 8
segmented architecture. Then the performance decreases gradually as we keep increasing
the segment number. In this analysis, it is found that 8 segmented architecture performs
best.

Lastly, we analyze the effects of the number of appended optical flow frames on the best
performing segment size (8-MFFs-nf1c) by varying the number of optical flow frames
from 0 to 3. Results in the last part of Table 3.4 show that every extra optical flow
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Model Top1 Acc.(%) Top5 Acc.(%)

1-MFFs-0f1c 63.60 92.44
1-MFFs-1f1c 72.83 93.96
1-MFFs-2f1c 73.66 94.10
1-MFFs-3f1c 74.09 94.17
1-MFFs-5f1c 78.39 95.84
1-MFFs-7f1c 81.15 96.69
1-MFFs-9f1c 82.69 97.06
1-MFFs-11f1c 82.93 97.07

2-MFFs-0f1c 75.65 94.40
2-MFFs-3f1c 84.22 97.84
4-MFFs-3f1c 92.18 99.41
6-MFFs-3f1c 94.72 99.66
8-MFFs-3f1c 95.36 99.75
10-MFFs-3f1c 95.12 99.69
12-MFFs-3f1c 94.73 99.69

8-MFFs-0f1c 92.90 99.41
8-MFFs-1f1c 94.20 99.61
8-MFFs-2f1c 94.67 99.62
8-MFFs-3f1c 95.36 99.75

8-MFFs-3f1c
(5 crop)

96.33 99.86

Table 3.4: Results on the validation set of Jester dataset V1.

frame again boosts the performance further. However, the performance boost is more
significant for smaller segment architectures like 2-MFFs or 1-MFFs. Out of all models,
8-MFFs-3f1c with 5-crop data augmentation shows the best performance.

We evaluate the 8-MFFs-3f1c architecture on the test set and submit our predictions
to the official leaderboard of the Jester dataset [4]. At the submission time, our approach
is in the second place as shown in Table 3.5.

3.3.4.2 Results Using ChaLearn Dataset

The details of the ChaLearn dataset can be found in Section 2.5. Experiments on the
Jester dataset proved that applying MFFs on 8 segmented videos performs better than
applying smaller segments. Therefore, we have experimented MFFs on 8 segmented
videos with varying the number of optical flow frames. Acquired results for models
8-MFFs-nf1c, where n ranges from 0 to 3, are given in Table 3.6 and Table 3.7 for
validation and test sets, respectively. Compared to the Jester dataset, there is a
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Model Top1 Acc.(%)

C3D 94.62
Multiscale TRN [91] 94.78
SJ 94.87
Guangming Zhu 95.01
DIN 95.31
NUDT PDL 95.34
MFNet 96.22
8-MFFs-3f1c 96.28
DRX3D 96.60

Table 3.5: Results on the test set of Jester dataset V1.

remarkable performance boost (accuracy gain of 15.6% and 13.9% for validation and
test sets, respectively) as the number of optical flow frames increases. It must be noted
that created MFFs represents a larger time span for the ChaLearn dataset since frames
are captured with a rate of 10 fps. This gives an intuition that acquired performance
at Jester dataset can also be boosted by appending flow frames from earlier
timestamps. However, we leave this issue as a future research work.

The best performing model (8-MFFs-3f1c) is compared with several state-of-the-art
methods. According to Table 3.8, best results are reported in case three modalities are
used at the same time. Our approach performs better than most of the approaches
reported in the table without using the depth modality, which is a significant advantage
of the proposed approach.

3.3.4.3 Results Using nvGesture Dataset

The details of the nvGesture dataset can be found in Section 2.5. Since the gesture
videos are weakly segmented in the nvGesture dataset, we cropped the first and the last
10 frames and used the center 60 frames for the test set evaluation, where the gestures
occur most of the time.

Method Modality Acc.(%)

8-MFFs-0f1c RGB 41.3
8-MFFs-1f1c RGB + Flow 48.4
8-MFFs-2f1c RGB + Flow 50.0
8-MFFs-3f1c RGB + Flow 56.9

Table 3.6: Results on the validation set of
ChaLearn dataset.

Method Modality Acc.(%)

8-MFFs-0f1c RGB 42.8
8-MFFs-1f1c RGB + Flow 53.7
8-MFFs-2f1c RGB + Flow 53.9
8-MFFs-3f1c RGB + Flow 56.7

Table 3.7: Results on the test set of
ChaLearn dataset.
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Method Modality Acc.(%)

8-MFFs-0f1c RGB 41.36
ResC3D [162] RGB 45.07
ResC3D [162] Depth 48.44
ResC3D [162] Flow 44.45

Scene Flow [189] RGBD 36.27
Wang et al. [190] RGBD 39.23
Pyramidal C3D [191] RGBD 45.02
2SCVN+3DDSN [192] RGBD 49.17
32-frame C3D [193] RGBD 49.20
C3D+LSTM [194] RGBD 51.02

8-MFFs-3f1c RGB + Flow 56.9
8-MFFs-3f1c

(5 crop)
RGB + Flow 57.4

Zhang et al. [195] RGBD + Flow 58.65
Wang et al. [139] RGBD + Flow 60.81
ResC3D [162] RGBD + Flow 64.40

Table 3.8: Comparison with state-of-the-art
on the validation set of ChaLearn
dataset.

Method Modality Acc. (%)

HOG+HOG2 [196] RGB 24.5
Spatial stream

CNN [93]
RGB 54,6

iDT-HOG [197] RGB 59.1
C3D [85] RGB 69.3
R3DCNN [133] RGB 74.1

iDT-HOF [197] Flow 61.8
Temporal stream

CNN [93]
Flow 68,0

iDT-MBH [197] Flow 76.8
R3DCNN [133] Flow 77.8

Two stream
CNN [93]

RGB + Flow 65,6

iDT [197] RGB + Flow 73.4
R3DCNN [133] RGB + Flow 79.3
6-MFFs-3f1c RGB + Flow 82.4
8-MFFs-3f1c RGB + Flow 84.7

R3DCNN [133] all modalities* 83.8

Human [133] RGB 88.4

Table 3.9: Comparison with state-of-the-art
on nvGesture dataset. *All
modalities refer to RGB, optical
flow, depth, infrared and infrared
disparity modalities.

Although this training set is a lot smaller compared to other datasets, using pretrained
models on the Jester dataset helps us to remove the over-fitting impact considerably.
In Table 3.9, we give the comparison of our approach with the state-of-the-art models.
Compared to the popular C3D and two stream CNN architectures, our approach can
achieve 14.4% and 19.1% accuracy gain, respectively. Our approach performs state-of-
the-art performance on this benchmark, although we only use color and optical flow
modalities.

The dataset providers also evaluated the human performance by asking six subjects
to label each gesture video in the test set for the color modality. Gesture videos are
presented to human subjects in random order and only once to be consistent with
machine classifiers. Human accuracy is reported as 88.4% for color modality.

3.3.5 Summary

This section presents a novel data level fusion strategy, Motion Fused Frames, by fusing
motion information (optical flow frames) into RGB images for hand gesture recognition.
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We evaluated the proposed MFFs on several recent datasets and acquired competitive
results using only optical flow and color modalities. Our results show that the fusion of
more motion information improves the performance further in all cases. The performance
increase at the first appended optical flow frame is especially significant.
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Video Analysis With Clip-Level Features

This chapter presents video analysis with clip-level features. First, motivations of using
clip-level features are mentioned in Section 4.1. Then, Section 4.2 presents a
single-stage spatiotemporal action localization architecture, which makes use of
clip-level features extracted by 3D CNNs. Afterwards, Section 4.3 presents several
resource efficient 3D CNN architectures. Section 4.4 addresses the challenges of online
hand gesture recognition by using clip-level features in a two-level hierarchical
architecture. Finally, Section 4.5 presents Dissected 3D CNN architecture, which
applies a caching mechanism in order to reduce the computational complexity for the
extraction of clip-level features at online operation.

4.1 Introduction

A video is a 3D tensor with 2 spatial dimensions and 1 temporal dimension. Therefore,
it is a natural choice to apply 3D convolutions to capture spatiotemporal information in
video clips. Fig. 4.1 illustrates the application of 2D and 3D convolution operations.

In recent years, 3D CNNs have dominated the tasks related to video understanding
due to their supremacy at capturing motion patterns. In general, 3D CNNs contain
two main advantages: (i) They capture clip-level features by operating directly on
video clips without needing a separate ST modeling technique. We note that the ST
modeling techniques explained in Section 3.2 can still be applied over clip-level features
to cover much longer temporal content. (ii) They achieve superior results compared to
the methods based on frame-level features. Due to these advantages, we also make use
of 3D CNNs in all sections of this chapter, mostly addressing their drawbacks. As an
example, Section 4.2 makes use of a 3D CNN in its spatiotemporal branch to extract
clip-level features for a unified action localization architecture.

On the other hand, there are also several drawbacks of 3D CNNs: (i) 3D CNNs
require significantly more parameters and computations compared to their 2D
counterparts which make them harder to train and prone to overfitting. Section 4.3
addresses this drawback by presenting several resource efficient 3D CNN architectures.
Moreover, in order to save resources at online operation when the system needs to be
idle, Section 4.4 presents a two-level hierarchical architecture. (ii) 3D CNNs always
operate on inputs with fixed size (mostly 8, 16 or 32 frames). (iii) 3D CNNs mostly
apply temporal downsampling in order to reduce the computational cost at the later
stages of the network, which results in an architecture that does not preserve temporal
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(a) 2D convolution

(b) 2D convolution on multiple frames

(c) 3D convolution

Figure 4.1: Comparison of 2D and 3D convolution operations. Adapted from [85].

resolution. (iv) At online operation, 3D CNNs are mostly used with a sliding window
approach. However, using a smaller stride compared to input clip length results in
resource waste due to reprocessing frames in the overlapping regions. In order to
address the later 3 drawbacks, Section 4.5 presents Dissected 3D CNN architecture.

Although there is a rising trend in the research community to apply transformer based
approaches for the vision tasks [112, 113, 115, 118, 119, 120, 122], 3D CNNs are still
been actively used in video understanding tasks [132, 198, 199, 200, 201]. They are
specifically valuable for clip-level feature extraction.
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4.2 Spatiotemporal Action Localization With Clip-Level
Features

This section presents an architecture, which makes use of a 3D CNN in its spatiotemporal
branch to extract clip-level features for the task of spatiotemporal action localization.

Spatiotemporal action localization requires the incorporation of two sources of
information into the designed architecture: (1) temporal information from the previous
frames and (2) spatial information from the key frame. Current state-of-the-art
approaches usually extract these two types of information with separate networks and
use an extra mechanism for fusion to get detections. In this work, we present You Only
Watch Once (YOWO), a unified CNN architecture for real-time spatiotemporal action
localization in video streams. YOWO is a single-stage architecture with two branches
to extract temporal and spatial information concurrently and predict bounding boxes
and action probabilities directly from video clips in one evaluation. Since the whole
architecture is unified, it can be optimized end-to-end. The YOWO architecture is fast
providing 34 frames-per-second on 16-frames input clips and 62 frames-per-second on
8-frames input clips, which is currently the fastest state-of-the-art architecture on
spatiotemporal action localization task. Remarkably, YOWO outperforms the previous
state-of-the art results on J-HMDB-21 and UCF101-24 with an impressive
improvement of ∼3% and ∼12%, respectively. Moreover, YOWO is the first and only
single-stage architecture that provides competitive results on the AVA dataset. This
section is based on our publication You Only Watch Once: A Unified CNN
Architecture for Real-Time Spatiotemporal Action Localization [20].

4.2.1 Motivation

The topic of spatiotemporal human action localization has been spotlighted in recent
years, which aims to not only recognize the occurrence of an action but also localize it
in both time and space. In such a task, compared to object detection in static images,
temporal information plays an essential role. Finding an efficient strategy to aggregate
spatial as well as temporal features makes the problem even more challenging. On the
other hand, real-time human action detection is becoming increasingly crucial in
numerous vision applications, such as human-computer interaction (HCI) systems,
unmanned aerial vehicle (UAV) monitoring, autonomous driving, and urban security
systems. Therefore, it is desirable and worthwhile to explore a more efficient
framework to tackle this problem.

Inspired by the remarkable object detection architecture Faster R-CNN [109], most
state-of-the-art works [147, 146] extend the classic two-stage network architecture to
action detection, where a number of proposals are produced in the first stage, then
classification and localization refinement are performed in the second stage. However,
these two-stage pipelines have three main shortcomings in the spatiotemporal action
localization task. Firstly, the generation of action tubes, which consist of bounding
boxes across frames is much more complicated and time-consuming than the 2D case.
The classification performance is extremely dependent on these proposals, where the
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Figure 4.2: Standing or sitting? Although the person can be successfully detected, correct
classification of the action cannot be made by looking only at the key frame.
Temporal information from previous frames needs to be incorporated in order to
understand if the person is sitting (left) or standing (right). Examples are from
J-HMDB-21 dataset.

detected bounding boxes might be sub-optimal for the following classification task.
Secondly, the action proposals focus only on the features of humans in the video,
neglecting the relationship between humans and some attributes in the background,
which yet can provide considerably crucial context information for action prediction.
The third problem of a two-stage architecture is that training the region proposal
network and the classification network separately does not guarantee finding the global
optimum. Instead, only the local optimum from the combination of two stages can be
found. The training cost is also higher than single-stage networks, hence it takes a
longer time and needs more memory.

In this section, we propose a novel single-stage framework, YOWO (You Only Watch
Once), for spatiotemporal action localization in videos. YOWO prevents all of the three
shortcomings mentioned above with a single-stage architecture. The intuitive idea of
YOWO arises from human’s visual cognitive system. For example, when we are absorbed
into the story of a soap opera in front of the TV, each time our eyes capture a single
frame. In order to understand which action each artist is performing, we have to relate
current frame information (2D features from the key frame) to the obtained knowledge
from previous frames saved in our memory (3D features from the clip). Afterwards,
these two kinds of features are fused to provide us with a reasonable conclusion. The
example in Fig. 4.2 illustrates our inspiration.

YOWO architecture is a single-stage network with two branches. One branch extracts
the spatial features of the key frame (i.e. current frame) via a 2D CNN while the other
branch models the spatiotemporal features of the clip consisting of previous frames via
a 3D CNN. To this end, YOWO is a causal architecture that can operate online on
incoming video streams. In order to aggregate these 2D CNN and 3D CNN features
smoothly, a channel fusion and attention mechanism is used, where we get the utmost
out of inter-channel dependencies. Finally, we produce frame-level detections using the
fused features, and provide a linking algorithm to generate action tubes.

In order to maintain real-time capability, we have operated YOWO on RGB modality.
However, it must be noted that YOWO architecture is not restricted to operate only on
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RGB modality. Different branches can be inserted into YOWO for different modalities
such as optical flow, depth, etc. Moreover, in its 2D CNN and 3D CNN branches, any
CNN architecture can be used according to the desired runtime performance, which is
critical for real-world applications.

YOWO operates with maximum 16 frames input since short clip lengths are
necessary to achieve faster runtime for spatiotemporal action localization task.
However, such a small clip size is a limiting factor for the accumulation of temporal
information. Therefore, we have made use of the long-term feature bank [202] by
extracting features with 3D CNN for non-overlapping 8-frame clips for the whole
videos using the trained 3D CNN. Training of YOWO performed normally, but at
inference time, we have averaged the 3D features centering the key frame. This
brought a considerable 6.9% and 1.3% frame-mAP increase on the final performance of
the network.

Contributions of this section are summarized as follows:

(i) We propose a real-time single-stage framework for spatiotemporal action
localization in video streams, named YOWO, which can be trained end-to-end with
high efficiency. To the best of our knowledge, this is the first work that achieves
bounding box regression on features extracted by a 2D CNN and 3D CNN,
concurrently. These two kinds of features have a complementary effect to each other
for the final bounding box regression and action classification. Moreover, we use a
channel attention mechanism to aggregate the features smoothly from the two
branches above. We experimentally prove that the channel-wise attention mechanism
models the inter-channel relationship within the concatenated feature maps and boosts
the performance significantly by fusing features more reasonably.

(ii) We perform a detailed ablation study on the YOWO architecture. We examined
the effect of 3D CNN, 2D CNN, their aggregation and the fusion mechanism. Moreover,
we have experimented with different 3D CNN architectures and different clip lengths to
explore a further trade-off between precision and speed.

(iii) YOWO is evaluated on the AVA dataset, which is the first and only single-
stage architecture that achieves competitive results compared to the state-of-the-art.
Moreover, YOWO is the only causal architecture (i.e. future frames are not leveraged)
that is evaluated on the AVA dataset, hence can operate online.

(iv) We evaluate YOWO on J-HMDB-21 and UCF101-24 benchmarks and establish
new state-of-the-art results with an impressive 3.3% and 12.2% improvements on frame-
mAP, respectively. Moreover, YOWO runs with 34 fps for 16-frames input clips and 62
fps for 8-frames input clips, which is the fastest state-of-the-art architecture available
for spatiotemporal action localization task.

4.2.2 Related Work

The literature review on action recognition and spatiotemporal action localization is
already provided in Section 2.1 and Section 2.3, respectively. Here, we will provide
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related work on attention mechanisms in CNN architectures, which has been actively
used at YOWO architecture.

Attention is an effective mechanism to capture long-range dependencies and has
been attempted to be used in CNNs to boost the performance in image classification
[203, 204, 205] and scene segmentation [206]. Attention mechanism is implemented
spatial-wise and channel-wise in these works, in which spatial attention addresses the
inter-spatial relationship among features while channel attention enhances the most
meaningful channels and weakens the others. As a channel-wise attention block,
Squeeze-and-Excitation module [207] is beneficial to increase CNN’s performance with
little computational cost. On the other hand, for video classification tasks, non-local
block [208] takes spatiotemporal information into account to learn the dependencies of
features across frames, which can be viewed as a self-attention strategy.

4.2.3 Methodology

In this section, we first present YOWO’s architecture in detail, which extracts 2D
features from the key frame as well as 3D features from the input clip concurrently and
aggregates them together. Afterwards, the implementation of channel fusion and
attention mechanism is discussed, which provides the essential performance boost.
Finally, we describe the details of the training process for the YOWO architecture and
the improved bounding box linking strategy for the generation of action tubes in
untrimmed videos.

4.2.3.1 YOWO architecture

The YOWO architecture is illustrated in Fig. 4.3, which can be divided into four major
parts: 3D CNN branch, 2D CNN branch, CFAM and bounding box regression parts.

3D CNN Branch
Since contextual information is crucial for human action understanding, we utilize
3D CNN to extract spatiotemporal features. 3D CNNs are able to capture motion
information by applying convolution operation not only in spatial dimensions but also
in the time dimension. The basic 3D CNN architecture in our framework is
3D-ResNext-101 due to its high performance in Kinetics dataset [131]. In addition to
3D-ResNext-101, we have also experimented with different 3D CNN models in our
ablation study. For all 3D CNN architectures, all of the layers after the last
convolution layer are discarded. The input to the 3D network is a clip of a video,
which is composed of a sequence of successive frames in time order, and has a shape of
[C ×D ×H ×W ], while the last convolution layer of 3D ResNext-101 outputs a
feature map of shape [C ′ ×D′ ×H ′ ×W ′] where C = 3, D is the number of input
frames, H and W are height and width of input images, C ′ is the number of output
channels, D′ = 1, H ′ = H

32 and W ′ = W
32 . The depth dimension of the output

feature map is reduced to 1 such that output volume is squeezed to [C ′ ×H ′ ×W ′] in
order to match the output feature map of 2D CNN.
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Figure 4.3: The YOWO architecture. An input clip and corresponding key frame is fed to a
3D CNN and 2D CNN to produce output feature volumes of [C ′′ ×H ′ ×W ′] and
[C ′ ×H ′ ×W ′], respectively. These output volumes are fed to channel fusion and
attention mechanism (CFAM) for a smooth feature aggregation. Finally, one last
conv layer is used to adjust the channel number for final bounding box predictions.

Figure 4.4: Channel fusion and attention mechanism for aggregating output feature maps
coming from 2D CNN and 3D CNN branches.

2D CNN Branch
In the meantime, to address the spatial localization problem, 2D features of the key frame
are also extracted in parallel. We employ Darknet-19 [209] as the basic architecture in
our 2D CNN branch due to its good balance between accuracy and efficiency. The key
frame with the shape [C ×H ×W ] is the most recent frame of the input clip, thus there
is no need for an additional data loader. The output feature map of Darknet-19 has a
shape of [C ′′ ×H ′ ×W ′] where C = 3, C ′′ is the number of output channels, H ′ = H

32
and W ′ = W

32 similar to the 3D CNN case.
Another important characteristic of YOWO is that architectures in 2D CNN and

3D CNN branches can be replaced by arbitrary CNN architectures, which makes it more
flexible. YOWO is designed to be simple and effort-saving to switch models. It must
be noted that although YOWO has two branches, it is a unified architecture and can be
trained end-to-end.
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Feature aggregation:Channel Fusion and Attention Mechanism (CFAM)
We make the outputs of both 3D and 2D networks are of the same shape in the last
two dimensions such that these two feature maps can be fused easily. We fuse the two
feature maps using concatenation which simply stacks the features along channels. As
a result, the fused feature map encodes both motion and appearance information which
we pass as input to the CFAM module, which is based on the Gram matrix to map
inter-channel dependencies. Although the Gram matrix based attention mechanism is
originally used for style transfer [210] and recently in segmentation task [206], such
an attention mechanism is beneficial for fusing features coming from different sources
reasonably, which improves the overall performance significantly.

Fig. 4.4 illustrates the used CFAM module. The concatenated feature map A ∈
R

(C′+C′′)×H×W can be regarded as an abrupt combination of 2D and 3D information,
which neglects interrelationship between them. Therefore, we first feed A into two
convolutional layers to generate a new feature map B ∈ R

C×H′×W ′ . Afterwards,
several operations are performed on the feature map B.

Assume F ∈ RC×N is the reshaped tensor from feature map B, where N = H ×W ,
which means that features in every single channel is vectorized to one dimension:

B ∈ RC×H×W vectorization−−−−−−−−→ F ∈ RC×N . (4.1)

Then a matrix product between F ∈ RC×N and its transpose FT ∈ RN×C is performed
to produce Gram matrix G ∈ RC×C , which indicates the feature correlations across
channels [210]:

G = F · FT with Gij =
N∑
k=1

Fik · Fjk, (4.2)

where each element Gij in the Gram matrix G represents the inner product between the
vectorized feature maps i and j. After computing the Gram matrix, a softmax layer is
applied to generate channel attention map M ∈ RC×C :

Mij =
exp(Gij)∑C
j=1 exp(Gij)

, (4.3)

where Mij is a score measuring the jth channel’s impact on the ith channel. Therefore
M summaries the inter-channel dependency of features given a feature map. To perform
the impact of attention map to original features, a further matrix multiplication between
M and F is carried out and the result is reshaped back to 3-dimensional space RC×H×W ,
which has the same shape as the input tensor:

F′ = M · F, (4.4)

F′ ∈ RC×N reshape−−−−−→ F′′ ∈ RC×H×W . (4.5)

The output of channel attention module C ∈ RC×H×W combines this result with the
original input feature map B with a trainable scalar parameter α using an element-wise
sum operation, and α gradually learns a weight from 0:

C = α · F′′ + B. (4.6)
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The Eq. (4.6) shows that the final feature of each channel is a weighted sum of the
features of all channels and original features, which models the long-range semantic
dependencies between feature maps. Finally, the feature map C ∈ RC×H′×W ′ is fed
into two more convolutional layers to generate the output feature map D ∈ RC∗×H′×W ′

of the CFAM module. Two convolutional layers at the beginning and the end of CFAM
modules contain utmost importance since they help to mix the features coming from
different backbones and having possibly different distributions. Without these
convolutional layers, CFAM marginally improves the performance.

Such an architecture promotes the feature representativeness in terms of
interdependencies among channels and thus the features from different branches can be
aggregated reasonably and smoothly. Besides, the Gram matrix takes the whole
feature map into consideration, where the dot product of each two flattened feature
vectors presents the information about the relation between them. A larger product
indicates that the features in these two channels are more correlated while a smaller
product suggests that they are different from each other. For a given channel, we
allocate more weights to the other channels that are more correlated and have more
impact on it. By means of this mechanism, the contextual relationship is emphasized
and feature discriminability is enhanced.

Bounding Box Regression
We follow the same guidelines of YOLO [209] for bounding box regression. A final
convolutional layer with 1 × 1 kernels is applied to generate desired number of output
channels. For each grid cell in H ′ × W ′, 5 prior anchors are selected by k-means
technique on corresponding datasets with NumCls class conditional action scores, 4
coordinates and confidence score making the final output size of YOWO
[(5× (NumCls+ 5))×H ′ ×W ′]. The regression of bounding boxes are then refined
based on these anchors.

We have used input resolution of 224× 224 for both training and testing time.
Applying multi-scale training with different resolutions has not shown any performance
improvement in our experiments. The loss function is defined similar to the original
YOLOv2 network [209] except that we apply smooth L1 loss with beta=1 for
localization as in [211], which is given as follows:

L1,smooth(x, y) =

{
0.5(x− y)2 if |x− y| < 1,

|x− y| − 0.5 otherwise,
(4.7)

where x and y refers to network prediction and ground truth, respectively. Smooth L1

loss is less sensitive to outliers than the MSE loss and prevents exploding gradients in
some cases. We still apply the MSE loss for confidence score, which is given as follows:

LMSE(x, y) = (x− y)2. (4.8)

The final detection loss becomes the summation of individual coordinate losses for x,
y, width and height; and confidence score loss, which is given as follows:

LD = Lx + Ly + Lw + Lh + Lconf . (4.9)
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We have applied focal loss [212] for classification, which is given as follows:

Lfocal(x, y) = y(1− x)γlog(x) + (1− y)xγlog(1− x), (4.10)

where x is the softmaxed network prediction and y ∈ {0, 1} is the ground truth class label.
γ is the modulating factor, which reduces the loss of samples with high confidence (i.e.
easy samples) and increases the loss of samples with low confidence (i.e. hard samples).
However, the AVA dataset is a multi-label dataset where each person performs one
pose action (e.g. walking, standing, etc.) and multiple human-human or human-object
interaction actions. Therefore, we have applied softmax to pose classes and sigmoid to
the interaction actions. Moreover, AVA is an unbalanced dataset and the modulating
factor γ is not enough to tackle dataset imbalance. Therefore, we have used α-balanced
variant of focal loss [212]. For the α term, we have used exponentials of class sample
ratios.

The final loss that is used for the optimization of YOWO architecture is the summation
of detection and classification loss, which is given as follows:

Lfinal = λLD + LCls, (4.11)

where λ = 0.5 performs best in our experiments.

4.2.3.2 Linking Strategy

As we have already obtained frame-level action detections, the next step is to link these
detected bounding boxes to construct action tubes in the whole video for UCF101-24
and J-HMDB-21 datasets. We make use of the linking algorithm described in [145, 146]
to find the optimal video-level action detections.

Assume Rt and Rt+1 are two regions from consecutive frames t and t+1, the linking
score for an action class c is defined as follows:

sc(Rt, Rt+1) = ψ(ov) · [sc(Rt) + sc(Rt+1)

+ α · sc(Rt) · sc(Rt+1)

+ β · ov(Rt, Rt+1)],

(4.12)

where sc(Rt), sc(Rt+1) are class specific scores of regions Rt and Rt+1, ov is the
Intersection over Union (IoU) of these two regions, α and β are scalars. ψ(ov) is a
constraint which is equal to 1 if an overlap exists (ov > 0), otherwise ψ(ov) is equal to
0. We extend the linking score definition in [146] with an extra element
α · sc(Rt) · sc(Rt+1), which takes the dramatic change of scores between two successive
frames into account and is able to improve the performance of video detection in
experiments. After all the linking scores are computed, Viterbi algorithm is deployed
to find the optimal path to generate action tubes.

4.2.3.3 Long-Term Feature Bank

Although YOWO’s inference is online and causal with small a clip size, 16-frame input
limits the temporal information required for action understanding. Therefore, we make
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use of a long-term feature bank (LFB) similar to [202], which contains features coming
from the 3D backbone at different timestamps. At inference time, 3D features centering
the key frame are averaged and the resulting feature map is used as input to the CFAM
block. LFB features are extracted for non-overlapping 8-frame clips using the pretrained
3D ResNeXt-101 backbone. We have used 8 features (if available) centering the key
frame. So, a total number of 64 frames are utilized at inference time. The utilization
of LFB increases action classification performance similar to the difference between clip
accuracy and video accuracy in video datasets. However, the introduction of LFB makes
the resulting architecture non-causal since future 3D features are used at inference time.

4.2.3.4 Implementation details

We initialize the 3D and 2D network parameters separately: 3D part with pretrained
models on Kinetics [127] and 2D part with pretrained models on PASCAL VOC [213].
Although our architecture consists of 2D CNN and 3D CNN branches, the parameters
can be updated jointly. We select the mini-batch stochastic gradient descent algorithm
with momentum and weight decay strategy to optimize the loss function. The learning
rate is initialized as 0.0001 and reduced with a factor of 0.5 after 30k, 40k, 50k, and 60k
iterations. For the dataset UCF101-24, the training process is completed after 5 epochs
while for J-HMDB-21 after 10 epochs. The complete architecture is implemented and
trained end-to-end in PyTorch using a single Nvidia Titan XP GPU.

