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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr. Christina Kuttler
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Zusammenfassung

In der vorliegenden Arbeit werden verschiedene Systeme zur Modellierung von Tumor-
wachstum vorgestellt. Wir folgen den ’Hallmarks of Cancer’ (dt. Schlüsselmerkmale von
Krebserkrankung) von Hanahan & Weinberg und beziehen die wichtigsten Charakteri-
stiken von Tumorwachstum in unsere Modelle mit ein. In dieser Hinsicht wählen wir die
Herangehensweise der diffusiven Grenzflächenmodelle und beschreiben den Tumor als ei-
ne Ansammlung von Zellen unter Verwendung eines Phasenfeldansatzes. Solche Modelle
basieren auf einem mehrphasigen Konzept mit konstitutiven Gesetzen und Gleichge-
wichtsgesetzen für die einzelnen Bestandteile. Wir untersuchen diese Tumormodelle im
Hinblick auf ihre mathematische Wohlgestelltheit und die Existenz schwacher Lösungen.
Viele biologische Phänomene wie zeitliche und räumliche nichtlokale Effekte, komplexe
Nichtlinearitäten und gemischtdimensionale Kopplungen sind in der mathematischen
Onkologie involviert. Daher ist eine detaillierte Analysis dieser komplexen Systeme
erforderlich, und wir liefern rigorose Beweise dafür. Die Grundidee des Beweises ist die
Faedo–Galerkin-Methode, welche besagt, dass wir die partiellen Differentialgleichungen
im Raum diskretisieren, approximative Lösungen erhalten, geeignete Energieschätzungen
herleiten, die schwach konvergente Teilfolgen ergeben, und dann den Grenzwert nehmen,
um das gewünschte kontinuierliche System zu erhalten. Abschließend geben wir einige
Ideen zur numerischen Annäherung der Systeme, um die Entwicklung des Tumors unter
den verschiedenen biologischen Effekten zu simulieren.

Abstract

In this thesis, various systems for modeling tumor growth are presented. We follow the
’Hallmarks of Cancer’ by Hanahan & Weinberg, and we include the main characteristics
of cancer in our models. In this regard, we choose the path of diffusive interface models
and describe the tumor as a collection of cells using a phase-field approach. Such systems
are based on a multiphase ansatz using constitutive laws and balance laws for single
constituents. We investigate these tumor models with respect to their mathematical
well-posedness and the existence of weak solutions. Many biological phenomena, such
as temporal and spatial nonlocal effects, complex nonlinearities, and mixed-dimensional
couplings, are involved in mathematical oncology. As a result, detailed analysis of these
complex systems is required, and we provide rigorous proofs for this. The basic idea
behind the proof is the Faedo–Galerkin method, which states that we discretize the
partial differential equations in space, obtain approximative solutions, derive suitable
energy estimates yielding weakly convergent subsequences, and then take the limit to
obtain the desired continuous system. Finally, we give some ideas on approximating
the models numerically in order to simulate the evolution of the tumor under various
biological effects.
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Wohlmuth
Local and nonlocal phase-field models of tumor growth and invasion
due to ECM degradation
Mathematical Models and Methods in Applied Sciences, 29(13):2433–2468, 2019
(see also article [61] in the bibliography)

III) Marvin Fritz, Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Barbara Wohlmuth
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1. Introduction

As long as a branch of science offers an abundance of problems, so long is
it alive. (David Hilbert)

Partial differential equations (PDEs) are omnipresent in describing the phenomena
of the world – they model the flow of liquids and gases (Navier–Stokes equations),
the evolution of a quantum state (Schrödinger equation), thermal conduction (heat
equation), spinodal decomposition (Cahn–Hilliard equation), and many more. Complex
processes evoke complicated models which might contain nonlinearities, temporal and
spatial nonlocalites, and mixed-dimensional couplings. Until now, there is no unified
theory for the analysis of any nonlinear PDE, and each novel nonlinear system presents
its own set of challenges that must be thoroughly investigated.

We are interested in establishing the well-posedness of PDEs describing the growth
and decline of tumors under the influence of a variety of complex biological phenomena.
The definition of well-posedness goes back to Jacques Hadamard [85] in 1902, saying
that a model is well-posed if

1. a solution exists,

2. the solution is unique,

3. the solution depends continuously on the given data.

We give an example that illustrates why it is important to show the well-posedness of
a model before investigating it further. Let us assume beforehand that the problem
’There exists a largest natural number’ is well-posed. Let n be said unique solution.
However, because n2, is a natural number, it must be less than or equal to n. We
compute n2 − n = n · (n − 1) ≤ 0, from which we can conclude 0 ≤ n ≤ 1. Hence,
n = 1, or in other words, 1 is the largest natural number. The contradiction is caused
by the incorrect assumption that the problem is well-posed. This example demonstrates
the importance of proving the existence of mathematical objects before proceeding to
prove things about them. Otherwise, a lot of interesting but illogical conclusions can
be reached.

One of the most famous PDEs are the Navier–Stokes equations that describe the
evolution of a fluid. This model became known among laymen as it was selected as one
of the seven millennium problems [45] by the Clay Mathematics Institute, whose each
solution is rewarded with a prize of one million dollars. It has been known since 1934
by Jean Leray’s work [98] that weak solutions exist, but it is not known yet whether
they are unique in the three-dimensional case. On the other hand, strong solutions
are unique, but their existence is unknown. If one reduces the dimension of the space
domain by one and investigates the two-dimensional setting, then everything is perfectly
understood. One can already see the fine nuances of mathematical analysis in this
particular nonlinear problem. Such open questions in the analysis of PDEs are also
included in the 19th and 20th Hilbert problems [142].

There are several known methods for determining whether or not a problem is
well-posed. Depending on the difficulty of the problem, they can range from simple
to difficult to apply. In the case of ordinary differential equations (ODEs), there are
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the Carathéodory, Cauchy–Peano, and Cauchy–Lipschitz theorems providing results
on the existence of solutions depending on the regularity of the right-hand side of
the ODE. For linear PDEs there are, for example, the Lax–Milgram lemma and the
Banach–Nečas–Babuška theorem.

In the following, we look at PDEs arising in the study of mathematical oncology
that are highly nonlinear, and there is no standard analytical procedure for these kinds
of models. Each model must be investigated individually to determine its analytical
properties and to prove or disprove the system’s well-posedness.

1.1. Open research issues

Cancer is one of the leading causes of death in the world. There were 19.3 million new
cancer cases and 9.96 million cancer-related deaths globally in 2020, see [130]. By 2040,
the annual number of new cancer cases is expected to reach 30.2 million, with 16.3
million cancer-related deaths. Each tumor is unique and depends on many parameters.
There is no foolproof method for curing cancer, and the cause of cancer is not fully
understood. The main goal of mathematical oncology is the use of mathematical models
to accurately describe tumor evolution.

Hanahan and Weinberg [86] captured the characteristics of cancer, and a mathematical
model should meet the following ’hallmarks of cancer’:

• Resisting cell death: Apoptosis is a form of programmed cell death that can be
triggered when a cell is damaged. Malignant cells are able to ignore the apoptotic
triggers and bypass this mechanism.

• Sustaining proliferative signaling: Cell proliferation is normally regulated by
the production and release of growth factors as well as other signals. In contrast,
external stimulation is not required for cancer cells to multiply themselves.

• Evading growth suppressors: Non-cancerous cells have genes called ’tumor
suppressors’, which prevent tumor formation by preventing excessive growth.
These growth-suppressing signals are ineffective against cancer cells.

• Inducing angiogenesis: Tumor cells cause the formation of new blood vessels
to supply their growth with nutrients and oxygen.

• Enabling replicative immortality: Normal cells have a finite lifespan because
they go through a certain number of growth and division cycles. Cancer cells, on
the other hand, are unaffected by this and can replicate indefinitely.

• Activating invasion and metastasis: Cancer cells are immune to the restric-
tions that normally confine cells to their original tissue. Tumor cells can break
away from their origin, infiltrate surrounding tissue, and spread to other parts of
the body.

Later, the authors [87] added two more hallmarks and two more characteristics to the
list. All of the hallmarks must be met for mathematical oncology to be successful. In
this way, cancer can be predicted so that, hopefully, in a few years, doctors will be able
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to simply click a button on their computers to start a simulation depicting the patient’s
tumor and its evolution over the following days and weeks. A targeted therapy that
improves the prognosis of the cancer is ideal.

But, first and foremost, one must ensure that the model is well-posed, both mathe-
matically and in terms of capturing the movement of actual cancer. The second point
can only be investigated with data and model verification through prediction, see the
extensive article of Oden [110] on this subject. This thesis is heading in the direction
of the first point. We want to make sure that such models are mathematically sound,
that a solution to the model exists, and that nothing illogical occurs. After that, one
can start thinking about a numerical scheme for the model that will provide a fast,
accurate, and stable representation of the tumor’s evolution on the doctor’s monitor.

1.2. State of the art

There is a vast amount of literature on the mathematical modeling of tumor growth,
and this development is in fact a good thing. Different groups establish different models
and methods. With this diversification, there is hope that researchers will be able to
predict the growth of tumors with sufficient detail. In this section, we want to point
out the history of tumor modeling, and in particular with respect to the analysis of
well-posedness.

Tumor models were originally stated as a free boundary problem. We refer to
Greenspan [83] in 1976, who modeled the tissue as a porous medium and used Darcy’s
law for the convective velocity field. Such models have been further developed in
many articles and we refer to the reviews [11,117]. Many different models have been
formulated since then. We follow the path of diffusive interface models in which the
tumor is described as a collection of cells using a fourth-order PDE – the Cahn–Hilliard
equation. These models are based on a multiphase approach using constitutive laws,
thermodynamic principles, and balance laws for single constituents, which goes back to
the work of Cristini, Löwengrub and others, see the articles [26,27,47,137] starting in
2003. Such models have been further derived by the groups of Oden [111] in 2010 and
Garcke [73] in 2018 in the case of general multispecies models.

In the work [88] by Hawkins-Daarud and others, the most basic model of tumor
growth was formulated and it serves as the starting point of this thesis. The volume
fractions of tumor cells, healthy cells, nutrient-rich extracellular water, and nutrient-
poor extracellular water were considered. We refer to such a system as ’four-species
model’. It was analyzed in [69–71] with respect to its mathematical well-posedness by
the group of Garcke in the years 2016 and 2017. The system was also studied in [53,54]
by Frigeri, Rocca, and others for a degenerating mobility function. Since the model is
based on a fourth-order PDE with concentration dependent mobilities, the uniqueness
of weak solutions is an open problem, even for the prototype model, see the discussion
in [39]. The four-species model was studied in [22] in an optimal control problem and
in [18,108] with respect to the solution’s long time behavior.

Various velocity models have been added to the four-species model in order to include
fluid flow in cancer evolution. The cells are treated as viscous, inertia-less fluids, and
one models the velocity in a volume-averaged sense for the fluid mixture. Such an
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assumption is justified since the cells are tightly packed. The Darcy law was modeled in
the four-species model in [76] and analyzed in [72]. The law was extended to the Darcy–
Brinkman equation in [36,37] and to the unsteady Darcy–Forchheimer–Brinkman (DFB)
equation in our work [62]. There have also been authors who modeled the velocity as a
Stokes flow, see [46,48,49] and one can consider the Darcy–Brinkman equation as an
interpolation between Darcy and Stokes flow. The inclusion of a velocity equation in a
Cahn–Hilliard system is by itself not novel and has been done without the application
to tumor growth in, e.g., [97]. These techniques have been adapted to the new system,
which includes nontrivial effects such as chemotaxis, proliferation, and nonlinear source
functions.

Although such four-species models are very viable when describing the growth of an
early tumor whose evolution is mostly dictated by proliferation, they are limited when
tumor cells undergo hypoxia or necrosis. Indeed, a larger and more developed tumor
tends to become stratified [117], i.e., the tumor tissue is divided into multiple layers,
each with its own set of characteristics. Tumors are typically divided into three phases:

• a rapidly proliferating outer rim,

• an intermediate quiescent layer whose cells suffer from hypoxia,

• a necrotic core with cells that have perished.

Several multiphase models with multiple types of cell species and nutrients have been
introduced in the works [3, 5, 28,42,47,55,73,122,137] and in our articles [56,57,61].

Low oxygen and nutrition levels cause tumor cells to enter the hypoxia phase, during
which they remain dormant and release matrix-degrading enzymes (MDEs) that erode
the extracellular matrix (ECM) and allows nutrients to flow. This process permits
tumor cells to migrate into the tissue and is a first step towards modeling metastasis.
Simply put, the ECM functions as a wall around the tumor which regulates the flow of
nutrients. The ECM has been considered in [19,41,123,125,126,129] in tumor models of
reaction-diffusion type. Our group was the first to analyze the ECM in a Cahn–Hilliard
type model, see [61], and it was also included in our subsequent works [56,57].

Hypoxic tumor cells do not only emit MDEs to erode the ECM, but they also release
tumor angiogenesis factors (TAFs), which drive endothelial cell proliferation and new
vessel development. Angiogenesis is the process of blood vessels sprouting and elongating
to supply nutrients to the tumor. The volume of an isolated colony of tumor cells
is generally restricted by the size of 1mm3, see [109], unless sufficient nutrients and
oxygen are supplied for proliferation. Cancerous cells stimulate angiogenesis in order to
obtain such nutrients [17, 114]. With respect to modeling and numerical simulations of
angiogenesis, we refer to [25,26,139]. Angiogenesis has been considered with regards
to the mathematical analysis of weak solutions in a Cahn–Hilliard type model by us
in [57]. We are not aware of other works since then. Such models are highly complex
due to mixed-dimensional couplings and the inclusion of hypoxic tumor cells that release
TAFs.

Mathematicians are not just interested in accurately modeling the tumor’s growth
but also in treating the tumor and halting it from growing. Currently, tumors are
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being treated with chemotherapy, surgery, immunotherapy, and radiotherapy. Anti-
angiogenic medications that restrict the production of new vascular structures are
typically identified as one of the techniques to delay or arrest cancer growth because
angiogenesis is one of the key processes through which cancers grow. As a result, a
realistic model of angiogenesis is crucial for evaluating the efficacy of anti-angiogenic
medications, see the optimal control problems studied in [23, 24] for the optimal
dosage of medication. Chemotherapy has been included in our research [59] with a
reaction-diffusion equation (RDE) and subdiffusive tumor growth, as well as in the
works [23,24,38,74,127] on optimal control problems for the ideal dosage of drugs.

Moreover, nonlocal phenomena are involved in the mathematical modeling of cancer
cells. Such effects illustrate long-range interactions and can be either of spatial or
temporal nature. In the case of spatial nonlocality, cell-matrix and cell-cell adhesion
properties are important characterizations in the modeling of tumor growth and promote
the growth of tumor cells. These are nonlocal-in-space phenomena and involve a novel
mathematical analysis due to the structure of integro-differential systems. We have
investigated cell-cell adhesion in [62] and cell-matrix adhesion in [61]. Otherwise,
nonlocal cell-cell adhesion properties have been studied analytically in phase-field
models with applications to tumor growth in [54,121].

In the case of temporal nonlocality, not only does the solution from the last step
influence the current evolution, but it is taken into account that cells have an intrinsic
memory [106]. Consequently, the past influences the present. Memory effects are
modeled by a time-fractional derivative and fractional heat equations reflect subd-
iffusivity in contrast to the typical Fickian diffusion process. Tumors migrate via
both traditional Fickian diffusion and subdiffusion, as shown in the in vitro and in
vivo experimental results in [91]. The memory effect was studied by us in [58, 64]
in relation to the time-fractional Cahn–Hilliard equation with degenerating mobility.
Furthermore, we investigated a fractional tumor model with subdiffusion, nutritional
couplings, and mechanical deformation in [59]. The surrounding host tissues increase
mechanical stress as the tumor grows, limiting the tumor’s ability to grow further.
In the papers [44, 102, 103], mechanical deformation in a tumor development model
was first mentioned, and in terms of analysis, it was initially examined by us [59] in a
diffusion-type tumor model and later in [75] by the group of Garcke in a Cahn–Hilliard
type system. It had previously been included in the Cahn–Hilliard equation without
being applied to tumor growth or the conventional source terms in [67,68]; such models
with elasticity are called Cahn–Larché equations.

1.3. Outline

This thesis is organized as follows: In Section 2, we give some analytical preliminaries
such as Sobolev embeddings and compactness results, which will be used in the proofs
of the well-posedness of weak solutions. Moreover, we introduce the core model of our
tumor growth systems – the Cahn–Hilliard equation. In this spirit, we also introduce
the fractional derivative and elaborate on the memory effect of time-fractional PDEs.
In Section 3, we investigate the modeling of tumor growth and present an approach
via continuum mixture theory. We introduce a multiphase tumor growth model with
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various components and several biological processes. We present some subsystems that
we have investigated in our articles [56,57,59,61,62,64]. In Section 4, we give the proof
ideas of the well-posedness of weak solutions to the subsystems of the previous section.
We make use of the Faedo–Galerkin approximation and compactness methods combined
with various test functions. Finally, we state the ideas of numerical approximations in
Section 5 in order to implement the systems from the previous sections.

1.4. Summary of results

The contributed articles address several systems for modeling tumor growth under the
influence of various biological phenomena. Furthermore, these systems are theoretically
analyzed in terms of their mathematical well-posedness and numerical simulations are
presented. We derive a four-species model with an unsteady fluid flow based on the
DFB law in ’Core Article I’ (Appendix A.1). We investigate the effects of the ECM in
an extended tumor model with stratification in ’Core Article II’ (Appendix A.2). In
’Core Article III’ (Appendix A.3), we present a mixed-dimensional tumor growth model
to investigate the effects of an existing capillary structure in the tumor’s vicinity on the
release of TAFs. Finally, we combine a diffusion-type tumor model with memory effects
and mechanical deformations in ’Article IV’ (Appendix B.1); we also look into the effects
of chemotherapy on the tumor. The scope and subject matter of each contribution are
briefly summarized in the following paragraphs.

Core articles as principal author

• ’Core Article I’ [62] in Appendix A.1:
On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal
tumor growth models

Starting with the four-species model, we derive local and nonlocal phase-field
models of tumor growth, as well as a time-dependent DFB equation for convective
velocity fields. The model becomes an integro-differential system since the nonlocal-
in-space effects are represented by an integral in the space domain. Long-range
cell interactions and cell-cell adhesion are represented by this nonlocal effect.
The Faedo–Galerkin method provides a complete existence analysis for both the
local and nonlocal systems. A parameter-sensitivity analysis is described, which
quantifies the sensitivity of model parameters in relation to tumor mass as the
quantity of interest. Two sensitivity analyses are investigated: one that uses
statistical variances of model outputs and the other that uses active subspaces
based on experimental data. The two methods arrive at very similar conclusions
about the sensitivity of the chosen quantity of interest. The work concludes with a
description of an algorithm based on the finite element method (FEM) for solving
the system numerically. Lastly, simulations are conducted to demonstrate the
impact of the new velocity model on the tumor.
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• ’Core Article II’ [61] in Appendix A.2:
Local and nonlocal phase-field models of tumor growth and invasion due to ECM
degradation

A multispecies phase-field model of tumor growth and ECM invasion is presented
and analyzed. We start with a stratified tumor that divides into two phases:
viable (i.e., proliferative and hypoxic cells) and necrotic. Furthermore, as soon as
the tumor cells are deprived of nutrients, they release MDEs. A RDE is used to
describe this effect. We take into account nonlocal-in-space effects and cell-matrix
adhesion, i.e., the tumor cells’ long-range interaction with the ECM. Using a
coupled PDE-ODE approach, we prove the existence of solutions of the coupled
system with both gradient-based and adhesion-based haptotaxis effects. We also
present a FEM of the model and show the results of numerical experiments that
were designed to demonstrate the relative importance and roles of various effects,
such as the generation of MDEs and the degradation of the ECM.

• ’Core Article III’ [57] in Appendix A.3:
Analysis of a new multispecies tumor growth model coupling 3D phase-fields with
a 1D vascular network

In this paper, we develop a mathematical model for stratified tumor growth
that includes ECM erosion, interstitial flow, and the effects of vascular flow and
nutrient transport. Multiple phases of cell species and other constituents are
separated by smooth evolving interfaces in this phase-field model. One-dimensional
equations are used to model flow and transport processes in the vasculature that
supplies healthy and cancerous tissue. We obtain a 3D-1D coupled system since
the equations governing the transport and flow processes are defined together
with cell species models on a three-dimensional domain. We present a thorough
examination of the existence of weak solutions for the entire system. Additionally,
simulation results are presented that show the evolution of tumors as well as the
effects of the mixed-dimensional coupling.

Further articles

• ’Article IV’ [59] in Appendix B.1:
On a subdiffusive tumor growth model with fractional time derivative

We present and analyze a coupled PDE system that models tumor growth under
the influence of subdiffusion, mechanical effects, nutrient supply, and chemotherapy.
The equation for the volume fraction of the tumor cells contains a time-fractional
derivative and models the system’s subdiffusion. RDEs are used to model the
mass densities of cancer cells, nutrients, and chemotherapeutic agents. We use
the Faedo–Galerkin method and appropriate compactness theorems to prove
the existence and uniqueness of a weak solution to the model. We propose a
fully discretized system based on the FEM for the spatial discretization and a
convolution quadrature scheme for the time discretization. Finally, we present
several numerical examples to demonstrate the effects of the fractional parameter,
the mechanical deformation, and the chemotherapy.
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2. Mathematical Background

In most sciences one generation tears down what another has built, and what
one has established another undoes. In mathematics alone each generation
builds a new story to the old structure. (Hermann Hankel)

In this section, we present the notation and concepts of the mathematical tools that are
the building block of the development of our methods. First, we introduce the function
spaces that we consider throughout this work and their corresponding norms and scalar
products. Afterwards, we introduce important inequalities for the key estimates in the
energy bounds. Moreover, we introduce embedding theorems in order to achieve strong
convergence, which is needed for the nonlinear parts of the system during the limit
process in the Faedo–Galerkin method. Next, we describe the concept of memory effects
and the fractional derivatives of Caputo type. Finally, we present the prototype system
for modeling tumor growth – the Cahn–Hilliard equation with concentration-dependent
mobility.

2.1. Function spaces, inequalities, and embedding results

In this section, we introduce the function spaces that will be used frequently in the
following sections. Some excellent introductions on the mathematical analysis of PDEs
are given in the textbooks [12, 43, 118]. Let Ω ⊂ Rd, d ∈ N, be a bounded domain with
a sufficiently smooth boundary ∂Ω and T > 0 a fixed time horizon. Further, let X be a
given Banach space with norm ‖ · ‖X and we denote the dual pairing by 〈·, ·〉X with its
dual space X ′.

Let β = (β1, . . . , βd) ∈ Nd0 denote a multi-index. We define the Sobolev space W k,p(Ω),
p ∈ [1,∞], k ∈ N0, by

W k,p(Ω) = {u ∈ Lp(Ω) : ∂βu ∈ Lp(Ω) for ‖β‖
`
1 ≤ k},

becoming a Banach space with the norm ‖u‖p
W
k,p

(Ω)
=
∑
|β|≤k ‖∂

βu‖p
L
p
(Ω)
. Here, ∂βu

denotes the weak derivative of u in the sense of
∫

Ω
∂βu(x)ϕ(x) dx = (−1)|β|

∫

Ω
u(x)∂βϕ(x) dx ∀ϕ ∈ C∞c (Ω).

In the case of p = 2, the Sobolev space inherits the Hilbert space structure from L2(Ω)

and we denote this space by Hk(Ω). In the case of Bochner functions, we introduce the
Sobolev–Bochner space,

W 1,p(0, T ;X) = {u ∈ Lp(0, T ;X) : ∂tu ∈ Lp(0, T ;X)},

where ∂tu denotes the weak derivative of u in the sense of

∫ T

0
∂tu(t)ϕ(t) dt = −

∫ T

0
u(t)ϕ′(t) dt ∀ϕ ∈ C∞c (0, T ).
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Throughout this thesis, C > 0 stands for a generic constant, which may change from
line to line. For brevity, we write x . y for x ≤ Cy. We recall the Young convolution,
Poincaré–Wirtinger, Korn and Sobolev inequalities [13,33,43,118]

‖u ∗ v‖Lr(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω) ∀u ∈ Lp(Ω), v ∈ Lq(Ω),
1

p
+

1

q
= 1 +

1

r
,

‖u− 〈u〉Ω‖Lp(Ω) . ‖∇u‖Lp(Ω) ∀u ∈W 1,p(Ω),

‖∇u‖p
L
p
(Ω)

. ‖u‖p
L
p
(Ω)

+‖ε(u)‖p
L
p
(Ω)

∀u ∈W 1,p(Ω),

‖u‖Wm,q
(Ω) . ‖u‖Wk,p

(Ω)
∀u ∈W k,p(Ω), k − d

p
≥ m− d

q
, k ≥ m,

where 〈u〉Ω = 1
|Ω|(u, 1)

L
2
(Ω)

is the mean of u with respect to Ω, and ε(u) = 1
2(∇u+∇u>)

denotes the strain measure of u. The last inequality yields the continuous embedding
W k,p(Ω) ↪→Wm,q(Ω), which is also compact due to the Rellich–Kondrachov embedding
theorem [2, Section 10.9].

We require compact embeddings of Bochner spaces in order to achieve strong con-
vergence and pass the limit in the nonlinear parts of the given evolutionary PDEs.
Let X, Y , Z be Banach spaces such that X is compactly embedded in Y , and Y is
continuously embedded in Z, i.e., X ↪↪→ Y ↪→ Z. It is not true that the embedding
L2(0, T ;X) is compact in L2(0, T ;Y ), which already the example fn(t, x) = x sin(nt)
shows. One requires an additional information on the time derivative. The Aubin–Lions
compactness lemma, see [128, Corollary 4], reads

Lp(0, T ;X) ∩W 1,1(0, T ;Z) ↪↪→ Lp(0, T ;Y ), 1 ≤ p <∞,
L∞(0, T ;X) ∩W 1,r(0, T ;Z) ↪↪→ C0([0, T ];Y ), r > 1,

(2.1)

Further, we make use of the following continuous embedding, see [104, Theorem 3.1,
Chapter 1],

L2(0, T ;Y ) ∩H1(0, T ;Z) ↪→ C0([0, T ]; [Y,Z]1/2),

where [Y,Z]1/2 denotes the interpolation space between Y and Z, see [104, Definition
2.1, Chapter 1] for more details.

2.2. Fractional derivative

In this section, we investigate fractional derivatives. We concentrate on the well-known
Caputo derivative. There are many other approaches to a fractional derivative besides
these two, but many of the newer methods with non-singular kernels have serious
shortcomings and should not be used, see the article [35] by Diethelm and others.

We begin by defining the singular kernel function gα ∈ L1(0, T ) as gα(t) = tα−1/Γ(α)
with α ∈ (0, 1) and Γ being the Gamma function. The Riemann–Liouville integral
operator Iα ∈ L (L1(0, T ;X)) of a function u ∈ L1(0, T ;X) reads Iαu = gα~u, where ~
denotes the convolution on the positive half-line with respect to the time variable. Note
that the operator Iα has a complementary element in the sense IαI1−αu = I1u = 1~u.
The fractional derivative of order α ∈ (0, 1) in the sense of Caputo is defined by

∂αt u(t) = (I1−α∂tu)(t) = (g1−α ~ ∂tu)(t) =
1

Γ(1− α)

∫ t

0

u′(s)
(t− s)α ds,
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see the textbooks [34, 93]. In the limit cases α = 0 and α = 1, we define ∂0
t u = u

and ∂1
t u = ∂tu, respectively. The Caputo derivative, as shown in [93, Theorem 2.1],

requires a function that is absolutely continuous on [0, T ). However, this definition can
be relaxed to a broader class of functions that are equivalent to the classical definition
for absolutely continuous functions, see [64, 99]. Let us remark the inverse convolution
property

(Iα∂αt u)(t) = (IαI1−α∂tu)(t) = (I1∂tu)(t) = u(t)− u(0). (2.2)

Similar to before, we define the fractional Sobolev–Bochner space Wα,p(0, T ;X) as
the functions in Lp(0, T ;X) such that their α-th fractional weak time derivative is in
Lp(0, T ;X). In the special case of p = 2, we write Hα(0, T ;X). As in the integer-order
setting, there is a compact embedding result, see [138, Theorem 3.1], which works in
the spirit of a fractional Aubin–Lions lemma,

Lp(0, T ;X) ∩Wα,p(0, T ;Z) ↪↪→ Lp(0, T ;Y ), p ∈ [1,∞). (2.3)

We note that that the lower order α < 1 of the time-derivative has to be compensated
with the power p, compare the classical Aubin–Lions lemma (2.1). We are not aware of a
version with a compact embedding into C([0, T ];Y ) using a L∞-bound in X. Moreover,
it holds the following version of the Grönwall–Bellman inequality in the fractional
setting.

Lemma 1 (cf. [64, Corollary 1]) Let w, v ∈ L1(0, T ;R≥0), and a, b ≥ 0. If w and v
satisfy the inequality

w(t) + (Iαv)(t) ≤ a+ b · (Iαw)(t) for a.a. t ∈ (0, T ),

then it holds w(t) + v(t) ≤ a · C(α, b, T ) for almost every t ∈ (0, T ).

The traditional chain rule d
dtf(u) = f ′(u) d

dtu does not hold for general functions f if
we replace the derivative by its fractional version. But there is a remedy: for convex
functionals f : X → R, see [99, Proposition 2.18], there is the fractional chain inequality

∂αt f(u) ≤ 〈f ′(u), ∂αt u〉X′×X ∀u ∈ C1([0, T );X). (2.4)

This is exactly the correct direction of the inequality in order to apply it the typical
energy estimates, e.g., testing the time-fractional heat equation with the solution itself
gives

∂αt ‖u‖2L2
(Ω)

+ ‖∇u‖2
L
2
(Ω)
≤ 〈∂αt u, u〉H1

(Ω)
− 〈∆u, u〉

H
1
(Ω)

= 0.

Gradient flows, like the Cahn–Hilliard equation, have a λ-convex (or: semiconvex)
energy rather than a convex one, see [64]. The fractional chain inequality can be applied
to the convex functional x 7→ f(x)− λ

2‖x‖
2
X , yielding the following result for semiconvex

functionals

∂αt f(u) ≤ 〈f ′(u), ∂αt u〉X +
λ

2
∂αt ‖u‖2X − λ〈∂αt u, u〉X ∀u ∈ C1([0, T );X).
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2.3. Model problem: The Cahn–Hilliard equation

The prototype model of our tumor growth system is the Cahn–Hilliard equation. It
is among the phase-field equations of diffuse-interface type, and it has the important
property of having a solution that is either 0 or 1, or something smooth in between as
a transition phase. As a result, we define the 1-phase as the representation of tumor
cells, while the 0-phase reflects the absence of cancerous cells.

Let φ1, φ2 represent the concentrations of two components with the relationship
φ1 + φ2 = 1. That means they describe local portions, such as in binary alloys. They
adhere to the law of mass conservation

∂tφi = −divJi, i ∈ {1, 2},

where Ji denotes the mass flux of the i-th component. In order to guarantee ∂t(φ1+φ2) =
0, the fluxes have to fulfill the condition J1 + J2 = 0. We reduce the equations by
setting φ = φ1 − φ2 and J = J1 − J2, yielding

∂tφ = −divJ.

Traditionally, the flux J is given by the negative of the gradient of the chemical
potential µ, i.e., J = −∇µ. Gurtin [84] proposed a mechanical version of the second
law of thermodynamics by introducing a new mass flux with the mobility function m
for interactions at a microscopic level given by

J = −m(φ)∇µ.

Following [15], the chemical potential is defined as the first variation (Gâteaux derivative)
of the Ginzburg–Landau free energy functional

E(φ) =

∫

Ω

{
Ψ(φ) +

ε2

2
|∇φ|2

}
dx. (2.5)

The parameter ε denotes the interfacial width, and Ψ describes a double-well potential
with zeros at −1 and 1, e.g., the Landau potential, Ψ(φ) = 1

4(1 − φ2)2, but also
logarithmic variants are possible, see [20], such as the Flory–Huggins logarithmic
potential, or potentials of double-obstacle type. A straightforward calculation of
the first variation of the Ginzburg–Landau energy yields the so-called Cahn–Hilliard
equation with variable mobility:

Cahn–Hilliard equation

∂tφ = div(m(φ)∇µ)

µ = Ψ′(φ)− ε2∆φ

Typically, the mobility function is either constant or of the form m(φ) = M(1− φ2)2

for a constant M , see [16, 133]. The scenario of constant mobility has been thoroughly
investigated, and with sufficient assumptions, well-posedness can be demonstrated,
see [107]. A proof or counterexample to uniqueness in the case of a degenerate mobility
is still an open problem; this is unsolved for the class of fourth-order degenerate parabolic
equations, see the discussion in [39].
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3. Modeling of Tumor Growth

The greatest challenge to any thinker is stating the problem in a way that
will allow a solution. (Bertrand Russell)

Everything should be made as simple as possible, but not simpler.
(Albert Einstein)

We postulate models of mathematical oncology that abstract many of the important
processes that are known to be involved in tumor growth, decline, and therapeutic
treatment in real tissue. The systems are designed to reflect processes at the mesoscale
and macroscale, with fields representing volume fractions of mass concentrations of
various species, determining tumor constituents. Several writers have developed local
versions of multiphase models in the previous decade, including [3, 73, 76, 101, 137].
The model equations are derived from the balance laws of continuum mixture theory
[14,25,111,112] and representations of the main mechanisms that govern cancer formation
and evolution [87,101].

In Subsection 3.1, we state a multiple constituent model from the mass balance
law and a Ginzburg–Landau energy in a general framework. As an example, we give
the classical four-species model by Hawkins-Daarud and others. Next, we include
stratification into the model and invasion due to ECM degradation in Subsection 3.2.
In the following subsections, we add more and more biological phenomena to the model
with a stratified tumor. We add spatial and temporal nonlocalities in Subsection 3.3,
mechanical deformation in Subsection 3.4, chemotherapeutic influence in Subsection 3.5,
and finally, angiogenesis and mixed-dimensional couplings in Subsection 3.6.

3.1. Multiple constituent model

We apply the framework of continuum mixture theory, in which multiple mechanical
and chemical species can exist at a point x in some given domain Ω ⊂ Rd, d ∈ N, at
time t > 0. Thus, for a medium with N interacting constituents, the volume fraction
of each species is represented by a field φα, 1 ≤ α ≤ N , with value φα(t, x) at x ∈ Ω,
and time t ≥ 0. For convenience, we collect the constituents of the model within the
following N -tuple

φA = (φα)α∈A,

where A is an index set that is further disjointly separated between the phase-field
index set CH, the reaction-diffusion indices RD, and the evolution indices OD that
correspond to abstract ODEs.

The constituents φα, α ∈ A, are governed by the following extended mass balance
law, see [100,101],

∂tφα + div(φαvα) = −divJα(φA) + Sα(φA). (3.1)

Here, the cell velocity of the α-th constituent is denotes by vα and Sα describes a
mass source term depending on all species φA. We call the system closed if it holds
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∑
α∈A Sα(φA) = 0. Moreover, Jα denotes the flux of the α-th constituent, which is

given by the negative gradient of the chemical potential scaled by a mobility function

Jα(φA) = −mα(φA)∇µα. (3.2)

Here, µα denotes the chemical potential of the α-th species and mα the mobility function
possibly depending on all constituents. In our applications, we typically consider the
mobilities

mα(φA) = Mαφ
2
α(1− φα)2, α ∈ CH,

mβ(φA) = Mβ, β ∈ RD,
mγ(φA) = 0, γ ∈ OD,

(3.3)

where Mα > 0 are mobility constants. As in the prototype model, see Subsection 2.3,
we define the chemical potential µα as the first variation of the Ginzburg–Landau free
energy with respect to φα. We propose the energy

E(φA) =

∫

Ω

{
Ψ(φCH) + Φ(φA) +

∑

α∈CH

ε2
α

2
|∇φα|2 +

∑

β∈RD

Dβ

2
φ2
β

}
dx, (3.4)

where εα, α ∈ CH, is a parameter associated with the interface thickness separating the
different cell species. The function Φ describes adhesion processes like chemotaxis and
haptotaxis. Lastly, Ψ represents a double-well potential as in the general Cahn–Hilliard
equation, e.g., it can be of Landau type, where we mention the two possibilities

Ψ(φCH) = CΨ

( ∑

α∈CH
φα

)2(
1−

∑

α∈CH
φα

)2

, Ψ(φCH) =
∑

α∈CH
CΨα

φ2
α(1− φα)2,

where CΨ, CΨα
> 0 are appropriate prefactors. Alternatively, one can also select a

logarithmic potential of Flory–Huggins type, see [20,55].
We calculate the first variations of the Ginzburg–Landau energy with respect to the

constituents and thus, the chemical potentials read

µα = ∂φαΨ(φCH) + ∂φαΦ(φA)− ε2
α∆φα, α ∈ CH,

µβ = Dβφβ + ∂φβΦ(φA), β ∈ RD,

µγ = ∂φγΦ(φA), γ ∈ OD,

and inserting these into (3.1)–(3.3) yields the multispecies model:

Multiple constituent model

∂tφα + div(φαvα) = div
(
Mαφ

2
α(1− φα)2∇µα

)
+ Sα(φA) α ∈ CH

µα = ∂φαΨ(φCH) + ∂φαΦ(φA)− ε2
α∆φα α ∈ CH

∂tφβ + div(φβvβ) = div
(
Mβ∇

(
Dβφβ + ∂φβΦ(φA)

))
+ Sβ(φA) β ∈ RD

∂tφγ = Sγ(φA) γ ∈ OD

(3.5)
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3.1.1. Four-species tumor growth model

We begin with an easy example of a tumor growth model starting from the proposed
multiple constituent system (3.5). We choose |A| = 2 constituents and set A = {T, σ},
CH = {T}, RD = {σ}, and OD = ∅. The volume fraction of tumor cells φT is
understood to represent an averaged cell concentration, a homogenized depiction over
many thousands of cells. The local nutrient concentration is represented by the field
φσ. Moreover, we propose the adhesion function Φ(φT , φσ) = −χcφTφσ in the energy
(3.4) for some chemotaxis parameter χc > 0. We assume a volume-averaged velocity v
for the tumor cells and the nutrients. This assumption of a volume-averaged velocity
is reasonable since the cells are tightly packed. Inserting all the assumptions into the
multispecies model reads the so-called four-species model:

Four-species model

∂tφT + div(φT v) = div
(
MTφ

2
T (1− φT )2∇µT

)
+ ST (φT , φσ)

µT = Ψ′(φT )− χcφσ − ε2
T∆φT

∂tφσ + div(φσv) = div
(
Mσ∇(Dσφσ − χcφT )

)
+ Sσ(φT , φσ)

(3.6)

This model is studied mathematically in [70,71] in the case of a absent velocity v = 0.
For a flow governed by Darcy’s law v = −K∇p+ Sv(φT , φσ), we refer to [69, 76]. Here,
the pressure is denoted by p, the permeability factor by K > 0, and Sv is called the
Korteweg force [55]. Alternatively, there have also been used the Brinkman law [36,37],
the unsteady DFB law [62] by us, and the Navier–Stokes equations [89,96].

Of particular interest are source functions that are formulated as sink and source
terms. Tumors absorb the nutrients, and therefore, the tumor increases at the same
rate as the nutrients decrease. Further, there is a programmed cell death (or: apoptosis)
and these dead cells become nutrients. Therefore, we propose

ST (φT , φσ) = −Sσ(φT , φσ) = λpro
T φσφT (1− φT )− λapo

T φT ,

where λpro
T is called the proliferation rate and λapo

T the apoptosis rate.
The system (3.6) is also called ’four-species model’, see [88,101,111], since it can also

be derived from four constituents – namely, the volume fraction of the tumor cells φT ,
healthy cells φC , nutrient-rich extracellular water φσ, and its nutrient-poor counterpart
φσ0 . Then the four variables are governed by the law of mass balance from before, see
(3.1), for A = {T,C, σ, σ0}. One sets φT = 1−φC and φσ = 1−φσ0 . Therefore, one can
eliminate the superfluous constituents φC and φσ0 from the system and recover (3.6).

3.2. Phase separation in an ECM

The so-called ’microenvironment’ of a solid tumor is a patch of vascularized tissue
in a living subject, such as within an organ, that is home to a colony of tumor cells
and other elements. The tumor is contained within an open bounded region Ω ⊂ R3

and is sustained by a network of macromolecules that make up the ECM, which
includes collagen, enzymes, and other proteins. We are concentrating on constructing
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phenomenological characterizations of tumor cell colony evolution that seek to capture
both mesoscale and macroscale events.

The field of the tumor cells φT can be expressed as the sum

φT = φP + φH + φN ,

of the three components φP , φH , φN , which describe the volume fractions of the prolif-
erative, hypoxic, and necrotic cells, respectively, and are characterized by:

• proliferative cells are those that have a high chance of going through mitosis,
dividing into twin cells, and promoting tumor growth;

• hypoxic cells are tumor cells that have been deprived of enough resources such as
oxygen to become or remain proliferative;

• necrotic cells have died owing to nutrient deficiency.

The production of an enzyme by tumor cells in response to hypoxia accumulates, and
increases cell mobility, and activates the secretion of angiogenesis-promoting factors
characterized by the field φTAF . The most commonly discussed of these factors is
vascular endothelial growth factor (VEGF), which causes endothelial cells to sprout and
create the tubular structure of blood vessels, which expand into new vessels that feed
nutrients to hypoxic cells. Furthermore, hypoxic cells release MDEs, such as urokinase-
plasminogen and matrix metalloproteinases, as indicated by the volume fraction φMDE ,
which erode the ECM, the density of which is denoted by φECM . This process allows
tumor cells to invade, increasing φT in the ECM domain and increasing the likelihood
of metastasis. A simplistic view of the effects of the tumor’s evolution is:

1. outer proliferative tumor layer absorbs nutrients and expands (φP ↑, φσ ↓);
2. inner tumor layer changes to hypoxic (φH ↑);
3. hypoxic cells send out MDE and TAF signaling (φTAF ↑, φMDE ↑);
4. TAFs trigger angiogenesis and new vessels are sprouting (φH ↓, φP ↑),

and MDEs erode the ECM, tumor cells migrate (φECM ↓, φH ↓, φP ↑).

We collect the constituents within the following 7-tuple:

φA = (φα)α∈A = (φP , φH , φN , φσ, φECM , φMDE , φTAF ),

with A = {P,H,N, σ,ECM,MDE, TAF}. Using the setting of the multiple constituent
model (3.5) in Subsection 3.1, we further distinguish between the tumor phase-field
indices CH = {P,H,N}, the reaction-diffusion indices RD = {σ,MDE, TAF} and the
evolution index set OD = {ECM}. The necrotic cells are non-moving and only gain
mass from the nutrient-lacking hypoxic cells. Therefore, the mobility of the necrotic cells
is set to zero, i.e., mN = vN = 0. Still, the necrotic cells are counted as a phase-field
variable and are part of CH instead of the ODEs since it influences the double-well
potential and inherits its phase-field structure from the hypoxic phase-field variable.
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We assume that haptotaxis and chemotaxis are included in the system, and therefore,
we take an adhesion force of the form

Φ(φA) = −(φP + φH)(χcφσ + χhφECM ),

where χc and χh are the chemotaxis and haptotaxis factors, respectively. We note
that the adhesion force only acts on the viable (i.e., proliferative and hypoxic) cells,
whereas the necrotic cells are excluded from this process. Therefore, from the multiple
constituent model (3.5), we arrive at the equations for the phase-field variables (φα)α∈CH:

Stratified tumor growth model with ECM: CH

∂tφP + div(φP v) = div
(
MPφ

2
P (1− φP )2∇µP

)
+ SP (φA)

µP = ∂φPΨ(φCH)− ε2
P∆φP − χcφσ − χhφECM

∂tφH + div(φHv) = div
(
MHφ

2
H(1− φH)2∇µH

)
+ SH(φA)

µH = ∂φHΨ(φCH)− ε2
H∆φH − χcφσ − χhφECM

∂tφN = SN (φA)

(3.7)

Here, we assume a volume-averaged velocity v = vα for the fields φP , φH , and φσ
governed by the Darcy law. Further, we propose the source functions

SP (φA) = λpro
P φσφP (1− φT )− λapo

P φP − λPHH(σPH − φσ)φP

+ λHPH(φσ − σHP )φH ,

SH(φA) = λpro
H φσφH(1− φT )− λapo

H φH + λPHH(σPH − φσ)φP

− λHPH(φσ − σHP )φH − λHNH(σHN − φσ)φH ,

SN (φA) = λHNH(σHN − φσ)φH .

The parameters λpro
α and λapo

α are the proliferation and apoptosis rates of the α-th
species. Moreover, λPH denotes the transition rate from the proliferative to the hypoxic
phase below the nutrient level σPH , λHP the transition rate from the hypoxic to the
proliferative phase above the nutrient level σHP , and λHN the transition rate from the
hypoxic to the necrotic phase below the nutrient level σHN . Finally, H denotes the
Heaviside step function, which might be replaced by the Sigmoid function if a sufficiently
smooth right-hand side is needed.

Related models of ECM degradation due to MDEs released by hypoxic cell concentra-
tions and subsequent tumor invasion and metastasis are discussed in [41,125,131,132]
for diffusion-type models. Following these references, we introduce the equation for the
ECM evolution:

Stratified tumor growth model with ECM: OD
∂tφECM = SECM (φA)

= − λdeg
ECMφECMφMDE + λpro

ECMφσ(1− φECM )H(φECM − φpro
ECM )

Here, λdeg
ECM is the degradation rate of ECM fibers due to the matrix degrading enzymes,

and λpro
ECM is the production rate of ECM fibers above the threshold level φpro

ECM for the
ECM density.
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Further, for (φβ)β∈RD we arrive at the following system of equations:

Stratified tumor growth model with ECM: RD
∂tφσ + div(φσv) = div

(
Mσ∇(Dσφσ − χc(φP + φH)

)
+ Sσ(φA)

∂tφMDE = MMDEDMDE∆φMDE + SMDE(φA)

∂tφTAF = MTAFDTAF∆φTAF + STAF (φA)

The source functions are given by

Sσ(φA) = λapo
P φP + λapo

H φH − λpro
P φσφP (1− φT )− λpro

H φσφH(1− φT )

+ λdeg
ECMφECMφMDE − λ

pro
ECMφσ(1− φECM )H(φECM − φpro

ECM ),

SMDE(φA) = λpro
MDE(φP + φH)φECM

σHP
σHP + φσ

(1− φMDE)− λdeg
MDEφMDE

− λdeg
ECMφECMφMDE ,

STAF (φA) = λpro
TAF (1− φTAF )φHH(φH − φpro

H )− λdeg
TAFφTAF .

The parameters λdeg
MDE and λdeg

TAF denote the decay rates of the MDEs and TAFs,
respectively, λpro

MDE the production rate of MDEs, and λpro
TAF is the production rate of

the φTAF due to the release by hypoxic cells above a threshold value of φpro
H .

We note that the cell species φα, α ∈ {P,H,N, σ,ECM}, form a mass conserving
subsystem in the sense that their source terms add to zero. The fields φMDE and φTAF
do not belong to this mass exchanging closed subsystem since these signals show natural
degradation factors that are not absorbed by the other constituents.

3.3. Nonlocal phenomena

In this section, we discuss the nonlocal effects in tumor growth models. There are
two types of nonlocality: temporal and spatial. The first phenomenon is known as
the memory effect and corresponds to a time-fractional derivative in the PDE. In the
second case, a space integral has to be treated, and such a term represents long-range
interactions.

3.3.1. Nonlocal-in-space: Cell-cell and cell-matrix adhesion

If events or cell concentrations at one site in the tumor domain are dependent on events
at other points within a defined neighborhood, the model is said to be nonlocal-in-space.
Long-range interactions, such as cell-cell adhesion, are one of the many mechanisms
that influence tumor cell mobility and migration. Cell-cell adhesion is a fundamental
element in tissue development, stability, breakdown, and is a significant factor that
contributes to cancer cell invasion and metastasis.

Following [19, 54], we consider cell-cell adhesion effects, which are responsible for
the binding of one or more cells to one another via protein reactions on cell surfaces.
It is reasonable to include cell-cell adhesion since the Ginzburg-Landau free energy
functional causes separation and surface tension effects [54]. Therefore, tumor cells prefer
to stick to one another over healthy cells. The physicists Giacomin & Lebowitz [79, 80]
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used statistical mechanics in 1996 to study the problem of phase separation from a
microscopic background and derived the Helmholtz free energy functional

E(φT ) =

∫

Ω
Ψ(φT ) dx+

1

4

∫

Ω

∫

Ω
J(x− y)

(
φT (x)− φT (y)

)2
dy dx.

Here, J : Rd → R is assumed to be a convolution kernel with J(−x) = J(x). One
obtains the Ginzburg–Landau energy by selecting a specific kernel function and passing
the limit, see [52]. We modify the energy to account for chemotaxis and propose

E(φT , φσ) =

∫

Ω
Ψ(φT ) +

Dσ

2
φ2
σ − χcφTφσdx+

1

4

∫

Ω

∫

Ω
J(x− y)

(
φT (x)− φT (y)

)2
dy dx.

Therefore, we consider a class of long-range interactions that are classified by chemical
potentials of the form,

µT =
δE
δφT

= Ψ′(φT )− χcφσ +

∫

Ω
J(x− y)

(
φT (x)− φT (y)

)
dy.

This leads directly to a nonlocal model governed by the system:

Four-species model with cell-cell adhesion

∂tφT + div(φT v) = div
(
MTφ

2
T (1− φT )2∇µT

)
+ ST (φT , φσ)

µT = Ψ′(φT )− χcφσ + φT · J ∗ 1− J ∗ φT
∂tφσ + div(φσv) = div

(
Mσ∇(Dσφσ − χcφT )

)
+ Sσ(φT , φσ)

(3.8)

Models that account for cell-matrix adhesion effects include MDEs that erode the
ECM and therefore, this process allows cells to migrate into tissue. Such systems have
been thoroughly examined in [19, 41]. In contrast to the fourth-order Cahn–Hilliard
phase-field equation in our situation, the tumor volume fraction is described by a
RDE in these works. The cell-matrix adhesion flux can be classified as either a local
gradient-based haptotaxis effect [129, 131,135] or a nonlocal adhesion-based haptotaxis
effect [4, 19,78]. We consider the respective fluxes of the form

Jα(φA) = χhφV ·
{
∇φECM , α = local,

k ∗ φECM , α = nonlocal,

where k is a vector-valued kernel function. This adhesion flux is included in the equation
of the mass balance law of the volume fraction of viable cells as:

∂tφV + div(φV v) = div(mV (φA)∇µV ) + divJα + SV (φA)
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3.3.2. Nonlocal-in-time: The memory effect

According to [7, 136, 143], the tumor microenvironment has a significant impact on
tumor cell proliferation and migration. Tumor cells migrate using a variety of mech-
anisms, including Fickian diffusion and subdiffusion. The results of the experiments
in [91] indicate evidence of anomalous diffusion in cancer progression. They detected
subdiffusion during in vitro trials of developing cultured cells from the breast line, as
well as clinical data from patients with adrenal and liver tumors.

The phenomenological law JT = −mT (φA)∇µT has been used to represent the
typical relationship between flow and the gradient of the chemical potential in previous
sections. Without violating the conservation law indicated by the continuity equation,
a more sophisticated phenomenological connection that could account for putative
nonlocal, nonlinear, and memory effects, see [82,115], may be substituted for this law.
Subdiffusion-limited reactions are simulated on a microscopic level in [124,144] by using
fractional derivatives in flux and reaction terms. Therefore, we propose

J rel
T (φA) = −∂t

(
gα ~ (mT (φA)∇µT )

)
, Srel

T (φA) = ∂t
(
gα ~ ST (φA)

)
,

for α ∈ (0, 1). Inserting the relaxed flux and source into the law of conservation of mass
(3.1) for the tumor species φT yields

∂tφT = − divJ rel
T (φA) + Srel

T (φA) = ∂t
(
gα ~

(
div(mT (φA)∇µT ) + ST (φA)

))
.

We rewrite this system in an equivalent manner by taking the convolution with g1−α
on both sides of the equation and using the inverse convolution property (2.2). This
procedure yields:

∂αt φT = div(mT (φA)∇µT ) + ST (φA).

In the case of the Ginzburg–Landau energy (2.5), the chemical potential writes
µT = Ψ′(φT ) − ε2

T∆φT and this model is called the time-fractional Cahn–Hilliard
equation, see our work [58,64]. Choosing the Dirichlet energy E(φT ) =

∫
Ω φ

2
T dx results

in a time-fractional RDE as studied by us in [59] in a tumor growth setting.

3.4. Mechanical deformation

The surrounding host tissues increase mechanical stress as the tumor grows, limiting the
tumor’s ability to grow further. In the literature [44,90,102,103], RDEs with mechanical
coupling have been used to model tumor growth with respect to mathematical modeling
and sensitivity analyses. We added mechanical effects in a similar way in our work [59]
and studied the well-posedness of the model. The underlying energy functional now
includes a new component called the stored energy potential W (φT , ε(u)), which
is dependent on the tumor volume fraction φT and the symmetric strain measure
ε(u) = 1

2(∇u +∇u>) of the displacement field u. Assuming small deformations, we
consider the stored energy potential

W (φT , ε(u)) =
1

2
ε(u) : TM (φT )ε(u) + ε(u) : TS(φT ), (3.9)
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where TS(φT ) = λφT1 denotes the symmetric compositional stress tensor with λ > 0,
and TM is the linear elastic inhomogeneous material tensor. Here, the symbol 1 denotes
the (d× d)-dimensional identity matrix. The displacement field u is governed by the
conservation law of linear and angular momentum

∂t(φT v) + div(φT v ⊗ v) = divTC + φT b+ p,

TC − T>C = m,

where v is the volume-averaged velocity, b the body force, p the momentum supplied by
other constituents, and m the intrinsic moment of momentum. The chemical potential
µT and the Cauchy stress tensor TC are defined by the first variations of the energy
functional E with respect to φT and ε(u), respectively. We reduce the complexity of
the system by using common simplifying assumptions as in [102]. In this regard, we
assume constant mass density m = 0 and a monopolar material b = 0. Further, we
neglect inertial forces and set div(φT v ⊗ v) = p = 0. We assume that the mechanical
equilibrium is attained on a faster time scale than diffusion takes place, i.e., the time
derivative on the left-hand side vanishes. After the simplifications, the equation of the
mechanical deformation (3.9) reads

0 = divTC = div
δE(φT , φσ, ε(u))

δε(u)
= div

∂W (φT , ε(u))

∂ε(u)
.

For ease of technical difficulties, we assume that the tumor is an isotropic and homoge-
neous material, i.e., its material tensor CM (φ) = CM takes the form

CMε(u) = 2Gε(u) +
2Gν

1− 2ν
tr ε(u)1,

where G > 0 and ν < 1
2 denote the shear modulus and the Poisson ratio, respectively.

Therefore, we can write for the stored energy potential

W (φT , ε(u)) =
1

2
ε(u) : (2Gε(u) +

2Gν

1− 2ν
tr ε(u)1)ε(u) + ε(u) : (λφT1),

and its partial derivatives with respect to φT and ε(u) read

∂W (φT , ε(u))

∂φT
= λdivu,

∂W (φT , ε(u))

∂ε(u)
= 2Gε(u) +

2Gν

1− 2ν
tr(ε(u))1 + λφT1.

It yields the four-species model with mechanical deformation:

Four-species model with mechanical deformation

∂tφT + div(φT v) = div
(
MTφ

2
T (1− φT )2∇µT

)
+ ST (φT , φσ)

∂tφσ + div(φσv) = div
(
Mσ∇(Dσφσ − χcφT )

)
+ Sσ(φT , φσ)

0 = div
(

2Gε(u) +
2Gν

1− 2ν
tr(ε(u))1 + λφT1

)

In case of the Ginzburg–Landau energy, we obtain

µT = Ψ′(φT )− χcφσ − ε2
T∆φT + λdivu,
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whereas it yields µT = DTφT − χcφσ + λdivu for the Dirichlet energy as done in our
work [59], i.e.,

E(φT , φσ) =

∫

Ω

{DT

2
φ2
T +

Dσ

2
φ2
σ − χcφTφσ +W (φT , ε(u))

}
dx.

3.5. Chemotherapeutic influence

We do not only study the growth of tumors, but we also incorporate a constituent that
will slow down the tumor’s spread. Current tumor treatments are:

• Surgery: Removing the tumor by an operation.

• Immunotherapy: Strengthening the immune system.

• Radiotherapy: Employing radiation to kill tumor cells.

• Chemotherapy: Using drugs to kill the tumor.

Apart from surgery, these therapies are delivered in cycles, with each cycle consisting of
a period of therapy followed by a period of rest to allow the patient’s body to mend and
regenerate new healthy cells. These therapeutic procedures should reduce the tumor to
a manageable point where it can be surgically removed.

The mass density of chemotherapy φCMT is assumed to be governed by a RDE that
couples to the tumor equation and degrades the tumor if chemotherapy is present.
Therefore, we add the index CMT to RD and propose:

Four-species model with chemotherapy

∂tφT + div(φT v) = div(MTφ
2
T (1− φT )2∇µT ) + ST (φT , φσ, φCMT )

µT = Ψ′(φT )− χcφσ − ε2
T∆φT

∂tφσ + div(φσv) = div
(
Mσ∇

(
Dσφσ − χcφT

))
+ Sσ(φT , φσ, φCMT )

∂tφCMT = MCMTDCMT∆φCMT + SCMT (φT , φσ, φCMT ).

Here, the mobility of chemotherapeutic agents is denoted by MCMT and the source
SCMT is of the form

SCMT (φT , φσ, φCMT ) = −λdeg
CMTφCMT − λ

kill
CMT

φT (1− φT )φCMT
KCMT + φCMT

,

where λdeg
CMT is the degradation factor of chemotherapeutic agents and λkill

CMT is the
rate at which chemotherapeutic agents act and are blocked later by killing tumor
cells. The killing term includes a saturation effect, so that mainly cells in a certain
growth phase are sensible to chemotherapy. The parameter KCMT > 0 is the density
of chemotherapeutic agents when they reach their half-maximum value. Similarly, the
source term of the tumor volume fraction will include a term of the form

−λkill
T
φT (1− φT )φCMT
KCMT + φCMT

,
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which represents the killing effect of the chemotherapy at some rate λkill
T . In our

work [59], we provide the chemotheraputic agents in cycles by a Dirichlet boundary of
the form

φCMT (t, x)|x∈∂Ω =

{
1, for t ≤ 2 or 6 < t ≤ 8 or 12 < t ≤ 14,

0, else.

That is, during the times t ∈ [0, 2] ∪ (6, 8] ∪ (12, 14] chemotherapy is provided and in
between, the body is allowed to rest.

3.6. Angiogenesis and mixed-dimensional coupling

The effect of angiogenesis in models of stratified tumor growth is presented in the
works [101, 119, 120, 137, 139–141]. In contrast to their previous approaches using,
e.g., agent-based systems, we model the network of blood arteries giving nutrition
to a solid tumor mass in our papers [56, 57] as a network of 1D capillaries within a
3D tissue domain. In this regard, tumor growth is regarded as a phase-field system
incorporating several cell species and other constituents. The microvascular network in
the tumor-bearing tissue is represented by a graph structure with 1D filaments through
which nutrient-rich blood can flow. This microvascular network is denoted by Λ and
the single edges are denoted by Λi such that Λ is given by the union Λ =

⋃N
i=1 Λi. An

edge Λi is parameterized by a curve parameter si as follows:

Λi =
{
x ∈ Ω : x = Λi(si) = xi,1 + si · (xi,2 − xi,1), si ∈ (0, 1)

}
.