In the training, because of the small number of samples in J-HMDB-21, we freeze all
parameters of the 3D CNN backbone, thus the convergence is faster and over-fitting risk
can be reduced. In addition, we deploy several data augmentation techniques at training
time such as flipping images horizontally in the clip, random scaling and random spatial
cropping. During testing, only detected bounding boxes with a confidence score larger
than threshold 0.25 are selected and then post-processed with non-maximum suppression
with a threshold of 0.4 for the UCF101-24 and J-HMDB-21 datasets; and 0.5 for the
AVA dataset.

YOWO architecture is implemented in PyTorch and trained with a single Nvidia Titan
Xp GPU. We make our code publicly available at https://github.com/wei-tim/YOWO
for the reproducibility of the results.

4.2.4 Experiments

To evaluate YOWO’s performance, three popular and challenging action detection
datasets are selected: UCF101-24 [6], J-HMDB-21 [173] and AVA [3]. Each of these
datasets contains different characteristics, which are compared in Table 4.1. We follow
the official evaluation metrics strictly to report the results and compare the
performance of our method with the state-of-the-art.
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Dataset
# of labelled

person per frame
# of labels
per person

background
people

densely
annotated

UCF101-24 one or two one 3 7

J-HMDB-21 one one 7 3

AVA multiple multiple 7 3*

Table 4.1: Comparison of evaluated datasets. Background people refers that in there are people
in some of the frames who are not annotated. *AVA is densely annotated with 1Hz
rate.

4.2.4.1 Datasets and evaluation metrics

Datasets: The details of the UCF101-24, J-HMDB-21, and AVA datasets can be found
in Section 2.5. For UCF101-24 and J-HMDB-21 datasets, we perform all the experiments
on the first split. For AVA dataset, we report results on version 2.2, if not stated
otherwise.

Evaluation metrics: We employ two popular metrics that are actively used for the
task of spatiotemporal action detection to generate convincing evaluations. Following
strictly the rule applied by the PASCAL VOC 2012 metric [214], frame-mAP measures
the area under the precision-recall curve of the detections for each frame. On the other
hand, video-mAP focuses on the action tubes [145]. If the mean of IoU scores between
detected bounded boxes and ground truth across all frames of the video is greater than a
threshold and the action label is correctly predicted in the meanwhile, then this detected
tube is regarded as a correct instance. Finally, the average precision for each class is
computed and the average of all classes is reported. For the AVA dataset, we only use
frame-mAP with IoU threshold of 0.5 since annotations are sparsely provided with 1 Hz.

4.2.4.2 Ablation study

3D network, 2D network or both? Depending only on its own, neither 3D CNN
nor 2D CNN can solve the spatiotemporal localization task independently. However,
if they operate simultaneously, there is potential to benefit from one another. Results
on comparing the performance of different architectures are reported in Table 4.2. We
first observe that a single 2D network can not provide a satisfying result since it does
not take temporal information into account. A single 3D network is better at capturing
motion information and the fusion of 2D and 3D networks (simple concatenation) can
improve the performance by around 3%, 6% and 2% mAP compared to 3D network on
UCF101-24, J-HMDB-21 and AVA datasets, respectively. This indicates that 2D CNN
learns finer spatial features and 3D CNN concentrates more on the motion process yet
the spatial drift of actions in the clip may lead to a lower localization accuracy. It
is also shown that the CFAM module further boosts the performance from 73.8% to
79.2% on UCF101-24, from 47.1% to 64.9% on J-HMDB-21 and from 16.0% to 16.4%
on AVA dataset. This clearly shows the importance of the attention mechanism which
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Model UCF101-24 J-HMDB-21 AVA

2D 61.6 36.0 13.2
3D 70.5 41.5 13.7

2D + 3D 73.8 47.1 16.0
2D + 3D + CFAM 79.2 64.9 16.4

Table 4.2: Frame-mAP @ IoU 0.5 results on UCF101-24, J-HMDB-21 and AVA datasets
for different models. For all architectures, the input to 3D CNNs is 8 frames
clips with downsampling of 1.

Model
Localization

(recall)
Classif.

U
C
F
1
0
1
-2
4 2D 91.7 85.9

3D 90.8 92.9
2D + 3D 93.2 93.7

2D + 3D + CFAM 93.5 94.5

J
-H

M
D
B
-2
1 2D 94.3 50.6

3D 76.3 69.3
2D + 3D 94.5 63.0

2D + 3D + CFAM 97.3 76.1

Table 4.3: Localization @ IoU 0.5 (recall) and classification results on UCF101-24 and J-HMDB-
21 datasets. For all architectures, the input to 3D CNNs is 8 frames clips with
downsampling of 1.

strengthens the inter-dependencies among channels and helps aggregating features more
reasonably.

Moreover, in order to explore the impact of each 2D CNN, 3D CNN and CFAM
blocks, we investigate the localization and the classification performance of different
architectures, which is given in Table 4.3. For localization, we look at the recall value,
which is the ratio of the number of correctly localized actions to the total number of
ground truth actions. For classification, we look at the classification accuracy of the
correctly localized detections. For this analysis, we have excluded the AVA dataset
since it contains multiple actions per person, hence classification accuracy cannot be
calculated. For both UCF101-24 and J-HMDB-21 datasets, the 2D backbone is better
at localization while the 3D backbone performs better at classification. It is also obvious
that the CFAM module boosts both localization and classification performance.

We have also visualized the activations maps [215] for 2D and 3D backbones of the
trained model, which is shown in Fig. 4.5. Conforming our findings in Table 4.3, the
3D backbone focuses on the parts of the clip where a motion is occurring and the 2D

66



Chapter 4 Video Analysis With Clip-Level Features

Input UCF101-24 J-HMDB-21 AVA

8-frames (d=1) 79.2 64.9 16.4
8-frames (d=2) 78.5 61.5 16.1
8-frames (d=3) 78.4 61.0 16.0

16-frames (d=1) 80.4 74.4 17.9
16-frames (d=2) 79.0 71.4 17.2

Table 4.4: Frame-mAP @ IoU 0.5 results on UCF101-24, J-HMDB-21 and AVA datasets for
different clip lengths and different downsampling rates d.

backbone focuses on fine spatial information on complete body parts of people. This
validates that the backbones of YOWO extract complementary features.

How many frames are suitable for temporal information? For the 3D CNN
branch, different clip lengths with different downsampling rates can change the
performance of overall YOWO architecture [30]. Therefore, we conduct experiments
with 8-frames and 16-frames clips with different downsampling rates, which is given in
Table 4.4. For example, 8-frames (d=3) refers to selecting 8 frames from 24 frames
window with a downsampling rate of 3. Specifically, we compare three downsampling
rates d = 1, 2, 3 for clip length 8-frames and two downsampling rates d = 1, 2 for
16-frames clip length. As expected, we observe that the framework with the input of 16

Figure 4.5: Activation maps for (a) 3D CNN backbone and (b) 2D CNN backbone. 3D CNN
backbone focuses on areas where there is a movement/action happening, whereas
2D CNN backbone focuses on all the people in the key frame. Examples are
volleyball spiking (top), skate boarding (middle) and rope climbing (bottom).
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Model GFLOPs
Frame-mAP (@ IoU 0.5)

UCF101-24 J-HMDB-21 AVA

3D-ResNext-101 38.6 80.4 74.4 17.9

3D-ResNet-101 54.7 78.1 70.8 17.7
3D-ResNet-50 39.3 77.8 61.3 17.1
3D-ResNet-18 33.3 72.6 57.5 15.1

3D-ShuffleNetV1 2.0x 2.2 71.3 54.8 16.1
3D-ShuffleNetV2 2.0x 1.8 71.4 55.3 15.1
3D-MobileNetV1 2.0x 2.6 67.3 48.5 14.9
3D-MobileNetV2 1.0x 2.2 66.6 52.5 16.1

Table 4.5: Performance comparison of different 3D backbones on UCF101-24, J-HMDB-21 and
AVA datasets. For all architectures, Darknet-19 is used as 2D backbone. The number
of floating point operation (FLOPs) are calculated for corresponding 3D backbones
for 16 frames (d=1) clips with spatial resolution of 224 × 224.

frames performs better than 8 frames since the longer frame sequence contains more
temporal information. However, as the downsampling rate is increased, the
performance becomes worse. We conjecture that downsampling hinders capturing
motion patterns properly and too long sequences may break the temporal contextual
relationship. Especially for some quick motion classes, a long sequence may contain
several unrelated frames, which can be viewed as noise.

Is it possible to save model complexity with more efficient networks? We
have chosen 3D-ResNext-101 [131] since it has multiple cardinalities thus is able to learn
more complicated features. However, it is a heavy backbone with a huge number of
parameters and computational complexity. Therefore, we have replaced the 3D backbone
with 3D-ResNet for different depths and with some other resource efficient 3D CNN
architectures [21]. Table 4.5 reports the achieved performance on all three datasets
together with the number of floating point operations (FLOPs) for each 3D backbone.
We find that even with lightweight architecture in 3D backbones, our framework is still
better than the 2D network. However, Table 4.5 clearly shows the importance of the 3D
backbone. Stronger the 3D CNN architecture we use, better the achieved results.

4.2.4.3 State-of-the-art comparison

We have compared YOWO with other state-of-the-art architectures on J-HMDB-21,
UCF101-24 and AVA datasets. For the sake of fairness, we have excluded
VideoCapsuleNet [150] as it uses different video-mAP calculations without
constructing action tubes via some linking strategies. However, YOWO still performs
around 9% and 8% better than VideoCapsuleNet in terms of frame-mAP @ 0.5 IoU on
J-HMDB-21 and UCF101-24, respectively.
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Method Frame-mAP
Video-mAP

0.2 0.5 0.75

Peng w/o MR [146] 56.9 71.1 70.6 48.2
Peng w/ MR [146] 58.5 74.3 73.1 -
ROAD [149] - 73.8 72.0 44.5
T-CNN [147] 61.3 78.4 76.9 -
ACT [216] 65.7 74.2 73.7 52.1
P3D-CTN [217] 71.1 84.0 80.5 -
TPnet [218] - 74.8 74.1 61.3

YOWO (16-frame) 74.4 87.8 85.7 58.1

YOWO+LFB* 75.7 88.3 85.9 58.6

Table 4.6: Comparison with state-of-the-art methods on the J-HMDB-21 dataset. Results are
reported for frame-mAP under IoU threshold of 0.5 and video-mAP under different
IoU thresholds. * version of YOWO is non-causal.

Performance comparison on the J-HMDB-21 dataset. YOWO is compared with
the previous state-of-the-art methods on J-HMDB-21 in Table 4.6. Using the standard
metrics, we report the frame-mAP at the IoU threshold of 0.5 and the video-mAP at
various IoU thresholds. YOWO (16-frame) consistently outperforms the state-of-the-
art results on dataset J-HMDB-21, with a frame-mAP improvement of 3.3% and a
video-mAP improvement of 3.8%, 5.2% at IoU thresholds of 0.2 and 0.5, respectively.
The utilization of LFB brings further improvements to the performance. However, this
improvement is marginal since the video duration of videos of the J-HMDB-21 dataset
is maximum 40 frames.

Performance comparison on the UCF101-24 dataset. Table 4.7 presents the
comparison of YOWO with the state-of-the-art methods on UCF101-24. YOWO
(16-frame) achieves 80.4% frame-mAP, which is significantly better than the others by
preceding the second best result with 5.4% improvement. As for video-mAP, our
framework also produces very competitive results even though we just utilize a simple
linking strategy. Utilization of LFB brings considerable improvement this time since
the duration of UCF101-24 videos is much bigger than J-HMDB-21 videos. LFB
further increases frame-mAP performance by around 7%.

Performance comparison on the AVA dataset. We have compared the performance
of YOWO on the AVA dataset in Table 4.8. YOWO is currently the first and only single-
stage architecture, which provides competitive results on the AVA dataset. All the
methods outperforming YOWO are non-causal (i.e. utilizing future frames) and multi-
stage architectures mostly utilizing Faster-RCNN architecture. Moreover, these methods
either require high-resolution input such as 600 pixels for [222] and 400 pixels for [117],
or strong and computationally heavy SlowFast architecture as 3D CNN backbone such
as [130]. On the other hand, YOWO operates only on the current and previous frames
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Method Frame-mAP
Video-mAP

0.1 0.2 0.5

Peng w/o MR [146] 64.8 49.5 41.2 -
Peng w/ MR [146] 65.7 50.4 42.3 -
ROAD [149] - - 73.5 46.3
T-CNN [147] 41.4 51.3 47.1 -
ACT [216] 69.5 - 77.2 51.4
MPS [219] - 82.4 72.9 41.1
STEP [220] 75.0 83.1 76.6 -

YOWO (16-frame) 80.4 82.5 75.8 48.8

YOWO+LFB* 87.3 86.1 78.6 53.1

Table 4.7: Comparison with state-of-the-art methods on the UCF101-24 dataset. Results are
reported for frame-mAP under IoU threshold of 0.5 and video-mAP under different
IoU thresholds. * version of YOWO is non-causal.

Method
Single
Stage

Input AVA Pretrain mAP

I3D [3] 7 V+F K400 15.6
ACRN, S3D [221] 7 V+F K400 17.4
STEP, I3D [220] 7 V+F K400 18.6
RTPR [222] 7 V+F ImageNet 22.3
Action Transformer, I3D [117] 7 V K400 25.0
LFB, R101+NL [202] 7 V v2.1 K400 27.4
SlowFast, R101, 8x8 [130] 7 V K400 26.3
YOWO (8-frame) X V K400 15.7
YOWO (16-frame) X V K400 17.2
YOWO (32-frame) X V K400 18.3
YOWO+LFB* X V K400 19.2

SlowFast, R101+NL, 8x8 [130] 7 V K600 29.0
YOWO (8-frame) X V K400 16.4
YOWO (16-frame) X V v2.2 K400 17.9
YOWO (32-frame) X V K400 19.1
YOWO+LFB* X V K400 20.2

Table 4.8: Comparison with state-of-the-art methods on the AVA dataset. Results are reported
for frame-mAP under IoU threshold of 0.5. * version of YOWO is non-causal.

(i.e. causal) with an input resolution of 224 × 224. Increasing clip size from 8-frames
to 32-frames brings an improvement of almost 3% mAP. Utilization of LFB further
improves the performance by around 1% maP. We also evaluate performance of YOWO

70



Chapter 4 Video Analysis With Clip-Level Features

Figure 4.6: Performance of YOWO (32-frames, d=1) on each class of AVA dataset v2.2. Classes
are sorted by number of training samples in decreasing order.

Model Speed (fps) F-mAP V-mAP

Saha et al. [148] 4 - 36.4
ROAD (A) [149] 40 - 40.9
ROAD (A+RTF)[149] 28 - 41.9
ROAD (A+AF)[149] 7 - 46.3
YOWO (8-frames, d=1) 62 79.2 47.6
YOWO (16-frames, d=1) 34 80.4 48.8

Table 4.9: Runtime and performance comparison on dataset UCF101-24 for F-mAP and V-
mAP at 0.5 IoU threshold. For YOWO, ResNeXt-101 is used in its 3D backbone.

(32-frames, d=1) per each class in Fig. 4.6. The classes are sorted by the number of
training samples. Although we observe some correlation with the amount of training
data, there exist some classes with enough data with poor performance such as smoking.

Runtime comparison Most of the state-of-the-art methods are two-stage
architectures, which are computationally expensive to run in real-time. YOWO is a
unified architecture, which can be trained end-to-end. In addition, we do not employ
optical flow, which is computationally burdensome. In Table 4.9, we compare the
runtime performance of YOWO with other state-of-the-art methods. YOWO’s speed is
calculated in terms of frames per second (fps) on a single Nvidia Titan Xp GPU with a
batch size of 8. It must be noted that YOWO’s 2D and 3D backbones can be replaced
with any arbitrary CNN model according to desired runtime performance. Moreover,
additional new backbones can be easily introduced for different information source
such as depth or infrared modalities. The only thing to do is the modification of CFAM
block in order to accommodate new features.
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Figure 4.7: Visualization of action localizations for UCF101-24 and J-HMDB-21 datasets. Red
bounding boxes are ground truth while green and orange are true and false positive
localizations, respectively.

4.2.4.4 Model visualization

In general, YOWO architecture performs a decent job at localizing actions in videos,
which is illustrated in Fig. 4.7 for UCF101-24 and J-HMDB-21 dataset; and in Fig. 4.8
for AVA dataset. However, YOWO also has some drawbacks. Firstly, since YOWO
produces its predictions according to all the information available at the key frame
and the clip, it sometimes makes some false positive detections before the actions are
performed. For example, in Fig. 4.7 first row last image, YOWO sees a person holding a
ball at a basketball court and detects him very confidently although he is not shooting
the ball yet. Secondly, YOWO needs enough temporal content to make correct action
localization. If a person starts performing an action suddenly, localization at initial
frames lacks temporal content and false actions are recognized consequently, as in Fig. 4.7
second row last image (climbing stair instead of running). Similarly, in the bottom row
right-most image in Fig. 4.8, the processed clip and key frame does not contain pose
information of the person, hence YOWO cannot confidently deduce if the person is
sitting or standing. Results in Table 4.4 confirm that increasing clip length increases the
available temporal information and consequently increases YOWO’s performance. LFB
is also leveraged for the purpose of increasing temporal content.

4.2.5 Summary

This section presented a novel unified architecture for spatiotemporal action
localization in video streams. Our approach, YOWO, models the spatiotemporal
context from successive frames for action understanding while extracting the fine
spatial information from key frame to address the localization task in parallel. In
addition, we make use of a channel fusion and attention mechanism for effective
aggregation of these two kinds of information. Since we do not separate human
detection and action classification procedures, the whole network can be optimized by
a joint loss in an end-to-end framework. We have carried out a series of comparative
evaluations on three challenging datasets, UCF101-24, J-HMDB-21 and AVA, each
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Figure 4.8: Visualization of action localizations for AVA dataset. Red dashed bounding boxes
are ground truth while green bounding boxes are YOWO predictions.

having different characteristics. Our approach outperforms the other state-of-the-art
results on UCF101-24 and J-HMDB-21 datasets while achieving competitive results on
the AVA dataset. Moreover, YOWO is a causal architecture and can be operated in
real-time, which makes it possible to deploy YOWO on mobile devices.
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4.3 Lightweight Clip-Level Feature Extraction

This section addresses the complexity drawback of 3D CNNs and presents several
resource efficient 3D CNN architectures.

Recently, convolutional neural networks with 3D kernels (3D CNNs) have been very
popular in the computer vision community as a result of their superior ability to
extract spatiotemporal features within video frames compared to 2D CNNs. Although
there have been great advances recently to build resource efficient 2D CNN
architectures considering memory and power budget, there is hardly any similar
resource efficient architectures for 3D CNNs. In this section, we have converted various
well-known resource efficient 2D CNNs to 3D CNNs and evaluated their performance
on three major benchmarks in terms of classification accuracy for different complexity
levels. We have experimented on (1) Kinetics-600 dataset to inspect their capacity to
learn, (2) Jester dataset to inspect their ability to capture motion patterns, and (3)
UCF101 dataset to inspect the applicability of transfer learning. We have evaluated
the runtime performance of each model on a single Titan XP GPU and a Jetson TX2
embedded system. The results of this study show that these models can be utilized for
different types of real-world applications since they provide real-time performance with
considerable accuracies and memory usage. Our analysis on different complexity levels
shows that the resource efficient 3D CNNs should not be designed too shallow or
narrow in order to save complexity. This section is based on our publication Resource
Efficient 3D Convolutional Neural Networks [21].

4.3.1 Motivation

Ever since AlexNet [14] won the ImageNet Challenge (ILSVRC 2012 [79]), convolutional
neural networks (CNNs) have dominated the majority of the computer vision tasks.
Then the primary trend has been more on creating deeper and wider CNN architectures
to achieve higher accuracies [88, 223, 224]. However, in real-world computer vision
applications such as face recognition, robot navigation, and augmented reality, the tasks
need to be carried out under runtime constraints on a computationally limited platform.
Only recently, there has been a rising interest in building resource efficient convolutional
neural networks but it is limited with 2-dimensional kernels (2D) [87, 174, 175, 176, 177].

The same history is repeating for CNNs with 3-dimensional (3D) kernels [131]. Since
the large video datasets became available, the primary trend for video recognition tasks
is again to achieve higher accuracies by building deeper and wider architectures [225,
129, 128, 131, 130]. Considering the fact that 3D CNNs achieve better performance for
video recognition tasks compared to 2D CNNs [127], it is very likely that this 3D CNN
architecture search will continue until the achieved accuracies saturate. However, real-
world applications still require resource efficient 3D CNN architectures taking runtime,
memory and power budget into account. This work aims to fill this research gap.

In this section, we first have created the 3D versions of the well-known 2D resource
efficient architectures: SqueezeNet, MobileNet, ShuffleNet, MobileNetV2 and
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ShuffleNetV2. We have evaluated the performance of these architectures on three
publicly available benchmarks:

(1) Kinetics-600 dataset[127] to learn models’ capacities.

(2) Jester dataset [4] to learn how well the models capture the motion.

(3) UCF101 dataset [6] to evaluate the applicability of transfer learning for each model.

The computational complexity of the implemented architectures is measured in terms
of floating point operations (FLOPs), which is a widely used metric among resource
efficient architectures. In this section, the number of FLOPs refers to the number of
multiply-adds. However, as highlighted by [176], the number of FLOPs is an indirect
metric, which does not give an actual performance indication like speed or latency.
Therefore, for all the implemented architectures we have also evaluated their runtime
performance on two different platforms, which are Nvidia Titan XP GPU and Jetson
TX2 embedded system-on-module (SoM) with integrated 256-core Pascal GPU.

4.3.2 Related Work

The literature review on action and gesture recognition is already provided in Section 2.1
and Section 2.2, respectively. Here, we will provide related work on resource efficient
CNN architectures.

Lately, there is a rising interest in building small and efficient neural networks
[87, 174, 176, 226, 227, 228]. The common approaches used for this objective can be
categorized under two categories: (i) Accelerating the pretrained networks, or (ii)
directly constructing small networks by manipulating kernels. For the first one,
[228, 229, 230, 231] proposes to prune either network connections or channels without
reducing the performance of pretrained models. Additionally, many other methods
apply quantization [226, 232, 227] or factorization [233, 234, 235] for the same
objective. However, our focus is on the second one for directly designing small and
resource efficient 3D CNN architectures.

Current well-known resource efficient CNN architectures are all constructed with 2D
convolutional kernels and benchmarked at ImageNet. SqueezeNet [87] reduced the
number of parameters and computation while maintaining the classification
performance. MobileNet [174] makes use of depthwise separable convolutions to
construct lightweight deep neural networks. The depthwise separable convolutions
factorize the standard convolutions into a depthwise convolution followed by a 1x1
pointwise convolution. Compared to standard convolutions, depthwise separable
convolutions use between 8 to 9 times fewer parameters and computations. ShuffleNet
[175] proposes to use pointwise group convolutions and channel shuffle in order to
reduce computational cost. MobileNetv2 [177] makes use of the inverted residual
structure where the intermediate expansion layer uses depthwise convolutions.
ShuffleNetV2 [176] builds on top of ShuffleNet [175] using channel split together with
channel shuffle which realizes a feature reuse pattern.
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These architectures intensively make use of group convolutions and depthwise
separable convolutions. Group convolutions are first introduced in AlexNet [14] and
efficiently utilized in ResNeXt [90]. Depthwise separable convolutions are introduced in
Xception [236] and they are the main building blocks for the majority of lightweight
architectures.

All of the above-mentioned resource efficient architectures are 2D CNNs. They are
designed to operate on static images and evaluated on a very large benchmark (i.e.,
ImageNet). To the best of our knowledge, this is the first work that proposes and
evaluates resource efficient 3D CNNs on large-scale video benchmarks.

Up to now, nearly all the 3D CNN architectures in the literature are heavyweight,
requiring 10s and even 100s billions of floating point operations (FLOPs). Moreover,
the majority of these architectures also use optical flow modality, which increases the
complexity even further. Our focus in this work is to evaluate 3D CNNs having less
than 500 MFLOPs. Consequently, we have implemented the 3D version of SqueezeNet
[87], MobileNet [174], MobileNetV2 [177], ShuffleNet [175] and ShuffleNetV2 [176] for
4 different complexity levels and then evaluated them on 3 different video benchmarks.
We have evaluated our architectures only using the RGB modality without computing
costly optical flow modality.

4.3.3 Methodology

In this section, we explain the details of the resource efficient 3D CNN architectures that
have been proposed and evaluated within the scope of this work. We initially introduce
the 3D versions of the well-known resource efficient 2D CNN architectures by explaining
their building blocks and networks structures. Then we compare these models in terms
of number of layers, nonlinearities, and skip connections. We conclude with the training
details of the models.

4.3.3.1 3D Versions of Well-known Architectures

In this section, we give the implementation details of our resource efficient
architectures with 3-dimensional kernels, which are converted from well-known resource
efficient 2D CNN architectures. The main building blocks of each architecture are
depicted in Fig. 4.9. The input is always considered as a clip of 16 frames with a
spatial resolution of 112 pixels. For all of the 3D CNN architectures, first convolutions
always apply stride of (1,2,2). For the rest of the architectures, the depth dimension is
reduced together with spatial dimensions.

3D-SqueezeNet
SqueezeNet [87] is considered as one of very first resource efficient CNN architectures
with notable accuracy performance. It achieves the AlexNet [14]-level accuracy with 50
times fewer parameters and less than 0.5 MB model size.

The main building block of SqueezeNet is the Fire block whose 3D version is depicted
in Fig. 4.9 (a). As illustrated in Table 4.10, 3D-SqueezeNet begins with a convolution
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Figure 4.9: Main building block for each resource efficient 3D CNN architecture. F is the
number of feature maps and D × H × W stands for Depth × Height × Width
for the input and output volumes. DWConv and GConv stand for depthwise and
group convolution, respectively. BN and ReLU(6) stand for Batch Normalization
and Rectified Linear Unit (capped at 6), respectively. (a) SqueezeNet’s Fire block;
(b) MobileNet block; (c) left: MobileNetv2 block, right: MobileNetv2 block with
spatiotemporal downsampling (2x); (d) left: ShuffleNet block, right: ShuffleNet
block with spatiotemporal downsampling (2x); (e) left: ShuffleNetv2 block, right:
ShuffleNetv2 block with spatiotemporal downsampling (2x).

layer (Conv1), followed by 8 Fire blocks (Fire-2-9), ending with a final convolutional
layer (Conv10).

In our experiments, we use SqueezeNet with simple bypass since it achieves the best
result in its 2D version for ImageNet. SqueezeNet does not apply depthwise
convolutions which is the main building block for the majority of resource efficient
architectures. Instead, it uses three strategies to reduce the number of parameters
while maintaining accuracy: (i) Replacing 3x3 filters with 1x1 filters, (ii) decreasing
the number of input channels to 3x3 filters, and (iii) downsampling late in the network
so that convolution layers have large activation maps. Moreover, compared to other
resource efficient architectures, SqueezeNet cannot be modified with width multiplier
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Layer/Stride Filter size Output size

Input clip 3x16x112x112
Conv1/s(1,2,2) 3x3x3 64x16x56x56
MaxPool/s(2,2,2) 3x3x3 64x8x28x28

Fire2 128x8x28x28
Fire3 128x8x28x28
MaxPool/s(2,2,2) 3x3x3 128x4x14x14

Fire4 256x4x14x14
Fire5 256x4x14x14
MaxPool/s(2,2,2) 3x3x3 256x2x7x7

Fire6 384x2x7x7
Fire7 384x2x7x7
MaxPool/s(2,2,2) 3x3x3 384x1x4x4

Fire8 512x1x4x4
Fire9 512x1x4x4

Conv10/s(1,1,1) 1x1x1 NumClsx1x4x4
AvgPool/s(1,1,1) 1x4x4 NumCls

Table 4.10: 3D-SqueezeNet architecture. Details of Fire block is given in Fig. 4.9 (a).

parameter resulting in different complexities. Therefore, it is only experimented with
its default configuration.

3D-MobileNetV1
MobileNets [174] apply depthwise separable convolutions which have a form that
factorizes a standard convolution into a depthwise convolution and 1 × 1 convolution,
which is called as pointwise convolution. In MobileNet architectures, the depthwise
convolution applies a single filter to each input channel and then the pointwise
convolution applies a 1 × 1 convolution to combine the outputs of the depthwise
convolution. Different from the standard convolution, the depthwise separable
convolution involves two layers, which separates filtering and combining operations as
illustrated in Fig. 4.9 (b). This process helps to decrease computation time and model
size significantly. Unlike all recent popular CNN architectures, MobileNet does not
contain skip connections. Therefore, the depth of the network cannot be increased too
much which hinders gradient flow.

Table 4.11 shows the details of the 3D-MobileNet architecture. 3D-MobileNet begins
with a convolutional layer, followed by 13 MobileNet blocks, ending with a linear layer.
MobileNet has 28 layers in case the depthwise and pointwise convolutions in each
MobileNet block are counted as separate layers.
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Layer/Stride Repeat Output size

Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(2x2x2) 1 64x8x28x28
Block/s(2x2x2) 1 128x4x14x14
Block/s(1x1x1) 1 128x4x14x14
Block/s(2x2x2) 1 256x2x7x7
Block/s(1x1x1) 1 256x2x7x7
Block/s(2x2x2) 1 512x1x4x4
Block/s(1x1x1) 5 512x1x4x4
Block/s(1x1x1) 1 1024x1x4x4
Block/s(1x1x1) 1 1024x1x4x4

AvgPool(1x4x4)/s(1,1,1) 1 1024x1x1x1
Linear(1024xNumCls) 1 NumCls

Table 4.11: 3D-MobileNet architecture. Details of Block is given in Fig. 4.9 (b).

3D-MobileNetV2
MobileNetV2 [177] is another 2D resource efficient architecture. It builds upon the
main idea of MobileNetV1 by using depthwise separable convolutions; however, it
introduces two new components: 1) linear bottlenecks between the layers, and 2)
shortcut connections between the bottlenecks. The idea behind 1) is both keeping the

Layer/Stride Repeat Output size

Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(1x1x1) 1 16x16x56x56
Block/s(2x2x2) 2 24x8x28x28
Block/s(2x2x2) 3 32x4x14x14
Block/s(2x2x2) 4 64x2x7x7
Block/s(1x1x1) 3 96x2x7x7
Block/s(2x2x2) 3 160x1x4x4
Block/s(1x1x1) 1 320x1x4x4

Conv(1x1x1)/s(1,1,1) 1 1280x1x4x4
AvgPool/s(1,1,1) 1 1024x1x1x1
Linear 1 NumCls

Table 4.12: 3D-MobileNetV2 architecture. Block is inverted residual block whose details are
given in Fig. 4.9 (c) with stride 1 (left) and spatio temporal 2x downsampling
(right).
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Layer/Stride Repeat
Output size
(groups=3)

Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 24x16x56x56
MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28

Block/s(2x2x2) 1 240x4x14x14
Block/s(1x1x1) 3 240x4x14x14

Block/s(2x2x2) 1 480x2x7x7
Block/s(1x1x1) 7 480x2x7x7

Block/s(2x2x2) 1 960x1x4x4
Block/s(1x1x1) 3 960x1x4x4

AvgPool(1x4x4)/s(1,1,1) 1 960x1x1x1
Linear 1 NumCls

Table 4.13: 3D-ShuffleNet architecture. Its main building block is given in Fig. 4.9 (d) with
stride 1 (left) and spatio temporal 2x downsampling (right).

size of the model low by decreasing the number of channels and extracting as much as
information by applying depthwise convolution after decompressing the data. This
convolutional module allows reducing memory usage during inference. On the other
hand, 2) allows training faster and constructs deeper models like ResNet architectures
[88].

Fig. 4.9 (c) shows the MobileNetV2 block. Table 4.12 shows the layers of
3D-MobileNetV2 architecture. 3D-MobileNetV2 begins with a convolutional layer,
followed by 17 MobileNetV2 blocks, and then a convolutional layer and finally ending
with a linear layer.

3D-ShuffleNetV1
According to [175], ShuffleNet provides superior performance compared to MobileNet
[174] by a significant margin, which is reported as absolute 7.8% lower ImageNet top-1
error at level of 40 MFLOPs. The model is also reported to achieve 13× actual speedup
over AlexNet while maintaining comparable accuracy.

The architecture uses two new operations, which are pointwise group convolution and
channel shuffle which is depicted in Fig. 4.9 (d).

As illustrated in Table 4.13, 3D-ShuffleNet begins with a convolutional layer followed
by 16 ShuffleNet blocks, which are grouped into three stages. In each stage, the number
of output channels is kept the same with the applied ShuffleNet blocks. For the next
stage, the output channels are doubled and the spatial and depth dimensions are reduced
to half. ShuffleNet architecture ends with a final linear layer. In ShuffleNet units, group
number g controls the connection sparsity of pointwise convolutions. In this study, the
group number is selected as 3.
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LayerStride Repeat Output size

Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 24x16x56x56
MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28

Block/s(2x2x2) 1 c1x4x14x14
Block/s(1x1x1) 3 c1x4x14x14

Block/s(2x2x2) 1 c2x2x7x7
Block/s(1x1x1) 7 c2x2x7x7

Block/s(2x2x2) 1 c3x1x4x4
Block/s(1x1x1) 3 c3x1x4x4

Conv(1x1x1)/s(1,1,1) 1 c4x1x4x4
AvgPool(1x4x4)/s(1,1,1) 1 c4x1x1x1
Linear 1 NumCls

Table 4.14: 3D-ShuffleNetV2 architecture. Its main building block is given in Fig. 4.9 (e)
with stride 1 (left) and spatio temporal 2x downsampling (right). The number
of channels (c1, c2, c3, c4) for different complexities are given in Table 4.15.

3D-ShuffleNetV2
In ShuffleNetV2 [176] architecture, channel split operator is introduced different from
V1. As illustrated in Fig. 4.9 (e), at the beginning of each block, the input of c feature
channels are split into two branches with c-c

′
and c

′
channels, respectively. One branch

remains as identity, and the other branch includes three convolutions with the same
input and output channels. Different from ShuffleNet, the two 1×1 convolutions are not
groupwise. After the convolutions, the two branches are concatenated and the number
of channels keeps the same. At the end of the block, the channel shuffle operation is
applied to enable information communication between the two branches.

Table 4.14 shows the layers of 3D-ShuffleNetV2 architecture. 3D-ShuffleNetV2
architecture begins with a convolutional layer, followed by 16 ShuffleNetV2 blocks,
then a convolutional layer, and finally ending with a linear layer. Similar to
3D-ShuffleNet, the stack of blocks is grouped into three stages, and at each stage, the
number of output channels is kept the same while with the next stage, they are
doubled. Different from the 3D-ShuffleNet, the number of channels in each stage is not
fixed. Table 4.15 shows the number of channels (c1, c2, c3, c4) for different levels of
complexities. Also, in 3D-ShuffleNet, the number of output channels in the final layer
(c4) is the same after the third stage, whereas in 3D-ShuffleNetV2, different number of
output channels are selected for different levels of complexities (Table 4.15).

4.3.3.2 Comperative Analysis

In this section, we compare the experimented architectures according to the number
of layers, nonlinearities, and skip connections. These design criteria play an important
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Output channels
0.25x 0.5x 1.0x 1.5x 2.0x

c1 32 48 116 176 244
c2 64 96 232 352 488
c3 128 192 464 704 976
c4 1024 1024 1024 1024 2048

Table 4.15: The number of channels used in 3D-ShuffleNetv2 architecture for different levels of
complexities.

Model
Number of

layers non-lin. skip-con.

3D-SqueezeNet 18 18 4
3D-ShuffleNetV1 50 33 16
3D-ShuffleNetV2 51 34 16
3D-MobileNetV1 28 27 0
3D-MobileNetV2 53 35 10

Table 4.16: Comparison of resource efficient 3D architectures according to the number of layers,
non-linearity and skip-connections.

role in the performance of the architectures. Comparison of the architectures is given
in Table 4.16. For the number of layers, we counted the convolutional and linear layers.
For the skip-connections, we have counted the addition or concatenation operations
in the architectures. Finally, for the number of non-linearity, we have counted the
ReLU operations in one inference time since it is the only non-linearity used for all the
architectures.

It is noticeable that comparatively earlier architectures (i.e. SqueezeNet and
MobileNetV1) have a smaller number of layers, non-linearity, and skip-connections. On
the other hand, recent resource efficient architectures (i.e. ShuffleNetV1, ShuffleNetV2
and MobileNetV2) are deeper, in the order of 50 layers and 30 non-linearity. Corollary,
they require more skip connections in order to facilitate a better gradient update
mechanism.

4.3.3.3 Training Details

Learning: For the training of the architectures, Stochastic Gradient Descent (SGD)
with standard categorical cross-entropy loss is applied. For the mini-batch size of SGD,
the largest fitting batch size is selected, which is usually in the order of 128 videos. The
momentum, dampening, and weight decay are set to 0.9, 0.9 and 1x10−3, respectively.
When the networks are trained from scratch, the learning rate is initialized with 0.1
and reduced 3 times with a factor of 10−1 when the validation loss converges. For the
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training of the UCF101 benchmark, we have used the pretrained models of Kinetics-
600. We have frozen the network parameters and fine-tuned only the last layer. For
fine-tuning, we start with a learning rate of 0.01 and reduce it two times after 30th and
45th epochs with a factor of 10−1 and optimization is completed after 15 more epochs.

Regularization: Although Kinetics-600 and Jester are very large benchmarks and
immune to over-fitting, UCF101 still requires intensive regularization. Weight decay of
1x10−3 is applied for all the parameters of the network. A dropout layer is applied before
the final convolution/linear layer of the networks. While the dropout ratio is kept at 0.2
for Kinetics-600 and Jester, it is increased to 0.9 for UCF101.

Augmentation: For temporal augmentation, input clips are selected from a random
temporal position in the video clip. If the video contains a smaller number of frames than
the input size, loop padding is applied. For the input to the networks, always 16-frame
clips are used. For the Jester benchmark, it is critical to capture the full content of the
gesture video in the selected input clip. Therefore, we have applied downsampling of 2
by selecting 16 frames from 32 frames for the Jester benchmark as proposed by [30].

For spatial augmentation, we have selected a random spatial position from the input
video. Moreover, we have selected a scale randomly from {1, 1

21/4
, 1

23/4
, 1

2} in order to
perform multi-scale cropping as in [131]. For Kinetics-600 and UCF101, input clips are
flipped with 50% probability. After the augmentations, the input clip to the network
has the size of 3 x 16 x 112 x 112 referring to the number of input channels, frames,
width, and height pixels, respectively.

Recognition: For Kinetics-600 and UCF101, we select non-overlapping 16-frame
clips from each video sample. Then center cropping with scale 1 is applied to each clip.
Using the pretrained models, class scores for each clip are calculated. For each video,
we average the scores of all clips. The class with the highest score indicates the class
label of the video.

Implementation: Network architectures are implemented in PyTorch and trained
with a single Nvidia Titan Xp GPU. We make our code publicly available at https:

//github.com/okankop/Efficient-3DCNNs for the reproducibility of the results.

4.3.4 Experiments

In this section, we first explain the experimented datasets. Then, we discuss the
achieved results for the experimented network architectures together with their
runtime performance on both Nvidia Titan Xp and Jetson TX2 embedded system.

4.3.4.1 Datasets

Kinetics-600 [124], Jester [4] and UCF101 [6] datasets are selected for the evaluation of
the created resource efficient 3D CNN architectures. The details of these datasets can
be found in Section 2.5.

We selected the Kinetics-600 benchmark in order to evaluate the capacity of the
experimented networks. A real-life application rarely tries to classify 600 different
classes. However, these kinds of very large-scale datasets are very useful to evaluate the
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capacity of the networks to learn. Although it is still necessary to capture the motion
patterns in the video, the network should especially capture the spatial content in
order to identify the correct class label of the video. For example, there are 9 different
”eating something” classes where ”something” is one of ”burger, cake, carrot, chips,
doughnut, hotdog, ice cream, spaghetti, watermelon”. Although ”eating” action is
same for all these, the true label can only be identified when the network captures
discriminative features of what is being eaten.

Unlike the Kinetics-600 benchmark, in the Jester dataset, the spatial content of all
video samples is the same: A person sitting in front of a camera performs a hand gesture
from almost the same distance. Moreover, the selection of classes is more focused on
the movement of the hand. That is why the Jester benchmark is suitable to inspect the
ability of the networks in capturing motion patterns.

Lastly, the UCF101 benchmark is selected in order to inspect the applicability of
transfer learning for the experimented network architectures.

4.3.4.2 Results

In this section, we elaborate on our findings in the experiments that we have conducted
for 5 different network architectures, 4 levels of complexity (except for SqueezeNet) on 3
different benchmarks. Moreover, the runtime performance of the models is evaluated on
2 different platforms, namely Nvidia Titan XP GPU and Nvidia Jetson TX2 embedded
system. According to the results in Table 4.17, the following conclusions can be inferred:

Accuracy:

(i) The deeper architectures (3D-ShuffleNet, 3D-ShuffleNetV2, 3D-MobileNetV2)
achieve better results compared to shallower architectures (3D-SqueezeNet,
3D-MobileNetV1). Accordingly, resource efficient 3D CNNs should not be designed too
shallow in order to save complexity.

(ii) Motion patterns are better captured with depthwise convolutions. Since
depthwise convolutions have kernels of 3x3x3, they can capture relations in the depth
dimension together with the spatial dimensions. The main building block of
3D-MobileNetV2 is the inverted residual block, which expands the number of channels
to the input of depthwise convolution layers with an expansion ratio. Therefore, it
contains more depthwise convolution filters compared to other architectures.
Consequently, it achieves by far the best performance in the Jester benchmark,
although it has inferior results in Kinetics-600 and UCF101 benchmarks.

(iii) All models showed comparatively similar performance on both Kinetics-600 and
UCF101 datasets. This shows transfer learning is a valid approach for resource efficient
3D CNNs since there is a direct correlation between model performances on these two
datasets.

Complexity level:

(iv) There is a severe performance degradation if the networks are scaled with very
small width multiplier in order to satisfy the required computational complexity. For
example, in the first block of the Table 4.17, we can see that 3D-MobileNetV2 0.2x
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Model MFLOPs Params
Speed (cps) Accuracy (%)

Titan XP Jetson TX2 Kinetics-600 Jester UCF101

3D-ShuffleNetV1 0.5x 78 0.55M 398 69 35.51 89.23 64.39
3D-ShuffleNetV2 0.25x 116 0.83M 442 82 25.73 86.91 56.52
3D-MobileNetV1 0.5x 98 1.17M 290 57 31.74 87.61 62.17
3D-MobileNetV2 0.2x 63 0.96M 357 42 24.14 86.43 55.56

3D-ShuffleNetV1 1.0x 199 1.52M 269 49 45.31 92.27 76.00
3D-ShuffleNetV2 1.0x 195 1.91M 243 44 46.10 91.96 77.90
3D-MobileNetV1 1.0x 241 3.91M 164 31 40.07 90.81 70.95
3D-MobileNetV2 0.45x 177 1.40M 203 19 36.47 90.21 68.31

3D-ShuffleNetV1 1.5x 347 2.92M 204 31 52.75 93.12 81.73
3D-ShuffleNetV2 1.5x 291 3.16M 186 34 52.05 93.16 82.32
3D-MobileNetV1 1.5x 429 8.22M 116 19 48.24 91.28 76.00
3D-MobileNetV2 0.7x 325 2.05M 130 13 45.59 93.34 77.32

3D-ShuffleNetV1 2.0x 538 4.76M 161 24 56.84 93.54 84.96
3D-ShuffleNetV2 2.0x 438 6.64M 146 26 55.17 93.71 83.32
3D-MobileNetV1 2.0x 662 14.10M 88 15 48.53 92.56 76.18
3D-MobileNetV2 1.0x 561 3.12M 93 9 50.65 94.59 81.60
3D-SqueezeNet 926 2.15M 682 46 40.52 90.77 74.94

ResNet-18 8323 33.36M 334 17 57.65 93.34 80.09
ResNet-50 9835 44.54M 183 11 63.00 93.70 88.92
ResNet-101 13664 83.58M 142 8 64.18 94.10 87.02
ResNeXt-101 9652 48.75M 122 7 68.30 94.89 89.08
I3D [124] 111331 12.70M — — 71.90 — —

Table 4.17: Comparison of resource efficient 3D architectures over video classification accuracy,
number of parameters and speed on two different platforms and four levels of
computation complexity. K600 stands for Kinetics-600 dataset. The calculations of
MFLOPs, parameters and speeds are done for Kinetics-600 benchmark. For speed
calculations (clips per second (cps)), the used platforms are Titan Xp and Jetson
TX2; and the batch size is set to 8. All models takes 16 frames input with 112 x
112 spatial resolution except for I3D, which takes 64 frames input with 224 x 224
spatial resolution.

and 3D-ShuffleNetV2 0.25x achieve 5-9% worse than 3D-ShuffleNetV1 0.5x and 3D-
MobileNetV1 0.5x in Kinetics-600 benchmark. The capacity of the models degrades
severely as the width multiplier gets smaller, especially when it is less than 0.5. We can
see the same pattern on all three benchmarks that we have experimented with.

(v) The main design criteria of the 3D-SqueezeNet is to save the number of parameters,
not computations. Therefore it has the smallest number of parameters at the highest
complexity level. However, it also has around 300 million more FLOPs compared to
other architectures since it does not make use of depthwise convolutions.

Runtime performance:
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(vi) Although the network architectures contain similar FLOPs, some architectures
are much faster than others. As highlighted by [176], this is due to several other factors
affecting speed such as memory access cost (MAC) and degree of parallelism, which are
not taken into account by FLOPs.

(vii) 3D-SqueezeNet is the only architecture that does not make use of depthwise
convolutions, hence contains the highest number of FLOPs. However, surprisingly it has
the highest runtime performance. This is due to the latest CUDNN [237] library which
is specifically optimized for standard convolutions. Similar results can also be observed
with ResNet and ResNeXt architectures.

(viii) Runtime performance heavily depends on the hardware that the network
architecture is running. For example, for the highest two complexity levels,
3D-ShuffleNetV1 is faster than 3D-ShuffleNetV2 on GPU, whereas 3D-ShuffleNetV2
achieves higher runtime than 3D-ShuffleNetV1 on Jetson TX2.

State-of-the-art comparison:

(ix) Architectures with more parameters and FLOPs like ResNets, ResNeXt-101 and
I3D achieve generally better results for datasets measuring the capacity of the tested
architectures like Kinetics dataset as evaluated and shown in Table 4.17. However,
network design makes a huge difference. For example, 3D-ShuffleNetV1 2.0x achieves
similar performance with ResNet-18, although ResNet-18 requires 7 times more
parameters and around 15 times more FLOPs.

(x) The architecture design should be done according to the given task. As inverted
residual block excels at capturing dynamic motions, 3D-MobileNetV2 1.0x achieves
better results than much wider and deeper ResNet-101 (around 20 times more
parameters and FLOPs) at the Jester benchmark.

4.3.5 Summary

In recent years, the research in action recognition has mostly focused on obtaining the
best accuracy by generating deep and wide CNN architectures. However, real-world
applications require resource efficient architectures that take runtime, memory and power
budget into account. Recently, several resource efficient 2D CNN architectures have been
proposed. However, there is a lack of architectures for 3D counterparts. This work aims
to fill this research gap.

The proposed architectures are generated by implementing the 3D versions of
SqueezeNet, MobileNet, MobileNetV2, ShuffleNet, ShuffleNetV2 architectures for 4
different complexity levels. The performance of these architectures has been evaluated
using 3 different benchmarks, which are selected according to analyze models’
capacities, how well the models capture the motion and the applicability of transfer
learning for each model.

According to the analysis for 4 different complexity levels, the results show that these
resource efficient 3D CNN architectures provide considerable classification performances.
Using the width multiplier, the capacity of the architectures can be modified flexibly.
The results on the Jester benchmark show that depthwise convolutions are very good at
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capturing motion patterns. Moreover, nearly all models run in real-time both at Titan
XP and Jetson TX2. As the results proved the applicability of transfer learning, these
architectures can be used for other real-world applications by using pretrained models.
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4.4 Two-Model Hierarchical Architecture to Reduce
Computational Complexity

This section addresses the challenges of online recognition of hand gestures and proposes
a two-level hierarchical architecture to reduce system resource usage when the system
remains idle.

Real-time recognition of dynamic hand gestures from video streams is a challenging
task since (i) there is no indication when a gesture starts and ends in the video, (ii)
performed gestures should only be recognized once, and (iii) the entire architecture
should be designed considering the memory and power budget. In this work, we
address these challenges by proposing a hierarchical structure enabling offline-working
convolutional neural network (CNN) architectures to operate online efficiently by using
sliding window approach. The proposed architecture consists of two models: (1) A
detector which is a lightweight CNN architecture to detect gestures and (2) a classifier
which is a deep CNN to classify the detected gestures. In order to evaluate the
single-time activations of the detected gestures, we propose to use Levenshtein distance
as an evaluation metric since it can measure misclassifications, multiple detections, and
missing detections at the same time. We evaluate our architecture on two publicly
available datasets - EgoGesture and NVIDIA Dynamic Hand Gesture Datasets - which
require temporal detection and classification of the performed hand gestures.
ResNeXt-101 model, which is used as a classifier, achieves the state-of-the-art offline
classification accuracy of 94.04% and 83.82% for depth modality on EgoGesture and
NVIDIA benchmarks, respectively. In real-time detection and classification, we obtain
considerable early detections while achieving performances close to the offline
operation. This section is based on our publication Real-time Hand Gesture Detection
and Classification Using Convolutional Neural Networks [22].

4.4.1 Motivation

Computers and computing devices are becoming an essential part of our lives day by
day. The increasing demand for such computing devices increased the necessity of easy
and practical computer interfaces. For this reason, systems using vision-based
interaction and control are becoming more common, and as a result of this, gesture
recognition is getting more and more popular in the research community due to various
application possibilities in human-machine interaction. Compared to mouse and
keyboard, any vision-based interface is more convenient, practical and natural because
of the intuitiveness of gestures.

Gesture recognition can be practiced with mainly three methods: Using (i) glove-based
wearable devices [238], (ii) 3-dimensional locations of hand keypoints [239] and (iii) raw
visual data. The first method comes with the obligation of wearing an additional device
with which lots of cables come even though it provides good results in terms of both
accuracy and speed. The second, on the other hand, requires an extra step of hand-
keypoints extraction, which brings additional time and computational cost. Lastly, for
(iii), only an image capturing sensor is required such as camera, infrared sensor or depth
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Figure 4.10: Illustration of the proposed pipeline for real-time gesture recognition. The video
stream is processed using a sliding window approach with stride of one. The top
graph shows the detector probability scores which is activated when a gesture
starts and kept active till it ends. The second graph shows the classification
score for each class with a different color. The third graph applies weighted-
average filtering on raw classification scores which eliminates the ambiguity
between possible gesture candidates. The bottom graph illustrates the single-
time activations such that red arrows represent early detections and black ones
represent detections after gestures finalize.
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sensor, which are independent of the user. Since the user does not require to wear a
burdensome device to achieve an acceptable accuracy in recognition and sufficient speed
in computation, this option stands out as the most practical one. The infrastructure
of any gesture recognition system needs to be practical. After all, we aim to use it in
real-life scenarios.

In this work, in order to provide a practical solution, we have developed a vision-based
gesture recognition approach using deep convolutional neural networks (CNNs) on raw
video data. Currently, CNNs provide the state-of-the-art results for not only image-
based tasks such as object detection, image segmentation and classification, but also for
video-based tasks such as activity recognition and action localization as well as gesture
recognition [19, 133, 194].

In real-time gesture recognition applications, there are several characteristics that the
system needs to satisfy: (i) An acceptable classification accuracy, (ii) fast reaction time,
(iii) resource efficiency and (iv) single-time activation per each performed gesture. All
these items contain utmost importance for a successful real-time vision-based gesture
recognition application. However, most of the previous research only considers (i) and
tries to increase the offline classification accuracy in gesture recognition disregarding the
remaining items. Some proposed approaches are even impossible to run in real-time
since they consist of several deep CNNs on multiple input modalities, which is forcing
the limits of memory and power budget [141].

In this section, we propose a hierarchical architecture for the task of real-time hand
gesture detection and classification that allows us to integrate offline working models and
still satisfy all the above-mentioned attributes. Our system consists of an offline-trained
deep 3D CNN for gesture classification (classifier) and a lightweight, shallow 3D CNN for
gesture detection (detector). Fig. 4.10 illustrates the pipeline of the proposed approach.
A sliding window is used over the incoming video stream feeding the input frames to the
detector via detector queue. The top graph in Fig. 4.10 shows the detector probability
scores which become active when the gestures are being performed, and remain inactive
for the rest of the time. The classifier becomes active only when the detector detects
a gesture. This is very critical since most of the time, no gesture is performed in real-
time gesture recognition applications. Therefore, there is no need to keep the high-
performance classifier always active, which increases the memory and power consumption
of the system considerably. The second graph shows the raw classification scores of each
class with a different color. As it can be seen from the graph, scores of similar classes
become simultaneously high especially at the beginning of the gestures. In order to
resolve these ambiguities, we have weighted the class scores to avoid making a decision
at the beginning of the gestures (third graph in Fig. 4.10). Lastly, the bottom graph
illustrates the single-time activations, where red arrows represent the early detections and
black ones represent the detections after gestures end. Our system can detect gestures
earlier in their nucleus part, which is the part distinguishing the gesture from the rest.
We propose to use the Levenshtein distance as an evaluation metric to compare the
captured single-time activations with ground-truth labels. This metric is more suitable
and evaluative since it can measure misclassifications, multiple detections and missing
detections at the same time.
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We evaluated our approach on two publicly available datasets, which are EgoGesture
Dataset [171] and NVIDIA Dynamic Hand Gesture Dataset [133] (nvGesture). For
the classifier of the proposed approach, any offline working CNN architecture can be
used. For our experiments, we have used well-known C3D [85] and 3D-ResNeXt-101
[131]. We have achieved the state-of-the-art offline classification accuracies of 94.03% and
83.82% on depth modality with ResNeXt-101 architecture on EgoGesture and nvGesture
datasets, respectively. For real-time detection and classification, we achieve considerable
early detections by relinquishing a little amount of recognition performance.

4.4.2 Methodology

We start by elaborating on our two-model hierarchical architecture that enables the
state-of-the-art CNN models to be used in real-time gesture recognition applications as
efficiently as possible. After introducing the architecture, training details are described.
Finally, we give a detailed explanation for the used post-processing strategies that allow
us to have single-time activation per gesture in real-time.

4.4.2.1 Architecture

Recently, with the availability of large datasets, CNN based models have proven their
ability in action/gesture recognition tasks. 3D CNN architectures especially stand out
for video analysis since they make use of the temporal relations between frames together
with their spatial content. However, there is no clear description of how to use these
models in a real-time dynamic system. With our work, we aim to fill this research gap.

Fig. 4.11 illustrates the used workflow for an efficient real-time recognition system
using a sliding window approach. In contrary to offline testing, we do not know when
a gesture starts or ends. Because of this, our workflow starts with a detector which is
used as a switch to activate the classifier if a gesture gets detected. Our detector and
classifier models are fed by a sequence of frames with size n and m, respectively, such as
n � m with an overlapping factor as shown in Fig. 4.11. The stride value used for the
sliding window is represented by s in Fig. 4.11, and it is the same for both the detector
and the classifier. Although higher stride provides less resource usage, we have chosen
s as 1 since it is small enough not to miss any gestures and allows us to achieve better
performance. In addition to the detector and classifier models, one post-processing and
one single-time activation service are introduced to the workflow. In the following parts,
we are going to explain these blocks in detail.

Detector
The purpose of the detector is to distinguish between gesture and no gesture classes by
running on a sequence of images, which detector queue masks. Its main and only role is
to act as a switch for the classifier model, meaning that if it detects a gesture, then the
classifier is activated and fed by the frames in the classifier queue.

Since the overall accuracy of this system highly depends on the performance of the
detector, we require the detector to be (i) robust, (ii) accurate in the detection of true
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Figure 4.11: The general workflow of the proposed two-model hierarchical architecture. Sliding
windows with stride s run through incoming video frames where detector queue
placed at the very beginning of classifier queue. If the detector recognizes an
action/gesture, then the classifier is activated. The detector’s output is post-
processed for a more robust performance, and the final decision is made using
a single-time activation block where only one activation occurs per performed
gesture.

positives (gestures), and (iii) lightweight as it runs continuously. For the sake of (i),
the detector runs on a smaller number of frames than the classifier to which we refer
as detector and classifier queues. For (ii), the detector queue is placed at the very
beginning of the classifier queue as shown in Fig. 4.11, and this enables the detector
to activate the classifier whenever a gesture starts regardless of the gesture duration.
Moreover, the detector model is trained with a weighted-cross-entropy loss in order to
decrease the likelihood of false positives (i.e., achieve a higher recall rate). The class
weights for no gesture and gesture classes are selected as 1 and 3, respectively as our
experiments showed that this proportion is sufficient to have 98+% and 97+% recall
rates in EgoGesture and nvGesture datasets, respectively. Besides that, we post-process
the output probabilities and set a counter for the consecutive number of no gesture
predictions in the decision to deactivate the classifier. For (iii), ResNet-10 architecture
is constructed using the ResNet block in Fig. 4.12 with very small feature sizes in each
layer as given in Table 4.18, which results in less than 1M (≈ 862K) parameters. F and N
correspond to the number of feature channels and the number blocks in corresponding
layers, respectively. BN, ReLU and group in Fig. 4.12 refers to batch normalization,
rectified linear unit nonlinearities and the number of group convolutions, respectively.
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Layer Output Size ResNeXt-101 ResNet-10

conv1 L x 56 x 56 conv(3x7x7), stride (1, 2, 2)

pool L/2 x 28 x 28 MaxPool(3x3x3), stride (2, 2, 2)

conv2 x L/2 x 28 x 28 N:3, F:128 N:1, F:16

conv3 x L/4 x 14 x 14 N:24, F:256 N:1, F:32

conv4 x L/8 x 7 x 7 N:36, F:512 N:1, F:64

conv5 x L/16 x 4 x 4 N:3, F:1024 N:1, F:128

NumCls
global average pooling,
fc layer with softmax

Table 4.18: Detector (ResNet-10) and Classifier (ResNeXt-101) architectures. For ResNet-10,
max pooling is not applied when input of 8-frames is used.