We propose a global curve parameter s for the total 1D network Λ, defined as s = si if
x = Λ(s) = Λi(si). We look for 1D elements that couple to their 3D counterparts in Ω
for each value of the curve parameter s. We assume that the surface of a single vessel
is a cylinder with a constant radius, and the radius of a vessel connected with Λi is
given by Ri. We write Γi as the cylinder’s surface, with Λi as its center line, and the
total surface Γ is given by the union of the single vessel surfaces Γi.

On the 1D network Λ, we consider the constituents φv, vv and pv, which represent the
1D counterparts of the local nutrient concentration φσ, the volume-averaged velocity
v and the pressure p. We introduce a new source term Sσv in the equation of φσ for
coupling the 1D constituents φv and pv. Therefore, this source term is responsible for
the connection between the constituents in Ω and Λ.

To quantify the flux of nutrients across the vessel surface, we use the Kedem–
Katchalsky law [81] and write the flux Jσv between the nutrients on the network
and tissue as

Jσv(φσ, p, φv, pv) = (1− rσ)f(φσ, φv)Lp(pv − p) + Lσ(φv − φσ), (3.10)

where rσ > 0 is reflection parameter, Lσ, Lp > 0 denote the permeabilities of the vessel
wall, and the function f is either φσ or φv depending on the values of p and pv. Moreover,
p denotes an averaged pressure over the circumference of cylinder cross-sections. From
a physical standpoint, the averaging reflects the fact that the 3D-1D coupling is a
reduced model, whereas the exchange occurs through the surface in a fully coupled
3D-3D model. The first part of the Kedem–Katchalsky law calculates the nutritional
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flux generated by blood plasma flowing from arteries into tissue or vice versa. It is
determined by Starling’s law that is given by the pressure difference between pv and p
weighted by a parameter Lp for the vessel wall permeability. The second part of the
law is a Fickian type law, accounting for the tendency of nutrients to balance out their
concentration levels.

Since the exchange processes between the vascular network and the tissue occur at
the vessel surface Γ, we concentrate the flux Jσv by means of the Dirac measure δΓ, i.e.,
with the distributional space (C∞c (Ω))′ we define

〈δΓ, ϕ〉C∞
c (Ω) =

∫

Γ
ϕ|Γ(x) dS ∀ϕ ∈ C∞c (Ω).

This yields the following new source term in the nutrient equation

Sσv(φσ, p, φv, pv) = Jσv(φσ, p,ΠΓφv,ΠΓpv)δΓ,

where ΠΓ ∈ L (L2(Λ);L2(Γ)) is the projection of the 1D quantities onto the cylindrical
surface Γ via extending the function value ΠΓφv(s) = φv(si) for all s ∈ ∂BRi(si).

The 3D model reads:

Angiogenesis model: 3D

∂tφα + div(φαv) = div
(
mα(φA)∇µα

)
+ Sα(φA) α ∈ {P,H}

µα = ∂φαΨ(φCH)− ε2
α∆φα − χcφσ − χhφECM α ∈ {P,H}

∂tφβ = Sβ(φA) β ∈ {N,ECM}
∂tφγ = div

(
mγ(φA)Dγ∇φγ

)
+ Sγ(φA) γ ∈ {MDE,TAF}

∂tφσ + div(φσv) = div
(
mσ(φA)∇(Dσφσ − χc(φP + φH)

)
+ Sσ(φA)

+ Jσv(trΓφσ, trΓp,ΠΓφv,ΠΓpv)δΓ

v = −K
(
∇p− Sp(φA, µP , µH)

)

div v = Lp(ΠΓpv − p)δΓ

Since the vascular network typically forms a system of small inclusions, we average
all the physical units across the cross-sections of the single blood vessels and set them
to a constant with respect to the angular and radial components. In other words, the
1D variables φv and pv on a 1D vessel Λi depend only on si. For further details related
to the derivation of 1D pipe flow and transport models, we refer to [95]. Accordingly,
the 1D model equations for flow and transport on Λi read as follows:

Angiogenesis model: 1D

∂tφv + ∂si(vvφv) = ∂si(mv(φv)Dv∂siφv)− 2πRiJσv(φσ, p, φv, pv)

− ∂si(R
2
i πKv,i ∂sipv) = − 2πRiJpv(p, pv)

vv = −R2
i πKv,i∂sipv

In order to interconnect the different solutions on Λi at inner network nodes on
intersections x ∈ ∂Λi \ ∂Λ, we require the continuity of pressure and concentration as
well as the conservation of mass to obtain a physically relevant solution, see [56].
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4. Well-Posedness Analysis

The analysis of PDE is a beautiful subject, combining the rigour and tech-
nique of modern analysis and geometry with the very concrete real-world
intuition of physics, biology, and other sciences. (Terence Tao)

In this section, we describe the techniques that we apply to prove the well-posedness of
weak solutions to the nonlinear systems of equations induced by the problems presented
in the previous section. We analyze a prototype tumor growth model, which is a
Cahn–Hilliard type phase-field equation with complex couplings. We combine it with
homogeneous Neumann boundary and consider the setting of the Gelfand triple

V = H1(Ω) ↪↪→ H = L2(Ω) ↪↪→ V ′.

We also investigate different effects like mixed-dimensional couplings and nonlocal
influences, as well as the key estimates in the Faedo–Galerkin setting. The method’s
basic concept is outlined in the following subsection.

4.1. Faedo–Galerkin method

(FG1) Approximate problem. Because V is separable, there exists a linearly in-
dependent sequence {vk}k∈N in V , whose span is dense in V . We approxi-
mate the Cahn–Hilliard equation via a problem in the finite-dimensional space
Vk = span{v1, v2, ..., vk}. This reduces the problem to an ODE and we can apply
standard theory to ensure the existence of a solution of this finite-dimensional
problem. As a result, we obtain a sequence of solutions {φk}k∈N of the respective
finite-dimensional problem in {Vk}k∈N.

(FG2) Energy estimates. In this step, one shows that the sequence of solutions
{φk}k∈N is uniformly bounded in the typical solution space L∞(0, T ;V ) of the
Cahn–Hilliard equation. According to the theorem of Banach–Alaoglu, there
is a subsequence {φkj}j∈N that converges weakly-∗ to some element φ in this
space.

(FG3) Compactness. We prove that the derivative of φkj , j ∈ N, is bounded in the
Bochner space L2(0, T ;V ′) and thus, we can apply the Aubin–Lions lemma, see
(2.1), to conclude that {φkj}j∈N converges strongly in C([0, T ];H). This strong
convergence is essential for the limit process in (FG5). Otherwise, we would not
be able to conclude the convergence of the nonlinear functions m and Ψ in the
Cahn–Hilliard equation.

(FG4) Initial condition. We show that the limit function φ also fulfills the imposed
initial condition φ(0) = φ0 in V ′. This is performed using the strong convergence
at t = 0 and the uniqueness of limits.

(FG5) Limit process. In (FG1), we proved the existence of functions φkj , j ∈ N,
fulfilling the kj-th Faedo–Galerkin equations, respectively. In this step, we take
the limit j →∞ of the kj-th Faedo–Galerkin equations to obtain the variational
Cahn–Hilliard equation. Thus, the weak-∗ limit of a subsequence of {φk}k∈N
turns out to be a solution of the variational Cahn–Hilliard equation.
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4.2. Analysis of the four-species model

In this section, we follow through the steps of the Faedo–Galerkin method in an
explaining manner. For more information on the technical details, we refer to our papers
[57,59,61,62]. We consider the four-species model of (3.6) with an incompressible volume-
averaged velocity that is governed by Darcy’s law v = −K∇p + K(µT + χcφσ)∇φT .
Together, we analyze the model:

∂tφT + div(φT v) = div
(
mT (φT , φσ)∇µT

)
+ ST (φT , φσ)

µT = Ψ′(φT )− ε2
T∆φT − χcφσ

∂tφσ + div(φσv) = div
(
Mσ∇(Dσφσ − χcφT )

)
+ Sσ(φT , φσ)

v = −K∇p+K(µT + χcφσ)∇φT
divv = 0

We couple this system to the initial data φT (0) = φT,0, φσ(0) = φσ,0, and the homoge-
neous Neumann boundary data

∇φT · n = ∇µT · n = ∇φσ · n = v · n = 0 on ∂Ω.

Since we are interested in weak solutions, we formulate the system as a variational form
and look for functions φT , µT , φσ and v such that it holds:

(∂tφT , ϕT )H + (mT (φT , φσ)∇µT ,∇ϕT )H = (φT v,∇ϕT )H + (ST (φT , φσ), ϕT )H

(Ψ′(φT ), ϕµ)H + ε2
T (∇φT ,∇ϕµ)H = (µT , ϕµ)H + χc(φσ, ϕµ)H

(∂tφσ, ϕσ)H +MσDσ(∇φσ, ϕσ)H = Mσχc(∇φT , ϕσ)H + (φσv,∇ϕσ)H

+ (Sσ(φT , φσ), ϕσ)H

(v, ϕv)H = K(µ+ χcφσ,∇φT · ϕv)H

for all test functions ϕT , ϕµ, ϕσ ∈ V and ϕv ∈ Vdiv = {ϕ ∈ V : div v = 0}.
As a first step in the Faedo–Galerkin method, see (FG1), we introduce discrete spaces

Vk and Vdiv,k, which are spans of eigenfunctions to the Neumann–Laplace problem.
This has the advantage that the eigenfunctions form an orthonormal basis in H and a
orthogonal one in V . Then one postulates the Faedo–Galerkin approximation system
with test functions in the discrete spaces. One proposes ansatz functions for the
approximate solutions in terms of a linear combination of the eigenfunctions, which
reduces the system to ODEs with continuous right-hand sides. Therefore, the system
has a continuous solution in finite time due to the Cauchy–Peano theorem, i.e.,

φkT , µ
k
T , φ

k
σ ∈ C1([0, Tk);Vk), vk ∈ C1([0, Tk);Vdiv,k).

In the next step, (FG2), the main difficulty appears – the energy estimates. One
has to perform clever testing and absorb the right-hand sides by the left-hand sides
of the inequalities. The goal is a uniform energy inequality in order to extract weakly
convergent subsequences. In the Cahn–Hilliard equation, one typically tests the phase-
field equation by its chemical potential, and the equation of the chemical potential by
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the negative time-derivative of the phase-field variable. In this manner, the mixed terms
(∂tφ

k
T , µ

k
T )H negate each other. In addition, we test the phase-field equation by χcφ

k
σ

to cancel the chemotaxis term in the equation of the chemical potential. We test the
velocity equation with vk itself and now we can see why the Korteweg force Sp in the
Darcy equation was chosen in this manner. It cancels exactly with the tested convection
terms in the tumor and nutrient equations. Therefore, the initially difficult-looking
nonlinear terms got canceled away.

All in all, we take the test functions ϕT = µkT + χcφ
k
σ, ϕµ = −∂tφkT , ϕσ = Cσφ

k
σ,

ϕv = vk, which yields the tested and added system

d

dt

[
‖Ψ(φkT )‖

L
1
(Ω)

+
ε2
T

2
‖∇φkT ‖2H +

Cσ
2
‖φkσ‖2H

]
+ CσDσMσ‖∇φkσ‖2H +M0‖∇µkT ‖2H

+
1

K
‖vk‖2H

≤ −χc(mk
T∇µkT ,∇φkσ)H + (SkT , µ

k + χcφ
k
σ)H + χcCσMσ(∇φkT ,∇φkσ)H + Cσ(Skσ, φ

k
σ)H .

We can already state the assumptions that we need in order to achieve a uniform energy
bound. We require that the mobility function mT is bounded from below by some
positive constant M0 > 0. Of course, the typical mobility function m(x) = x2(1− x)2

does not satisfy this assumption, but it can be shifted slightly upwards by some small
parameter δ > 0. To consider degenerate mobility functions, one first proves the
existence of a bounded mobility and then, one approximates the degenerating mobility
by some sequence mδ with mδ(x) > M(δ) > 0 and mδ → m as δ → 0. We refer to the
papers [39,54,64] on this subject.

In the case of the third term on the right side, it is straightforward to estimate it
using the ε-Young inequality and reduce the prefactor of ‖∇φkσ‖2H sufficiently to absorb

it by the left side. A large prefactor for ‖∇φkT ‖2H is not a problem because we can
absorb it later by the Grönwall–Bellman lemma. The first term is more difficult in this
spirit. Both the terms ‖∇µkT ‖2H and ‖∇φkσ‖2H in the first term should be sufficiently

small. We can compensate for this by using the prefactor of ‖∇φkσ‖2H on the inequality’s
left side. We scaled the test function for the nutrient equation by an open parameter
Cσ > 0 and now we choose it big enough to absorb the large prefactor after giving
‖∇µkT ‖2H a small one.

We need some well-behaved source terms, e.g., some kind of linear growth estimate
like

|SkT |, |Skσ | ≤ C(1 + |φkT |+ |φkσ|).
More general source functions can be treated in a second approximation by first
linearizing the source functions, e.g., see [28]. Now, we only miss the term of µkT on the
right-hand side. Up to now, we can control the gradient of the chemical potential, but
not the potential itself. We can achieve this by testing the equation of the chemical
potential with 1 and applying the Poincaré–Wirtinger inequality. In order to estimate
the upcoming term ‖Ψ′(φkT )‖

L
1
(Ω)

on the right-hand side, we have to assume some

growth estimate on the double-well potential. One can either bound the derivative by
the solution itself, or uses some power estimate, i.e.,

|Ψ′(φkT )| ≤ C(1 + |Ψ(φkT )|), |Ψ′(φkT )| ≤ C(1 + |φkT |q),
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and q > 1 is determined by the Sobolev embedding theorem in order to absorb this
term by the gradient term on the left-hand side.

After taking care of the right-hand side and the necessary absorptions and integrating
over the time-interval (0, t), t ≤ Tk, we end up with the inequality

‖Ψ(φkT (t))‖
L
1
(Ω)

+ ‖∇φkT (t)‖2H + ‖φkσ(t)‖2H + ‖∇φkσ‖2L2
(0,t;H)

+ ‖∇µkT ‖2L2
(0,t;H)

+ ‖vk‖2
L
2
(0,t;H)

. 1 + ‖Ψ(φkT (0))‖
L
1
(Ω)

+ ‖∇φkT (0)‖2H + ‖φkσ(0)‖2H .

We use the Grönwall–Bellman lemma and take advantage of the fact that the approxi-
mation’s initial φkT (0) = Πkφ0 can be bounded by the PDE’s initial because the operator
norm of the orthogonal projection Πk : V → Vk is bounded by 1. Therefore, we achieve
the energy estimate

‖Ψ(φkT )‖
L
∞

(0,T ;L
1
(Ω))

+ ‖∇φkT ‖2L∞
(0,T ;H) + ‖φkσ‖2L∞

(0,T ;H) + ‖∇φkσ‖2L2
(0,T ;H)

+ ‖∇µkT ‖2L2
(0,T ;H)

+ ‖vk‖2
L
2
(0,T ;H)

. 1 + ‖∇φT (0)‖2H + ‖φσ(0)‖2H ,

where also already took the essential supremum over t and extended the time-interval by
setting Tk = T due to the no-blow-up criteria and the right-hand side being independent
of k.

All our spaces are reflexive and due to the Banach–Alaoglu and Eberlein–Šmulian
theorems [2, 13], there are functions φT , µT , φσ, v such that it holds

φ
kj
T −⇀ φT weakly-∗ in L∞(0, T ;V ),

µkj −⇀ µ weakly in L2(0, T ;V ),

φ
kj
σ −⇀ φσ weakly-∗ in L∞(0, T ;H) ∩ L2(0, T ;V ),

vkj −⇀ v weakly in L2(0, T ;H).

as j → ∞. The weak convergence is not enough to pass the limit in the nonlinear
functions in the Faedo–Galerkin system and therefore, strong convergences are required.
We bound the time-derivative of φkT and φkσ in the step (FG3) in order to apply the
Aubin–Lions lemma (2.1).

Let us fix an arbitrary function ϕ ∈ L2(0, T ;V ). We must test the Faedo–Galerkin
system with a function in the discrete space Vkk , so we test with the orthogonal
projection of ϕ onto Vkj . We take advantage of the fact that the adjoint of this function
is invariant under the time derivative and its operator norm equals 1, see [12]. Therefore,
we get after testing

∫ T

0
〈∂tφ

kj
T , ϕ〉V dt =

∫ T

0
(φ
kj
T v

kj −mkj
T ∇µ

kj
T ,∇Πkj

ϕ)H + (S
kj
T ,Πkj

ϕ)H dt,

which directly gives a uniform bound of ∂tφ
kj
T in the space L2(0, T ;V ′) after applying the

Hölder inequality and using the energy estimate from before. By using the Aubin–Lions
lemma (2.1) on the Gelfand triple V ↪↪→ H ↪→ V ′, it yields the compact embedding

L∞(0, T ;V ) ∩H1(0, T ;V ′) ↪↪→ C([0, T ];H).
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Therefore, we obtain the new convergences

∂tφ
kj
T −⇀ ∂tφT weakly in L2(0, T ;V ′),

φ
kj
T −→ φT strongly in C([0, T ];H),

as j →∞. We also know from the strong convergence that φ
kj
T (0)→ φT (0) in H, which

implies φT (0) = φT,0 in H, i.e., step (FG4) is completed.
We multiply the Faedo–Galerkin system by a function η ∈ C∞c (0, T ) and integrate

the system on (0, T ) which yields for the tumor equation
∫ T

0
〈∂tφ

kj
T , ϕT 〉V η + (m

kj
T ∇µ

kj
T , ϕT )Hη dt =

∫ T

0
(φ
kj
T v

kj ,∇ϕT )Hη + (S
kj
T , ϕT )η dt,

for all ϕT ∈ Vkj . In order to complete step (FG5), we take the limit j → ∞ in
the equation and use the density of ∪jVkj in V . The linear terms follow directly
from the given weak convergence. For the nonlinear terms, we apply the Lebesgue
dominated convergence and exploit the boundedness assumptions of the nonlinear
functions. Further, we use the weak-strong convergence lemma to pass the limit in
the term involving the mobility function. In fact, by the strong convergence and the
boundedness of mT , we obtain on the one hand

mT (φ
kj
T )ϕT η −→ mT (φT )ϕT η in L2((0, T )× Ω).

We have, on the other hand, derived the weak convergence ∇µkjT ⇀ ∇µ in L2((0, T )×Ω),

which means that their product converges strongly in L1((0, T )× Ω).

4.3. Key estimates

In this section, we analyze the key estimates in the step (FG2) of the Faedo–Galerkin
method of the systems that we have derived in Section 3. We need to take care of the
new complex couplings and nonlocalities. We derive the key estimates in the continuous
setting in order to drop the index k. For the proof to be rigorous, the estimates must
still be obtained at a discrete level, see, e.g., our works [57,59,61,62].

4.3.1. Stratified tumor growth model

In the case of a stratified tumor that has undergone phase separation and admits a
proliferative, hypoxic, and necrotic phase, it leads to couplings between several Cahn–
Hilliard equations. This results to difficulties in the definition of the potential function
Ψ and in the choice of the correct test functions. We are in the setting of the system as
in (3.7) and choose A = CH = {P,H,N}.

∂tφP = div(mP (φA)∇µP ) + SP (φA)

µP = ∂φPΨ(φCH)− ε2
P∆φP

∂tφH = div(mH(φA)∇µH) + SH(φA)

µH = ∂φHΨ(φCH)− ε2
H∆φH

∂tφN = SN (φA)
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We use a Landau-type potential function as described in 3.1. In this system, we
explicitly exclude chemotaxis and haptotaxis in order to concentrate on the multiphase
system. Similarly, we set the velocity to zero. We take the typical test functions of the
Cahn–Hilliard equation and achieve

(∂tφP , µP )H + (mP (φA), |∇µP |2)H = (SP (φA), µP )H ,

(∂φPΨ(φCH), ∂tφP )H + ε2
P (∇φP , ∂t∇φP )H = (µP , ∂tφP )H ,

(∂tφH , µH)H + (mH(φA), |∇µH |2)H = (SH(φA), µH)H ,

(∂φHΨ(φCH), ∂tφH)H + ε2
H(∇φH , ∂t∇φH)H = (µH , ∂tφH)H ,

(∂tφN , ∂φNΨ(φCH)− ε2
N∆φN )H = (SN (φA), ∂φNΨ(φCH)− ε2

N∆φN )H .

Only the test function of φN may seem unusual. This is caused by the irregular character
of the necrotic cells. Despite the fact that it is a tumor component, influences the
potential function Ψ, and is a phase-field variable, its mobility is zero, and thus its
analytical regularity is lost. As a result, we test it with its Laplacian −∆φN and
assume more regularity on its source function SN . Moreover, we test with the partial
derivative of Ψ in order to get the total derivative of Ψ on the left-hand side of the
energy inequality. By adding and canceling, we get

d

dt

[
‖Ψ(φCH)‖

L
1
(Ω)

+
∑

α∈CH

ε2
α

2
‖∇φα‖2H

]
+ ‖
√
mP (φA)∇µP ‖2H + ‖

√
mH(φA)∇µH‖2H

= (SP (φA), µP )H + (SH(φA), µH)H + (SN (φA), ∂φNΨ(φCH)− ε2
N∆φN )H .

In the case of the last term, we need a new assumption on the growth character of the
potential’s partial derivative such as linear growth. Moreover, the chain rule yields

−(SN (φA),∆φN )H =
∑

α∈A
(∂φαSN (φA),∇φα · ∇φN )H ,

which suggests an additional assumption on the partial derivatives of the source SN . We
do not need a smallness assumption here, since we can give ‖∇φN‖2H a large prefactor
anyway due to the structure for the application of the Grönwall–Bellman lemma.

4.3.2. Nonlocal-in-space effect

We investigate both nonlocal cell-cell and cell-matrix adhesion effects in our papers
[61,62]. The first one is concerned with the nonlocal adhesion flux between the tumor
cells and the ECM. The second paper introduces long-range interactions directly in a
modified Ginzburg–Landau energy and such nonlocal Cahn–Hilliard equations have also
been analyzed in [8–10,65,66] without the application to tumor modeling. In [21,50–52],
the nonlocal Cahn–Hilliard equation has been coupled to the Navier–Stokes equation,
in [31] to the Darcy equation, and in [32] to the Brinkman equation. In the work [54]
by Frigeri and others, a nonlocal tumor growth system was studied with respect to
its well-posedness. We briefly discuss the modifications in the energy estimates of the
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nonlocal model (3.8) in contrast to the estimates of the local system. For convenience,
we state the system:

∂tφT = div(mT (φT , φσ)∇µT ) + ST (φT , φσ)

µT = Ψ′(φT )− χcφσ + φT · J ∗ 1− J ∗ φT
∂tφσ = div

(
mσ(φT , φσ)(Dσ∇φσ − χc∇φT )

)
+ Sσ(φT , φσ)

Due to the integro-differential structure, we cannot expect φT ∈ L∞(0, T ;V ) since
no Laplacian appears in the equation of the chemical potential. Therefore, the term
χcdiv(mσ∇φT ) in the nutrient equation has to be treated again, and we will see that
we require an additional assumption on the chemotaxis parameter χc. We take the
typical test functions of the four-species model as before and achieve

d

dt

[
‖Ψ(φT )‖

L
1
(Ω)

+
1

2
‖(J ∗ 1)1/2φT ‖2H −

1

2
(φT , J ∗ φT )H +

Cσ
2
‖φσ‖2H

]

+ (mT (φT , φσ), |∇µT |2)H + CσDσ(mσ(φT , φσ), |∇φσ|2)H

= −χc(mT (φT , φσ)∇µT ,∇φσ)H + (ST (φT , φσ), µT + χcφσ)H

+ χcCσ(mσ(φT , φσ)∇φT ,∇φσ)H + Cσ(Sσ(φT , φσ), φσ)H .

(4.1)

We estimate the right-hand side as in the four-species model from before, which results
in terms ‖∇φT ‖2H with large prefactors. At this point, there is no information on
d
dt‖∇φT ‖

2
H on the left-hand side of (4.1), which is crucially needed to absorb the terms

from the right-hand side. Due to a growth estimate on Ψ and the Young convolution
inequality, we can derive

‖Ψ(φT )‖
L
1
(Ω)

+
1

2
‖(J ∗ 1)1/2φT ‖2H −

1

2
(φT , J ∗ φT )H

≥
∫

Ω

[
C +

1

2
(J ∗ 1)(x)− 1

2
‖J‖

L
1
(Ω)

]
|φT (x)|2dx− C|Ω|

≥ C(‖φT ‖2H − 1).

(4.2)

This estimate will give us φT ∈ L∞(0, T ;H). Indeed, integrating (4.1) with respect
to time on the interval (0, s), 0 < s < T , and introducing the result into (4.2) and
employing the estimates of the source terms gives

C‖φT (s)‖2H +
Cσ
2
‖φσ(s)‖2H +

m0

2
‖∇µT ‖2L2

(0,T ;H)

+

(
CσDσm0 −

χ2
cm

2
∞

m0
− χcm∞

2

)
‖∇φσ‖2L2

(0,T ;H)
− χcK

2m∞
2

‖∇φT ‖2L2
(0,T ;H)

. 1 + ‖φT ‖2L2
(0,T ;H)

+ ‖φσ‖2L2
(0,T ;H)

,

(4.3)

where we have put the initial values into the constant since we are not interested in
them at this point. Note that we have the term ‖∇φT ‖2L2

(0,T ;H)
with a negative sign

on the left-hand side in the inequality (4.3). To apply the Grönwall–Bellman lemma,
we must overpower this term, so we use −∆φT as a test function in the µ-equation. On
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one hand, using a suitable growth estimate on Ψ′′ such as Ψ′′(x) ≥ CΨ and again the
Young convolution inequality, we deduce that

(∇µT ,∇φT )H = (Ψ′′(φT ), |∇φT |2)H + (|∇φT |2, J ∗ 1)H + (∇(J ∗ 1), φT∇φT )H

− (∇J ∗ φT ,∇φT )H − χc(∇φσ,∇φT )H

≥ CΨ‖∇φT ‖2H − ‖∇J‖L1
(Ω)
‖φT ‖H‖∇φT ‖H − χc‖∇φσ‖H‖∇φT ‖H

≥ CΨ

2
‖∇φT ‖2H − C‖φT ‖2H −

χ2
c

CΨ
‖∇φσ‖2H .

On the other hand, we have by the Hölder inequality

(∇µT ,∇φT )H ≤
1

CT
‖∇µT ‖2H +

CT
4
‖∇φT ‖2H ,

for some constant CT . Combining these two inequalities gives the following estimate

m0C
2
Ψ

16
‖∇φT ‖2H ≤

m0

4
‖∇µT ‖2H + C‖φT ‖2H +

m0χ
2
c

4
‖∇φσ‖2H .

Adding this inequality to (4.3) results in

C‖φT (s)‖2H +
Cσ
2
‖φσ(s)‖2H +

m0

2
‖∇µT ‖2L2

(0,T ;H)

+

(
Cσm0

δσ
− χ2

cm
2
∞

m0
− χcm∞

2
− m0χ

2
c

4

)
‖∇φσ‖2L2

(0,T ;H)

+

(
m0C

2
T

16
− χcC

2
σm∞
2

)
‖∇φT ‖2L2

(0,T ;H)

. 1 + ‖φT ‖2L2
(0,T ;H)

+ ‖φσ‖2L2
(0,T ;H)

.

We set Cσ to a sufficiently large value so that the prefactor of ‖∇φσ‖2L2
(0,T ;H)

is strictly

positive. Furthermore, the prefactor of ‖∇φT ‖2L2
(0,T ;H)

is positive if CΨ is large enough

or the chemotaxis factor χc is sufficiently small. The Grönwall–Bellman lemma gives
the final energy estimate.

4.3.3. Nonlocal-in-time effect

In this section, we point out the differences in the proof of the existence of weak solutions
if a time-fractional derivative is involved. The Faedo–Galerkin system is reduced to
a fractional differential equation (FDE) instead of an ODE. Similar to the classical
theorems of Cauchy–Peano and Cauchy–Lipschitz, there is standard theory on the
well-posedness of FDEs, see [34,93]. It leads to the existence of approximative solutions
in the solution space Hα(0, Tk;Vk).

Typically, the same test functions are taken. For example, in the case of the time-
fractional Cahn–Hilliard equation

∂αt φ = div(m(φ)∇µ) + S(φ),

µ = Ψ′(φ)− ε2∆φ,
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we test the φ-equation by µ and the µ-equation by −∂αt φ, which yields

ε2(∇φ, ∂αt ∇φ)H + (Ψ′(φ), ∂αt φ)H + (m(φ), |∇µ|2)H = (S(φ), µ)H .

We can apply the fractional chain inequality (2.4) to obtain the lower estimates

ε2

2
∂αt ‖∇φ‖2H + ∂αt ‖Ψ′(φ)‖

L
1
(Ω)
≤ ε2(∇φ, ∂αt ∇φ)H + (Ψ′(φ), ∂αt φ)H ,

where we have assumed that Ψ is convex. Afterwards, one convolves the inequality with
the kernel function gα and use the inverse convolution property gα ~ ∂αt φ = φ− φ0, see
(2.2), to achieve

ε2

2
‖∇φ(t)‖2H + ‖Ψ(φ(t))‖

L
1
(Ω)

+M0

(
gα ~ ‖∇µ‖2H

)
(t)

≤ ε2

2
‖∇φ(0)‖2H + ‖Ψ(φ(0))‖

L
1
(Ω)

+ gα ~ (S(φ), µ)H .

The term on the right-hand side involving µ can be estimated as usual, and with
the generalized Grönwall–Bellman lemma, see Lemma 1, one can obtain a uniform
energy estimate. Assuming that we derived this inequality in a discrete setting, by the
Banach–Alaoglu and Eberlein–Šmulian there is a subsequence (φkj , µkj ) that converges
weakly in the respective spaces to some element (φ, µ). We obtain strong convergence
via the fractional Aubin–Lions lemma (2.3)

L2(0, T ;V ) ∩Hα(0, T ;V ′) ↪↪→ L2(0, T ;H),

in order to pass the limits in the nonlinear functions Ψ and m. Since fractional problems
have less regularity in time, the continuity in time is lost for small values of α. Therefore,
the given initial data φ0 ∈ H is interpreted in the sense

(
g1−α ~ (φ− φ0)

)
(t)→ 0 in H

as t→ 0.

4.3.4. Mechanical deformation

We consider the system stated in Subsection 3.4 without the effect of a volume-averaged
velocity, that is:

∂tφT = div(mT (φT , φσ)∇µT ) + ST (φT , φσ)

µT = Ψ′(φT )− χcφσ − ε2
T∆φT + λdivu

∂tφσ = div
(
Mσ∇(Dσφσ − χcφT )

)
+ Sσ(φT , φσ)

0 = div
(

2Gε(u) +
2Gν

1− 2ν
tr(ε(u))1 + λφT1

)

We consider the variational form of the deformation field

2G(ε(u), ε(ϕ))H +
2Gν

1− 2ν
(divu,divϕ)H = −λ(φT ,divϕ)H ,

for all ϕ ∈ V . We take the test function ϕ = u and achieve

2G‖ε(u)‖2H +
2Gν

1− 2ν
‖divu‖2H = −λ(φT ,divu)H ,
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which gives after an application of the ε-Young and Korn inequalities, see Subsection 2.1,

C‖u‖2V ≤ 2G‖ε(u)‖2H +
Gν

1− 2ν
‖divu‖2H ≤

λ2(1− 2ν)

4Gν
‖φT ‖2H .

We take the typical test functions and add it to this inequality, which gives the energy
bound

d

dt

[
‖Ψ(φT )‖

L
1
(Ω)

+
ε2
T

2
‖∇φT ‖2H +

Cσ
2
‖φσ‖2H

]
+ CσDσMσ‖∇φσ‖2H

+M0‖∇µ‖2H + C‖u‖2V + λ(divu, ∂tφ)H

≤ −χc(mT∇µT ,∇φkσ)H + (ST , µT + χcφσ)H + χcCσMσ(∇φT ,∇φσ)H

+ Cσ(Sσ, φσ)H +
λ2(1− 2ν)

2Gν
‖φT ‖2H .

In contrast to the energy bounds from before, the mixed term λ(divu, ∂tφ)H on the
left-hand side is new. After integrating this inequality, it gives for this term after
integration by parts in time

∫ t

0
λ(divu, ∂tφT )H dt = λ(divu0, φT,0)H −

∫ t

0
λ(div∂tu, φT )H dt.

We observe that testing with ϕ = ∂tu in the deformation equation gives

G
d

dt
‖ε(u)‖2H +

Gν

1− 2ν

d

dt
‖divu‖2H = −λ(φT ,div∂tu)H ,

and the right-hand side is exactly the term from above. Therefore, the integrated energy
inequality reads

‖Ψ(φT (t))‖
L
1
(Ω)

+
ε2
T

2
‖∇φT (t)‖2H +

Cσ
2
‖φσ(t)‖2H +G‖ε(u(t))‖2H +

Gν

1− 2ν
‖divu(t)‖2H

+ CσDσMσ‖∇φσ‖2L2
(0,t;H)

+M0‖∇µT ‖2L2
(0,t;H)

+ C‖u‖2
L
2
(0,t;V )

≤ C +

∫ t

0

{
− χc(mT∇µT ,∇φkσ)H + (ST , µT + χcφσ)H + χcCσMσ(∇φT ,∇φσ)H

+ Cσ(Sσ, φσ)H +
λ2(1− 2ν)

2Gν
‖φT ‖2H

}
dt,

where we have put the initial values again into the constant. The right-hand side can be
estimated as usual by overpowering the prefactors and applying the Grönwall–Bellman
inequality.

4.3.5. Mixed-dimensional coupling

We consider a 3D-1D coupled model as described in Subsection 3.6. Such mixed-
dimensional models with a dimension difference of greater than one have a ’high-
dimensional gap’. Such a name is justified because the trace operator as a mapping
trΛ : H1(Ω) → L2(Λ) is not well-defined, see [30]. Therefore, one cannot use the
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typical Hilbert space setting and consequently, such problems are particularly difficult
to analyze. One can use a Petrov–Galerkin setting and apply the well-defined trace
operator on weighted Sobolev spaces or on W 1,p(Ω) with p > 2. Then the test functions
are more regular than the solution space, see [29,30].

As already described in Subsection 3.6, we use a different approach. We consider
a 3D-1D problem, but we do the couplings between the constituents on different
domains through the two-dimensional cylinder surface Γ. Therefore, the trace operator
trΓ : H1(Ω) → L2(Γ) is well-defined and the model can be analyzed in the typical
solution spaces.

For the sake of simplicity, we consider the variational form of the 3D nutrients φσ
and investigate the new source term with the coupling to the 1D constituents. We have

∂tφσ = div(Mσ∇(Dσφσ − χc(φP + φH)) + Sσ(φA) + Jσv(trΓφσ, trΓp,ΠΓφv,ΠΓpv)δΓ.

Then we test the RDE with its own solution to achieve

1

2

d

dt
‖φσ‖2H +MσDσ‖∇φσ‖2H = Mσχc(∇(φP + φH),∇φσ)H + (Sσ(φA), φσ)H

+ 〈Jσv(trΓφσ, trΓp,ΠΓφv,ΠΓpv)δΓ, φσ〉V ′×V ,

The last term can be written via the well-defined trace operator trΓ : H1(Ω)→ L2(Γ)

〈JσvδΓ, φσ〉V ′×V =

∫

Γ
JσvtrΓφσ(s)ds ≤ ‖Jσv‖L2

(Γ)
‖trΓφσ‖L2

(Γ)
≤ Ctr‖Jσv‖L2

(Γ)
‖φσ‖V .

We recall the flux Jσv that is governed by the Kedem–Katchalsky law, see (3.10),

Jσv = (1− rσ)Lp

(
ΠΓpv − trΓp

)
f(φσ, φv) + Lσ

(
ΠΓφv − trΓφσ

)
,

and assume that f is a bounded function. Then it gives

‖Jσv‖L2
(Γ)
≤ |1− rσ| · Lp · ‖ΠΓpv − trΓp‖L2

(Γ)
· ‖f‖∞ + Lσ · ‖ΠΓφv − trΓφσ‖L2

(Γ)

≤ |1− rσ| · ‖f‖∞ · Lp
(
‖ΠΓ‖L (L

2
(Λ);L

2
(Γ))
‖pv‖L2

(Λ)
+ Ctr‖p‖H1

(Ω)

)

+ Lσ

(
Ctr‖φσ‖H1

(Ω)
+ ‖ΠΓ‖L (L

2
(Λ);L

2
(Γ))
‖φv‖L2

(Λ)

)
.

Finally, we can apply the ε-Young inequality to absorb the right-hand sides of the
energy inequality by its left side. Then we obtain the final energy estimate by the
Grönwall–Bellman lemma.
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5. Numerical Implementation

I have no satisfaction in formulas unless I feel their numerical magnitude.
(Sir William Thomson, Lord Kelvin)

In our articles, we focused on deriving tumor growth models and establishing the
existence of weak solutions to the governing equations. Besides this, we were interested
in showing numerical simulations and studying the influence of the new features and
effects of the models. How useful is a well-posed model that does not reflect real
biological processes? In this section, we briefly describe the techniques that we used
for the implementation of the PDEs in the last sections. Our code is based on the
finite element libraries libMesh [94] and FEniCS [1]. We started with FEniCS since it
is written in the accessible Python language and variational forms are straightforward
to implement. For the more recent papers on mixed-dimensional couplings, we moved
to libMesh, which is a high performance computing (HPC) library written in C++ and
therefore, yields higher potential for code optimization and saving runtimes than in
FEniCS. We refer to our GitHub

https://github.com/CancerModeling/Angiogenesis3D1D

where our code is freely accessible. In particular, the settings for the simulations in our
two recent papers [56,57] on multispecies tumor growth are given.

5.1. Three-dimensional model

We implemented the 3D models with the FEM. The code solves the system in a
sequential way, see [56, Algorithm 2.1] for the algorithm of the full model. We use
the classical energy splitting method for the potential Ψ = Ψe + Ψc, which provides
unconditional energy stability, see [40]. That is, we treat the expansive part Ψe explicitly
and the contractive part Ψc implicitly. We present the results of numerical experiments
in [56, 57] and show the relative importance and roles of various biological effects,
including cell mobility, proliferation, necrosis, hypoxia, and nutrient concentration, on
the generation of MDEs and the degradation of the ECM.

5.2. Nonlocal phenomena

Nonlocal effects are not only difficult from an analytical point of view, but they also
cause problems in numerical methods and increase the computational burden. The
FEM is based on a local element concept, which is in contrast to the character of spatial
nonlocality. Cells should not only exchange information within their element but also
with elements in the neighborhood around them. In the case of time-fractional PDEs,
not only the solution from the previous time step is of relevance, but one has to save
all the solutions starting from the initial condition.

5.2.1. Nonlocal-in-space effects

In our work [61], we investigate the evolution of the tumor volume fraction in both local
and nonlocal four-species models. That is, in the local model we choose the gradient-
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based haptotaxis flux Jloc = χhφV∇θ and for the nonlocal model Jnonloc = χhφV k ∗ θ.
Following [19,77,78], we select a kernel function kε, ε > 0, such that it approximates
the gradient-based haptotaxis effect as ε→ 0. This also implies that a higher ε-value
corresponds to a larger nonlocal effect. Particularly, we use the approximation

(k ∗ θ)(x)− θ(x) · (k ∗ 1)(x) =

∫

Rd
k(x− y)(θ(y)− θ(x))dy

≈
∫

Rd
k(x− y)(∇θ(x) · (y − x))dy

= ∇θ(x)

∫

Rd
(y − x) · k(x− y)dy

= ∇θ(x),

where we choose k such that xk(−x) is a Dirac sequence with the typical property∫
Rd xk(−x) dx = 1. We impose the representation k(x) = −ω(ε)xχ[0,ε](|x|∞), which

gives in the 2D case after integrating xk(−x) over R2 the weight ω(ε) = 3
8ε
−4.

We compare both the local and nonlocal models in [61, Figure 5] and observe a larger
adhesion effect in the local model in the sense that the tumor mass moves further
towards the right-hand side of the boundary where the nutrition is placed. We also
notice that the local model can imitate the nonlocal model for a fixed value of ε by
choosing a smaller haptotaxis parameter.

5.2.2. Nonlocal-in-time effects

We mention the review article [35] that describes the relevant methods for treating
time-fractional PDEs numerically. Even though there are more efficient methods
available, see [58,92], which reduce the time-fractional PDE to a system of ODEs, the
L1 scheme [113] is often chosen since it is simple to understand, widely accepted, and
direct to implement.

Consider the mesh 0 = t0 < t1 < · · · < tN−1 = tN = T of the time interval [0, T ].
Then, the α-th Caputo derivative of some function φ at tn reads

∂αt φ(tn) =
1

Γ(1− α)

∫ tn

0

φ′(s)
(t− s)α ds.

Using the approximation formula f ′(s) ≈ f(tj+1)−f(tj)

tj+1−tj for s ∈ (tj , tj+1) gives the L1

approximation

∂αt φ(tn) ≈ 1

Γ(2− α)

n−1∑

j=0

wn−j−1,n(φ(tn−j)− φ(tn−j−1)),

where the weights wm,n for n,m ∈ [0, N ] are given by

wm,n =
(tn − tm)1−α − (tn − tm+1)1−α

tn−m − tn−m−1
.
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The L1 scheme’s convergence is O((∆t)2−α), and the memory effect can be seen on
the right-hand side as the history from the previous time steps φ(tn−j). Exactly this
step involves a huge computational burden in storing all the history in the memory
storage of the computer. The computational complexity can be reduced by storing, for
example, only the previous 20 solutions. This appears to be reasonable given that the
weights on previous solutions decrease the further back the previous solution is. But
then nothing about convergence can be said anymore.

In our publications on time-fractional tumor growth models [59,64], we use a frac-
tional linear multistep method [105] based on a convolution quadrature scheme. Such
approaches generalize the standard linear multistep method for ODEs. A special case
of this class of methods generalizes the backward Euler method to a fractional setting
and approximates the Caputo derivative by

∂αt φ(tn) ≈ 1

(∆t)α

n−1∑

j=0

(−1)j
(−α
j

)
(φ(tn−j)− φ(0)).

Indeed, setting α = 1 gives the backward Euler scheme. Similar to the classical L1
method, one has to store all the previous solutions. The quadrature weights can
also be computed recursively and such schemes are known as Grünwald–Letnikov
approximations [6, 34].

We refer to our simulation result [59, Figure 1] that shows the influence of the
fractional derivative in the form of a subdiffusive evolution of the tumor mass.

5.3. Mixed-dimensional coupling

In the case of our 3D-1D tumor growth models, we have to implement the new 1D
constituents into the code and create the connection to the 3D variables. We use the
implicit Euler method for the time integration of the 1D equations. The vascular graph
method is used for the spatial discretization of the 1D equations, which corresponds to
a node centered finite volume method, see [116,134] for further details.

We decouple the 1D and 3D pressure equations at each time step and solve the
two systems using block Gauß–Seidel iterations until the 3D pressure converges. The
nutrient equation is discretized in a similar way, with the main difference being the
addition of an upwinding procedure for the convective term. At each time step, the
nutrient equations are solved with block Gauß-Seidel iterations. The described numerical
method, as well as the discretization of the terms that arise in the context of the 3D-1D
coupling, is detailed in our work [56].
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Acronyms

DFB Darcy–Forchheimer–Brinkman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ECM extracellular matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

FEM finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

FDE fractional differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

HPC high performance computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

MDE matrix-degrading enzyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ODE ordinary differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PDE partial differential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

RDE reaction-diffusion equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

TAF tumor angiogenesis factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

VEGF vascular endothelial growth factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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[63] M. Fritz, V. Nikolić, and B. Wohlmuth. Well-posedness and numerical treatment of the Black-
stock equation in nonlinear acoustics. Mathematical Models and Methods in Applied Sciences,
28(13):2557–2597, 2018.

[64] M. Fritz, M. L. Rajendran, and B. Wohlmuth. Time-fractional Cahn–Hilliard equation: Well-
posedness, degeneracy, and numerical solutions. Computer & Mathematics with Applications.

[65] H. Gajewski and K. Zacharias. On a nonlocal phase separation model. Journal of Mathematical
Analysis and Applications, 286(1):11–31, 2003.

[66] C. G. Gal, A. Giorgini, and M. Grasselli. The nonlocal Cahn–Hilliard equation with singular
potential: Well-posedness, regularity and strict separation property. Journal of Differential
Equations, 263(9):5253–5297, 2017.

[67] H. Garcke. On Cahn–Hilliard systems with elasticity. Proceedings of the Royal Society of
Edinburgh Section A: Mathematics, 133(2):307–331, 2003.

[68] H. Garcke. On a Cahn–Hilliard model for phase separation with elastic misfit. Annales de l’IHP
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A. Core Articles

A.1. On the unsteady Darcy–Forchheimer–Brinkman equation in local and
nonlocal tumor growth models

On the unsteady Darcy–Forchheimer–Brinkman equation
in local and nonlocal tumor growth models

Marvin Fritz, Ernesto Lima, J. Tinsley Oden, Barbara Wohlmuth

In this work, we study a PDE system for modeling the growth of a tumor cell colony
under the influence of a convective velocity field. The four-species model of Hawkins-
Daarud and others [88] serves as the system’s foundation. We use the Cahn–Hilliard
equations for the tumor volume fraction φT and a RDE for the nutrients φσ. We assume
that the cells are tightly packed and therefore, we add a volume-averaged velocity field
regulated by the unsteady DFB equation to this system. The model is an expansion
of the articles [69, 72, 73, 76] that considered a four-species model with Darcy’s law.
Furthermore, the publications [36,37] of a coupled Brinkman-four-species model were
taken into consideration at the same time. We also consider the case of a nonlocal
model, in which the Laplacian in the equation of the chemical potential was replaced
by a convolution. This results in cell–cell adhesion effects that are responsible for the
binding of one or more cells to each other via protein reactions on cell surfaces. Instead
of taking the conventional Ginzburg–Landau energy functional, we pick the nonlocal
Helmholtz free energy functional. This has been analyzed previously in [8–10,65,66],
but not in combination with a velocity-driven tumor growth system. Our contributions
are the modeling, analysis, and numerical simulation of the entire system.

In Section 2, we exploit the mass and momentum balance laws based on continuum
mixture theory and the Ginzburg–Landau free energy functional to build a generic class
of multispecies phase-field models. In particular, we derive the system with an unsteady
DFB equation. We present some primary results on the mathematical analysis in Section
3, e.g., we introduce some analytical tools such as the Sobolev embedding theorem that
we need in the upcoming sections. A comprehensive mathematical examination of the
existence of weak solutions to the local system is done in Section 4. We use the Faedo–
Galerkin method to derive an energy inequality. We briefly discuss nonlocal cell-cell
adhesion effects for long-range interactions in Section 5 and analyze the nonlocal model
in terms of its weak solution. In Section 6, we investigate the model’s parameters using
a sensitivity analysis. We introduce both the variance-based analysis and one using
active subspaces. Both strategies are compared, and matching results are concluded.
In Section 7, we present a numerical algorithm for solving the local system, as well as
various numerical illustrations demonstrating the nonlinear flow’s influence.

I was heavily involved in the brainstorming of ideas and was in charge of establishing
the mathematical foundation and carrying out the scientific effort described in this article.
Additionally, I was in charge of writing the article while the co-authors contributed by
making corrective changes.

49



Permission to include:

Marvin Fritz, Ernesto Lima, J. Tinsley Oden, Barbara Wohlmuth
On the unsteady Darcy–Forchheimer–Brinkman equation in local and non-
local tumor growth models
Mathematical Models and Methods in Applied Sciences 29(09):1691–1731, 2019
(see also article [62] in the bibliography)

The following pages on copyright are excerpts from copies of the website

https://www.worldscientific.com/page/authors/author-rights

(Accessed on 21 November 2021)

50

https://www.worldscientific.com/page/authors/author-rights






Notice of publication and copyright

First Published in ”On the unsteady Darcy–Forchheimer–Brinkman equation in local
and nonlocal tumor growth models” in Mathematical Models and Methods in Applied
Sciences, 29(09):1691–1731 (2019), published by World Scientific.

DOI: https://doi.org/10.1142/S0218202519500519

53

https://doi.org/10.1142/S0218202519500519


August 19, 2019 14:56 WSPC/103-M3AS 1950032

Mathematical Models and Methods in Applied Sciences
Vol. 29, No. 9 (2019) 1691–1731
c⃝ World Scientific Publishing Company
DOI: 10.1142/S0218202519500325

On the unsteady Darcy–Forchheimer–Brinkman equation

in local and nonlocal tumor growth models

Marvin Fritz∗

Department of Mathematics,
Technical University of Munich,

Boltzmannstraße 3, 85748 Garching, Germany
marvin.fritz@ma.tum.de

Ernesto A. B. F. Lima† and J. Tinsley Oden‡

Oden Institute for Computational Engineering and Sciences,

The University of Texas at Austin,
201 East 24th St, Austin, TX 78712-1229, USA

†lima@oden.utexas.edu
‡oden@oden.utexas.edu

Barbara Wohlmuth

Department of Mathematics,
Technical University of Munich,

Boltzmannstraße 3, 85748 Garching, Germany

wohlmuth@ma.tum.de

Received 20 December 2018
Revised 30 March 2019

Accepted 12 April 2019
Published 4 July 2019

Communicated by N. Bellomo

A mathematical analysis of local and nonlocal phase-field models of tumor growth is
presented that includes time-dependent Darcy–Forchheimer–Brinkman models of con-
vective velocity fields and models of long-range cell interactions. A complete existence
analysis is provided. In addition, a parameter-sensitivity analysis is described that quan-
tifies the sensitivity of key quantities of interest to changes in parameter values. Two
sensitivity analyses are examined; one employing statistical variances of model outputs
and another employing the notion of active subspaces based on existing observational
data. Remarkably, the two approaches yield very similar conclusions on sensitivity for
certain quantities of interest. The work concludes with the presentation of numerical
approximations of solutions of the governing equations and results of numerical exper-
iments on tumor growth produced using finite element discretizations of the full tumor
model for representative cases.

Keywords: Tumor growth; nonlocal; existence; sensitivity analysis; finite elements.

AMS Subject Classification: 35K35, 76D07, 35A01, 35D30, 35Q92, 65C60, 65M60

∗Corresponding author

1691

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
16

91
-1

73
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

TE
X

A
S 

A
T 

A
U

ST
IN

 o
n 

08
/2

9/
19

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



August 19, 2019 14:56 WSPC/103-M3AS 1950032

1692 M. Fritz et al.

1. Introduction

In this exposition, we present a mathematical analysis of a general class of local

and nonlocal multispecies phase-field models of tumor growth, derived using the

balance laws of continuum mixture theory and employing mesoscale versions of

the Ginzburg–Landau energy functional involving cell-species volume fractions. The

model class involves nonlinear characterizations of cell velocity obeying a time-

dependent Darcy–Forchheimer–Brinkman law. In addition, to account for long-

range interactions characterizing such effects as cell-to-cell adhesion, a class of

nonlocal models of tumor growth is considered, which involves systems of integro-

differential equations.

This contribution generalizes the analyses of Cahn–Hilliard–Darcy models stud-

ied in Refs. 34 and 36 and includes a detailed analysis of existence of weak

solutions of the governing system of fourth-order integro-partial-differential equa-

tions. Beyond the mathematical analysis of this class of models, we also explore the

sensitivity of model outputs to perturbations in parameters for the local models.

These analyses draw from active subspace methods when observational data are

available and on variance sensitivity analysis when models outputs due to param-

eter variations are considered. Finite element approximations of the general local

tumor models are presented and the results of numerical experiments are given that

depict the role of linear and nonlinear flow laws on the evolution and structure of

solid tumors.

This study is intended to contribute to a growing body of mathematical and

computational work accumulated over the last two decades on tumor growth,

decline, and invasion in living organisms. To date, the bulk of the models proposed

are phenomenological models, designed to depict phenomena at the macro- or meso-

scale where microenvironmental constituents are represented by fields describing

volume fractions or mass concentrations of various species. The models studied here

are in this category. Reviews and surveys of recent literature of tumor growth mod-

eling can be found in Refs. 5, 63 and 21, and in surveys of work of the last decade

in Refs. 47, 65, 10, 42, 68 and 84.

Prominent among more recent proposed models are those involving diffuse-

interface or phase-field representations designed to capture morphological insta-

bilities in the form of phase changes driven by cell necrosis and non-uniform cell

proliferation. These effects result in tumor growth made possible by increases in

the surface areas at the interface of cell species.84 Models that can replicate such

phenomena usually involve Ginzburg–Landau free energy functionals45 of species

concentrations or volume fractions, nutrient concentrations, and, importantly, gra-

dients of species concentrations as a representation of surface energies, a feature

that leads to Cahn–Hilliard type models. The use of such phase-field formulations

eliminates the need for enforcing conditions across interfaces between species and

for tracking the interface, the locations of which are intrinsic features of the solution.

Such non-sharp interfaces are often better characterizations of the actual moving

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
16

91
-1

73
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

TE
X

A
S 

A
T 

A
U

ST
IN

 o
n 

08
/2

9/
19

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



August 19, 2019 14:56 WSPC/103-M3AS 1950032

On the unsteady Darcy–Forchheimer–Brinkman equation in tumor growth models 1693

interfaces between multiple species within a tumor than models employing sharp

interfaces.

Multiphase models of tumor growth have been proposed by several authors over

the last decade. We mention as examples the multicomponent models of Araujo

and McElwain1 and the four, six, and 10 species models of Refs. 48, 53 and 55,

respectively, the Cahn–Hilliard–Darcy models of Garcke et al.34,36 and the three-

dimensional nonlinear multispecies models of Wise et al .84 Additional references

can be found in these works.

Following this introduction, we introduce a general class of multispecies,

phase-field models developed from balance laws and accepted cell-biological phe-

nomena observed in cancer, in which cell velocity, present in mass convection,

is modeled via at time-dependent, nonlinear flow field governed by a Darcy–

Forchheimer–Brinkman law,9,43,46,51,86 which can be obtained by the means of mix-

ture theory.66,77 In Secs. 3–5, we develop a complete mathematical analysis of these

classes of models proving existence of weak solutions through compactness argu-

ments. We first consider the so-called local theory with nonlinear flow in which the

evolution of the tumor volume fractions is influenced only by events in the neigh-

borhood of each spatial point in the tumor mass and then we address nonlocal

effects to depict long-range interactions of cell species.

To address the fundamental question of sensitivity of solutions of such nonlin-

ear systems to variation in model parameters, we provide a detailed analysis of

sensitivity for local models in Sec. 6, calling on both statistical methods62,71–73 of

sensitivity analysis and data-dependent methods based on the notion of active sub-

spaces.16,18 In Sec. 7, we take up representative finite element approximations and

numerical algorithms and present the results of numerical experiments, particularly

focusing on the effects of time-dependent nonlinear flow regimes on the evolution of

tumor morphology. In a final section, we provide concluding remarks of the study.

2. A Class of Local Models of Tumor Growth

We consider a solid tumor mass T evolving in the interior of a bounded Lipschitz

domain Ω ⊂ Rd, d ≤ 3, over a time period [0, T ]. At each point x ∈ Ω, several cell

species and other constituents exist which are differentiated according to their vol-

ume fractions, φα, α = 1, 2, . . . , N . The volume fractions of tumor cells is given by

the scalar-valued field φT = φT (x, t) and the volume-averaged velocity is denoted

by v. The mass density of all N species is assumed to be a single constant field,

and the evolution of the tumor cells is governed by the evolution of proliferative

cells with volume fraction φP , hypoxic cells φH , and necrotic cells φN . The nutri-

ent supply to the tumor is characterized by a constituent with volume fraction

φσ = φσ(x, t).

The tumor mass is conserved during its evolution, and this is assumed to be

captured by the convective phase-field equation53,55

∂tφT + div(φT v) = div(mT (φT ,φσ)∇µ) + λTφσφT (1 − φT ) − λAφT , (2.1)
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where mT is the mobility function, µ the chemical potential, and λT , λA are the

proliferation and apoptosis rates, respectively. Following Refs. 48, 53, 55 and 84,

we consider

µ =
δE
δφT

= Ψ′(φT ) − ε2T ∆φT − χ0φσ, (2.2)

where δE/δφT denotes the first variation of the Ginzburg–Landau free energy func-

tional,

E(φT ,φσ) =

∫

Ω

Ψ(φT ) +
ε2T
2

|∇φT |2 − χ0φσφT dx. (2.3)

In (2.3), Ψ is a double-well potential with a prefactor E (such as Ψ(φT ) = Eφ2
T (1−

φT )2), εT is a parameter associated with the interface thickness separating cell

species, and χ0 is the chemotaxis parameter. The velocity v is assumed to obey the

time-dependent incompressible Darcy–Forchheimer–Brinkman law9,43,46,51,86

∂tv + αv = div(ν(φT ,φσ)Dv) − F1|v|v − F2|v|2v − ∇p + (µ + χ0φσ)∇φT ,

div v = 0, (2.4)

where Dv = 1
2 (∇v + (∇v)⊤) denotes the deformation-rate tensor. The nutrient

concentration φσ is assumed to obey a convection–reaction–diffusion equation of

the form:

∂tφσ + div(φσv) = div
(
mσ(φT ,φσ)(δ−1

σ ∇φσ − χ0∇φT )
)

− λσφTφσ, (2.5)

with mσ a mobility function and δσ and λσ positive parameters.

Collecting (2.1), (2.2), (2.4) and (2.5), we arrive at a model governed by the

system,

∂tφT + div(φT v) = div(mT (φT ,φσ)∇µ) + ST (φT ,φσ),

µ = Ψ′(φT ) − ε2T ∆φT − χ0φσ,

∂tφσ + div(φσv) = div
(
mσ(φT ,φσ)(δ−1

σ ∇φσ − χ0∇φT )
)

+ Sσ(φT ,φσ),

∂tv + αv = div(ν(φT ,φσ)Dv) − F1|v|v − F2|v|2v − ∇p + Sv(φT ,φσ),

div v = 0, (2.6)

in the time-space domain (0, T )×Ω with source functions ST , Sσ, Sv with properties

laid down in Theorem 4.1 of Sec. 4. We supplement the system with the following

boundary and initial conditions,

∂nφT = ∂nµ = 0 on (0, T ) × ∂Ω,

φσ = 1 on (0, T ) × ∂Ω,

v = 0 on (0, T ) × ∂Ω,

φT (0) = φT,0 in Ω,

φσ(0) = φσ,0 in Ω,

v(0) = v0 in Ω,

(2.7)
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where φT,0,φσ,0, v0 are given functions. Here, ∂nf = ∇f · n denotes the normal

derivative of a function f at the boundary ∂Ω with the outer unit normal n.

3. Notation and Auxiliary Results

Notationally, we suppress the domain Ω when denoting various Banach spaces and

write simply Lp, Hm, Wm,p. We equip these spaces with the norms | · |Lp , | · |Hm ,

| · |W m,p , and, to simplify notation, we denote by (·, ·) the scalar product in L2. The

brackets ⟨·, ·⟩H1 denote the duality pairing on (H1)′ × H1 and in the same way for

the other spaces. In the case of d-dimensional vector functions, we write [Lp]d and

in the same way for the other Banach spaces, but we do not make this distinction

in the notation of norms, scalar products and applications with its dual.