Figure 4.12: ResNet and ResNeXt blocks used in the detector and classifier architectures.

Classifier
Since we do not have any limitation regarding the size or complexity of the model, any
architecture providing a good classification performance can be selected as the classifier.
This leads us to use two recent 3D CNN architectures (C3D [85] and ResNext-101 [88]) as
our classifier model. However, it is important to note that our architecture is independent
of the model type.

For the C3D model, we have used the exact same model as in [85], but only changed
the number of nodes in the last two fully connected layers from 4096 to 2048. For
ResNeXt-101, we have followed the guidelines of [131] and chosen the model parameters
as given in Table 4.18 with ResNeXt block as given in Fig. 4.12.

Since the number of parameters for 3D CNNs is much more than 2D CNNs, they
require more training data in order to prevent overfitting. Because of this reason, we
pretrain our classifier architectures first on Jester dataset [4], which is the largest
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publicly available hand gesture dataset, and then fine-tune our model on EgoGesture
and nvGesture datasets. This approach increased the accuracy and shortened the
training duration drastically.

4.4.2.2 Training Details

We use stochastic gradient descent (SGD) with Nesterov momentum = 0.9, damping
factor = 0.9, and weight decay = 0.001 as optimizer. After pretraining on the Jester
dataset, the learning rate is started with 0.01, and divided by 10 at 10th and 25th epochs,
and training is completed after 5 more epochs.

For regularization, we used a weight decay (γ = 1 × 10−3), which is applied to all
the parameters of the network. We also used dropout layers in C3D and several data
augmentation techniques throughout training.

For data augmentation, three methods were used: (1) Each image is randomly cropped
with size 112 × 112 and scaled randomly with one of {1, 1

21/4
, 1

23/4
, 1

2} scales. (2)
Spatial elastic displacement [187] with α = 1 and σ = 2 is applied on the cropped and
scaled images. For temporal augmentation, (3) we randomly select consecutive frames
according to the size of input sample duration from the entire gesture videos. If the
sample duration is more than the number of frames in the target gesture, we append
frames starting from the very first frame in a cyclic fashion. We also normalized the
images into 0-1 scale using the mean and standard deviation of the whole training sets in
order to force models to learn faster. The same training details are used for the detector
and classifier models.

During offline and online testing, we scale images and apply center cropping to get
112 × 112 images. Then only normalization is performed for the sake of consistency
between training and testing.

Implementation: Our architecture is implemented in PyTorch and trained with a
single Titan Xp GPU. We make our code publicly available at https://github.com/

ahmetgunduz/Real-time-GesRec for the reproducibility of the results.

4.4.2.3 Post-processing

In dynamic hand gestures, it is possible that the hand gets out of the camera view while
performing gestures. Even though the previous predictions of the detector are correct,
any misclassification reduces the overall performance of the proposed architecture. In
order to make use of previous predictions, we add the raw softmax probabilities of
the previous detector predictions into a queue (qk) with size k, and apply filtering on
these raw values and obtain final detector decisions. With this approach, the detector
increases its confidence in decision making and clears out most of the misclassifications
in consecutive predictions. The size of the queue (k) is selected as 4, which achieved the
best results for stride s of 1 in our experiments.

We have applied (i) average, (ii) exponentially-weighted average and (iii) median
filtering separately on the values in qk. While average filtering simply takes the mean
value of qk, median filtering takes the median. Exponentially-weighted average filtering,
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(a) (b)

Figure 4.13: (a) Histogram of the gesture durations for the EgoGesture dataset. (b) Sigmoid-
like weight function used for single-time activations according to the Eq. (4.13).

Figure 4.14: Raw (top) and weighted (bottom) classification scores. At the top graph, we
observe a lot of noise at the beginning of all gestures; however, close to the end of
each gesture, the classifier gets more confident. The bottom graph shows that we
can remove this noise part by assigning smaller weights to the beginning part of
the gestures.

on the other hand, takes the weighted average of the samples using the weight function of
wi = exp−(1−(k−i))/k where i stands for the index of the ith previous sample and satisfies
0 ≤ i < k, and wi is the weight for the ith previous sample. Out of these three filtering
strategies, we have used median filtering since it achieves slightly better results.
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4.4.2.4 Single-time Activation

In real-time gesture recognition systems, it is extremely important to have smaller
reaction time and single-time activation for each gesture. Pavlovic et al. states that
dynamic gestures have preparation, nucleus (peak or stroke [240]) and retraction parts
[16]. Out of all parts, nucleus is the most discriminative one, since we can decide which
gesture is performed in nucleus part even before it ends.

Single-time activation is achieved through a two-level control mechanism. Either a
gesture is detected when a confidence measure reaches a threshold level before the gesture
actually ends (early-detection), or the gesture is predicted when the detector deactivates
the classifier (late-detection). In late-detection, we assume that the detector should not
miss any gesture since we assure that the detector has a very high recall rate.

The most critical part of the early-detection is that the gestures should be detected
after their nucleus parts for a better recognition performance. Because several gestures
can contain a similar preparation part which creates an ambiguity at the beginning of
the gestures, as can be seen on the top graph of Fig. 4.14. Therefore, we have applied
weighted-averaging on class scores with a weight function as in Fig. 4.13 (b), and its
formula is given as:

wj =
1

(1 + exp−0.2×(j−t))
, (4.13)

where j is the iteration index of an active state, at which a gesture is detected, and t is
calculated by using the following formula:

t =

⌊
µ

4× s

⌋
, (4.14)

where µ corresponds to the mean duration of the gestures (in the number of frames)
in the dataset and s is the stride length. Fig. 4.13 (a) shows the distribution of the
number of frames per gesture for the EgoGesture dataset, where mean duration µ is
equal to 38,4. Accordingly, for stride of s = 1, t is calculated as 9, which is similar for
also nvGesture dataset. When a gesture starts, we start to multiply raw class scores
with weights wj and apply averaging. These parameters allow us to have weights equal
to or higher than 0.5 in the nucleus part of the gestures on average. Fig. 4.14 shows the
probability scores of five gestures over each iteration and their corresponding weighted
averages. It can easily be observed that the ambiguity of the classifier at the preparation
part of the gestures is successfully resolved with this approach.

With this weighted-averaging strategy, we force our single-time activator to make a
decision at the mid-late part of the gestures after capturing their nucleus parts. On the
other hand, we need a confidence measure for early-detections in real-time since the
duration of gestures varies. Hence, we decided to use the difference between weighted
average scores of each class as our confidence measure for early-detection. When the
detector switches the classifier on, weighted average probabilities for all classes are
calculated at each iteration. If the difference between the two highest average
probabilities is more than a threshold τearly, then early-detection is triggered;
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Algorithm 1 Single-time activation in real-time gesture recognition

Input: Incoming frames from video data.
Output: Single-time activations.

1: for each ”frame-window” wi of length m do
2: if a gesture is detected then
3: state ← ”Active”
4: α← probsj−1 × (j − 1)
5: meanprobs = (α+ wj × probsj)/j
6: (max1,max2) = max

gesture
[meanprobs]2

7: if (max1−max2) ≥ τearly then
8: early-detection ← ”True”
9: return gesture with max1

10: j ← j + 1

11: if the gesture ends then
12: state ← ”Passive”
13: if early-detection 6= ”True” & max1 ≥ τlate then
14: return gesture with max1

15: i← i+ 1

otherwise, we wait for the detector to switch off the classifier and the class with the
highest score above τlate (fixed to 0.15 as it showed the best results in our experiments)
is predicted as late-detection. Details for this strategy can be found in Algorithm 1.

4.4.2.5 Evaluation of the Activations

As opposed to offline testing which usually considers only class accuracies, we must also
consider the following scenarios for our real-time evaluation:

• Misclassification of the gesture due to the classifier,

• Not detecting the gesture due to the detector,

• Multiple detections in a single gesture.

Considering these scenarios, we propose to use the Levenshtein distance as our
evaluation metric for online experiments. The Levenshtein distance is a metric that
measures the distance between sequences by counting the number of item-level changes
(insertion, deletion, or substitutions) to transform one sequence into the other. For our
case, one video and the gestures in this video correspond to a sequence and the items
in this sequence, respectively. For example, let’s consider the following ground truth
and predicted gestures of a video:

GroundTruth [1, 2, 3, 4, 5, 6, 7, 8, 9]

Predicted [1, 2, 7, 4, 5, 6, 6, 7, 8, 9]
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Model Input
Modality

RGB Depth

VGG-16 [171] 16-frames 62.50 62.30
VGG-16 + LSTM [171] 16-frames 74.70 77.70
C3D 16-frames 86.88 88.45
ResNeXt-101 16-frames 90.94 91.80
C3D+LSTM+RSTTM [171] 16-frames 89.30 90.60

ResNeXt-101 32-frames 93.75 94.03*

Table 4.19: Comparison with state-of-the-art on the test set of EgoGesture dataset.

Model Input
Modality

RGB Depth

C3D 16-frames 86.88 88.45
C3D 24-frames 89.20 89.07
C3D 32-frames 90.57 91.44

ResNeXt-101 16-frames 90.94 91.80
ResNeXt-101 24-frames 92.89 93.47
ResNeXt-101 32-frames 93.75 94.03*

Table 4.20: Classifier’s classification accuracy scores on the test set of EgoGesture dataset.

For this example, the Levenshtein distance is 2: The deletion of one of ”6” which is
detected two times, and the substitution of ”7” with ”3”. We average this distance over
the number of true target classes. For this case, the average distance is 2/9 = 0.2222
and we subtract this value from 1 since we want to measure closeness (in this work it is
referred as the Levenshtein accuracy) of our results, which is equal to (1−0.2222)×100 =
77.78%.

4.4.3 Experiments

The performance of the proposed approach is tested on two publicly available datasets:
EgoGesture and NVIDIA Dynamic Hand Gestures dataset.
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Model Input
Modality

RGB Depth

ResNet-10 8-frames 96.58 99.39*
ResNet-10 16-frames 97.00 99.64
ResNet-10 24-frames 97.13 99.15
ResNet-10 32-frames 96.65 99.68

Table 4.21: Detector’s binary classification accuracy scores on the test set of EgoGesture
dataset.

Modality Recall Precision f1-score

RGB 96.64 97.10 96.87
Depth 99.37 99.43 99.40

Table 4.22: Detection results of 8-frames ResNet-10 architecture on the test set of EgoGesture
dataset.

4.4.3.1 Offline Results Using EgoGesture Dataset

We have provided the details of EgoGesture dataset [171] in Section 2.5. All models
are first pretrained on Jester dataset [4]. For test set evaluations, we have used both
training and validation set for training.

We initially investigated the performance of C3D and ResNeXt architectures on the
offline classification task. Table 4.19 shows the comparison of used architectures with
the state-of-the-art approaches. ResNeXt-101 architecture with 32-frames input achieves
the best performance.

Secondly, we investigated the effect of the number of input frames on gesture detection
and classification performance. Results in Table 4.20 and Table 4.21 show that we achieve
a better performance as we increase the input size for all the modalities. This depends
highly on the characteristics of the used datasets, especially on the average duration of
the gestures.

Thirdly, the RGB and depth modalities are investigated for different input sizes. We
always observed that the models with depth modality show better performance than
the models with RGB. Depth sensor filters out the background motion and allows the
models to focus more on the hand motion, hence more discriminative features can be
obtained from depth modality. For real-time evaluation, ResNet-10 with depth modality
and input size of 8-frames is chosen as the detector, since a smaller window size allows
the detector to discover the start and end of the gestures more robustly. The detailed
results of this model are shown in Table 4.22.
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Model
Modality

RGB Depth

C3D 73.86 77.18
R3DCNN [133] 74.10 80.30
ResNeXt-101 78.63 83.82

Table 4.23: Comparison with state-of-the-art on the test set of nvGesture dataset.

Model Input
Modality

RGB Depth

C3D 16-frames 62.67 70.33
C3D 24-frames 65.35 70.33
C3D 32-frames 73.86 77.18

ResNeXt-101 16-frames 66.40 72.82
ResNeXt-101 24-frames 72.40 79.25
ResNeXt-101 32-frames 78.63 83.82*

Table 4.24: Classifier’s classification accuracy scores on the test set of nvGesture dataset.

4.4.3.2 Offline Results Using nvGesture Dataset

The details of nvGesture dataset [133] is provided in Section 2.5. We again initially
investigated the performance of C3D and ResNeXt architectures on the offline
classification task, by comparing them with the state-of-the-art models. As shown in
Table 4.23, ResNeXt-101 architecture achieves the best performance. Similar to the
EgoGesture dataset, we achieve a better classification and detection performance as we
increase the input size, for all the modalities, as shown in Table 4.24 and Table 4.25.
Depth modality again achieves better performance than RGB modality for all input
sizes. Moreover, ResNet-10 with depth modality and input size of 8-frames is chosen as
the detector in the online testing, whose detailed results are given in Table 4.26.

For real-time evaluation, we have selected 8-frames ResNet-10 detectors with depth
modality and best performing classifiers in both datasets, which have * sign in
corresponding tables.

4.4.3.3 Real-Time Classification Results

EgoGesture and nvGesture datasets have 431 and 482 videos, respectively in their test
sets. We evaluated our proposed architecture on each video separately and calculated an
average Levenshtein accuracy at the end. We achieve 91.04% and 77.39% Levenshtein
accuracies in EgoGesture and nvGesture datasets, respectively.
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Model Input
Modality

RGB Depth

ResNet-10 8-frames 70.22 97.30*
ResNet-10 16-frames 85.90 97.82
ResNet-10 24-frames 89.00 98.02
ResNet-10 32-frames 93.88 97.30

Table 4.25: Detector’s binary classification accuracy scores on the test set of nvGesture dataset.

Modality Recall Precision f1-score

RGB 70.22 80.31 74.93
Depth 97.30 97.41 97.35

Table 4.26: Detection results of 8-frames ResNet-10 architecture on the test set of nvGesture
dataset.

Moreover, the early detection times are investigated by simulating different early-
detection threshold levels (τearly) varying from 0.2 to 1.0 with 0.1 steps. Fig. 4.15
compares early detection times of weighted averaging and uniform averaging approaches
for both EgoGesture and nvGesture datasets. For both datasets, weighted averaging
performs considerably better than uniform averaging. As we increase the threshold, we
force the architecture to make a decision towards the end of gestures, hence achieving
better performance. However, we can gain considerable early detection performance by
relinquishing a little amount of performance. For example, if we set detection threshold
τearly to 0.4 for the EgoGesture dataset, we can make our single-time activations 9 frames
earlier on average by relinquishing only 1.71% Levenshtein accuracy. We also observe
that mean early detection times are longer for the nvGesture dataset since it contains
weakly-segmented videos.

Lastly, we investigated the execution performance of our two-model approach. Our
system runs on average at 460 fps when there is no gesture (i.e. only detector is active)
and 62 (41) fps in the presence of gesture (i.e. both detector and classifier are active)
for ResNeXt-101 (C3D) as the classifier on a single Nvidia Titan Xp GPU with a batch
size of 8.

4.4.4 Summary

This section presents a novel two-model hierarchical architecture for real-time hand
gesture recognition systems. The proposed architecture provides resource efficiency,
early detections, and single-time activations, which are critical for real-time gesture
recognition applications.
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(a) (b)

Figure 4.15: Comparison of early detection time, early detection threshold and acquired
Levenshtein accuracies for (a) EgoGesture and (b) nvGesture datasets. Numerals
on each data point represent the Levenshtein accuracies. Early detection times
are calculated only for correctly predicted gestures. Blue color refers to the
”weighted” approach in single-time activation, and green color refers to ”not
weighted” approach. For both datasets, as early detection threshold increases,
average early detection times reduce, but we achieve better Levenshtein accuracies.

The proposed approach is evaluated on two dynamic hand gesture datasets and
achieves similar results for both of them. For real-time evaluation, we have proposed to
use a new metric, Levenshtein accuracy, which we believe is a suitable evaluation
metric since it can measure misclassifications, multiple detections and missing
detections at the same time. Moreover, we have applied weighted-averaging on the
class probabilities over time, which improves the overall performance and allows early
detection of the gestures at the same time.
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4.5 Efficient Online Video Processing by Dissected 3D CNNs

This section addresses the drawback of computational redundancy of operating
conventional 3D CNN architectures with sliding window approach by proposing a new
architecture.

Convolutional Neural Networks with 3D kernels (3D CNNs) currently achieve
state-of-the-art results in video recognition tasks due to their supremacy in extracting
spatiotemporal features within video frames. There have been many successful
3D CNN architectures surpassing state-of-the-art results successively. However, nearly
all of them are designed to operate offline creating several serious handicaps during
online operation. Firstly, conventional 3D CNNs are not dynamic since their output
features represent the complete input clip instead of the most recent frame in the clip.
Secondly, they are not temporal resolution-preserving due to their inherent temporal
downsampling. Lastly, 3D CNNs are constrained to be used with fixed temporal input
size limiting their flexibility. In order to address these drawbacks, we propose dissected
3D CNNs, where the intermediate volumes of the network are dissected and
propagated over depth (time) dimension for future calculations, substantially reducing
the number of computations at online operation. For action classification, the dissected
version of ResNet models performs 77-90% fewer computations at online operation
while achieving ∼5% better classification accuracy on the Kinetics-600 dataset than
conventional 3D-ResNet models. Moreover, the advantages of dissected 3D CNNs are
demonstrated by deploying our approach onto several vision tasks, which consistently
improved the performance. This section is based on our publication Dissected
3D CNNs: Temporal Skip Connections for Efficient Online Video Processing [23].

4.5.1 Motivation

Currently, the primary trend in video recognition tasks is to increase network
performance by building deeper and wider 3D CNN architectures [131, 130, 127].
However, these architectures are typically designed to operate offline, ignoring the
requirements of online operation. Firstly, most of the 3D CNNs deploy temporal
downsampling to reduce the computational cost at the later stages of the network and
provide translation invariance (in the time dimension) to the internal representation.
This causes the network to become non-dynamic, which is of utmost importance for
online operation. Moreover, the resulting network is not temporal
resolution-preserving. Secondly, 3D CNNs are typically built to work with a fixed
number of input frames. Therefore, online operating frameworks usually use 3D CNNs
in a sliding window, either with a small temporal stride [22, 25] or larger stride [133].
In the former case, there is severe resource waste due to reprocessing frames in the
overlapping regions, which are already processed in the previous timestamps. In the
latter case, there is an information loss since relations between some of the frames are
not exploited. These issues make most of the 3D CNNs unsuitable for online operation.

In order to address the limitations mentioned above, we propose a novel 3D CNN
architecture, Dissected 3D CNNs (D3D), by incorporating temporal skip connections.
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Figure 4.16: Comparison of spatial skip connections (a) first proposed in [88] and temporal skip
connections (b) proposed in this work. At every iteration, only the computations
for the most recent frame are performed. Afterwards, intermediate volumes from
the skip connections are cached to be used for the next iteration. This way,
recomputation of previous frames is saved. Skip connections are denoted with red
lines.

Skip connections are first proposed in ResNets [88] to overcome the issue of
vanishing/exploding gradients and to enhance gradient propagation for deep
architectures. Spatial skip connections, which are depicted in Fig. 4.16 (a), can be in
the form of summation [88] or concatenation [89, 176]. As opposed to spatial skip
connections, we propose temporal skip connections to create a network for efficient
online operation. The general idea of the proposed architecture is depicted in
Fig. 4.16 (b). Intermediate volumes are always stored in a cache, and only the
computations for the new available frame are performed at each iteration. After the
computations, the previously cached volumes are replaced with the most recent
intermediate feature volumes coming from the skip connections. This way, the volumes
in Dissected 3D CNN architecture are propagated without calculating them repeatedly.
We incorporate 3D convolutions since we apply concatenation operation in the depth
dimension at the skip connections. Although summation is also possible at temporal
skip connections, we will show in our ablation study that temporal information is lost
with the summation operation, which leads to inferior results. Moreover, spatial skip
connections are still applicable on top of temporal skip connections.

The main motivation of this work is to provide a 3D CNN architecture, which satisfies
the requirements of online operation. Out of many, the two most important requirements
are (i) dynamic operation and (ii) reduced computational complexity. We refer to the
term dynamic as deployed architecture’s ability to adapt its output according to the
new coming video frames. Fig. 4.17 illustrates the comparison of conventional 3D CNNs
and Dissected 3D CNNs at online operation. Conventional 3D CNNs are non-dynamic
since the final decision of the network might be triggered by any previous frame in the
input clip, not due to the latest introduced frame. This is specifically critical for the
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Figure 4.17: Comparison of Conventional 3D CNNs (a) and Dissected 3D CNNs (b) at online
operation. Conventional 3D CNNs work with a fixed number of input frames
and their predictions can be triggered by any frame in the input clip. Therefore,
conventional 3D CNNs are non-dynamic and although a new action starts in the
video stream, they can continue predicting the previous action, as illustrated in
(a). On the other hand, Dissected 3D CNNs processes video with each new coming
frame and update their prediction dynamically, as illustrated in (b). Red lines in
(b) denote temporal skip connections.

online recognition of actions which is performed in very short time intervals, such as the
Driver Micro Hand Gestures (DriverMHG) dataset [26]. On the other hand, Dissected
3D CNNs need to process only the most recent frame at online operation since they
can leverage the previously computed intermediate volumes via a caching mechanism.
Consequently, Dissected 3D CNNs can update their predictions according to the new
coming frame and hence operated dynamically while enjoying reduced computational
complexity.

To obtain the network’s final decision, dissected 3D CNN architecture still needs a
spatiotemporal modeling mechanism at the end. Although the conventional way of
using a fully connected layer is a valid option, a Recurrent Neural Network (RNN) block
can also be applied. The RNN block makes the D3D architecture independent of the
number of input frames and performs better, as shown in our ablation study. Overall,
Dissected 3D CNNs bring the following advantages:

1. D3Ds provide frame-level features.

2. D3Ds operate at any number of input frames.

3. Any 3D CNN architecture can be converted to its dissected version1.

1D3D is a general term referring all the dissected 3D CNN architectures which employ temporal skip
connections. For the dissected version of a specific network architecture, we use the prefix ‘D’ (e.g.,
the dissected version of ResNet-18 is denoted as D-ResNet-18).
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4. A large number of computations are saved at online operation. Dissected versions
of ResNet-18,50,101 perform 77-90% less computation at online operation while
achieving ∼5% better classification accuracy compared to conventional ResNet
models on Kinetics-600 dataset.

5. Any frame-level task can leverage from D3D architecture if the frames are obtained
from continuous video streams.

4.5.2 Methodology

We first elaborate on the D3D architecture details, which reduces the computational
complexity substantially during online operation. Secondly, we mention possible options
for spatiotemporal modeling. Finally, training details are described.

4.5.2.1 Dissected 3D CNN Architecture

In order to demonstrate the advantages of the proposed D3D architecture, we have
created the dissected version of the ResNet family (named as D-ResNet) and compared
its performance with the conventional 3D-ResNet family as in [21]. The details of the
proposed D-ResNet models and corresponding basic and bottleneck blocks are shown
in Table 4.27 and Fig. 4.18, respectively. Similar to original ResNet architecture [88],
spatial downsampling is performed at conv1, pool, conv3 1, conv4 1, and conv5 1 with a
stride of 2. No temporal downsampling is employed. Unlike the 3D-ResNet architectures,
we reduced the depth dimension of the initial convolutional layer of the basic block and
the middle convolutional layer of the bottleneck block to 2 since we cache only previous
intermediate volumes. We also modify the second convolutional layer of the basic block
and set its depth dimension to 1. Excluding spatiotemporal modeling mechanisms, these
modifications lead to parameter reduction of ∼50% on D-ResNet-18 and ∼23% on D-
ResNet-50,101 compared to conventional 3D-ResNet architectures.

An illustration of Dissected 3D CNN architecture with basic D-ResNet block is shown
in Fig. 4.19. The primary motivation to create such an architecture is to avoid the
recomputation of already processed frames of the video stream during online operation.
For that, intermediate volumes of the architecture are stored in a cache (blue region
in Fig. 4.19) and used at inference. Throughout the inference, previous intermediate
volumes in the cache are replaced with the current ones to be used in the next iteration.
Therefore, only the computations within the yellow region in Fig. 4.19 are performed at
online operation. Moreover, the designed D3D architecture does not employ (i) temporal
downsampling and (ii) padding from right to ensure dynamic online operation.

At inference time, only the current frame or current frame with the previous two frames
are passed to the network depending on the task at hand. The reason of leveraging the
previous two frames is to capture pixel-wise motion information, which is critical for
motion-intensive datasets such as Jester dataset [4]. At the first iteration, same padding
is applied at concat operations since the cache for the intermediate volumes is empty.
For D-ResNet-50,101 architectures, an additional conv last block is used in order to
reduce the output feature dimension from 2048 to 512. So, all D-ResNet architectures
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Figure 4.18: Basic and bottleneck blocks used in ResNet architecture. F , BN , and ReLU
denote the number of feature maps (i.e. channels), batch normalization [178],
and rectified linear unit, respectively. Concat denotes concatenation at depth
dimension while ⊕ denotes to element-wise addition.

produce a 512-dimensional feature vector for every frame. After obtaining frame-level
features, a spatiotemporal modeling mechanism is required to produce class-conditional
probabilities, which is explained in the next section.

4.5.2.2 Spatiotemporal Modeling Mechanism

The typical approach for spatiotemporal modeling is to conclude the network with a
fully connected (fc) layer. This approach is also how we trained our architectures from
scratch. However, the fc layer at the end of the network requires a fixed number of
frames as input. Moreover, the dynamicity condition of the architecture is not met since
the decision is made with all output features coming from each frame in the clip.

In order to achieve a dynamic architecture, we have considered two popular RNN
blocks: Long Short-Term Memory (LSTM) [96] and gated recurrent unit (GRU) [241].
However, joint end-to-end training of the feature extraction and RNN blocks is not
feasible due to the computational and memory complexity of back-propagating through
the long video, as described in [202]. To this end, we have extracted the output features
f (before the fully connected layer - see Fig. 4.20) of all video frames for the training
and test set and trained the recurrent blocks separately. For example, each video in
the Kinetics dataset lasts around 10 seconds, which makes 250 frames if the video is
recorded with 25 fps. After applying the recurrent block, an fc layer is used at the last
output of the recurrent block to map the hidden feature map to the number of classes. We
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Layer ResNet-18 ResNet-{50,101}

block basic bottleneck

conv1 conv({1,3}×7×7), stride (1, 2, 2) F:64

pool MaxPool(1×3×3), stride (1, 2, 2)

conv2 x N:2, F:64 N:3, F:64

conv3 x N:2, F:128 N:4, F:128

conv4 x N:2, F:256 N:{6, 23}, F:256

conv5 x N:2, F:512 N:3, F:512

conv last —
conv(1×1×1),

stride (1, 1, 1), F:512

global average pooling,
spatiotemporal modeling

Table 4.27: Dissected ResNet architectures. F is the number of feature channels corresponding
in Fig. 4.18, and N refers to the number of blocks in each layer. Depending on the
number of frames used at inference time (only current frame or current frame with
two previous frames), convolution kernel for conv1 layer is selected as (1×7×7) or
(3×7×7).

have named the resulting network as purely dynamic D-ResNet-18 architecture since the
network produces a decision using the most recent frame at every iteration. D-ResNet-
18 architecture with LSTM spatiotemporal modeling mechanism is shown in Fig. 4.20.
In the experiments section, we will validate the advantages of recurrent spatiotemporal
modeling techniques.

4.5.2.3 Implementation Details

Learning: We initially train our D3D architectures with fc layer at the end. 19 frames
are fed to the network, but only the last 16 output features are used for loss computation.
The reason of feeding 3 frames more is to initialize the cached intermediate volumes
properly. Stochastic Gradient Descent (SGD) is applied with standard categorical cross-
entropy loss as an optimizer. The largest fitting batch size is selected for mini-batch size,
which is typically in the order of 128 clips. The networks are trained from scratch with
a learning rate initialized with 0.1 and reduced 3 times with a factor of 10−1 when the
validation loss converges. For temporal augmentation, clips are selected from a random
position in the video. For spatial augmentation, clips are selected from a random spatial
position with a randomly selected scale from {1, 1

21/4
, 1
23/4

, 1
2} in order to perform multi-

scale cropping as in [131]. For the case of stacked fc layers, a hidden dimension of 1024
is applied.
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Model Skip Connection Params MFLOPs St-Model. Acc. (%)

D-ResNet-18 None 15.94M 546 fc 58.74
D-ResNet-18 Summation 15.94M 546 fc 58.40
D-ResNet-18 Concatenation 20.66M 747 fc 61.41

Table 4.28: Performance comparison for different temporal skip connections at online operation
on the Kinetics-600 validation set.