Throughout this paper, C < ∞ stands for a generic constant. We recall the

Poincaré and Korn inequalities,69

|f − f |L2 ≤ C|∇f |L2 for all f ∈ H1,

|f |L2 ≤ C|∇f |L2 for all f ∈ H1
0 ,

|∇f |L2 ≤ C|Df |L2 for all f ∈ H1
0 ,

where f = 1
|Ω|
∫
Ω

f(x)dx is the mean of f . We define the spaces H , V , V ⊥, L2
0 as

follows:

H = {u ∈ [L2]d : div u = 0, u · n|∂Ω = 0},

V = {u ∈ [H1
0 ]d : div u = 0},

V ⊥ = {f ∈ [H−1]d : ⟨f, u⟩H−1×H1
0

= 0 for all u ∈ V },

L2
0 = {u ∈ L2 : u = 0},

where, for u ∈ H , the divergence is meant in a distributional sense and its trace

operator is well-defined; see Ref. 41. For a given Banach space X , we define the

Bochner space26,69

Lp(0, T ; X) =

{
u : (0, T ) → X : u Bochner measurable,

∫ T

0

|u(t)|pX dt < ∞
}

,

where 1 ≤ p < ∞, with the norm ∥u∥p
LpX =

∫ T

0 |u(t)|pX dt. For p = ∞, we equip

L∞(0, T ; X) with the norm ∥u∥L∞X = ess supt∈(0,T ) |u(t)|X . We introduce the

Sobolev–Bochner space,

W 1,p(0, T ; X) = {u ∈ Lp(0, T ; X) : ∂tu ∈ Lp(0, T ; X)},

and the inverse Sobolev–Bochner space

W−1,p(0, T ; X) = L (W 1,q
0 (0, T ); X),

where q = 1/(1 − 1/p) is the Hölder conjugate of p.

Let X , Y , Z be Banach spaces such that X is compactly embedded in Y and Y

is continuously embedded in Z, i.e. X ↪→↪→ Y ↪→ Z. In the proof of the existence
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theorem below we make use of the Aubin–Lions compactness lemma, see Corollary 4

in Ref. 74,

Lp(0, T ; X) ∩ W 1,1(0, T ; Z) ↪→↪→ Lp(0, T ; Y ), 1 ≤ p < ∞,

L∞(0, T ; X) ∩ W 1,r(0, T ; Z) ↪→↪→ C([0, T ]; Y ), r > 1,
(3.1)

and of the following continuous embeddings, see Theorem 3.1, Chap. 1 in Ref. 56

and Theorem 2.1 in Ref. 79,

L2(0, T ; Y ) ∩ H1(0, T ; Z) ↪→ C([0, T ]; [Y, Z]1/2), (3.2)

L∞(0, T ; Y ) ∩ Cw([0, T ]; Z) ↪→ Cw([0, T ]; Y ), (3.3)

where [Y, Z]1/2 denotes the interpolation space between Y and Z; see Definition

2.1, Chap. 1 in Ref. 56 for a precise definition. Here, Cw([0, T ]; Y ) denotes the space

of the weakly continuous functions on the interval [0, T ] with values in Y .

Lemma 3.1. (Gronwall, cf. Lemma 3.1 in Ref. 35) Let u, v ∈ C([0, T ]; R≥0). If

there are constants C1, C2 < ∞ such that

u(t) + v(t) ≤ C1 + C2

∫ t

0

u(s)ds for all t ∈ [0, T ],

then it holds that u(t) + v(t) ≤ C1e
C2T for all t ∈ [0, T ].

Lemma 3.2. (De Rham, cf. Lemma 7 in Ref. 81) If f ∈ V ⊥, then there is a unique

q ∈ L2
0 such that f = ∇q and |q|L2 ≤ C|f |H−1 . In other words, there exists an

operator L ∈ L (V ⊥, L2
0) such that ∇ ◦ L = Id.

Introducing the Nemyzki operator of L,

NL : W−1,∞(0, T ; V ⊥) → W−1,∞(0, T ; L2
0),

(NLw)(η) = L(w(η)) for all η ∈ W 1,1
0 (0, T ),

we get the following corollary of the de Rham lemma.

Corollary 3.1. If w ∈ W−1,∞(0, T ; V ⊥), then there exists a unique element p ∈
W−1,∞(0, T ; L2

0) such that w = ∇p in W−1,∞(0, T ; H−1).

Proof. Since w(η) ∈ V ⊥ for all η ∈ W 1,1
0 (0, T ), we have

w(η) = ∇L(w(η)) = ∇(NLw)(η),

and we define p = NLw ∈ W−1,∞(0, T ; L2
0), which is clearly unique.

4. Analysis of the Local Model

In this section, we first state the definition of a weak solution to the system (2.6)

with the boundary and initial conditions (2.7), and then we establish the existence

of a weak solution by employing the Faedo–Galerkin method.
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To simplify notation, we introduce the abbreviations

mT = mT (φT ,φσ), mσ = mσ(φT ,φσ), ν = ν(φT ,φσ),

ST = ST (φT ,φσ), Sσ = Sσ(φT ,φσ), Sv = Sv(φT ,φσ).

Definition 4.1. (Weak solution) We call a quadruple (φT , µ,φσ, v) a weak solution

of system (2.6) if the functions φT , µ,φσ : (0, T )×Ω → R, v : (0, T )×Ω → Rd have

the regularity

φT ∈ H1(0, T ; (H1)′) ∩ L2(0, T ; H1),

µ ∈ L2(0, T ; H1),

φσ ∈ W 1, 4
d (0, T ; H−1) ∩ (1 + L2(0, T ; H1

0)),

v ∈ W 1, 4
d (0, T ; V ′) ∩ L4(0, T ; [L4]d) ∩ L2(0, T ; V ),

fulfill the initial data φT (0) = φT,0, φσ(0) = φσ,0, v(0) = v0, and satisfy the

following variational form of (2.6),

⟨∂tφT ,ϕ1⟩H1 = (φT v, ∇ϕ1) − (mT ∇µ, ∇ϕ1) + (ST ,ϕ1),

(µ,ϕ2) = (Ψ′(φT ),ϕ2) + ε2T (∇φT , ∇ϕ2) − χ0(φσ ,ϕ2),

⟨∂tφσ,ϕ3⟩H1
0

= (φσv, ∇ϕ3) − δ−1
σ (mσ∇φσ, ∇ϕ3) + χ0(mσ∇φT , ∇ϕ3) + (Sσ,ϕ3),

⟨∂tv,ϕ4⟩V = −α(v,ϕ4) − (νDv, Dϕ4) − F1(|v|v,ϕ4) − F2(|v|2v,ϕ4) + (Sv,ϕ4),

(4.1)

for all ϕ1,ϕ2 ∈ H1,ϕ3 ∈ H1
0 ,ϕ4 ∈ V .

In the variational form, we use the divergence-free space V as the test function

space of the Darcy–Forchheimer–Brinkman equation. Therefore, the pressure p is

eliminated from the equation. After proving the existence of a weak solution, we

can associate a distributional pressure to the solution quadruple using the de Rham

lemma; see Lemma 3.2.

A first principal result of this paper involves stating the existence of a weak

solution to the model (2.6) in the sense of Definition 4.1.

Theorem 4.1. (Existence of a global weak solution) Let the following assumptions

hold:

(A1) Ω ⊂ Rd, d ∈ {2, 3}, is a bounded Lipschitz domain and T > 0.

(A2) φT,0 ∈ H1, φσ,0 ∈ L2, v0 ∈ H.

(A3) mT , mσ, ν ∈ Cb(R2) such that m0 ≤ mT (x), mσ(x), ν(x) ≤ m∞ for positive

constants m0, m∞ < ∞.

(A4) ST , Sσ, Sv are of the form ST = λTφσg(φT ) − λAφT , Sσ = −λσφσh(φT ) for

g, h ∈ Cb(R), and Sv = (µ + χ0φσ)∇φT , λT ,λA,λσ ≥ 0.

(A5) Ψ ∈ C2(R) is such that Ψ(x) ≥ C(|x|2−1), |Ψ′(x)| ≤ C(|x|+1), and |Ψ′′(x)| ≤
C(|x|4 + 1).
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Then there exists a weak solution quadruple (φT , µ,φσ, v) to (2.6) in the sense

of Definition 4.1. Moreover, the solution quadruple has the regularity:

φT ∈ C([0, T ]; L2) ∩ Cw([0, T ]; H1),

φσ ∈
{

C([0, T ]; L2), d = 2,

C([0, T ]; H−1) ∩ Cw([0, T ]; L2), d = 3,

v ∈
{

C([0, T ]; H), d = 2,

C([0, T ]; V ′) ∩ Cw([0, T ]; H), d = 3.

Additionally, there is a unique p ∈ W−1,∞(0, T ; L2
0) such that (φT , µ,φσ, v, p) is a

solution quintuple to (2.6) in the distributional sense.

Proof. To prove the existence of a weak solution, we use the Faedo–Galerkin

method26,70 and semi-discretize the original problem in space. The discretized

model can be formulated as an ordinary differential equation system and by the

Cauchy–Peano theorem we conclude the existence of a discrete solution. Having

energy estimates, we deduce from the Banach–Alaogulu theorem the existence of

limit functions which eventually form a weak solution. This method has fared pop-

ularly in the analysis of tumor models, e.g. see Refs. 30, 34, 37, 36, 24, 35, 49, 50

and 58.

4.1. Discretization in space

We introduce the discrete spaces

Wk = span{w1, . . . , wk},

Yk = span{y1, . . . , yk},

Zk = span{z1, . . . , zk},

where wj , yj : Ω → R, zj : Ω → Rd are the eigenfunctions to the eigenvalues

λw
j ,λy

j ,λz
j ∈ R of the following respective problems

{
−∆wj = λw

j wj in Ω,

∂nwj = 0 on ∂Ω,
{

−∆yj = λy
j yj in Ω,

yj = 0 on ∂Ω,

⎧
⎪⎨
⎪⎩

−∆zj = λz
jzj in Ω,

div zj = 0 in Ω,

zj = 0 on ∂Ω.
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Since the Laplace operator is a compact, self-adjoint, injective operator, we conclude

by the spectral theorem7,8,67 that

{wj}j∈N is an orthonormal basis in L2 and orthogonal in H1,

{yj}j∈N is an orthonormal basis in L2 and orthogonal in H1
0 ,

{zj}j∈N is an orthonormal basis in H and orthogonal in V.

Exploiting orthonormality of the eigenfunctions, we deduce that Wk and Yk are

dense in L2, and Zk is dense in H . We introduce the orthogonal projections,

ΠWk
: L2 → Wk, ΠYk

: L2 → Yk, ΠZk
: H → Zk,

which can be written as

ΠWk
u =

k∑

j=1

(u, wj)wj for all u ∈ H1,

and analogously for ΠYk
and ΠZk

.

We next consider the Galerkin approximations

φk
T (t, x) =

k∑

j=1

αj(t)wj(x), µk(t, x) =

k∑

j=1

βj(t)wj(x),

φk
σ(t, x) = 1 +

k∑

j=1

γj(t)yj(x), vk(t, x) =

k∑

j=1

δj(t)zj(x),

(4.2)

where αj ,βj , γj, δj : (0, T ) → R are coefficient functions for j ∈ {1, . . . , k}. To

simplify the notation we set

mk
T = mT (φk

T ,φk
σ), mk

σ = mσ(φk
T ,φk

σ), νk = ν(φk
T ,φk

σ),

Sk
T = ST (φk

T ,φk
σ), Sk

σ = Sσ(φk
T ,φk

σ), Sk
v = Sv(φ

k
T ,φk

σ).

The Galerkin system of the model (4.1) then reads

⟨∂tφ
k
T , wj⟩H1 = (φk

T vk, ∇wj) − (mk
T ∇µk, ∇wj) + (Sk

T , wj), (4.3a)

(µk, wj) = (Ψ′(φk
T ), wj) + ε2T (∇φk

T , ∇wj) − χ0(φ
k
σ , wj), (4.3b)

⟨∂tφ
k
σ, yj⟩H1

0
= (φk

σvk, ∇yj) − δ−1
σ (mk

σ∇φk
σ, ∇yj) + χ0(m

k
σ∇φk

T , ∇yj)

+ (Sk
σ, yj), (4.3c)

⟨∂tv
k, zj⟩V = −α(vk, zj) − (νkDvk, Dzj) − F1(|vk|vk, zj)

− F2(|vk|2vk, zj) + (Sk
v , zj), (4.3d)

for all j ∈ {1, . . . , k}. We equip this system with the initial data

φk
T (0) = ΠWk

φT,0 in L2,

φk
σ(0) = 1 + ΠYk

φσ,0 in L2,

vk(0) = ΠZk
v0 in H.

(4.4)
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After inserting the Galerkin ansatz functions (4.2) into the system (4.3), one can see

that the Galerkin system is equivalent to a system of nonlinear ordinary differential

equations in the 4k unknowns {αj,βj , γj , δj}1≤j≤k with the initial data

αj(0) = (φT,0, wj) in Ω,

γj(0) = (φσ,0, yj) in Ω,

δj(0) = (v0, zj) in Ω.

Due to the continuity of the nonlinear functions Ψ′, mT , mσ, ν, the existence of

solutions to (4.3) with data (4.4) follows from the standard theory of ordinary

differential equations, according to the Cauchy–Peano theorem, see Theorem 1.2,

Chap. 1 in Ref. 14. We thus have local-in-time existence of a continuously differen-

tiable solution quadruple,

(φk
T , µk,φk

σ, vk) ∈ C1([0, Tk]; Wk) × C1([0, Tk]; Wk)

× (1 + C1([0, Tk]; Yk)) × C1([0, Tk]; Zk)

to the Galerkin problem (4.3) on some sufficiently short time interval [0, Tk].

4.2. Energy estimates

Next, we extend the existence interval to [0, T ] by deriving k-independent estimates.

In particular, these estimates allow us to deduce that the solution sequences con-

verge to some limit functions as k → ∞. It will turn out that exactly these limit

functions will form a weak solution to our model (2.6) in the sense of Definition 4.1.

Testing (4.3a) with µk +χ0φ
k
σ, (4.3b) with −∂tφ

k
T , (4.3c) with K(φk

σ −1), K > 0

to be specified, and (4.3d) with vk, gives the equation system,

⟨∂tφ
k
T , µk⟩H1 + χ0⟨∂tφ

k
T ,φk

σ⟩H1 = (φk
T vk, ∇µk + χ0∇φk

σ)

− (mk
T ∇µk, ∇µk + χ0∇φk

σ) + (Sk
T , µk + χ0φ

k
σ),

−⟨∂tφ
k
T , µk⟩H1 = −⟨∂tφ

k
T , Ψ′(φk

T )⟩H1 + χ0⟨∂tφ
k
T ,φk

σ⟩H1

− ε2T ⟨∇∂tφ
k
T , ∇φk

T ⟩H1 ,

⟨∂tφ
k
σ, K(φk

σ − 1)⟩H1
0

= (φk
σvk, K∇φk

σ)

− K(mk
σ(δ−1

σ ∇φk
σ − χ0∇φk

T ), ∇φk
σ)

+ K(Sk
σ,φk

σ − 1),

⟨∂tv
k, vk⟩V = −(νkDvk, Dvk) − F1(|vk|vk, vk)

− F2(|vk|2vk, vk) − (αvk, vk) + (Sk
v , vk).

We observe that the tested convective terms cancel each other together with the

tested source term in the velocity equation. Indeed, noting that vk is divergence-free,
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we have by integration by parts

(φk
T vk, ∇µk + χ0∇φk

σ) + (φk
σvk, K∇φk

σ)

= −(vk · ∇φk
T , µk + χ0φ

k
σ) − K(vk · ∇φk

σ,φk
σ) = −(vk, Sk

v ),

see also (A4) of Theorem 4.1 for the assumed form of Sk
v . Here, we also used that

(φk
σvk, ∇φk

σ) = −(vk · ∇φk
σ,φk

σ) and therefore this term vanishes.

Adding the four tested equations results in

d

dt

[
|Ψ(φk

T )|L1 +
ε2T
2

|∇φk
T |2L2 +

K

2
|φk

σ − 1|2L2 +
1

2
|vk|L2

]
+ δ−1

σ K(mk
σ, |∇φk

σ |2)

+ (mk
T , |∇µk|2) + (νk, |Dvk|2) + F1|vk|3L3 + F2|vk|4L4 + α|vk|2L2

= −χ0(m
k
T ∇µk, ∇φk

σ) + (Sk
T , µk + χ0φ

k
σ) + χ0K(mk

σ∇φk
T , ∇φk

σ)

+ K(Sk
σ,φk

σ), (4.5)

where K > 0 can still be chosen appropriately.

We now estimate the terms on the right-hand side of this inequality. The

Poincaré inequality applied to µk and φk
σ gives

|µk|L2 ≤ |µk − µk|L2 + |µk|L2 ≤ C|∇µk|L2 + |Ω|−1/2|µk|L1 ,

|φk
σ|L2 ≤ |φk

σ − 1|L2 + |1|L2 ≤ C|∇φk
σ |L2 + |Ω|1/2.

Therefore, we can estimate the tested source term Sk
T using its assumed representa-

tion, see (A4) of Theorem 4.1, the Poincaré inequality, and the ε-Young inequality,

(Sk
T , µk + χ0φ

k
σ) = (λTφ

k
σg(φk

T ) − λAφ
k
T , µk + χ0φ

k
σ)

= λT (φk
σg(φk

T ), µk) + λTχ0(|φk
σ|2, g(φk

T )) − λA(φk
T , µk)

−λAχ0(φ
k
T ,φk

σ)

≤ C(|φk
σ |L2 |µk|L2 + |φk

σ|2L2 + |φk
T |L2 |µk|L2 + |φk

T |L2 |φk
σ|L2 )

≤ m0

4
|∇µk|2L2 + C(1 + |φk

σ |2L2 + |µk|2L1 + |φk
T |2L2 ). (4.6)

Testing (4.3b) with 1 ∈ H1, gives, together with the growth assumption (A5) on Ψ′,

|µk|L1 ≤ |Ψ′(φk
T )|L1 + χ0|φk

σ|L1 ≤ C(1 + |φk
T |L2 + |φk

σ|L2 ). (4.7)

Similarly, using the representation of Sk
σ, see (A4), we get

K(Sk
σ ,φk

σ) = −Kλσ(h(φk
T ), |φk

σ|2) ≤ CK|φk
σ|2L2 , (4.8)

K being a positive constant appearing in (4.5) to be chosen below.

Now, using (4.6)–(4.8), the Hölder inequality and the ε-Young inequality, we

can estimate the right-hand side in (4.5) as follows:

(RHS) ≤ χ0m∞|∇µk|L2 |∇φk
σ |L2 +

m0

4
|∇µk|2L2 + C(1 + |φk

σ|2L2 + |φk
T |2L2 )
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+χ0Km∞|∇φk
T |L2 |∇φk

σ|L2 + CK|φk
σ|2L2

≤ m0

2
|∇µk|2L2 + CK(1 + |φk

σ − 1|2L2 + |∇φk
T |2L2 ) + C(1 + |∇φk

σ|2L2 + |φk
T |2L2 ).

We note that in this inequality C is independent of K. This is important since

we choose K such that δ−1
σ Km0 > C so that we can absorb |∇φk

σ|L2 from the

right-hand side. Indeed, we get the following inequality from (4.5),

d

dt

[
|Ψ(φk

T )|L1 +
ε2T
2

|∇φk
T |2L2 +

K

2
|φk

σ − 1|2L2 +
1

2
|vk|2L2

]

+

(
Km0

δσ
− C

)
|∇φk

σ |2L2 +
m0

2
|∇µk|2L2 + m0|Dvk|2L2 + F2|vk|4L4

≤ C(1 + |∇φk
T |2L2 + |φk

σ − 1|2L2 + |φk
T |2L2 ).

Integrating this inequality over (0, t), t ∈ (0, Tk), and using the growth assumption

(A5) on Ψ give

|φk
T (t)|2L2 + |∇φk

T (t)|2L2 + |φk
σ(t) − 1|2L2 + |vk(t)|2L2 + ∥∇φk

σ∥2
L2 (0,t;L2 )

+ ∥∇µk∥2
L2 (0,t;L2 ) + ∥Dvk∥2

L2 (0,t;L2 ) + ∥vk∥4
L4 (0,t;L4 )

− C(∥∇φk
T ∥2

L2 (0,t;L2 ) + ∥φk
σ − 1∥2

L2 (0,t;L2 ) + ∥φk
T ∥L2 (0,t;L2 ))

≤ C(1 + |Ψ(φk
T (0))|L1 + |∇φk

T (0)|2L2 + |φk
σ(0) − 1|2L2 + |vk(0)|2L2 ).

Applying the Gronwall lemma and taking the essential supremum over t ∈ (0, Tk),

give

∥φk
T ∥2

L∞(0,Tk;L2 ) + ∥∇φk
T ∥2

L∞(0,Tk;L2 ) + ∥φk
σ − 1∥2

L∞(0,Tk;L2 ) + ∥vk∥2
L∞(0,Tk;L2 )

+ ∥∇φk
σ∥2

L2 (0,Tk;L2 ) + ∥∇µk∥2
L2 (0,Tk;L2 ) + ∥Dvk∥2

L2 (0,Tk;L2 ) + ∥vk∥4
L4 (0,Tk;L4 )

≤ C(1 + |Ψ(φk
T (0))|L1 + |∇φk

T (0)|2L2 + |φk
σ(0) − 1|2L2 + |vk(0)|2L2 )eCT . (4.9)

We have chosen the initial values of the Galerkin approximations as the ortho-

gonal projections of the initial values of their counterpart, see (4.4). The operator

norm of an orthogonal projection is bounded by 1 and, therefore, uniform estimates

are obtained in (4.9); for example

|vk(0)|2L2 = |ΠZk
v0|2L2 ≤ |v0|2L2 .

We note that we have to invoke the growth estimate (A5) to treat the term involving

Ψ in the following way:

|Ψ(φk
T (0))|L1 ≤ C + C|φk

T (0)|2L2 = C + C|ΠWk
φT,0|2L2 ≤ C + C|φT,0|2L2 .

Now, these k-independent estimates allow us to extend the time interval by setting

Tk = T for all k ∈ N. Therefore, we have the final uniform energy estimate,

∥φk
T ∥2

L∞H1 + ∥µk∥2
L2H1 + ∥φk

σ∥2
L∞L2 + ∥φk

σ − 1∥2
L2H1

0
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+ ∥vk∥2
L∞H + ∥vk∥2

L2V + ∥vk∥4
L4L4

≤ C × (1 + |φT,0|2H1 + |φσ,0|2L2 + |v0|2L2 ) × exp(CT ).
(4.10)

4.3. Weak convergence

Next, we prove that there are subsequences of φk
T , µk,φk

σ, vk, which converge to a

weak solution of our model (2.6) in the sense of Definition 4.1. From the energy

estimate (4.10) we deduce that

{φk
T }k∈N is bounded in L∞(0, T ; H1),

{µk}k∈N is bounded in L2(0, T ; H1),

{φk
σ}k∈N is bounded in L∞(0, T ; L2) ∩ (1 + L2(0, T ; H1

0 )),

{vk}k∈N is bounded in L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ L4(0, T ; [L4]d),

(4.11)

and, by the Banach–Alaoglu theorem, these bounded sequences have weakly conver-

gent subsequences. By a typical abuse of notation, we drop the subsequence index.

Consequently, there are functions φT , µ,φσ : (0, T ) × Ω → R, v : (0, T ) × Ω → Rd

such that

φk
T −⇀ φT weakly-∗ in L∞(0, T ; H1),

µk −⇀ µ weakly in L2(0, T ; H1),

φk
σ −⇀ φσ weakly-∗ in L∞(0, T ; L2) ∩ (1 + L2(0, T ; H1

0 )),

vk −⇀ v weakly-∗ in L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ L4(0, T ; [L4]d),

(4.12)

as k → ∞.

4.4. Strong convergence

We now consider taking the limit k → ∞ in the Galerkin system (4.3) in hopes to

attain the initial variational system (4.1). Since the equations in (4.3) are nonlinear

in φk
T ,φk

σ, vk, we want to achieve strong convergence of these sequences before we

take the limit in (4.3). Therefore, our goal is to bound their time derivatives and

applying the Aubin–Lions lemma (3.1).

Let (ζ, η, ξ) be such that ζ ∈ L2(0, T ; H1), η ∈ L4/(4−d)(0, T ; H1
0 ),

ξ ∈L4/(4−d)(0, T ; V ) and

ΠWk
ζ =

k∑

j=1

ζk
j wj , ΠYk

ϕ =

k∑

j=1

ηk
j yj , ΠZk

ξ =

k∑

j=1

ξk
j zj ,

with coefficients {ζk
j }k

j=1, {ηk
j }k

j=1, {ξk
j }k

j=1. Multiplying Eq. (4.3a) by ζk
j , (4.3c) by

ηk
j and (4.3d) by ξk

j , we sum up each equation from j = 1 to k and integrate in

time over (0, T ), to obtain the equation system,
∫ T

0

⟨∂tφ
k
T , ζ⟩H1dt =

∫ T

0

(φk
T vk, ∇ΠWk

ζ) − (mk
T ∇µk, ∇ΠWk

ζ)

+ (Sk
T , ΠWk

ζ)dt, (4.13a)
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∫ T

0

⟨∂tφ
k
σ,ϕ⟩H1

0
dt =

∫ T

0

(φk
σvk, ∇ΠYk

ϕ) − δ−1
σ (mk

σ∇φk
σ , ∇ΠYk

ϕ)

+χ0(m
k
σ∇φk

T , ∇ΠYk
ϕ) + (Sk

σ , ΠYk
ϕ)dt, (4.13b)

∫ T

0

⟨∂tv
k, ξ⟩V dt =

∫ T

0

−α(vk, ΠZk
ξ) − (νkDvk, DΠZk

ξ)

− F1(|vk|vk, ΠZk
ξ) − F2(|vk|2vk, ΠZk

ξ)

+ (Sk
v , ΠZk

ξ)dt. (4.13c)

Each equation in (4.13) can be estimated using the typical inequalities and the

boundedness of the orthogonal projection. From (4.13a), we find

⟨∂tφ
k
T , ζ⟩L2 (H1)′×L2H1

≤ ∥∇φk
T ∥L∞L2 ∥v∥L2L4 ∥ΠWk

ζ∥L2L4 + m∞∥∇µk∥L2L2 ∥∇ΠWk
ζ∥L2L2

+ ∥Sk
T ∥L2L2 ∥ΠWk

ζ∥L2L2

≤ C∥ζ∥L2H1 , (4.14)

and from (4.13b), we get

⟨∂tφ
k
σ,ϕ⟩L4/dH−1×L4/(4−d)H1

0

≤ ∥φk
σ∥L2L4 ∥v∥L4L4 ∥∇ΠYk

ϕ∥L4L2 + ∥Sk
σ∥L2L2 ∥ΠYk

ϕ∥L2L2

+ m∞(δ−1
σ ∥∇φk

σ∥L2L2 + χ0∥∇φk
T ∥L2L2 )∥∇ΠYk

ϕ∥L2L2

≤ C∥ϕ∥L4/(4−d)H1
0
, (4.15)

and (4.13c) results in

⟨∂tv
k, ξ⟩L4/3V ′×L4V

≤ C(α∥vk∥L2L2 + m∞∥Dvk∥L2L2 + F1∥|vk|vk∥L2L2 + F2∥|vk|2vk∥L4/3L4/3

+ ∥µk∥L2L4 ∥∇φk
T ∥L∞L2 + χ0∥φk

σ∥L2L4 ∥∇φk
T ∥L∞L2 )∥ξ∥L4V

= C(α∥vk∥L2L2 + m∞∥Dvk∥L2L2 + F1∥vk∥2
L4L4 + F2∥vk∥3

L4L4

+ ∥µk∥L2L4 ∥∇φk
T ∥L∞L2 + χ0∥φk

σ∥L2L4 ∥∇φk
T ∥L∞L2 )∥ξ∥L4V

≤ C∥ξ∥L4V . (4.16)

We note that we could have estimated the convective term in the nutrient equation

without using the fact that {vk}k∈N is bounded in L4(0, T ; [L4]d). This is particu-

larly interesting for the case F2 = 0 where that regularity is missing; see Remark 4.2.

As a substitute, we apply the Gagliardo–Nirenberg inequality69

|f |L3 ≤ C|∇f |1/2
L2 |f |1/2

L2 for all f ∈ H1
0 ,
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on vk and use the Sobolev embedding H1 ↪→ L6 for d ≤ 3 to get

∫ T

0

(φk
σvk, ∇ΠYk

ξ)dt ≤
∫ T

0

|∇φk
σ |L2 |vk|L3 |ξ|L6 dt

≤ ∥φk
σ∥2

L2H1∥vk∥1/2
L2V ∥vk∥1/2

L∞H∥ξ∥L4H1 .

From the inequalities (4.14)–(4.16) and the bounds derived earlier, see (4.11), we

conclude that

{φk
T }k∈N is bounded in L∞(0, T ; H1) ∩ H1(0, T ; (H1)′),

{φk
σ}k∈N is bounded in L∞(0, T ; L2) ∩ (1 + L2(0, T ; H1

0)) ∩ W 1, 4
d (0, T ; H−1),

{vk}k∈N is bounded in L∞(0, T ; H) ∩ L4(0, T ; [L4]d) ∩ L2(0, T ; V ) ∩ W 1, 4
d (0, T ; V ′).

Making use of the Aubin–Lions compactness lemma (3.1), giving compact embed-

dings to achieve the strong convergences, we have

φk
T → φT strongly in C([0, T ]; L2),

φk
σ → φσ strongly in L2(0, T ; L2) ∩ C([0, T ]; H−1), (4.17)

vk → v strongly in L2(0, T ; H) ∩ C([0, T ]; V ′),

as k → ∞. The strong convergence φk
T → φT in C([0, T ]; L2) implies φT (0) = φT,0

in L2 and similarly φσ(0) = φσ,0 in H−1 and v(0) = v0 in V ′. Therefore, the limit

functions (φT , µ,φσ, v) of the Galerkin approximations already fulfill the initial data

of the system (2.6).

In the case of d = 2, we can also conclude φσ ∈ C([0, T ]; L2) and v ∈ C([0, T ]; H)

due to the continuous embedding (3.2). Here, we used [H1, (H1)′]1/2 = L2 and

[V, V ′]1/2 = H . In contrast, in the three-dimensional case, we deduce the respective

weak continuities of φσ and v due to the continuous embedding (3.3).

4.5. Limit process

It remains to be shown that the limit functions also fulfill the variational form (4.1),

as defined in Definition 4.1. Multiplying the Galerkin system (4.3) by η ∈ C∞
c (0, T )

and integrating from 0 to T , gives

∫ T

0

⟨∂tφ
k
T , wj⟩H1η(t)dt =

∫ T

0

(−mk
T ∇µk + φk

T vk, ∇wj)η(t) + (Sk
T , wj)L2 η(t)dt,

∫ T

0

(µk, wj)η(t)dt =

∫ T

0

(Ψ′(φk
T ) − χ0φ

k
σ, wj)L2 η(t) + ε2T (∇φk

T , ∇wj)L2 η(t)dt,

∫ T

0

⟨∂tφ
k
σ, yj⟩H1

0
η(t)dt =

∫ T

0

(−mk
σ(δ−1

σ ∇φk
σ − χ0∇φk

T ) + φk
σvk, ∇yj)L2 η(t)

+ (Sk
σ, yj)L2 η(t)dt,
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∫ T

0

⟨∂tv
k, zj⟩V η(t)dt =

∫ T

0

(νkDvk, Dzj)η(t) + (F1|vk|vk + F2|vk|2vk, zj)η(t)

+ (αvk + Sk
v , zj)η(t)dt,

for each j ∈ {1, . . . , k}. We take the limit k → ∞ in each equation. The linear terms

can be treated directly in the limit process since they can be justified via the weak

convergences (4.12), e.g. the functional

µk 0→
∫ T

0

(µk, wj)η(t)dt ≤ ∥µk∥L2L2 |wj |L2 |η|L2

is linear and continuous on L2(0, T ; L2) and, hence, as k → ∞
∫ T

0

(µk, wj)η(t)dt →
∫ T

0

(µ, wj)η(t)dt.

Thus, it remains to examine the nonlinear terms. We do so in the steps (i)–(vi) as

follows.

(i) We have derived the convergences, see (4.17),

φk
T → φT in L2(0, T ; L2) ∼= L2((0, T ) × Ω),

φk
σ → φσ in L2(0, T ; L2) ∼= L2((0, T ) × Ω)

as k → ∞ and, consequently, we have by the continuity and boundedness of mT ,

mk
T = mT (φk

T (t, x),φk
σ(t, x)) → mT (φT (t, x),φσ(t, x)) =: mT a.e. in (0, T ) × Ω

as k → ∞. Applying the Lebesgue dominated convergence theorem gives

mk
T ∇wjη → mT ∇wjη in L2((0, T ) × Ω; Rd)

as k → ∞ and, together with ∇µk ⇀ ∇µ weakly in L2((0, T ) × Ω; Rd) as k → ∞,

we have

mT (φk
T )η∇wj · ∇µk → mT (φT )η∇wj · ∇µ in L1((0, T ) × Ω)

as k → ∞. We use here the fact that the product of a strongly and a weakly

converging sequence in L2 converges strongly in L1. The same procedure can be

used with terms which involve the functions mk
σ and νk.

(ii) By (4.17), we have φk
T → φT in L2((0, T )×Ω) and vk → v in L2((0, T )×Ω; Rd)

as k → ∞, hence, as k → ∞,

φk
T vk · ∇wjη → φT v · ∇wjη in L1((0, T ) × Ω).

(iii) By the continuity and the growth assumptions on Ψ′, we have

Ψ′(φk
T (t, x)) → Ψ′(φT (t, x)) a.e. in (0, T ) × Ω as k → ∞,

|Ψ′(φk
T )ηwj | ≤ C(1 + |φk

T |)|ηwj |,
and the Lebesgue dominated convergence theorem yields as k → ∞,

Ψ′(φk
T )ηwj → Ψ′(φT )ηwj in L1((0, T ) × Ω).
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(iv) Using the triangle inequality, we conclude that
∣∣|vk|vk − |v|v

∣∣ =
∣∣|vk|vk − |vk|v + |vk|v − |v|v

∣∣

≤ |vk| · |vk − v| + |v| ·
∣∣|vk| − |v|

∣∣

≤ |vk − v|(|vk| + |v|).

and, thus, taking the limit k → ∞, results in

|vk|vk · zjη → |v|v · zjη in L1((0, T ) × Ω).

(v) Similarly to (iv), we apply the triangle inequality to deduce that
∣∣|vk|2vk − |v|2v

∣∣ =
∣∣|vk|2vk − |vk|2v + |vk|2v − |v|2vk + |v|2vk − |v|2v

∣∣

≤ |vk − v|(|vk|2 + |v|2 + |vk| · |v|)

and, again, taking the limit as k → ∞ gives

|vk|2vk · zjη → |v|2v · zjη in L1((0, T ) × Ω).

(vi) We have the strong convergence of µk and φk
σ in L2((0, T )×Ω). Together with

the weak convergence of ∇φk
T in L2((0, T ) × Ω; Rd) it is enough to conclude the

convergence of the term involving Sk
v = (µ + χ0φ

k
σ)∇φk

T .

Using the density of
⋃

k∈N Wk in H1,
⋃

k∈N Yk in H1
0 ,
⋃

k∈N Zk in V and the

fundamental lemma of the calculus of variations, we obtain a solution (φT , µ,φσ, v)

to our model (2.6) in the weak sense as defined in Definition 4.1. !

Remark 4.1. We can associate a pressure function to the velocity so that we

have a quintuple (φT , µ,φσ, v, p), which solves (2.6) in distributional sense. See also

Refs. 82 and 75 for a similar argument. Let

w = −∂tv + div(νDv) − αv − F1|v|v − F2|v|2v + Sv.

Then w ∈ W−1,∞(0, T ; H−1) = L (W 1,1
0 (0, T ); H−1) and ⟨w(ψ), ξ⟩V = 0 for all

ψ ∈ W 1,1
0 (0, T ), ξ ∈ V . Thus, by the corollary of the de Rham lemma, see Corollary

3.1, there is a unique p ∈ W−1,∞(0, T ; L2
0) such that ∇p = w.

Remark 4.2. If F2 = 0, then we only have u ∈ L3(0, T ; [L3]d) instead of

L4(0, T ; [L4]d). We have to control

∫ T

0

(|v|v, ζ)dt ≤
∫ t

0

|v|2|ζ|dt ≤ |v2|L3/2L3/2 |ζ|L3L3 ≤ C|v|2L3L3 |ζ|L3H1 .

Hence, we are even able to bound ∂tv in L3/2(0, T ; V ′) instead of only L4/3(0, T ; V ′).
That means the velocity itself has less regularity, but its derivative’s regularity is

larger. Still, via the Aubin–Lions lemma, we are able to extract a subsequence of

the Galerkin approximation {vk}k∈N, which converges strongly to a function v in

L2(0, T ; H).
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5. Nonlocal Effects

In this section, we consider nonlocal effects in a tumor growth model with a con-

vective velocity, which obeys the unsteady Darcy–Forchheimer–Brinkman law. In

biological models nonlocal terms are used to describe competition for space,80 cell-

to-cell adhesion and cell-to-matrix adhesion,12,38 and the inclusion of such nonlocal

effects in mesoscale models of tumor growth leads to systems of nonlinear integro-

differential equations.

Models, that account for cell–matrix adhesion effects, involve matrix degrading

enzymes, which erode the extracellular matrix and therefore, allow the migration

of cells into tissue. Such systems have been analyzed in-depth in Refs. 78, 25 and

12. There, the tumor volume fraction is modeled by a reaction–diffusion equation,

in contrast to the fourth order Cahn–Hilliard phase field equation in our setting.

Following Refs. 12 and 31, we consider cell–cell adhesion effects, which are

responsible for the binding of one or more cells to each other through the reaction

of proteins on the cell surfaces. It is reasonable to take cell-to-cell adhesion into

account since the Ginzburg–Landau free energy functional (2.3) leads to separation

and surface tension effects,31 which implies that the tumor cells prefer to adhere to

each other rather than to the healthy cells. Moreover, cell-to-cell adhesion is a key

factor in tissue formation, stability, and the breakdown of tissue.

The well-known local Cahn–Hilliard equation has an phenomenological back-

ground11 and in the search for a physical derivation Giacomin and Lebowitz studied

the problem of phase separation from a microscopic background using the methods

of statistical mechanics, see Refs. 39 and 40. They obtained a nonlocal version of

the Cahn–Hilliard equation with the underlying free energy functional

∫

Ω

Ψ(φT (x))dx +
1

4

∫

Ω

∫

Ω

J(x − y)(φT (x) − φT (y))2dydx, (5.1)

which is also called the nonlocal Helmholtz free energy functional.13,33 Here, J :

Rd → R is assumed to be a convolution kernel such that J(x) = J(−x). One can

obtain the classical Ginzburg–Landau free energy functional from (5.1) by choosing

the kernel function J(x, y) = kd+2χ[0,1](|k(x−y)|2) and letting k → ∞, see Refs. 29

and 44, and therefore, the well-known Cahn–Hilliard model can be interpreted as

an approximation of its nonlocal version.

We modify the nonlocal Helmholtz free energy functional (5.1) to account for

chemotactic effects,

E(φT ,φσ) =

∫

Ω

Ψ(φT (x))dx +
1

4

∫

Ω

∫

Ω

J(x − y)(φT (x) − φT (y))2dydx

−χ0

∫

Ω

φσ(x)φT (x)dx.

The chemical potential is given by the first variation of the system’s underlying free

energy functional E and therefore, we consider a class of long-range interactions in
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which nonlocal effects are characterized by chemical potentials of the form,

µ =
δE
δφT

= Ψ′(φT ) +

∫

Ω

J(x − y)(φT (x) − φT (y))dy − χ0φσ,

and recalling the convolution operator, which we denote by ∗, we can rewrite the

chemical potential as

µ = Ψ′(φT ) + φT · J ∗ 1 − J ∗ φT − χ0φσ.

This leads directly to a nonlocal model governed by the system,

∂tφT + div(φT v) = div(mT (φT ,φσ)∇µ) + ST (φT ,φσ),

µ = Ψ′(φT ) + φT · J ∗ 1 − J ∗ φT − χ0φσ ,

∂tφσ + div(φσv) = div(mσ(φT ,φσ)(δ−1
σ ∇φσ − χ0∇φT )) + Sσ(φT ,φσ),

∂tv + αv = div(ν(φT ,φσ)Dv) − F1|v|v − F2|v|2v − ∇p + Sv(φT ,φσ),

div v = 0, (5.2)

with the initial-boundary data as before, see (2.7).

The nonlocal Cahn–Hilliard equation has been analyzed in Refs. 4, 3, 2, 32 and

33. In Refs. 15, 27, 28 and 29, it has been coupled to the Navier–Stokes equation,

in Ref. 22 to the Darcy equation, in Ref. 23 to the Brinkman equation and in

Ref. 31 to a reaction–diffusion equation. We briefly discuss modifications in the

energy estimates of the nonlocal model (5.2) in contrast to the estimates derived

in the proof of Theorem 4.1 for the local model. Due to the integro-differential

structure, some inequalities have to be analyzed again, but overall the existence

of a weak solution remains valid for the nonlocal problem. Notice that we cannot

expect φT ∈ L∞(0, T ; H1) since no Laplacian appears in the potential equation.

Therefore, the term χ0 div(mσ∇φT ) has to be treated again in the estimates with

an additional assumption on the chemotaxis constant χ0.

Definition 5.1. (Weak solution) We call a quadruple (φT , µ,φσ, v) a weak solution

of the system (5.2) if the functions φT , µ,φσ : (0, T ) × Ω → R, v : (0, T ) × Ω → Rd

have the regularity

φT ∈ W 1, 4
d (0, T ; (H1)′) ∩ L∞(0, T ; L2) ∩ L2(0, T ; H1),

µ ∈ L2(0, T ; H1),

φσ ∈ W 1, 4
d (0, T ; H−1) ∩ (1 + L2(0, T ; H1

0 )),

v ∈ W 1, 4
d (0, T ; V ′) ∩ L4(0, T ; [L4]d) ∩ L2(0, T ; V ),

fulfill the initial data φT (0) = φT,0, φσ(0) = φσ,0, v(0) = v0 and satisfy the following

variational form of (2.6)

⟨∂tφT ,ϕ1⟩H1 = (φT v, ∇ϕ1) − (mT ∇µ, ∇ϕ1) + (ST ,ϕ1), (5.3a)

(µ,ϕ2) = (Ψ′(φT ),ϕ2) + (φT · J ∗ 1,ϕ2) − (J ∗ φT ,ϕ2) − χ0(φσ,ϕ2),

(5.3b)
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⟨∂tφσ ,ϕ3⟩H1
0

= (φσv, ∇ϕ3) − δ−1
σ (mσ∇φσ , ∇ϕ3) + χ0(mσ∇φT , ∇ϕ3)

+ (Sσ,ϕ3), (5.3c)

⟨∂tv,ϕ4⟩V = −α(v,ϕ4) − (νDv, Dϕ4) − F1(|v|v,ϕ4) − F2(|v|2v,ϕ4)

+ (Sv,ϕ4), (5.3d)

for all ϕ1,ϕ2 ∈ H1,ϕ3 ∈ H1
0 ,ϕ4 ∈ V .

Theorem 5.1. (Existence of a global weak solution) Let (A1)–(A4) hold and

additionally:

(A6) Ψ ∈ C2(R) is such that |Ψ(x)| ≥ C1|x|2 − C2, Ψ′′(x) ≥ C3 − (J ∗ 1)(x),

and |Ψ′(x)| ≤ C4(|x| + 1) for C2, C4 > 0, C1 > 1
2 |J |L1 − 1

2 (J ∗ 1)(x) for a.e. x ∈ Ω

and

C3 >

√
2χ0m∞

m0
· 4χ2

0m
2
∞δσ + 2m0χ0m∞δσ + χ2

0δσm2
0

2m2
0

.

(A7) J ∈ W 1,1(Rd) is even and (J ∗ 1)(x) ≥ 0 for a.e. x ∈ Ω.

Then there exists a solution quadruple (φT , µ,φσ, v) to (5.2) in the sense of

Definition 5.1. Moreover, the solution quadruple has the regularity

φT ∈
{

C([0, T ]; L2), d = 2,

C([0, T ]; (H1)′) ∩ Cw([0, T ]; L2), d = 3,

φσ ∈
{

C([0, T ]; L2), d = 2,

C([0, T ]; H−1) ∩ Cw([0, T ]; L2), d = 3,

v ∈
{

C([0, T ]; H), d = 2,

C([0, T ]; V ′) ∩ Cw([0, T ]; H), d = 3.

Additionally, there is a unique p ∈ W−1,∞(0, T ; L2
0) such that (φT , µ,φσ, v, p) is a

solution quintuple to (5.2) in the distributional sense.

Proof. Since the approach is similar to the proof of Theorem 4.1, we will directly

derive an energy estimate in the continuous setting. We take, as the test function

in (5.3b), ϕ2 = −∂tφT , which gives

−(µ, ∂tφT ) = −dt

dt

(
|Ψ(φT )|L1 +

1

2
|(J ∗ 1)1/2φT |2L2 − 1

2
(φT , J ∗ φT )

)

+χ0(φσ , ∂tφT )

= − d

dt

(
|Ψ(φT )|L1 +

1

4

∫

Ω

∫

Ω

J(x − y)(φT (x) − φT (y))2dxdy

)

+χ0(φσ , ∂tφT ),
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where we used the fact that

d

dt

∫

Ω

∫

Ω

J(x − y)(φT (x) − φT (y))2dydx

= 2

∫

Ω

∫

Ω

J(x − y)[φT (x) − φT (y)] · [∂tφT (x) − ∂tφT (y)]dydx

= 4

∫

Ω

∫

Ω

J(x − y)[φT (x) − φT (y)]∂tφT (x)dydx,

since J is assumed to be even, see (A7) in Theorem 5.1. As in the local model, we

use the test functions ϕ1 = µ + χ0φσ , ϕ3 = K(φσ − 1) and ϕ4 = v in (5.3), which

gives, after adding the equations,

d

dt

[
|Ψ(φT )|L1 +

1

4

∫

Ω

∫

Ω

J(x − y)
(
φT (x) − φT (y)

)2
dxdy +

K

2
|φσ − 1|2L2 +

1

2
|v|2L2

]

+ (mT , |∇µ|2) + Kδ−1
σ (mσ, |∇φσ|2) + (ν, |Dv|2) + F1|v|3L3 + F2|v|4L4 + α|v|2L2

= −χ0(mT ∇µ, ∇φσ) + (ST , µ + χ0φσ) + χ0K(mσ∇φT , ∇φσ) + K(Sσ,φσ),

(5.4)

where we again used that the tested convective terms cancel with Sv. We estimate

the terms involving the source functions ST , Sσ as before in the local case, see (4.6)

and (4.8). Also, as before in the local model, we additionally test with ϕ2 = 1 in

(5.3b) to deduce the following estimate on µ:

|µ|L1 ≤ |Ψ′(φT )|L1 + χ0|φσ|L1 ≤ C(1 + |φT |L2 + |φσ|L2 ).

Here, we used the fact that (φT , J ∗ 1) = (J ∗ φT , 1), since J is assumed to be

even, see (A7) in Theorem 5.1. Therefore, we can estimate the right-hand side in

(5.4) as

(RHS) ≤ m0

2
|∇µ|2L2 +

χ2
0m

2
∞

m0
|∇φσ |2L2 + C(1 + |φσ|2L2 + |φT |2L2 )

+
χ0K

2m∞
2

|∇φT |2L2 +
χ0m∞

2
|∇φσ|2L2 .

Notice that at this point we have no information on φT on the left-hand side of

(5.4), which is crucially needed to absorb the terms from the right-hand side. We

can do the following calculation due to the growth estimate on Ψ, see (A6),

|Ψ(φT )|L1 +
1

4

∫

Ω

∫

Ω

J(x − y)(φT (x) − φT (y))2dxdy

= |Ψ(φT )|L1 +
1

2
|(J ∗ 1)1/2φT |2L2 − 1

2
(φT , J ∗ φT )

≥
∫

Ω

[
C1 +

1

2
(J ∗ 1)(x) − 1

2
|J |L1

]
|φT (x)|2dx − C2|Ω|

≥ C(|φT |2L2 − 1), (5.5)
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where we used the Young convolution inequality52 to get

(φT , J ∗ φT ) ≤ |φT |L2 |J ∗ φT |L2 ≤ |φT |2L2 |J |L1 .

This estimate will give us φT ∈ L∞(0, T ; L2). Indeed, integrating (5.4) with respect

to time on the interval (0, s), 0 < s < T , and introducing the result into (5.5) and

employing the estimates of the source terms give

C|φT (s)|2L2 +
K

2
|φσ(s)|2L2 +

1

2
|v(s)|2L2 +

m0

2
∥∇µ∥2

L2L2 + m0∥Dv∥2
L2L2

+ F2∥v∥4
L4L4 +

(
Km0

δσ
− χ2

0m
2
∞

m0
− χ0m∞

2

)

× ∥∇φσ∥2
L2L2 − χ0K

2m∞
2

∥∇φT ∥2
L2L2

≤ C(1 + IC + ∥φT ∥2
L2L2 + ∥φσ∥2

L2L2 ), (5.6)

where

IC = |Ψ(φT,0)|L1 +
1

4

∫

Ω

∫

Ω

J(x − y)(φT,0(x) − φT,0(y))2dxdy

+
K

2
|φσ,0 − 1|2L2 +

1

2
|v0|2L2 ,

and, due to assumption (A6), we have |Ψ(φT,0)|L1 ≤ C(|φT,0|2L2 + 1). Note that

we have a negative term on the left-hand side in the inequality (5.6), which we

still have to overpower so that we can apply the Gronwall lemma. We have, on one

hand,

(∇µ, ∇φT ) ≤ 1

C3
|∇µ|2L2 +

C3

4
|∇φT |2L2 ,

and, on the other hand, using the growth estimate on Ψ′′, see (A6), and again the

Young convolution inequality, we deduce that

(∇µ, ∇φT ) = (Ψ′′(φT ), |∇φT |2) + (|∇φT |2, J ∗ 1) + (∇(J ∗ 1),φT ∇φT )

− (∇J ∗ φT , ∇φT ) − χ0(∇φσ, ∇φT )

≥ C3|∇φT |2L2 − |∇J |L1 |φT |L2 |∇φT |L2 − χ0|∇φσ |L2 |∇φT |L2

≥ C3

2
|∇φT |2L2 − C|φT |2L2 − χ2

0

C3
|∇φσ |2L2 .

Combining these two inequalities gives the following estimate on ∇φT :

m0C
2
3

16
|∇φT |2L2 ≤ m0

4
|∇µ|2L2 + C|φT |2L2 +

m0χ
2
0

4
|∇φσ|2L2 .

Adding this inequality to (5.6) results in

C|φT (s)|2L2 +
K

2
|φσ(s)|2L2 +

1

2
|v(s)|2L2 +

m0

2
∥∇µ∥2

L2L2 + m0∥Dv∥2
L2L2
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+ F2∥v∥4
L4L4 +

(
Km0

δσ
− χ2

0m
2
∞

m0
− χ0m∞

2
− m0χ

2
0

4

)
∥∇φσ∥2

L2L2

+

(
m0C

2
3

16
− χ0K

2m∞
2

)
∥∇φT ∥2

L2L2

≤ C(1 + IC + ∥φT ∥2
L2L2 + ∥φσ∥2

L2L2 ). (5.7)

We choose K large enough such that the prefactor of ∥∇φσ∥2
L2L2 is strictly positive.

As a consequence, the prefactor of ∥∇φT ∥2
L2L2 is also strictly positive due to the

assumption on C3, see (A6). Hence, by applying the Gronwall lemma, see Lemma

3.1, we can deduce the final energy estimate

∥φT ∥2
L∞L2 + ∥φσ∥2

L∞L2 + ∥v∥2
L∞L2

+ ∥∇µ∥2
L2L2 + ∥Dv∥2

L2L2 + ∥v∥4
L4L4 + ∥∇φσ∥2

L2L2 + ∥∇φT ∥2
L2L2

≤ C(1 + IC)eCT .

In the same way as before, we can bound the time derivatives of φT ,φσ, v and

conclude existence of strongly converging sequences in the discrete case. The only

difference to the local model in the limit process is the integral term, but it can be

treated immediately since the functional

φT 0→
∫ T

0

(φT · J ∗ 1 − J ∗ φT , wj)η(t)dt ≤ 2|η|∞|wj |L2 ∥φT ∥L2L2 |J |L1

is linear and continuous on L2(0, T ; L2).

The first steps in deriving the energy estimate were the same as in the local case.

The lack of regularity on φT , which is caused by the new chemical potential, required

us to derive additional estimates as a replacement. We achieved the regularity

φT ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1) instead of L∞(0, T ; H1) as in the local case.

Nonetheless, this regularity is enough to prove the existence of weak solutions.

The new assumptions in Theorem 5.1 were crucial for the proof to be completed.

We assumed a lower bound assumption on Ψ′′, directly involving the new constant

C3, which has to be sufficiently large. In the case of a sufficiently small chemotaxis

constant χ0, the assumption on C3 is fulfilled. Moreover, we introduce assumptions

on properties for the new function J in the chemical potential, which are fulfilled

by a typical kernel function.

6. Sensitivity Analysis

The relative effects of model parameters in determining key quantities of interest

(QoIs), such as the evolution of tumor mass over time, are very important in the

development of predictive models of tumor growth. Accordingly, in this section we

address the question of sensitivity of solutions of our system (2.6) to variations

in model parameters, and we provide a sensitivity analyses using both statistical
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methods62,71–73 and data-dependent methods based on the notion of active sub-

spaces.16,18 We first introduce each method and then compare the sensitivities of

the parameters

θ = (εT ,χ0, δσ,λT ,λσ,λA, MT , Mσ, E,α, ν, F1, F2)
⊤ ∈ R13

in our model for each method.

As the quantity of interest in the sensitivity analysis of both methods, we choose

the volume of the tumor mass at different times t ∈ I, i.e.

Q(θ) =

[
1

|Ω|

∫

Ω

φT (t, x)dx

]

t∈I
∈ Rdim(I),

which depends on the choice of the parameter setting p. Further, we choose the

following uniformly distributed priors,

εT ∼ U(0.01, 0.10), λT ∼ U(0.01, 1.00), MT ∼ U(0.10, 1.00),

χ0 ∼ U(0.10, 1.00), λσ ∼ U(0.01, 1.00), Mσ ∼ U(0.10, 1.00),

δσ ∼ U(0.01, 0.10), λA ∼ U(0.00, 0.05), E ∼ U(0.25, 1.00),

α ∼ U(0.10, 10.0), ν ∼ U(0.10, 10.0), F1, F2 ∼ U(0.10, 10.0).

(6.1)

6.1. Variance-based method

The statistical method of sensitivity analysis employed in this work is a variance-

based method, developed by Ref. 76, and described in detail by Ref. 73. The

variance-based method takes into account uncertainties from the input factors,

showing how the variance of the output is dependent on these uncertainties. The

main drawback of this method is the high computational cost, which is N(k + 2),

where N is the number of samples and k is the number of parameters (here k = 13).

The algorithm implementing the variance-based method consists of initially gen-

erating two matrices, A and B, with size N × k, given as:

A =

⎛
⎜⎜⎜⎜⎜⎝

θ
(A1)
1 θ

(A1)
2 · · · θ

(A1)
i · · · θ

(A1)
k

θ
(A2)
1 θ

(A2)
2 · · · θ

(A2)
i · · · θ

(A2)
k

...
...

. . .
...

. . .
...

θ
(AN)
1 θ

(AN)
2 · · · θ

(AN)
i · · · θ

(AN)
k

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

θ
(A1)
1 θ

(B1)
2 · · · θ

(B1)
i · · · θ

(B1)
k

θ
(B2)
1 θ

(B2)
2 · · · θ

(B2)
i · · · θ

(B2)
k

...
...

. . .
...

. . .
...

θ
(BN)
1 θ

(BN)
2 · · · θ

(BN)
i · · · θ

(BN)
k

⎞
⎟⎟⎟⎟⎟⎠

.

Each row represents one set of values from the vector of parameters sampled

from the priors given in (6.1). The following step is to generate k matrices Ci,
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where column i comes from matrix B and all other k columns come from matrix

A, such as:

Ci =

⎛
⎜⎜⎜⎜⎜⎝

θ
(A1)
1 θ

(A1)
2 · · · θ

(B1)
i · · · θ

(A1)
k

θ
(A2)
1 θ

(A2)
2 · · · θ

(B2)
i · · · θ

(A2)
k

...
...

. . .
...

. . .
...

θ
(AN)
1 θ

(AN)
2 · · · θ

(BN)
i · · · θ

(AN)
k

⎞
⎟⎟⎟⎟⎟⎠

.

The output for all the sample matrices, that means A, B and Ci, are com-

puted, and stored as the vectors YA, YB and YCi . Each line of the vectors YJ ,

J ∈ {A, B, Ci}, of size N represents the QoI computed for each row of the matrix

J . The last step from the variance-based method is to compute the first-order sensi-

tivity indices, Si, and the total effect indices, STi . The first-order sensitivity indices

are computed as

Si =
YA · YC − f2

0

YA · YB − f2
0

,

where

f2
0 =

(
1

N

N∑

n=1

Y
(n)
A

)2

.

These indices are always between 0 and 1. High values of Si indicate a sensitive

parameter, and low Si, for additive models, indicates a low-sensitive parameter.

For non-additive models, the total effect indices take the first-order effects and the

contribution of higher-order effects into account due to interactions between the

model parameters. These indices are given as:

STi = 1 − YB · YCi − f2
0

YA · YA − f2
0

.

According to Ref. 73, for θi to be a non-influential parameter, it is necessary and

sufficient that STi = 0. If the total effect index from the ith parameter is close to

zero, then the parameter can be fixed to any value within the uncertainty range

without affecting the variance of the QoI.73

6.2. Active subspace method

The active subspace method is used for dimensional reduction of subspaces of prob-

ability distributions of model parameters and identifies the directions of the sen-

sitive parameters.16,18 Let ρ be the probability density function corresponding to

the distribution of the parameters θ as chosen in (6.1) and let f be the data misfit

function, which is given by

f : R13 → R, p 0→ 1

2
∥Γ−1/2(d − Q(p))∥2

2,
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Fig. 1. Data of the evolution of the tumor confluence over the duration of 21 days for three
different initial tumor confluences.

where d = Q(θ) + η is some data for a zero-centered Gaussian noise η ∼ N (0, Γ)

with covariance Γ. Our data54 consists of in vitro data observed during the evolution

of tumor cells with different initial tumor confluences without any treatment in a

well with radius 0.32 cm over the course of 21 days, see Fig. 1.

We selected initial tumor cells corresponding to confluences of 0.00562, 0.00871

and 0.01410. For example, an initial confluence of 0.00562 corresponds to an initial

tumor volume of Ainit = 0.00562 · π · 0.322 cm2 ≈ 0.00181 cm2 with radius rinit =√
0.00562 · 0.322 cm ≈ 0.0240 cm.

The covariance matrix V of f is given by the integral of the outer product of

the gradient of f weighted with ρ,

V =

∫

R13

∇f(x)(∇f(x))⊤ρ(x)dx.

In our algorithm we approximate the covariance matrix V by

V ≈ 1

N

N∑

j=1

∇f(Xj)(∇f(Xj))
⊤, Xj ∼ ρ,

whose eigenvalues are close to the true eigenvalues of V for a sufficiently large N ,

see Refs. 18 and 16.

We consider an orthogonal eigen decomposition of V ; that means for the eigen-

value matrix Λ = diag(λ1, . . . ,λ13) with descending eigenvalues and the correspond-

ing eigenvector matrix W = [w1 · · · w13] we have

V = WΛW⊤.
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Since V is a symmetric and positive semi-definite matrix, its eigenvectors can be

chosen to form an orthonormal basis in Rn and its eigenvalues are non-negative. In

particular, the ith eigenvalue is given by

λi = w⊤
i V wi =

∫

R13

(w⊤
i ∇f(x))2ρ(x)dx,

from which we can see that it reflects the sensitivity of f in the direction of the

ith eigenvector. In other words, on average f changes a little in the direction of an

eigenvector with a small corresponding eigenvalue, and f may change significantly

in the direction of an eigenvector with a large corresponding eigenvalue. But this

is not enough to identify the sensitivity of each parameter. Following Ref. 17, we

define the activity score αi for the ith parameter pi as

αi =
13∑

i=1

λjw
2
i,j , i = 1, . . . , 13,

and use the resulting number to rank the importance of each parameter. As dis-

cussed in Ref. 17 this metric has fared well in comparison to other standard sensi-

tivity metrics such as the Sobol’ sensitivity index76 when adequate data is available.

6.3. Comparison of the sensitivity methods

In Fig. 2, we list the relative sensitivity of each parameter for each method. We see

that the proliferation rate λT is highly sensitive for both methods. For the active

subspace method the effects of other parameters besides λT and λA are nearly

zero for this choice of QoI. Therefore, to notice the difference, we also listed the

comparison of the sensitives in Fig. 3 with a logarithmic scale.

MT MσλT λAλσ EεT χ0 δσ
α ν F1 F2

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
se

n
si

ti
v
it
y

variance-based
active subspaces

Fig. 2. Comparison of the relative sensitivities for the variance-based and the active subspaces
method; linear scale.
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Fig. 3. Comparison of the relative sensitivities for the variance-based and the active subspaces
method; logarithmic scale.

We remark that the dominance of the proliferation rate λT in the results shown

is largely due to the choice of the QoI; other choices favor different parameters of

the model. For example, numerical simulations described in the next section suggest

that the velocity parameters play an important role in determining the evolution

of tumor shape and, for example, surface area.

7. Numerical Discretization and Examples

We choose a similar computational framework as in Refs. 55 and 53 to solve the

deterministic system (2.6) with the initial and boundary data (2.7). This frame-

work includes a discrete-time local semi-implicit scheme with an energy convex–

nonconvex splitting. Here, the stable contractive part is treated implicitly and the

expansive part explicitly. In particular, introducing the Ginzburg–Landau energy45

E =

∫

Ω

Ψ(φT ) +
ε2T
2

|∇φT |2 +
1

2δσ
φ2

σ − χ0φTφσ dx

we can rewrite the chemical potential in the following way,

µ =
δE

δφT
,

where δE
δφT

is the first variation of E with respect to φT . We split the energy in its

contractive and expansive parts via E = Ec − Ee.

Let the time domain be divided into the steps ∆tn = tn+1−tn for n ∈ {0, 1, . . .}.

We assume ∆tn = ∆t for all n. We write φTn for the approximation of φh
T (tn) and

likewise for the other variables. The backward Euler method applied to the system
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(2.6) reads

φTn+1 − φTn

∆t
+ div(φTn+1vn+1) = div(mT (φTn+1 ,φσn+1)∇µn+1) − λAφTn+1

+λTφσn+1C(φTn+1(1 − φTn+1)),

µn+1 = DφT Ec(φTn+1 ,φσn+1) − DφT Ee(φTn ,φσn),

φσn+1 − φσn

∆t
+ div(φσn+1vn+1) = div(mσ(φTn+1 ,φσn+1)(δ

−1
σ ∇φσn+1 − χ0∇φTn+1))

−λσφσn+1C(φTn+1),

vn+1 − vn

∆t
+ αvn+1 + ∇pn+1 = div(ν(φTn+1 ,φσn+1)∇vn+1) − F1|vn+1|vn+1

− F2|vn+1|2vn+1 + (µn+1 + χ0φσn+1)φTn+1 ,

div vn+1 = 0, (7.1)

where C(φTn+1) = max(0, min(1,φTn+1)) is the cut-off operator.

We uncouple the equations and use an iterative Gauß–Seidel method for solving

each equation. In Algorithm 1 below, the subscript 0 stands for the initial solution,

k the iteration index, niter the maximum number of iterations at each time step

and TOL the tolerance for the iteration process. In each iterative loop three linear

systems are solved and the convergence of the nonlinear solution is achieved at

each time if max |φk+1
Tn+1

− φk
Tn+1

| < TOL. We obtain the algebraic systems using a

Galerkin finite element approach. In this regard, let T h be a quasiuniform family

of triangulations of Ω and let the piecewise linear finite element space be given by

Vh = {v ∈ H1(Ω) : v|T ∈ P1(T ) for all T ∈ T h} ⊂ H1(Ω),

where P1(T ) denotes the set of all affine linear function on T . Moreover, we intro-

duce the piecewise linear finite element space with homogeneous Dirichlet boundary

Vh
0 = {v ∈ Vh : v = 0 on ∂Ω},

and for the divergence-free space V we consider the Brezzi–Douglas–Marini (BDM)

space of order 1, see Ref. 6. In Ref. 64 it was shown that the mixed finite element

space BDM1–DG0 is stable for the mixed formulation of the Darcy–Forchheimer

equation.

We formulate the discrete problem as follows: for each k, find

φk+1
Tn+1

∈ Vh, µk+1
n+1 ∈ Vh, φk+1

σn+1
∈ 1 + Vh

0 , vk+1
n+1 ∈ BDM1, pk+1

n+1 ∈ DG0,

for all

ϕT ∈ Vh, ϕµ ∈ Vh, ϕσ ∈ Vh
0 , ϕv ∈ BDM1, ϕp ∈ DG0,

such that:

(vk+1
n+1 − vn,ϕv) + ∆tα(vk+1

n+1,ϕv) + ∆t
(
ν(φk

Tn+1
,φk

σn+1
)∇vk+1

n+1, ∇ϕv

)

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
16

91
-1

73
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

TE
X

A
S 

A
T 

A
U

ST
IN

 o
n 

08
/2

9/
19

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



August 19, 2019 14:56 WSPC/103-M3AS 1950032

1720 M. Fritz et al.

+ ∆tF1(|vk+1
n+1|vk+1

n+1,ϕv) + ∆tF2(|vk+1
n+1|2vk+1

n+1,ϕv) − ∆t(pk+1
n+1, divϕv)

= −∆t
(
(µk

n+1 + χ0φ
k
σn+1

)φk
Tn+1

,ϕv

)
;

(7.2)

(vk+1
n+1, ∇ϕp) = 0; (7.3)

(φk+1
σn+1

− φσn ,ϕσ) − ∆t(φk+1
σn+1

vk+1
n+1, ∇ϕσ)

+ ∆t
(
mσ(φk

Tn+1
,φk+1

σn+1
) · (δ−1

σ ∇φk+1
σn+1

− χ0∇φk
Tn+1

), ∇ϕσ

)

+ ∆tλσ

(
φk+1

σn+1
C(φk

Tn+1
),ϕσ

)
= 0; (7.4)

(φk+1
Tn+1

− φTn ,ϕT ) − ∆t(φk+1
Tn+1

vk+1
n+1, ∇ϕT )

+ ∆t
(
mT (φk+1

Tn+1
,φk+1

σn+1
)∇µk+1

n+1, ∇ϕT

)

− ∆tλT

(
φk+1

σn+1
C
(
φk+1

Tn+1
(1 − φk+1

Tn+1
)
)
,ϕT

)
= 0; (7.5)

(µk+1
n+1,ϕµ) −

(
DφT Ec(φ

k+1
Tn+1

,φk+1
σn+1

),ϕµ

)
=
(
DφT Ee(φTn ,φσn),ϕµ

)
. (7.6)

Algorithm 1. Semi-implicit scheme for (7.1)

1 Input: φT0 ,φσ0 , v0, ∆t, T, TOL

2 Output: φTn , µn,φσn , vn for all n

3 t = 0, n = 0

4 while t ≤ T do

5 φ0
Tn+1

= φTn

6 while max∥φk+1
Tn+1

− φk
Tn+1

∥ > TOL do

7 φk
Tn+1

= φk−1
Tn+1

8 solve vk+1
n+1, pk+1

n+1 using (7.2) and (7.3), given φσn ,φk
Tn+1

9 solve φk+1
σn+1

using (7.4), given φσn ,φk
Tn+1

10 solve φk+1
Tn+1

, µk+1
n+1 using (7.5) and (7.6), given φTn ,φk

Tn+1
,φk+1

σn+1

11 k 0→ k + 1

12 end

13 φTn+1 = φk+1
Tn+1

14 µn+1 = µk+1
n+1

15 φσn+1 = φk+1
σn+1

16 vn+1 = vk+1
n+1

17 n 0→ n + 1, t 0→ t + ∆t

18 end
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We implemented Algorithm 1 in FEniCS,57 an open-source computing platform

for solving partial differential equations using finite element methods. We use this

implementation to obtain the numerical results below.

7.1. Spherically symmetric case

For specificity and demonstration purposes, we assume a spherically symmetric

tumor volume and use polar coordinates to transform our model (2.6) to a system

of equations depending solely on time t and radius r. We consider the domain

R = [0, 0.32] imitating our data setting as described in Sec. 6. We choose parameters

matching the priors we used in (6.1); in particular we choose the dimensionless

values

εT = 0.01, λT = 1.0, MT = 1.0, α = 1.0,

χ0 = 0.5, λσ = 1.0, Mσ = 1.0, ν = 10.0,

δσ = 0.05, λA = 0.01, E = 0.25, F1, F2 = 10.0.

(7.7)

We consider a smooth approximation of the Heaviside function matching the

initial tumor confluence 0.00562 of our data setting, as it can be seen in Fig. 4(a)

below. The approximation is given by

φT (0, r) =
1

1 + exp(M(r − rinit))
,

where a larger M > 0 is increasing the steepening of the function around zero, and

rinit = 0.32
√

0.00562 again represents the radius of the initial tumor cell.

In Fig. 4, the simulation of the tumor cell φT is shown at different time spots.

First, the initial tumor cell is illustrated, then after 7, 14 and 21 days. We plot

0 0.04 0.08 0.12 0.16

0

0.5

1 φT (0, r)

0 0.04 0.08 0.12 0.16

0

0.5

1 λT = 0.6
λT = 0.8
λT = 1.0

(a) 0th day (b) 7th day

Fig. 4. Simulation of the evolution of the tumor cell volume fraction φT over the duration of 21
days for three different proliferation rates.
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0 0.04 0.08 0.12 0.16

0

0.5

1

0 0.04 0.08 0.12 0.16

0

0.5

1

(c) 14th day (d) 21st day

Fig. 4. (Continued)

three different curves for different proliferation rates, 0.6, 0.8, and 1.0. We observe

that a higher proliferation rate is increasing the expansion of the tumor cell volume

fraction φT , and the tumor cell is continuously growing over time.

The simulation of the evolution of the tumor confluence is depicted in Fig. 5

below. We observe that the confluence grows continuously in time with an increasing

rate.

7.2. Two-dimensional case

We simulate the tumor growth on the circular domain

Ω = {x ∈ R2 : x2
1 + x2

2 = 0.322}

0 5 10 15 20
0

0.1

0.2

0.3

Days

C
o
n
fl
u
en

ce
of

th
e

tu
m

or
m

a
ss λT = 0.6

λT = 0.8
λT = 1.0

Fig. 5. Simulation of the tumor confluence for three different proliferation rates λT over the
duration of 21 days.
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(a) (b) (c) (d)

Fig. 6. Choices for the initial tumor mass φT,0, (a) slightly elliptic, (b) highly elliptic, (c) sepa-
rated, (d) irregularly perturbed.

with the same parameters as chosen in the one-dimensional setting; see (7.7). For

the initial tumor volume we select the following four possibilities, which are depicted

in Fig. 6:

(a) φT (0, x) =

{
1, if 0.9 · x2

1 + x2
2 ≤ r2

init,

0, else,

(b) φT (0, x) =

{
1, if 0.15 · x2

1 + x2
2 ≤ r2

init,

0, else,

(c) φT (0, x) =

{
1, if 0.9 · (x1 ± 0.05)2 + x2

2 ≤ r2
init,

0, else,

(d) φT (0, x) =

⎧
⎨
⎩

1, if (sin(7.2x1 + 5.6x2) + 1) · (4x1 − 0.2)2

+ (sin(8x1) + 1) · 64x2
2 ≤ 1,

0, else.

In Fig. 7, we show the evolution of the slightly elliptic initial tumor mass (a)

using

I model (2.6) without any influence of the velocity, that means we set v ≡ 0 and

neglect the convection terms in the equations of φT and φσ;

II model (2.6) without the effect of the Forchheimer law, that means we set F1 =

F2 = 0 in the velocity equation;

III the full model (2.6) without any restrictions.

Afterwards, we simulate the entire model III together with the initial tumor

volumes (b), (c) and (d), see Fig. 8 below for the results.

The simulation of the full local model III with a slightly elliptic initial tumor

mass (a) is depicted in the bottom row of Fig. 7. Similar to Cristini et al.19,20,83–85

Macklin et al.59–61 and Garcke et al.37 we notice an evolving shape instability.

Starting from the slightly elliptic initial tumor mass, the ellipticity is enforced at

the beginning and on the 10th day we see a clearly elliptic tumor volume. At the

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
16

91
-1

73
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

TE
X

A
S 

A
T 

A
U

ST
IN

 o
n 

08
/2

9/
19

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.



August 19, 2019 14:56 WSPC/103-M3AS 1950032

1724 M. Fritz et al.

Fig. 7. Evolution of the tumor volume fraction φT starting from the initial slightly elliptic tumor
mass (a) using the models, I without velocity, II without the Forchheimer law, III full model.

15th day, a slight bulge forms along the horizontal direction and two buds form

at the horizontal end points. These buds continue to evolve vertically with a new

bulge oriented along the vertical directions and therefore, for each bud two new

buds are forming, see the simulation on the 21st day. This behavior of the tumor

cells implies that the instability repeats itself and this highly complex evolution in

tumor shape is captured by the high-order phase-field structure of the model and

is indicative of examples in tumor growth in living tissue.

To inspect the effects of the velocity itself in the model, we redo the first simula-

tion with the same initial data (a) but without the presence of any velocity, which

means we are in the case of model I as described above. We depict the results of

the simulation in the first row of Fig. 7. We observe that the tumor stays in its

symmetric shape, resembling the results in Ref. 48. We conclude that the velocity

highly influences the shape of the tumor, even though the velocity parameters do

not mainly impact the tumor volume as the sensitivity analysis has shown in Sec. 6.
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Fig. 8. Evolution of the tumor volume fraction φT using the full model III, starting from (b) a
highly elliptic tumor mass, (c) two separated tumor masses, (d) an irregularly perturbed tumor
mass.

In the next simulation, see the middle row of Fig. 7 for the result, we use the

slightly elliptic initial data (a) and model II, that means we set the Forchheimer

constants F1 and F2 equal to zero. We observe that the result largely resembles the

simulation of the full case III (a), in the sense that the Forchheimer terms delay

the tumor evolution. We notice that the tumor mass splits into two parts, which

begin to approach each other on the lower and upper bulbs. Eventually, these buds

reconnect and therefore, trapping the healthy tissue within the tumor, which has

also been observed in Ref. 20.

Next, we start from the three initial conditions (b)–(d), which have been

depicted in Fig. 6, and simulate the evolution of the tumor cell volume fraction

using the full model III. See Fig. 8 for the simulation results.

In the case of the highly elliptic initial tumor shape (b), we observe on the 6th

day that three buds are forming, two at the end points of the horizontal shape and
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one in the middle. These buds continue to evolve vertically and eventually separate

from each other, see the result on the 18th day. The lower and upper parts of

the buds will connect again, and therefore, trapping the health tissue in between.

Finally on the 27th day, we observe that the tumor shape has formed a simply

connected domain.

In the middle row of Fig. 8, we see the results of the simulation of model III

starting with the separated initial tumor shape (c). We observe on the 6th day

that the tumor cells are moving toward each other, until they connect, form buds

and separate again. As in the case of the highly elliptic initial tumor shape (b),

eventually, the tumor mass is forming a simply connected domain.

Lastly, we simulate model III together with the irregularly perturbed tumor

mass (d), see the last row of Fig. 8. Before, we always used for the initial tumor

mass a symmetric shape. Now, the tumor volume fraction is starting irregularly

and it keeps this form while growling in the evolving buds.

8. Concluding Remarks

In this paper, we present a mathematical analysis of a class of phase-field mod-

els of the growth and decline of tumors in living organisms, in which convective

velocities of tumor cells are assumed to obey a time-dependent Darcy–Forchheimer–

Brinkman flow and in which long-range interactions of cell species are accounted

for through nonlocal integro-differential operators. Under some mild assumptions

on mathematical properties of the governing operators, we are able to establish

existence of weak solutions in the topologies of the underlying function spaces.

In addition, we explore the sensitivity of key quantities of interest, such as

the evolving tumor volume, on model parameters. We demonstrate that when

observational data are available, the method of active subspaces can be used to

estimate parameter sensitivity. In parallel, we consider methods of output-variance-

sensitivity as an alternative measure of parameter-sensitivity. Remarkably, for cer-

tain quantities of interest, such as tumor volume or mass, these two approaches

yield very similar estimates. In the case in which the tumor volume is selected as

the quantity of interest, the tumor proliferation parameter of the model was found

to be, by far, the dominant factor compared to other parameters.

To determine the effects of various flow terms in the evolution of tumor shape

and growth, we performed numerical experiments using finite-element approxima-

tions of the model for representative cases. These numerical results reveal that

nonlinear flow regimes, expected to be relevant in certain types of tumors, can

apparently affect the shape, connectivity, and distribution of tumors.
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A.2. Local and nonlocal phase-field models of tumor growth and invasion
due to ECM degradation

Local and nonlocal phase-field models of tumor growth and
invasion due to ECM degradation

Marvin Fritz, Ernesto Lima, Vanja Nikolić, J. Tinsley Oden, Barbara Wohlmuth

In this article, we consider a system of PDEs for modelling the growth of a tumor cell
colony inside an ECM. The ECM is an important factor in mathematical oncology since
it functions as a regulator around the tumor and controls the flow of nutrients. The goal
of the tumor cells is the erosion of the ECM in order to get to the nutrients outside of
it. The basis of our model is a multiphase system with the Cahn–Hilliard equation for
the viable tumor volume fraction φV . Here, we included the proliferative and hypoxic
cells in one variable. It is particularly important to single out the necrotic cells since
many processes, such as chemotaxis and haptotaxis, do not involve the dead cancer
cells. We propose two ODEs for the evolution of necrotic cells φN and extracellular
matrix density θ, as well as two RDE for the nutrients φσ and the MDEs φMDE . In
our analysis, we treat both the cases of a local gradient-based and a nonlocal-based
cell-matrix adhesion effect. These two have been used in the literature before, and we
compared both of them in numerical simulations. Our contribution is the modeling,
analysis, and numerics of the full system.

In Section 2, we explore two types of haptotaxis effects in tumor modeling – the local
gradient-based haptotaxis and the nonlocal one. We investigate the modeling of the
new variables θ and φMDE in contrast to our first paper [62] on this subject. In Section
3, we state some mathematical preliminaries that we need in the further sections, e.g.,
the Aubin–Lions compactness lemma. Section 4 presents a thorough mathematical
analysis of the local and nonlocal systems. We show the existence of weak solutions in
both cases, and we prove both of the cases at the same time by introducing a parameter
that indicates whether we are in the local or nonlocal setting. Interestingly, we need
to assume a higher regularity on the initial condition of the ECM density in the local
system. In fact, we had to assume that the initial is in H1(Ω)∩L∞(Ω) instead of L2(Ω)
in the nonlocal setting. In Section 5, we present a fully discrete scheme of the systems
based on the FEM and write a complete algorithm for solving the system. Finally,
we collect the findings of numerical experiments in Section 6 and compare both the
local and nonlocal models from a numerical point of view. In Section 7, we give some
concluding remarks.

I was heavily involved in the idea generation process and was principally responsible
for establishing the mathematical framework and carrying out the scientific work
described in this article. Additionally, I was responsible for authoring the essay, while
my co-authors participated by providing corrections.
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We present and analyze new multi-species phase-field mathematical models of tumor

growth and ECM invasion. The local and nonlocal mathematical models describe the
evolution of volume fractions of tumor cells, viable cells (proliferative and hypoxic cells),
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necrotic cells, and the evolution of matrix-degenerative enzyme (MDE) and extracellular

matrix (ECM), together with chemotaxis, haptotaxis, apoptosis, nutrient distribution,
and cell-to-matrix adhesion. We provide a rigorous proof of the existence of solutions

of the coupled system with gradient-based and adhesion-based haptotaxis e↵ects. In

addition, we discuss finite element discretizations of the model, and we present the
results of numerical experiments designed to show the relative importance and roles

of various e↵ects, including cell mobility, proliferation, necrosis, hypoxia, and nutrient
concentration on the generation of MDEs and the degradation of the ECM.

Keywords: Tumor growth; ECM degradation; nonlocal adhesion; existence of solutions;

energy method; finite elements.

AMS Subject Classification: 35K35, 35A01, 35D30, 35Q92, 65M60

1. Introduction

An important factor in tumor growth and invasion of healthy tissue in humans,

and a first step toward metastasis, is the over expression by tumor cells of matrix-

degenerative enzymes (MDEs) that erode the extracellular matrix (ECM) and allow

the migration of tumor cells into the tissue. The expression of MDEs such as

urokinase-plasminogen activator and matrix metalloproteinases lead to the activa-

tion of plasminogen and the degrading protein plasmin (see, e.g. Refs. 8, 46 and

42). According to Ref. 42, “matrix degradation is central to tumor pathogenesis”,

and the degradation of ECM “makes room for migration as cells cannot move into

regions of the tissue which are too dense”, see Ref. 46.

This study complements and extends recent work on general phase-field mod-

els reported in Refs. 21, 40 and 38. The models developed and analyzed there

are intended to depict phenomena at the mesoscale and macroscale where tumor

constituents are determined by fields representing volume fractions of mass concen-

trations of various species. Local versions of multiphase models have been proposed

by several authors over the last decade, and we mention as examples the papers of

Araujo and McElwain,2 Garcke et al.,25,26 Wise et al.,59 and Lima et al.39 Recent

literature on models of tumor growth is surveyed in, for example, Refs. 4, 11 and 47.

Among studies of phenomenological models of tumor cell invasion and tumor-host

interaction, we mention Refs. 1, 8, 27, 31, 42, 43, 46, 48–50. Typically, in these

works, the models are characterized by systems of reaction–di↵usion partial dif-

ferential equations describing the evolution of concentrations of densities of tumor

cells, ECM, and some form of matrix-degradation agent, such as MDE.

Among other factors influencing tumor cell mobility and migration are long-

range interactions due to such phenomena as cell-to-cell adhesion. Cell-to-cell adhe-

sion involves the binding of one or more cells to each other through the reaction of

proteins on the cell surfaces and is a key factor in tissue formation, stability, and the

breakdown of tissue. This adhesion related deterioration of tissue is a factor con-

tributing to the invasion and metastasis of cancer cells (see, e.g. Refs. 3, 7 and 8).

Several nonlocal mathematical models of adhesion (meaning models in which events

or cell concentrations at a point x in the tumor domain depend on events at points
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distinct from x but within a finite neighborhood of x) have been proposed in the lit-

erature. For an example of such cell-to-cell adhesion models, see Armstrong et al.,3

Chaplain et al.,1,8 Engwer et al.,17 and Stinner et al.,54 the latter two references

addressing the e↵ects of adhesion on tumor-cell invasion.

The inclusion of such nonlocal e↵ects in mesoscale models of tumor growth

leads to convolution terms in the Ginzburg–Landau free energy functional of the

tumor and gives rise to models involving systems of nonlinear integro-di↵erential

equations. An analysis of a class of such models is discussed in a recent study, see

Ref. 21.

In this work, we introduce new nonlocal, multi-species, phase-field mathemat-

ical models of tumor growth and invasion due to ECM degradation. The models

depict the evolution of volume fractions of tumor cells, viable cells (proliferative

and hypoxic cells), necrotic cells and the evolution of MDE and ECM, together

with chemotaxis, haptotaxis, apoptosis, and nutrient distribution.

We then provide a rigorous analysis of existence of solutions of the full model

system. To the authors’ best knowledge, there has been no prior analytical treat-

ment of a phase-field tumor system with ECM degradation. In Refs. 7, 17 and

54, di↵usion-type tumor models with invasion due to ECM degradation are ana-

lyzed. Phase-field tumor systems without ECM degradation are treated in Garcke

et al.23,24 We combine these two aspects in one tumor growth model. The main

challenge in the analysis is to control the ECM density without having a maxi-

mum principle for the phase-field tumor equations, as can be done for di↵usion-type

tumor models; see, e.g. Ref. 54.

In this work, we also discuss e�cient finite element discretizations of the model.

We present the results of numerical experiments designed to show the relative

importance and roles of various e↵ects, including cell mobility, proliferation, necro-

sis, hypoxia, and nutrient concentration on the generation of MDEs and the degra-

dation of the ECM.

Following this introduction, we describe two families of haptotaxis e↵ects in

tumor models in Sec. 2, and include discussions of the role and interpretation of

key terms in mass balance laws and the models of MDE production, and the evolu-

tion of ECM. After the mathematical notation is introduced in Sec. 3, a complete

mathematical analysis of a local and nonlocal model is presented in Sec. 4. Finite

element approximations and time-marching schemes are presented in Sec. 5 and

results of numerical experiments are collected in Sec. 6. Concluding comments are

provided in Sec. 7.

2. Models of Tumor Growth and ECM Degradation

We begin with a generalization of the setting described in Ref. 47 in which a tumor

mass, contained in a region ⌦ ⇢ Rd, d 2 {2, 3}, at time t 2 [0, T ], is viewed as

a mixture of constituents of constant and equal mass density %0 characterized by

volume fractions �� : ⌦ ⇥ [0, T ] ! R, � 2 {T, P,H, N}. The volume fraction of
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tumor cells �T is made of proliferative cells (�P ), which have a high probability of

migration or growing in density (e.g. through mitosis and cell-to-cell and cell-to-

matrix adhesion) in ⌦, hypoxic cells (�H) that are in a harsh environment with low

nutrient availability, and necrotic cells (�N ) that are cells that died due to the lack of

nutrients. The total tumor cell volume fraction is then the sum �T = �P +�H +�N .

We assume that the tumor growth is logistic, with a proliferation rate �pro
T , and

thus the viable cells (�V = �P + �H = �T � �N ) can proliferate until the capacity

of the domain is reached (i.e. �T = 1). The tumor volume fraction can decrease due

to two phenomena: (1) natural cell death (apoptosis) of viable cells at a rate �apo
T ;

(2) degradation of necrotic cells at a rate �deg
N .

The tumor is supplied with nutrients, ��, such as oxygen or glucose by the

vascular system that nourishes both healthy and tumor cells and which dictates the

process of chemotaxis whereby cells migrate in the direction of increasing gradient

of the nutrient. Here, we characterize the nutrient concentration over ⌦⇥ [0, T ] by

a scalar field �� = ��(x, t) governed by a reaction–di↵usion equation.

The tumor is embedded in a network of macromolecules called the ECM, the

density of which is represented by a scalar-valued field ✓ = ✓(x, t). The ECM is non-

di↵usible46 and its evolution can be modeled by a logistic-type evolution equation

which captures the degradation of ECM due to the action of certain MDEs. When

the local nutrient supply (indicated by ��) drops below a certain threshold, tumor

cells may enter a state of hypoxia in which enzymes are released by hypoxic cells that

make room for cell migration by eroding the ECM. This process is called haptotaxis.

The concentration of MDEs is characterized here by a field �M = �M (x, t).

The mechanical behavior of the tumor mass must obey the balance laws of

mechanics, namely the laws of conservation of mass, momentum, and energy. We

will ignore thermal e↵ects, and also, for the moment, mechanical deformations, see,

e.g. Ref. 40, as well as convective flow velocities in the material time derivatives,

see, e.g. Ref. 21, concentrating on mass conservation.

Under these assumptions, tumor mass (mT =
R
⌦
%0�T dx) is conserved

(dmT /dt = �, � being the mass supplied to by other constituents). This leads to

the evolution equation,

@t�T = divJ � divJ↵ + �pro
T ���V (1 � �T ) � �apo

T �V � �deg
N �N . (2.1)

Here, J is the mass flux, �pro
T and �apo

T are non-negative parameters governing

the rate of growth and decline of tumor cell volume due to cell proliferation and

apoptosis, respectively, �deg
N is the rate in reduction of �N due to the natural removal

of necrotic cells and J↵ is the adhesion flux (cf. Ref. 3) representing the influx of

tumor mass due to cell-to-matrix e↵ects, such as haptotaxis and cell-ECM adhesion.

We refer to both J and J↵ as “mass” fluxes recognizing that they are actually

characterized by volume fractions of constituents rather than mass concentrations

because the constituent mass densities are assumed to be equal and constant and

thus do not appear in the mass balance law.
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According to well-established thermodynamics arguments, the mass flux is of

the form,

J = mT (�V )rµ, (2.2)

where mT is the cell mobility matrix (such as mT (�V ) = MT�
2
V (1��V )2, MT > 0)

and µ is the chemical potential,

µ =
�E
��T

=  0(�T ) � "2T��T � �C�� + �T�T , (2.3)

E being the Ginzburg–Landau free energy functional,

E(�T ,��) =

Z

⌦

✓
 (�T ) +

"2T
2

|r�T |2 � �C���T +
1

2��
�2
� +

�T
2
�2

T

◆
dx. (2.4)

�E/��T denotes the variational or Gateaux derivative of E with respect to �T .

In (2.4), �T is a positive parameter relating to the level of cell di↵usion,  is a

double-well potential (such as  (�T ) = E�2
T (1 � �T )2, E > 0), "T is a parameter

characterizing surface energy of domains separated by large gradients in �T , and

�C is the chemotaxis parameter. If µ is simply �T�T , then div(J) in (2.1) collapses

to a classical di↵usion term J = div(mT (�V )�Tr�T ). The potential  penalizes

the energy (increases it to move the system away from a minimum energy point)

when �T /2 [0, 1]. The presence of the Laplacian in (2.3) leads to a fourth-order

evolution equation of the Cahn–Hilliard type when µ is introduced into (2.1). The

resulting model is a di↵used-interface or phase-field model in which the boundary

between “phases” (�T ,�V ,�N , . . .) is an implicit part of the solution.

The adhesion flux J↵ in (2.1) represents either a local gradient-based (cf.

Refs. 54, 56 and 57) or a nonlocal adhesion-based haptotaxis e↵ect; cf. Refs. 3, 7

and 29. Therefore, we consider the cases ↵ 2 {loc, nonloc} with respective fluxes of

the form

J↵ = �H�V ·
(
r✓, ↵ = loc,

k ⇤ ✓, ↵ = nonloc,
(2.5)

where �H is the so-called haptotaxis parameter, k is a vector-valued kernel function

and ⇤ denotes the convolution operator, which is set to zero outside of the domain

⌦. We will specify assumptions on k needed in the analysis later.

The rate-of-change of the volume fraction of necrotic cells, �N , is assumed to be

non-di↵usive and increases when the nutrient drops below a threshold �V N . Also,

some of the necrotic cells are removed from the tumor domain and leave as waste

products. We propose to capture these phenomena by the evolution equation,

@t�N = �V NH (�V N � ��)�V � �deg
N �N , (2.6)

where �V N is a non-negative parameters and H is the Heaviside step function.
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To the mass balance (2.1), we add the equations governing the evolution of the

nutrient, the MDE, and the ECM,

@t�� = div(D�(��)(��1
� r�� � �Cr�T )) � �pro

T �V
��

�� + �sat
�

, (2.7)

@t�M = div(DM (�M )r�M ) � �dec
M �M

+�pro
M �V ✓

�H

�H + ��
(1 � �M ) � �dec

✓ ✓�M , (2.8)

@t✓ = ��deg
✓ ✓�M . (2.9)

In (2.7)–(2.9), we assume that the nutrient volume fraction decreases as it is con-

sumed by viable tumor cells. The production of MDE by the viable cells is propor-

tional to the nutrient and ECM concentrations at a rate �pro
M . We assume that the

production is higher at low-nutrient46 and high ECM concentration environments.

The MDE concentration decreases due to a natural decay, �dec
M , and the decay of the

ECM, �dec
✓ . The quantities �pro

M , �dec
M , �dec

✓ , and �deg
✓ are non-negative parameters

governing the rate of growth or decay of the MDE and ECM, as indicated.

3. Notation and Auxiliary Results

For notational simplicity, we omit the spatial domain ⌦ when denoting various

Banach spaces and write only Lp, Hm, Wm,p, where 1  p  1 and 1  m < 1.

These spaces are equipped with the norms | · |Lp , | · |Hm , and | · |W m,p . We denote

by (·, ·) the scalar product in L2. The brackets h·, ·i stand for the duality pairing on

(H1)0 ⇥ H1. In the case of d-dimensional vector functions, we write [Lp]d, [Hm]d

and [Wm,p]d.

For a given Banach space X, we define the Bochner space

Lp(0, T ; X) =

(
u : (0, T ) ! X : u Bochner measurable,

Z T

0

|u(t)|pX dt < 1
)

,

where 1  p < 1, with the norm

kukLpX = kukLp(0,T ;X) =

 Z T

0

|u(t)|pX dt

!1/p

,

see Refs. 18 and 52. For p = 1, we equip L1(0, T ; X) with the norm

kukL1X = kukL1(0,T ;X) = ess sup
t2(0,T )

|u(t)|X

and we introduce the Sobolev-Bochner space as

W 1,p(0, T ; X) = {u 2 Lp(0, T ; X) : @tu 2 Lp(0, T ; X)}.

Throughout this paper, C < 1 stands for a generic positive constant.
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3.1. Helpful inequalities

We recall the Poincaré inequality,

|f � f |L2  CP|rf |L2 for all f 2 H1, (3.1)

where CP < 1 and f = 1
|⌦|
R
⌦

f(x)dx is the mean of f ; cf. Ref. 52. We also recall

Young’s inequality for convolutions,

|f ⇤ g|Lr  |f |Lp |g|Lq , p, q, r � 1, 1 +
1

r
=

1

p
+

1

q
, (3.2)

where f 2 Lp, g 2 Lq; see Theorem 4.2 in Ref. 37. Gronwall’s inequality will be

often employed as well.

Lemma 3.1. (Gronwall, cf. Lemma 3.1 in Ref. 23) Let u, v 2 C([0, T ]; R�0). If

there are positive constants C1, C2 < 1 such that

u(t) + v(t)  C1 + C2

Z t

0

u(s)ds for all t 2 [0, T ],

then it holds that

u(t) + v(t)  C1e
C2T for all t 2 [0, T ].

3.2. Embedding results

Let X, Y , Z be Banach spaces such that X is compactly embedded in Y and Y

is continuously embedded in Z, i.e. X ,!,! Y ,! Z. In the proof of the existence

theorem below we will rely on the Aubin–Lions compactness lemma, see Corollary 4

in Ref. 53,

Lp(0, T ; X) \ W 1,1(0, T ; Z) ,!,! Lp(0, T ; Y ), 1  p < 1,

L1(0, T ; X) \ W 1,r(0, T ; Z) ,!,! C([0, T ]; Y ), r > 1.
(3.3)

Furthermore, we make use of the following continuous embeddings:

L2(0, T ; Y ) \ H1(0, T ; Z) ,! C([0, T ]; [Y, Z]1/2), (3.4)

L1(0, T ; Y ) \ Cw([0, T ]; Z) ,! Cw([0, T ]; Y ), (3.5)

where [Y, Z]1/2 denotes the interpolation space between Y and Z; cf. Theorem 3.1

in Chap. 1 in Ref. 41 and Theorem 2.1 in Ref. 55. We refer to Definition 2.1 in

Chap. 1 in Ref. 41 for the definition of the interpolation space. In (3.5), Cw([0, T ]; Y )

denotes the space of weakly continuous functions on the interval [0, T ] with values

in Y .

3.3. General assumptions

We make the following assumptions on the domain and parameters throughout the

paper.

(A1) ⌦ ⇢ Rd, where d 2 {2, 3}, is a bounded domain with Lipschitz boundary and

T > 0 is a fixed time horizon.
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(A2) The mobility mT 2 Cb(R2) satisfies

(9m0, m1 > 0) (8x 2 R2) : m0  mT (x)  m1.

(A3) The functions D�, DM 2 Cb(R) satisfy

(9D0, D1 > 0) (8x 2 R) : D0  D�(x)  D1, D0  DM (x)  D1.

(A4) The constants "T , ��,�pro
M are positive and fixed, while �C , �T , �V N , �apo

T ,

�deg
N are non-negative fixed constants.

(A5) The potential  2 C1,1(R) is non-negative, continuously di↵erentiable, with

globally Lipschitz derivative, and satisfies

(9R1, R2, R3 > 0)(8x 2 R) :  (x) � R1|x|2 � R2, | 0(x)|  R3(1 + |x|).

(A6) The adhesion flux J↵, where ↵ 2 {loc, nonloc}, is of the form

J↵(�T ,�N , ✓) = g(�T ,�N )G(✓)

with g 2 Cb(R2) and G 2 L (X↵; [L2]d). The space X↵ is defined as

X↵ =

(
H1 \ L1, ↵ = loc,

L2, ↵ = nonloc.
(3.6)

The assumptions (A1)–(A5) are typical in tumor growth models; see, e.g.

Refs. 21–24 and 26. Assumption (A6) is satisfied if we modify the adhesion

flux in (2.5) by replacing �V with the bounded cut-o↵ functional C(�V ) =

max(0, min(1,�V )). This approach is also common in tumor modeling; cf. Refs. 21

and 24. We define g(�T ,�N ) = C(�T � �N ) and

G(✓) =

(
r✓, ↵ = loc,

k ⇤ ✓, ↵ = nonloc,

for a kernel function k 2 L1(Rd), which gives the following estimate on the adhesion

flux:

|Jloc|L2  �H |r✓|L2  �H |✓|H1\L1 ,

|Jnonloc|L2  �H |k ⇤ ✓|L2  �H |k|L1 |✓|L2 ,

where we applied Young’s inequality for convolutions (3.2) in the case ↵ = nonloc.

Here, we equip the intersection space Xloc = H1 \L1 with the norm | · |H1\L1 :=

| · |H1 + | · |L1 .

3.4. Comparison to other tumor growth models

In Sec. 4, we provide a rigorous analysis of existence of solutions to a modification

of the system governed by Eqs. (2.1), (2.3), (2.6)–(2.9). In our model, we combine

the e↵ects of tumor growth and invasion, ECM degradation and the separation of

tumor phases into viable and necrotic cells.
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The basis of phase-field tumor models, i.e. a Cahn–Hilliard equation for the

tumor volume fraction �T and a reaction–di↵usion equation for the nutrient con-

centration ��, has been proposed in Ref. 30 and has been extended to general

multiphase models in Ref. 25. The existence analysis for this model is provided in

Refs. 9 and 23 and additionally, several flow models for the velocity field of the

mixture have been proposed and analyzed, e.g. flow models by Darcy,10,22,24,26,32

Brinkman,15,16 Darcy–Forchheimer–Brinkman21 and Navier–Stokes.35

To account for cell-to-matrix and cell-to-cell adhesion e↵ects, nonlocal models

have been proposed, see, e.g. Refs. 7 and 20. For the analysis of cell-to-cell adhesion

models, we refer to Refs. 12, 13 and 21. To account for cell-to-matrix adhesion,

one has to introduce the ECM, and up to the authors’ knowledge, there has been

no coupling of the ECM density to a phase-field type tumor growth model. In

Refs. 7, 17 and 54, di↵usion-type tumor models with ECM degradation have been

considered and analyzed.

Our model combines both the phase-field type and the e↵ect of ECM degrada-

tion into one system. The main challenge in the analysis of our system is to control

the ECM density without having a maximum principle for the phase-field tumor

equations, as can be done for di↵usion-type tumor models, see Ref. 54.

4. Analysis of the Local and Nonlocal Model

We consider the system given by Eqs. (2.1), (2.3), (2.6)–(2.9) and modify it to

perform the analysis. Since the equation for the ECM density (2.9) is given by an

operator-valued ordinary di↵erential equation, its solution can be expressed via the

integral

✓(x, t) = ✓(x, 0) exp

⇢
�
Z t

0

�M (x, s)ds

�
a.e. in ⌦⇥ (0, T ). (4.1)

We will employ equation (4.1) going forward. Next, we eliminate the viable cell

volume fraction �V from the system by expressing it in terms of �T and �N , i.e.

�V = �T � �N , which yields the system

@t�T = div(mT (�T ,�N )rµ) � div(J↵(�T ,�N , ✓)) + ��f1(�T ,�N )

� �apo
T �T � �dec

N �N ,

µ =  0(�T ) � "2T��T � �C�� + �T�T ,

@t�N = S (�V N � ��)f2(�T ,�N ) � �deg
N �N ,

@t�� = div(D�(��)(��1
� r�� � �Cr�T )) + (�T � �N )f3(��),

@t�M = div(DM (�M )r�M ) + ✓f4(�T ,�N ,��,�M ) � �pro
M �M ,

✓(x, t) = ✓(x, 0) exp

⇢
�
Z t

0

f5(�M (x, s))ds

�
,

(4.2)
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where �dec
N := �deg

N � �apo
T . Note that we have additionally modified the equation

for �N by introducing the Sigmoid function S as a smooth approximation of the

Heaviside step function H . This modification is necessary to derive H1-estimates in

space of the necrotic tumor volume fraction �N . Furthermore, we have generalized

the right-hand side terms in (2.1), (2.3), (2.6)–(2.8), (4.1) by introducing functions

fi, i 2 {1, . . . , 5}, on which we make the following assumptions:

(A7nonloc) The functions f1 2 Cb(R2), f2 2 Lip(R2) \ PC1(R2), f3 2 Cb(R), f4 2
Cb(R4), and f5 2 Cb(R; R�0) satisfy

(9 f1, f̄1 > 0) (8x) : |fi(x)|  f1, 8 i 2 {1, . . . , 5}, |Dxf2(x)|  f̄1 a.e.,

in the case of the nonlocal model (↵ = nonloc), or

(A7loc) Let (A7nonloc) hold. Additionally, let f5 2Lip(R; R�0) such that |Dxf5(x)| 
f̄1 a.e.,

in case of the local model (↵ = loc).

Here, PC1 denotes the space of piecewise continuously di↵erentiable functions,

which ensure together with Lipschitz continuity the validity of the chain rule in the

situation of a composition with a vector-valued Sobolev function; see Refs. 36 and

45. We note that the assumption on f5 is strengthened in the local case from conti-

nuity to Lipschitz continuity. Since Lipschitz continuous functions are almost every-

where di↵erentiable, the expression Dxf5 is well-defined a.e. for f5 2 Lip(R; R�0).

In Sec. 5, we give specific and practically relevant examples of functions

f1, . . . , f5, which satisfy the assumptions given in (A7↵) and relate the system (4.2)

to the model given by (2.1), (2.3), (2.6)–(2.9).

We couple the system of equations (4.2) to the initial data and homogeneous

Neumann boundary conditions
8
><
>:

@n�T = @n�� = @n�M

= mT (�T ,�N )@nµ � J↵(�T ,�N , ✓) · n = 0 on @⌦⇥ (0, T ),

(�T ,�N ,��,�M )|t=0 = (�T,0,�N,0,��,0,�M,0),

(4.3)

where n denotes the outer unit normal of @⌦.

We next define the notion of a weak solution to our system.

Definition 4.1. (Weak solution) Let ↵ 2 {loc, nonloc} and ✓0 2 X↵, with X↵

defined as in (3.6). We call (�T , µ,�N ,��,�M , ✓) a weak solution of the initial-

boundary value problem (4.2), (4.3) if

�T 2 L1(0, T ; H1) \ H1(0, T ; (H1)0), µ 2 L2(0, T ; H1),

�N 2 L1(0, T ; H1) \ H1(0, T ; L2),

��,�M 2 L2(0, T ; H1) \ L1(0, T ; L2) \ H1(0, T ; (H1)0),

✓ 2
(

W 1,1(0, T ; L1) \ H1(0, T ; H1) for ↵ = loc,

W 1,1(0, T ; L2) for ↵ = nonloc,
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and it holds that

h@t�T ,'1i + (mT (�T ,�N )rµ,r'1) � (J↵(�T ,�N , ✓),r'1)

� (��f1(�T ,�N ),'1) + (�apo
T �T + �dec

N �N ,'1) = 0, (4.4a)

�(µ,'2) + ( 0(�T ),'2) + "2T (r�T ,r'2)

��C(��,'2) + �T (�T ,'2) = 0, (4.4b)

(@t�N ,'3) � (S (�V N � ��)f2(�T ,�N ),'3) + �deg
N (�N ,'3) = 0, (4.4c)

h@t��,'4i + (D�(��)r'4, �
�1
� r�� � �Cr�T )

+ ((�T � �N )f3(��),'4) = 0, (4.4d)

h@t�M ,'5i + (DM (�M )r�M ,r'5) � (✓f4(�T ,�N ,�M ,��),'5)

+�pro
M (�M ,'5) = 0, (4.4e)

a.e. in time, for all test functions '1,'2,'4,'5 2 H1, '3 2 L2, and

✓(x, t) = ✓0(x) exp

⇢
�
Z t

0

f5(�M (x, s))ds

�
a.e. in ⌦⇥ (0, T ), (4.4f)

where

(�T , �N , ��, �M )|t=0 = (�T,0, �N,0, ��,0, �M,0).

4.1. Existence of solutions

Our first goal is to prove existence of solutions for the local and nonlocal model.

Theorem 4.1. (Existence of weak solutions) Let ↵ 2 {loc, nonloc} and ✓0 2 X↵,

with X↵ defined as in (3.6). Furthermore, let assumptions (A1)–(A6), (A7↵) hold

and let the initial data have the following regularity:

�T,0 2 H1, �N,0 2 H1, ��,0 2 L2, �M,0 2 L2.

Then there exists a solution (�T , µ,�N ,��,�M , ✓) of the problem (4.2) in the sense

of Definition 4.1. Additionally, the following energy estimate holds:

k�T k2
L1H1 + kµk2

L2H1 + k�Nk2
L1H1 + k��k2

L1L2 + k��k2
L2H1

+ k�Mk2
L1L2 + k�Mk2

L2H1 + k✓k2
L1X↵

 C(T )(1 + IC),

where

IC = |�T,0|2H1 + |�N,0|2H1 + |��,0|2L2 + |�M,0|2L2 + |✓0|2X↵
.
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4.2. Galerkin approximations in space

To prove existence of solutions, we employ Galerkin approximations in space, fol-

lowing the strategy in e.g., Refs. 21, 23 and 26. We construct approximate solutions

by considering eigenfunctions {wk}k2N of the Neumann-Laplacian:
8
<
:
��wk = �kwk, in ⌦,

@wk

@n
= 0, on @⌦.

(4.5)

It is known that the eigenfunctions of the Neumann-Laplacian form an orthonormal

basis of L2 and an orthogonal basis of H1; cf. Theorem II.6.6 in Ref. 5. We then

define the discrete space by

Vn = span{w1, . . . , wn}. (4.6)

We seek approximate solutions of the form

�n
T (x, t) =

nX

j=1

↵j(t)wj(x), �n
N (x, t) =

nX

j=1

�j(t)wj(x),

�n
�(x, t) =

nX

j=1

�j(t)wj(x), �n
M (x, t) =

nX

j=1

�j(t)wj(x),

(4.7)

where ↵j ,�j , �j , �j : (0, T ) ! R will be determined by a system of ordinary di↵er-

ential equations. We choose the approximations of the initial conditions as follows:

�n
T,0 = ⇧Vn

�T,0, �n
N,0 = ⇧Vn

�N,0,

�n
�,0 = ⇧Vn

��,0, �n
M,0 = ⇧Vn

�M,0.
(4.8)

Above, ⇧Vn denotes the L2 projection operator: (⇧Vnu, v) = (u, v) for all v 2 Vn.

Note that for all n 2 N it holds that

|�n
T,0|H1  |�T,0|H1 , |�n

N,0|H1  |�N,0|H1 ,

|�n
�,0|L2  |��,0|L2 , |�n

M,0|L2  |�M,0|L2 ,
(4.9)

see, e.g. Lemma 7.5 in Ref. 51.

The semi-discretization of the problem (4.2) is then given by

(@t�
n
T ,'n) + (mT (�n

T ,�n
N )rµn,r'n) � (J↵(�n

T ,�n
N , ✓n),r'n)

� (�n
�f1(�

n
T ,�n

N ),'n) + (�apo
T �n

T + �dec
N �n

N ,'n) = 0, (4.10a)

�(µn,'n) + ( 0(�n
T ),'n) + "2T (r�n

T ,r'n) � �C(�n
�,'n)

+ �T (�n
T ,'n) = 0, (4.10b)

(@t�
n
N ,'n) � (S (�V N � �n

�)f2(�
n
T ,�n

N ),'n) + �deg
N (�n

N ,'n) = 0, (4.10c)

(@t�
n
�,'n) + (D�(�n

�)(��1
� r�n

� � �Cr�n
T ),r'n)

+ ((�n
T � �n

N )f3(�
n
�),'n) = 0, (4.10d)
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(@t�
n
M ,'n) + (DM (�n

M )r�n
M ,r'n) � (✓nf4(�

n
T ,�n

N ,�n
�,�n

M ),'n)

+�pro
M (�n

M ,'n) = 0, (4.10e)

✓n(x, t) = ✓0(x) exp

⇢
�
Z t

0

f5(�
n
M (x, s))ds

�
, (4.10f)

for all 'n 2 Vn, with

(�n
T , �n

N , �n
�, �n

M )|t=0 = (�n
T,0, �

n
N,0, �

n
�,0, �

n
M,0). (4.11)

The system (4.10)–(4.11) is equivalent to an initial value problem for a system

of integro-di↵erential equations for the unknown function ⇠ = (⇠1, . . . , ⇠n), where

⇠i = (↵i,�i, �i, �i), i 2 {1, . . . , n}, which can be equivalently written as

@t⇠i(t) = F i(t, ⇠(t), K⇠(t))

= bF i(t, ⇠(t)) + eF i(t, ⇠(t), K⇠(t)),

for all i 2 {1, . . . , n}, where K⇠(t) =
R t

0
f5(
Pn

j=1 �j(s)wj)ds and

eF i
1 =

Z

⌦

g(�n
T (x, t),�n

N (x, t))G(✓0 exp{�K⇠(t)}) · rwi dx,

eF i
2 = eF i

3 = 0,

eF i
4 =

Z

⌦

✓0 exp{�K⇠(t)}f4(�
n
T (x, t),�n

N (x, t),�n
�(x, t),�n

M (x, t))wi dx.

We note that the given functions  0, mT , DM , D�, f1, . . . , f5 are all continuous.

Therefore, on account of an extension of the Cauchy–Peano theorem for integro-

di↵erential equations, see Theorem 7.1 in Appendix A below, we obtain a solution

of (4.10)–(4.11) such that

(�n
T , µn, �n

N , �n
�, �n

M , ✓n) 2 C1([0, Tn]; Vn) ⇥ C([0, Tn]; Vn)

⇥ (C1([0, Tn]; Vn))3 ⇥ C([0, Tn]; X↵),

for su�ciently short time Tn  T . The upcoming energy estimate will allow us to

extend the existence interval to [0, T ].

4.3. Energy estimates

Our next goal is to derive an energy estimate for solutions of (4.10a)–(4.10f), (4.11)

that is uniform with respect to n. To this end, we test Eqs. (4.10a)–(4.10e) with

di↵erent test functions.

Estimates for ✓n.

Since the integral and the exponential function are continuous and the function

f5 is non-negative by assumption (A7↵), we conclude

|✓n(t)|Lp  |✓0|Lp , (4.12)
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for all t  Tn. Above, p 2 [1, 2] for ✓0 2 Xnonloc = L2 and p 2 [1,1] for ✓0 2 Xloc =

H1 \ L1.

In the nonlocal case, this uniform bound of ✓n is already enough for the upcom-

ing energy estimates. We recall that the term J↵(�n
T ,�n

N , ✓n) in the equation for

�n
T can be expressed as g(�n

T ,�n
N )G(✓n) on account of assumption (A6). Since the

operator G requires an argument in X↵, we still have to derive an estimate of ✓n

in H1 when ↵ = loc.

↵ = loc: By the product rule and the chain rule for the composition of a bounded

Lipschitz continuous function with a Sobolev function, see Ref. 60 , we further infer

that

r✓n(t) =

✓
r✓0 � ✓0

Z t

0

f 0
5(�

n
M (s))r�n

M (s)ds

◆
· exp

⇢
�
Z t

0

f5(�
n
M (s))ds

�
,

(4.13)

for all t 2 [0, Tn]. From here, using assumption (A7loc), we obtain the bound for

the gradient of the ECM density

|r✓n(t)|L2  |r✓0|L2 + |✓0|L1
p

Tn f̄1 kr�n
MkL2

t L2 ,

for t 2 [0, Tn], where we have used the abbreviation L2
t L

2 for L2(0, t; L2(⌦)). By

combining this estimate and the estimate (4.12) with p = 2, it follows for all t 2
[0, Tn] that

|✓n(t)|2H1  2|✓0|2H1 + 2T f̄2
1|✓0|2L1kr�n

Mk2
L2

t L2 . (4.14)

Estimates for �n
M .

Testing equation (4.10e) with 'n = �n
M (t) 2 Vn and recalling assumption (A3)

as well as the bound (4.12) for ✓n yields

1

2

d

dt
|�n

M |2L2 + D0|r�n
M |2L2 + �pro

M |�n
M |2L2  f1

2
(|✓0|2L2 + |�n

M |2L2). (4.15)

After integrating over (0, t), where t  Tn, we conclude by the Gronwall lemma

that

|�n
M (t)|2L2 + kr�n

Mk2
L2

t L2 + k�n
Mk2

L2
t L2  C(Tn)

�
|�n

M,0|2L2 + |✓0|2L2

�
. (4.16)

Adding to this estimate (4.12) and (4.14) for ↵ = loc, or (4.12) for ↵ = nonloc, we

get

|✓n(t)|2X↵
+ |�n

M (t)|2L2 + k�n
Mk2

L2
t H1  C(Tn)

�
|✓0|2X↵

+ |�M,0|2L2

�
. (4.17)

Note that above we have also employed the uniform bound for the approximate

initial data �n
M,0 given in (4.9).
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Estimates for �n
T , µn,�n

�.

Testing equation (4.10a) with µn(t) +�C�
n
�(t), Eq. (4.10b) with �@t�

n
T (t), and

Eq. (4.10d) with K1�
n
�(t), where K1 > 0, and adding the resulting equations yields

d

dt


| (�n

T )|L1 +
"2T
2

|r�n
T |2L2 +

�T
2

|�n
T |2L2 +

K1

2
|�n

�|2L2

�

+

����
q

mT (�n
T ,�n

N )rµn

����
2

L2

+ K1�
�1
�

���
p

D�(�n
�)r�n

�

���
2

L2

= ��C(mT (�n
T ,�n

N )rµn,r�n
�) + (J↵(�n

T ,�n
N , ✓n),r(µn + �C�

n
�))

+ (f1(�
n
T ,�n

N )�n
� � �apo

T �n
T � �dec

N �n
N , µn + �C�

n
�)

+ K1�C(D�(�n
�)r�n

T ,r�n
�) � K1((�

n
T � �n

N )f3(�
n
�),�n

�) =: RHS. (4.18)

We can then estimate the right-hand side of (4.18) by using assumptions (A2),

(A6), (A7↵), and Hölder’s inequality as follows:

RHS  �Cm1|rµn|L2 |r�n
�|L2 + C|✓n|X↵

(|rµn|L2 + �C |r�n
�|L2)

+ (f1|�n
�|L2 + �apo

T |�n
T |L2 + |�dec

N | · |�n
N |L2)(|µn|L2 + �C |�n

�|L2)

+ K1�CD1|r�n
T |L2 |r�n

�|L2 + K1f1(|�n
T |L2 + |�n

N |L2)|�n
�|L2 . (4.19)

We note that we need a bound on |µn|L2 to further estimate (4.19). Testing (4.10b)

with 1 2 H1 and taking into account assumption (A7) on the function  results in

|µn|L1 
Z

⌦

| 0(�n
T )|dx + �C |�n

�|L1 + �T |�n
T |L1

 R3(|⌦| + |�n
T |L1) + �C |�n

�|L1 + �T |�n
T |L1

 R3|⌦| + (R3 + �T )|⌦|1/2|�n
T |L2 + �C |⌦|1/2|�n

�|L2 ,

we refer also to Ref. 22 where a similar argument is employed. By the Poincaré

inequality (3.1), we then conclude

|µn|L2  |µn � µn|L2 + |µn|L2  CP|rµn|L2 +
1

|⌦| |µ
n|L1

 CP|rµn|L2 + R3 + (R3 + �T )|⌦|�1/2|�n
T |L2 + �C |⌦|�1/2|�n

�|L2 . (4.20)

Therefore, by using (4.20), we can further estimate the right-hand side of (4.18) as

follows:

RHS  �Cm1|rµn|L2 |r�n
�|L2 + C|✓n|X↵

(|rµn|L2 + �C |r�n
�|L2)

+ (f1|�n
�|L2 + �apo

T |�n
T |L2 + |�dec

N | · |�n
N |L2){CP|rµn|L2 + R3

+ (R3 + �T )|⌦|�1/2|�n
T |L2 + �C |⌦|�1/2|�n

�|L2 + �C |�n
�|L2}

+ K1�CD1|r�n
T |L2 |r�n

�|L2 + K1f1(|�n
T |L2 + |�n

N |L2)|�n
�|L2 .

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
24

33
-2

46
8.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

RE
A

D
IN

G
 o

n 
12

/0
2/

19
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



November 21, 2019 16:21 WSPC/103-M3AS 1950051

2448 M. Fritz et al.

By employing Young’s inequality, we get

RHS 
⇣m0

2
+ 4"

⌘
|rµn|2L2 +

✓
�2

Cm2
1

2m0
+ "

◆
|r�n

�|2L2

+ C
�
1 + |�n

�|2L2 + |�n
T |2L2 + |r�n

T |2L2 + |�n
N |2L2 + |✓n|2X↵

�
,

where " > 0. Introducing this estimate of the right-hand side into (4.18) and recall-

ing assumptions (A2) and (A3) yields

d

dt


| (�n

T )|L1 +
"2T
2

|r�n
T |2L2 +

�T
2

|�n
T |2L2 +

K1

2
|�n

�|2L2

�

+
⇣m0

2
� 4"

⌘
|rµn|2L2 +

✓
K1D0�

�1
� � �2

Cm2
1

2m0
� "

◆
|r�n

�|2L2

 C
�
1 + |✓n|2X↵

+ |�n
�|2L2 + | (�n

T )|L1 + |r�n
T |2L2 + |�n

N |2L2

�
, (4.21)

where we have first picked " 2 (0, m0/8) and then chosen K1 su�ciently large so

that

K2 := K1D0�
�1
� � �2

Cm2
1

2m0
� " > 0. (4.22)

Estimates for �n
N .

Testing equation (4.10c) with �n
N (t) 2 Vn yields, after some standard manipu-

lations,

1

2

d

dt
|�n

N |2L2 + �deg
N |�n

N |2L2  f1
2

�
|�N |2L2 + |⌦|

�
. (4.23)

This estimate would be enough to absorb the �n
N term on the right-hand side of

(4.21). However, we here also derive an estimate of �n
N in the space L1(0, T ; H1),

which will enable us to perform the limit process as n ! 1 later on. Testing (4.10c)

with ���n
N (t) 2 Vn and performing integration by parts results in

1

2

d

dt
|r�n

N |2L2 + �deg
N |r�n

N |2L2

= �V N (r(S (�V N � �n
�)f2(�

n
T ,�n

N )),r�n
N )

= (�r�n
�S 0(�V N � ��)f2(�

n
T ,�n

N ),r�n
N )

+ (S (�V N � �n
�)r�n

T@1f2(�
n
T ,�n

N ),r�n
N )

+ (S (�V N � �n
�)r�n

N@2f2(�
n
T ,�n

N ),r�n
N ),

where we have applied the chain rule for the composition of a bounded Lipschitz,

piecewise continuously di↵erentiable function and a vector-valued Sobolev function;

see Refs. 36 and 45. After employing the same type of arguments as before, this
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estimate implies that

d

dt
|r�n

N |2L2 + |r�n
N |2L2  K2

2
|r�n

�|2L2 + C(K2) ·
�
|r�n

N |2L2 + |r�n
T |2L2

�
, (4.24)

where K2 is the positive constant in (4.22).