For the training of the RNN blocks, we again use SGD with identical learning rates.
However, we apply different augmentation schemes. First, the number of input features
is selected randomly between [16, ’number of frames in the video’] and padded with
zero to obtain a fixed size of input for all videos. In this way, the RNN blocks can
learn all short-, medium- and long-range dependencies. Moreover, videos are temporally
down-sampled by 2, 3 and 4 with probabilities of 30%, 14% and 11%, respectively. We
also replaced random parts of the input features with noise to enable RNN blocks to
ignore unrelated parts of the input. In order to increase regularization, we also leverage
Gaussian noise with zero mean and 0.005 variance at the input features and 0.3 dropout
rate at the hidden layers of RNN blocks. For the hidden layers of RNN blocks, the
dimension is set to 1024.

Recognition: Clips are selected by a sliding window with the stride of 1 over the
complete video for fc spatiotemporal modeling. Afterwards, class scores are averaged
for all the clips. For RNN blocks, the complete input is fed to the network and the last
output of the RNN block is used for the final prediction.

Implementation: Network architectures are implemented in PyTorch. Our code and
pretrained models will be made publicly available at https://github.com/okankop/

Dissected-3D~CNNs.

4.5.3 Experiments

4.5.3.1 Video Activity Recognition On Trimmed Datasets

We perform detailed ablation study on the Kinetics-600 [124] dataset. Kinetics-600
contains trimmed YouTube clips with an average duration of 10 seconds belonging to
600 different categories. For our evaluations, we have used the validation set of the
Kinetics-600 dataset since annotations for the test set are not publicly available.

Comparison of different temporal skip connection operations: We first
compare the performance of different temporal skip connection operations. Table 4.28
shows the comparison of applying summation, concatenation and no temporal skip
connections on D-ResNet-18 architecture. For the sake of fairness, at each iteration, all
networks receive the current frame together with the two previous frames as input and
apply a 3D convolution layer as the first operation. For summation and no temporal
skip connection, a 2D convolution layer is applied afterward, whereas for concatenation
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Figure 4.19: Proposed Dissected 3D CNN
architecture using basic D-
ResNet block. At the online
operation time, intermediate
volumes from the previous
timestamp is stored in a
cache (blue region), and
only the computations for
the current frame frame are
performed (yellow region).
Spatial skip connections are
excluded for the sake of
simplicity.

Figure 4.20: D-ResNet-18 architecture
with LSTM spatiotemporal
modeling mechanism.
Spatial skip connections
are excluded for the sake of
simplicity.

temporal skip connection, a 3D convolution layer is used since volumes are
concatenated along the depth dimension. Although using a 3D convolution layer
increases the number of parameters and floating point operations, concatenation
achieves the best performance with a margin of ∼2.7%.

We would like to note that summation does not bring any performance gain and even
performs slightly worse than no temporal skip connection. We infer that this is due to
the loss of temporal information after the summation operation.

It is also interesting to see that D-ResNet-18 with no skip connection achieves even
better than conventional 3D ResNet-18 architecture in Table 4.30. This contradicts the
findings of [128], where f-R2D achieves 1.3% worse accuracy than R3D. Our only
difference from f-R2D in [128] is that we apply a 3D convolution layer at the first
convolution operation, which was enough to capture necessary motion information to
outperform R3D. Besides, we can conclude that preserving temporal resolution in the
network (i.e. not applying temporal downsampling) increases classification
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Layer 1-layer 2-layer 3-layer

GRU 61.08 61.43 61.38

LSTM 61.10 62.02 60.83

fc 61.41 61.25 61.22

Table 4.29: Accuracy on the Kinetics-600 validation set for different spatiotemporal modeling
mechanisms using D-ResNet-18 architecture.
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Figure 4.21: Influence of using different clip lengths at training on the accuracy of the Kinetics-
600 validation set when training a D-ResNet-18-lstm.

performance, although this also increases the computation and memory load at
inference time.

Analysis of different spatiotemporal modeling mechanisms: We investigate the
performance of applying fc, LSTM or GRU as the spatiotemporal modeling mechanism.
Table 4.29 shows the comparison of fc with LSTM and GRU for different numbers of
hidden layers. Using multi-layer fc as the spatiotemporal modeling mechanism slightly
reduces performance. Both recurrent blocks perform better with 2 hidden layers while
LSTM achieves the best performance. Hence, from this point onwards, we always use two
layers for LSTM. However, we must note that RNNs, in general, need more parameters
and FLOPs compared to fc. For example, single layer fc requires 4.9M parameters and
9.8M FLOPs, whereas 2 layer LSTM requires 15.3M parameters and 108.2M FLOPs for
the settings explained in Section 4.5.2.3.

Effect of different clip lengths on training recurrent blocks: At the training of
RNN blocks, clip length plays an important role in the final classification performance.
We have investigated the effect of different clip lengths at training time on the
classification performance for D-ResNet-18-LSTM, as illustrated in Fig. 4.21. The
results clearly show that a longer clip leads to higher classification accuracy. The
reason is that LSTMs can learn the important/unimportant features and store/remove
them in their cell state more easily when they observe longer clips.

Performance comparison of D-ResNet architectures with different depths:
Comparative results are shown in Table 4.30. As usual, increasing network depth
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Model Params Cache Size MFLOPs Speed St-Model. Acc. (%)

3D-ResNet-18 [21] 33.24M – 8323 3.00 fc 57.65
3D-ResNet-50 [21] 44.24M – 9835 5.46 fc 63.00
3D-ResNet-101 [21] 83.29M – 13664 7.04 fc 64.18

D-ResNet-18 20.66M 0.97MB 747 0.33 fc 61.41 +3.76

D-ResNet-50 40.81M 1.95MB 1654 0.75 fc 67.35 +4.35

D-ResNet-101 69.83M 2.81MB 3077 1.46 fc 68.78 +4.60

D-ResNet-18 31.05M 0.94MB 845 0.33 LSTM 62.02 +4.37

D-ResNet-50 51.20M 1.92MB 1752 0.75 LSTM 68.22 +5.22

D-ResNet-101 80.22M 2.78MB 3175 1.46 LSTM 69.17 +4.99

Table 4.30: Comparison of D-ResNet architecture with conventional ResNet architecture over
offline classification accuracy, number of parameters, computation complexity
(FLOPs) at online operation on the Kinetics-600 validation set. The cache size
is calculated according to 32 bit floating point values for intermediate volumes
and reported in megabytes (MB). For each architecture, the speed refers to single
inference time measured in millisecond (ms) using Nvidia Titan XP GPU for a
batch size of 8.

yields higher accuracies. Moreover, D-ResNet performs 74-90% less computation at
online operation while achieving ∼5% better classification accuracy compared to
conventional ResNet models on Kinetics-600. This is since D3D uses the previous
computations efficiently by caching the intermediate volumes of the network. The
performance improvement is not also due to the increased number of parameters since
D-ResNet models have fewer parameters compared to conventional 3D-ResNet models.
The only exception is D-ResNet-50 with LSTM, which has around 7M more
parameters compared to 3D-ResNet-50.

Required cache size for D-ResNet architectures: The amount of memory needed
for cache to store intermediate volumes depends on (i) applied data precision (e.g.,
32-bit, 16-bit or 8-bit floating point values), (ii) used input resolution and (iii) the
number of stored intermediate volumes. Accordingly, we report the required cache size
in Table 4.30. As expected, deeper architectures store more intermediate volumes in the
cache, hence require more memory.

Causality analysis of D-ResNet-18 architecture: The essential property of an
online system is that the architecture should be causal. To validate the causality of the
proposed D3D, we designed two tests. Firstly, we make a segment-level classification
test, where we have divided input videos into ten equal parts, and outputs are averaged
within each segment. Fig. 4.22 (a) shows the comparison of fc and LSTM. Since fc treats
each clip independently and the middle parts of the videos are typically more informative,
a bowed curve is achieved. On the other hand, LSTM stores the relevant features in its
cell state over time, leading to increased accuracy with rising segment numbers. Keeping
in mind that an entirely causal system should improve monotonically, D3D satisfies this
criterion. Secondly, we have replaced the middle parts of the videos with the Gaussian
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Figure 4.22: Causality analysis of deployed spatiotemporal modeling mechanisms. In (a),
videos are separated into ten equal segments and network outputs at each segment
are averaged for fc and LSTM . In (b), the network outputs at the middle parts
of the videos are replaced with the Gaussian noise.

Model
Input

Resolution
MFLOPS Acc. (%)

3D-ShuffleNetV1 2.0x [21] 112×112 538 56.84
3D-ShuffleNetV2 2.0x [21] 112×112 438 55.17
3D-MobileNetV1 2.0x [21] 112×112 662 48.53
3D-MobileNetV2 1.0x [21] 112×112 561 50.65
3D-SqueezeNet [21] 112×112 926 40.52
3D-ResNet-18 [21] 112×112 8323 57.65
3D-ResNet-50 [21] 112×112 9835 63.00
3D-ResNet-101 [21] 112×112 13664 64.18
3D-ResNeXt-101 [21] 112×112 9652 68.30
I3D [124] 224×224 111331 71.90
Oct-I3D [242] 224×224 25600 76.00
X3D-M [132] 224×224 6200 78.80
X3D-XL [132] 224×224 48400 81.90
SlowFast [130] 224×224 234000 81.80

D-ResNet-18 112×112 845 62.02
D-ResNet-50 112×112 1752 68.22
D-ResNet-101 112×112 3175 69.17

Table 4.31: Comparison of D-ResNet architecture with state-of-the-art on validation set of
Kinetics-600 dataset. FLOPs are calculated for the inference to produce one output
at online operation.

noise and reported the performance comparison of fc and LSTM in Fig. 4.22 (b). As we
increase the erased percentage from the middle part of the videos, accuracy drops linearly
for both fc and LSTM till 60% erasure. If we keep increasing the erasure percentage,
it becomes more and more important to use the information at the beginning and end
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of the videos jointly. Therefore, LSTM outperforms fc more and more as the erasure
percentage increases. Specifically, with an erasure percentage of 95%, fc achieves 1.53%
accuracy, whereas LSTM achieves 29.74% accuracy.

State-of-the-art comparison: Although the motivation of this work is not beating
the state-of-the-art, it is beneficial to see how well D3D architecture performs compared
to other architectures. Accordingly, we have compared D3D architecture with the state-
of-art architectures in Table 4.31.

We first note that FLOPs numbers in Table 4.31 are calculated according to the
necessary number of floating point operations to produce one output at online operation.
Therefore, FLOPs are calculated for the inference of ‘input clip’ for all architectures other
than D-ResNet family. Secondly, increased input resolution in general leads to better
performance, but the computational complexity also increases quadratically. Thirdly,
we would like to emphasize again that any 3D CNN architecture in Table 4.31 can
be converted to its dissected version. X3D-XL [132] and SlowFast [130] achieves the
best performance on the Kinetics-600 dataset, but also require significantly high FLOPs
at online operation. Therefore, their dissected version can satisfy both high accuracy
and low computational complexity at online operation. If resource efficiency is the main
concern, the dissected version of resource efficient architectures such as 3D-ShuffleNetV1
2.0x [21] would require very little computation with less than 100 MFLOPs.

4.5.3.2 Video Activity Recognition On Untrimmed Datasets

The experiment in Fig. 4.22 (b) shows that videos can be successfully recognized with
D3D architectures with LSTM spatiotemporal modeling although some parts of them
contain activity-unrelated content. Therefore, we have investigated the performance of
D3D on untrimmed ActivityNet dataset [9]. The videos in the ActivityNet dataset are
on average 117 seconds long and contain activities from 200 different classes. Therefore,
with this dataset, we can also test the performance of D3D on longer videos. Similar
to Kinetics-600, we have evaluated the performance of D3D on the validation set of
the ActivityNet dataset since the test set is not publicly available. Used D-ResNet
architectures are exactly same as Kinetics-600 experiments except for the last fc layer,
which reduces the number of outputs according to the ActivityNet class number that is
200. All architectures are first pretrained on the Kinetics-600 dataset and then fine-tuned
on the ActivityNet dataset.

In Table 4.32, we compare the performance of D-ResNet with the conventional
3D-ResNet architectures. Firstly, the ActivityNet dataset is not as large as
Kinetics-600, hence deeper D-ResNet-101 performs worse than D-ResNet-50 due to
overfitting. Secondly, D-ResNet achieves around 3% better video classification
accuracy compared to conventional 3D-ResNet architectures similar to Kinetics-600
dataset. We conjuncture that this is due to the temporal resolution preserving
property of D3D architectures. Lastly, using LSTM instead of fc does not improve
accuracy as dramatically as the Kinetics-600 dataset. This shows that increased video
length is not that useful for the ActivityNet dataset since it is an untrimmed dataset
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Model St-Modeling Accuracy (%)

3D-ResNet-18 [21] fc 59.99
3D-ResNet-50 [21] fc 68.14
3D-ResNet-101 [21] fc 67.87

D-ResNet-18 fc 63.01 +3.02

D-ResNet-50 fc 71.32 +3.18

D-ResNet-101 fc 70.97 +3.10

D-ResNet-18 LSTM 63.33 +3.34

D-ResNet-50 LSTM 71.50 +3.36

D-ResNet-101 LSTM 70.71 +2.84

Table 4.32: Comparison of D-ResNet architecture with conventional 3D-ResNet architecture
over video classification accuracy on the validation set of untrimmed ActivityNet
dataset.

and most of the video content does not contain auxiliary information for the correct
classification of the video. Accordingly, we conclude that longer videos are favorable as
long as all video content contributes to the correct prediction of the performed activity.
The results of D-ResNet-18 with LSTM in Fig. 4.22 (a) justifies this argument.

4.5.3.3 Gesture Recognition

Gesture recognition and action recognition can be viewed as similar tasks. In action
recognition, although it is still necessary to capture motion patterns, the network
especially needs to capture spatial patterns. For example, In the Kinetics-600 dataset,
there are nine different “eating something” classes where “something” is one of
“burger, cake, carrot, chips, doughnut, hotdog, ice cream, spaghetti, watermelon”. For
the correct classification, the network must recognize the objects in the videos
correctly. On the other hand, the spatial content in gesture videos is similar: A person
in front of a camera performing a hand gesture. For the correct classification, the
motion of the hand must be captured by the network.

To inspect the D3D architecture’s ability to capture motion patterns, we have
experimented with the Jester dataset [4], which is the largest available hand gesture
dataset currently. Training details are kept exactly the same as previous settings. In
Table 4.33, D-ResNet-18 achieves 1.24% more classification accuracy than conventional
3D-ResNet-18.

4.5.3.4 Video Person Re-Identification (ReID)

Person re-identification aims to match a queried data with its true owner in the gallery
set. In video person ReID, both the query and gallery are person tracklets, which usually
consist of a varying number of frames. Most state-of-the-art approaches leverage 2D CNN
architectures for video ReID [243, 244, 245]. However, 2D CNN architectures process
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Model St-Modeling Accuracy (%)

3D-ResNet-18 [21] fc 93.34
D-ResNet-18 fc 94.58 +1.24

Table 4.33: Comparison of dissected and conventional ResNet-18 architectures on the Jester
validation set. Both architectures take 16-frames input (downsampling of 2 is
applied) with 112 × 112 spatial resolution.

Model Accuracy (%) mAP

2D-ResNet-50 80.8 69.0
D-ResNet-50 81.3 +0.5 69.1 +0.1

Table 4.34: Comparison of our D-ResNet-50 architecture with 2D-ResNet-50 on the validation
set of the MARS dataset.

individual frames independently, hence they cannot incorporate temporal information
between frames. In this section, we demonstrate that our proposed D3D architecture
can increase the performance over 2D CNNs.

Our person ReID architecture is as follows. Given input video clips, a backbone
network extracts features for each frame and these features are averaged to get the final
feature representing the given input clip. We utilized classification loss and triplet loss
in order to train the network. For the classification loss, we consider person identities
as category-level annotations and train a linear layer followed by a softmax operation to
get class-conditional probabilities. Then, our classification loss LC is the cross-entropy
error between the predicted classes and the ground truth classes. For the triplet loss
LT , our data loader randomly selects N video clips for each person, which is used for
hard sample mining [246]. The final loss is L = LC + LT . The architecture is trained
end-to-end using the final loss L. In our experiments, we used N = 4 and each clip
contains 4 frames at training time. At test time, we have loaded all frames in person
videos to get final video features.

In our experiments, we have used the MARS dataset [247] for performance
evaluation. For the backbone network in the architecture described above, we have
compared the conventional 2D-ResNet-50 with our D-ResNet-50 architecture. Both
models are inflated from ImageNet pretrained model. We trained the networks for 150
epochs using Adam optimizer with an initial learning rate of 0.0003, which is divided
by 10 every 60 epochs. In the MARS dataset, all person detections are already
cropped, hence there is no pixel-wise correspondence at consecutive frames in tracklets.
Therefore, we used single frames at the input of the D-ResNet-50 architecture. The
comparative results are shown in Table 4.34. D-ResNet-50 architecture manages to
capture discriminative motion information of identities, possibly gait-related
information, which slightly increases the performance.
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Model Fusion
Accuracy (%)

5 25 50 100

2D-ResNet-18 avg all 93.18 93.66 93.64 93.66
D-ResNet-18 avg all 92.40 93.90 93.74 93.74
D-ResNet-18 avg 5:end 93.12 93.80 93.92 94.10

Table 4.35: Evaluation on YouTube Faces dataset resampled to different number of frames.

4.5.3.5 Video Face Recognition

In the domain of video face recognition, typical approaches [248, 249, 250] leverage
the features obtained by training on big datasets containing still images followed by
simple average pooling of the features without emphasis on the quality of every frame.
More sophisticated approaches combine the feature extraction network to aggregate the
features based on their importance with a feature aggregation network [251, 252, 253,
254]. However, temporal information is discarded as frames are treated as an unordered
set of faces. Compared to these approaches, our D3D architecture can cope with this
task while only consisting of one single network.

For the video face recognition task, we use the VoxCeleb2 dataset [255] for pretraining
the architectures and YouTube Faces dataset [256] to evaluate them. Before training the
network, we preprocess the VoxCeleb2 dataset by extracting 3 frames per clip, which
are aligned using facial landmarks extracted using the MTCNN [257] and cropped to
112× 112 pixels. First, we pretrain a 2D-ResNet-18 with a 256-dimensional bottleneck
layer on single image recognition on the VoxCeleb2 dataset using cross-entropy loss with
Adam optimizer, 50% dropout, an initial learning rate of 0.05 and a batch size of 100
for 50 epochs. We decide against pretraining on a bigger dataset containing still images,
as otherwise, the adaption to D-ResNet-18 gets overshadowed by the dataset change.
For training the D-ResNet-18, we inflate the weights of the 2D-ResNet-18 and fine-tune
using 5 frames per sample and a frame at the input with a lower learning rate of 0.01
and additional motion blur data augmentation for 1 epoch. Apart from these changes,
parameters are identical to the pretraining. Our experiments show that motion blur data
augmentation does not improve the accuracy of the 2D-ResNet-18, whereas it improves
accuracy while fine-tuning the D-ResNet-18.

We evaluate our approach on the YouTube Faces dataset following the standard
verification protocol. We compute the Euclidean distance after l2-normalization and
taking the average of the features. The preprocessing is done similarly to the
VoxCeleb2 dataset. However, we resample the videos to obtain a fixed number of
frames to show the dependency of the accuracy on the number of frames as shown in
Table 4.35. In contrast to the 2D-ResNet-18, our D-ResNet-18 continues to improve
with the increased number of frames. We also evaluate discarding the first four
features in the average due to cache initialization (denoted by avg 5:end), which results
in another minor improvement. Note that for 5 frames, avg 5:end is equal to taking
only the last feature, which is substantially higher than the accuracy of the
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2D-ResNet-18 for a single frame per video (88.78%). This demonstrates that our
network is capable of propagating useful information through time.

4.5.4 Summary

In this work, we have addressed the computational complexity drawback of 3D CNNs
and proposed a novel Dissected 3D CNN (D3D) architecture. The D3D architecture
caches the intermediate volumes of the network and propagates them for future
calculation, which reduces the computation around 77-90% during online operation for
D-ResNet family. Besides reducing complexity during online operation, the D-ResNet
family achieves ∼5% higher classification accuracy compared to the classical ResNet
family on the Kinetics-600 dataset. We believe that this performance improvement
arises since D3D networks are temporal resolution preserving and produce fine-grained
features. In this work, only the ResNet family is converted to its dissected version and
evaluated. However, any CNN architecture can be converted to its dissected version for
efficient online video processing. The proposed D3D architecture successfully models
temporal information and can be employed at any video-based computer vision task.
In our experiments, we have successfully validated the effectiveness of D3D
architecture on five different vision tasks: activity/action recognition on trimmed and
untrimmed datasets, gesture recognition, video person re-identification, and video face
recognition. For all these tasks, D3D consistently improves performance. We believe
that the D3D architecture will be actively used in many other video-based tasks by the
vision community.
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Audio-Visual Video Analysis

This chapter presents video analysis with audio and visual modalities. First, we present
the motivations of applying audio-visual video analysis in Section 5.1. We also list several
video analysis tasks, which can intensively benefit from mutual leveraging of audio and
visual modalities. Afterwards, in Section 5.2, we show how to incorporate audio and
visual modalities for the task of active speaker detection.

5.1 Introduction

Video analysis is usually conceived as the visual inspection of videos for a given task.
Although audio is also a natural component of videos, it is often overlooked by researchers
at video analysis tasks. However, audio and visual modalities contain complementary
information and result in improved performance if used together.

There are various video analysis tasks, which can intensively benefit from mutual
usage of audio and visual modalities. [258] proposes a neural network architecture to
learn audio-visual representations in a self-supervised way for the tasks of sound source
localization, audio-visual action recognition, and on/off-screen audio source separation.
In [259], the audio-visual temporal synchronization of videos is used in a self-supervised
mechanism to learn general and effective models for both the audio and the vision
domain. [260] develops a neural network model for visual object segmentation and
sound source separation tasks, which is trained in a self-supervised way from natural
videos. Similarly, [261, 262] propose approaches for audio-visual source separation with
self-supervised learning. On the other hand, [263] make use of keypoint-based structured
visual representations for visual sound separation.

For action recognition, [264, 265] leverages multi-stream architectures to process
audio and visual modalities. Approaches in [266, 267] make use of audio and video
modalities for emotion recognition. There are also several approaches for audio-visual
speech recognition [268, 269, 270]. There are also several approaches for audio-visual
active speaker detection [153, 154, 167, 168, 169].

For all the tasks mentioned above, either given task cannot be performed if not
audio and visual modalities are leveraged jointly, or joint multi-modal learning results
in improved performance compared to the single modality cases. For the task of active
speaker detection, audio and visual modalities have to be used jointly to achieve a
decent recognition performance. In Section 5.2, based on a series of controlled
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experiments, we also present a three-stage architecture for the task of audio-visual
active speaker detection.
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5.2 Active Speaker Detection

This section presents an audio-visual video analysis application, active speaker
detection, where audio and video modalities have to be used jointly in order to provide
complementary information.

Successful active speaker detection requires a three-stage pipeline: (i) audio-visual
encoding for all speakers in the clip, (ii) inter-speaker relation modeling between a
reference speaker and the background speakers within each frame, and (iii) temporal
modeling for the reference speaker. Each stage of this pipeline plays an important role
in the final performance of the created architecture. Based on a series of controlled
experiments, this work presents several practical guidelines for audio-visual active
speaker detection. Correspondingly, we present a new architecture called ASDNet,
which achieves a new state-of-the-art on the AVA-ActiveSpeaker dataset with an mAP
of 93.5% outperforming the second best with a large margin of 4.7%. This section is
based on our publication How to Design a Three-Stage Architecture for Audio-Visual
Active Speaker Detection in the Wild [24].

5.2.1 Motivation

The fusion of audio and video modalities has been shown to provide promising solutions
to long-standing challenging problems. These include, among others, speaker diarization
[271], biometrics [255], and action recognition [272, 273]. Similar to other tasks, AV-
ASD has also long been studied in literature [165, 166]. A particularly challenging flavor
of this problem is AV-ASD in the wild, where speech is to be detected and assigned
to one of possibly multiple active speakers at each instant in time. Clearly, fusing the
complementary discriminative information from audio and video modalities is crucial:
visual-only approaches can easily be mistaken by other face/mouth motions such as
eating, yawning or emotional expressions. Audio-only approaches, although able to
perform source clustering and separation [274, 275], aren’t sufficiently robust to count
the number of speakers and assign speech to the correct source. This is especially
challenging with a single microphone input in acoustically adverse conditions, typically
encountered in practice.

Recently, the AVA-ActiveSpeaker dataset [167] provided the first large-scale
standard benchmark for audio-visual active speaker detection in the wild. Recent
research [154, 153] indicates that active speaker detection in the wild requires (i)
integration of audio-visual information for each speaker, (ii) contextual information
that captures inter-speaker relationships, and (iii) temporal modeling to exploit long
term relationships in natural conversation. In this paper, we consolidate this
three-stage pipeline for audio-visual speaker detection, illustrated in Fig. 5.1, and
study the importance of each stage in detail.

Contributions. We propose a novel three-stage pipeline for audio-visual active speaker
detection in the wild. Our architecture, named ASDNet, sets a new state-of-the-art
result on AVA-ActiveSpeaker dataset with a 93.5% mAP, and outperforms the second
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Figure 5.1: Audio-visual active speaker detection pipeline. The task is to determine if the
reference speaker at frame t is speaking or not-speaking. The pipeline starts with
audio-visual encoding of each speaker in the clip. Secondly, inter-speaker relation
modeling is applied within each frame. Finally, temporal modeling is used to
capture long-term relationships in natural conversations. Examples are from AVA-
ActiveSpeaker dataset [167].

best method [153] with a large margin of 4.7% mAP (Section 5.2.3.5). As part of
ASDNet, we propose:

(1) Architectures for the audio and video backbones of the audio-visual encoder
(Section 5.2.2.2), that haven’t been previously explored for active speaker detection;

(2) A simple, yet effective inter-speaker relation modeling mechanism (Section 5.2.2.3);

(3) In addition, we provide a detailed ablation study and guidelines for tuning all
components of ASDNet. The study includes comparison to the state-of-the-art for the
two novel components mentioned above, as well as evaluation of various RNN
architectures for temporal modeling (Section 5.2.3.2.).
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Figure 5.2: Overview of the three-stage pipeline in ASDNet.

5.2.2 Methodology

Drawing inspiration from the insights in recent research, we seek to establish a general
pipeline that incorporates audio-visual encoding, inter-speaker (context) modeling, and
temporal modeling. By designing an appropriate architecture for each component, we
are able to exceed the state-of-the-art performance on the AVA-ActiveSpeaker dataset.

5.2.2.1 Notation and Overview

Let K denote the total number of speakers in a given clip. The data available to the
active speaker detection system at time t is a set Xt = {Xt,1,Xt,2, . . .Xt,K ,xt}, where
Xt,k ∈ Rn×3×dh×dw is a tensor of face crops corresponding to the k-th speaker. The
height and width of the face crops are denoted by dh and dw, 3 is the RGB channels
and n is the number of consecutive face crops centering time instant t. The vector xt
contains the samples of the audio track corresponding to the duration of the video input.
Given the input data, the objective is to produce a binary vector zt, where zt[k] = 1 if
the k-th speaker is detected as speaking at time frame t, and zt[k] = 0 otherwise.

A high-level overview of our pipeline that maps the raw data Xt to the predictions zt
is illustrated in Fig. 5.2. Next, in Sections 5.2.2.2-5.2.2.4, we zoom in on the design of
the three pipeline components. In Section 5.2.2.5, we discuss the training strategy that
enables an end-to-end inference: from face crops and an audio waveform to a prediction
speaking or not speaking for each speaker in the video clip.

5.2.2.2 Audio-Visual Encoder Architecture

Our audio-visual encoder is illustrated in Fig. 5.3. The stack of face thumbnails Xt,k

consists of n frames, Xt−n
2
,k, . . . , Xt,k, . . . , Xt+n

2
−1,k, and the size of the audio input

vector xt is determined by the number of video frames, the video frame rate, and the
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Figure 5.3: Audio-visual encoder architecture. Visual input Xt,k and audio input xt are fed to
the respective backbones to produce features vt,k and at. A concatenated feature
vector vt,k

⊕
at is fed to a fully connected layer which produces a prediction if

speaker k is speaking at time t. Prediction heads are removed after training and
are not part of the global picture in Fig. 5.2.

audio signal sampling rate. The encoder produces an embedding vector by concatenating
the modality-specific embeddings:

vt,k = fv(Xt,k;wv), at = fa(xt;wa), (5.1)

where fv and fa are neural networks with trainable parameters wv and wa, respectively.
The concatenated features vt,k

⊕
at are fed into a fully connected layer to get final

predictions. To train the audio-visual encoder, we apply cross-entropy loss between the
predictions and ground-truth labels. To ensure that consistent discriminative features
are extracted from both modalities, we apply auxiliary classification networks after
each backbone, following previous works [167, 154, 153]. The auxiliary networks are
also trained with cross-entropy loss. The final loss becomes Lfinal = Lav + La + Lv.
After training is completed, supervision heads are discarded and only the audio-visual
backbone is used to extract features vt,k and at for all speakers and time instants.