Final energy estimate.

Combining the upper bounds (4.20), (4.21), (4.23), and (4.24) yields

d

dt

⇥
| (�n

T )|L1 + |r�n
T |2L2 + |�n

T |2L2 + |�n
�|2L2 + |�N |2H1

⇤
+ |µn|2H1 + |r�n

�|2L2

 C
�
1 + |✓n|2X↵

+ |�n
�|2L2 + | (�n

T )|L1 + |r�n
T |2L2 + |�n

N |2H1

�
. (4.25)

After integrating (4.25) over (0, t), where t  Tn and taking into account estimate

(4.17), we have

| (�n
T (t))|L1 + |r�n

T (t)|2L2 + |�n
�(t)|2L2 + |�n

N (t)|2H1 + kµnk2
L2

t H1 + kr�n
�k2

L2
t L2

 ICn + C(Tn) ·
�
1 + |�n

�|2L2 + | (�n
T )|L1 + |r�n

T |2L2 + |�n
N |2H1

�
. (4.26)

Above, we have introduced the following constant that depends on the approximate

initial data to simplify the notation:

ICn = |�n
T,0|2H1 + | (�n

T,0)|L1 + |�n
�,0|2L2 + |�n

N,0|2L2 + |�n
M,0|2L2 + |✓0|2X↵

.

We can employ the fact that

| (�n
T,0)|L1  C + C|�n

T,0|2L2  C + C|�T,0|2L2 ,

and thus, ICn can be estimated in terms of the initial data as follows:

ICn  IC = |�T,0|2H1 + C + C|�T,0|2L2 + |��,0|2L2 + |�N,0|2H1 + |�M,0|2L2 + |✓0|2X↵
,

where the constant C does not depend on n. By adding (4.17) to (4.26), applying

Gronwall’s inequality to the resulting estimate, and taking the supremum over

(0, Tn), we get

k (�n
T )kL1

t L1 + kr�n
T k2

L1
t L2 + k�n

�k2
L1

t L2 + k�n
Nk2

L1
t H1 + k✓nk2

L1
t X↵

+ k�n
Mk2

L1
t L2 + k�n

Mk2
L2

t H1 + kµnk2
L2

t H1 + k�n
�k2

L2
t H1

 C(T )(1 + IC), (4.27)

for all t 2 [0, Tn]. The right-hand side of this estimate is independent of Tn, which

allows to extend the existence interval to [0, T ]; see also Sec. I.6.VI in Ref. 58.

We remark that from (4.27) we can get a uniform bound for �n
T in L1(0, T ; H1)

by noting that

|�n
T (t)|2L2  2C2

P|r�n
T (t)|2L2 + 2

1

|⌦|2 |�n
T (t)|2L1

 2C2
P|r�n

T (t)|2L2 + 2
1

|⌦|2
1

R1
(| (�n

T (t))|L1 + R2), (4.28)
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for all t 2 [0, T ]. Above, we have made use of the Poincaré inequality (3.1) and

assumption (A5) on the potential  .

Additional estimates of the time derivatives of ✓n, �n
N , �n

T , and �n
�.

The derived energy estimate (4.27) implies the boundedness of the Galerkin

solution (�n
T , µn,�n

N ,�n
�,�n

M ) and of ✓n in appropriate Banach spaces, which in turn

implies the weak and weak-⇤ convergence of subsequences. We consider taking the

limit n ! 1 in the Galerkin system (4.10). Since the equations in our system are

nonlinear in �n
T , �n

N , �n
� and �n

M , we want to acquire strong convergence of the

respective subsequences. We can obtain strong convergence from compact embed-

dings (3.3), which requires the boundedness of the respective time derivative. We

derive these estimates in this section.

Testing equation (4.10c) with @t�
n
N (t) 2 Vn and employing Young’s inequality

yields

(1 � ")k@t�
n
Nk2

L2L2 +
�deg

N

2
k�Nk2

L1L2  C(T, ") +
�deg

N

2
|�N,0|2L2 , (4.29)

where " 2 (0, 1). Furthermore, from Eq. (4.10d) we find that for all ' 2 L2(0, T ; H1)

it holds that
Z T

0

Z

⌦

@t�
n
�' dxdt  (D1�

�1
� kr�n

�kL2L2 + D1�Ckr�n
T kL2L2

+ f1(k�n
NkL2L2 + k�n

T kL2L2))k'kL2H1 ,

from which we also get that

k@t�
n
�kL2(H1)0  C(kr�n

�kL2L2 + kr�n
T kL2L2 + k�n

NkL2L2), (4.30)

where the constant C > 0 does not depend on n. Similarly, from Eq. (4.10a) we

have
Z T

0

Z

⌦

@t�
n
T ' dxdt 

�
m1krµnkL2L2 + Ck✓nkL2L2 + f1k�n

�kL2L2

+�apo
T k�n

T kL2L2 + |�dec
N | · k�n

NkL2L2

�
k'kL2H1 ,

and from Eq. (4.10e)
Z T

0

Z

⌦

@t�
n
M ' dxdt  (D1kr�n

MkL2L2 + f1k✓nkL2L2 + �pro
M k�n

MkL2L2)k'kL2H1 ,

for all ' 2 L2(0, T ; H1). From the above two estimates it follows that

k@t�
n
T kL2(H1)0  C(krµnkL2L2 + kr✓nkL2L2 + k�n

�kL2L2

+ k�n
T kL2L2 + k�n

NkL2L2),

k@t�
n
MkL2(H1)0  C(kr�n

MkL2L2 + k✓nkL2L2 + k�n
MkL2L2). (4.31)

Lastly, we note that from the integral representation of the ECM density ✓n we

can directly derive a uniform bound of @t✓
n in L1(0, T ; L2) for ↵ = nonloc and in

L1(0, T ; L1) \ L2(0, T ; H1) for ↵ = loc.
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4.4. Passing to the limit

On account of the final estimate (4.26) for Galerkin approximations and estimates

(4.28)–(4.31), we can conclude that

{�n
T }n2N is bounded in L1(0, T ; H1) \ H1(0, T ; (H1)0),

{µn}n2N is bounded in L2(0, T ; H1),

{�n
N}n2N is bounded in L1(0, T ; H1) \ H1(0, T ; L2),

{�n
�}n2N is bounded in L1(0, T ; L2) \ L2(0, T ; H1) \ H1(0, T ; (H1)0),

{�n
M}n2N is bounded in L1(0, T ; L2) \ L2(0, T ; H1) \ H1(0, T ; (H1)0),

{✓n}n2N is bounded in

(
W 1,1(0, T ; L2), ↵ = nonloc,

W 1,1(0, T ; L1) \ H1(0, T ; H1), ↵ = loc,

(4.32)

uniformly with respect to n. This implies the existence of weakly/weakly-⇤ converg-

ing subsequences, indexed again by n, to some limit functions (�T , µ,�N ,��,�M , ✓)

in the respective spaces and the following strong convergences due to the Aubin–

Lions Compactness lemma, see (3.3),

�n
T ! �T strongly in C([0, T ]; L2),

�n
N ! �N strongly in C([0, T ]; L2),

�n
� ! �� strongly in L2(0, T ; L2),

�n
M ! �M strongly in L2(0, T ; L2),

(4.33)

as n ! 1 and the following weak convergence:

✓n * ✓ weakly in L2(0, T ; X↵). (4.34)

We next show that the limit functions (�T , µ,�N ,��,�M , ✓) are a solution of

the problem (4.2) in the sense of Definition 4.1. In particular, for the ECM density

✓ we have to prove that it possesses the integral representation given in (4.4f). Due

to the strong convergence of �n
M to �M in L2(⌦ ⇥ (0, T )), there is a subsequence,

for notational simplicity indexed again by n, such that

�n
M (x, t) ! �M (x, t) for a.e. (x, t) 2 ⌦⇥ (0, T ),

for n ! 1. On account of the exponential function being continuous, the Lebesgue

dominated convergence theorem, and f5 being continuous and bounded, we have

✓n(x, t) = ✓0(x) exp

⇢
�
Z t

0

f5(�
n
M (x, s))ds

�
! ✓0(x) exp

⇢
�
Z t

0

f5(�M (x, s))ds

�

almost everywhere as n ! 1. Applying the Lebesgue dominated convergence the-

orem again yields

✓n !
✓

(x, t) 7! ✓0(x) exp

⇢
�
Z t

0

f5(�M (x, s))ds

�◆
in L2(⌦⇥ (0, T )),
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as n ! 1. Since strong convergence implies weak convergence and weak limits are

unique, we have proven that ✓, given in (4.34), is of the required form.

For the other solution functions, we multiply the Galerkin system (4.10) by an

arbitrary test function ⌘ 2 C1
c (0, T ) and integrate from 0 to T , which gives for all

j 2 {1, . . . , n},
Z T

0

[h@t�
n
T , wji + (mT (�n

T ,�n
N )rµn,rwj) � (J↵(�n

T ,�n
N , ✓n),rwj)

� (�n
�f1(�

n
T ,�n

N ), wj) + (�apo
T �n

T + �dec
N �n

N , wj)]⌘(t)dt = 0,

Z T

0

[�(µn, wj) + ( 0(�n
T ), wj) + "2T (r�n

T ,rwj) � �C(�n
�, wj)

+ �T (�n
T , wj)]⌘(t)dt = 0,

Z T

0

[(@t�
n
N ,'n) � (S (�V N � �n

�)f2(�
n
T ,�n

N ), wj)

+ �deg
N (�n

N , wj)i]⌘(t)dt = 0,

Z T

0

[h@t�
n
�, wji + (D�(�n

�)(��1
� r�n

� � �Cr�n
T ),rwj)

+ ((�n
T � �n

N )f3(�
n
�), wj)]⌘(t)dt = 0,

Z T

0

[h@t�
n
M , wji + (DM (�n

M )r�n
M ,rwj) � (✓nf4(�

n
T ,�n

N ,�n
�,�n

M ), wj)

+ �pro
M (�n

M , wj)]⌘(t)dt = 0.

(4.35)

We take the limit n ! 1 in each equation. The convergence of the linear terms

follows directly from the definition of weak convergence. For instance, the functional

µn 7!
Z T

0

(µn, wj)⌘(t)dt  kµnkL2L2 |wj |L2 |⌘|L2(0,T ),

is linear and continuous on L2(0, T ; L2) and therefore, we conclude that
Z T

0

(µn, wj)⌘(t)dt !
Z T

0

(µ, wj)⌘(t)dt,

as n ! 1. It remains to treat the nonlinear terms. We note that a similar limit

process is performed in Ref. 21 for a tumor growth system which also includes a

nonlinear mobility, di↵usion, and potential function with the same assumptions as

in (A2), (A3), and (A5). The same arguments can be applied to our model; we

therefore omit the details here.

We focus on the treatment of the adhesion flux J↵ and the nonlinear functions

f1, . . . , f5. We employ the following three arguments.

(i) By assumption (A6), the adhesion flux has the representation

J↵(�n
T ,�n

N , ✓n) = g(�n
T ,�n

N )G(✓n),
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for g 2 Cb(R2) and G 2 L (X↵; [L2]d). On the one hand, we know ✓n * ✓ weakly in

L2(0, T ; X↵) as n ! 1 by (4.32), which implies by the weak sequential continuity

of G,

G✓n * G✓ weakly in L2(⌦⇥ (0, T ); Rd),

as n ! 1. On the other hand, we have derived �n
T ! �T and �n

N ! �N strongly in

L2(⌦⇥ (0, T )) in (4.33). Therefore, applying the Lebesgue dominated convergence

theorem yields

g(�n
T ,�n

N )rwj⌘ ! g(�T ,�N )rwj⌘ strongly in L2(⌦⇥ (0, T ); Rd),

as n ! 1. Putting these two results together, we finally have, as n ! 1,

J↵(�n
T ,�n

N , ✓n)rwj⌘ ! J↵(�T ,�N , ✓)rwj⌘ strongly in L1(⌦⇥ (0, T )).

(ii) Since S and f2 are bounded, continuous functions, we obtain analogously to

(i), as n ! 1,

S (�V N � �n
�)f2(�

n
T ,�n

N )wj⌘ ! S (�V N � �n
�)f2(�T ,�N )wj⌘,

strongly in L2(⌦⇥ (0, T )).

(iii) Similar to (i), we employ that ✓n * ✓ weakly in L2(⌦⇥ (0, T )) and

f4(�
n
T ,�n

N ,�n
�,�n

M )wj⌘ ! f4(�T ,�N ,��,�M )wj⌘ strongly in L2(⌦⇥ (0, T )),

as n ! 1, which implies the convergence of their product in L1(⌦⇥ (0, T )). Con-

vergence of the terms involving f1, f3, and f5 follows in the same manner.

Finally, by taking the limit n ! 1 in the system (4.35), using the density

of span{w1, w2, . . .} in H1, and the fundamental lemma of calculus of variations,

we obtain a solution (�T , µ,�N ,��,�M , ✓) of the system (4.4) in the sense of

Definition 4.1.

We note that on account of the standard Sobolev embeddings, we have the

following regularity in time of our solution:

�T ,�N 2 C([0, T ]; L2) \ Cw([0, T ]; H1),

��,�M 2 C([0, T ]; L2),

and, thus, initial conditions are meaningful and the Galerkin approximations fulfill

the initial data. This completes the proof.

5. Finite Element Approximations

We select a similar algorithmic framework as in Refs. 21, 39 and 38 to solve the

deterministic systems of the respective local and nonlocal model with the initial and

boundary data (4.3). This framework contains a discrete-time local semi-implicit

scheme with an energy convex-nonconvex splitting; that means the stable con-

tractive part is treated implicitly and the expansive part explicitly. In particular,
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recalling the Ginzburg–Landau energy E in (2.4), we split its contractive part Ec

and expansive part Ee via Ee = E � Ec, see also Refs. 30 and 38.

Let the time domain be divided into the steps �tn = tn+1�tn for n 2 {0, 1, . . .}.

To simplify exposition, we assume �tn = �t for all n. We write �Tn
for the approx-

imation of �h
T (tn) and likewise for the other variables. The backward Euler method

applied to the system (4.2) reads

�Tn+1
� �Tn

�t
= div(mT (�Tn+1

,�Nn+1
)rµn+1) + ��n+1

f1,n+1

� �apo
T �Tn+1

� div(J↵(�Tn+1
,�Nn+1

, ✓n+1)) � �dec
N �Nn+1

µn+1 = D�T
Ec(�Tn+1

,��n+1
) � D�T

Ee(�Tn
,��n

),

�Nn+1
� �Nn

�t
= S (�V N � ��n+1

)f2,n+1 � �deg
N �Nn+1

,

��n+1
� ��n

�t
= div(D�(✓n+1)(�

�1
� r��n+1 � �Cr�Tn+1))

+ (�Tn+1
� �Nn+1

)f3,n+1,

�Mn+1
� �Mn

�t
= div(DM (✓n+1)r�Mn+1

) + ✓n+1f4,n+1 � �dec
M �Mn+1

,

✓n+1 � ✓n

�t
= �✓f5,n+1.

(5.1)

The functions fi,n+1, i 2 {1, . . . , 5}, are given by

f1,n+1 = �pro
T (C(�Tn+1

) � C(�Nn+1
)) · (1 � C(�Tn+1

)),

f2,n+1 = �V N (C(�Tn+1
) � C(�Nn+1

)),

f3,n+1 = �pro
T (C(�Tn+1

) � C(�Nn+1
))

C(��n+1)

C(��n+1
) + �sat

�

,

f4,n+1 = �pro
M (C(�Tn+1

) � C(�Nn+1
))

�H

�H + C(��n+1)
(1 � C(�Mn+1

))

� �dec
✓ C(�Mn+1),

f5,n+1 = �deg
✓ C(�Mn+1

),

(5.2)

where C denotes the cut-o↵ operator,

C(�) = max(0, min(1,�)).

The functions fi,n+1, i 2 {1, . . . , 5}, are selected so that the model given in (2.1),

(2.6)–(2.9) is replicated besides the cut-o↵ operator and the Sigmoid function S

approximating the Heaviside step function H . Furthermore, the functions satisfy

the assumptions given in (A7loc).

We solve the highly nonlinear coupled system (5.1) by decoupling the equations

and using an iterative Gauß–Seidel method. In Algorithm 1, the subscript 0 stands
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for the initial solution, k the iteration index, niter the maximum number of iterations

at each time step and TOL the tolerance for the iteration process. In each iterative

loop, three linear systems are solved and the convergence of the nonlinear solution

is achieved at each time if max|�k+1
Tn+1

� �k
Tn+1

| < TOL.

We obtain the algebraic systems using a Galerkin finite element approach. Let

T h be a quasiuniform family of triangulations of ⌦ and let the piecewise linear

finite element space be given by

Vh = {v 2 C(⌦) : v|T 2 P1(K) for all K 2 T h} ⇢ H1(⌦),

where P1(T ) denotes the set of all a�ne linear functions on T .

We formulate the discrete problem as follows: for each k, find
�
�k+1

Tn+1
, µk+1

n+1, �
k+1
Nn+1

, �k+1
�n+1

, �k+1
Mn+1

, ✓k+1
n+1

�
2 (Vh)6,

for all

('T , 'µ, 'N , '�, 'M , '✓) 2 (Vh)6,

such that
�
�k+1
�n+1

� ��n
,'�

�
+�t

�
DM (✓k

n+1) · (��1
� r�k+1

�n+1
� �Cr�k

Tn+1
),r'�

�

��t�pro
T

 
�
�k

Tn+1
� �k

Nn+1

��
C
�
�k

Tn+1

�
� C

�
�k

Nn+1

�� C
�
�k+1
�n+1

�

C
�
�k+1
�n+1

�
+ �sat

�

,'�

!

= 0, (5.3)
�
�k+1

Tn+1
� �Tn

,'T

�
+�t

�
mT

�
�k+1

Tn+1
,�k+1

Nn+1

�
rµk+1

n+1,r'T

�

��t
�
J↵

�
�k+1

Tn+1
,�k

Nn+1
, ✓k

n+1),r'T

�

��t�pro
T

��
C
�
�k+1

Tn+1

�
� C

�
�k

Nn+1

��
·
�
1 � C(�k+1

Tn+1

��
,�k+1

�n+1
'T )

+�t
�
�apo

T �k+1
Tn+1

+ �dec
N �k

Nn+1
,'T

�
= 0, (5.4)

�
µk+1

n+1,'µ

�
�
�
D�T

Ec(�
k+1
Tn+1

,�k+1
�n+1

),'µ

�
= (D�T

Ee(�Tn
,��n

),'µ), (5.5)

�
�k+1

Nn+1
� �Nn

,'N

�
��t

�
C
�
�k+1

Tn+1
� �k+1

Nn+1

�
, S
�
�V N � �k+1

�n+1

�
'N

�

+�t�deg
N

�
�k+1

Nn+1
,'N

�
= 0, (5.6)

�
�k+1

Mn+1
� �Mn ,'M

�
+�t

�
DM

�
✓k

n+1

�
r�k+1

Mn+1
,r'M

�

��t�pro
M

 
✓k

n+1

�
C
�
�k+1

Tn+1

�
� C

�
�k+1

Nn+1

�� �H

�H + C
�
�k+1
�n+1

�
�
1 � C

�
�k+1

Mn+1

��
,'M

!

+�t�dec
✓

�
✓k

n+1C
�
�k+1

Mn+1

�
,'M

�
+�t�dec

M

�
�k+1

Mn+1
,'M

�
= 0, (5.7)

�
✓k+1

n+1 � ✓n,'✓

�
+�t�deg

✓

�
✓k+1

n+1C
�
�k+1

Mn+1

�
,'✓

�
= 0. (5.8)

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
24

33
-2

46
8.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

RE
A

D
IN

G
 o

n 
12

/0
2/

19
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



November 21, 2019 16:21 WSPC/103-M3AS 1950051

2456 M. Fritz et al.

Algorithm 1. Semi-implicit scheme for (5.1).

Input: �T0
,�N0

,��0 ,�M0
, ✓0,�t, T, TOL

Output: �Tn
, µn,�Nn

,��n ,�Mn
, ✓n for all n

n = 0

t = 0

while t  T do

�0
Tn+1

= �Tn
, �0

Nn+1
= �Nn

, �0
�n+1

= ��n , �0
Mn+1

= �Mn
, ✓0

n+1 = ✓n

while maxk�k+1
Tn+1

� �k
Tn+1

k > TOL do

�k
Tn+1

= �k�1
Tn+1

, �k
Nn+1

= �k�1
Nn+1

, �k
�n+1

= �k�1
�n+1

, �k
Mn+1

= �k�1
Mn+1

,

✓k
n+1 = ✓k�1

n+1

solve �k+1
�n+1

using (5.3), given ��n ,�k
Tn+1

,�k
Nn+1

solve �k+1
Tn+1

, µk+1
n+1 using (5.4) and (5.5), given

�Tn
,�k

Tn+1
,�k

Nn+1
,�k+1

�n+1
, ✓k

n+1

solve �k+1
Nn+1

using (5.6), given �Nn
,�k+1

Tn+1
,�k+1

�n+1

solve �k+1
Mn+1

using (5.7), given �Mn
,�k+1

Tn+1
,�k+1

�n+1
, ✓k

n+1

solve ✓k+1
n+1 using (5.8), given ✓n,�k+1

Mn+1

k 7! k + 1
end

�Tn+1
= �k+1

Tn+1
, µn+1 = µk+1

n+1, �Nn+1
= �k+1

Nn+1

��n+1 = �k+1
�n+1

, �Mn+1
= �k+1

Mn+1
, ✓n+1 = ✓k+1

n+1

n 7! n + 1

t 7! t + �t
end

We implemented Algorithm 1 in libMesh,33 an open-source computing platform

for solving partial di↵erential equations using finite element methods. We use this

implementation to obtain the numerical results as follows.

6. Numerical Simulations

In this section, numerical approximations of the growth of the tumor volume frac-

tions �T and the simulation of the other variables in the local and nonlocal model

(4.2) obtained by implementing Algorithm 1 are presented. We present a numeri-

cal experiment of the local model both in two and three dimension in the domain

⌦ = (�1, 1)d, d 2 {2, 3}. Afterwards, we compare the growth of the tumor volume

fraction in the local and nonlocal model in two dimensions.
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We impose for the nutrient concentrations an inhomogeneous Dirichlet boundary

condition at x1 = 1, namely �� = 1. This is a slight modification to the analyzed

model in Sec. 4, but the existence proof can be adapted in a straightforward way,

see Ref. 21.

We choose for the parameters in our system (4.2) the dimensionless values

"T = 0.005, �C = 0, �H = 0.001, �� = 0.01, �T = 0,

�pro
T = 2, �apo

T = 0.005, �deg
N = 0, �V N = 1, �sat

� = 0,

�dec
M = 1, �pro

M = 1, �dec
✓ = 0.1, �deg

✓ = 1, E = 0.045,

�H = 0.6, �V N = 0.44, MT = 2, D� = 0.001, DM = 0.1.

6.1. Local model in two dimensions

In Fig. 1, the computed simulations of the volume fractions of tumor cells (�T ),

necrotic cells (�N ) and viable cells (�V ) for a local model in a two-dimensional

domain are shown at four di↵erent time points t 2 {0, 5, 10, 15}. For the initial

t = 0

�T

t = 5 t = 10 t = 15

�N

�V

0 0.5 1

Fig. 1. Simulation of the volume fractions �T , �N , �V in the local model in the 2D domain
⌦ = (�1, 1)2; the evolution of the tumor, necrotic and viable cells is shown at the times t 2
{0, 5, 10, 15}.
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conditions, we start o↵ from a small circular concentration of tumor cells without

a necrotic part, that means �T = �V at t = 0.

In the first row of Fig. 1, one observes that the tumor volume fraction �T

evolves towards the nutrient-rich part of the domain, see also Fig. 2 below for the

simulation of ��. As the transition between tumor phenotypes is guided by the

nutrient concentration, the necrotic concentration increases in the nutrient-poor

region, see the second row in Fig. 1. Moreover, in the third row in Fig. 1, the viable

tumor cells, responsible for the tumor growth, are concentrated closer to the right

side of the domain, which is the region with higher nutrient concentration.

In the first row of Fig. 2, the ECM density (✓) is degraded over time by the

matrix degrading enzymes (�M ). These enzymes are released by the tumor cells,

mainly at regions with low nutrient and high ECM density. The nutrient concentra-

tion decreases as the tumor grows, with a higher value of �� towards the boundary

on the right-hand side of the domain ⌦ = (�1, 1)2, due to the imposed Dirichlet

boundary condition �� = 1 at x1 = 1.

6.2. Local model in three dimensions

The simulation of the ECM density in the three-dimensional domain ⌦ = (�1, 1)3

at the times t 2 {8, 11} is illustrated in Fig. 3. Additionally, an isosurface of the

tumor volume fraction �T at 0.7 is shown in the same plots.

At time t = 0, the top part of the domain has a higher ECM density ✓ = 1 than

the lower part with ✓ = 0.5, similarly to the initial data in the two-dimensional

t = 0

✓

t = 5 t = 10 t = 15

��

0 0.5 1

Fig. 2. Simulation of the ECM density ✓ and the nutrient concentration �� in the local model
in two dimensions; their evolution is shown at the times t 2 {0, 5, 10, 15}.
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0 0.5 1

Fig. 3. Simulation of the ECM density ✓ in the three-dimensional domain ⌦ = (�1, 1)3 together

with the isosurface of the tumor volume fraction �T at 0.7, at the times t = 8 (left plot) and

t = 11 (right plot).

case, see Fig. 2. At t = 8 and t = 11, one observes in Fig. 3 that the ECM density

has degraded around the tumor volume, similar to the two-dimensional case.

The evolution of the volume fractions of tumor cells �T and necrotic cell �N in

the three-dimensional case is depicted in Fig. 4 below. As initial data we take two

separated elliptic-shaped tumor volume fractions, which start to connect at t = 5.

At the initial time there are no necrotic cells. They begin to form at t = 6.5 and

already inhabit a large portion of the tumor volume fraction at t = 11, as seen in

Fig. 4.

6.3. Comparison to the nonlocal model

In this section, we compare the simulation of the tumor volume fraction �T in

the local and nonlocal model (4.2), that means in the local model we choose for

the adhesion flux Jloc = �H�V r✓ and for the nonlocal model Jnonloc = �H�V k ⇤
✓, as introduced in (2.5). In the case of the nonlocal adhesion-based haptotaxis

e↵ect, we have to select an appropriate vector-valued kernel function k. In the

existence proof of the nonlocal model we only had to assume k 2 L1(Rd) and

no additional requirements on its representation. Following Refs. 7, 28 and 29,

we choose a kernel function k", " > 0 indicating some parameter, such that it

approximates the gradient-based haptotaxis e↵ect as " ! 0. See also Refs. 14 and

44 for di↵erent choices for nonlocal gradient operators.

In tumor growth models involving nonlocal cell-to-cell adhesion e↵ects, it is a

standard procedure to replace the term 1
2"

2
T |r�T (x)|2 in the Ginzburg–Landau free
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x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

x2

x1

x3

0 0.5 1

�T

0 0.5 1

�N

Fig. 4. Simulation of volume fractions of tumor cells �T and necrotic cells �N in a three-

dimensional domain, the isosurfaces of 0.2 and 0.4 of each volume fraction at times t 2
{3.5, 5, 6.5, 8, 9.5, 11} are shown.

energy functional (2.4) by

1

4

Z

⌦

J(x � y)(�T (x) � �T (y))2 dy. (6.1)

As shown in Ref. 19, choosing J(x�y) = jd+2�[0,1](|j(x�y)|2) and letting j ! 1,

one returns to the Ginzburg–Landau free energy functional, where the interfacial

parameter is expressed by "2T = 2
d

R
Rd J(|z|2)|z|2dz. Therefore, one can interpret

the classical Cahn–Hilliard equation as an approximation of its nonlocal version.
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Taking the Gateaux derivative of the nonlocal energy functional results in the

chemical potential µ. In particular, the term in (6.1) becomes

�T · J ⇤ 1 � J ⇤ �T ,

instead of �"2T��T in the case of the local Ginzburg–Landau free energy functional.

This suggests for the gradient operator the following approximation:

k ~ ✓(x) := (k ⇤ ✓)(x) � ✓(x) · (k ⇤ 1)(x)

=

Z

Rd

k(x � y)(✓(y) � ✓(x))dy

⇡
Z

Rd

k(x � y)(r✓(x) · (y � x))dy

= r✓(x)

Z

Rd

(y � x) · k(x � y)dy

= r✓(x),

where we chose k such that xk(�x) is a Dirac sequence with the typical propertyR
Rd xk(�x)dx = 1. We impose the representation

k(x) = �!(")x�[0,"](|x|1), (6.2)

which gives in the two-dimensional case
Z

R2

xk(�x) dx = !(")

Z "

�"

Z "

�"

(x2
1 + x2

2)dx1dx2 = !(")
8

3
"4,

and defining !(") = 3
8"

�4 yields the desired normalization property.

Note that k(x) = �!(")x�[0,"](|x|1) is an odd function and therefore,

(k ⇤ 1)(x) =

Z

Rd

k(x � y)dy = 0,

and we can write k ~ ✓ = k ⇤ ✓.
In the following, we numerically investigate the e↵ects of the di↵erent haptotaxis

parameters �H on the growth of the tumor volume fraction. We distinguish between

three di↵erent values for �H , �H 2 {5·10�4, 10�3, 2·10�3}. We can observe in Fig. 5

that a lower haptotaxis parameter results in a more circular shape than for a higher

�H , e.g. for �H = 10�3, we see that the tumor shape forms a bump at the vertical

axis. Moreover, we compare the local gradient-based (" = 0) and the nonlocal

adhesion-based haptotaxis e↵ect, for which we select " 2 {2.75 · 10�2, 5.25 · 10�2}
in the definition of the kernel function (6.2).

The larger ", the less sensitive the results are on the three considered values for

�H . However as we can see in the last column in Fig. 5, di↵erent (",�H) pairings

can also yield quite similar results. A larger " requires a larger �H to show similar

e↵ects as a pairing with smaller " and �H values.
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�H = 0.0005

"1

�H = 0.001 �H = 0.002

0.0015

di↵erent �H

"2

0.0025

"3

0.0030

0 0.5 1

Fig. 5. Simulation of the tumor volume fraction �T for three di↵erent haptotaxis parameters
�H 2 {5 · 10�4, 10�3, 2 · 10�3} and di↵erent kernel functions k" for " 2 {"1, "2, "3} := {0, 2.75 ·
10�2, 5.25 · 10�2} for a fixed time t = 12; also three di↵erent parameters �H are selected such

that the shapes are in accordance with each other.

The larger �H , the more the local and nonlocal model di↵er from each other.

This results from the fact that for " > 0 in the nonlocal model terms involving "2

play a more significant role.

7. Concluding Comments

In this study, we have presented and analyzed new local and nonlocal mathematical

models of growth and of invasion of tumors in healthy tissue that depict the erosion

of the ECM by MDEs and the a↵ects of long-range interactions such as cell-to-cell

adhesion. Under reasonable assumptions on the forms of the total energy of the

system, potentials, and cell mobility behavior, we proved the existence of solutions

to systems of phase-field models characterized by nonlinear integro-partial di↵eren-

tial equations derived using the balance laws of mechanics and principal biological

mechanisms know to control the growth and decline of tumor masses. The results of

several numerical experiments based on two- and three-dimensional finite element

approximations of the models are presented which demonstrate that the models

provide realistic simulations of the e↵ects of nonlocal interactions and MDE con-

centrations on erosion of the ECM and corresponding invasion of tumor cells for

various distributions of nutrient concentration.
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Appendix A. An Existence Result for

Integro-Di↵erential Equations

We study the initial value problem for integro-di↵erential systems in the form
(

x0(t) = f(t, x(t), Kx(t)),

x(0) = x0,
(7.1)

where f 2 C([0, T ] ⇥ Rn ⇥ Rn; Rn), Kx(t) =
R t

0
k(s, x(s))ds, and prove a local

existence theorem. To this end, we employ the Schauder fixed-point theorem; see,

e.g. Theorem 3 in Chap. 9.2 in Ref. 18. The proof below can be considered as an

extension of the Cauchy–Peano theorem and Theorem 1.1.1 in Ref. 34, where a

similar integro-di↵erential equation is considered. We note that since f is continuous

on [0, T ] with respect to t, (7.1) can be equivalently rewritten as

x(t) = x0 +

Z t

0

f(s, x(s), Kx(s))ds,

for t 2 [0, T ].

Theorem 7.1. (Local existence of solutions of (7.1)) Let f 2 C([0, T ] ⇥ Rn ⇥
Rn; Rn) and k 2 C([0, T ] ⇥ Rn; Rn). Then the initial value problem (7.1) has a

solution x on the interval [0, eT ] for some eT 2 (0, T ].

Proof. The proof follows the general outline of Theorem 1.1.1 in Ref. 34. Let b > 0.

The continuous function k is bounded on the compact set D = [0, T ] ⇥ Bb(x0),

|k(t, x)|  Ck, (t, x) 2 D.

Here, Bb(x0) denotes the closed ball around x0 with radius b in the Euclidean norm.

We then have the estimate

|K�(s)| 
Z �

0

|k(�,�(�))|d�  TCk =: r.

Therefore, f is a continuous function on the compact set eD = [0, T ]⇥Bb(x0)⇥Br(0).

Then there exists 0 < Cf < 1 such that

|f(y)|  Cf for all y 2 eD.

At this point, we introduce the space

Y = {� 2 C([0, eT ]; Rn) : �(0) = x0 and k�� x0k1  b},

for eT = min{T, b/Cf}, where kxk1 = maxt2[0,eT ] |x(t)| for x 2 C([0, eT ]; Rn). This

particular choice of eT will be justified below.

Let � 2 Y . We consider the mapping T : � 7! w such that

w(t) := T �(t) = x0 +

Z t

0

f(s,�(s), K�(s))ds, (7.2)
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where t 2 [0, eT ]. We intend to prove that T is a continuous self-mapping on the

compact and convex set Y , which yields the existence of a fixed point � 2 Y of T
on account of the Schauder fixed-point theorem.

Firstly, we prove that the convexity of Y holds. For arbitrary �, 2 Y , and

� 2 [0, 1], we have �� + (1 � �) 2 C([0, eT ]; Rn) and ��(0) + (1 � �) (0) = x0.

Furthermore, it holds that

k��+ (1 � �) � x0k1 = k�(�� x0) + (1 � �)( � x0)k1  �b + (1 � �)b = b.

Secondly, we show the compactness of Y by employing the theorem of Arzelà–

Ascoli; see, e.g. Theorem 4.25 in Ref. 6. For all t1, t2 2 [0, eT ], we have the uniform

equicontinuity of T ,

|T �(t2) � T �(t1)| 
Z t2

t1

|f(s,�(s), K�(s))|ds  Cf |t2 � t1|.

Thirdly, we prove that T is a self-mapping, i.e. T� 2 Y for � 2 Y . We have

T�(0) = w(0) = x0 by definition of T . Thanks to our choice of eT , we can conclude

that

|T �(t) � x0| 
Z t

0

|f(s,�(s), K�(s))|ds  eTCf  b,

for all t 2 [0, eT ].

Finally, we show the continuity of T . Let " > 0 and �, 2 Y be arbitrary. Since

f is uniformly continuous on the compact set eD, there exists a � > 0 with

|�(s) �  (s)| + |K�(s) � K (s)| < �,

such that

|f(s,�(s), K�(s)) � f(s, (s), K (s))| <
"

eT
, (7.3)

holds true for all s 2 [0, eT ]. Moreover, k is uniformly continuous on D and hence,

there is a e� > 0 with |�(s) �  (s)| < e� such that

|K�(s) � K (s)| <
�

2
,

which remains true for |�(s) �  (s)| < min{e�, �/2} =: b�. Hence, we have derived

the existence of a parameter b� > 0 with |�(s)� (s)| < b� such that (7.3) is fulfilled.

Therefore, we conclude

kT �� T  k1  ",

which completes the proof.
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elling of cancer invasion: The importance of cell-cell adhesion and cell-matrix adhesion,
Math. Models Methods Appl. Sci. 21 (2011) 719–743.

8. M. A. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue:
The role of the urokinase plasminogen activation system, Math. Models Methods Appl.
Sci. 15 (2005) 1685–1734.

9. P. Colli, G. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system
related to tumor growth, Discrete Contin. Dyn. Syst. – A 35 (2015) 2423–2442.

10. M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. E. Schonbek, Analysis of a
di↵use interface model of multispecies tumor growth, Nonlinearity 30 (2017) 1639–
1658.

11. T. S. Deisboeck and G. S. Stamatakos, Multiscale Cancer Modeling (CRC Press, 2010).
12. F. Della Porta, A. Giorgini and M. Grasselli, The nonlocal Cahn–Hilliard–Hele–Shaw

system with logarithmic potential, Nonlinearity 31 (2018) 4851–4881.
13. F. Della Porta and M. Grasselli, On the nonlocal Cahn–Hilliard–Brinkman and Cahn–

Hilliard–Hele–Shaw systems, Commun. Math. Sci. 13 (2015) 1541–1567.
14. Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, A nonlocal vector calculus, non-

local volume-constrained problems, and nonlocal balance laws, Math. Models Methods
Appl. Sci. 23 (2013) 493–540.

15. M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour
growth with chemotaxis, J. Di↵erential Equations 266 (2019) 5998–6036.

16. M. Ebenbeck and H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth
and its singular limits, SIAM J. Math. Anal. 51 (2019) 1868–1912.

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
24

33
-2

46
8.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

RE
A

D
IN

G
 o

n 
12

/0
2/

19
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



November 21, 2019 16:21 WSPC/103-M3AS 1950051

2466 M. Fritz et al.

17. C. Engwer, C. Stinner and C. Surulescu, On a structured multiscale model for acid-
mediated tumor invasion: The e↵ects of adhesion and proliferation, Math. Models
Methods Appl. Sci. 27 (2017) 1355–1390.

18. L. C. Evans, Partial Di↵erential Equations (Amer. Math. Soc., 2010).
19. S. Frigeri, M. Grasselli and E. Rocca, A di↵use interface model for two-phase incom-

pressible flows with nonlocal interactions and non-constant mobility, Nonlinearity 28
(2015) 1257–1293.

20. S. Frigeri, K. F. Lam and E. Rocca, On a di↵use interface model for tumour growth
with nonlocal interactions and degenerate mobilities, in Solvability, Regularity, and
Optimal Control of Boundary Value Problems for PDEs (Springer, 2017), pp. 217–254.

21. M. Fritz, E. A. Lima, J. T. Oden and B. Wohlmuth, On the unsteady Darcy-
Forchheimer-Brinkman equation in local and nonlocal tumor growth models, Math.
Models Methods Appl. Sci. 29 (2019) 1691–1731.

22. H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–
Hilliard–Darcy system modelling tumour growth, AIMS Math. 1 (2016) 318–360.

23. H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling
tumour growth with chemotaxis and active ort, European J. Appl. Math. 28 (2017)
284–316.

24. H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth
with solution dependent source terms, in Trends in Applications of Mathematics to
Mechanics (Springer, 2018), pp. 243–264.

25. H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy
model for tumour growth with necrosis, Math. Models Methods Appl. Sci. 28 (2018)
525–577.

26. H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for
tumour growth with chemotaxis and active transport, Math. Models Methods Appl.
Sci. 26 (2016) 1095–1148.

27. R. A. Gatenby, Models of tumor-host interaction as competing populations: Implica-
tions for tumor biology and treatment, J. Theoret. Biol. 176 (1995) 447–455.

28. A. Gerisch, On the approximation and e�cient evaluation of integral terms in pde
models of cell adhesion, IMA J. Numer. Anal. 30 (2010) 173–194.

29. A. Gerisch and M. Chaplain, Mathematical modelling of cancer cell invasion of tissue:
Local and nonlocal models and the e↵ect of adhesion, J. Theoret. Biol. 250 (2008)
684–704.

30. A. Hawkins-Daarud, K. G. van der Zee and T. J. Oden, Numerical simulation of
a thermodynamically consistent four-species tumor growth model, Int. J. Numer.
Methods Biomed. Eng. 28 (2021) 3–24.

31. T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to
a logistic chemotaxis model, Math. Models Methods Appl. Sci. 23 (2013) 165–198.

32. J. Jiang, H. Wu and S. Zheng, Well-posedness and long-time behavior of a non-
autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth,
J. Di↵erential Equations 259 (2015) 3032–3077.

33. B. S. Kirk, J. W. Peterson, R. H. Stogner and G. F. Carey, libMesh: A C++ library for
parallel adaptive mesh refinement/coarsening simulations, Eng. Comput. 22 (2006)
237–254.

34. V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Di↵erential Equa-
tions (Gordon and Breach Sci. Publ., 1995).

35. K. F. Lam and H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard
models with mass transfer and chemotaxis, European J. Appl. Math. 29 (2018) 595–
644.

M
at

h.
 M

od
el

s M
et

ho
ds

 A
pp

l. 
Sc

i. 
20

19
.2

9:
24

33
-2

46
8.

 D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

RE
A

D
IN

G
 o

n 
12

/0
2/

19
. R

e-
us

e 
an

d 
di

str
ib

ut
io

n 
is 

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



November 21, 2019 16:21 WSPC/103-M3AS 1950051

Phase-field models of tumor growth and invasion due to ECM degradation 2467

36. G. Leoni and M. Morini, Necessary and su�cient conditions for the chain rule in
W 1,1

loc (Rn; Rd) and BV loc(Rn; Rd), J. Eur. Math. Soc. 9 (2007) 219–252.
37. E. H. Lieb and M. Loss, Analysis (Amer. Math. Soc., 2001).
38. E. A. Lima, R. C. Almeida and J. T. Oden, Analysis and numerical solution of

stochastic phase-field models of tumor growth, Numer. Methods Partial Di↵erential
Equations 31 (2015) 552–574.

39. E. A. Lima, J. T. Oden and R. C. Almeida, A hybrid ten-species phase-field model
of tumor growth, Math. Models Methods Appl. Sci. 24 (2014) 2569–2599.

40. E. Lima, J. Oden, B. Wohlmuth, A. Shahmoradi, D. Hormuth II, T. Yankeelov,
L. Scarabosio and T. Horger, Selection and validation of predictive models of radia-
tion e↵ects on tumor growth based on noninvasive imaging data, Comput. Methods
Appl. Mech. Engrg. 327 (2017) 277–305.

41. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Appli-
cations I (Springer-Verlag, 2012).

42. D. H. Madsen and T. H. Bugge, The source of matrix-degrading enzymes in human
cancer: Problems of research reproducibility and possible solutions, J. Cell. Biol. 209
(2015) 195–198.

43. B. Marchant, J. Norbury and J. Sherratt, Travelling wave solutions to a haptotaxis-
dominated model of malignant invasion, Nonlinearity 14 (2001) 1653–1671.

44. T. Mengesha and D. Spector, Localization of nonlocal gradients in various topologies,
Calc. Var. Partial Di↵erential Equations 52 (2015) 253–279.

45. F. Murat and C. Trombetti, A chain rule formula for the composition of a vector-
valued function by a piecewise smooth function, Boll. Unione Mat. Ital. 6 (2003)
581–595.

46. N. Nargis and R. Aldredge, E↵ects of matrix metalloproteinase on tumour growth
and morphology via haptotaxis, J. Bioengineer and Biomedical Sci. 6 (2016),
doi:10.4172/2155-9538.1000207

47. J. T. Oden et al., Toward predictive multiscale modeling of vascular tumor growth,
Arch. Comput. Methods Eng. 23 (2016) 735–779.

48. L. Peng, D. Trucu, P. Lin, A. Thompson and M. A. Chaplain, A multiscale mathe-
matical model of tumour invasive growth, Bull. Math. Biol. 79 (2017) 389–429.

49. A. Perumpanani, B. Marchant and J. Norbury, Traveling shock waves arising in a
model of malignant invasion, SIAM J. Appl. Math. 60 (2000) 463–476.

50. B. Perumpani, A. Sherratt, J. Norbury and H. Byrne, Biological inferences from a
mathematical model for malignant invasion, Invasion Metastasis 16 (1996) 209–221.

51. J. C. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissi-
pative Parabolic PDEs and the Theory of Global Attractors (Cambridge Univ. Press,
2001).

52. T. Roub́ıček, Nonlinear Partial Di↵erential Equations with Applications (Birkhäuser,
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A.3. Analysis of a new multispecies tumor growth model coupling 3D
phase-fields with a 1D vascular network

Analysis of a new multispecies tumor growth model coupling
3D phase-fields with a 1D vascular network

Marvin Fritz, Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Barbara Wohlmuth

The major purpose of this research is to offer a holistic approach to tumor growth
that includes analysis and numerics of a novel model of mathematical oncology. The
model depicts ECM degradation, interstitial flow, and the influence of vascular flow
and nutrition delivery on the growth of tumors. One-dimensional equations are used to
model flow and transport mechanisms in the vasculature feeding healthy and malignant
tissue. We establish a new 3D-1D coupled model that has not previously been studied
and examined in the literature. The transport and flow processes are combined with
cell-species models on a three-dimensional domain. For the modeling and prediction of
tumor growth, mathematical analysis and numerical treatment of the system of PDEs
are useful methods. We apply the Faedo–Galerkin approach and compactness theorems
to conduct a rigorous analysis and prove the existence of weak solutions. Due to the
unusual nonlinear coupling of the equations and non-standard function spaces, the
analysis is not done in a straightforward manner. For the solution tuple, we also derive an
energy inequality. A combined finite element/volume technique is used in our numerical
treatment. Several numerical experiments in three dimensions are used to demonstrate
the evolution of the tumor and the stratification into its proliferative, hypoxic, and
necrotic phases. Section 2 introduces the 3D tissue domain, the 1D network domain,
and the constituents in the multispecies phase-field model, among other components
of the entire model. The controlling PDEs are derived from balance laws and the
Ginzburg–Landau free energy functional. The resultant model is a nonlinear coupled
system of PDEs with a high degree of nonlinearity and mixed-dimensional coupling.
We introduce the cylinder surface Γ and propose a mixed-dimensional coupling through
the 2D surface in order to avoid the high-dimensional gap. Section 3 introduces certain
analytical preliminaries such as Sobolev embeddings and interpolation inequalities in
Bochner spaces that will be utilized in the subsequent sections. In Section 4, we give
a theorem stating the existence of weak solutions to the coupled nonlinear 3D-1D
model under some given assumptions. We prove the theorem in Section 5 using the
Faedo–Galerkin approximation and compactness approaches. Finally, in Section 6, we
present numerical data indicating tumor cell development inside a tissue with a vascular
network.

I was heavily involved in the generation of concepts and was principally responsible
for establishing the mathematical framework and carrying out the analytical effort
described in this paper. I took charge in the implementation of the 3D model and the
co-authors handled the coupling to the 1D constituents in the code. I was in charge of
writing the article, while the co-authors helped by making revisions.
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a b s t r a c t

In this work, we present and analyze a mathematical model for tumor growth
incorporating ECM erosion, interstitial flow, and the e�ect of vascular flow
and nutrient transport. The model is of phase-field or di�used-interface type in
which multiple phases of cell species and other constituents are separated by
smooth evolving interfaces. The model involves a mesoscale version of Darcy’s
law to capture the flow mechanism in the tissue matrix. Modeling flow and
transport processes in the vasculature supplying the healthy and cancerous tissue,
one-dimensional (1D) equations are considered. Since the models governing the
transport and flow processes are defined together with cell species models on a
three-dimensional (3D) domain, we obtain a 3D–1D coupled model.

© 2021Elsevier Ltd.All rights reserved.

1. Introduction

We develop and analyze a mathematical model of vascular tumor growth designed to simulate abstractions
of many of the key phenomena known to be involved in the growth-decline of tumors and therapeutic
treatment in living tissue. The complex vascular structure of tissue and the network of blood vessels sup-
plying nutrients to a solid tumor mass embedded in the tissue are modeled as a network of one-dimensional
capillaries within a three-dimensional tissue domain, while the growth of the tumor is represented by a
phase-field model involving multiple cell species and other constituents. Our tumor models may be regarded
as mesoscale depictions of physical and biological events employing continuum mixture theory to construct
general forms of the Ginzburg–Landau–Helmholtz free energy of biological materials in terms of volume
fractions or mass concentrations of the cell phenotypes and principal mechanical and chemical fields. The
equations governing the tumor growth are derived from the balance laws of continuum mixture theory as

ú Corresponding author.
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in e.g. [1–5], and representations of the principal mechanisms governing the development and evolution of
cancer [5,6]. In the tissue containing the tumor cells, the microvascular network is represented by a graph
structure with 1D filaments through which nutrient-containing blood may flow. The exchange of nutrients
between the network and tissue is depicted by a Kedem–Katalchsky type law [7]. We briefly describe the
construction of approximations of these models, see also [8–13].

There is a significant and growing volume of published work on various aspects of this subject. Continuum
mixture theory as a framework for developing meaningful models of materials with many interacting
constituents is proposed in [3–5,10,14,15]. Of particular interest are the comprehensive developments of
di�use-interface multispecies models described in [16,17], the four- and ten species models presented in [5,14],
and the multispecies nonlocal models of adhesion and tumor invasion described in [12]. The book compiled
by Lowengrub and Cristini [10] contains over 700 references to relevant cancer cell biology and mathematical
models of cancer growth. The complex processes underlying angiogenesis which are key to vascular tumor
growth present formidable challenges to the goal of predictive computer modeling. Angiogenesis models
embedded in models of hypoxic and cell growth or decline were presented in [5,16,18–22]. More recent
developments have included models of the vascular network interwoven in tissue containing solid tumors,
and the sprouting of capillaries in response to concentrations of various tumor angiogenesis factors so as
to supply nutrients to hypoxic tumor cells. Such network-tissue models are discussed in [18,23,24]. These
models generalized the lattice-probabilistic network models of [25].

This article is organized as follows: In Section 2, we introduce various components of the complete
model, such as the tissue domain, the 1D network domain, the species in the multi-species phase-field
model. Further, we present the governing partial di�erential equations. The resulting model is a highly non-
linear coupled system of partial di�erential equations. We give some analytical preliminaries in Section 3,
e.g. Sobolev embeddings and interpolation inequalities in Bochner spaces, which will be used in the following
sections. In Section 4, we state a theorem for the existence of weak solutions of the coupled non-linear 3D–1D
model under certain given assumptions. In Section 5, we give the proof of the theorem via the Faedo–Galerkin
approximation and compactness methods.

2. Derivation of the model

2.1. Setup and notation

We consider a region of vascularized tissue in a living subject, e.g., within an organ, which is host to
a colony of tumor cells and other constituents that make up the so-called microenvironment of a solid
tumor. The tumor is contained in an open bounded domain ⌦ µ R3 and is supported by a network
of macromolecules within ⌦ consisting of collagen, enzymes, and various proteins, that constitute the
extracellular matrix (ECM). We focus on developing phenomenological characterizations of the evolutions
of the tumor cell colony that attempt to capture mesoscale and macroscale events.

The primary feature of our model of tumor growth is that it employs the framework of continuum mixture
theory in which multiple mechanical and chemical species can exist at a point x œ ⌦ at time t > 0. Thus, for a
medium with N interacting constituents, the volume fraction of each species „–, 1 Æ – Æ N , is represented
by a field „– with value „–(t, x) at x œ ⌦ , and time t Ø 0, and

q
– „–(t, x) = 1. Setting – = 1 = T ,

the volume fraction of tumor cells „T (t, x) is understood to represent an averaged cell concentration, a
homogenized depiction over many thousands of cells, since in volumes as small as a voxel in modern tumor
imaging techniques, 4 ≠ 5 ◊ 104 cells can exist.

We could also develop equivalent models in terms of mass concentration, c– = fl–„–, fl– being the mass
density of species –. Moreover, we assume that fl– = fl0 = constant, 1 Æ – Æ N , and thus, C– and „–

2
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Fig. 1. Setup of the domain ⌦ with the microvascular network ⇤ = fi⇤i and a tumor mass, which is composed in its proliferative
(„P ), hypoxic („H) and necrotic („N ) phase (left). Three dimensional presentation of a given tumor core surrounded by a capillary
network (right).

are up to a fixed scaling equivalent. This simplification is regarded as a reasonable assumption in many
investigations since the mass densities of species are generally close to that of water at room temperature.

As another important feature of our model, we depict the evolving interfaces in which a smooth boundary
layer exists and which is defined intrinsically as a feature of the solution of the forward problem. This feature
is a property of phase-field or di�use-interface models and avoids complex interface tracking while producing
characterizations of interfaces between cell species which are in good agreement with actual observations (see
Fig. 1).

Moreover, we consider a one-dimensional graph-like structure ⇤ inside of ⌦ forming a microvascular
network. The single edges of ⇤ are denoted by ⇤i such that ⇤ is given by ⇤ =

tN
i=1 ⇤i. The edge ⇤i is

parameterized by a curve parameter si, such that ⇤i is given by:

⇤i = {x œ ⌦ | x = ⇤i(si) = xi,1 + si · (xi,2 ≠ xi,1), si œ (0, 1)} .
Thereby, xi,1 œ ⌦ and xi,2 œ ⌦ mark the boundary nodes of ⇤i, see Fig. 2. For the total 1D network
⇤, we introduce a global curve parameter s, which has to be interpreted in the following way: s = si, if
x = ⇤(s) = ⇤i(si). At each value of the curve parameter s, we study 1D constituents, which couple to their
respective 3D counter-part in ⌦ . In order to formulate the coupling between 3D and 1D constituents in
Sections 2.3 and 2.4, we need to introduce the surface � of the microvascular network. For simplicity, it is
assumed that the surface for a single vessel is approximated by a cylinder with a constant radius, see Fig. 2.
The radius of a vessel that is associated with ⇤i, is given by Ri and the corresponding surface is denoted by
�i. In fact, �i is the surface of the cylinder whose center line is given by ⇤i, i.e.,

�i = {x œ ⌦ | dist(x,⇤i(si)) = Ri, si œ (0, 1)} .
According to the definition of ⇤, the total surface � is given by the union of the single vessel surfaces,
i.e., � =

tN
i=1 �i.

2.2. Constituents

After introducing the domains on which the 1D and 3D models are defined, we describe in a next step
all the dependent variables occurring in our model.

3
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Fig. 2. Modeling a blood vessel network (a) by means of a 1D graph-like structure (c). At first the surface of the blood vessels is
approximated by cylinders with constant radius whose surfaces are denoted by �i, see (b). Then, the blood vessels are lumped to the
center lines ⇤i of the cylinders.

The tumor cell’s field, „T = „T (t, x), can be represented as the sum of three components, „T =
„P + „H + „N , where „P = „P (t, x) is the volume fraction of proliferative cells, „H = „H(t, x) that of
hypoxic cells, and „N = „N (t, x) is the volume fraction of necrotic cells. Proliferative cells are those which
have a high probability of mitosis, division into twin cells, and to produce growth of tumor. Hypoxic cells
are those tumor cells deprived of su�cient nutrient (e.g., oxygen) to become or remain proliferative and
necrotic cells have died due to the lack of nutrients. The local nutrient concentration is represented by a field
„‡ = „‡(t, x). The tumor cells response to hypoxia (e.g., low oxygen), i.e., „‡ is below a certain threshold,
by the production of an enzyme (hypoxia-inducible factor) that accumulates and increases cell mobility and
activates the secretion of angiogenesis promoting factors characterized by another field, „TAF = „TAF (t, x),
tumor angiogenesis factor. Of several such factors, that most frequently addressed, is VEGF, Vascular
Endothelial Growth Factor, which induces sprouting of endothelial cells forming the tubular structure of
blood vessels, the lumins, which grow into new vessels that supply nutrient to the hypoxic cells. In this
article, we treat a stationary network of endothelial cells and neglect the sprouting.

Moreover, at lower oxygen levels the hypoxic cells release matrix-degenerative enzymes such urokinase-
plasminogen and matrix metalloproteinases, labeled MDEs, with volume fraction denoted by „MDE =

4
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„MDE(t, x), that can erode the extracellular matrix, whose density is denoted by „ECM = „ECM (t, x), and
make room for invasion of tumor cells, increasing „T in the ECM domain and increasing the likelihood of
metastasis. Below a certain level of nutrient, or sustained periods of hypoxia, cells may die and enter the
necrotic phase represented by the field „N . In many forms of cancer, necrotic cells undergo calcification and
become inert and can be removed as waste from the organism.

On the one-dimensional network ⇤, we consider the constituents „v = „v(t, s) and vv = vv(t, s), which
represent the one-dimensional counter-part of the local nutrient concentration „‡ and the volume-averaged
velocity v. In addition, we consider both in the vascular system and the tissue domain pressure variables
that are denoted by pv and p, respectively. The di�erent constituents are coupled by the source terms of the
di�erent partial di�erential equations governing the behavior of the constituents.

For convenience, we collect the constituents within the following 7-tuple:

„ = („P ,„H ,„N ,„‡,„MDE ,„TAF ,„ECM ) = („–)–œA,

where A = {P,H,N,‡, ECM,MDE, TAF}, and further, we distinguish between the tumor phase-field
indices CH = {P,H,N}, the reaction–di�usion indices RD = {‡,MDE, TAF} and the evolution index
{ECM}, which corresponds to an abstract ordinary di�erential equation.

2.3. Three-dimensional model

The constituents „–, – œ A, are governed by the following mass balance law, see e.g., [5,26],

ˆt„– + div(„–v–) = ≠divJ–(„) + S–(„), (1)

for all – œ A, where v– is the cell velocity of the –th constituent, and S– describes a mass source term
depending on all species „. Moreover, J– denotes the flux of the –th constituent, which is given by

J–(„) = ≠m–(„)Òµ–. (2)

Here, µ– denotes the chemical potential of the –th species and m– the mobility function of it. In our
applications, we consider the mobilities

m–(„) = M–„2
–(1 ≠ „–)2Id, – œ CH,

m—(„) = M—Id, — œ RD,
mECM („) = 0,

where M– are mobility constants and Id is the (d ◊ d)-dimensional identity matrix. Especially, we choose
mECM = 0 in accordance to the non-di�usivity of the ECM, see [27]. Following [5,14,16,26], we define the
chemical potential as

µ– = ”E(„)
”„–

,

where ”E/”„– denotes the first variation (Gâteaux derivative) of the Ginzburg–Landau–Helmholtz free
energy functional,

E(„) =
⁄

⌦

Ó
 („P ,„H ,„N ) +

ÿ

–œCH

Á2
–

2 |Ò„–|2 +
ÿ

—œRD

D—

2 „2
— ≠ (‰c„‡ + ‰h„ECM )

ÿ

–œ{P,H}
„–

Ô
dx. (3)

Here, ‰c is the chemotaxis parameter, see [28], ‰h represents the haptotaxis parameter, see [12,29], and Á–,
– œ CH, is a parameter associated with the interface thickness separating the di�erent cell species. Lastly,
 represents a double-well potential, e.g., it can be of Landau type, where we mention the three possibilities

 („P ,„H ,„N ) = C T „2
T (1 ≠ „T )2,

 („P ,„H ,„N ) = C P „2
P (1 ≠ „P )2 + C H„2

H(1 ≠ „H)2 + C N„2
N (1 ≠ „N )2 + C T „2

T (1 ≠ „T )2,
 („P ,„H ,„N ) = C P „2

P (1 ≠ „T )2 + C H„2
H(1 ≠ „T )2 + C N„2

N (1 ≠ „T )2,
5
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where C – are appropriate prefactors. Alternatively, one can also select a logarithmic potential of Flory–
Huggins type, e.g., see [30,31],

 („P ,„H ,„N ) = C P „P log „P + C H„H log „H + C N„N log „N + C T (1 ≠ „T ) log(1 ≠ „T )

+ 1
2

!
C P „P (1 ≠ „P ) + C H„H(1 ≠ „H) + C N„N (1 ≠ „N ) + C T „T (1 ≠ „T )

"
.