While the described high-level architecture is similar to that of existing audio-visual
encoders [167, 154, 153], our contribution lies in the choice and design of the video and
audio backbones, discussed next.

Video backbone. Movements of mouth and facial muscles are indicative of active
speaking. Hence, to fully exploit the available video data, it is important to accurately
model motion patterns. To this end, we propose using a 3D-CNN as the visual encoder
function fv, in contrast to the state-of-the-art approaches that apply 2D-CNN [153, 154,
167, 168, 169]. As part of our study, we experimented with various resource efficient and
high-performance 3D-CNN architectures [21] and found 3D-ResNeXt-101 to be the best
performing candidate for our video backbone. Further insights from our investigation
are discussed in Section 5.2.3.1.
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Figure 5.4: Audio encoder utilizing Sinc Convolutions (SincConv) and Depthwise Separable
Convolutions (DSConv). The convolution parameters, c, k, s corrspond to the
number of output channels, kernel size, and stride, respectively.

Audio backbone. For the audio encoding backbone, the majority of existing AV-
ASD approaches [167, 154, 153, 168, 169] extract Mel Frequency Cepstral Coefficients
(MFCC) from the raw signal, and use the MFCCs as input to 2D CNNs. In contrast,
we propose using an audio backbone architecture that directly operates on raw audio
signal via sinc convolutions [158]. In this manner, the system doesn’t require a dedicated
filterbank and directly exploits all available audio information. This is not the case in
existing approaches, where phase information is often discarded after the filterbanks.
After sinc convolutions, we apply log-compression, i.e., y = log(abs(x) + 1). This non-
linearity has been effective in other raw audio processing tasks as well [159, 276]. The
features extracted by the sinc-convolutions are used as input to Depthwise Separable
Convolutional (DSConv) blocks with Leaky-ReLU nonlinearity [277]. Our full audio
encoder architecture, referred to as SincDSNet, is shown in Fig. 5.4. Features after the
global average pooling are extracted as the audio features at. The advantage of the
proposed raw-audio backbone over existing feature-based backbones is experimentally
demonstrated in Section 5.2.3.1.

5.2.2.3 Inter-Speaker Relation Modeling (ISRM)

The audio-visual encoder extracts features for each individual speaker separately - the
features for speaker k do not contain visual information from the remaining speakers in
the frame. However, features belonging to background speakers contain complementary
information that improves the system performance, as shown in [154]. In this paper, we
propose a method to aggregate information from the background speakers efficiently.
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Figure 5.5: Inter-speaker relation modeling architecture. For reference speaker k at time
instant t, we extract background features bt,k by passing the concatenated features
of background speakers through one layer MLP. Extracted features are then
concatenated to reference speakers video features and audio features.

Consider a reference speaker k and m background speakers in the scene at time t.
The output of the audio-visual encoder for the reference speaker is [vt,k,at]. To
incorporate information from background speakers, we propose to extract an additional
feature vector bt,k using a single-layer perceptron, as illustrated in Fig. 5.5. The input
to the MLP are the concatenated audio-visual embeddings from all background
speakers at time t. Note that the number m is fixed from the system’s perspective: if
there are less than m background speakers at time t, the encoder features are
populated with zero vectors. If there are more than m speakers, only m are randomly
selected. In this manner, the input dimension of the MLP is fixed. The final feature
vector [vt,k,at,bt,k] is fed to the temporal model. An experimental study of the
proposed ISRM, and comparison to the approach in [154] is provided in Section 5.2.3.2.

5.2.2.4 Temporal Modeling

Speaking is a coherent action in time: if a person is speaking at previous or future time
instants, it is likely that the person is speaking at the current time instant. This is also
valid for remaining silent action. Therefore, temporal modeling is crucial for accurate
active speaker detection.

We experimented with several RNN-based temporal modeling architectures: Long
Short-Term Memory (LSTM) [96], Gated Recurrent Unit (GRU) [99], Simple Recurrent
Unit (SRU) [278] and their bidirectional versions. For the uni-directional methods, the
reference frame is at the end of the input, while for the bidirectional methods it is at
the center of the input. The hidden state vector of the recurrent block at the reference
frame is fed to a fully connected layer to produce a binary output zt[k] ∈ {0, 1} (i.e.
active speaker or not). In case speakers’ features are not available for the selected time
window, similar to [154] we apply same padding to the beginning or to the end. Out
of all methods, Bidirectional-GRU performs best and becomes our final choice in the
temporal modeling stage.

5.2.2.5 Training Details

Training Audio-Visual Encoding Backbones. We train our audio-visual encoder using
ADAM optimizer [279] for 70 epochs. Batch size is selected as the highest possible
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number that fits to a single Nvidia Titan XP GPU for different backbones. However,
gradients are accumulated reaching to effective batch size of 192 before doing backward
propagation. The learning rate is initialized with 3 × 10−4 and dropped by a factor of
10 at every 30 epochs. For video input, we apply random cropping, random horizontal
flipping and color transformations as data augmentation at the training time. Finally,
video input is reshaped to the resolution of 160×160. The audio signals are sampled
at 16 kHz. 3D CNNs are pretrained on Kinetics [127], 2D CNNs are pretrained with
ImageNet [82], and SincDSNet is trained from scratch. Once the training is finished,
prediction heads are discarded and the features vt,k ∈ R512 and at ∈ R160 are used to
train the ISRM and the temporal model.

Training ISRM and Temporal Modeling. We used ADAM optimizer with
cross-entropy loss to train the ISRM and the temporal model. We train for 10 epochs,
with batch size of 256. The learning rate is initialized with 3× 10−6 and dropped by 10
at the 5th epoch. The MLP in the ISRM extracts the feature bt,k ∈ R128 independent
from the number of background speakers. For the temporal model, we used two
recurrent layers with a hidden state dimension of 128, which experimentally proved to
be optimal for our system.

Implementation. Our final architecture ASDNet is implemented in PyTorch and all
experiments are performed using a single Nvidia Titan Xp GPU. We make our code
publicly available at https://github.com/okankop/ASDNet.

5.2.3 Experiments

Dataset. We have used the AVA-ActiveSpeaker dataset [167] in our experiments, whose
details are provided in Section 2.5.

Evaluation Metric. We use the official ActivityNet evaluation tool that computes
mean average precision (mAP). Unless stated otherwise, we use the
AVA-ActiveSpeaker validation set for our evaluations.

5.2.3.1 Audio-Visual Encoder Evaluation

In this section, we investigate the advantage of the proposed audio and video backbones,
compared to backbones used in state-of-the-art active speaker detection systems. The
encoder architecture is of utmost importance: the overall performance of the AV-ASD
pipeline can only be as good as the extracted features. For these experiments, ISRM
and temporal modeling are not used.

Which encoder architectures should be used? Following recent works [153, 154, 167,
168, 169], we take 2D-ResNet-18 architecture as the audio and video backbones of a
baseline encoder. Inputs to the video backbone are stacked face crops, and inputs to the
audio backbone are MFCCs, corresponding to a length of eight frames. This baseline
achieves 79.0 mAP as shown in Table 5.1.
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Audio Backbone Video Backbone mAP

2D-ResNet-18 2D-ResNet-18 79.0
2D-ResNet-18 3D-ResNet-18 83.9
SincDSNet 2D-ResNet-18 80.8
SincDSNet 3D-ResNet-18 86.1

Table 5.1: Performance comparison of different audio and video backbones. Input length of
8-frames is used for all evaluations.

Audio Backbone Params MFLOP

SincDSNet 0.15M 13.8
2D-ResNet-18 11.2M 19.2

Table 5.2: Complexity comparison of different audio backbones.

To demonstrate the benefit of applying 3D convolution kernels, we keep the baseline
audio backbone and replace 2D-ResNet-18 with 3D-ResNet-18. This change alone brings
an improvement of 4.9 mAP over the baseline. The improvement is achieved solely due
to the ability of the 3D convolution kernels to capture motion patterns in the video data.

Similarly, to evaluate the benefit of SincDSNet as the proposed audio backbone, we
keep the baseline video backbone and replace the ‘MFCC + 2D-ResNet-18’ audio
backbone by SincDSNet. This change brings improvement of 1.8 mAP over the
baseline, thanks to the partially learnable feature extraction by SincDSNet, operating
on the raw audio data. Importantly, SincDSNet has 75 times fewer parameters than
2D-ResNet-18 and requires fewer floating point operations (FLOPs), as shown in
Table 5.2.

Finally, our audio-visual encoder that uses both 3D-ResNet-18 and SincDSNet as
backbones, achieves 7.1 mAP improvement over the baseline.

Can we use resource efficient video encoders? One can attribute the performance
boost achieved by 3D-ResNet-18 backbone to its increased number of parameters and
FLOPs. Therefore, we have used several resource efficient 3D CNNs [21] as video
backbone. We report their performance at the bottom of Table 5.3. Notably, all 3D
CNN architectures achieve better performance than 2D-ResNet-18. For instance,
although 3D-MobileNetV2 1.0x contains a much smaller number of parameters
(approx. 7x fewer) and fewer FLOPs compared to 2D-ResNet-18, it achieves around 4
mAP better performance.

We have also experimented with deeper and computationally more expensive
3D-ResNeXt-101 architecture to check how much performance can be increased.
3D-ResNeXt-101 shows 0.6 mAP improvement over 3D-ResNet-18 when 8-frames input
is used.
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Video Backbone Params GFLOP mAP

3
2-

f 3D-ResNeXt-101 48.6M 13.2 88.9
3D-ResNet-18 33.2M 10.3 87.4

16
-f 3D-ResNeXt-101 48.6M 14.1 88.9

3D-ResNet-18 33.2M 11.2 87.5
8-

f
3D-ResNeXt-101 48.6M 13.2 86.7
3D-ResNet-18 33.2M 10.3 86.1
2D-ResNet-18 11.2M 0.9 80.8
3D-MobileNetV1 2.0x 13.9M 0.6 81.6
3D-MobileNetV2 1.0x 2.1M 0.7 85.1
3D-ShuffleNetV1 2.0x 4.6M 0.7 85.0
3D-ShuffleNetV2 2.0x 3.9M 0.6 84.2

Table 5.3: Comparison of video backbones for different clip lengths. SincDSNet is used at the
audio backbone, and face crop resolution is 160× 160.

# Speakers 0 1 2 3 4 5

mAP 92.6 93.1 93.4 93.4 93.4 93.3

Table 5.4: Performance of inter-speaker relation modelling for different number of background
speakers.

How does clip length affect performance? Although we used 8-frames clips to train
our audio-visual backbones, longer clips would provide larger temporal context. In
Table 5.3, we compare clip lengths of 8-frames, 16-frames and 32-frames for the best
performing 3D-ResNeXt-101 and 3D-ResNet-18 video backbones. To maintain similar
complexity, we removed the initial temporal downsampling for 8-frames input and
inserted an additional temporal downsampling to the initial convolution layer for
32-frames input. Applying 16-frames clip length brings a performance improvement of
1.4 mAP and 2.2 mAP over 8-frames clip length for 3D-ResNet-18 and
3D-ResNeXt-101, respectively. Using 32-frames clip length does not show the same
performance improvement over using 16-frames. We suspect that inserting additional
temporal downsampling hinders the backbone’s ability to capture motion patterns.

5.2.3.2 Inter-Speaker Relation Modeling Evaluation

In this section, we investigate the performance of the proposed ISRM and compare it
to an existing approach [154] for context modeling. These experiments include the full
ASDNet pipeline (encoder, ISRM, and a temporal model), where the temporal model,
if present, is a Bidirectional-GRU with a sequence length of 64.

How many background speakers to use for ISRM? We experimented with different
numbers of background speakers for ISRM, and the results are reported in Table 5.4.
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Method Temporal Model mAP

NonLocal [154] 87.2
NonLocal [154] X 92.8
ISRM (ours) 89.0
ISRM (ours) X 93.4

Table 5.5: Comparison of inter-speakers relation modeling methods.

Background features mAP

only reference frame 93.4
neighboring window of 9 frames 93.5

Table 5.6: Performance comparison when background speakers’ features at different number of
frames are leveraged.

In general, increasing the number of background speakers features increases the
performance. ISRM increases the performance by 0.8 mAP compared to the case
where only reference speaker’s features are used with temporal modeling
(0 background speaker case). In the rest of our experiments, we use three background
speakers in the ISRM module.

How does our ISRM compare to existing approaches? In Table 5.5, we provide a
comparison of our ISRM approach to the NonLocal [208] approach proposed in [154].
NonLocal captures relationships between all the speakers within clip, whereas our ISRM
approach captures relationships between speakers only within reference frame. When
used alone, after the audio-visual backbones, neither NonLocal nor our ISRM approach
bring significant performance improvement (NonLocal even degrades the performance).
However, ISRM contributes additional 0.8 mAP compared to a system that uses only
temporal modeling.

Can ISRM benefit from neighboring frames? At ISRM, we do not have to use
background speakers’ features at only reference frames. Neighboring frames relative to
the reference frame can also provide useful information for ISRM. Therefore we have
used background speakers’ features at a neighboring window of 9 frames, which shows
a modest 0.1 mAP improvement as reported in Table 5.6. For the rest of the paper, we
use 9 neighboring frames at ISRM.

5.2.3.3 Temporal Modeling Evaluation

Which RNN architectures are most suitable? Table 5.7 shows the performance
comparison of different RNN blocks used for temporal modeling. All one-directional
methods take 32-frames features as input and the last output is used as input to the
final fc layer (reference frame is placed to the last of input sequence). For bidirectional
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Method Sequence Length mAP

Bidirectional-GRU 64 93.5
Bidirectional-LSTM 64 93.4
Bidirectional-SRU 64 93.2
GRU 32 92.8
LSTM 32 92.7
SRU 32 92.7

Table 5.7: Performance comparison of temporal modeling methods.

Seq. Length 8 16 32 64 128

mAP 92.0 92.8 93.3 93.5 93.5

Table 5.8: Performance comparison of using different sequence lengths at the training of
Bidirectional-GRU.

methods, we have used 64-frames features as input and center output is used as input
to the final fc layer (reference frame is placed at the center of input sequence).
Compared to their bidirectional versions, one-directional methods perform around 0.7
mAP worse. Out of all methods, bidirectional-GRU achieves the best performance.

What should be the length of the input sequence? We have experimented with
different sequence lengths and reported results in Table 5.8. In general, using a larger
sequence length does not hurt the final performance. However, after sequence length 64,
the performance converges to 93.5 mAP.

5.2.3.4 Component-wise Analysis

How does each component contribute to the performance? We investigated the
contribution of each component to the final performance in Table 5.9. We highlight
several findings: (i) Without ISRM and temporal modeling, suitable backbones alone
achieve 88.9 mAP, which is better than any other state-of-the-art approach; (ii) ISRM
and temporal modeling improve the performance by 0.7 mAP and 3.7 mAP when they are
applied alone, respectively, showing the importance of both stages in the pipeline; (iii) In
rows 6 and 7 in Table 5.9, we investigated the importance of ISRM stage by evaluating
the performance without using reference speakers video features. Accordingly, even
without looking at the reference speaker’s face, information acquired from background
speakers and audio enables our architecture to achieve around 68 mAP. This shows that
ISRM is an indispensable part of our pipeline; (iv) When ISRM and temporal modeling
are applied together, our architecture achieves the best performance with 93.5 mAP.

The contribution of temporal modeling and ISRM stages is visually illustrated in
Fig. 5.6. With only audio-visual encoding, each speaker is analyzed independently and
predictions for speaking probabilities are made without contextual and long-term
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#
Speaker

Video Feat.
Audio
Feat.

ISRM
Feat.

Temporal
Modeling

mAP

1 3 78.8
2 3 49.3
3 3 3 88.9
4 3 3 3 92.6
5 3 3 3 89.6
6 3 3 64.5
7 3 3 3 67.8
8 3 3 3 3 93.5

Table 5.9: Contribution of each component to the final performance.

temporal information in Fig. 5.6 (a). After applying temporal modeling and ISRM
stages, the ASDNet predictions of speaking probabilities for not-speaking speakers drop
and speaking speaker increases considerable as shown in Fig. 5.6 (b).

How does the clip length affect performance? Increased encoder clip length
(16-frames instead of 8-frames using 3D-ResNeXt-101 video backbone) improves the
performance by 2.2 mAP if ISRM and temporal modeling are not applied. However, in
the complete pipeline, this improvement reflects to a marginal 0.1 mAP improvement
in the final performance, which is shown in Table 5.10. This shows that increased
encoder clip length shifts the improvement that could have been provided by temporal
modeling to the encoder. This might not be desirable if complexity is important in the

(a) (b)

Figure 5.6: The network predictions for speaking probabilities of each speaker (a) after only
audio-visual encoding (b) after temporal modeling and ISRM are also applied.
Ground truths of speaking and not-speaking classes are denoted with green and
red rectangles, respectively.
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Encoder
Clip Length

ISRM and
Temporal Modeling

mAP

8-frames 7 86.7
16-frames 7 88.9

8-frames 3 93.4
16-frames 3 93.5

Table 5.10: Effect of encoder clip length on the final performance. SincDSNet and 3D-ResNeXt-
101 are used for audio and video backbones, respectively.

design of the architecture since doubling encoder clip length means doubling the
complexity.

Can ISRM be placed after temporal modeling? If necessary, the order of ISRM and
temporal modeling can be changed, which results in only a 0.1 mAP performance
degradation.

Can we make the full pipeline causal? The complete pipeline can be made causal by
placing the reference frame to the last place of the input for the encoder and temporal
modeling stages; and by not using neighboring frames background speakers’ features at
ISRM. So that, no future information is used for the active speaker detection of the
current frame. The causal pipeline achieves 90.6 mAP, which is still better than any
state-of-the-art approach.

5.2.3.5 Comparison with the State-of-the-art

How does ASDNet compare to state-of-the-art methods? We compare the
performance of ASDNet with several state-of-the-art methods in Table 5.11. For the
final ASDNet, we used 16-frames clips at the audio-visual encoding stage, 3
background speakers with 9 neighboring window at the ISRM stage, and
bidirectional-GRU with 64-frames sequence length at the temporal modeling stage.
ASDNet outperforms the second best approach by 4.7 mAP on the validation set, and
by 3.9 mAP on the test set of the AVA-ActiveSpeaker dataset.

How does the number of faces affect the performance? Increased number of faces
makes the active speaker detection task more challenging and the performance of ISRM
becomes more critical. ASDNet outperforms all other state-of-the-art methods for all
different face numbers as shown in Table 5.12. The superiority of ASDNet becomes more
significant as the number of faces increases.

How does face size affect the performance? Performance comparison for face size,
which is set as small for [0, 64), medium for [64, 128), and large for [128, ∞) pixels,
is shown in Table 5.13. ASDNet outperforms all other state-of-the-art methods for all
different face sizes. The superiority of ASDNet becomes more significant for smaller
faces.
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Method mAP

va
li

d
a
ti

o
n

se
t

ASDNet (ours) 93.5
Causal ASDNet (ours) 90.6
MAAS-TAN [153] 88.8
Chung et al. [168] 87.8
ASC [154] 87.1
Zhang et al. [169] 84.0
Sharma et al. [280] 82.0
Roth et al. [167] 79.2

te
st

se
t

ASDNet (ours) 91.7
Chung et al. [168] 87.8
ASC [154] 86.7
Zhang et al. [169] 83.5
Roth et al. [167] 82.1

Table 5.11: Comparison with state-of-the-art methods on the AVA-ActiveSpeaker dataset.
mAP results are calculated with the official evaluation tool as explained in [167].

Method
Number of Faces

1 2 3

ASDNet (Ours) 95.7 92.4 83.7
MAAS [153] 93.3 85.8 68.2
ASC [154] 91.8 83.8 67.6
Baseline [167] 87.9 71.6 54.4

Table 5.12: Performance comparison by number of visible faces on each frame.

Method
Face Size

S M L

ASDNet (Ours) 74.3 89.8 96.3
MAAS [153] 55.2 79.4 93.0
ASC [154] 56.2 79.0 92.2
Baseline [167] 44.9 68.3 86.4

Table 5.13: Performance comparison by face size.

5.2.4 Summary

In this section, we scrutinized the task of Audio-Visual Active Speaker Detection and
proposed a three-stage architecture, called ASDNet. With the proposed audio-visual
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encoder and the inter-speaker relation modeling mechanism, ASDNet outperforms the
previous state-of-the-art with a significant 4.7 mAP and 3.9 mAP on the validation
and test set of the AVA-ActiveSpeaker dataset, respectively. To make the final design
and hyperparameter choices for ASDNet, we followed insights from carefully designed
experiments each targeted a specific aspect of the system. Each of these experiments was
discussed in the paper. We believe that these insights can be useful for other complex
audio-visual tasks as well that require context and temporal modeling.
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Conclusion and Outlook

This thesis addresses the automatic recognition of human activities from video data.
Considering the amount of generated video data traversing the internet, the addressed
task is extremely valuable for applications such as surveillance, autonomous driving,
and entertainment. Following the evolution of human activity recognition research, we
grouped our contributions under three chapters: (Chapter 3) video analysis with frame-
level features, (Chapter 4) video analysis with clip-level features, and (Chapter 5) audio-
visual video analysis. The presented contributions in this thesis can be listed as follows:
(i) (Section 3.2) we compared different spatiotemporal modeling techniques operating
on frame-level features extracted by 2D CNNs, (ii) (Section 3.3) we propose a data
level fusion strategy in order to incorporate motion information to frame-level features,
(iii) (Section 4.2) we present a unified CNN architecture benefiting clip-level features
extracted by 3D CNNs for real-time spatiotemporal action localization, (iv) (Section 4.3)
we present resource efficient 3D CNN architectures, (v) (Section 4.4) we present a two-
level hierarchical architecture to address the challenges of online recognition of dynamic
hand gestures, (vi) (Section 4.5) we present a new 3D CNN architecture for a reduced
computational complexity at online video streaming applications, (vii) (Section 5.2) we
present a three-stage architecture for audio-visual active speaker detection task, (viii)
(Appendix A, B and C) we present 3 new datasets on gesture and action recognition
and make them publicly available for the scientific community.

Next, we summarize the aforementioned contributions in this thesis and finally provide
future work.

6.1 Summary

Chapter 3 presents video analysis with frame-level features and presents the following
contributions:

• In Section 3.2, we analyze various spatiotemporal modeling techniques employed
on top of frame-level features extracted by 2D CNNs and compare them in terms
of efficiency and accuracy on action and gesture recognition tasks. All analyzed
techniques are trained end-to-end together with the feature extraction part.
Although each analyzed technique has been used in various works individually,
there has not been any detailed comparative analysis yet, and this section aims
to fill this gap.
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• In Section 3.3, we address the incapacity of frame-level feature based approaches
to capture motion information within consecutive frames. Frame-level feature
based approaches mostly operate on sparsely sampled frames on the incoming
video stream to prevent redundant computations and are incapable of capturing
motion information within consecutive frames. Motivated with this, Section 3.3
proposes a data-level fusion strategy, Motion Fused Frames, for optical flow and
RGB modalities and demonstrates its effectiveness on the gesture recognition
task. Although the optical flow modality contains the necessary motion
information within consecutive frames, its computation complexity does not
make it suitable for resource efficient architectures.

Chapter 4 presents video analysis with clip-level features and presents the following
contributions:

• In Section 4.2, a unified CNN architecture, You Only Watch Once (YOWO), is
presented jointly benefiting from clip-level features extracted by 3D CNNs and
frame-level features extracted by 2D CNN for the task of real-time
spatiotemporal action localization. Given a video clip, presented YOWO
architecture predicts the bounding boxes on the key-frame and respective action
probabilities in a single evaluation, which gives it the real-time operation
capability. We evaluate YOWO on three action localization dataset to show the
effectiveness of the proposed architecture.

• In Section 4.3, we address the drawback of 3D CNNs having significantly more
parameters and requiring seriously more computation at inference time compared
to 2D CNNs. Correspondingly, we present families of resource efficient 3D CNN
architectures and evaluate them on 3 different video tasks. Presented architectures
are inflated versions of popular resource efficient 2D CNN architectures. Our
results show that these architectures can be used for different types of real-world
applications having limited memory and power budget.

• In Section 4.4, a two-level hierarchical architecture is proposed for HCI systems
to reduce resource waste when the system is not being used. The proposed
architecture consists of a lightweight detector and a heavyweight classifier. The
detector always remains active and activates the classifier when it detects a hand
gesture for its classification. We also address the challenges of online recognition
of dynamic hand gestures such as early recognition and single-time activation.
Moreover, we present a new metric, Levenshtein accuracy, to evaluate the
performance of architectures at online gesture recognition.

• In Section 4.5, we address the challenges of operating 3D CNNs online by
proposing a new 3D CNN architecture, Dissected 3D CNNs, for a reduced
computational complexity at online video streaming applications. Conventional
3D CNNs work with fixed-size of input and are mostly designed for offline
applications. Therefore, online operating frameworks generally use conventional

137



Chapter 6 Conclusion and Outlook

3D CNNs with a sliding window approach resulting in redundant computations if
a small stride is used. On the other hand, Dissected 3D CNNs propagate the
intermediate volumes of the network in a cache for future calculations, which
prevents these redundant calculations. Accordingly, when a new frame becomes
available in the video stream, only this frame is processed, which substantially
reduces the number of computations at online operation.

Chapter 5 presents audio-visual video analysis with the following contribution:

• In Section 5.2, we present several practical guidelines for the task of audio-visual
active speaker detection, which results in the ASDNet architecture consisting of
three stages: (i) audio-visual feature extraction, (ii) inter-speaker relation
modeling, and (iii) temporal modeling. Each stage of the ASDNet architecture is
tuned with a detailed ablation study and plays an important role in the final
performance.

We also make three dataset contributions for the gesture and action recognition tasks:

• In Appendix A, we present Scaled Hand Gesture Dataset (SHGD). SHGD addresses
the scalability of hand gestures by constituting each gesture with several preset
gesture-phonemes. This way, new hand gestures can be generated using different
combinations of gesture-phonemes. We also present a CNN-based framework to
recognize hand gestures by learning only their constituents of gesture-phonemes.

• In Appendix B, we present Driver Micro Hand Gesture (DriverMHG) dataset.
DriverMHG dataset contains micro hand gestures, which occur within very short
time intervals at spatially constrained areas. These gestures contain mostly
movement of thumb in order not to distract the drivers from the road. Online
recognition of these micro gestures is specifically challenging. Therefore, we also
propose a lightweight CNN architecture that operates online efficiently with a
sliding window approach.

• In Appendix C, we present Driver Anomaly Detection (DAD) dataset. There are
unbounded many distracting actions that a driver can do while driving.
Accordingly, instead of recognizing a set of distracting actions that are commonly
defined by dataset providers, we approach the problem as an open-set recognition
problem. With this motivation, we introduce the DAD dataset that contains
normal driving videos together with a set of anomalous actions in its training set
and unseen anomalous actions in its test set. Moreover, we propose a contrastive
learning approach to learn a metric to differentiate normal driving from
anomalous driving.

6.2 Future Work

Abundance of video data in the wild. There is no scarcity of video data. Video
data is all around us. However, only a very small proportion of it is annotated to
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be used for supervised learning. Accordingly, unsupervised and semi-supervised video
understanding is a very promising research direction.

Synthetic Data. The success of deep learning approaches on computer vision tasks
comes with the cost of acquiring large enough annotated data. The success of
3D CNNs on video understanding tasks has also been possible only with the
availability of large-scale video datasets. Although synthetic datasets are actively been
used for various computer vision tasks such as body analysis [281], multi-object
tracking [282], semantic segmentation [283] and 3D object detection [284], there has
not been enough research effort for video activity recognition. Considering the fact
that activity recognition is a high level task and requires capturing motion patterns
and person-object, person-person interactions, it is challenging to synthetically create
videos containing such complex activities. Although there have been some recent
synthetic data generation methodologies for action recognition such as SURREACT
[285] and ElderSIM [286], the field is open to contributions that would relax the
dependence on annotated real-world video data.

New approaches at video activity recognition. Very recently, mostly over the last
year, there has been a boom of Transformer [111] based architectures on computer
vision tasks. Recent Transformer based approaches surpass the 3D CNN based
approaches achieving new state-of-the-art results [119, 120, 135]. The strength of
Transformer based approaches comes from the applied attention mechanism, which
differentially weights the significance of each part of the sequential input data. In
Section 3.2, we also presented a Transformer based approach as spatiotemporal
modeling of frame-level features, which achieved superior results compared to other
approaches on action recognition task. However, we believe that capability of 3D
CNNs to capture motion patterns in video data is still very valuable. Joint usage of
Transformers and 3D CNNs is an interesting next step for video understanding tasks.

Online recognition of actions and gestures. Online recognition of action and
gestures from video streams is an understudied topic. The majority of action and
gesture recognition architectures are designed for offline applications. Most of the time,
these architectures require a separate mechanism to be used in online applications.
Moreover, achieved online performance is usually worse than offline performance. For
instance, approach proposed in Appendix B achieves 74.00% online (Levenshtein)
accuracy compared to 91.56% offline accuracy. Research on online action and gesture
recognition is valuable especially for industrial applications and is still open to
improvements.

Multimodal approaches. Using multiple modalities at video understanding tasks
results in improved performance. Availability of cameras capturing multi-modal data
such as RGB, depth, infrared, thermal data synchronously made fusion of these
modalities even more popular. What is often overlooked is the audio modality that is
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already available at video recordings. Although some recent works use audio data for
visual tasks [261, 262, 263], the usage of audio modality and its fusion to visual
modality is still an understudied topic.
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Appendix A

Scaled Hand Gesture Dataset

The use of hand gestures provides a natural alternative to cumbersome interface
devices for Human-Computer Interaction (HCI) systems. As technology advances and
communication between humans and machines becomes more complex, HCI systems
should also be scaled accordingly in order to accommodate the introduced
complexities. In this work, we propose a methodology to scale hand gestures by
forming them with predefined gesture-phonemes, and a convolutional neural network
(CNN) based framework to recognize hand gestures by learning only their constituents
of gesture-phonemes. The total number of possible hand gestures can be increased
exponentially by increasing the number of used gesture-phonemes. For this objective,
we introduce a new benchmark dataset named Scaled Hand Gestures Dataset (SHGD)
with only gesture-phonemes in its training set and 3-tuples gestures in the test set. In
our experimental analysis, we achieve to recognize hand gestures containing one and
three gesture-phonemes with an accuracy of 98.47% (in 15 classes) and 94.69% (in 810
classes), respectively. Our dataset, code and pretrained models are publicly available at
https://www.mmk.ei.tum.de/shgd/.

This section is based on our publication Talking With Your Hands: Scaling Hand
Gestures and Recognition With CNNs [25].

A.1 introduction

As technology keeps advancing, the use of computers in our lives increases as well with
additional new devices such as smartphones, watches, TVs, headphones, autonomous
cars, etc. Therefore, the communication between humans and machines gradually
becomes more complex, requiring HCI systems to accommodate the introduced
complexities. In this work, we propose an approach to scale hand gestures by
composing each gesture with multiple gesture-phonemes. So, our motivation is first to
learn the gesture-phonemes successfully, then to recognize hand gestures, which contain
multiple gesture-phonemes, with only this knowledge.

Structuring hand gestures with this approach enables to scale hand gestures without
requiring to collect additional training data. For a given number of gesture-phonemes,
the number of all possible hand gestures is exponentially proportional to the number of
gesture-phonemes each gesture contains. For the proposed gesture scaling approach, we
present a convolutional neural network (CNN) based framework using sliding window
approach together with Viterbi-like [287] decoder algorithm. For the CNN model, we
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have used 2-dimensional (2D) and 3-dimensional (3D) SqueezeNet and MobileNetV2
models.

This work presents the following contributions:

(i) Our major contribution is creating a hand gesture recognition framework, which is
“scalable” according to the complexity of the desired HCI system. To the best of
our knowledge, this is the first work that addresses the scalability of hand gestures.
The CNN model is only trained with 10 gesture phonemes and 3 signaling classes
(preparation, retraction and no-gesture), and the framework can recognize scaled
gesture tuples with 3 gesture phonemes (as in this work) or more. Assumed that
a HCI system with the recognition capability of 810 different gestures needs to be
implemented. With the old fashioned way, you need to define 810 different hand
gestures, collect enough training samples (400 training samples for each class),
train an architecture to get the desired accuracy (remember that for ChaLearn
IsoGD [170], the state-of-the-art accuracy is around 80% for 249 classes). With this
framework, you just need to train with 10 gesture phonemes and 3 signaling classes,
then for 810 classes (3-tuple gestures), you can achieve around 95% accuracy.

(ii) The second contribution is the benchmark dataset named Scaled Hand Gestures
Dataset (SHGD), which will be made publicly available. The videos are collected
using a Time-of-Flight (ToF) based 3D Image Sensor, which is shown in Fig. A.1.
The dataset contains only gesture-phonemes in its training set. For the test set,
SHGD contains gesture-phonemes and 3-tuple gestures.

(iii) The third contribution of this work is that with the designed Viterbi-like decoder,
the performed 3-tuple gestures are recognized only once. This contains utmost
importance for online HCI systems. Moreover, the designed Viterbi-like decoder is
very lightweight as HCI systems should be designed considering the memory and
power budget of the HCI system.

A.2 Scaled Hand Gestures Dataset (SHGD)

SHGD contains 15 single hand gestures, each recorded for infrared (IR) and depth
modalities using Infineon R© IRS1125C REAL3TM 3D Image Sensor. Each recording
contains 15 gesture samples (one sample per class). There are in total 324 recordings
from 27 distinct subjects in the dataset. Recordings of 8 subjects are reserved for
testing, which makes 30% of the dataset. Every subject makes 12 video recordings
using two hands under 6 different environments, which are designed for increasing the
network robustness against different lighting conditions and background disturbances.
These environments are (1) indoors under normal daylight, (2) indoors under daylight
and with an extra person in the background, (3) indoors at night under artificial
lighting, (4) indoors in total darkness, (5) outdoors under intense sunlight and (6)
outdoors under normal sunlight. We have simulated outdoor environments using two
bright lights: Two lights for “intense sunlight” and one light for “normal sunlight”.
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Label Gesture Label Gesture Label Gesture

1 Fist 6 Two Fingers 11 Swipe Left∗

2 Flat Hand 7 Five Fingers 12 Swipe Right∗

3 Thumb Up 8 Stop Sign 13 Pull Hand In∗

4 Thumb Left 9 Check 14 Move Hand Up∗

5 Thumb Right 10 Zero 15 Move Hand Down∗

Table A.1: 15 single gesture classes in Scaled Hand Gesture Dataset (SHGD). ∗ marks the
dynamic gestures which are not included as gesture-phonemes.

Fig. A.1 shows data collection setup, used camera and data samples. Subjects
performed gestures while observing the computer screen, where the gestures were
prompted in random order. Videos are recorded at 45 frames per second (fps) with a
spatial resolution of 352×287 pixels. Each recording lasts around 33 seconds.

A.2.1 Single Gestures

In its training set, SHGD contains only single gestures under 15 classes, which are given
in Table A.1. Recordings in the dataset are continuous video streams meaning that
each recording contains no-gesture and gesture parts. Moreover, each gesture contains
preparation, nucleus and retraction phases [288, 289, 133], which are critical for real-time
gesture recognition.

Among the single gesture classes listed in Table A.1, static gestures are selected as
gesture-phonemes since it is more convenient to perform different static gestures
sequentially. For the rest of this work, we will use the term phoneme instead of
gesture-phoneme for the sake of easiness.

A.2.2 Gesture Tuples

Gesture tuple refers to hand gestures that contain sequentially performed phonemes.
There are in total 10 different phonemes. When constructing gesture tuples, we leave
out the consecutive same phonemes to avoid sequence length confusion. Therefore, the
total number of different tuples can be calculated by the following equation:

N = m(m− 1)(s−1), (A.1)

where m is the number of different phonemes and s is the number of phonemes that the
gesture tuple contains.

Besides the test set for single gestures, SHGD also has a test set for gesture tuples
containing 3 phonemes. 5 subjects perform gesture tuples under 5 different lighting
conditions (excluding the environment of (2)). There are in total 10 × (10 − 1)(3−1) =
810 permutations meaning different classes for 3-tuple gestures. Recordings are not
segmented for this case. Therefore, one recording contains no-gesture, 3-tuple gesture
and no-gesture without exact location of 3-tuple gesture.
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Figure A.1: Data collection setup. Dataset is collected in infrared (bottom-left) and depth
(bottom-right) modalities using Infineon R© IRS1125C REAL3TM 3D Image Sensor.

Since gestures are performed at different speeds in real-life scenarios, we have also
collected 3-tuple gestures at three different speeds: slow, medium and fast. The subjects
should finish 3-tuple gestures within 300 frames (6.7 sec), 240 frames (5.3 sec) and 180
frames (4 sec) for slow, medium and fast speed, respectively.

A.2.3 SHGD-15 and SHGD-13

SHGD-15 refers to the standard dataset where all single gestures in Table A.1 are
included. On the other hand, SHGD-13 is specifically designed for 3-tuple gesture
recognition. Besides 10 phonemes, SHGD-13 also contains preparation (raising hand),
retraction (lowering hand) and no-gesture classes. As there is no indication when a
gesture starts and ends in the video, we use preparation and retraction classes to detect
Start-of-Gesture (SoG) and End-of-Gesture (EoG). We use no-gesture class to reduce
the number false alarms since most of the time, “no gesture” is performed in real-time
gesture recognition applications [22].

SHGD-15 is a balanced dataset with 96 samples in each class. However, SHGD-13 is
an imbalanced dataset, where preparation and retraction classes contain 10 times more
samples than phonemes, whereas no-gesture contains around 20 times more samples
than phonemes. Therefore, training of SHGD-13 requires special attention.

A.3 Methodology

In this section, we first explain the details of the experimented framework and the applied
Viterbi-like decoder.
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Figure A.2: The general workflow of the proposed architecture. Sliding windows with stride
s run through incoming video frames, and these frames in the queue are fed
to a 2D or 3D CNN based classifier. The classifier’s results are post-processed
afterwards. After Start-of-Gesture (SoG) gets detected, the classifier queue is
activated. Classifier’s results are saved in the classifier queue until End-of-Gesture
(EoG) is detected. Then, the Viterbi-like decoder runs on the classifier’s queue to
recognize the 3-tuple gesture.

A.3.1 Network Architecture

The general workflow of the proposed architecture is depicted in Fig. A.2. A sliding
window goes through the video stream with a queue size of 8 frames and stride s of 1.
The frames in the input queue are passed to a 2D/3D CNN which is pretrained on
SHGD-13. In our experiments, we have used 2D and 3D versions SqueezeNet [87] and
MobileNetV2 [177] as classifiers in our architecture. The classification results are then
post-processed by averaging with a non-overlapping window size of 5. In this way, we
can filter out some fluctuations due to ambiguous states while changing the phonemes.
Next, the post-processed outputs are fed into a detector queue, which tries to detect SoG
and EoG. When the sum of class scores for preparation is higher than the threshold, we
set SoG flag on, activate the classifier queue, and start storing the post-processed scores.
Then, the detector queue is responsible for detecting the EoG in a similar manner.
After the EoG flag is received, we deactivate the classifier queue and run the Viterbi-like
decoder which recognizes the 3-tuple gesture. In the next parts, we explain the details
of the main building blocks in the proposed architecture.
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A.3.2 Viterbi-like Decoder

Viterbi decoding was invented by Andrew Viterbi [287] and is now widely used in
decoding convolutional codes. It is an elegant and efficient way to find out the optimal
path with minimal error. In this work, we have adapted it and used a Viterbi-like
decoder to find out the phoneme sequences in 3-tuple gestures with maximal
probability. Similar to the conventional Viterbi algorithm, we narrow down the
optional paths systematically for each new input in the classifier queue.

For the Viterbi-like decoder, we introduced a couple of terms for better
comprehensibility: K is the number of allowed state transitions in the output sequence,
which is 2 as we use 3-tuple gestures. The state refers to a phoneme in a path for the
given time instant. P refers to class-conditional probability scores for phonemes stored
in Classifier Queue, which is shown in (2), whose columns Pt are the average
probability scores of each phoneme for five consecutive time instants. Pt values are
softmaxed before putting in P. T is the length of P (i.e. number of columns), and N is
the number of phoneme classes, which is 10 in our case. Therefore, the size of P is
T×N.

P =


∣∣ · · ·

∣∣ · · ·
∣∣

P0 · · · Pt · · · PT−1∣∣ · · ·
∣∣ · · ·

∣∣
 , Pt =


pt,0
pt,1

...
pt,N−1

 (A.2)

The probability of a path is the sum of the probability scores of all the states that this
path goes through. Besides the number of allowed transitions K, we introduce another
constraint, transition cost δ, in order to prevent false state transitions in the path. A
path metric M holds the paths mt,i with their sequence record πt,i, path score st,i and
the transition times kt,i. The path mt,i is shown as follows:

mt,i = [πt,i, st,i, kt,i] , 0 ≤ i < γ, 0 ≤ t < T. (A.3)

The state of path mt,i at time instant t is denoted as nt,i, and the last state in πt,i
is also denoted as πlastt,i . The transition cost is set to -0.2. The path scores s, transition
record k and sequence record π are updated with every new Pt as following:

st+1,i=st,i + pt+1,i + δ, δ=

{
−0.2, ifnt+1,i 6=πlastt,i and kt,i<K,

0, otherwise.
(A.4)

πt+1,i=

{
πt,i ∪ nt+1,i, if nt+1,i 6=πlastt,i andkt,i<K,

πt,i, otherwise.
(A.5)

kt+1,i=

{
kt,i + 1, if nt+1,i 6=πlastt,i and kt,i<K,

kt,i, otherwise.
(A.6)

In order to reduce computation, we limit the number of paths in M to γ, which is
set to 300. The working mechanism of the proposed Viterbi-like decoder is given in

146



Appendix A Scaled Hand Gesture Dataset

Algorithm 2 Viterbi-like decoder for 3-tuple gesture recognition

1: function Viterbi-like decoder(P, S)
2: Initialize s, π and k at P0;
3: for each Pt do
4: Create all possible paths
5: Update s, π and k according to (4), (5) and (6)
6: Descending sort all m in M with their scores s
7: Keep no more than the first γ paths

8: return π of m with maximum s and k=K

algorithm 2. Fig. A.3 depicts the illustration of our Viterbi-like decoder. Our decoder
can inherently deal with the ambiguities at phoneme transitions as it naturally makes
use of temporal ensembling.

A.4 Experiments

A.4.1 Results using SHGD-15 and SHGD-13

The performance of our models for SHGD-15 and SHGD-13 using different modalities
are given in Table A.2. The best results are achieved by 2D-SqueezeNet (98.47%) and
3D-MobileNetV2 (96.06%) for SHGD-15 and SHGD-13, respectively, both at IR+D
modality.

For SHGD-15, 2D CNNs always achieve better results than 3D CNNs for all modalities.
This is because around 66.67% of samples in SHGD-15 are static gestures, and 2D CNNs
captures static content better than 3D CNNs. On the other hand, around 20% of samples
in SHGD-13 are static gestures resulting 3D CNNs to perform better.

Figure A.3: Illustration of our Viterbi-like decoder for 3-tuple gesture recognition. For the sake
of simplicity, we have highlighted only three paths while the correct one is in red.
For the correct path, π = [5,1,3], s = 6.1 and k = 2. 2 times the transition cost of
0.2 is subtracted from each path.
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Model
Accuracy (%)

SHGD-15 SHGD-13

IR

2D-SqueezeNet 98.13 92.56
2D-MobileNetV2 97.36 93.11
3D-SqueezeNet 92.99 95.87
3D-MobileNetV2 92.85 94.62

D
e
p

th
2D-SqueezeNet 98.13 95.02
2D-MobileNetV2 98.13 95.64
3D-SqueezeNet 89.93 95.87
3D-MobileNetV2 92.78 95.85

IR
+

D

2D-SqueezeNet 98.47 93.94
2D-MobileNetV2 97.92 95.06
3D-SqueezeNet 92.64 95.59
3D-MobileNetV2 94.31 96.06

Table A.2: Results of different models with different modalities on the test sets of SHGD-15
and SHGD-13.

Different models are sensitive to different data modalities. For instance,
2D-MobileNetV2 performs better at depth modality, whereas 3D-MobileNetV2
performs best at IR+D modality. However, the fusion of different modalities (IR+D)
results in better performance most of the time.

A.4.2 Results for 3-tuple gesture recognition

In this section, we evaluate the performance of our models for 3-tuple gesture recognition.
The test set for this objective contains 1620 samples from 810 different permutations
(i.e. classes). In order to evaluate the performance, three different errors and the total
accuracy are defined as follows:

• Detector error: The number of the gesture tuples, in which SoG or EoG is not
successfully detected. It includes the flags detected at the wrong time and flags
not detected at all.

• Tuple error: The number of the gesture tuples, whose predicted sequence does not
match the ground truth.

• Single error: The number of the single phonemes which are recognized mistakenly
inside the tuple error. For instance, if the ground truth is [6,8,10] and the
recognized tuple is [6,10,12], then the single error is 2.

• Total accuracy: The percentage of the correctly predicted tuples in the whole test
set, where Nsamples is equal to 1620. It is calculated as follows:
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Model
Error

Acc.(%)
Det Tup Sin

IR

2D-SqueezeNet 191 54 126 84.88
2D-MobileNetV2 116 103 248 86.60
3D-SqueezeNet 11 159 375 89.51
3D-MobileNetV2 10 209 492 86.48

D
e
p

th
2D-SqueezeNet 73 127 275 87.65
2D-MobileNetV2 77 111 259 88.40
3D-SqueezeNet 68 200 261 83.46
3D-MobileNetV2 82 169 271 84.51

IR
+

D

2D-SqueezeNet 125 79 184 87.41
2D-MobileNetV2 41 71 165 93.09
3D-SqueezeNet 7 103 228 93.21
3D-MobileNetV2 3 83 171 94.69

Table A.3: Performance for the tuple detection. Det, Tup and Sin refer to the number of
detector, tuple and single phoneme errors out of 1620 test samples.

Acc=(1− Errdet + Errtup
Nsamples

)% (A.7)

For this task, models are trained with SHGD-13. Table A.3 shows the performance
of experimented models on different modalities for 3-tuple gesture recognition. For the
detection threshold of the detector, 5 and 6 are used for 2D and 3D CNNs, respectively.
Similar to previous results, 3D CNNs capture dynamic classes better and make fewer
detector errors. On the other hand, 2D CNNs make fewer tuple and single errors as they
consist of static classes.

3D-MobileNetV2 achieves the best performance with an accuracy of 94.69% for
recognizing 810 different gesture tuples. 3D CNNs surpass 2D CNNs in this task
generally, except for depth modality. We assume that this is due to the noise pixels
appearing in the depth modality from time to time. Therefore, 3D CNNs fail to
capture the temporal relations between noisy frames.
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Driver Micro Hand Gesture Dataset

The use of hand gestures provides a natural alternative to cumbersome interface
devices for Human-Computer Interaction (HCI) systems. However, real-time
recognition of dynamic micro hand gestures from video streams is challenging for
in-vehicle scenarios since (i) the gestures should be performed naturally without
distracting the driver, (ii) micro hand gestures occur within very short time intervals
at spatially constrained areas, (iii) the performed gesture should be recognized only
once, and (iv) the entire architecture should be designed lightweight as it will be
deployed to an embedded system. In this work, we propose an HCI system for dynamic
recognition of driver micro hand gestures, which can have a crucial impact in the
automotive sector, especially for safety-related issues. For this purpose, we initially
collected a dataset named Driver Micro Hand Gestures (DriverMHG), which consists
of RGB, depth and infrared modalities. The challenges for dynamic recognition of
micro hand gestures have been addressed by proposing a lightweight convolutional
neural network (CNN) based architecture which operates online efficiently with a
sliding window approach. For the CNN model, several 3-dimensional resource efficient
networks are applied and their performances are analyzed. Online recognition of
gestures has been performed with 3D-MobileNetV2, which provided the best offline
accuracy among the applied networks with similar computational complexities. The
final architecture is deployed on a driver simulator operating in real-time. We make the
DriverMHG dataset and our source code publicly available
https://www.mmk.ei.tum.de/DriverMHG/.

This section is based on our publication DriverMHG: A Multi-Modal Dataset for
Dynamic Recognition of Driver Micro Hand Gestures and a Real-Time Recognition
Framework [26].

B.1 Introduction

Computers have become an indispensable part of human life. Thus, facilitating natural
human-computer interaction (HCI) contains utmost importance to bridge the
human-computer barrier. Although there is a growing interest in the development of
new approaches and technologies for HCI, gestures have long been deemed to be a
more natural, creative and intuitive interaction technique for communicating with our
computers.
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In this work, we create an HCI system, which is based on dynamic recognition of
driver’s micro hand gestures. In the automotive sector, this kind of system can have
a crucial impact, especially on safety-related issues. While driving, performing a hand
gesture, which represents one action, by keeping the hands on the wheel is much safer
than pressing a button to activate that action, which causes eyes off the road for a few
seconds. For this objective, the following challenges should be taken into account:

1. A suitable dataset must be collected. The gestures in the dataset should be natural
and should not distract the driver while performing.

2. The created architecture should distinguish the other hand movements when the
driver is not performing any gesture.

3. The architecture should be able to capture micro gestures, which are occurring
within very short time intervals at spatially constrained areas, with acceptable
accuracy.

4. The entire architecture should be designed considering the memory and power
budget.

Considering the aforementioned challenges, we initially collected a multi-modal micro
hand gesture dataset using a driver simulator with 25 participants, who performed pre-
defined micro gestures. This dataset is collected with one sensor providing synchronized
RGB, infrared and depth modalities. To the best of our knowledge, this is the first
multi-modal dataset that consists of micro hand gestures performed on a steering wheel.

Today, several video cameras provide more than one modality, and widely used ones are
cameras providing RGB, infrared and depth modalities. Each modality has advantages,
e.g. infrared is invariant to illumination and depth modality provides depth information.
In this work, in addition to the mono-modal analysis with RGB, infrared and depth
modalities, we have also analyzed the impact of fusion on the recognition performance
of micro hand gestures.

In real-world applications, resource efficiency, fast reaction time and single time
activation are as crucial as reaching an acceptable accuracy for the created HCI
system. In this work, we have applied several resource efficient 3-dimensional (3D)
CNN architectures proposed in [21] as the CNN model of our dynamic micro hand
gesture recognition approach. Among these architectures, 3D-MobileNetV2 has
provided the best offline accuracy compared to the architectures with similar
computational complexities. Therefore, in this work, online recognition analysis has
been performed with 3D-MobileNetV2 as the CNN model. For online recognition, we
have also proposed a novel single time activation approach, which does not require a
separate gesture detector block as in [22].

In the proposed architecture, the video stream is split into two branches each
containing only one hand. Then CNN models are trained separately on each hand and
deployed to the online recognition architecture. For evaluating online recognition, we
have used a recently proposed Levenshtein accuracy [22]. The experiments show that
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Figure B.1: Driving Simulator - Setup. Left: The Complete Driving Simulator Setup showing
a subject performing the driving task. Upper right: a picture of the mounted
Creative Blaster Senz3D Camera. Lower Right: The Logitech G27 Racing
Controller.

3D-MobileNetV2 can operate online efficiently with a sliding window approach for
dynamic micro hand gesture recognition. However, achieved 74.00% online
(Levenshtein) accuracy compared to 91.56% offline accuracy shows that online
recognition of micro gestures is challenging and open to improvements.

B.2 DriverMHG Dataset

There are a lot of vision-based datasets publicly available, but for the specific task of
classifying driver micro hand gestures on a steering wheel, there is none. For this purpose,
we recorded the Driver Micro Hand Gesture (DriverMHG) dataset, which fulfills the
following criteria:

• Large enough to train a Deep Neural Network

Figure B.2: The dataset is collected for 3 different modalities: (a) RGB, (b) infrared, (c) depth.
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(a)

(b)

Figure B.3: Illustration of selected 5 micro gestures for (a) left and (b) right hands. From left
to right: Swipe Right, Swipe Left, Flick Down, Flick Up and Tap. Besides these
5 gestures, none and other gesture classes are also collected for the DriverMHG
dataset.

• Contains the desired labeled gestures

• The distribution of labeled gestures is balanced

• Has ’none’ and ’other ’ action classes to enable continuous classification

• Has the ability to allow benchmarking

In order to record this dataset, a driving simulator has been set up as shown in
Fig. B.1. The dataset was recorded with the help of 25 volunteers (13 males and 12
females) using this simulator, which consists of a monitor, a Creative Blaster Senz3D
camera featuring Intel RealSense SR300 technology, a Logitech G27 racing controller,
whose wheel is replaced with a truck steering wheel and the OpenDS driving simulator
software. The dataset is recorded in synchronized RGB, infrared and depth modalities
with the resolution of 320 × 240 pixels and the frame rate of 30 fps. Example recordings
for the three modalities are shown in Fig. B.2.

For each subject, there are in total 5 recordings each containing 42 gestures for 5
different gestures together with other and none gestures for each hand. Each recording
of a subject was recorded under different lighting conditions: at room lights, at darkness,
with an external light source from left, with an external light source from right, and under
intensive lighting from both sides. We randomly shuffled the order of the subjects and
split the dataset by subject into training (72%) and testing (28%) sets. Recordings from
subjects 1 to 18 (including) belong to the training set, and recordings from subjects 19
to 25 (including) belong to the test set.

The micro gestures that the subjects had to perform should be natural and should
neither distract them nor require them to take their hands off the wheel while performing.
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Figure B.4: Statistics of the collected dataset: (a) Number of samples per subject, (b)
Histogram of the duration of the gestures, (c) Number of samples per gesture,
(d) Mean duration of gestures.

They should also be quickly executable. Therefore, five micro gestures were selected,
which are ”swipe right”, ”swipe left”, ”flick down”, ”flick up” and ”tap”. The former
four gestures require the movement of only the thumb, while ”tap” is performed by
lightly patting the side of the wheel with four fingers. Fig. B.3 shows the illustration of
the selected five micro gestures for the left and right hands.

Additionally, we introduce the ”other” and ”none” gestures. For each record, three
”none” and ”other” gestures were specifically selected from the recorded data. With
”other” label, the network learns the drivers’ other movements when a gesture is not
performed. Whereas, with ”none” label, the network learns that the drivers’ hands are
steady (i.e. there is no movement or gestures). The inclusion of ”none” and ”other”
action classes in the recorded dataset enables robust online recognition due to the
availability of continuous analysis. Regarding the annotations, the gestures were
annotated by hand with their starting and ending frame numbers.

Fig. B.4 shows the statistics of the collected dataset. Fig. B.4 (a) shows the number
of samples from 5 recordings for each subject, which is around 210. Fig. B.4 (b) shows
the histogram of the gesture duration (frames). Fig. B.4 (c) shows that the number of
samples for each class are balanced for both right and left hands. In Fig. B.4 (d), mean
gesture duration for each action class are given. This figure shows that ”tap” action
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Figure B.5: Online recognition architecture workflow. A sliding window holding n frames is fed
to a splitter. Splitter feeds the left and right halves of the clip frames to separate
branches. Then, a resource efficient 3D CNN model, which is trained separately for
each branch, is applied to obtain class conditional scores of each gesture. Finally,
single-time activation block is applied to get detections.

can be executed very fast compared to the other action classes. Mean gesture durations
for ”none” and ”other” action classes are kept quite similar to the ”flick down/up” and
”swipe left/right” action classes.

B.3 Methodology

B.3.1 Network Architecture

The general network architecture is depicted in Fig. B.5. For each modality, there
is a queue holding the last n frames of the video stream. Then, a video splitter is
applied in order to separate the left and right halves of the video. The right and left
halves contain the right and left hand related information, respectively. The reason for
this splitting is to remove the unrelated video segment, which behaves as noise to the
network. Afterwards, left and right video splits are fed to an offline trained CNN to get
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Algorithm 3 Online recognition algorithm

Input: Frames in a ”sliding window” strided by 1 over a test video
Output: The sequence π of the gestures inside the video

1: for each “sliding window” with the length of l do
2: calculate pt,i for each class
3: if any pt,i>ths then
4: record classification outputs in c
5: if all pt,i<the then
6: stop recording
7: calculate the average classification result of c
8: add the result to π

class conditional gesture scores for each hand. After this step, a single-time activation
block is applied to get final detections.

B.3.2 Offline Recognition

Several resource efficient 3D CNN models are used for offline trainings: 3D-MobileNet,
3D-MobileNetV2, 3D-ShuffleNet, 3D-ShuffleNetV2, and 3D-SqueezeNet. The details of
these models can be found in [21]. The left and right hands are trained separately, which
gives the opportunity to recognize them independently. This way, simultaneous gestures
from left and right hands can be recognized as tuples, which can be registered to an
extra class as in [25].

B.3.3 Online Recognition

Online recognition is designed and evaluated for real driving scenarios. The test videos
for online recognition from the DriverMHG dataset are unsegmented. Each test video has
roughly 6500 frames and includes around 30 hand gestures. For online recognition, there
are basically three requirements: (i) Detection of the starting/ending of the performed
micro gestures, (ii) single-time recognition of the performed micro hand gestures, and
(iii) classification of the performed micro hand gestures. All these tasks above should
be implemented in real-time. Considering the aforementioned requirements, we propose
Algorithm 3 for online recognition, whose details are as follows.

B.3.3.1 Detection of the starting/ending of the performed micro gestures

It is essential to detect the starting and ending of a micro gesture for the created HCI
system. In our proposed algorithm, there is no need for a separate detector, which saves
a lot of computation and memory cost.

According to the recorded videos, the transition from none or other to any micro hand
gesture represents the start of a micro gesture; on the contrary, the transition from any
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micro gesture to none or other represents the end of a micro gesture. To detect such a
transition, we use a sliding window to calculate its probability as follows:

pt,i=

none/other score︷ ︸︸ ︷
t− l

2∑
n=t−l+1

Pn,other/none +

ith class score︷ ︸︸ ︷
t∑

n=t− l
2
+1

Pn,i

l
, (B.1)

where i, l and t denote the class type, window length and time step, respectively. l is set
to 64 in our experiments as it achieves the best performance. P is the class conditional
softmax score of the CNN output. The first half of Eq. (B.1) is the average score of
other/none, and the second half is the average score of ith class. Correspondingly, pt,i
becomes the transition probability from other/none to ith class at time instant t. A
simplified example in Fig. B.6 helps to better understand the probability calculation.
Class 5 and 6 are none and other classes, respectively.