Lastly, we also mention potentials, which are used for abstract multiphase models, see [15],

 („P ,„H ,„N ) = C P „2
P„2

H + C H„2
H„2

N + C N„2
N„2

P ,

The chemical potentials read

µ– = ˆ„– („P ,„H ,„N ) ≠ Á2
–�„– ≠ ‰c„‡ ≠ ‰h„ECM , – œ CH\{N},

µ— = D—„— , — œ RD\{‡},
µN = ˆ„N („P ,„H ,„N ) ≠ Á2

–�„N ,

µ‡ = D‡„‡ ≠ ‰c(„P + „H),
µECM = ≠‰h(„P + „H).

(4)

The necrotic cells are non-moving and only gain mass from the nutrient-lacking hypoxic cells. Therefore,
the mobility of the necrotic cells is set to zero. Consequently, we have mN = vN = 0. Consequently, inserting
(2) and (4) into the mass balance equation (1), we arrive at the equations for („–)–œCH

ˆt„P + div(„P v) = div(mP („)ÒµP ) + SP („),
µP = ˆ„P („P ,„H ,„N ) ≠ Á2

P�„P ≠ ‰c„‡ ≠ ‰h„ECM ,

ˆt„H + div(„Hv) = div(mH(„)ÒµH) + SH(„),
µH = ˆ„H („P ,„H ,„N ) ≠ Á2

H�„H ≠ ‰c„‡ ≠ ‰h„ECM ,

ˆt„N = SN („).

(5)

Further, we propose the source functions

SP („) = ⁄P„‡„P (1 ≠ „T ) ≠ ⁄A„P ≠ ⁄PHH(‡PH ≠ „‡)„P + ⁄HPH(„‡ ≠ ‡HP )„H ,
SH(„) = ⁄Ph„‡„H(1 ≠ „T ) ≠ ⁄Ah„H + ⁄PHH(‡PH ≠ „‡)„P ≠ ⁄HPH(„‡ ≠ ‡HP )„H

≠ ⁄HNH(‡HN ≠ „‡)„H ,
SN („) = ⁄HNH(‡HN ≠ „‡)„H .

(6)

In (5), v = v– is a volume-averaged velocity for the fields „P and „H . In (6), ⁄P is the rate of cellular mitosis
of tumor cells, ⁄A and ⁄Ah are the apoptosis rates of the proliferative and hypoxic cells, respectively, ⁄Ph
is the proliferation rate of hypoxic cells, ⁄PH the transition rate from the proliferative to the hypoxic phase
below the nutrient level ‡PH , ⁄HP the transition rate from the hypoxic to the proliferative phase above the
nutrient level ‡HP , and ⁄HN the transition rate from the hypoxic to the necrotic phase below the nutrient
level ‡HN . Finally, H denotes the Heaviside step function.

Related models of extracellular matrix (ECM) degradation due to matrix-degenerative enzymes (MDEs)
released by hypoxic cell concentrations and subsequent tumor invasion and metastasis are discussed
in [32–37]. Following these references, we introduce the equation for the ECM evolution,

ˆt„ECM = SECM („)
= ≠⁄ECMD

„ECM„MDE + ⁄ECMP
„‡(1 ≠ „ECM )H(„ECM ≠ „ECMP

),
(7)

where ⁄ECMD
is the degradation rate of ECM fibers due to the matrix degrading enzymes, and ⁄ECMP

is
the production rate of ECM fibers above the threshold level „ECMP

for the ECM density.
6
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Further, for („—)—œRD we arrive at the following system of equations

ˆt„‡ + div(„‡v) = div(m‡(„))(D‡Ò„‡ ≠ ‰cÒ(„P + „H)) + S‡(„) + S‡v(„‡, p,„v, pv),
ˆt„MDE = div(mMDE(„)DMDEÒ„MDE) + SMDE(„),
ˆt„TAF = div(mTAF („)DTAFÒ„TAF ) + STAF („),

(8)

with source functions
S‡(„) = ≠⁄P„‡„P (1 ≠ „T ) ≠ ⁄Ph„‡„H(1 ≠ „T ) + ⁄A„P + ⁄Ah„H + ⁄ECMD

„ECM„MDE

≠ ⁄ECMP
„‡(1 ≠ „ECM )H(„ECM ≠ „ECMP

),
SMDE(„) = ≠⁄MDED„MDE + ⁄MDEP („P + „H)„ECM

‡HP
‡HP + „‡

(1 ≠ „MDE) ≠ ⁄ECMD
„ECM„MDE ,

STAF („) = ⁄TAFP (1 ≠ „TAF )„HH(„H ≠ „HP ) ≠ ⁄TAFD„TAF .

(9)

Here, ⁄MDED and ⁄TAFD denote the decay rates of the MDEs and TAFs, respectively, ⁄MDEP the production
rate of MDEs, and ⁄TAFP is the production rate of the „TAF due to the release by hypoxic cells above a
threshold value of „HP . We note that the cell species „–, – œ {P,H,N,‡, ECM}, form a mass conserving
subsystem in the sense that their source terms add to zero. The fields „MDE and „TAF do not belong to this
mass exchanging closed subsystem system since they show natural degradation factors.

Additionally, we have introduced a source term S‡v in (8) for the nutrient volume fraction „‡, which
depends on the 1D constituents „v and pv, and therefore, this source term is responsible for the coupling
between the constituents in ⌦ and ⇤. In particular, it governs the exchange of nutrients between the vascular
network and the tissue. In order to quantify the flux of nutrients across the vessel surface, we use the
Kedem–Katchalsky law, see e.g., [7],

J‡v(„‡, p,„v, pv) = (1 ≠ r‡)Jpv(p, pv)„v‡ + L‡(„v ≠ „‡), (10)

where J‡v represents the flux of nutrients between the vascular network and the tissue. The Kedem–
Katchalsky law (10) consists of two parts: The first part quantifies the nutrient flux caused by the flux
of blood plasma Jpv from the vessels into the tissue or vice versa. It is determined by Starling’s law, which
is given by the pressure di�erence between pv and p weighted by a parameter Lp for the permeability of the
vessel wall,

Jpv(p, pv) = Lp(pv ≠ p). (11)
Here, p denotes an averaged pressure over the circumference of cylinder cross-sections. For each parameter si,
we consider a point on the curve ⇤i(si). Around this point a circle ˆBRi(si) of radius Ri and perpendicular
to ⇤i is constructed and the tissue pressure p is averaged with respect to ˆBRi(si),

p(si) = 1
2fiRi

⁄

ˆBRi
(si)

p|� (x) dS.

From a physical point of view, the averaging reflects the fact that the 3D–1D coupling is a reduced model,
whereas in a fully coupled 3D–3D model, the exchange occurs through the surface.

In order to account for the permeability of the vessel wall with respect to the nutrients, Jpv„v‡ is weighted
by a factor 1 ≠ r‡, where r‡ is considered as a reflection parameter. The value of „v‡ is either set to „‡ or
„v depending on the sign of Jpv,

„v‡ =
I

„v, pv Ø p,

„‡, pv < p.

The second part of the law (10) is a Fickian type law, accounting for the tendency of the nutrients to balance
out their concentration levels. Again, the 3D quantity „‡ has to be averaged such that it can be related to
the 1D quantity „v,

„‡(si) = 1
2fiRi

⁄

ˆBRi
(si)

„‡|� (x) dS.

7
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The permeability of the vessel wall is represented by another parameter L‡.
Since the exchange processes between the vascular network and the tissue occur at the vessel surface � , we

concentrate the flux J‡v by means of the Dirac measure ”� , i.e., with the distributional space DÕ = (CŒ
c (⌦))Õ

we define
È”� ,ÏÍDÕ◊D =

⁄

�

Ï|� (x) dS for all Ï œ D.

This yields the following source term in (8),

S‡v(„‡, p,„v, pv) = J‡v(„‡, p,⇧�„v,⇧�pv)”� ,

where ⇧� œ L(L2(⇤);L2(� )) is the projection of the 1D quantities onto the cylindrical surface � via
extending the function value ⇧�„v(s) = „v(si) for all s œ ˆBRi(si). In particular, we have

⁄

ˆBRi
(si)

⇧�„v(x) dS = 2fiRi„v(si).

We assume a volume-averaged velocity v for the proliferative cells, hypoxic cells, and the nutrients. This
assumption of a volume-averaged velocity is reasonable since the cells are tightly packed. Therefore, we
assume v to obey the compressible Darcy law

v = ≠K(Òp ≠ Sp(„, µP , µH)),
≠div(KÒp) = Jpv(p,⇧�pv)”� ≠ div(KSp(„, µP , µH)),

(12)

where K > 0 is the permeability and Jpv(p,⇧�pv)”� models the flux between the vascular system and the
tissue. Moreover, the source Sp is assumed to represent a form of the elastic Korteweg force, e.g., see [30],
and we correct the chemical potential by the haptotaxis and chemotaxis adhesion terms as done in [15],
giving

Sp(„, µP , µH) = ≠(ÒµP + ‰cÒ„‡ + ‰hÒ„ECM )„P ≠ (ÒµH + ‰cÒ„‡ + ‰hÒ„ECM )„H . (13)

Collecting (5)–(12), we arrive at a model governed by the system,
ˆt„P + div(„P v) = div(mP („)ÒµP ) + SP („),

µP = ˆ„P („P ,„H ,„N ) ≠ Á2
P�„P ≠ ‰c„‡ ≠ ‰h„ECM ,

ˆt„H + div(„Hv) = div(mH(„)ÒµH) + SH(„),
µH = ˆ„H („P ,„H ,„N ) ≠ Á2

H�„H ≠ ‰c„‡ ≠ ‰h„ECM ,

ˆt„N = SN („),
ˆt„‡ + div(„‡v) = div(m‡(„))(D‡Ò„‡ ≠ ‰cÒ(„P + „H)) + S‡(„) + J‡v(„‡, p,⇧�„v,⇧�pv)”� ,

ˆt„MDE = div(mMDE(„)DMDEÒ„MDE) + SMDE(„),
ˆt„TAF = div(mTAF („)DTAFÒ„TAF ) + STAF („),

ˆt„ECM = SECM („),
v = ≠K(Òp ≠ Sp(„, µP , µH)),

≠div(KÒp) = Jpv(p,⇧�pv)”� ≠ div(KSp(„, µP , µH)),

(14)

in the time–space domain (0, T )◊⌦ with source functions SP , SH , SN , S‡, SMDE , STAF , SECM , Sp, recall (6),
(9) and (13), with properties laid down in Assumption 1 of Section 4. We supplement the system with the
following boundary and initial conditions,

m–(„)ˆnµ– ≠ „–v · n = m—(„)ˆn„— = ˆn„“ = 0 on (0, T ) ◊ ˆ⌦ ,

p = pŒ on(0, T ) ◊ ˆ⌦D,

ˆnp = 0 on(0, T ) ◊ ˆ⌦\ˆ⌦D,

„”(0) = „”,0 in ⌦ ,

(15)
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for – œ {P,H}, — œ RD, “ œ CH fi {ECM}, and ” œ A. Here, „”,0 are given functions with regularity as
in Assumption 1 of Section 4, ˆnf = Òf · n denotes the normal derivative of a function f at the boundary
ˆ⌦ with the outer unit normal n and ˆ⌦D is a part of the boundary with positive measure representing an
inlet where the pressure is set to the time-dependent function pŒ : (0, T ) ◊ ⌦ æ R.

2.4. One-dimensional model for flow and nutrient transport in the vascular network

Since the vascular network typically forms a system of small inclusions, we average all the physical units
across the cross-sections of the single blood vessels and set them to a constant with respect to the angular
and radial component. This means that the 1D variables „v and pv on a 1D vessel ⇤i depend only on si. For
further details related to the derivation of 1D pipe flow and transport models, we refer to [38]. Accordingly,
the 1D model equations for flow and transport on ⇤i read as follows,

ˆt„v + ˆsi(vv„v) = ˆsi(mv(„v)Dvˆsi„v) ≠ 2fiRiJ‡v(„‡, p,„v, pv),
≠ ˆsi(R

2
i fiKv,i ˆsipv) = ≠2fiRiJpv(p, pv).

(16)

As in (14), the fluxes J‡v and Jpv account for the exchange processes between the blood vessels and the
tissue. The permeability is given by the relation Kv,i = R2

i
8µbl

, where µbl represents the viscosity of blood.
For convenience, we fix it to a constant value, i.e., the non-Newtonian behavior of blood is not considered
in this work. The di�usivity parameter Dv is the same as the one of the nutrients in the blood. The blood
velocity vv is calculated as follows via a Darcy-type model,

vv = ≠R2
i fiKv,iˆsipv.

In order to interconnect the di�erent solutions on ⇤i at inner networks nodes on intersections x œ ˆ⇤i\ˆ⇤,
we require the continuity of pressure and concentration as well as the conservation of mass to obtain a
physically relevant solution. To formulate these coupling conditions in a mathematical way, we define for
each bifurcation point x an index set N(x) µ {1, . . . , N}:

N(x) = { i | x œ ˆ⇤i, i œ {1, . . . , N}} .
Using this notation, we have for pv and „v four di�erent coupling conditions at an inner node x œ ˆ⇤i:

1. Continuity of pv:
pv

--
⇤i

(x) = pv
--
⇤j

(x) for all j œ N(x) \ {i} .

2. Mass conservation with respect to pv:
ÿ

jœN(x)

≠
R4
jfi

8µbl

ˆpv
ˆsj

----
⇤j

(x) = 0.

3. Continuity of „v:
„v

--
⇤i

(x) = „v
--
⇤j

(x) for all j œ N(x) \ {i} .

4. Mass conservation with respect to „v:
ÿ

jœN(x)

3
vv„v ≠ mv(„v)Dv

ˆ„v
ˆsj

4 ----
⇤j

(x) = 0.

Further, we decompose the boundary of ⇤ into a Dirichlet boundary ˆ⇤D and a Neumann boundary ˆ⇤N
such that ˆ⇤ = ˆ⇤D fi̇ ˆ⇤N . We introduce the inlet functions „v,Œ, pv,Œ : (0, T ) æ R on ˆ⇤D and prescribe
the following boundary data for „v and pv,

„v ≠ „v,Œ = pv ≠ pv,Œ = 0 on (0, T ) ◊ ˆ⇤D,

ˆn⇤„v = ˆn⇤pv = 0 on (0, T ) ◊ ˆ⇤N .
(17)
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3. Analytical preliminaries

Notationally, we equip the function spaces Lp(⌦), Lp(⇤), Wm,p(⌦), Wm,p(⇤) with the norms | · |Lp(⌦),
| · |Lp(⇤), | · |Wm,p(⌦), | · |Wm,p(⇤). In the case of d-dimensional vector functions, we write Lp(⌦ ; Rd) and in
the same way for the other Banach spaces, but we do not make this distinction in the notation of norms,
scalar products and applications with its dual.

Throughout this paper, C < Œ stands for a generic constant, which may change from line to line. For
brevity, we write x . y for x Æ Cy. We recall the Poincaré–Wirtinger and Sobolev inequalities, see [39–41],

|f ≠ f⌦ |Lp(⌦) . |Òf |Lp(⌦) for all f œ W 1,p(⌦),
|f |Lp(⌦) . |Òf |Lp(⌦) for all f œ W 1,p

0 (⌦),

|f |Wm,q(⌦) . |f |Wk,p(⌦) for all f œ W k,p(⌦), k ≠ d

p
Ø m ≠ d

q
, k Ø m,

(18)

where p, q œ [1,Œ) and f⌦ = 1
|⌦|

s
⌦
f(x) dx denotes the mean of f with respect to ⌦ . Also, the last inequality

yields the continuous embedding W k,p(⌦) Òæ Wm,q(⌦).
For a given Banach space X, we define the Bochner space, see e.g., [42],

Lp(0, T ;X) = {u : (0, T ) æ X : u is strongly measurable,
⁄ T

0
|u(t)|pX dt < Œ},

where 1 Æ p < Œ, with the norm ÎuÎpLpX =
s T
0 |u(t)|pX dt. For p = Œ, we equip LŒ(0, T ;X) with the norm

ÎuÎLŒX = ess suptœ(0,T )|u(t)|X . Moreover, we introduce the Sobolev–Bochner space,

W 1,p(0, T ;X) = {u œ Lp(0, T ;X) : ˆtu œ Lp(0, T ;X)}.

Let X, Y , Z be Banach spaces such that X is compactly embedded in Y , and Y is continuously embedded
in Z, i.e., X ÒÒæ Y Òæ Z. In the proof of the existence theorem below, we make use of the Aubin–Lions–Simon
compactness lemma, see [43, Corollary 4],

Lp(0, T ;X) fl W 1,1(0, T ;Z) ÒÒæ Lp(0, T ;Y ), 1 Æ p < Œ,

LŒ(0, T ;X) fl W 1,r(0, T ;Z) ÒÒæ C0([0, T ];Y ), r > 1,
(19)

where we equip an intersection space X flY with the norm Î · ÎXflY = max{Î · ÎX , Î · ÎY }. Further, we make
use of the following continuous embeddings, see [44, Theorem 3.1, Chapter 1],

L2(0, T ;Y ) fl H1(0, T ;Z) Òæ C0([0, T ]; [Y,Z]1/2),
LŒ(0, T ;Y ) fl Cw([0, T ];Z) Òæ Cw([0, T ];Y ),

(20)

where [Y,Z]1/2 denotes the interpolation space between Y and Z, see [44, Definition 2.1, Chapter 1] for more
details. Also, Cw([0, T ];Y ) denotes the space of the weakly continuous functions on the interval [0, T ] with
values in Y .

We note the following special case of the Gagliardo–Nirenberg inequality, see [45, Lemma II.2.33],

|f |Lp(⌦) . |f |–H1(⌦)|f |
1≠–
L2(⌦) for all f œ H1(⌦), 1

p
= 1

2 ≠ –

3 , – œ [0, 1],

which gives in a time-dependent setting, choosing – = 2/q with q Ø 2,

ÎuÎqLq(0,T ;Lp(⌦)) =
⁄ T

0
|u(t)|qLp(⌦) dt .

⁄ T

0
|u(t)|q–

H1(⌦)|u(t)|q(1≠–)
L2(⌦) dt

=
⁄ T

0
|u(t)|2H1(⌦)|u(t)|q≠2

L2(⌦) dt

Æ ÎuÎ2
L2(0,T ;H1(⌦))ÎuÎq≠2

LŒ(0,T ;L2(⌦))

Æ (max{ÎuÎLŒ(0,T ;L2(⌦)), ÎuÎL2(0,T ;H1(⌦))})q.

(21)
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In particular, it yields the continuous embedding

LŒ(0, T ;L2(⌦)) fl L2(0, T ;H1(⌦)) Òæ Lq(0, T ;Lp(⌦)), 1
p

+ 2
3q = 1

2 .

We also make use of the classical Grönwall–Bellman lemma in the energy estimates to absorb solution-
dependent terms on the right hand side of the energy inequalities.

Lemma 1 (Grönwall–Bellman, cf. [45, Lemma II.4.10]). Let u œ LŒ(0, T ), g œ L1(0, T ; RØ0) and u0 œ R.
If we have

u(t) Æ u0 +
⁄ t

0
g(s)u(s) ds for a.e. t œ (0, T ),

then it holds u(t) Æ u0 exp(
s t
0 g(s) ds) for almost every t œ (0, T ).

4. Existence of solutions

In this section, we lay down some general assumptions on the model that are in force throughout this
paper. Under these assumptions, we state the definition of a weak solution, and we then state a theorem,
which provides the existence of a weak solution.

For simplicity, we write

S– = S–(„), m— = m—(„),  =  („P ,„H ,„N ),
Jpv = Jpv(p, pv), Jpv,� = Jpv(p,⇧�pv), J‡v = J‡v(„‡, p,„v, pv), J‡v,� = J‡v(„‡, p,⇧�„v,⇧�pv),

where – œ A and — œ A\{N,ECM}. We introduce the scaled parameters ÂR = 2fiRi and ÂKv = R2
i fiKv,i in

order to express the 1D model (16) in a shorter way. Moreover, we define the cut-o� operator

C(x) = max{0,min{1, x}}. (22)

Moreover, we introduce the following abbreviations for frequently appearing function spaces,

V = H1(⌦) Òæ H = L2(⌦) Òæ V Õ = (H1(⌦))Õ,

V0 = H1
D(⌦) Òæ H = L2(⌦) Òæ V Õ

0 = (H1
D(⌦))Õ,

W = W 1,3/2(⌦) Òæ H = L2(⌦) Òæ W Õ = (W 1,3/2(⌦))Õ,

X = H1(⇤) Òæ Y = L2(⇤) Òæ X Õ = (H1(⇤))Õ,

X0 = H1
D(⇤) Òæ Y = L2(⇤) Òæ X Õ

0 = (H1
D(⇤))Õ,

where we have denoted the Sobolev space of vanishing trace on ˆ⌦D µ ˆ⌦ by H1
D(⌦) = {u œ H1(⌦) :

u|ˆ⌦D = 0} and in the same way H1
D(⇤) = {u œ H1(⇤) : u|ˆ⇤D = 0}. We equip these spaces of vanishing

trace with the norms | · |V0
= |Ò · |H and | · |X0

= |Ò⇤ · |Y , respectively. Here, we use the notation Ò⇤ for
the space derivative of the 1D fields.

The space W with the Lebesgue order 3/2 becomes useful in the application of the Hölder inequality.
Indeed, we have the relation 2

3 = 1
6 + 1

2 , and therefore, we obtain

|uÏ|L3/2(⌦) Æ |u|L6(⌦)|Ï|H . |u|V |Ï|H for all u œ V,Ï œ H,

where we also applied the Sobolev embedding theorem V Òæ L6(⌦) in the three-dimensional domain ⌦ .
Hence, we have for all u,Ï œ V ,

|uÏ|W =
1
|uÏ|3/2

L3/2(⌦) + |Ò(uÏ)|3/2
L3/2(⌦)

22/3
Æ |uÏ|L3/2(⌦) + |Ò(uÏ)|L3/2(⌦) . |u|V |Ï|V , (23)

where we used the Bernoulli inequality to obtain (a+ b)r Æ ar + br with a, b Ø 0, r œ [0, 1].
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Assumption 1.

(A1) ⌦ µ R3 is a bounded domain with C1,1-boundary, ⇤ is a 1D structure as depicted in Fig. 2c, � is the
2D associated cylindrical surface, see Fig. 2d, and T > 0 denotes a finite time horizon,

(A2) „–,0 œ V for all – œ CH fi {ECM}, „—,0 œ H for all — œ RD, „v,0 œ Y , „v,Œ, pv,Œ œ H1(0, T ) µ
C([0, T ]) and pŒ œ H1(0, T ;H) fl L2(0, T ;V ) µ C([0;T ];H),

(A3) ‰c,‰h Ø 0 and Á–, D— , C‡, ÂKv, ÂR > 0 for – œ {P,H}, — œ RD,
(A4) S– are of the form

S–(„) =
ÿ

“œA
„“f–,“(„), – œ A\{N,ECM},

S—(„) = f—(„), — œ {N,ECM},
Sp(„, µP , µH) = ≠C(„P )(ÒµP + ‰cÒ„‡ + ‰hÒ„ECM )

≠ C(„H)(ÒµH + ‰cÒ„‡ + ‰hÒ„ECM ),

where f–,“ œ Cb(R|A|), f— œ Lip(R|A|) fl PC1(R|A|), such that |f–,“ |, |f— |, |ˆ„“f— | Æ fŒ for all
– œ A\{N,ECM}, — œ {N,ECM}, “ œ A,

(A5) Jpv and J‡v are of the form

Jpv(y1, y2) = Lp(y2 ≠ y1),
J‡v(x1, y1, x2, y2) = f‡,v(x1, x2)Jpv(y1, y2) + L‡(x2 ≠ x1),

where f‡,v œ Cb(R2) such that |f‡,v(x)| Æ fŒ for all x œ R2 and Lp, L‡,K Ø 0 are su�ciently small
in the sense that the prefactors in (53) are positive,

(A6) m– œ Cb(R|A|) such that 0 < m0 Æ m–(x) Æ mŒ for all x œ R|A| for all – œ A\{N,ECM},
(A7)  œ C1(R3) non-negative such that  (0, 0, 0) =  Õ(0, 0, 0) = 0, and there are constants C j ,

j œ {1, . . . , 3}, such that for all (x, y, z) œ R3 it holds

 (x, y, z) Ø C 1(|x|
2 + |y|2 + |z|2) ≠ C 2 ,

|ˆx (x, y, z)|, |ˆy (x, y, z)|, |ˆz (x, y, z)| Æ C 3(1 + |x|+ |y|+ |z|).

Remarks on the assumptions:

(A4) After a suitable reformulation of the source functions (6) and (9) with the cut-o� operator C,
see (22), and replacing the Heaviside functions by the continuous Sigmoid function, the source
functions can be brought into the form as stated in assumption (A4). Further, the assumption
f— œ Lip(R|A|) fl PC1(R|A|), — œ {N,ECM}, ensures the validity of the chain rule if f— is composed
with a vector-valued Sobolev function; see [46,47]. In particular, we have for all – œ A,

(Òf—(„),Ò„–)H =
ÿ

“œA
(ˆ„“f—(„)Ò„“ ,Ò„–)H Æ fŒ

ÿ

“œA
|Ò„“ |H |Ò„–|H .

(A5) We consider the unique, linear and continuous trace operator, see [48],

tr� : W æ W 1/3,3/2(� ) such that tr�u = u|� for u œ CŒ(⌦),

onto the two dimensional associated cylindrical surface � of the one-dimensional network ⇤, see Fig. 2.
In two dimensions, we can apply the Sobolev embedding theorem to obtain W 1/3,3/2(� ) Òæ L2(� ),

12
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see (18). Note that this embedding does not hold in three dimensions. Consequently, we have

Î”�ÎW Õ = sup
|Ï|WÆ1

|È”� ,ÏÍW | = sup
|Ï|WÆ1

---
⁄

�

tr�Ï(s) ds
--- Æ sup

|Ï|WÆ1
|tr�Ï|L1(�)

Æ C
L1(�)
W1/3,3/2(�)|tr� |L(W ;W1/3,3/2(�)),

where CL1(�)
W1/3,3/2(�) denotes the embedding constant from W 1/3,3/2(� ) Òæ L1(� ). Therefore, we have

”� œ W Õ and in the following existence proof we often apply the estimate for Ï œ W

È”� , J–v,�ÏÍW =
⁄

�

J–v,� tr�Ï(s) ds Æ |J–v,� |L2(�)|tr�Ï|L2(�) Æ C� |J–v,� |L2(�)|Ï|W , (24)

for – œ {‡, p}, where
C� = C

L2(�)
W1/3,3/2(�)|tr� |L(W ;W1/3,3/2(�)).

Further, we can estimate the fluxes by
|Jpv,� |L2(�) Æ Lp(C� |p|W + |⇧� |L(Y ;L2(�))|pv|Y ),
|J‡v,� |L2(�) Æ fŒLp(C� |p|W + |⇧� |L(Y ;L2(�))|pv|Y ) + L‡(C� |„‡|W + |⇧� |L(Y ;L2(�))|„v|Y ).

(25)

The assumption of smallness of Lp and L‡ is generally accepted in the analysis of very weak solution
of the stationary Navier–Stokes equation. There, one also considers a distributional divergence, which
should be su�ciently small, see [49]. Additionally, in [50] the authors have shown well-posedness of
an abstract stationary 3D–1D model if the prefactor of the Dirac delta functional is su�ciently small.

(A7) The assumption on the potential  is quite typical in the analysis of Cahn–Hilliard equations, see
also [12,13]. In order to take the fourth order polynomial (x + y + z)2(1 ≠ x ≠ y ≠ z)2, we have to
extend it by a quadratic function outside of the interval [0, 1], i.e.,

 (x, y, z) =

Y
_]
_[

(x+ y + z)2, x+ y + z < 0,
(x+ y + z)2(1 ≠ x ≠ y ≠ z)2, x+ y + z œ [0, 1],
(1 ≠ x ≠ y ≠ z)2, x+ y + z > 1,

and one can show that  œ C2(R3; R).
We invoke from (A7) and the fundamental lemma of calculus the upper estimate

 (x, y, z) =  (0, y, z) +
⁄ x

0
ˆx (x̃, y, z) dx̃

=  (0, 0, 0) +
⁄ x

0
ˆx (x̃, y, z) dx̃+

⁄ y

0
ˆy (0, ỹ, z) dỹ +

⁄ z

0
ˆz (0, 0, z̃) dz̃

. 1 + |x|2 + |y|2 + |z|2.

(26)

We define a weak solution of the coupled 3D–1D system, see (14) and (16), in the following way.

Definition 1 (Weak Solution). We call the tuple („, µP , µH , v, p,„v, vv, pv) a weak solution of (14) and (16)
with boundary data (15) and (17) if the functions „ : (0, T )◊⌦ æ R|A|, µP , µH , v, p,„v, vv, pv : (0, T )◊⌦ æ
R have the regularity

„– œ H1(0, T ;V Õ) fl LŒ(0, T ;V ), – œ {P,H},
µ– œ L2(0, T ;V ), – œ {P,H},
„— œ H1(0, T ;H) fl LŒ(0, T ;V ), — œ {N,ECM},
„“ œ H1(0, T ;V Õ) fl LŒ(0, T ;H) fl L2(0, T ;V ), “ œ RD,

(v, p ≠ pŒ) œ L2((0, T ) ◊ ⌦ ; R3) ◊ L2(0, T ;V0),
„v ≠ „v,Œ œ H1(0, T ;X Õ

0) fl LŒ(0, T ;Y ) fl L2(0, T ;X0),
(vv, pv ≠ pv,Œ) œ L2(0, T ;Y ) ◊ L2(0, T ;X0),

(27)
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fulfill the initial data „–(0) = „–,0, – œ A, „v(0) = „v,0, and satisfy the following variational form of (14),

Èˆt„P ,Ï1ÍW1,3(⌦) ≠ (C(„P )v,ÒÏ1)H + (mPÒµP ,ÒÏ1)H = (SP ,Ï1)H ,
≠(µP ,Ï2)H + (ˆ„P ,Ï2)H + Á2

P (Ò„P ,ÒÏ2)H = ‰c(„‡,Ï2)H + ‰h(„ECM ,Ï2)H ,
Èˆt„H ,Ï3ÍW1,3(⌦) ≠ (C(„H)v,ÒÏ3)H + (mHÒµH ,ÒÏ3)H = (SH ,Ï3)H ,

≠(µH ,Ï4)H + (ˆ„H ,Ï4)H + Á2
H(Ò„H ,ÒÏ4)H = ‰c(„‡,Ï4)H + ‰h(„ECM ,Ï4)H ,

(ˆt„N ,Ï5)H = (SN ,Ï5)H ,
Èˆt„‡,Ï6ÍW1,3(⌦) ≠ (C(„‡)v,ÒÏ6)H +D‡(m‡Ò„‡,ÒÏ6)H = (S‡,Ï6)H + È”� , J‡v,�Ï6ÍW

≠ ‰c(m‡Ò(„P + „H),ÒÏ6)H ,
Èˆt„MDE ,Ï7ÍV +DMDE(mMDEÒ„MDE ,ÒÏ7)H = (SMDE ,Ï7)H ,

Èˆt„TAF ,Ï8ÍV +DTAF (mTAFÒ„TAF ,ÒÏ8)H = (STAF ,Ï8)H ,
Èˆt„ECM ,Ï9ÍV = (SECM ,Ï9)H ,

(v,Ï10)H = ≠K(Òp,Ï10)H +K(Sp,Ï10)H ,
K(Òp,ÒÏ11)H = È”� , Jpv,�Ï11ÍW +K(Sp,ÒÏ11)H ,

(28)

for all Ïj œ V , j œ {1, . . . , 9}, Ï10 œ L2(⌦ ; R3), Ï11 œ V0, and the variational form of (16),

Èˆt„v,Ï12ÍX ≠ (C(„v)vv,Ò⇤Ï12)Y +Dv(mvÒ⇤„v,Ò⇤Ï12)Y = ≠ ÂR(J‡v,Ï12)Y ,
(vv,Ï13)Y = ≠ ÂKv(Ò⇤pv,Ï13)Y ,

ÂKv(Ò⇤pv,Ò⇤Ï14)Y = ≠ ÂR(Jpv,Ï14)Y ,
(29)

for all Ïj œ X0, j œ {12, 14}, Ï13 œ Y .

The initial data „–(0) = „–,0, – œ A, are well-defined with assumption (A2) on the regularity of the initial
data. Indeed, from the regularity given in (27), we achieve, by the embeddings (20), the continuity-in-time
regularity

„– œ C0([0, T ];H) fl Cw([0, T ];V ), – œ CH fi {ECM},
„— œ C0([0, T ];V Õ) fl Cw([0, T ];H), — œ RD,
„v œ C0([0, T ];X Õ

0) fl Cw([0, T ];Y ),

and therefore, „–(0) is well-defined in H, „—(0) in V Õ and „v(0) in X Õ
0.

We use a mixed boundary approach for p,„v, pv, e.g., for the pressure p we define p̃ = p ≠ pŒ with
p̃|ˆ⌦D = 0 and (ˆnp̃+ ˆnpŒ)ˆ⌦\ˆ⌦D = 0. Hence, we consider the partial di�erential equation

≠div(KÒp̃) ≠ div(KÒpŒ) = ”�Jpv,� ≠ divSp,

with the weak form with the test function q œ V0

K(Òp̃+ ÒpŒ,Òq)H ≠ K(ˆnp̃+ ˆnpŒ, q)L2(ˆ⌦) = È”� , Jpv,� qÍW + (KSp,Òq)H ≠ (KSp · n, q)L2(ˆ⌦),

or, after the cancellation of the boundary terms,

K(Òp,Òq)H = È”� , Jpv,� qÍW + (KSp,Òq)H .

The main result of this paper involves stating the existence of a weak solution of the 3D–1D model, see
(14) and (16), in the sense of Definition 1.
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Theorem 1 (Existence of a Global Weak Solution). Let Assumption 1 hold. Then there exists a weak solution
tuple („, µP , µH , p,„v, pv) to the 3D–1D model in the sense of Definition 1, which additionally satisfies the
energy inequality

Î ÎLŒ(0,T ;L1(⌦)) +
ÿ

–œCHfi{ECM}
Î„–Î2

LŒ(0,T ;V ) +
ÿ

—œ{P,H}
Îµ—Î2

L2(0,T ;V ) +
ÿ

“œRD
Î„“Î2

LŒ(0,T ;H)flL2(0,T ;V )

+ ÎvÎ2
L2(0,T ;H) + ÎpÎ2

L2(0,T ;V ) + Î„vÎ2
LŒ(0,T ;Y )flL2(0,T ;X) + ÎvvÎ2

L2(0,T ;Y ) + ÎpvÎ2
L2(0,T ;X)

. 1 + |„v,0|2Y +
ÿ

–œCHfi{ECM}
|„–,0|2V +

ÿ

—œRD
|„—,0|2H + ÎpŒÎ2

L2(0,T ;V ) + |„v,Œ|2H1(0,T ) + |pv,Œ|2L2(0,T ).

(30)

5. Proof of Theorem 1

To prove the existence of a weak solution, we use the Faedo–Galerkin method [41] and semi-discretize the
original problem in space. The discretized model can be formulated as an ordinary di�erential equation
system and by the Cauchy–Peano theorem [51], we conclude the existence of a discrete solution, see
Section 5.1. Having derived energy estimates in Section 5.2, we deduce from the Banach–Alaoglu theorem
the existence of limit functions which eventually form a weak solution, see Section 5.3. This method is by
now standard in the analysis of tumor growth models, e.g., see [30,52–54]. Nevertheless, the novel nonlinear
coupling of the equations requires a thorough proof of the existence of a solution to the system.

5.1. Faedo–Galerkin discretization

We introduce the discrete spaces

Hk = span{h1, . . . , hk},
H0
k = span{h0

1, . . . , h
0
k},

Yk = span{y1, . . . , yk},

where hj : ⌦ æ R, h0
j : ⌦ æ R, yj : ⇤ æ R, j œ {1, . . . , k}, are the eigenfunctions to the eigenvalues

⁄h,j ,⁄h0,j ,⁄y,j œ R of the following respective problems

(Òhj ,Òv)H = ⁄h,j(hj , v)H ’v œ V,

(Òh0
j ,Òv)H = ⁄h0,j(h0

j , v)H ’v œ V0,

(Òyj ,Òv)Y = ⁄y,j(yj , v)Y ’v œ X0.

Since the inverse Neumann–Laplace operator is a compact, self-adjoint, injective, positive operator on L2
0(⌦),

we conclude by the spectral theorem, see e.g., [55, 12.12 and 12.13], that

{hj}jœN is an orthonormal basis in H and orthogonal in V.

Therefore, fikœNHk is dense in V . Additionally, {hj}jœN is a basis in H2
N (⌦) = {u œ H2(⌦) : ˆnu =

0 on ˆ⌦}, see [8].
Next, we investigate the inverse Dirichlet–Neumann Laplacian (≠�)≠1|H : H æ H, see, e.g., [56] for

the consideration of the Dirichlet–Neumann Laplacian in a Faedo–Galerkin approach. According to the
Lax–Milgram theorem, for all f œ H there exists a unique solution uf œ V0 to the problem

(Òuf ,Òv)H = (uf , f)H ’v œ V0.
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Additionally, it holds |uf |V0
. |f |H for all f œ H and we can construct an operator T œ L(H;V0) with

Tf = uf . Since V0 is compactly embedded in H, we conclude the compactness of T œ L(H;H). Taking the
test function v = Tg for an arbitrary element g œ H, we obtain the self-adjointness of T ,

(Tg, f)H = (ÒTf,ÒTg)H = (g, Tf)H ,

and taking g = f yields the positivity of T ,

(Tf, f)H = |ÒTf |2H Ø 0.

Additionally, T is injective, since Tf = 0 yields (f, v)H = 0 for all v œ H and hence, f = 0 almost
everywhere. Similarly, we can derive the same results for an operator ÂT œ L(Y ;Y ) corresponding to the
eigenvalue problem on Y . Hence, by the spectral theorem we conclude

{h0
j}jœN is an orthonormal basis in H and orthogonal in V0,

{yj}jœN is an orthonormal basis in Y and orthogonal in X0.

Additionally, we deduce that fikœNH0
k is dense in V0 and fikœNYk is dense in X0.

We consider the Faedo–Galerkin approximations, – œ A, — œ {P,H},

„k–(t) =
kÿ

j=1
›–,j(t)hj , µk—(t) =

kÿ

j=1
’—,j(t)hj , „kv(t) = „v,Œ(t) +

kÿ

j=1
›v,j(t)yj ,

pk(t) = pŒ(t) +
kÿ

j=1
’p,j(t)h0

j , pkv(t) = pv,Œ(t) +
kÿ

j=1
’pv ,j(t)yj ,

(31)

where (›–,j)–œA : (0, T ) æ R|A|, (’—,j)—œ{P,H} : (0, T ) æ R2 and ›v,j , ’p,j , ’pv ,j : (0, T ) æ R are coe�cient
functions for all j œ {1, . . . , k}. To simplify the notation, we set „k = („k–)–œA, and

Sk– = S–(„k), mk
— = m—(„k),  k =  („kP ,„kH ,„kN ),

Jkpv = Jpv(pk, pkv), Jkpv,� = Jpv(pk,⇧�pkv), Jk‡v = J‡v(„
k

‡, p
k,„kv , p

k
v),

Jk‡v,� = J‡v(„k‡, pk,⇧�„kv ,⇧�p
k
v),

where – œ A and — œ A\{N,ECM}. The Faedo–Galerkin system of the model then reads

(ˆt„kP ,Ï1)H ≠ (C(„kP )vk,ÒÏ1)H + (mk
PÒµkP ,ÒÏ1)H = (SkP ,Ï1)H ,

≠(µkP ,Ï2)H + (ˆ„k
P
 k,Ï2)H + Á2

P (Ò„kP ,ÒÏ2)H = ‰c(„k‡,Ï2)H + ‰h(„kECM ,Ï2)H ,

(ˆt„kH ,Ï3)H ≠ (C(„kH)vk,ÒÏ3)H + (mk
HÒµkH ,ÒÏ3)H = (SkH ,Ï3)H ,

≠(µkH ,Ï4)H + (ˆ„k
H
 k,Ï4)H + Á2

H(Ò„kH ,ÒÏ4)H = ‰c(„k‡,Ï4)H + ‰h(„kECM ,Ï4)H ,

(ˆt„kN ,Ï5)H = (SkN ,Ï5)H ,
(ˆt„k‡,Ï6)H ≠ (C(„k‡)vk,ÒÏ6)H +D‡(mk

‡Ò„k‡,ÒÏ6)H = (Sk‡ ,Ï6)H + È”� , Jk‡v,�Ï6ÍW
≠ ‰c(mk

‡Ò(„kP + „kH),ÒÏ6)H ,
(ˆt„kMDE ,Ï7)H +DMDE(mk

MDEÒ„kMDE ,ÒÏ7)H = (SkMDE ,Ï7)H ,
(ˆt„kTAF ,Ï8)H +DTAF (mk

TAFÒ„kTAF ,ÒÏ8)H = (SkTAF ,Ï8)H ,
(ˆt„kECM ,Ï9)H = (SkECM ,Ï9)H ,
K(Òpk,ÒÏ10)H = È”� , Jkpv,�Ï10ÍW +K(Skp ,ÒÏ10)H ,

(32)
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for all Ïi œ Hk, i œ {1, . . . , 9}, Ï10 œ H0
k , and

(ˆt„kv ,Ï11)Y +Dv(mk
vÒ⇤„kv ,Ò⇤Ï11)Y = (C(„kv)vkv ,Ò⇤Ï11)Y ≠ ÂR(Jk‡v,Ï11)Y ,

ÂKv(Ò⇤pkv ,Ò⇤Ï12)Y = ≠ ÂR(Jkpv,Ï12)Y ,
(33)

for all Ïj œ Yk, j œ {11, 12}, where we define the Faedo–Galerkin ansatz for the velocities vk, vkv by

vk = ≠K(Òpk ≠ Skp ),
vkv = ≠ ÂKvÒ⇤pkv .

(34)

We equip the system with the initial data,

„k–(0) = ⇧Hk„–,0, – œ A,
„kv(0) = „v,Œ(0) +⇧Yk„v,0,

(35)

where ⇧Hk : H æ Hk and ⇧Yk : Y æ Yk are the orthogonal projections onto the finite dimensional spaces,
which can be written as

⇧Hkh =
kÿ

j=1
(h, hj)Hhj , and ⇧Yky =

kÿ

j=1
(y, yj)Y yj .

After inserting the Faedo–Galerkin ansatz functions (31) into the system (32)–(33), one can see that the
Faedo–Galerkin system is equivalent to a system of nonlinear ordinary di�erential equations in the unknowns
((›–,j)–œAfi{v}, (’—,j)—œCHfi{p,pv})1ÆjÆk with the initial data,

›–,j(0) = („–,0, hj)H , – œ A,
›v,j(0) = („v,0, yj)Y .

Due to the continuity of the involved nonlinear functions the existence of solutions to (32)–(33) with
the initial data (35) follows from the standard theory of ordinary di�erential equations, according to the
Cauchy–Peano theorem [51]. We thus have local-in-time existence of a continuously di�erentiable solution,

(„k, µkP , µ
k
H , p

k ≠ pŒ,„kv ≠ „v,Œ, pkv ≠ pv,Œ) œ [C1([0, Tk];Hk)]|A| ◊ [C0([0, Tk];Hk)]2 ◊ C0([0, Tk];H0
k)

◊ C1([0, Tk];Yk) ◊ C0([0, Tk];Yk),

to the Faedo–Galerkin problem (32)–(33) on some su�ciently short time interval [0, Tk]. Further, we obtain
divSkp œ H by the representation of Skp , see (A4), and therefore, vk œ H with divvk = ≠K(�pk ≠ divSkp ) =
Jkpv,� ”� . Similarly, vkv œ Y with divvkv = ≠RJkpv.

5.2. Energy estimates

Next, we extend the existence interval to [0, T ] by deriving Tk-independent estimates. In particular, these
estimates allow us to deduce that the solution sequences converge to some limit functions as k æ Œ. It will
turn out that exactly these limit functions will form a weak solution to our 3D–1D model (14)–(16) in the
sense of Definition 1.

Step 1 (Testing)
We derive energy estimates of the model (32)–(33) by choosing suitable test functions in the variational

form. For the Cahn–Hilliard type equations, we choose Ï1 = µkP + ‰c„
k
‡ + ‰h„kECM , Ï2 = ˆt„

k
P ≠ µkP ,
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Ï3 = µkH + ‰c„
k
‡ + ‰h„kECM , Ï4 = ˆt„

k
H ≠ µkH , Ï5 = ⇧Hkˆ„k

N
 k ≠ Á2

N�„kN , and we arrive at the system of
equations,

(ˆt„kP , µkP + ‰c„
k
‡ + ‰h„kECM )H +

---
Ò
mk
PÒµkP

---
2

H
= (C(„kP )vk,ÒµkP + ‰cÒ„k‡ + ‰hÒ„kECM )H

≠ (mk
PÒµkP ,‰cÒ„k‡ + ‰hÒ„kECM )H

+ (SkP , µkP + ‰c„
k
‡ + ‰h„kECM )H ,

(ˆ„k
P
 k, ˆt„

k
P )H + Á2

P

2
d
dt |Ò„kP |

2
H + |µkP |

2
H = (µkP + ‰c„

k
‡ + ‰h„kECM , ˆt„

k
P )H + (ˆ„k

P
 k, µkP )H

≠ (‰c„k‡ + ‰h„kECM , µkP )H + Á2
P (Ò„kP ,ÒµkP )H ,

(ˆt„kH , µkH + ‰c„
k
‡ + ‰h„kECM )H +

---
Ò
mk
HÒµkH

---
2

H
= (C(„kH)vk,ÒµkH + ‰cÒ„k‡ + ‰Ò„kECM )H

≠ (mk
HÒµkH ,‰cÒ„k‡ + ‰hÒ„kECM )H

+ (SkH , µkH + ‰c„
k
‡ + ‰h„kECM )H ,

(ˆ„k
H
 k, ˆt„

k
H)H + Á2

H

2
d
dt |Ò„kH |

2
H + |µkH |

2
H = (µkH + ‰c„

k
‡ + ‰h„kECM , ˆt„

k
H)H + (ˆ„k

H
 k, µkH)H

≠ (‰c„k‡ + ‰h„kECM , µkH)H + Á2
H(Ò„kH ,ÒµkH)H ,

(ˆt„kN ,⇧Hkˆ„k
N
 k)H + Á2

N

2
d
dt |Ò„kN |

2
H = (SkN ,⇧Hkˆ„k

N
 k)H + Á2

N (ÒSkN ,Ò„kN )H .
(36)

We exploit that the time derivative operator is invariant under the adjoint of the orthogonal projection.
Further, for the reaction–di�usion type equations, we choose Ï6 = C‡„k‡, C‡ > 0 to be determined,

Ï7 = „kMDE , Ï8 = „kTAF , Ï9 = „kECM ≠�„kECM , which yields the system,

C‡

2
d
dt |„

k
‡|

2
H + C‡D‡

---
Ò
mk

‡Ò„k‡

---
2

H
= ‰cC‡(mk

‡Ò(„kP + „kH),Ò„k‡)H + C‡(Sk‡ ,„k‡)H
+ C‡(C(„k‡)vk,Ò„k‡)H + C‡È”� , Jk‡v,�„k‡ÍW ,

1
2

d
dt |„

k
MDE |

2
H +DMDE

---
Ò
mk
MDEÒ„kMDE

---
2

H
= (SkMDE ,„kMDE)H ,

1
2

d
dt |„

k
TAF |

2
H +DTAF

---
Ò
mk
TAFÒ„kTAF

---
2

H
= (SkTAF ,„kTAF )H ,

1
2

d
dt |„

k
ECM |2H + 1

2
d
dt |Ò„kECM |2H = (SkECM ,„kECM )H + (ÒSkECM ,Ò„kECM )H ,

(37)

and for the equations in Yk, we choose Ï12 = Cv(„kv ≠ „v,Œ), Cv > 0 to be determined, giving

Cv
2

d
dt |„

k
v ≠ „v,Œ|2Y + CvDv

---
Ò
mk
vÒ⇤„kv

---2Y = Cv(C(„kv)vkv ,Ò⇤„kv)Y ≠Cv(RJk‡v + „Õ
v,Œ,„kv ≠ „v,Œ)Y , (38)

Similarly, we test Eqs. (34)2 by 1
ÂKv
vkv to obtain

1
ÂKv

|vkv |
2
H = ≠(Ò⇤(pkv ≠ pv,Œ), vkv )Y = ≠ ÂR(Jkpv, pkv ≠ pv,Œ)Y . (39)

We test (34)1 by 1
K v

k and simplify the first term on the right hand side by comparing it with Eq. (34)1 for
the velocity vk and the pressure equation (32), which is tested by Ï10 = pk ≠ pŒ. This procedure yields

1
K
|vk|2H = ≠(Ò(pk ≠ pŒ), vk)H + (ÒpŒ, vk)H + (Skp , vk)H

= K(Òpk ≠ Skp ,Ò(pk ≠ pŒ))H + (ÒpŒ, vk)H + (Skp , vk)H
= È”� , Jkpv,� (pk ≠ pŒ)ÍW ≠ (ÒpŒ, vk)H + (Skp , vk)H .

(40)
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Step 2 (Estimates)
We separate this step into three sub-steps by deriving the energy estimates separately for (36)–(38).

Step 2.1 (Estimate for (36))
Adding the equations in (36) and (40) gives

d
dt | 

k|L1(⌦) + Á2
P

2
d
dt |Ò„kP |

2
H + Á2

H

2
d
dt |Ò„kH |

2
H + Á2

N

2
d
dt |Ò„kN |

2
H +

---
Ò
mk
PÒµkP

---
2

H
+

---
Ò
mk
HÒµkH

---
2

H

+ |µkP |
2
H + |µkH |

2
H + 1

K
|vk|2H

= (C(„kP )vk,ÒµkP + ‰cÒ„k‡ + ‰hÒ„kECM )H ≠ (mk
PÒµkP ,‰cÒ„k‡ + ‰hÒ„kECM )H

+ (SkP , µkP + ‰c„
k
‡ + ‰h„kECM )H + (ˆ„k

P
 k ≠ ‰c„

k
‡ ≠ ‰h„kECM , µkP )H + Á2

P (Ò„kP ,ÒµkP )H
+ (C(„kH)vk,ÒµkH + ‰cÒ„k‡ + ‰hÒ„kECM )H ≠ (mk

HÒµkH ,‰cÒ„k‡ + ‰hÒ„kECM )H
+ (SkH , µkH + ‰c„

k
‡ + ‰h„kECM )H + (ˆ„k

H
 k ≠ ‰c„

k
‡ ≠ ‰h„kECM , µkH)H + Á2

H(Ò„kH ,ÒµkH)H
+ (SkN ,⇧Hkˆ„k

N
 k)H + Á2

N (ÒSkN ,Ò„kN )H + È”� , Jkpv,� (pk ≠ pŒ)ÍW ≠ (ÒpŒ, vk)H + (Skp , vk)H
= RHSCH.

(41)

We note that the two convection terms cancel together with the last term (Skp , vk)H on the right hand side.
We apply the Hölder inequality on the terms on the right hand side, and use the assumptions (A4) and (A6),
which gives

RHSCH Æ mŒ|ÒµkP |H(‰c|Ò„k‡|H + ‰h|Ò„kECM |H) + |SkP |H(|µkP |H + ‰c|„k‡|H + ‰h|„kECM |H)
+ |µkP |H(|ˆ„k

P
 k|

H
+ ‰c|„k‡|H + ‰H |„kECM |H) + Á2

P |Ò„kP |H |ÒµkP |H
+mŒ|ÒµkH |H(‰c|Ò„k‡|H + ‰h|Ò„kECM |H) + |SkH |H(|µkH |H + ‰c|„k‡|H + ‰h|„kECM |H)
+ |µkH |H(|ˆ„k

H
 k|

H
+ ‰c|„k‡|H + ‰h|„kECM |H) + Á2

H |Ò„kH |H |ÒµkH |H
+ |SkN |H |⇧Hkˆ„k

N
 k|H + Á2

N |ÒSkN |H |Ò„kN |H + È”� , Jkpv,� (pk ≠ pŒ)ÍW + |ÒpŒ|H |vk|H .

(42)

We note that the norm of the orthogonal projection is bounded by 1. We use a similar argument as in (24)
and (25) to estimate the term involving the Dirac delta functional ”� , i.e., with the assumption on the form
of Jkpv,� , see (A5), we obtain

È”� , Jkpv,� (pk ≠ pŒ)ÍW
Æ C� |pk ≠ pŒ|W |Jkpv,� |L2(�)

Æ C�Lp|pk ≠ pŒ|W (C� |pk ≠ pŒ|W + C� |pŒ|W + |⇧� |L(Y ;L2(�))|pkv ≠ pv,Œ|Y + |⇧� |L(Y ;L2(�))|pv,Œ|Y )

Æ C1Lp(|Òpk|2H + |Ò⇤pkv |
2
Y + |pŒ|2V + |pv,Œ|2),

where we also applied the Poincaré inequality on pk ≠ pŒ œ V0 and pkv ≠ pv,Œ œ X0 with the Poincaré
constants CP,⌦ and CP,⇤, giving the constant

C1 = max{2C2
� (CV

W )2(C2
P,⌦ + 1); |⇧� |2L(Y ;L2(�))C

2
P,⇤; |⇧� |2L(Y ;L2(�))|⇤|}.

Further, using the form on vk and vkv gives

È”� , Jkpv,� (pk ≠ pŒ)ÍW Æ C1Lp(K≠2|vk|2H + |Skp |
2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2).

We apply Young’s inequality on the norm products to separate the terms. Here, the goal is to make
the terms involving |µkP |V , |µkH |V , |Ò„k‡|H small, since we cannot absorb them with the Grönwall–Bellman
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lemma later on. We only track the important constants, which are used to absorb the terms on the right
hand side with the left hand side, the other ones we simply denote by the generic constant C. We have

RHSCH Æ m0
4 |ÒµkP |

2
H + 2m2

Œ‰2
c

m0
|Ò„k‡|

2
H + 2m2

Œ‰2
h

m0
|Ò„kECM |2H + 3|SkP |

2
H + 1

4
!
|µkP |

2
H + ‰2

c |„k‡|
2
H

+ ‰2
h|„kECM |2H

"
+1

4 |µ
k
P |

2
H + 3(|ˆ„k

P
 k|2H + ‰2

c |„k‡|
2
H + ‰2

h|„kECM |2H) + Á4
P

m0
|Ò„kP |

2
H

+ m0
4 |ÒµkP |

2
H + m0

4 |ÒµkH |
2
H + 2m2

Œ‰2
c

m0
|Ò„k‡|

2
H + 2m2

Œ‰2
h

m0
|Ò„kECM |2H + 3|SkH |

2
H

+ 1
4(|µkH |

2
H + ‰2

c |„k‡|
2
H + ‰2

h|„kECM |2H) + 1
4 |µ

k
H |

2
H + 3(|ˆ„k

H
 k|2H + ‰2

c |„k‡|
2
H + ‰2

h|„kECM |2H)

+ Á4
H

m0
|Ò„kH |

2
H + m0

4 |ÒµkH |
2
H + 1

2 |S
k
N |

2
H + 1

2 |ˆ„k
N
 k|2H + Á|ÒSkN |

2
H + Á4

N

4Á
|Ò„kN |

2
H

+ C1Lp
!
K≠2|vk|2H + |Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2

"
+ K

2 |ÒpŒ|2H + 1
2K |vk|2H ,

(43)
where Á > 0 is a constant, which will be determined later on, see (52) for more details. We estimate the
terms involving the potential  via assumption (A7) and afterwards, we collect the terms with the same
norms, which yields

RHSCH Æ m0
2

!
|ÒµkP |

2
H + |ÒµkH |

2
H

"
+ 1

2
!
|µkP |

2
H + |µkH |

2
H

"
+ 4m2

Œ‰2
c

m0
|Ò„k‡|

2
H + Á|ÒSkN |

2
H

+ 1
2K |vk|2H + C1Lp

!
K≠2|vk|2H + |Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2

"

+ C
!
|„k‡|

2
H + |„P |2V + |„H |2V + |„N |2V + |„kECM |2V + |pŒ|2V + |SkP |

2
H + |SkH |

2
H + |SkN |

2
H

"
.

(44)

We insert this estimate into (41), and absorb the terms involving the chemical potentials, and arrive at the
upper bound

d
dt

5
| k|L1(⌦) + Á2

P

2 |Ò„kP |
2
H + Á2

H

2 |Ò„kH |
2
H + Á2

N

2 |Ò„kN |
2
H

6
+ m0

2 |ÒµkP |
2
H + m0

2 |ÒµkH |
2
H + 1

2 |µ
k
P |

2
H

+ 1
2 |µ

k
H |

2
H +

3
1

2K ≠ C1Lp
K2

4
|vk|2H

Æ 4m2
Œ‰2

c

m0
|Ò„k‡|H + Á|ÒSkN |

2
H + C1Lp

!
|Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y

"
+ C

!
|„k‡|

2
H + |„kP |

2
V + |„kH |

2
V

+ |„kN |
2
V + |„kECM |2V + |„kv |

2
Y + |pŒ|2V + |pv,Œ|2 + |SkP |

2
H + |SkH |

2
H + |SkN |

2
H

"
.

(45)

Step 2.2 (Estimate for (37))
Adding the equations in (37) gives

C‡

2
d
dt |„

k
‡|

2
H + C‡D‡

---
Ò
mk

‡Ò„k‡

---
2

H
+ 1

2
d
dt |„

k
MDE |

2
H +DMDE

---
Ò
mk
MDEÒ„kMDE

---
2

H
+ 1

2
d
dt |„

k
TAF |

2
H

+DTAF

---
Ò
mk
TAFÒ„kTAF

---
2

H
+ 1

2
d
dt |„

k
ECM |2H + 1

2
d
dt |Ò„kECM |2H

= ‰cC‡(mk
‡Ò(„kP + „kH),Ò„k‡)H + C‡(Sk‡ ,„k‡)H + C‡(C(„k‡)vk,Ò„k‡)H + C‡È”� , Jk‡v,�„k‡ÍW

+ (SkMDE ,„kMDE)H + (SkTAF ,„kTAF )H + (SkECM ,„kECM )H + (ÒSkECM ,Ò„kECM )H
= RHSRD.

(46)
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We estimate the term involving the Dirac delta functional as before, i.e., we use assumption (A5) and the
inequalities (24) and (25) to obtain

C‡È”� , Jk‡v,�„k‡ÍW
Æ C‡C� |„k‡|W

1
fŒLp(C� |pk|W + |⇧� |L(Y ;L2(�))|pkv |Y ) + L‡(C� |„k‡|W + |⇧� |L(Y ;L2(�))|„kv |Y )

2

Æ C2C‡ max{Lp;L‡}
!
|„k‡|

2
V + |„kv |

2
Y +K≠2|vk|2H + |Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2

"
,

where

C2 = max{24C2
� (CV

W )2; f2
ŒC2

� (CV
W )2(C2

P,⌦ + 1); f2
Œ|⇧� |2L(Y ;L2(�))C

2
P,⇤; f2

Œ|⇧� |2L(Y ;L2(�))|⇤|;
|⇧� |2L(Y ;L2(�))}.

In a similar way to the estimates before, we apply Hölder’s and Young’s inequalities on the terms on the
right hand side, which results in

RHSRD Æ C‡m
2
Œ‰2

c

D‡m0
|Ò(„kP + „kH)|2H + C‡D‡m0

4 |Ò„k‡|
2
H + C(|Sk‡ |

2
H + |„k‡|

2
H)

+ C‡D‡m0
4 |Ò„k‡|

2
H + C‡

D‡m0
|vk|2H + C2C‡ max{Lp;L‡}

!
|„k‡|

2
V + |„kv |

2
Y +K≠2|vk|2H

+ |Skp |
2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2

"
+C

!
|SkMDE |

2
H + |„kMDE |

2
H + |SkTAF |

2
H

+ |„kTAF |
2
H + |SkECM |2H + |„kECM |2H

"
+Á|ÒSkECM |2H + 1

4Á
|Ò„kECM |2H ,

(47)

where we used the same constant Á as before in (41) and applied the assumption on the form of Jk‡v,� , see
(A5). Again, collecting the terms on the right hand side and absorbing the terms with their counterparts,
we have

1
2

d
dt

5
C‡|„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H + |„kECM |2H + |Ò„kECM |2H

6
+DMDEm0|Ò„kMDE |

2
H

+DTAFm0|Ò„kTAF |
2
H + C‡

2
!
D‡m0 ≠ 2C2 max{Lp;L‡}

"
|Ò„k‡|

2
H

Æ
3

C‡

D‡m0
+ C2C‡ max{Lp;L‡}

K2

4
|vk|2H + C2C‡ max{Lp;L‡}

!
|Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y

"
+ Á|ÒSkECM |2H

+ C
!
|„P |2V + |„H |2V + |„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H + |„kECM |2V + |„kv |

2
Y + |pŒ|2V

+ |pv,Œ|2 + |Sk‡ |
2
H + |SkMDE |

2
H + |SkTAF |

2
H + |SkECM |2H

"
.

(48)

Step 2.3 (Estimate for (38))
Lastly, adding the equations in (38) and (39) gives

Cv
2

d
dt |„

k
v ≠ „v,Œ|2Y + CvDv

---
Ò
mk
vÒ⇤„kv

---
2

Y
+ 1

ÂKv

|vkv |
2
Y

= Cv(C(„kv)vkv ,Ò⇤„kv)Y ≠ Cv(RJk‡v + „Õ
v,Œ,„kv ≠ „v,Œ)Y ≠ ÂR(Jkpv, pkv ≠ pv,Œ)Y .

(49)

We estimate the last term on the right hand side with the Poincaré–Wirtinger inequality (18) with constant
CP , the Darcy law (34) and the Young inequality as follows

≠ ÂR(Jkpv, pkv ≠ pv,Œ)Y Æ ÂRCP |Jkpv|Y |Òpkv |Y = R2C2
P

ÂKv

|Jkpv|Y |v
k
v |Y Æ R2C2

P

ÂKv

|Jkpv|
2
Y

+ 1
4 ÂKv

|vkv |
2
Y .
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Additionally, repeating the steps from before and using the assumption on the forms on Jkpv and Jk‡v, see
(A5), we arrive at

Cv
2

d
dt |„

k
v ≠ „v,Œ|2Y + CvDvm0|Ò⇤„kv |

2
Y + 1

ÂKv

|vkv |
2
Y

Æ Cv
Dvm0

|vkv |
2
Y + CvDvm0

4 |Ò⇤„kv |
2
Y +R2|Jk‡v|

2
Y + C

!
|„Õ
v,Œ|2 + |„kv ≠ „v,Œ|2Y

"
+ R2C2

P

ÂKv

|Jkpv|
2
Y

+ 1
4 ÂKv

|vkv |
2
Y

Æ Cv
Dvm0

|vkv |
2
Y + CvDvm0

4 |Ò⇤„kv |
2
Y + C

!
|„Õ
v,Œ|2 + |„kv ≠ „v,Œ|2Y

"
+ 1

4 ÂKv

|vkv |
2
Y + (1 + C2

P
ÂK≠1
v )·

R2C2 max{Lp;L‡}
!
|„k‡|

2
V + |„kv |

2
Y +K≠2|vk|2H + |Skp |

2
H

+ ÂK≠2
v |vkv |

2
Y + |pŒ|2V + |pv,Œ|2

"
,

which gives after choosing Cv > 4ÂKv
Dvm0

and absorbing

Cv
2

d
dt |„

k
v ≠ „v,Œ|2Y + 3CvDvm0

4 |Ò⇤„kv |
2
Y +

A
1

2 ÂKv

≠ (1 + C2
P

ÂK≠1
v )R2C2 max{Lp;L‡}

ÂK2
v

B
|vkv |

2
Y

Æ (1 + C2
P

ÂK≠1
v )R2C2 max{Lp;L‡}

!
|„k‡|

2
V + |„kv ≠ „v,Œ|2Y + |„v,Œ|2 +K≠2|vk|2H + |Skp |

2
H

+ |pŒ|2V + |pv,Œ|2
"

+C
!
|„Õ
v,Œ|2 + |„kv ≠ „v,Œ|2Y

"
.

(50)

Step 3 (Adding)
We add Eqs. (45), (48) and (50) to arrive at

1
2

d
dt

5
2| k|L1(⌦) + Á2

P |Ò„kP |
2
H + Á2

H |Ò„kH |
2
H + Á2

N |Ò„kN |
2
H + C‡|„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H

+ |„kECM |2V + Cv|„kv ≠ „v,Œ|2Y
6

+m0
2 |ÒµkP |

2
H + m0

2 |ÒµkH |
2
H + 1

2 |µ
k
P |

2
H + 1

2 |µ
k
H |

2
H

+
A

1
2K ≠ C1Lp

K2 ≠ C‡

D‡m0
≠ (C‡ +R2 +R2C2

P
ÂK≠1
v )C2 max{Lp;L‡}

K2

B
|vk|2H

+
3
C‡D‡m0

2 ≠ 4m2
Œ‰2

c

m0
≠ (C‡ + ÂKv + 1)C2 max{Lp;L‡}

4
|Ò„k‡|

2
H

+DMDEm0|Ò„kMDE |
2
H +DTAFm0|Ò„kTAF |

2
H + 3CvDvm0

4 |Ò⇤„kv |
2
Y

+
A

1
2 ÂKv

≠ C1Lp
ÂK2
v

≠ (C‡ +R2 +R2C2
P

ÂK≠1
v )C2 max{Lp;L‡}

ÂK2
v

B
|vkv |

2
Y

Æ Á
!
|ÒSkN |

2
H + |ÒSkECM |2H

"
+ (C1 + (C‡ +R2 +R2C2

P
ÂK≠1
v )C2) max{Lp;L‡}|Skp |

2
H

+ C
!

1 + |„P |2V
+ |„kH |

2
V + |„kN |

2
V + |„kv |

2
Y + |„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H + |„kECM |2V + |„v ≠ „v,Œ|2Y + |pŒ|2V + |pv,Œ|2

+ |„v,Œ|2 + |„Õ
v,Œ|2 + |SkP |

2
H + |SkH |

2
H + |SkN |

2
H + |Sk‡ |

2
H + |SkMDE |

2
H + |SkTAF |

2
H + |SkECM |2H

"
.

(51)
By assumption (A4) on the source functions, we have the three estimates

• q
–œA |Sk–|

2
H .

q
–œA |„–|2H ,

• |ÒSkN |
2
H + |ÒSkECM |2H Æ 2|A|f2

Œ|A|2 q
–œA |Ò„–|2H ,

• |Skp |
2
H

Æ 8
!
|ÒµkP |

2
H + |ÒµkH |

2
H + 2‰2

c |Ò„k‡|
2
H + 2‰2

h|Ò„kECM |2H
"
,

and insert these estimates into (51). Further, in order to treat the factor |ÒSkN |
2
H + |ÒSkECM |2H , we choose

the constant
Á = m0

2|A|+2f2Œ|A|2
min{C‡D‡, DMDE , DTAF }, (52)
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so that we can conclude

Á
!
|ÒSkN |

2
H + |ÒSkECM |2H

"
Æ m0

4 min{C‡D‡, DMDE , DTAF }
ÿ

–œA
|Ò„–|2H

Æ C‡D‡m0
4 |Ò„k‡|

2
H + DMDEm0

4 |Ò„kMDE |
2
H + DTAFm0

4 |Ò„kTAF |
2
H

+ C(|„kP |
2
V + |„kH |

2 + |„kN |
2 + |„kECM |2V ).

We absorb, collect and summarize the constants, giving

1
2

d
dt

5
2| k|L1(⌦) + Á2

P |Ò„kP |
2
H + Á2

H |Ò„kH |
2
H + Á2

N |Ò„kN |
2
H + C‡|„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H

+ |„kECM |2V + |„kv ≠ „v,Œ|2Y
6

+1
2 |µ

k
P |

2
H + 1

2 |µ
k
H |

2
H

+
1m0

2 ≠ 8(C1 + (C‡ +R2 +R2C2
P

ÂK≠1
v )C2) max{Lp;L‡}

2 !
|ÒµkP |

2
H + |ÒµkH |

2
H

"

+
A

1
2K ≠ C1Lp

K2 ≠ C‡

D‡m0
≠ (C‡ +R2 +R2C2

P
ÂK≠1
v )C2 max{Lp;L‡}

K2

B
|vk|2H

+
3
C‡D‡m0

2 ≠ 4m2
Œ‰2

c

m0
≠ (C‡ +R2 +R2C2

P
ÂK≠1
v )C2 max{Lp;L‡}

4
|Ò„k‡|

2
H

+ 3m0
4

!
DMDE |Ò„kMDE |

2
H +DTAF |Ò„kTAF |

2
H +Dv|Ò⇤„kv |

2
Y

"

+
A

1
2 ÂKv

≠ C1Lp
ÂK2
v

≠ (C‡ +R2 +R2C2
P

ÂK≠1
v )C2 max{Lp;L‡}

ÂK2
v

B
|vkv |

2
Y

Æ C
!

1 + |„kP |
2
V + |„kH |

2
V + |„kN |

2
V + |„kv |

2
Y + |„k‡|

2
H + |„kMDE |

2
H + |„kTAF |

2
H + |„kECM |2V + |„kv ≠ „v,Œ|2Y

+ |pŒ|2V + |pv,Œ|2 + |„v,Œ|2 + |„Õ
v,Œ|2

"
,

(53)
and we choose C‡ and Lp, L‡, K such that the prefactors are positive, see also assumption (A5). In
particular, we have to ensure the condition

8m2
Œ‰2

c

m2
0D‡

< C‡ <
D‡m0
2K .

Step 4 (Grönwall–Bellman lemma)
First, we eliminate the prefactors on the left hand side of the energy inequality (53) by estimating it with

the minimum of all prefactors and bringing it to the right hand side to the generic constant C. Afterwards,
we integrate the inequality over the time interval (0, t) with t œ (0, Tk), apply the growth assumption (A7),
and obtain

| k(t)|L1(⌦) + |„kP (t)|2V + |„kH(t)|2V + |„kN (t)|2V + |„k‡(t)|2H + |„kMDE(t)|2H + |„kTAF (t)|2H + |„kECM (t)|2V
+ |„kv(t) ≠ „v,Œ|2Y + Î„k‡Î2

L2(0,Tk;V ) + ÎµkP Î2
L2(0,Tk;V ) + ÎµkHÎ2

L2(0,Tk;V ) + Î„kMDEÎ2
L2(0,Tk;V )

+ Î„kTAF Î2
L2(0,Tk;V ) + Î„kv ≠ „v,ŒÎ2

L2(0,Tk;X0) + ÎvkÎ2
L2(0,Tk;H) + ÎvkvÎ2

L2(0,Tk;Y )

≠ C
!

Î„kP Î2
L2(0,Tk;V ) + Î„kHÎ2

L2(0,Tk;V ) + Î„kNÎ2
L2(0,Tk;V ) + Î„kvÎ2

L2(0,Tk;Y ) + Î„k‡Î2
L2(0,Tk;H)

+ Î„kMDEÎ2
L2(0,Tk;H) + Î„kTAF Î2

L2(0,Tk;H) + Î„kECMÎ2
L2(0,Tk;V ) + Î„kv ≠ „v,ŒÎ2

L2(0,Tk;Y )
"

Æ C(Tk) ·
!
1 + | k(0)|L1(⌦) + |Ò„kP,0|

2
H

+ |Ò„kH,0|
2
H

+ |Ò„kN,0|
2
H

+ |„k‡,0|
2
H

+ |„kMDE,0|
2
H

+ |„kTAF,0|
2
H

+ |„kECM,0|
2
V

+ |„kv,0|
2
Y

+ ÎpŒÎ2
L2(0,T ;V ) + |pv,Œ|2L2(0,T ) + |„v,Œ|2H1(0,T )

"
.
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By applying the Grönwall–Bellman lemma, see Lemma 1, we obtain

Î kÎLŒ(0,Tk;L1(⌦)) +
ÿ

–œCHfi{ECM}
Î„k–Î2

LŒ(0,Tk;V ) +
ÿ

–œ{P,H}
Îµk–Î2

L2(0,Tk;V ) +
ÿ

—œRD
Î„k—Î2

LŒ(0,Tk;H)flL2(0,Tk;V )

+ ÎvkÎ2
L2(0,Tk;H) + Î„kv ≠ „v,ŒÎ2

LŒ(0,Tk;Y )flL2(0,Tk;X0) + ÎvkvÎ2
L2(0,Tk;Y )

Æ C(Tk) ·
1
1 + |„kv,0|

2
Y

+
ÿ

–œCHfi{ECM}
|„k–,0|

2
V

+
ÿ

—œRD
|„k—,0|

2
H

+ | („kP,0,„kH,0,„kN,0)|L1(⌦)

+ ÎpŒÎ2
L2(0,T ;V ) + |pv,Œ|2L2(0,T ) + |„v,Œ|2H1(0,T )

2
.

(54)

We have chosen the initial values of the Faedo–Galerkin approximations as the orthogonal projections of

the initial values of their counterpart, see (35). The operator norm of an orthogonal projection is bounded

by 1 and, therefore, uniform estimates are obtained in (54); for example

|„kP,0|
2
V

= |⇧Hk„P,0|2V Æ |„P,0|2V .

Using the upper bound (26) of  , we treat the term involving the potential function on the right hand side

in the following way:

| („kP,0,„kH,0,„kN,0)|L1(⌦) . 1 + |„kP,0|
2
H

+ |„kH,0|
2
H

+ |„kN,0|
2
H

= 1 + |⇧Hk„P,0|2H |+ |⇧Hk„H,0|2H + |⇧Hk„N,0|2H
Æ 1 + |„P,0|2H + |„H,0|2H + |„N,0|2H .

Now, the k-independent right hand side in the estimate allows us to extend the time interval by setting

Tk = T for all k œ N. Therefore, we have the final uniform energy estimate,

Î kÎLŒ(0,T ;L1(⌦)) +
ÿ

–œCHfi{ECM}
Î„k–Î2

LŒ(0,T ;V ) +
ÿ

–œ{P,H}
Îµk–Î2

L2(0,T ;V ) +
ÿ

—œRD
Î„k—Î2

LŒHflL2(0,T ;V )

+ ÎvkÎ2
L2(0,T ;H) + Î„kv ≠ „v,ŒÎ2

LŒ(0,T ;Y )flL2(0,T ;X0) + ÎvkvÎ2
L2(0,T ;Y )

Æ C(T ) ·
1
1 + |„v,0|2Y +

ÿ

–œCHfi{ECM}
|„–,0|2V +

ÿ

—œRD
|„—,0|2H

+ ÎpŒÎ2
L2(0,T ;V ) + |pv,Œ|2L2(0,T ) + |„v,Œ|2H1(0,T )

2
.

(55)

From this energy inequality and (34) we also get bounds for the pressures pk and pkv in the following way

Îpk ≠ pŒÎL2(0,T ;V0) + Îpkv ≠ pv,ŒÎL2(0,T ;X0) Æ C.
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5.3. Limit process

Weak convergence
Next, we prove that there are subsequences of „k, µkP , µ

k
H , p

k,„kv , p
k
v , which converge to a weak solution

of our model (14)–(16) in the sense of Definition 1. From the energy estimate (55) we deduce that

{„k–}kœN is bounded in LŒ(0, T ;V ), – œ CH fi {ECM},
{µk–}kœN is bounded in L2(0, T ;V ), – œ {P,H},
{„k—}kœN is bounded in LŒ(0, T ;H) fl L2(0, T ;V ), — œ RD,
{vk}kœN is bounded in L2(0, T ;L2(⌦ ; R3)),
{pk}kœN is bounded in (pŒ + L2(0, T ;V0)),
{„kv}kœN is bounded in LŒ(0, T ;Y ) fl („v,Œ + L2(0, T ;X0)),
{vkv}kœN is bounded in L2(0, T ;Y ),
{pkv}kœN is bounded in (pv,Œ + L2(0, T ;X0)),

(56)

and, by the Banach–Alaoglu theorem, these bounded sequences have weakly/weakly-ú convergent subse-
quences. By a standard abuse of notation, we drop the subsequence index. Consequently, there are functions
„ : (0, T ) ◊ ⌦ æ R|A|, µP , µH , p : (0, T ) ◊ ⌦ æ R, v : (0, T ) ◊ ⌦ æ R3, „v, vv, pv : (0, T ) ◊ ⇤ æ R such
that, for k æ Œ,

„k– Ô „– weakly-ú in LŒ(0, T ;V ), – œ CH fi {ECM},
µk– Ô µ– weakly in L2(0, T ;V ), – œ CH\{N},
„k— Ô „— weakly-ú in LŒ(0, T ;H) fl L2(0, T ;V ), — œ RD,
vk Ô v weakly in L2(0, T ;L2(⌦ ; R3)),
pk Ô p weakly in (pŒ + L2(0, T ;V0)),
„kv Ô „v weakly-ú in LŒ(0, T ;Y ) fl („v,Œ + L2(0, T ;X0)),
vkv Ô vv weakly in L2(0, T ;Y ),
pkv Ô pv weakly in (pv,Œ + L2(0, T ;X0)).

(57)

Strong convergence
We now consider taking the limit k æ Œ in the Faedo–Galerkin system (32)–(33) in the hope to attain

the initial variational system (28)–(29). Since the equations in (32)–(33) are nonlinear in „k and „kv , we
want to achieve strong convergence of these sequences before we take the limit in (32)–(33). Therefore, our
goal is to bound their time derivatives and to apply the Aubin–Lions–Simon compactness lemma (19).

Let (Ï, Ï̂, Ï̃) be such that Ï œ L2(0, T ;V ), Ï̂ œ L2(0, T ;H), Ï̃ œ L2(0, T ;X0), and

⇧HkÏ =
kÿ

j=1
Ïkjhj , ⇧Hk Ï̂ =

kÿ

j=1
Ï̂kjhj , ⇧Yk Ï̃ =

kÿ

j=1
Ï̃kj yj ,

with time-dependent coe�cient functions Ïkj , Ï̂
k
j , Ï̃

k
j : (0, T ) æ R, j œ {1, . . . , k}. We multiply Eqs. (32) and

(33) by Ï̃kj by the appropriate coe�cient functions, sum up each equation from j = 1 to k and integrate in
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time over (0, T ), to obtain the equation system,
⁄ T

0
Èˆt„k–,ÏÍV dt =

⁄ T

0
(C(„k–)vk,Ò⇧HkÏ)H ≠ (mk

–Òµk–,Ò⇧HkÏ)H + (Sk–,⇧HkÏ)H dt,
⁄ T

0
Èˆt„k— , Ï̂ÍV dt =

⁄ T

0
(Sk— ,⇧Hk Ï̂)H dt,

⁄ T

0
Èˆt„k‡,ÏÍV dt =

⁄ T

0
(C(„k‡)vk,Ò⇧HkÏ)H ≠ D‡(mk

‡Ò„k‡,Ò⇧HkÏ)H + (Sk‡ ,⇧HkÏ)H

+ È”� , Jk‡v,�⇧HkÏÍW ≠ ‰c(mk
‡Ò(„kP + „kH + „kN ),Ò⇧HkÏ)H dt,

⁄ T

0
Èˆt„k“ ,ÏÍV dt =

⁄ T

0
≠D“(mk

“Ò„k“ ,Ò⇧HkÏ)H + (Sk“ ,⇧HkÏ)H dt,
⁄ T

0
Èˆt„kv , Ï̃ÍX dt =

⁄ T

0
(C(„kv)vkv ,Ò⇤⇧Yk Ï̃)Y ≠ Dv(mk

vÒ⇤„kv ,Ò⇤⇧Yk Ï̃)Y ≠ ÂR(Jk‡v,⇧Yk Ï̃)Y dt,

(58)

where – œ {P,H}, — œ {N,ECM}, “ œ {MDE,TAF}. Each equation in (58) can be treated using standard
inequalities and the estimate involving the trace operator, see (24), the boundedness of the orthogonal
projection and the energy estimate (55), e.g., we find

⁄ T

0
Èˆt„k‡,ÏÍV dt .

⁄ T

0
|vk|H |Ï|V + |„k‡|V |Ï|V +

ÿ

–œA
|„k–|H |Ï|H + |Jk‡v,� |L2(�)|Ï|V +

ÿ

—œCH
|„k— |V |Ï|V dt

. ÎÏÎL2(0,T ;V ).

From this inequality and the bounds derived earlier, see (56), we conclude that

{„k–}kœN is bounded in H1(0, T ;V Õ) fl LŒ(0, T ;V ), – œ {P,H},
{„k—}kœN is bounded in H1(0, T ;H) fl LŒ(0, T ;V ), — œ {N,ECM},
{„k“}kœN is bounded in H1(0, T ;V Õ) fl LŒ(0, T ;H) fl L2(0, T ;V ), “ œ RD,
{„kv}kœN is bounded in H1(0, T ;X Õ

0) fl LŒ(0, T ;Y ) fl („v,Œ + L2(0, T ;X0)).

We apply the Aubin–Lions–Simon compactness lemma (19), yielding the strong convergences as k æ Œ

„k– ≠æ „– strongly in C0([0, T ];H), – œ CH fi {ECM},
„k— ≠æ „— strongly in L2(0, T ;H) fl C0([0, T ];V Õ), — œ RD,
„kv ≠æ „v strongly in L2(0, T ;Y ) fl C0([0, T ];X Õ

0).
(59)

The strong convergence „k– æ „– in C0([0, T ];H) implies „–(0) = „–,0 in H and similarly „—(0) = „—,0
in V Õ and „v(0) = „v,0 in X Õ

0. Therefore, the limit functions („,„v) of the Faedo–Galerkin approximations
fulfill the initial conditions for the system (14)–(17).

Limit process
We show that the limit functions also satisfy the variational form (28)–(29), as defined in Definition 1.

Multiplying the Faedo–Galerkin system (32)–(33) by ÷ œ CŒ
c (0, T ) and integrating from 0 to T , gives

⁄ T

0
Èˆt„k–, hjÍV ÷(t) dt =

⁄ T

0

!
(C(„k–)vk,Òhj)H ≠ (mk

–Òµk–,Òhj)H + (Sk–, hj)H
"
÷(t) dt,

⁄ T

0
(µk–, hj)H÷(t) dt =

⁄ T

0

!
(ˆ„– 

k ≠ ‰c„
k
‡ ≠ ‰h„kECM , hj)H + Á2

–(Ò„k–,Òhj)H
"
÷(t) dt,

⁄ T

0
(ˆt„k— , hj)H÷(t) dt =

⁄ T

0
(Sk— , hj)H÷(t) dt,

(60)
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and
⁄ T

0
Èˆt„k‡, hjÍV dt =

⁄ T

0

!
(C(„k‡)vk,Òhj)H ≠ D‡(mk

‡Ò„k‡,Òhj)H + (Sk‡ , hj)H

+ È”� , Jk‡v,�hjÍW ≠ ‰c(mk
‡Ò(„kP + „kH + „kN ),Òhj)H

"
÷(t) dt,

⁄ T

0
Èˆt„k“ , hjÍV ÷(t) dt =

⁄ T

0

!
≠D“(mk

“Ò„k“ ,Òhj)H + (Sk“ , hj)H
"
÷(t) dt,

⁄ T

0
(vk, hj)H÷(t) dt =

⁄ T

0

!
≠K(Òp, hj)H + (Sp,Òhj)H

"
÷(t) dt,

⁄ T

0
K(Òpk,Òhj)H÷(t) dt =

⁄ T

0

!
È”� , Jkpv,�hjÍW + (Sp,Òhj)H

"
÷(t) dt,

(61)

and
⁄ T

0
Èˆt„kv , yjÍX÷(t) dt =

⁄ T

0

!
(C(„kv)vkv ,Òyj)Y ≠ Dv(mk

vÒ⇤„kv ,Ò⇤yj)Y ≠ ÂR(Jk‡v, yj)Y
"
÷(t) dt,

⁄ T

0
(vkv , yj)Y ÷(t) dt =

⁄ T

0
≠ ÂKv(Ò⇤pkv , yj)Y ÷(t) dt,

⁄ T

0
ÂKv(Ò⇤pkv ,Ò⇤yj)Y ÷(t) dt =

⁄ T

0
≠ ÂR(Jkpv, yj)Y ÷(t) dt,

(62)

for each j œ {1, . . . , k}, – œ {P,H}, — œ {N,ECM}, “ œ {MDE,TAF}. We take the limit k æ Œ in each
equation. The linear terms can be treated directly in the limit process since they can be justified via the
weak convergences (57), e.g., the functional

µkP ‘æ
⁄ T

0
(µkP , hj)H÷(t) dt Æ ÎµkP ÎL2(0,T ;H)|hj |H |÷|L2(0,T ),

is linear and continuous on L2(0, T ;H) and hence, as k æ Œ,
⁄ T

0
(µkP , hj)H÷(t) dt ≠æ

⁄ T

0
(µP , hj)÷(t) dt.

Thus, it remains to examine the nonlinear terms. We do so in the steps (i)–(v) as follows.

(i) We have derived the convergence, see (59),

„k– ≠æ „– in L2(0, T ;H) ≥= L2((0, T ) ◊ ⌦), – œ A,

for k æ Œ and, consequently, we have by the continuity and boundedness of m–,

mk
– = m–

!
„k(t, x)

"
≠æ m–

!
„(t, x)

"
=: m– a.e. in (0, T ) ◊ ⌦ for k æ Œ.

Applying the Lebesgue dominated convergence theorem, gives for k æ Œ

mk
–Òhj÷ ≠æ m–Òhj÷ in L2((0, T ) ◊ ⌦ ; Rd),

and, together with Òµk– Ô Òµ– weakly in L2((0, T ) ◊ ⌦ ; Rd) as k æ Œ, we have for k æ Œ

m–(„k)÷Òhj · Òµk– ≠æ m–(„)÷Òhj · Òµ– in L1((0, T ) ◊ ⌦).

We use here the fact that the product of a strongly and a weakly converging sequence in L2 converges
strongly in L1.
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(ii) By (59), we have „k– æ „– in L2((0, T ) ◊ ⌦) and vk Ô v in L2((0, T ) ◊ ⌦ ; Rd) as k æ Œ, hence for
k æ Œ

C(„k–)vk · Òhj÷ ≠æ C(„–)v · Òhj÷ in L1((0, T ) ◊ ⌦).

(iii) By the continuity and the growth assumptions on ˆ„– , we have for k æ Œ

ˆ„– 
!
„kP (t, x),„kH(t, x),„kN (t, x)

"
≠æ ˆ„– 

!
„P (t, x),„H(t, x),„N (t, x)

"
a.e. in (0, T ) ◊ ⌦ ,

|ˆ„– („kP ,„kH ,„kN )÷hj | Æ C(1 + |„kP |+ |„kH |+ |„kN |)|÷hj |,

and the Lebesgue dominated convergence theorem yields for k æ Œ

ˆ„– („kP ,„kH ,„kN )÷hj ≠æ ˆ„– („P ,„H ,„N )÷hj in L1((0, T ) ◊ ⌦).

(iv) We have the strong convergence of „kP and „kH in L2((0, T )◊⌦) and the continuity and boundedness of
C. Together with the weak convergence of Ò„k‡ and Òµk in L2((0, T ) ◊⌦ ; Rd) it is enough to conclude
the convergence of the term involving

Skp = ≠C(„kP )(ÒµkP + ‰cÒ„k‡) ≠ C(„kH)(ÒµkH + ‰cÒ„k‡).

(v) We have „kv æ „v in L2((0, T ) ◊ ⇤) and „k‡ æ „‡ in L2((0, T ) ◊ ⌦) as k æ Œ and therefore, also
⇧�„kv æ ⇧�„v in L2((0, T ) ◊ � ). Since f‡,v is a continuous and bounded function, we conclude

⁄ T

0

⁄

�

|f‡,v(„kv ,⇧�„k‡)tr�hj÷(t)|2 dS dt . Îf‡,v(⇧�„kv ,„
k
‡)Î2

LŒ((0,T )◊�)|hj |2V |÷|
2
L2(0,T ),

and the Lebesgue dominated convergence theorem gives for k æ Œ

f‡,v(„kv ,⇧�„k‡)tr�hj÷(t) ≠æ f‡,v(„v,⇧�„‡)tr�hj÷(t) in L2((0, T ) ◊ � ).

Together with the weak convergence of ⇧�pkv and pk we have for k æ Œ
⁄ T

0
È”� , Jk‡v,�hjÍW ÷(t) dt =

⁄ T

0

⁄

�

1
f‡,v(„k‡,⇧�„kv)Lp(⇧�pkv ≠ pk) + L‡(⇧�„kv ≠ „k‡)

2
tr�hj÷(t) dS dt

æ
⁄ T

0
È”� , J‡v,�hjÍW ÷(t) dt.

Using the densities of fikœNHk in V , fikœNH0
k in V0 and fikœNYk in X, and the fundamental lemma of the

calculus of variations, we obtain a solution tuple („, µP , µH , v, p,„v, vv, pv) to our model (14) and (16) in
the weak sense as defined in Definition 1.

Energy inequality
It remains to prove that found solution tuple satisfies the energy inequality (30). First, we note that norms

are weakly/weakly-ú lower semicontinuous, e.g., we have µkP Ô µP in L2(0, T ;V ) and therefore, we infer

ÎµP ÎL2(0,T ;V ) Æ lim inf
kæŒ

ÎµkP ÎL2(0;T ;V ).

We apply the Fatou lemma on the continuous and non-negative function  to obtain
⁄

⌦

 („P ,„H ,„N ) dx Æ lim inf
kæŒ

⁄

⌦

 („kP ,„kH ,„kN ) dx.

Consequently, passing the limit k æ Œ in the discrete energy inequality (55) leads to (30). ⇤
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6. Numerical simulations

We present in this section two applications of the theory presented earlier. The first is the simple scenario
in which two straight and idealized blood vessels are considered, one representing an artery and the other
a vein. This means that the tissue block containing the two vessels is supplied nutrients by a single artery
and drained of nutrients by a single vein. In between the two vessels, a tumor core is present which accepts
nutrients injected through an inlet of the artery. The second scenario deals with a small blood vessel network
described by data in [57] and on the following web page: https://physiology.arizona.edu/sites/default/file
s/brain99.txt. At four inlets of this network, nutrients are injected and transported through the network.
As in the first scenario, the impact of the nutrients on a small tumor core surrounded by the network is
investigated. We note that in all cases we consider a stationary vessel structure; for evolving and bifurcating
vessels we refer to the further work [58].

To solve the one-dimensional partial di�erential equations (16) numerically, the vascular graph model
(VGM) is employed [59,60]. This method corresponds in principle to a vertex centered finite volume method
with a two-point flux approximation. For the three-dimensional partial di�erential equations presented in
Section 2.3 a mixed finite volume-finite element discretization method is employed. The equations governing
the pressure and nutrients in tissue, which are directly coupled with the one-dimensional system, are solved
by a standard cell-centered finite volume scheme. Since the permeability of the cancerous and healthy tissue
is given by a scalar field, a two-point flux approximation of the fluxes is used. For the remaining species,
we consider a continuous and piecewise linear finite element approximation over a uniform cubic mesh. The
coupled nonlinear partial di�erential equations are discretized in time using the semi-implicit Euler method.
To solve the nonlinear system of equations arising in each time step, a fixed point iteration method is applied.
We consider following double-well potential in free energy functional in (3)

 („P ,„H ,„N ) = C T „2
T (1 ≠ „T )2. (63)

6.1. Tumor between two straight vessels

We consider a tissue domain ⌦ = (0, 2)3 containing two blood vessels aligned along the z-axis. The center
lines of the vessels are located diagonally opposite to each other. The center line of the Vessel 1 and 2 pass
through (0.2, 0.2, 1) and (1.8, 1.8, 1), respectively. We choose a radius of R = 0.08 and R = 0.1 for Vessel 1
and 2. At the inlets of Vessel 1, located at (0.2, 0.2, 0) and (0.2, 0.2, 2), pressure values of 10 000 and 5000 are
prescribed. The inlets of Vessel 2 are located at (1.8, 1.8, 0) and (1.8, 1.8, 2). Here, we consider the pressure
values 1000 and 2000, respectively. Thus, Vessel 2 will act as a vein taking up nutrients and blood plasma
from the tissue domain. On the other hand Vessel 1 has the function of an artery transporting nutrients
into the tissue block ⌦ . We note that we choose the boundary values such that the velocities are su�ciently
large in order to ensure that the transport processes are visible in the simulations. Based on the pressure
boundary conditions, we choose the boundary conditions for the nutrients as follows:

• „v = „v,inlet = 1 at (0.2, 0.2, 0).
• „v = 0 at (1.8, 1.8, 2).
• At all the remaining boundaries, we consider free flow boundary conditions.

The initial tumor core is given by a ball of radius 0.3 and centered at (1, 1, 1). Within the tumor core, the
total tumor volume fraction, „T , decays smoothly from 1 in the center to 0 on the boundary of the ball.
Thereby, the necrotic and hypoxic volume fractions, „N and „H , are set to zero. In the rest of the domain
all the volume fractions for the tumor species are set to 0 at t = 0. The nutrient volume fraction, in the
tissue domain ⌦ , is initially fixed to a constant initial value of 0.6, which is below the threshold values for
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Table 1
List of parameters and their values for the numerical experiments described in Sections 6.1
and 6.2. Parameters not mentioned below are set to zero.
Parameter Value Parameter Value Parameter Value

⁄P 5 ⁄Ph 0.5 ⁄A 0.005
⁄Ah

0.005 ⁄PH 1 ⁄HP 1
⁄HN 1 ‡PH 0.55 ‡HP 0.65
‡HN 0.44 ÁP 0.005 ÁH 0.005
MP 50 MH 25 ⁄TAFP

10
DTAF 0.5 mTAF 1 Lp 10≠7

D‡ 1 m‡ 1 K 10≠9

DMDE 0.5 mMDE 1 Dv 0.1
µbl 1 L‡ 10 ⁄ECMD

5
⁄ECMP

0.01 ⁄MDED
1 ⁄MDED

1
„ECMP

0.5 C T
0.045 – –

prolific-to-hypoxic transition and above the threshold value for hypoxic-to-prolific transition. We also set
„ECM = 1 at t = 0. According to (15) homogeneous Neumann boundary conditions are prescribed on ˆ⌦ .

As a simulation time period, the interval (0, T ) with T = 5 is considered and the size of the time step is
given by �t = 0.025. The spatial domain ⌦ is discretized by cubic elements with an edge length of h = 0.025.
We choose the parameters as listed in Table 1.

Plots of the tumor species „T ,„P ,„H at the z = 1 plane in the domain ⌦ at time points t œ {3, 4, 5}
are shown in Fig. 3. In Fig. 4, the tumor phases are shown along a one-dimensional line. It can be observed
that the tumor separates into its three phases and moves towards the nutrient-rich regions of the domain.
Moreover, the contour lines of the total tumor and its phases is presented at di�erent times in Fig. 5. We see
that tumor is growing towards the artery. As expected, the proliferation is higher near the artery. In Fig. 6,
plots of TAF, MDE, ECM at the time point t = 5 in the z = 1 plane of ⌦ are shown (see Fig. 7).

Fig. 8 contains simulation results for the di�erent values of parameters at t = T = 5. Among the numerous
model parameters, we focused on the chemotactic constant ‰c, mobility MP , proliferation rate ⁄P , nutrient
di�usion coe�cient D‡, and permeability constant L‡. We vary one of these parameters while keeping other
parameters fixed to their respective values listed in Table 1.

It can be observed that all selected parameters strongly a�ect the tumor growth. Except for the parameter
D‡, the larger the remaining parameters, the faster the tumor cells move away from the vein and towards
the nutrient rich artery. This means that for the chosen parameter values, the fluxes J–, – œ CH given
by (2), dominate the corresponding convective terms in (14) so that the tumor cells can move against the
velocity field. It can be stated that for these parameter choices, the model simulates the migration of tumor
cells towards the nutrient sources in the vicinity.

Fig. 9 shows the pressure distribution in the vessels as well as the tissue pressure and velocity field within
a plane that is perpendicular to the z-axis and located at z = 1. The tissue pressure ranges between 1500
and 7500, which means that it is bounded by the extreme pressures in the vascular system. Furthermore, a
gradient in the tissue pressure can be detected pointing from the artery to the vein. As a result, the velocity
field is orientated from the artery to the vein.

6.2. Tumor surrounded by a network

In the second subsection, we consider a small capillary network given by the data in [57]. To keep the same
computational domain as in the previous subsection, the network is scaled such that it fits into ⌦ = (0, 2)3.
After scaling, the resulting network has maximum, minimum, and mean vessel radius 0.0613, 0.0307, 0.0418
respectively. At the inlets that are marked by an arrow, see Fig. 10, we prescribe the pressure pin = 25 000,
while for all the other inlets, we use pout = 10 000 as a boundary value. Again, we choose the boundary
values synthetically in order to ensure that the transport processes are visible in the simulations. Further,
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Fig. 3. Evolution of the total tumor „T (top), prolific „P (middle), and hypoxic „H (bottom) volume fractions at the times t œ {3, 4, 5}
(left, middle,right) in the z = 1 plane of the domain ⌦. On the two vessels the nutrients are described by the 1D constituent „v.

the boundary condition for „v is given by „v = „v,inlet = 1 if it holds pv = pin, and free outflow boundary
if pv = pout.

Contrary to the previous subsection, the spherical tumor core has a radius of 0.25 and the center
(1.3, 0.9, 0.7). The same model parameters are employed. The domain ⌦ is discretized using cubic elements
of mesh size 0.025 and final time and time step of the simulation are T = 5 and �t = 0.025.

In Fig. 11, the tumor cell volume fraction „T , prolific cell volume fraction „P , and hypoxic cell volume
fraction „H are shown at z = 0.8 plane and at time points t œ {3, 4, 5}. Finally in Fig. 12, the contour plots
for „T = 0.8 and „T = 0.95 are presented. Further, the hypoxic phase is shown inside the tumor. In Fig. 13,
plots of TAF, MDE, ECM at t = 5 in z = 0.8 plane are shown.

The behavior of the tumor cells is similar to the two-vessel scenario. It seems that for the given parameter
set the tumor cells are attracted by the nutrient rich blood vessels of the network. As can be observed in
Fig. 11 (last row), the chemical potential of the tumor exhibits high gradients at the interface between tumor
and healthy tissue. Therefore, the corresponding flux of the chemical potential given by (2) is potentially
high at this location. As a result the tumor cells are pulled towards the interface between cancerous and
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Fig. 4. Left: Evolution of the tumor volume fraction („T ) in the z = 1 plane of the domain ⌦. Right: Plots of tumor („T ), prolific
(„P ), hypoxic („H) and necrotic („N ) volume fractions along the line passing through the points (0, 0, 1) and (2, 2, 1) in the domain
⌦. From top row to bottom row, the plots correspond to time t œ {3, 4, 5}.

Fig. 5. Evolution of contour plots of the tumor volume fraction „T with vessels (top) at 0.8 (light red) and 0.95 (red) at the time
t œ {4.25, 4.75, 5} (left to right); the necrotic core is plotted at the contour line „N = 0.42 (black). Contour plots of the tumor phases
without vessels (bottom) at „P = 0.5 (green), „H = 0.45 (orange), „N = 0.4 (dark red). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Plots of „TAF (left), „MDE (middle), and „ECM (right) at time t = 5 in the z = 1 plane of the domain ⌦. The colors
(horizontal color bar) on the vessels show the transport of the 1D nutrient („v). The production of TAF and MDE is maximal where
the hypoxic tumor phase is located. The decay of ECM happens in the regions where MDE is produced. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. E�ect of the mobility MP (top) for MP œ {10, 25, 50} (left to right) and proliferation rate ⁄P (bottom) for ⁄P œ {2, 5, 10}
(left to right) on the growth of the tumor volume. The color bar for 1D nutrients (left) and total tumor volume fraction (right) in
included at the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

healthy tissue. Apparently, the flux is particularly high near the nutrient rich vessels such that the tumor
cells move preferably towards the nutrient rich vessels.

Fig. 14 shows the tissue pressure and the corresponding velocity fields in z = 0.8 plane. Just as in the
two-vessel scenario, the pressure distribution induces a velocity field that goes from the high pressure region
to the low pressure region.
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Fig. 8. E�ect of the chemotactic constant ‰c (top) for ‰c œ {0, 0.01, 0.05} (left to right), permeability of the vessel wall L‡ (middle)
for L‡ œ {0.5, 5, 10} (left to right), and di�usivity constant D‡ (bottom) for D‡ œ {0.2, 1, 5} (left to right) on the growth of the tumor
volume. The color bar for 1D nutrients (left) and total tumor volume fraction (right) in included at the bottom. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Pressure (left) and velocity field (right) in a plane perpendicular to the z-axis (at z = 1) of the domain ⌦. The artery is
located in the right corner with a pressure decay from 10 000 to 5000. The vein is located in the left corner with a pressure decay
from 2000 to 1000. The velocity field induced by the pressure distribution is directed from the artery towards the vein.
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Fig. 10. Outline of the scaled blood vessel network with an initial tumor core. The tumor core is represented by a contour surface
with respect to „T (at „T = 0.1). At the four inlets, indicated by an arrow, nutrients are injected i.e. at these boundaries, we set
„v = „v,inlet = 1 and pv = pin.

7. Summary and outlook

In this work, we have presented a 3D–1D coupled multispecies model for tumor growth including the
influence of nutrient transport in a vascular system that is located in the vicinity of a solid tumor. Flow
and transport of nutrients within the vascular system are governed by one-dimensional partial di�erential
equations. The corresponding flow and transport processes in the healthy and tumor tissue are based on
Darcy’s law as well as a standard convection–di�usion equation. Coupling of the three-dimensional equations
with their one-dimensional counterparts is done via filtration laws and source terms. In the source terms
of the three-dimensional partial di�erential equations, Dirac measures occur. They are concentrated on the
vessel surfaces of the vascular system, since there the exchange processes between the tissue and the vascular
system take place. The remaining three-dimensional equations governing the distribution of the tumor cells
are of Cahn–Hilliard type. The evolution of matrix degrading enzymes and the tumor angiogensis factor
are modeled by convection–di�usion equations. Lastly, the extracellular matrix density is described by an
abstract ordinary di�erential equation.

The centerpiece of our work is a mathematical analysis of this model with a focus on the existence of
solutions. We have shown the existence of weak solutions. Our proof is based on the Faedo–Galerkin method.
Thereby, the system of partial di�erential equations is semi-discretized in space and reduced to a system
of ordinary di�erential equations. Using the Cauchy–Peano theorem we show that the system of ordinary
di�erential equations exhibits a solution. In a next step, the existence of weak solutions with respect to the
partial di�erential equations is derived by means of the Banach–Alaoglu theorem. Finally, we present some
simulation results for two di�erent settings, illustrating the performance of our model. Our simulation results
indicate that the tumor cells sense the vessels with an increased nutrient concentration and move towards
them. Furthermore, the impact of several model parameters on the solution variables is discussed.

Among extensions and applications of the models described here are the simulation and optimal control
of chemotherapy drug and radiation as well as modeling of the onset of metastasis. Simulation of these
protocols and phenomena represent challenging goals for future work.
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Fig. 11. Distribution of the tumor cell volume fraction „T (top), prolific cell volume fraction „P (middle), and hypoxic cell volume
fraction „H (bottom) for t œ {3, 4, 5}. The tumor cells migrate towards to nutrient rich vessels.

Fig. 12. Evolution of contour plots of the tumor volume fraction „T at the values 0.8 (light red) and 0.95 (red), and of the hypoxic
phase „H at 0.35 at times t œ {3, 3.5, 4} (left to right). The tumor growth is directed towards the nutrient rich vessels. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Plots of „TAF (left), „MDE (middle), and „ECM (right) at time t = 5 in the z = 0.8 plane of the domain ⌦. The colors
(horizontal color bar) on the vessels show the transport of the 1D nutrient („v). As in the case of two-vessels setting, the production
of TAF and MDE is maximal where the hypoxic region is located. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14. Plots of pressure (left) and velocity field (right) in the z = 0.8 (top) and z = 1.2 (bottom) planes in the domain ⌦. The
plots correspond to the simulation time t = 5. As in the two-vessel case, the velocity field is pointing from the high pressure region
to the low pressure region.
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[24] T. Köppl, E. Vidotto, B. Wohlmuth, P. Zunino, Mathematical modeling, analysis and numerical approximation of
second-order elliptic problems with inclusions, Math. Models Methods Appl. Sci. 28 (05) (2018) 953–978.

[25] A.R. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull.
Math. Biol. 60 (5) (1998) 857–899.

[26] E. Lima, R.C. Almeida, J.T. Oden, Analysis and numerical solution of stochastic phase-field models of tumor growth,
Numer. Methods Partial Di�erential Equations 31 (2) (2015) 552–574.

[27] N. Nargis, R. Aldredge, E�ects of matrix metalloproteinase on tumour growth and morphology via haptotaxis, J. Bioeng.
Biomed. Sci. 6 (207) (2016).

[28] T. Hillen, K.J. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math.
Models Methods Appl. Sci. 23 (01) (2013) 165–198.

[29] Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. RWA 12 (1)
(2011) 418–435.

38



M. Fritz, P.K. Jha, T. Köppl et al. Nonlinear Analysis: Real World Applications 61 (2021) 103331

[30] S. Frigeri, K.F. Lam, E. Rocca, G. Schimperna, On a multi-species Cahn–Hilliard–Darcy tumor grwoth model with
singular potentials, Commun. Math. Sci. 16 (3) (2018) 821–856.

[31] L. Cherfils, A. Miranville, S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math. 79 (2) (2011)
561–596.

[32] M.A. Chaplain, G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen
activation system, Math. Models Methods Appl. Sci. 15 (11) (2005) 1685–1734.
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On a subdiffusive tumour growth model
with fractional time derivative

Marvin Fritz, Christina Kuttler, Mabel L. Rajendran, Barbara Wohlmuth,
Laura Scarabosio

In this publication, we provide a novel tumor development model based on RDEs with
mechanical couplings and temporal fractional derivatives. The model is capable of
modeling subdiffusion in tumor progression and considers the mechanical deformation
of the tissue. Moreover, we consider the effects of chemotherapy on the tumor and
introduce new source terms that can destroy the tumor cells. The suggested model is
mathematically investigated, and we prove that the system is well-posed. That is, we
show that a weak solution exists, it is unique, and it depends continuously on the data.
The proof is based on a spatial discretization of the system and providing appropriate
energy estimates. In particular, we point out the differences between the previous
articles due to the new fractional derivative. Several steps have to be re-investigated,
and new concepts have to be derived. Numerical simulations are presented in order
demonstrate the effect of the fractional derivative and the influence of the fractional
parameter on the model.

The work is structured as follows. The mathematical modeling of tumor progression
with mechanical effects and fractional derivative is presented in Section 2. In Section 3,
we introduce the notations and useful results that will be used in subsequent parts. In
particular, we present a generalized Grönwall–Bellman lemma that can be applied to a
convolved inequality. Moreover, we state a compactness result with fractional Sobolev
spaces similar to the Aubin–Lions lemma. Section 4 deals with the mathematical analysis
of the model that determines the existence, uniqueness, and continuous dependence
of the weak solution using the Faedo–Galerkin techniques. In Section 5, the model is
numerically discretized using the FEM for space and finite differences in time using a
convolution quadrature formula for the fractional derivative. The numerical experiments
in Section 6 illustrate how the fractional derivative and mechanical coupling in the
model affect the model. We also provide chemotherapy in cycles and study its influence
on the tumor cells.

I was heavily involved in the brainstorming process of the biological model and was
in charge of proving the well-posedness of the coupled PDE system. In addition, I was
in charge of writing the mathematical analysis, while the coauthors were responsible
for the numerical implementation of the system.
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In this work, we present and analyse a system of coupled partial differential equations, which models
tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy.
The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the
volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents
are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution
to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems.
Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the
influence of the fractional parameter in numerical examples.

Keywords: subdiffusive tumour growth; mechanical deformation; fractional time derivative; nonlinear
partial differential equation; well posedness.

1. Introduction

Mathematical modelling to understand the development of tumour cells and their dynamics is of
great importance as it in turn helps in devising appropriate treatment methods. In this study, we
introduce fractional time derivatives in a tumour growth model with mechanical coupling. The fractional
derivatives have the role of accounting for anomalous diffusion, more precisely subdiffusion, seen in
tumour growth.

The tumour microenvironment has a strong influence on tumour cell proliferation and migration
(Balkwill et al., 2012; Wang et al., 2017; Yuan et al., 2016). Depending on the environment of
the surrounding host tissue, tumour not only migrates using typical Fickian diffusion, but it also
migrates more generally using subdiffusion, superdiffusion and even ballistic diffusion. Haptotaxis and
chemotaxis, which are initiated by extracellular matrix and nutrient supply, respectively, and cell–cell
adhesion all drastically affect a tumour’s diffusion mode when a tumour invades its surrounding host
tissue and proliferates. In particular, experimental results by Jiang et al. (2014) both from in vitro and in
vivo show evidence of anomalous diffusion in cancer growth. Taking the average radius of the tumour to
be an indicator of the root-mean-squared displacement of the cells, they observed anomalous diffusion
in in vitro experiments of growing cultured cells from the breast line and in the clinical data from patients
with adrenal tumour and liver tumour.

Anomalous diffusion is a diffusion process with a nonlinear relation between mean squared
displacement and time, unlike the normal diffusion process where the relation is linear. In the

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 689

microscopic setting, the diffusion processes are presented by the continuous time random walk (CTRW)
model (Tahir-Kheli & Elliott, 1983), wherein the particle jumps in random directions and the waiting
time before the next jump and jump lengths are given by random processes. We have the following three
relevant examples of CTRW. When the mean of the probability density function (PDF) of the waiting
time (first moment) and the variance of the PDF of the jump length (second moment) are finite, in the
long-time limit we have a behaviour described by an integer-order diffusion equation. In this case, the
solution for a point initial condition is a Gaussian PDF, and the mean square displacement (MSD) has a
linear dependence on time. A PDF of the waiting time ∼ t−1−α as t → ∞ with 0 < α < 1, results, in
the continuum limit, in a time fractional diffusion equation, represented by a power-law dependence of
MSD on time of the form < x2(t) >∼ tα leading to subdiffusive behaviour. A PDF of jump length
∼ |x|−1−β as |x| → ∞ with 0 < β < 2 gives us in the long-time limit a behaviour described
by fractional diffusion equations in space, leading to superdiffusive behaviour. Fractional differential
equations were obtained from the CTRW formulation in Compte (1996) and Metzler & Klafter (2000).
The description of reactions that take place in systems with anomalous diffusion is discussed in Henry
et al. (2006), Seki et al. (2003), Yuste et al. (2004) and Nepomnyashchy (2016). These examples of
CTRW discussed above are adapted to cancer modelling by the migration proliferation dichotomy
observed in the development of cancer cells in Iomin (2005b), Iomin (2005a), Iomin (2007) and Fedotov
& Iomin (2007). We consider a subdiffusion limited reaction equation for the density of tumour cells, in
contrast to the normal reaction diffusion for nutrients and chemotherapeutic density, to take into account
the memory effects of cells. This involves the introduction of the Riemann–Lioville fractional derivative,
which has the memory kernel in its definition, in the flux and reaction terms in the equation concerning
tumour density, as seen in Iomin (2015), resulting in a multi-order system of fractional differential
equations. The model can be modified to the one with Caputo fractional derivative assuming sufficient
regularity as seen in Yuste et al. (2004).

It is important to incorporate mechanical effects in tumour growth model since the growth of the
tumour increases mechanical stress due to the surrounding host tissues, which in turn impede the further
growth of the tumour. Experimental evidence can be seen in Helmlinger et al. (1997), where multi-
cellular spheroids were grown in agar gel concentrations ranging from 0% to 1% and increasing the agar
concentration resulted in the inhibited expansion of the spheroid as the substrate stiffness increased. In
the literature, reaction-diffusion models with mechanical coupling are seen in Lima et al. (2016), Lima
et al. (2017), Faghihi et al. (2020) and Hormuth et al. (2018) for modelling tumour growth. In our
model, we incorporate the mechanical effects in a similar way to the aforementioned papers.

After having introduced the mathematical model, we proceed with analysing existence and
uniqueness of a weak solution. We remark that, while the mathematical analysis of Cahn–Hilliard
equations with mechanical effects is well addressed in the literature—see, e.g. Miranville (2001),
Carrive et al. (1999), Garcke (2003), Garcke (2005a) and Garcke et al. (2019)—the analysis of reaction-
diffusion equations with mechanical coupling is not straightforward. The traditional Caputo derivative,
which is valid for absolutely continuous functions, is extended to a wider class of functions through
various generalizations in the study of weak solutions to fractional differential equations. For instance,
some generalizations of the Caputo derivative in the literature are given in Kilbas et al. (2006), Allen
et al. (2016), Gorenflo et al. (2015), Li & Liu (2018a)and Akilandeeswari et al. (2017), and they
all reduce to the traditional one under the assumption of sufficient regularity of the function. In the
analysis, we use the one in Kilbas et al. (2006) and Diethelm (2010), which relies on Riemann–Liouville
derivatives and is, in contrast to the traditional one, also valid for some functions that do not necessarily
have the first derivative. Using Galerkin methods for showing the existence of weak solution to partial
fractional differential equations is quite popular and it is seen for instance in Djilali & Rougirel (2018),
Ouedjedi et al. (2019), Zacher (2009), Zacher (2019), McLean et al. (2019), McLean et al. (2020), Li

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/4/688/6294804 by Technische U

niversitaet M
uenchen user on 02 August 2021



690 FRITZ ET AL.

& Liu (2018b) and Manimaran et al. (2019) and for tumour growth models in Garcke & Lam (2017),
Fritz et al. (2019b)and Fritz et al. (2019a). The key variations from that of integer-order in the analysis
are the fractional Gronwall Lemma (McLean et al., 2020), some special estimates due to the lack of
chain rule for fractional derivatives (Vergara & Zacher, 2008) and compactness theorems similar to
the Aubin–Lions theorem (Li & Liu, 2018b). The multi-order ordinary fractional differential system is
well addressed (Diethelm, 2010); however, there is not much in the literature on the multi-order partial
differential system.

The main novelties of our work can be summarized as follows: (a) we consider a nonlinear
reaction-diffusion system with a fractional time derivative, capable of modelling subdiffusion in
tumour progression, and we illustrate, by numerical simulations, its flexibility in describing the tumour
dynamics by varying the fractional exponent; (b) we provide a rigorous mathematical analysis of
the existence and uniqueness of a weak solution to this model, the original aspects consisting in the
treatment of the fractional time derivative and of the mechanical coupling.

This exposition has the following structure: Section 2 gives the mathematical modelling of the
tumour growth with mechanical effects and fractional derivative. In Section 3, we introduce the
notations and preliminary results needed in the later sections. The mathematical analysis of the model
giving existence and uniqueness of the weak solution using Galerkin methods is worked out in Section 4.
The numerical discretization of the model using finite element method for space and finite differences
in time with a convolution quadrature formula for the fractional derivative is given in Section 5. The
results of the numerical experiments in Section 6 show the effects of the fractional derivative and the
mechanical coupling in the model.

2. Mathematical modelling

We consider a material body B composed of two constituents, tumour cells and healthy cells, which
occupy a common portion of a bounded Lipschitz domain Ω ⊂R d, d = 2, during the time t ∈ [0, T].
Nutrients such as oxygen and glucose in Ω nourish both the healthy and tumour cells. The increasing
number of tumour cells by the intake of nutrients and interaction with the surrounding healthy cells
increases the mechanical stress, which in turn affects the mobility of the tumour. Treatment for cancer
is given by chemotherapy in which the drug diffuses through the region Ω and kills the fast growing
cancerous cells. The quantities of interest to us are as follows: the mass density of the tumour cells per
unit volume ρφ, where φ : Ω × [0, T] → [0, 1] is the volume fraction of the tumour cells in B and ρ is
the mass density of the tumour cells, the displacement field u : Ω×[0, T] → R d, the mass density of the
nutrients ψ : Ω ×[0, T] → R and the mass density of the chemotherapeutic agents χ : Ω ×[0, T] → R .

2.1 Evolution of tumour

Time evolution of the physical system must obey the laws of conservation of mass, linear and angular
momentum, energy and the second law of thermodynamics. We ignore the temperature and thermal
effects and proceed as done in Lima et al. (2016).

• Conservation of mass:

∂t(ρφ) + ∇ · (ρφv) = ρ(S − ∇ · J), (2.1)

where v is the velocity field, ρS is the mass density supplied by other constituents, which
encompasses proliferation of tumour cells and their death due to chemotherapy treatment, and
ρJ is the mass flux over the boundary of Ω , which we denote by ∂Ω .
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 691

• Conservation of linear and angular momentum:

∂t(ρφv) + ∇ · (ρφv ⊗ v) = ∇ · T + ρφb + p,

T − Tt = m,
(2.2)

where T is the Cauchy stress tensor for the tumour, b is the body force, p momentum supplied by
other constituents, m is the intrinsic moment of momentum, and Tt denotes the transpose of T.

The total energy of the system Ψ̃ consists of the Ginzburg–Landau component Ψ (φ, ∇φ) depending
only on φ and its gradient ∇φ, and the stored energy potential W(φ, ε(u)) depending on φ and the strain
measure ε(u). Assuming small deformations, we consider the potentials

Ψ̃ =
∫

Ω
Ψ (φ, ∇φ) + W(φ, ε(u)) dx,

Ψ (φ, ∇φ) = c
2
φ2, W(φ, ε(u)) = 1

2
ε : C(φ)ε + ε : T(φ),

where c > 0 is a constant, ε(u) = 1
2 (∇u + ∇ut), T(φ) = λφI is the symmetric compositional stress

tensor, λ > 0 depending on the tumour growth rate and I being the identity matrix, C(φ) is the linear
elastic inhomogeneous material tensor, and the operator : denotes the inner product for second-order
tensors.

The first variations of the energy functional with respect to φ and ε define the chemical potential,
and the stress tensor, respectively,

µ = δΨ

δφ
+ δW

δφ
, T = δW

δε
. (2.3)

The effects of the elastic deformation on the movement of tumour cells is prescribed by the term λ∇ · u
in the chemical potential.

To incorporate subdiffusion, we introduce fractional derivatives in the mass flux and mass sources.
Modelling the subdiffusion and proliferation of cancer cells can lead to a linear fractional partial
differential equation through a comb model with proliferation in one dimension (Iomin, 2015). On a
microscopic level, subdiffusion-limited reaction is modelled in Seki et al. (2003) and Yuste et al. (2004)
by having fractional derivatives in flux and reaction terms.

Motivated by the previous models, the subdiffusion limited reaction for tumour mass density takes
the form,

J = −Mφ(x)∂1−α
t ∇µ, S = Nφ∂1−α

t f (φ, ψ) − Pφ∂1−α
t g(φ, χ), (2.4)

for α ∈ (0, 1), where Mφ : Ω → R + is such that cMφ is the mobility of tumour cells, f , g : Ω×[0, T] →
R model the uptake of nutrient and chemotherapic by the tumour cells, Nφ > 0 is the rate at which the
tumour cells proliferate by using the nutrients, and Pφ > 0 is the rate at which the tumour cells die due
to the chemotherapy treatment. The operator ∂1−α

t is the Riemann–Liouville fractional derivative and is
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defined for a function ϕ : Ω × [0, T] → R , as

∂α
t ϕ(t) = ∂t(g1−α ∗ ϕ)(t), (2.5)

where the kernel is defined by

gα(t) :=
{

tα−1/Γ (α), α > 0,
δ(t), α = 0,

where δ(t) is the Dirac delta distribution and ∗ denotes the convolution on the positive halfline with
respect to the time variable, i.e. (gα ∗ ϕ)(t) =

∫ t
0 gα(t − s)ϕ(s) ds. If ϕ is sufficiently smooth, then we

have

∂α
t (ϕ(t) − ϕ0) = g1−α ∗ ∂tϕ(t), (2.6)

where ϕ0 is a given initial value. The right-hand side is the classical Caputo fractional derivative. The
formulation on the left-hand side, which expresses the Caputo fractional derivative in terms of Riemann–
Liouville fractional derivative, has the advantage that it requires less regularity of ϕ than the classical
definition.