We set two hyperparameters ths and the to indicate the start and the end of a micro
gesture. For every timestamp, we calculate the transition from none as well as from
other to each micro gesture (totally 10 possible paths). If any probability is larger than
the threshold ths, the micro gesture starts; if no probability is larger than the, the micro
gesture ends. Those two thresholds can be different depending on different models.

B.3.3.2 Single-time recognition of the performed micro gestures

The frames between the start and the end of a micro gesture are regarded as a valid
clip. It is self-evident to pick the micro gesture with the highest score. This approach
benefits from temporal ensembling since it avoids the fluctuations of some false positive
classifications.
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Figure B.6: Illustration for the detection of the start and the end of a micro gesture. For
the sake of simplicity, the length of sliding window is set to 6. Only three time
instances and the transition from none to gesture class 2 are depicted. Values 0.45,
0.62, 0.10 are the probabilities of detecting the transition pattern for the three time
instances. Best in color.
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Combining the detection of a valid clip and single-time recognition, the algorithm of
the whole online detection is described in Algorithm 3.

B.3.3.3 Classification of performed micro gestures

To evaluate the performance of this online recognition algorithm, we use the Levenshtein
distance to measure the difference between the output sequences and the ground truth
sequences of input videos as in [22]. The Levenshtein distance represents the number of
item-level changes, such as insertion, deletion, or substitutions. If the prediction is the
same as the ground truth, the Levenshtein distance is then 0. The accuracy is 1 minus
the fraction of the Levenshtein distance and the length of the ground truth sequence.

B.4 Experiments

In this section, we evaluated the performances of our approach for offline classification
accuracy, including the impact of modality fusion on offline classification accuracy, and
also for the online classification accuracy.

B.4.1 Evaluation for Offline Classification Accuracy

The recorded DriverMHG is evaluated for offline classifications accuracy using different
types of resource efficient 3D CNN architectures. However, although the number of
training samples per class is sufficient to train a deep CNN, the small number of classes
leads to a relatively small dataset compared to other publicly available datasets, which
leads to overfitting. Therefore we have initialized the weights of our models with Jester
pretraining. Jester dataset is currently the largest available public dataset, which is a
large collection of densely labeled video clips that shows humans performing pre-defined
hand gestures in front of a laptop camera or webcam. It contains around 150,000 gesture
videos.

Table B.1 shows our offline classification accuracy results using both the Jester and the
DriverMHG datasets. The models are trained separately for left and right hands and the
average is reported in this table. The evaluations are done by applying five 3D resource
efficient architectures, which are 3D-SqueezeNet, 3D-ShuffleNetV1, 3D-ShuffleNetV2,
3D-MobileNetV1, and 3D-MobileNetV2 for four complexity levels using the scaling factor
width multiplier. This scaling was not possible for the 3D-SqueezeNet hence the result
is reported only for one complexity level for this architecture.

The applied approach provides very good offline classification accuracies on both
datasets. The best classification accuracies are obtained with 3D-MobileNetV2 1.0x
and 3D-ShuffleNetV2 2.0x for the Jester and DriverMHG datasets, respectively, on the
RGB modality.

In order to understand the performance of the proposed architecture on different
modalities, we also evaluated offline classification accuracies with the infrared and depth
modalities existing in our dataset. Table B.1 shows the results achieved for different
modalities. Out of all modalities, the infrared modality provides the best result (91.56%
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Model MFLOPs Params

Speed (cps)
Accuracy (%)

Titan XP Jetson TX2
Jester DriverMHG DriverMHG (fusion)

RGB RGB IR D RGB-IR RGB-IR-D

3D-ShuffleNetV1 0.5x 76 0.27M 398 69 89.23 89.49 88.53 77.59 90.46 90.40
3D-ShuffleNetV2 0.25x 115 0.24M 442 82 86.91 87.83 87.90 73.21 89.08 88.39
3D-MobileNetV1 0.5x 97 0.88M 290 57 87.61 86.93 84.09 75.73 88.45 88.25
3D-MobileNetV2 0.2x 61 0.23M 357 42 86.43 88.18 85.68 76.49 89.22 88.46

3D-ShuffleNetV1 1.0x 198 0.97M 269 49 92.27 89.41 90.25 83.48 91.02 91.22
3D-ShuffleNetV2 1.0x 194 1.33M 243 44 91.96 88.93 90.12 77.32 90.46 90.60
3D-MobileNetV1 1.0x 240 3.33M 164 31 90.81 89.15 86.45 81.60 89.77 89.29
3D-MobileNetV2 0.45x 176 0.67M 203 19 90.21 89.56 89.15 83.61 90.39 90.74

3D-ShuffleNetV1 1.5x 345 2.01M 204 31 93.12 90.32 90.25 83.68 91.50 90.74
3D-ShuffleNetV2 1.5x 290 2.57M 186 34 93.16 89.49 90.46 80.71 91.08 90.60
3D-MobileNetV1 1.5x 427 7.34M 116 19 91.28 88.59 89.70 84.79 90.46 90.95
3D-MobileNetV2 0.7x 324 1.32M 130 13 93.34 90.95 89.08 86.93 90.54 90.81

3D-ShuffleNetV1 2.0x 531 3.66M 161 24 93.54 90.95 90.74 83.89 91.78 91.78
3D-ShuffleNetV2 2.0x 436 5.47M 146 26 93.71 91.52 91.23 83.67 92.40 91.92
3D-MobileNetV1 2.0x 660 12.93M 88 15 92.56 89.15 89.08 84.59 90.81 90.87
3D-MobileNetV2 1.0x 559 2.39M 93 9 94.59 91.36 91.56 85.49 92.88 92.47
3D-SqueezeNet 922 1.85M 682 46 90.77 91.22 85.24 81.10 92.53 92.05

Table B.1: Comparison of different 3D CNN architectures over offline classification accuracy,
number of parameters, computation complexity (FLOPs) and speed on two different
platforms. Models are trained separately for left and right hands and accuracies
are calculated by dividing the number of correctly classified gestures to the total
number of gestures. The calculations of parameters and FLOPs are done for the
Jester dataset [21] for 16 frames input with 112 × 112 spatial resolution. For the
DriverMHG dataset, 32 frames input with 112 × 112 spatial resolution are used for
trainings. For speed calculations (clips per second - cps), Titan Xp and Jetson TX2
platforms are used with batch size of 8.

achieved with 3D-MobileNetV2 1.0x) since it is invariant to illumination. Although we
expect similar results for the depth modality, it performs the worst due to the inferior
quality at intensive lighting conditions.

Fig. B.7 shows an example for depth images under three lighting scenarios, which
are under heavy solar radiation, medium solar radiation, and light solar radiation. As
it is clear from this figure, under intense lighting conditions, the quality of the depth
modality drops significantly.

Table B.1 also reports the number of parameters, FLOPs and speed (clip per second
- cps). As models get more complex, the number of parameters and FLOPs increase; as
a corollary, the speed reduces. It must be noted that 3D-SqueezeNet is comparatively
much faster although its number of FLOPs is the highest. This is because it is the only
architecture that does not make use of depthwise convolutions, and the CUDNN library
is specifically optimized for standard convolutions.
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Figure B.7: Depth images under different lighting scenarios: (1) With heavy solar radiation,
(2) with medium solar radiation, (3) with light solar radiation.

Modality Levenshtein Accuracy (%)

RGB 74.00
IR 72.90

Depth 56.49

Table B.2: Evaluation of the online detection using model 3D-MobileNetV2 1.0x.

B.4.2 Impact of Modality Fusion on Offline Classification Accuracy

In addition to the mono-modal analysis on RGB, infrared and depth modalities, we have
analyzed the impact of fusion of multiple modalities on dynamic micro hand gesture
recognition using the score level fusion strategy.

According to the reported results in Table B.1, the fusion of all three modalities
enhances the offline classification accuracy with all the applied architectures for all
complexity levels. However, another interesting result is that the fusion of RGB and
infrared modalities performs better than the fusion of RGB, infrared and depth
modalities. The reason is again the poor quality of depth modality for intensive
lighting scenarios, which degrades the fusion performance.

B.4.3 Evaluation for Online Classification Accuracy

Here, we use the 3D-MobileNetV2 as the deep CNN model in Fig. B.5 for online
evaluation, as its offline performance is in the lead according to the results reported in
Table B.1.

Table B.2 shows the online detection results for all RGB, infrared, and depth
modalities. The best performance is achieved by modality RGB with 74%. The results
with infrared modality are slightly worse than the results with RGB modality. Depth
modality provides relatively poor performance, only 56.49%. It is because that the
depth images flicker too much, especially under intense lighting. Since the network is
trained for recognizing micro gestures, the flickering (in a very small area) can result in
false positives.
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Convolutional Neural Networks with 3D kernels (3D CNNs) currently achieve
state-of-the-art results in video recognition tasks due to their supremacy in extracting
spatiotemporal features within video frames. There have been many successful
3D CNN architectures surpassing state-of-the-art results successively. However, nearly
all of them are designed to operate offline creating several serious handicaps during
online operation. Firstly, conventional 3D CNNs are not dynamic since their output
features represent the complete input clip instead of the most recent frame in the clip.
Secondly, they are not temporal resolution-preserving due to their inherent temporal
downsampling. Lastly, 3D CNNs are constrained to be used with fixed temporal input
size limiting their flexibility. In order to address these drawbacks, we propose dissected
3D CNNs, where the intermediate volumes of the network are dissected and
propagated over depth (time) dimension for future calculations, substantially reducing
the number of computations at online operation. For action classification, the dissected
version of ResNet models performs 77-90% fewer computations at online operation
while achieving ∼5% better classification accuracy on the Kinetics-600 dataset than
conventional 3D-ResNet models. Moreover, the advantages of dissected 3D CNNs are
demonstrated by deploying our approach onto several vision tasks, which consistently
improved the performance. We make the DAD dataset and our source code publicly
available at https://www.mmk.ei.tum.de/dad/ and
https://github.com/okankop/Driver-Anomaly-Detection, respectively.

This section is based on our publication Driver Anomaly Detection: A Dataset and
Contrastive Learning Approach [27].

C.1 Introduction

Driving has become an indispensable part of modern life providing a high level of
convenient mobility. However, this strong dependency on driving also leads to an
increased number of road accidents. According to the World Health Organization’s
estimates, 1.25 million people die in road accidents per year, and up to 50 million
people get injured. Human factors are the main contributing cause in almost 90% of
the road accidents having distraction as the main factor for around 68% of them [290].
Accordingly, the development of a reliable Driver Monitoring System (DMS), which
can supervise a driver’s performance, alertness, and driving intention, contains utmost
importance to prevent human-related road accidents.
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Figure C.1: Using contrastive learning, normal driving template vector vn is learned during
training. At test time, any clip whose embedding is deviating more than threshold
γ from normal driving template vn is considered as anomalous driving. Examples
are taken from new introduced Driver Anomaly Detection (DAD) dataset for front
(left) and top (right) views on depth modality.

Due to the increased popularity of deep learning methods in computer vision
applications, there have been several datasets to facilitate video-based driver
monitoring [291, 292, 293]. However, all these datasets are partitioned into a finite set
of known classes, such as normal driving class and several distraction classes, with
equivalent training and testing distribution. In other words, these datasets are
designed for closed set recognition, where all samples in their test set belong to one of
the K known classes that the networks are trained with. This arises a very important
question: How would the system react if an unknown class is introduced to
the network? This obscurity is a serious problem since there might be unbounded
many distracting actions that a driver can do while driving.

Different from available datasets and majority research on DMS applications, we
propose an open set recognition approach for video-based driver monitoring. Since the
main purpose of a DMS is to ensure that driver drives attentively and safely, which is
referred as normal driving in this work, we propose a deep contrastive learning
approach to learn a metric in order to distinguish normal driving from anomalous
driving. Fig. C.1 illustrates the proposed approach.

In order to facilitate further research, we introduce a large-scale, multi-view, multi-
modal Driver Anomaly Detection (DAD) dataset. The DAD dataset contains the normal
driving class together with a set of anomalous driving actions in its training set. However,
there are several unseen anomalous actions in the test set of the DAD dataset that
still need to be distinguished from normal driving. We believe that the DAD dataset
addresses the true nature of driver monitoring.
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Overall, the main contributions of this work can be summarized as:

• We introduce the DAD dataset, which is the first video-based open set recognition
dataset for vision-based driver monitoring applications. The DAD dataset is multi-
view (front and top views), multi-modal (depth and infrared modalities) and large
enough to train deep Convolutional Neural Network (CNN) architectures from
scratch.

• We propose a deep contrastive learning approach to distinguish normal driving
from anomalous driving. Although contrastive learning has been popular for
unsupervised metric learning recently, we prove its effectiveness by achieving
0.9673 AUC in the test set of the DAD dataset.

• We present a detailed ablation study on the DAD dataset and proposed a
contrastive learning approach in order to give better insights about them.

C.2 DAD Dataset

There are several vision-based driver monitoring datasets that are publicly available, but
for the task of open set recognition such that normal driving should still be distinguished
from unseen anomalous actions, there has been none. In order to fill this research gap,
we have recorded the Driver Anomaly Detection (DAD) dataset, which contains the
following properties:

• The DAD dataset is large enough to train DNN architectures from scratch.

• The DAD dataset is multi-modal containing depth and infrared modalities such
that the system is operable at different lighting conditions.

• The DAD dataset is multi-view containing front and top views. These two views
are recorded synchronously and complement each other.

• The videos are recorded with 45 frame-per-second providing high temporal
resolution.

We have recorded the DAD dataset using a driving simulator that is shown in Fig. C.2.
The driving simulator contains a real BMW car cockpit, and the subjects are instructed
to drive in a computer game that is projected in front of the car. Two Infineon CamBoard
pico flexx cameras are placed on top and in front of the driver. The front camera is
installed to record the drivers’ head, body and visible part of the hands (left hand is
mostly obscured by the driving wheel), while the top camera is installed to focus on the
drivers’ hand movements. The dataset is recorded in synchronized depth and infrared
modalities with the resolution of 224 × 171 pixels and the frame rate of 45 fps. Example
recordings for the two views and two modalities are shown in Fig. C.2.

For the dataset recording, 31 subjects are asked to drive in a computer game
performing either normal driving or anomalous driving. Each subject belongs either to
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(a) Camera placements in the simulator (b) Camera

(c) Top depth image (d) Top infrared image

(e) Front depth image (f) Front infrared image

Figure C.2: Environment for data collection. (a) Driving simulator with camera placements.
(b) Infineon CamBoard pico flexx camera installed for front and top views.
Examples of (c) top depth, (d) top infrared, (e) front depth and (f) front infrared
recordings.

the training or to the test set. The training set contains recordings of 25 subjects and
each subject has 6 normal driving and 8 anomalous driving video recordings. Each
normal driving video lasts about 3.5 minutes and each anomalous driving video lasts
about 30 seconds containing a different distracting action. The list of distracting
actions recorded in the training set can be found in Table C.1. In total, there are
around 550 minutes recording for normal driving and 100 minutes recording of
anomalous driving in the training set.

The test set contains 6 subjects and each subject has 6 video recordings lasting
around 3.5 minutes. Anomalous actions occur randomly during the test video
recordings. Most importantly, there are 16 distracting actions in the test set that are
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Anomalous Actions in Training Set Anomalous Actions in Test Set

Talking on the phone-left Talking on the phone-left Adjusting side mirror Wearing glasses
Talking on the phone-right Talking on the phone-right Adjusting clothes Taking off glasses

Messaging left Messaging left Adjusting glasses Picking up something
Messaging right Messaging right Adjusting rear-view mirror Wiping sweat

Talking with passengers Talking with passengers Adjusting sunroof Touching face/hair
Reaching behind Reaching behind Wiping nose Sneezing
Adjusting radio Adjusting radio Head dropping (dozing off) Coughing

Drinking Drinking Eating Reading

Table C.1: Anomalous actions in the training and test sets. 16 actions in the test set that are
not available in the training set are highlighted in red color.

Figure C.3: The DAD dataset statistics.

not available in the training set, which can be found in Table C.1. Because of these
additional distracting actions, the networks need to be trained according to the open set
recognition task and distinguish normal driving no matter what the distracting action
is. The complete test consists of 88 minutes recording for normal driving and 45
minutes recording of anomalous driving. The test set constitutes 17% of the complete
DAD dataset, which is around 95 GB. The dataset statistics can be found in Fig. C.3.

C.3 Methodology

C.3.1 Contrastive Learning Framework

Our motivation is to learn a compact representation for normal driving such that any
action deviating from normal driving beyond a threshold can be detected as anomalous
action. Accordingly, inspired by recent progress in contrastive learning algorithms, we
try to maximize the similarity between normal driving samples and minimize the
similarity between normal driving and anomalous driving samples in the latent space
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Figure C.4: Contrastive learning framework for driver anomaly detection task. A pair of normal
driving clips a number of anomaly driving clips (2 in this example) are fed to a
base encoder fθ(.) and projection head gβ(.) to extract visual representations of
hi and vi, respectively. Once training is completed, projection head is removed,
and only the encoder fθ(.) is used for test time recognition.

using a contrastive loss. Fig. C.4 illustrates the applied framework, which has three
major components:

• Base encoder fθ(.) is used to extract vector representations of input clips. fθ(.)
refers to a 3D CNN architecture with parameters θ. We performed experiments
with ResNet-18 and various resource efficient 3D CNNs to transform input xi into
hi∈R512 via hi=fθ(xi).

• Projection head gβ(.) is used to map hi into another latent space vi. According
to findings in [294], it beneficial to define the contrastive loss on vi rather than
hi. gβ(.) refers to MLP with one hidden layer with ReLU activation and has
parameters β to achieve transformation of vi=gβ(hi)=W

(2)max(0,W (1)hi), where
vi∈R128. After MLP, `2 normalization is applied to the embedding vi.

• Contrastive loss is used to impose that normalized embeddings from the
normal driving class are closer together than embeddings from different
anomalous action classes. For this reason, positive pairs in the contrastive loss
are always selected from normal driving clips, whereas anomalous driving clips
are used only as negative samples.

We divide our normal and anomalous videos into clips for the training. Within a
mini-batch, we have K normal driving clips and M anomalous driving clips with index
i∈{1, ...,K+M}. Final embedding of the ith normal and anomalous driving clips are
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denoted as vni and vai, respectively. There are in total K(K−1) positive pairs and KM
negative pairs in every mini-batch. For the supervised contrastive learning approach
that we have applied for the task of driver anomaly detection task, the loss takes the
following final form:

Lij=− log
exp(vTnivnj/τ)

exp(vTnivnj/τ) +
M∑
m=1

exp(vTnivam/τ)

, (C.1)

L=
1

K(K − 1)

K∑
i=1

K∑
j=1

1j 6=iLij , (C.2)

where 1 ∈ {0, 1} is an indicator function that returns 1 if j 6=i and 0 otherwise, and τ
∈ (0, ∞) is a scalar temperature parameter that can control the concentration level of
the distribution [295]. Typically, τ is chosen between 0 and 1 to amplify the similarity
between samples, which is beneficial for training. The inner product of vectors measures
the cosine similarity between encoded feature vectors because they are all `2 normalized.
By optimizing Eq. (C.2), the encoder is updated to maximize the similarity between the
normal driving feature vectors vni and vnj while minimizing the similarity between the
normal driving feature vector vni and all other anomalous driving feature vectors vam
in the same mini-batch.

Noise Contrastive Estimation. The representation learned by Eq. (C.2) can be
improved by introducing many more anomaly driving clips (i.e. negative samples). In the
extreme case, we can use the complete training samples of anomalous driving. However,
this is too expensive considering the limited memory of the used GPU. Noise Contrastive
Estimation [296] can be used to approximate the full softmax distribution as in [296, 297].
In our implementation, we have used the m negative samples in our mini-batch and
applied (m+1)-way softmax classification as also used [298, 299, 300]. Different from
these works, we do not use a memory bank and optimize our framework using only the
elements in the mini-batch.

C.3.2 Test Time Recognition

The common practice to evaluate learned representations is to train a linear classifier
on top of the frozen base network [298, 299, 300, 294]. However, this final training
is tricky since representations learned by unsupervised and supervised training can be
quite different. For example, training of the final linear classification is performed with
the learning rate of 30, although unsupervised learning is performed with the initial
learning rate of 0.01. In addition, authors in [297] apply k-nearest neighbours (kNN)
classification for the final evaluation. However, kNN also requires distance calculation
with all training clips for each test clip, which is computationally expensive.

For the test time recognition, we propose an evaluation protocol that requires neither
any further training nor complex computations. After the training phase, we throw away
the projection head as in [294] and use the trained 3D CNN model to encode every normal
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driving training clips xi, i∈{1, ..., N} into a set of `2 normalized 512-dimensional feature
representations. Afterwards, normal driving template vector vn can be calculated with:

vn=
1

N

N∑
i=1

fθ(xi)

‖fθ(xi)‖2
. (C.3)

To classify a test video clip xi, we encode it again into a `2 normalized 512-dimensional
vector and compute the cosine similarity between the encoded clip and vn by:

simi=v
T
n

fθ(xi)

‖fθ(xi)‖2
. (C.4)

Finally, any clip whose similarity score is below a threshold, simi<γ, is classified as
anomalous driving. This way, only a simple vector multiplication is performed for test
time evaluation. Moreover, the similarity score of the test clip simi gives the severity of
the anomalous behavior.

Fusion of Different Views and Modalities. The DAD dataset contains front and
top views; and depth and infrared modalities. We have trained a separate model for
each view and modality and fused them later with decision level fusion. As an example,
the fused similarity score for top view depth and infrared modalities is calculated with:

sim
(top)
(DIR)=

sim
(top)
(D) + sim

(top)
(IR)

2
. (C.5)

It must be noted that each applied view and modality increases the required memory
and inference time, which would be critical for autonomous driving applications.

C.4 Experiments

Baseline Results. We have used ResNet-18 as the base encoder for the baseline results.
All the models in the experiments are trained from scratch unless otherwise specified.
For every view and modality, a separate model is trained and individual results, as well
as fusion results, are reported in Table C.2. The thresholds that are achieving the highest
classification accuracy are reported in Table C.2. However, true positive rates and false
positive rates change according to the applied threshold value. Therefore, we have also
reported the AUC of the ROC curve for baseline evaluation.

For all different views, the fusion of different modalities always achieves better
performance compared to single modalities and views. This shows that different
views/modalities in the dataset contain complementary information. Fusion of
top/front views and depth/infrared modalities achieves the best performance with
0.9655 AUC. Using this fusion network, the visualization for a continuous video stream
is illustrated in Fig. C.5.

Resource Efficient Base Encoders. For autonomous applications, it is critical that
the deployed systems should be designed considering resource efficiency. Therefore, we
have experimented with different resource efficient 3D CNNs [21] as the base encoder.
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Metric Thresholds γ Acc. (%) AUC

Top(D) 0.89 89.13 0.9128
Top(IR) 0.65 83.63 0.8804
Top(DIR) 0.76 87.75 0.9166

Front(D) 0.75 87.21 0.8996
Front(IR) 0.82 83.68 0.8695
Front(DIR) 0.81 88.68 0.9196

Top+Front(D) 0.83 91.60 0.9609
Top+Front(IR) 0.80 87.06 0.9311
Top+Front(DIR) 0.81 92.34 0.9655

Table C.2: Results obtained by using a ResNet-18 as base encoder. Thresholds that result in
highest classification accuracy are reported.

Figure C.5: Illustration of recognition for a continuous video stream using fusion of both views
and modalities. Similarity score refers to cosine similarity between the normal
driving template vector and base encoder embedding of input clip. The frames are
classified as anomalous driving if the similarity score is blow the preset threshold.

Comparative results are reported in Table C.3. Out of all resource efficient 3D CNNs,
MobileNetV2 stands out with its performance achieving close to ResNet-18 architecture.
More importantly, MobileNetV2 has around 11 times fewer parameters and requires 15
times less computation compared to ResNet-18.

With or Without Pre-training? Transfer learning is a common and effective strategy
to improve generalization in small-scale datasets by pretraining network initially with
a large-scale dataset [301]. Therefore, in order to investigate the effect of pretraining,
we have pretrained our ResNet-18 base encoder on Kinetics-600 for 100 epochs with
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Model Params MFLOPS
AUC

Top Front Top+Front

Depth IR D+IR Depth IR D+IR Depth IR D+IR

MobileNetV1 2.0x 13.92M 707 0.9125 0.8381 0.9097 0.9018 0.8374 0.9057 0.9474 0.9059 0.9533
MobileNetV2 1.0x 3.01M 585 0.9124 0.8531 0.9146 0.8899 0.8355 0.8984 0.9641 0.9154 0.9608
ShuffleNetV1 2.0x 4.59M 558 0.8884 0.8567 0.8926 0.8869 0.8398 0.9000 0.9358 0.9023 0.9480
ShuffleNetV2 2.0x 6.46M 461 0.8959 0.8570 0.9066 0.9002 0.8371 0.9054 0.9490 0.9131 0.9531

ResNet-18 (from scratch) 32.99M 8870 0.9128 0.8804 0.9166 0.8996 0.8695 0.9196 0.9609 0.9311 0.9655
ResNet-18 (pre-trained) 32.99M 8870 0.9200 0.8857 0.9228 0.9020 0.8666 0.9128 0.9646 0.9227 0.9620
ResNet-18 (post-processed) 32.99M 8870 0.9143 0.8827 0.9182 0.9020 0.8737 0.9223 0.9628 0.9335 0.9673

Table C.3: Comparison of different network architectures over AUC, number of parameters and
MFLOPS. All architectures takes 16 frames input with 112×112 spatial resolution.

contrastive loss similar to our contrastive learning approach described in Section C.3.
We have not applied CE loss that is common for training classification tasks since feature
representations learned by CE loss and contrastive loss would be quite different, hence
can hinder the transfer learning performance. Before fine-tuning, we have modified the
initial convolution layer of the pretrained network to accommodate single channel input
by averaging weights of 3 channels. Afterwards, we fine-tune the network using the DAD
dataset. Comparative results are reported in Table C.3 that pretrained base encoder does
not show apparent advantages compared to base encoder trained from scratch. We infer
that our DAD dataset is large enough and the networks that are trained from scratch
can already learn all distinctive features without the need of transfer learning.

Post-processing. It is a common approach to apply post-processing in order to
prevent fluctuation of detected scores [22]. For instance, the misclassification between
frames 6500 and 6750 in Fig. C.5 can be prevented by such post-processing. Therefore,
we have applied a simple low pass filtering (i.e. averaging) on the predicted scores.
Instead of making score predictions considering only the current clip, we have applied a
running averaging on the k-previous scores. We have experimented with different k
values and the best results are achieved when k=6. Comparative results with and
without post-processing are reported in Table C.3, where post-processing slightly
improves the performance.

Closed set and open set anomalies. We have compared the performance of the
proposed architecture over closed set and open set anomalies separately. We achieve
a closed set specificity score of 0.8713, an open set specificity score of 0.8252, and an
average specificity score of 0.8565. This result verifies that the proposed architecture
successfully detects open set anomalies, although closed set performance is still better
than open set.

How Training Data Affects the Performance? The quality and the amount of
training data is one of the most important factors in the performance of deep learning
applications. Therefore we have investigated the impact of different amounts of training
data. First, we have created 5 equal folds each containing training data of 5 subjects.
Then, keeping all the anomalous driving in the training set, we have gradually increased
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Ratio AUC

λn λa Top Front Top+Front

20% 100% 0.7956 0.7639 0.8513
40% 100% 0.7795 0.8111 0.8561
60% 100% 0.8599 0.8166 0.8802
80% 100% 0.8998 0.8601 0.9382
100% 20% 0.8025 0.7873 0.8545
100% 40% 0.8103 0.8577 0.9070
100% 60% 0.8694 0.8911 0.9335
100% 80% 0.8854 0.8921 0.9484
100% 100% 0.9128 0.8996 0.9609

Table C.4: Performance comparison using different amount of normal and anomalous driving
data in the training. Results are reported for ResNet-18 base encoder on depth
modality.

the used folds for normal driving data. We have applied the same procedure by switching
the normal and anomalous driving subsets. The comparative results are reported in
Table C.4, where λn and λa refer to the proportion of the used training data for normal
driving and anomalous driving subsets, respectively.

The results in Table C.4 show that as we increase the amount of normal and anomalous
driving videos, achieved performance also increases accordingly. This is natural since we
need more normal driving data in order to increase the generalization strength of the
learned embeddings. We also need enough anomalous driving data in the training set
to draw the boundary of the normal driving embedding and increase the compactness
of the learned representation.
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neural aggregation network for video face identification. In Proceedings of the IEEE
International Conference on Image Processing, pages 1675–1679, 2019.

[35] M. Kayhan, O. Köpüklü, M. H. Sarhan, M. Yigitsoy, A. Eslami, and G. Rigoll.
Deep attention based semi-supervised 2d-pose estimation for surgical instruments.
In Proceedings of the International Conference on Pattern Recognition, pages 444–
460, 2021.

186



Bibliography
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