We reduce the complexity of the system by using the common simplifying assumptions as in Lima
et al. (2016): the tumour and healthy cells have constant mass density ρ = ρ0, m = 0, i.e. the material is
monopolar, no body force, i.e. b = 0, we neglect the terms with v⊗v and p by not considering the inertial
effects, and we further assume that the mechanical equilibrium is attained on a much faster time scale
than diffusion takes place, i.e. the term ρ0v∂tφ on the left-hand side in the linear momentum equation
vanishes. For ease of technical difficulties, we assume that the tumour is an isotropic and homogeneous
C(φ) ≡ C material, and so C takes the form Cε = 2Gε + 2Gν

1−2ν tr εI, where G > 0 denotes the shear
modulus, while ν < 1

2 is the Poisson’s ratio. This assumption assures that the energy functional W(φ, ε)

is convex in both its variables, which is required in using Lemma 3.1, which is an analogous result to
the chain rule in fractional derivatives for providing estimates for φ. A more general energy functional
is considered in Garcke (2003) with integer-order derivatives.

Along with these assumptions, we integrate (2.1), take ∂α
t on both sides of equation (2.1) and use

the semigroup property of the kernel g1−α ∗ gα = g1 = 1 in the following way

g1−α ∗ ∂t(gα ∗ ϕ) = ∂t(g1−α ∗ gα ∗ ϕ) − g1−α(t)(gα ∗ ϕ)(0) = ∂t(1 ∗ ϕ) = ϕ,

assuming sufficient smoothness on the functions, to obtain from (2.1)–(2.4) the system

∂α
t (φ − φ0) = ∇ ·

(
Mφ(x)∇µ

)
+ Nφ f (φ, ψ) − Pφg(φ, χ), (2.7a)

µ = cφ + λ∇ · u, (2.7b)

0 = ∇ ·
(

2Gε(u) + 2Gν

1 − 2ν
tr(ε(u))I + λφI

)
, (2.7c)

where φ0 is a given data, playing the role of initial condition.
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 693

Remark 2.1 If we assume smoothness on all involved variables, we can formally take the divergence
in the deformation equation (2.7c) and conclude that

(
G + G

1 − 2ν

)
∆(∇ · u) = −λ∆φ.

If Mφ is a constant, then, by substitution into (2.7a)–(2.7b), we obtain

∂α
t (φ − φ0) = Mφ

(
c − λ2(1 − 2ν)

2G(1 − ν)

)
∆φ + Nφ f (φ, ψ) − Pφg(φ, χ).

We note that in this case the equation for φ is independent of u. Further, this also suggests that we
require at least c > λ2(1−2ν)

2G(1−ν) to conclude the existence of a solution. We indeed see in Section 4 that we
require a slightly stronger condition on c.

2.2 Evolution of nutrient

The nutrient mass density is assumed to obey a reaction-diffusion equation, as standard (Preziosi, 2003,
Ch. 5 and 10)

∂ψ

∂t
= ∇ · (Mψ (x)∇ψ) + Sψ (x, t) − Nψ f (φ, ψ), (2.8)

Mψ : Ω → R + is the mobility of the nutrients, Sψ : Ω × [0, T] → R denotes the external source of
nutrients over the volume, Nψ > 0 denotes the rate at which nutrients are consumed by the tumour cells,

f (φ, ψ) = φ(1−φ)ψ
Kψ+ψ is a monod equation combined with the term (1 − φ) that ensures that φ, which is a

volume fraction, does not take values greater than 1. The parameter Kψ > 0 is the monod half saturation
constant, corresponding to that nutrient mass density, where the nutrient-dependent growth takes its half
maximum value.

2.3 Evolution of chemotherapy

The mass density of chemotherapy is assumed to be governed by a reaction-diffusion equation

∂χ

∂t
= ∇ · (Mχ (x)∇χ) − Nχχ + Sχ (x, t) − Pχ g(φ, χ), (2.9)

where Mχ : Ω → R + is the mobility of chemotherapeutic agents, Sχ : Ω × [0, T] → R is the
external supply of chemotherapeutic over the domain, Nχ > 0 is the rate at which the chemotherapeutic
agents are degraded, Pχ > 0 denotes the rate at which chemotherapeutic agents act and are blocked

later by killing tumour cells. The term g(φ, χ) = φ(1−φ)χ
Kχ+χ includes, analogously to the nutrient

uptake, a saturation effect, including also that mainly cells in a certain growth phase are sensible to
the chemotherapy. The parameter Kχ > 0 is the density of chemotherapeutic agents when they reach
their half maximum value.
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Finally, collecting (2.7)– (2.9), the tumour evolution is governed by the system

∂α
t (φ − φ0) = ∇ ·

(
Mφ(x)∇µ

)
+ Nφ f (φ, ψ) − Pφg(φ, χ), (2.10a)

µ = cφ + λ∇ · u, (2.10b)

0 = ∇ ·
(

2Gε(u) + 2Gν

1 − 2ν
tr(ε(u))I + λφI

)
, (2.10c)

∂ψ

∂t
= ∇ · (Mψ (x)∇ψ) + Sψ (x, t) − Nψ f (φ, ψ), (2.10d)

∂χ

∂t
= ∇ · (Mχ (x)∇χ) − Nχχ + Sχ (x, t) − Pχ g(φ, χ), (2.10e)

in Ω . We add to this system the following initial and boundary conditions

(φ, ψ , χ) = (φ0, ψ0, χ0) on Ω × {t = 0}, (2.11a)

∇µ · n = 0 on ∂Ω × (0, T), (2.11b)

u = 0 on Σ1 × (0, T), |Σ1| > 0, (2.11c)
(

2Gε(u) + 2Gν

1 − 2ν
tr(ε(u))I + λφI

)
· n = 0 on ∂Ω\Σ1 × (0, T), (2.11d)

ψ = ψ̃b, χ = χ̃b on Σ2 × (0, T), (2.11e)

Mψ∇ψ · n = ψb, Mχ∇χ · n = χb on ∂Ω\Σ2 × (0, T), (2.11f)

where n denotes the outer normal to Ω and Σ1, Σ2 ⊂ ∂Ω are parts of the boundary ∂Ω with non-
zero measures. We assume no-flux boundary conditions for the chemical potential and Dirichlet–
Neumann mixed boundary condition for the displacement, density of nutrient and chemotherapy. The
homogeneous Dirichlet condition on the part of the boundary Σ1 for displacement accounts for the
presence of a rigid part of the body such as bone, which prevents the variations of the displacement.
The non-homogeneous Dirichlet condition on part of the boundary Σ2 for density of nutrient and
chemotherapy accounts for the concentration supply from blood vessels. In the rest of the boundary, the
more natural Neumann boundary condition is applied. The problem with non-homogeneous Dirichlet
condition for density of nutrient and chemotherapy can be converted to a problem to have homogeneous
Dirichlet boundary conditions by taking ψ̃ = ψ − ψ̃b and similarly for χ . Therefore we assume
ψ̃b = χ̃b = 0.

Remark 2.2 We assumed that the displacement u vanishes on Σ1 ⊂ ∂Ω , that means we imposed
a homogeneous Dirichlet boundary on Σ1—see also Garcke et al. (2019), Faghihi et al. (2020) and
Bartkowiak & Pawłow (2005) for the same choice of boundary behaviour. This allows us to apply the
well-known Korn inequality directly in the proof of existence. In the case of pure Neumann boundary
conditions, one has to consider a different solution space for u (see Garcke, 2005b; Miranville, 2001,
2003, for more details).
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 695

3. Preliminaries

In this section, we introduce the spaces along with the embedding results, and the useful inequalities
and auxiliary results, which are used in the Section 4.

3.1 Notation and embedding results

Let Wk
p(Ω; R d) denote the Sobolev space of order k with weak derivatives in the space Lp(Ω; R d) of p-

integrable functions having value in R d. Shortly, we write Wk
p(Ω; R ) = Wk

p(Ω), H1(Ω) = W1
2 (Ω) and

H1
0,Σ (Ω; R d) denotes the space of H1(Ω; R d) functions with vanishing trace on Σ ⊂∂Ω , see Brezis

(2010) for more details. For notational simplicity, we denote ∥ · ∥L2(Ω;Rd) and ∥ · ∥L2(Σ ;Rd) by ∥ · ∥ and
∥ · ∥Σ , respectively, (·, ·)L2(Ω;Rd) and (·, ·)L2(Σ ;Rd) by (·, ·) and (·, ·)Σ , respectively, and the brackets
⟨·, ·⟩ denote the duality pairing on H−1(Ω) × H1(Ω). The symbol Ck(·) denotes the space of k-times
continuously differentiable functions and Cb(·) denotes the space of bounded continuous functions. Let
H be a real separable Hilbert space with norm ∥ · ∥H and V be a Hilbert space such that V ↪↪→ H ↪→ V ′

is a Gelfand triple. We define the Bochner space

Lp(0, T; H) :=
{
ϕ : (0, T) → X : ϕ Bochner measurable and ∥ϕ∥p

Lp(0,T;H) :=
∫ T

0
∥ϕ(t)∥p

H dt < ∞
}

,

where p ∈ [1, ∞). For p = ∞ we modify it in the usual sense with the Bochner norm

∥ϕ∥L∞(0,T;H) := ess sup
t∈(0,T)

∥ϕ(t)∥H.

We introduce the Sobolev–Bochner space

W1
p,q(0, T; V , V ′) := {ϕ ∈ Lp(0, T; V) : ∂tϕ ∈ Lq(0, T; V ′)},

and its fractional counter-part

Wα
p,q(0, T; ϕ0, V , V ′) := {ϕ ∈ Lp(0, T; V) : g1−α ∗ (ϕ − ϕ0) ∈ 0W1

p,q(0, T; V , V ′)},

where ϕ0 ∈ H and 0W1
p,q denotes functions in W1

p,q with vanishing trace at t = 0. This definition of
the fractional Sobolev–Bochner space indeed corresponds to the space of integrable fractional time-
derivatives.

In the existence proof we typically apply compactness results. A special case of the Aubin–Lions
compactness theorem (Simon, 1986, Corollary 4) states the following compact embedding

p ∈ [1, ∞), W1
p,1(0, T; V , V ′) ↪↪→ Lp(0, T; H). (3.1)

In the fractional setting, we have the following analogous result

p ∈ [1, ∞), r ∈
(

p
1 + pα

, ∞
)

∩ [1, ∞), Wα
p,r(0, T; ϕ0, V , V ′) ↪↪→ Lp(0, T; H), (3.2)
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where ϕ0 ∈ H is given. The proof follows the lines of Li & Liu (2018b, Theorem 4.2) using the estimates
from Li & Liu (2018b, Proposition 3.4).

We also employ the following continuous embedding into the time-continuous function space to
establish additional regularity of the solutions of the partial differential equations,

W1
2,2(0, T; V , V ′) ↪→ C([0, T]; [V , V ′]1/2), (3.3)

where [V , V ′]1/2 denotes the interpolation space of order 1/2 of V and V ′, see Lions & Magenes (2012,
Theorem 3.1, Chapter 1), e.g. [H1

0(Ω), H−1(Ω)]1/2 = L2(Ω). In the fractional setting, we have a
continuous embedding analogous to the one above. Indeed,

ϕ0 ∈ H, ϕ ∈ Wα
2,2(0, T; ϕ0, V , V ′) 1⇒ g1−α ∗ (ϕ − ϕ0) ∈ C([0, T]; H), (3.4)

after possibly being redefined on a set of measure zero, see Zacher (2009, Theorem 2.1).
Throughout the whole paper, we denote by C a generic positive constant, which is independent of

the unknowns φ, µ, u, ψ and χ .

3.2 Useful inequalities and auxiliary results

We recall the Poincaré–Wirtinger, Poincaré, Korn and Sobolev inequalities, see Brezis (2010) and
Ciarlet (2013),

∥ϕ − ϕ∥ ≤ C∥∇ϕ∥ for all ϕ ∈ H1(Ω),

∥ϕ∥ ≤ C∥∇ϕ∥ for all ϕ ∈ H1
0,Σ (Ω),

∥ϕ∥H1(Ω;Rd) ≤ C∥ε(ϕ)∥ for all ϕ ∈ H1
0,Σ (Ω; R d),

∥ϕ∥Wm
q (Ω;Rd) ≤ C∥ϕ∥Wk

p (Ω;Rd) for all ϕ ∈ Wk
p(Ω; R d), k − d

p
≥ m − d

q
, k ≥ m,

(3.5)

where ϕ = 1
|Ω|

∫
Ω ϕ(x) dx denotes the mean of ϕ. Also, we often make use of the ϵ-Young and the

Young convolution inequalities, given by

ab ≤ ϵap + bq

q(ϵp)q/p for all a, b ≥ 0,
1
p

+ 1
q

= 1, ϵ > 0,

∥ϕ1 ∗ ϕ2∥Lr(Ω) ≤ ∥ϕ1∥Lp(Ω)∥ϕ2∥Lq(Ω) for all ϕ1 ∈ Lp(Ω), ϕ2 ∈ Lq(Ω),
1
p

+ 1
q

= 1
r

+ 1,

(3.6)

and Hölder’s inequality, given by

∥ϕ1ϕ2∥L1(Ω) ≤ ∥ϕ1∥Lp(Ω)∥ϕ2∥Lq(Ω) for all ϕ1 ∈ Lp(Ω), ϕ2 ∈ Lq(Ω),
1
p

+ 1
q

= 1, (3.7)

see Evans (2010, Appendix B).
The following inequality, which is analogous to the chain rule, is required to obtain a priori estimates

to prove the existence of weak solutions of a time-fractional partial differential equation.
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 697

Lemma 3.1 Suppose ϕ ∈ L2(0, T; L2(Ω , R d)), and there exists ϕ0 ∈ L2(Ω , R d) such that g1−α ∗
(ϕ − ϕ0) ∈ 0W1

2,2(0, T; L2(Ω , R d), L2(Ω , R d)). Let H ∈ C1(R d) be a convex function such that g1−α ∗∫
Ω H(ϕ) dx ∈ 0W1

1 (0, T). Then for almost all t ∈ (0, T), we have

(
H′(ϕ(t)), ∂t(g1−α ∗ ϕ)(t)

)
≥ ∂t

(
g1−α ∗

∫

Ω
H(ϕ) dx

)
(t)

+
(

−
∫

Ω
H(ϕ(t)) dx +

(
H′(ϕ(t)), ϕ(t)

))
g1−α(t).

(3.8)

Proof. Let k ∈ W1
1 (0, T). Then from a straightforward computation, we have the following identity for

almost all t ∈ [0, T]

∫

Ω
H′(ϕ(t)) : ∂t(k ∗ ϕ)(t) dx = ∂t

(
k ∗

∫

Ω
H(ϕ) dx

)
(t) + k(t)

(∫

Ω
−H(ϕ(t)) + H′(ϕ(t)) : ϕ(t) dx

)

−
∫ t

0

d
ds

k(s)
(∫

Ω
H(ϕ(t − s)) − H(ϕ(t)) − H′(ϕ(t)) : (ϕ(t − s) − ϕ(t)) dx

)
ds.

(3.9)

We remark that the identity for functions with values in R can be seen in Kemppainen et al. (2016,
Lemma 6.1) and the integrated form for functions in R d can be seen in Gripenberg et al. (1990, Lemma
18.4.4). We note that if k is non-negative and non-increasing then the last term is positive, since H
is a convex functional. The inequality (3.8) follows as in Vergara & Zacher (2008, Theorem 2.1) by
approximating g1−α with a more regular kernel kn ∈ W1,1(0, T), using the above identity and taking the
limit. !

A particular form of Lemma 3.1 with H(ϕ) = 1
2ϕ2 is proved in Vergara & Zacher (2008, Theorem

2.1) with functionals having value in any Hilbert space, and we have for almost all t ∈ [0, T]

1
2

d
dt

(g1−α ∗ ∥ϕ∥2)(t) + 1
2

g1−α(t)∥ϕ(t)∥2 ≤
(
ϕ(t), ∂t(g1−α ∗ ϕ)(t)

)
. (3.10)

Remark 3.1 The first term in (3.10) is well-posed for ϕ ∈ Wα
2,2(0, T; ϕ0, L2(Ω , R d), L2(Ω , R d))

because of the following implication, which indeed holds true for a wide class of kernels and is proved
in Vergara & Zacher (2008, Proposition 2.1),

ϕ ∈ L2(0, T; H), g1−α ∗ ϕ ∈ 0H1(0, T; H) 1⇒ g1−α ∗ ∥ϕ∥2
H ∈ 0W1

1 (0, T). (3.11)

The following are the Gronwall–Bellman and generalized Gronwall–Bellman with singularity, used
for providing explicit bounds on solutions.
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Lemma 3.2 (Gronwall–Bellman, cf. Evans (2010, Appendix B)). Assume C1, C2 ≥ 0 are constants. If
ϕ(t) is a non-negative, integrable function on [0, T], satisfying

ϕ(t) ≤ C1 + C2

∫ t

0
ϕ(s) ds,

for almost all t ∈ [0, T], then it holds that

ϕ(t) ≤ C1eC2T ,

for almost all t ∈ [0, T].

Lemma 3.3 (Generalized Gronwall–Bellman, cf. Ye et al. (2007, Corollary 1)). Assume that a(t) is a
non-negative integrable function on the interval [0, T], and b > 0 is a constant. If ϕ(t) is a non-negative,
integrable function satisfying

ϕ(t) ≤ a(t) + b
Γ (α)

∫ t

0
(t − s)α−1ϕ(s) ds,

for almost all t ∈ [0, T], then for almost all t ∈ [0, T] the following holds true,

ϕ(t) ≤ a(t) +
∫ t

0
bΓ (α)(t − s)α−1Eα,α(bΓ (α)(t − s)α)a(s) ds,

where Eα,α(x) = ∑∞
k=0

xk

Γ (αk+α) is the two-paramater Mittag–Leffler function.

Lemma 3.4 (Fractional integration by parts, cf. Djilali & Rougirel (2018, Proposition 3.1)). Let ϕ1 ∈
L2(0, T; H) and ϕ2 ∈ H1(0, T; H). Then

∫ T

0

(
∂t(g1−α ∗ ϕ1)(t), ϕ2

)
dt = −

∫ T

0

(
ϕ1, (g1−α ∗′ ∂tϕ2)(t)

)
dt +

(
(g1−α ∗ ϕ1)(t), ϕ2

)
|t=T
t=0 ,

where the convolution ∗′ is defined by (gα ∗′ ϕ)(t) =
∫ T

t gα(t − s)ϕ(s) ds.

4. Mathematical analysis

In this section, we provide the existence and uniqueness of the weak solution to the model (2.10) using
the Galerkin approximation approach.

Definition 4.1 We say that (φ, µ, u, ψ , χ) satisfying

φ ∈ Wα
2,2(0, T; φ0, L2(Ω), L2(Ω)), µ ∈ L2(0, T; H1(Ω)),

u ∈ L2(0, T; H1
0,Σ1

(Ω; R d)), ψ , χ ∈ W1
2,2(0, T; H1

0,Σ2
(Ω), H−1(Ω)),
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is a weak solution to the system (2.10) with data (2.11), if the initial conditions g1−α ∗ (φ − φ0)(0) =
0, ψ(0) = ψ0, χ(0) = χ0 holds in the weak sense and the solution satisfies the variational form

(
∂α

t (φ − φ0), ξ1
)
+ (Mφ∇µ, ∇ξ1) = Nφ

(
f (φ, ψ), ξ1

)
− Pφ

(
g(φ, χ), ξ1

)
,

(
µ, ξ2

)
= c

(
φ, ξ2

)
+ λ

(
∇ · u, ξ2

)
,

2G
(
ε(u), ε(ξ3)

)
+ 2Gν

1 − 2ν

(
∇ · u, ∇ · ξ3

)
= −λ

(
φ, ∇ · ξ3

)
,

〈
∂tψ , ξ4

〉
+

(
Mψ∇ψ , ∇ξ4

)
=

(
Sψ , ξ4

)
− Nψ

(
f (φ, ψ), ξ4

)
+ (ψb, ξ4)∂Ω\Σ2

,
〈
∂tχ , ξ4

〉
+

(
Mχ∇χ , ∇ξ4

)
=

(
Sχ , ξ4

)
− Nχ (χ , ξ4) − Pχ

(
g(φ, χ), ξ4

)
+ (χb, ξ4)∂Ω\Σ2

,

(4.1)

for all ξ1 ∈ H1(Ω), ξ2 ∈ L2(Ω), ξ3 ∈ H1
0,Σ1

(Ω; R d) and ξ4 ∈ H1
0,Σ2

(Ω).

Theorem 4.2 (Well-posedness of global weak solutions). Let the following assumptions hold:

(A1) φ0, ψ0, χ0 ∈ L2(Ω), ψb, χb ∈ L2(0, T; L2(∂Ω\Σ2)),

(A2) f , g ∈ Cb(R 2) such that 0 ≤ f ≤ Cf and 0 ≤ g ≤ Cg, for positive constants Cf , Cg,

(A3) Mφ , Mψ , Mχ ∈ Cb(Ω) such that M0 ≤ Mφ(x), Mψ (x), Mχ (x) ≤ M∞ for positive constants
M0, M∞,

(A4) Sψ , Sχ ∈ L2(0, T; L2(Ω)),

(A5) c > λ2(1−2ν)
2Gν ,

then there exists a weak solution (φ, µ, u, ψ , χ) in the sense of Definition 4.1. Additionally, the solution
satisfies the estimate

∥φ∥2
L2(0,T;L2(Ω)) + ∥µ∥2

L2(0,T;H1(Ω))
+ ∥u∥2

L2(0,T;H1(Ω;Rd))
+ ∥ψ∥2

L2(0,T;H1(Ω))
+ ∥χ∥2

L2(0,T;H1(Ω))

≤ C
(
IC + Cf + Cg + ∥Sψ∥2

L2(0,T;L2(Ω)) + ∥Sχ∥2
L2(0,T;L2(Ω)) + ∥ψb∥2

L2(0,T;L2(∂Ω\Σ2))

+ ∥χb∥2
L2(0,T;L2(∂Ω\Σ2))

)
, (4.2)

where IC = ∥φ0∥2 + ∥ψ0∥2 + ∥χ0∥2. Furthermore, the solution is unique if the nonlinear functions f , g
are Lipschitz continuous with Lipschitz constants Lf , Lg > 0, respectively.

Proof. In order to prove the existence of weak solution, we first use the Faedo-Galerkin method and
semi-discretize the original problem in space in Section 4.1. The discretized model can be formulated
as a system of nonlinear mixed-order fractional differential equations in a finite dimensional space
whose existence of a solution is then obtained by fixed point theorem in Appendix A. We obtain the
required energy estimates in Section 4.2. In Section 4.3, we deduce from the Banach–Alaoglu theorem
and compactness theorems, the existence of limit functions that yield a weak solution to the nonlinear
system (2.10) in the sense of Definition 4.1 and show the weak solution satisfies the estimate (4.2).
Finally, we show in Section 4.4 that the Lipschitz continuity assumption on the nonlinear functions f
and g gives uniqueness of the solution. !
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4.1 Faedo–Galerkin approximation

We first choose discrete spaces Ym, Zm and Wm such that their unions over m ∈ N are dense in
H1(Ω), H1

0,Σ2
(Ω) and H1

0,Σ1
(Ω; R d), respectively. We construct approximate solutions in these discrete

spaces. We see that the semi-discretized model of Problem (4.1) can be formulated as a system of multi-
order fractional ordinary differential equations.

Discrete spaces. We introduce the discrete spaces

Ym = span{y1, . . . , ym}, Zm = span{z1, . . . , zm}, Wm = span{w 1, . . . , w m},

where yk, zk : Ω → R , w k : Ω → R d for k = 1, . . . , m are eigenfunctions to the eigenvalues λ
y
k, λz

k, λw
k

of the following respective problems

−4yk = λ
y
kyk in 5,

∇yk · n = 0 on ∂5,

−4zk = λz
kzk in 5,

zk = 0 on ∂62,

∇zk · n = 0 on ∂5\∂62,

−4w k = λw
k w k in 5,

w k = 0 on ∂61,

∇w k · n = 0 on ∂5\∂61.

Since the Laplace operator is a compact, self-adjoint, injective operator, we conclude by the spectral
theorem (Boyer & Fabrie, 2013; Brezis, 2010; Robinson, 2001) that

{yk}∞k=1, {zk}∞k=1 are orthonormal bases in L2(Ω) and orthogonal bases in H1(Ω),

{w k}∞k=1 is an orthonormal basis of L2(Ω; R d) and orthogonal basis in H1(Ω; R d).

Exploiting the orthonormality of the eigenfunctions, we deduce that Ym, Zm are dense in L2(Ω), and
Wm is dense in L2(Ω; R d). We introduce the orthogonal projection, ΠYm : L2(Ω) → Ym, which can
be written as

ΠYmϕ =
m∑

k=0

(ϕ, yk)yk,

and by the properties of orthogonal projections, we have ∥ΠYmϕ∥ ≤ ∥ϕ∥. Analogously, we can define
ΠZm and ΠWm .

Faedo–Galerkin system: Fix m > 0 and consider the Faedo–Galerkin approximations φm, µm :
[0, T] → Ym, um : [0, T] → Wm and ψm, χm : [0, T] → Zm with the representations

φm(t) :=
m∑

k=1

ϑm
k (t)yk, µm(t) :=

m∑

k=1

ϱm
k (t)yk, um(t) :=

m∑

k=1

ςm
k (t)w k,

ψm(t) :=
m∑

k=1

;m
k (t)zk, χm(t) :=

m∑

k=1

ϖm
k (t)zk,

(4.3)
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where ϑm
k , ϱm

k , ςm
k , ;m

k , ϖm
k : (0, T) → R are coefficient functions for k = 1, . . . , m. To simplify

notations, we set

f m = f (φm, ψm), gm = g(φm, χm), ψm
b = ΠZmψb, χm

b = ΠZmχb,

φm
0 = ΠYmφ0, ψm

0 = ΠZmψ0, χm
0 = ΠZmχ0.

The Faedo–Galerkin system of the model reads

(
∂α

t (φm − φm
0 ), yk

)
+ (Mφ∇µm, ∇yk) = Nφ

(
f m, yk

)
− Pφ

(
gm, yk

)
, (4.4a)

(µm, yk) = c(φm, yk) + λ(∇ · um, yk), (4.4b)

2G
(
ε(um), ε(w k)

)
+ 2Gν

1 − 2ν

(
∇ · um, ∇ · w k

)
= −λ

(
φm, ∇ · w k

)
, (4.4c)

(
∂tψ

m, zk
)
+

(
Mψ∇ψm, ∇zk

)
=

(
Sψ , zk

)
− Nψ

(
f m, zk

)
+ (ψm

b , zk)∂Ω\Σ2
, (4.4d)

(
∂tχ

m, zk
)
+

(
Mχ∇χm, ∇zk

)
=

(
Sχ , zk

)
− Nχ (χm, zk) − Pχ

(
gm, zk

)
+ (χm

b , zk)∂Ω\Σ2
, (4.4e)

for all k = 1, . . . , m, along with the initial conditions

g1−α ∗ (φm − φm
0 )(0) = 0, ψm(0) = ψm

0 , χm(0) = χm
0 .

After inserting the Galerkin ansatz functions (4.3) into the system (4.6) and introducing the following
notations

(Am
µ)kl := (Mφ∇yl, ∇yk), (Am

ψ )kl := (Mψ∇zl, ∇zk), (Am
χ )kl := (Mχ∇zl, ∇zk),

(Am
u )kl := (ε(w l), ε(w k)), (Bm)kl := (∇ · w l, ∇ · w k), (Cm)kl := (yl, ∇ · w k),

ϑm(t) := (ϑm
1 , . . . , ϑm

m )T , ϱm(t) := (ϱm
1 , . . . , ϱm

m)T , ςm(t) := (ςm
1 , . . . , ςm

m )T ,

&m(t) := (;m
1 , . . . , ;m

m )T , ϖm(t) := (ϖm
1 , . . . , ϖm

m )T , ϑm
0 := ((φ0, y1), . . . , (φ0, ym))T ,

Sm
ψ (t) := ((Sψ , z1), . . . , (Sψ , zm))T , Sm

χ (t) := ((Sχ , z1), . . . , (Sχ , zm))T ,

ψm
b := ((ψm

b , z1), . . . , (ψm
b , zm))T , χm

b (t) := ((χm
b , z1), . . . , (χm

b , zm))T ,

f m
y (t) := ((f m, y1), . . . , (f m, ym))T , gm

y (t) := ((gm, y1), . . . , (gm, ym))T ,

f m
z (t) := ((f m, z1), . . . , (f m, zm))T , gm

z (t) := ((gm, z1), . . . , (gm, zm))T ,
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we obtain a more compact form of the Faedo–Galerkin system

d
dt

(
g1−α ∗ (ϑm(t) − ϑm

0 )
)
(t) + Am

µϱm(t) = Nφf m
y (t) − Pφgm

y (t), (4.5a)

ϱm(t) = cϑm(t) + λ(Cm)tςm(t), (4.5b)

(
2GAm

u + 2Gν
1−2ν Bm)

ςm(t) = −λCmϑm(t), (4.5c)

d
dt

&m(t) + Am
ψ&m(t) = Sm

ψ (t) − Nψ f m
z (t) + ψm

b , (4.5d)

d
dt

ϖm(t) + Am
χ ϖm(t) = Sm

χ (t) − Nχϖm(t) − Pχ gm
z (t) + χm

b . (4.5e)

The matrix Fm := 2GAm
u + 2Gν

1−2ν Bm is positive definite by Korn’s inequality (3.5) and hence, it is
invertible. From (4.5b) and (4.5c), we can write ϱm(t), ςm(t) in terms of ϑm(t).

ϱm(t) = (cI − λ2(Cm)t(Fm)−1Cm)ϑm(t), (4.6a)

ςm(t) = −λ(Fm)−1Cmϑm(t). (4.6b)

Then we obtain a system of nonlinear multi-order fractional differential equations in the 3m unknowns
{ϑk, ;k, ϖk}1≤k≤m

d
dt

(
g1−α ∗ (ϑm(t)−ϑm

0 )
)
(t)+ Am

µ(cI−λ2(Cm)t(Fm)−1Cm)ϑm(t) = Nφf m
y (t) − Pφgm

y (t),

d
dt

&m(t) + Am
ψ&m(t) = Sm

ψ (t) − Nψ f m(t) + ψm
b ,

d
dt

ϖm(t) + Am
χ ϖm(t) = Sm

χ (t)− Nχϖm(t)−Pχ gm(t)+ χm
b ,

along with the initial conditions, for k = 1, . . . , m,

(
g1−α ∗ ((ϑm)k − (φ0, yk))

)
(0) = 0, (&m)k(0) = (ψ0, zk), (ϖm)k(0) = (χ0, zk).

The theory of ordinary fractional differential equations in Appendix A ensures the existence of solution
to the nonlinear multi-order fractional differential system, and we obtain

ϑm, ϱm, ςm ∈ Wα
2,2(0, T; ϑm

0 , R m, R m), &m, ϖ m ∈ W1
2,2(0, T; R m, R m).
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We further see from (4.6a) and (4.6b) that

ϱm
k (t) −

m∑

l=1

(
cI −λ2(Cm)t(Fm)−1Cm

)
kl

(φ0, yl) =
m∑

l=1

(
cI − λ2(Cm)t(Fm)−1Cm

)
kl

(
ϑm

l (t)− (φ0, yl)
)

,

ςm
k (t) + λ

m∑

l=1

(
(Fm)−1Cm

)
kl

(φ0, yl) = −λ

m∑

l=1

(
(Fm)−1Cm

)
kl

(
ϑm

l (t) − (φ0, yl)
)

.

Taking convolution with g1−α on both sides of the above two equations, multiplying by yk and w k,
respectively, and taking summation over k = 1 to m, we have

(
g1−α ∗

(
µm − µm

0
))

(0) = 0,
(
g1−α ∗ (um − um

0 )
)
(0) = 0,

where µm
0 = ∑m

k,l=1
(
cI−λ2(Cm)t(Fm)−1Cm)

kl (φ0, yl)yk and um
0 =−λ

∑m
l,k=1

(
(Fm)−1Cm)

kl (φ0, yl)w k
and they satisfy

(µm
0 , yk) = c(φm

0 , yk) + λ(∇ · um
0 , yk), (4.7a)

2G
(
ε(um

0 ), ε(w k)
)
+ 2Gν

1 − 2ν

(
∇ · um

0 , ∇ · w k
)

= −λ
(
φm

0 , ∇ · w k
)
. (4.7b)

Therefore, we conclude

φm ∈ Wα
2,2(0, T; φm

0 , Ym, Ym), µm ∈ Wα
2,2(0, T; µm

0 , Ym, Ym),

um ∈ Wα
2,2(0, T; um

0 , Wm, Wm), ψm, χm ∈ W1
2,2(0, T , Ym, Ym).

We obtain from (4.4b) (and (4.4c)) and (4.7a) (and (4.7b)) that µm (and um) satisfy the following
equations:

(
∂α

t (µm − µm
0 ), yk

)
= c

(
∂α

t (φm − φm
0 ), yk

)
+ λ

(
∂α

t (∇ · um − ∇ · um
0 ), yk

)
, (4.8a)

2G
(
∂α

t
(
ε(um) −ε(um

0 )
)

, ε(w k)
)
+ 2Gν

1 − 2ν

(
∂α

t (∇ · um −∇ · um
0 ), ∇ · w k

)
= −λ

(
∂α

t (φm− φm
0 ), ∇ · w k

)
.

(4.8b)

Further, we also get from the way discrete spaces are defined the following equation

−1
λ

y
k

(µm
0 , ∆yk) = (µm

0 , yk) = c(φm
0 , yk) + λ(∇ · um

0 , yk),

and taking integration by parts we get

(∇µm
0 , ∇yk) = λ

y
kc(φm

0 , yk) + λ
y
kλ(∇ · um

0 , yk). (4.9)
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4.2 Energy estimates

Estimates for µm. Multiplying (4.4b) with ϱm
k (t) and summing from k = 1 to m, we have, using Hölder’s

inequality (3.7),

∥µm∥2 = c(φm, µm) + λ(∇ · um, µm) ≤
(
c∥φm∥ + λ∥∇ · um∥

)
∥µm∥,

and thus

∥µm∥ ≤ c∥φm∥ + λ∥∇ · um∥ ≤ c∥φm∥ + λ∥um∥H1(Ω;Rd). (4.10)

Multiplying (4.7a) with (µm
0 , yk), summing from k = 1 to m and using Hölder’s inequality (3.7), we

have the estimate

∥µm
0 ∥ ≤ c∥φm

0 ∥ + λ∥∇ · um
0 ∥ ≤ c∥φm

0 ∥ + λ∥um
0 ∥H1(Ω;Rd). (4.11)

Estimates for um. Multiplying (4.4c) with ςm
k (t), and summing from k = 1 to m, we have

2G∥ε(um)∥2 + 2Gν

1 − 2ν
∥∇ · um∥2 = −λ

(
φm, ∇ · um)

.

Using ϵ-Young’s (3.6) and Korn’s inequality (3.5), we have

C∥um∥2
H1(Ω;Rd)

≤ 2G∥ε(um)∥2 + Gν

1 − 2ν
∥∇ · um∥2 ≤ λ2(1 − 2ν)

4Gν
∥φm∥2. (4.12)

Multiplying (4.7b) with (um
0 , w k), and summing from k = 1 to m, we estimate as before to get

C∥um
0 ∥2

H1(Ω;Rd)
≤ 2G∥ε(um

0 )∥2 + Gν

1 − 2ν
∥∇ · um

0 ∥2 ≤ λ2(1 − 2ν)

4Gν
∥φm

0 ∥2. (4.13)

Estimates for φm. Multiplying (4.4a) with ϱm
k (t), (4.4b) with − d

dt

(
g1−α ∗ (ϑm

k − (φ0, yk))
)
(t), (4.4c)

with d
dt

(
g1−α ∗

(
ςm

k − (um
0 , w k)

))
(t) + ςm

k (t), and summing from k = 1 to m, we have

(
∂α

t (φm − φm
0 ), µm)

+ (Mφ∇µm, ∇µm) = Nφ

(
f m, µm)

− Pφ

(
gm, µm)

, (4.14a)

−(µm, ∂α
t (φm − φm

0 )) = −c(φm, ∂α
t (φm − φm

0 )) − λ(∇ · um, ∂α
t (φm − φm

0 )), (4.14b)

2G
(
ε(um), ∂α

t
(
ε(um)−ε(um

0 )
))

+ 2Gν

1−2ν

(
∇ · um, ∂α

t
(
∇ · um−∇ · um

0
) )

=−λ
(
φm, ∂α

t
(
∇ · um−∇ · um

0
))

,

(4.14c)

2G
(
ε(um), ε(um)

)
+ 2Gν

1 − 2ν

(
∇ · um, ∇ · um)

= −λ
(
φm, ∇ · um)

. (4.14d)
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Upon adding (4.14a)–(4.14c), we obtain

c(φm, ∂α
t (φm − φm

0 )) + (∂φW(φm, ε(um)), ∂α
t (φm − φm

0 )) +
(
∂εW(φm, ε(um)), ∂α

t
(
ε(um) − ε(um

0 )
) )

+(Mφ∇µm, ∇µm) = Nφ

(
f m, µm)

− Pφ

(
gm, µm)

,

where we have, from Section 2,

W(φ, ε) = 1
2
ε : Cε + ε : λφI, Cε = 2Gε + 2Gν

1 − 2ν
tr εI,

∂φW(φ, ε(u)) = ε(u) : λI= λ∇ · u, ∂εW(φ, ε(u)) = Cε(u)+ λφI = 2Gε(u)+ 2Gν

1 − 2ν
∇ · uI+ λφI.

We see that the convex functional W(φm, ε(um)) satisfies the assumptions in Lemma 3.1 by noticing
that

∫

Ω
W(φm, ε(um)) dx = −G∥ε(um)∥2 − Gν

1 − 2ν
∥∇ · um∥2, (4.15)

which is obtained using (4.14d). We now apply Lemma 3.1 with H(ϕ) = W(φm, ε(um)) and (3.10), and
get the following estimate

d
dt

(
g1−α ∗

(
c
2
∥φm∥2 +

∫

Ω
W(φm, ε(um)) dx

))
(t) +

(
c(φm, φm − φm

0 ) − c
2
∥φm∥2

)
g1−α(t)

+
((

∂φW(φm, ε(um)), φm − φm
0
)
+

(
∂εW(φm, ε(um)), ε(um) − ε(um

0 )
)
−

∫

Ω
W(φm, ε(um)) dx

)
g1−α(t)

+(Mφ∇µm, ∇µm) ≤ Nφ

(
f m, µm)

− Pφ

(
gm, µm)

.

Using the convexity of the functionals W(φm, ε(um)) and c
2 (φm)2, (A3), (4.10), (4.12) and (4.13),

we have

d
dt

(
g1−α ∗

(
c
2
∥φm∥2 +

∫

5
W(φm, ε(um)) dx

))
(t) + M0∥∇µm∥2 ≤ C

(
∥φm

0 ∥2g1−α(t) + ∥φm∥2
)

+
Nφ

2
∥f m∥2 +

Pφ

2
∥gm∥2.

(4.18)

All the terms in the above estimate belong to L1(0, T), and so we convolve with gα to get a bound for
φm in the space L2(0, T; L2(Ω)). Using the fact that g1−α ∗

( c
2∥φm∥2 +

∫
Ω W(φm, ε(um)) dx

)
(0) = 0

and the auxiliary result gα ∗ g1−α = g1, see Diethelm (2010, Theorem 2.2), we have

gα ∗ d
dt

(
g1−α ∗

(
c
2
∥φm∥2 +

∫

Ω
W(φm, ε(um)) dx

))

= d
dt

(
gα ∗ g1−α ∗

(
c
2
∥φm∥2 +

∫

Ω
W(φm, ε(um)) dx

))
= c

2
∥φm∥2 +

∫

Ω
W(φm, ε(um)) dx.
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Convolving (4.18) with gα , we have for almost all t ∈ [0, T],

c
2
∥φm∥2 +

∫

Ω
W(φm, ε(um)) dx + M0

(
gα ∗ ∥∇µm∥2

)
(t) ≤ C∥φm

0 ∥2 + C
(

gα ∗ ∥φm∥2
)

(t)

+
Nφ

2

(
gα ∗ ∥f m∥2

)
(t) +

Pφ

2

(
gα ∗ ∥gm∥2

)
(t).

Further, using (4.15) and (4.12), we have

1
2

(
c − λ2(1 − 2ν)

2Gν

)
∥φm∥2 + M0

(
gα ∗ ∥∇µm∥2

)
(t) ≤ C∥φm

0 ∥2 + C
(

gα ∗ ∥φm∥2
)

(t)

+
Nφ

2

(
gα ∗ ∥f m∥2

)
(t) +

Pφ

2

(
gα ∗ ∥gm∥2

)
(t),

where the constant in the first term is positive by (A5). Using the generalised Gronwall–Bellman
Lemma 3.3, integrating from 0 to T , using Young’s inequality for convolution (3.6) and the property
of orthogonal projection, we obtain the upper bound

∥φm∥2
L2(0,T;L2(Ω)) ≤ C

(
∥φ0∥2 + Cf + Cg

)
. (4.17)

Moreover, integrating (4.18) from 0 to T , using (4.17) and the fact that g1−α is positive yields

∥∇µm∥2
L2(0,T;L2(Ω)) ≤ C

(
∥φ0∥2 + Cf + Cg

)
. (4.18)

Estimates for ψm. We have stated in (4.4d) the following Faedo–Galerkin equation for ψm,

(
∂tψ

m, zk
)
+

(
Mψ∇ψm, ∇zk

)
=

(
Sψ , zk

)
− Nψ

(
f m, zk

)
+

(
ψm

b , zk
)
∂Ω\Σ2

,

and by multiplying this equation by ;m
k (t) and taking summation over k = 1 to m and using (A4), we

arrive at

(
∂tψ

m, ψm)
+ M0∥∇ψm∥2 ≤ Nψ

(
f m, ψm)

+
(
Sψ , ψm)

+
(
ψm

b , ψm)
∂Ω\Σ2

.

Using the inequalities (3.7) and (3.6), we estimate the right-hand side and get the following upper bound

1
2

d
dt

∥ψm∥2 + M0∥∇ψm∥2 ≤
(Nψ

2
+ 1

2

)
∥ψm∥2+

Nψ

2
∥f m∥2 + 1

2
∥Sψ∥2+ ∥ψm

b ∥∂Ω\Σ2
∥Υ ψm∥∂Ω\Σ2

,

where Υ : H1(Ω) → L2(∂Ω\Σ2) is the trace operator. Since the trace operator is continuous, we have
∥Υ ϕ∥∂Ω\Σ2

≤ C∥ϕ∥H1(Ω) for every ϕ ∈ H1(Ω), see Evans (2010, Section 5.5, Theorem 1). Applying
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ϵ-Young’s inequality (3.6), we find

1
2

d
dt

∥ψm∥2 + M0

2
∥∇ψm∥2 ≤

(Nψ

2
+ 1

)
∥ψm∥2 +

Nψ

2
∥f m∥2 + 1

2
∥Sψ∥2 + C∥ψm

b ∥2
∂Ω\Σ2

.

Finally, the Gronwall–Bellman Lemma 3.2, yields the estimate,

∥ψm∥2
L2(0,T;L2(5)) + ∥∇ψm∥2

L2(0,T;L2(5)) ≤ C
(
∥ψ0∥2 + Cf + ∥Sψ∥2

L2(0,T;L2(5))

+ ∥ψb∥2
L2(0,T;L2(∂5\62))

)
.

(4.19)

Estimates for χm. Multiplying (4.4e) with ϖm
k (t) and taking summation over k = 1 to m, using the

typical inequalities and proceeding as in the estimates for ψ , we have the estimate

∥χm∥2
L2(0,T;L2(5)) + ∥∇χm∥2

L2(0,T;L2(5)) ≤ C
(
∥χ0∥2 + Cg + ∥Sχ∥2

L2(0,T;L2(5))

+ ∥χb∥2
L2(0,T;L2(∂5\62))

)
.

(4.20)

Summing the equations (4.10), (4.12) and (4.19)– (4.22), we arrive at the energy estimate

∥φm∥2
L2(0,T;L2(5)) + ∥µm∥2

L2(0,T;H1(5))
+ ∥um∥2

L2(0,T;H1(5;Rd))
+ ∥ψm∥2

L2(0,T;H1(5))

+∥χm∥2
L2(0,T;H1(5))

≤ C
(
IC + Cf + Cg + ∥Sψ∥2

L2(0,T;L2(5)) + ∥Sχ∥2
L2(0,T;L2(5))

+ ∥ψb∥2
L2(0,T;L2(∂5\62))

+ ∥χb∥2
L2(0,T;L2(∂5\62))

)
.

(4.21)

Estimates for the time derivatives. Since our equations in which we wish to pass to the limit have
nonlinear functions in φm, ψm, χm, we need the strong convergence of these sequences. For this purpose
we bound the time derivatives and use the compactness results (3.1) and (3.2). We first obtain the
estimate of time derivative of φm using the estimates from the time derivatives of µm and um. Multiplying
(4.8a) with d

dt g1−α ∗ (ϱm
k (t) − (µm

0 , yk)), summing from k = 1 to m, and estimating using Hölder’s
inequality (3.7), we have

∥∥∂α
t (µm − µm

0 )
∥∥ ≤ c

∥∥∂α
t (φm − φm

0 )
∥∥ + λ

∥∥∂α
t (∇ · um − ∇ · um

0 )
∥∥ . (4.22)

Multiplying (4.8b) with d
dt g1−α ∗ (ςm

k (t) − (um
0 , w k)), summing from k = 1 to m, we have

2G
∥∥∂α

t
(
ε(um)−ε(um

0 )
)∥∥2+ 2Gν

1 − 2ν

∥∥∂α
t (∇ · um−∇ · um

0 )
∥∥2 = −λ

(
∂α

t (φm−φm
0 ), ∂α

t (∇ · um−∇ · um
0 )

)
.

Using Hölder’s inequality (3.7) gives us

2Gν

1 − 2ν

∥∥∂α
t (∇ · um − ∇ · um

0 )
∥∥2 ≤ λ

∥∥∂α
t (φm − φm

0 )
∥∥2 . (4.23)

Multiplying (4.9) with (µm
0 , yk) and summing from k = 1 to m, we obtain

∥∇µm
0 ∥2 ≤ λ

y
kc(φm

0 , µm
0 ) + λ

y
kλ(∇ · um

0 , µm
0 ).
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Using Hölder’s (3.7), (4.11) and (4.13), we have

∥∇µm
0 ∥2 ≤ C∥φm

0 ∥2. (4.24)

We now use the above two estimates to obtain the estimate of time derivative of φm. Multiplying
(4.4a) with d

dt g1−α ∗ (ϑm
k − (φ0, yk)) and (4.8a) with d

dt g1−α ∗ (ϱm
k (t) − (µm

0 , yk)), and summing we get

c
∥∥∂α

t (φm − φm
0 )

∥∥2 +
(

Mφ∇µm, ∇∂α
t (µm − µm

0 )
)

= Nφ

(
f m, ∂α

t (µm − µm
0 )

)
− Pφ

(
gm, ∂α

t (µm − µm
0 )

)

− λ
(
∂α

t (∇ · um − ∇ · um
0 ), ∂α

t (φm − φm
0 )

)
.

Using (3.10) and Hölder’s inequality (3.7), we have

c
∥∥∂α

t (φm − φm
0 )

∥∥2 + M0

2
d
dt

(
g1−α ∗ ∥∇µm∥2

)
(t) ≤

(
Nφ∥f m∥ + Pφ∥gm∥

) ∥∥∂α
t (µm − µm

0 )
∥∥

+ g1−α(t)∥∇µm
0 ∥ + λ

∥∥∂α
t (∇ · um − ∇ · um

0 )
∥∥ ∥∥∂α

t (φm − φm
0 )

∥∥ .

Using (4.22) and (4.23), we have, for every ϵ1, ϵ2 > 0,

c
∥∥∂α

t (φm − φm
0 )

∥∥2 + M0

2
d
dt

(
g1−α ∗ ∥∇µm∥2

)
(t) ≤

(
ϵ1 + ϵ2

4ϵ1ϵ2

)(
Nφ∥f m∥2 + Pφ∥gm∥2

)

+ g1−α(t)∥∇µm
0 ∥2 +

(
ϵ1c + (ϵ2 + 1)

λ2(1 − 2ν)

2Gν

) ∥∥∂α
t (φm − φm

0 )
∥∥2 .

Choosing ϵ1 and ϵ2 appropriately, using assumption (A5) and integrating from 0 to T , using g1−α is
positive and (4.24), we get an upper bound

1
2

(
c − λ2(1 − 2ν)

2Gν

)∥∥∂α
t (φm − φm

0 )
∥∥2

L2(0,T;L2(5))
≤ C(∥φm

0 ∥2 + Cf + Cg). (4.25)

We now obtain the estimates of time derivatives of ψm and χm. Let ζ1 ∈ L2(0, T; H1
0,Σ2

(Ω)), such
that ΠZmζ1 = ∑m

k=1 ζ1,kzk. We use the boundedness of the projection and the invariance of the time
derivatives under the adjoint operator of ΠZm , i.e.

⟨∂tψ
m, ζ1⟩ = ⟨∂tψ

m, ΠZmζ1⟩,
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 709

see Boyer & Fabrie (2013, Lemma V.1.6). Multiplying the Faedo–Galerkin equations (4.4d) with ζ1,k
yields

∫ T

0
⟨∂tψ

m, ζ1⟩ dt = −
∫ T

0

(
Mψ∇ψm, ∇?Zmζ1

)
dt −

∫ T

0
Nψ

(
f m, ?Zmζ1

)
dt

+
∫ T

0

(
Sψ , ?Zmζ1

)
dt +

∫ T

0

(
ψb, ?Zmζ1

)
∂5\62

dt,

≤ C
(
∥ψ0∥ + Cf + ∥Sψ∥L2(0,T;L2(5))

)
∥∇?Zmζ1∥L2(0,T;L2(5)),

≤ C
(
∥ψ0∥ + Cf + ∥Sψ∥L2(0,T;L2(5)) + ∥ψb∥L2(0,T;L2(∂5\62))

)
∥ζ1∥L2(0,T;H1(5)),

(4.26)

and

∫ T

0
⟨∂tχ

m, ζ1⟩ dt ≤ C(T , g, Sχ , χ0, χb)∥ζ1∥L2(0,T;H1(Ω)). (4.27)

4.3 Existence of a weak solution

We now prove that there is a subsequence of φm, µm, um, ψm, χm, which converges to the weak solution
of our model (2.10) in the sense of Definition 4.1. We prove this by showing that the limit functions
satisfy the variational form (4.1) and also satisfy the initial conditions.
Weak Convergence. The energy estimate (4.21) provides us the following

{φm} bounded in L2(0, T; L2(Ω)),

{µm}, {ψm}, {χm} bounded in L2(0, T; H1(Ω)),

{um} bounded in L2(0, T; H1(Ω; R d)).

(4.28)

By the Banach–Alaoglu theorem, these bounded sequences have weakly convergent subsequences,
which we indicate with the same index. Hence, there exist functions φ, µ, ψ , χ : (0, T) × Ω → R
and u : (0, T) × Ω → R d such that as m → ∞ we have the following weak convergences

φm ⇀ φ in L2(0, T; L2(Ω)),

µm ⇀ µ, ψm ⇀ ψ , χm ⇀ χ in L2(0, T; H1(Ω)),

um ⇀ u in L2(0, T; H1(Ω; R d).

(4.29)

Strong Convergence. From the inequalities (4.25)-(4.27), we conclude that

{φm} bounded in Wα
2,2(0, T; φ0, L2(Ω), L2(Ω)),

{ψm}, {χm} bounded in W1
2,2(0, T; H1(Ω), H−1(Ω)).
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Using the Aubin–Lions compactness theorem and compactness results similar for fractional differential
equations, see (3.1) and (3.2), we have

Wα
2,2(0, T; φ0, L2(Ω), L2(Ω)) ↪↪→ L2(0, T; L2(Ω)),

W1
2,2(0, T; H1(Ω), H−1(Ω)) ↪↪→ L2(0, T; L2(Ω)),

and therefore we have the strong convergences (as m → ∞)

φm → φ, ψm → ψ , χm → χ in L2(0, T; L2(Ω)). (4.30)

Variational form. We now show the limit functions satisfy the variational form (4.1). Let η ∈ C∞
0 (0, T),

multiplying the Faedo–Galerkin system (4.6) by η and integrating from 0 to T , we have

∫ T

0

(
∂α

t (φm − φm
0 ), η(t)yk

)
dt +

∫ T

0
(Mφ∇µm, η(t)∇yk) dt

= Nφ

∫ T

0

(
f m, η(t)yk

)
dt − Pφ

∫ T

0

(
gm, η(t)yk

)
dt, (4.31a)

∫ T

0
(µm, η(t)yk) dt = c

∫ T

0
(φm, η(t)yk) dt + λ

∫ T

0
(∇ · um, η(t)yk) dt, (4.31b)

2G
∫ T

0

(
ε(um), η(t)ε(w k)

)
dt + 2Gν

1 − 2ν

∫ T

0

(
∇ · um, η(t)∇ · w k

)
dt = −

∫ T

0
λ
(
φm, η(t)∇ · w k

)
dt,

(4.31c)

∫ T

0

(
∂tψ

m, η(t)zk
)

dt +
∫ T

0

(
Mψ∇ψm, η(t)∇zk

)
dt

=
∫ T

0

(
Sψ , η(t)zk

)
dt − Nψ

∫ T

0

(
f m, η(t)zk

)
dt +

∫ T

0

(
ψm

b , zk
)
∂Ω\Σ2

dt, (4.31d)

∫ T

0

(
∂tχ

m, η(t)zk
)

dt +
∫ T

0

(
Mχ∇χm, η(t)∇zk

)
dt

=
∫ T

0

(
Sχ , η(t)zk

)
dt − Nχ

∫ T

0

(
χm, η(t)zk

)
dt − Pχ

∫ T

0

(
gm, η(t)zk

)
dt +

∫ T

0

(
χm

b , zk
)
∂Ω\Σ2

dt.

(4.31e)

The convergence of the linear terms follows directly from the definition of weak convergence. For
instance, the functional

µm 5→
∫ T

0
(∇µm, η(t)∇yk) dt ≤ ∥µm∥L2(0,T;H1(Ω))∥η∥L2(0,T)∥∇yk∥,
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is linear and continuous on L2(0, T; H1(Ω)) and therefore, we get from (4.29) that

∫ T

0
(∇µm, η(t)∇yk) dt →

∫ T

0
(∇µ, η(t)∇yk) dt,

for m → ∞. The terms with time derivatives follow from integration by parts, change of integration and
the definition of the weak convergence. The functionals

φm 5→
∫ T

0

(
∂t

(
g1−α ∗ (φm − φm

0 )
)
(t), η(t)yk

)
dt = −

∫ T

0

(
(φm − φm

0 ),
(
g∗′

1−α∂tη
)
(t)yk

)
dt,

≤ ∥φm − φm
0 ∥L2(0,T;L2(5))∥g1−α∥L1(0,T)∥η′∥L2(0,T)∥yk∥,

ψm 5→
∫ T

0

(
∂tψ

m, η(t)zk
)

dt = −
∫ T

0

(
ψm, η′(t)zk

)
dt ≤ ∥ψm∥L2(0,T;L2(5))∥η′∥L2(0,T)∥zk∥,

χm 5→
∫ T

0

(
∂tχ

m, η(t)zk
)

dt = −
∫ T

0

(
χm, η′(t)wk

)
dt ≤ ∥χm∥L2(0,T;L2(5))∥η′∥L2(0,T)∥zk∥,

as we see are linear and continuous on L2(0, T; L2(Ω)), and so by weak convergence and reapplying
the integration by parts, we obtain the limit for the terms with time derivatives in (4.33).

The strong convergence results in (4.30) give us the limits of the terms involving nonlinear functions.
From the strong convergence, we have

φm → φ, ψm → ψ inL2(0, T; L2(Ω)) ∼= L2((0, T) × Ω), as m → ∞.

This implies there exist subsequences such that they converge almost everywhere on (0, T) × Ω . Since
almost everywhere convergence is preserved under composition of a continuous functional, we have

f m = f (φm, ψm) → f (φ, ψ) a.e. in (0, T) × Ω , as m → ∞.

Since {f m} is bounded, we have by the Lebesgue dominated convergence theorem

f mη(t)yk → f (φ, ψ)η(t)yk in L1(0, T × Ω), as m → ∞.

Convergence of the terms involving gm follow analogously.
By the above convergence results, we have that (4.33) holds true with the limit functions for all

η ∈ C∞
0 (0, T). By the Lemma of du Bois-Reymond, we get that the limit functions (φ, µ, u, ψ , χ)
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712 FRITZ ET AL.

satisfy

(
∂α

t (φ(t) − φ0), yk
)
+ (Mφ∇µ, ∇yk) = Nφ

(
f (φ, ψ), yk

)
− Pφ

(
g(φ, χ), yk

)
,

(µ, yk) = c(φ, yk) + λ(∇ · u, yk),
〈
∂tψ , zk

〉
+

(
Mψ∇ψ , ∇zk

)
=

(
Sψ , zk

)
− Nψ

(
f (φ, ψ), zk

)
+

(
ψb, zk

)
∂5\62

,
〈
∂tχ , zk

〉
+

(
Mχ∇ψ , ∇zk

)
=

(
Sχ , zk

)
− Nχ (χ , zk) − Pχ

(
g(φ, χ), zk

)
+

(
χb, zk

)
∂5\62

,

−λ
(
φ, ∇ · w k

)
= 2G

(
ε(u), ε(w k)

)
+ 2Gν

1 − 2ν

(
∇ · u, ∇ · w k

)
,

for almost all t ∈ (0, T) and for all k ≥ 1. Using the density of ∪m∈NYm, ∪m∈NZm, ∪m∈NWm in
H1(Ω), H1

0,Σ2
(Ω), H1

0,Σ1
(Ω; R d), respectively, we obtain a solution (φ, µ, u, ψ , χ) to the system (2.10)

in the sense of Definition 4.1, provided they satisfy the initial conditions.
Initial conditions. We now prove that the limit functions satisfy the initial conditions. From the
continuous embedding results (3.3) and (3.4), we have

W1
2,2(0, T; H1(Ω), H−1(Ω)) ↪→ C([0, T]; L2(Ω)),

φ ∈ Wα
2,2(0, T; φ0, L2(Ω), L2(Ω)) 1⇒

(
g1−α ∗ (φ − φ0)

)
(t) ∈ C([0, T]; L2(Ω)),

yields ψ , χ ∈ C([0, T]; L2(Ω)) and
(
g1−α ∗ (φ − φ0)

)
(t) ∈ C([0, T]; L2(Ω)). Let η ∈ C1([0, T]; R )

with η(T) = 0 and η(0) = 1. Then for all ξ1 ∈ H1(Ω), ξ4 ∈ H1
0,Σ2

(Ω), we have

∫ T

0

(
∂t

(
g1−α ∗ (φ − φ0)

)
(t), η(t)ξ1

)
dt = −

∫ T

0

(
(g1−α ∗ (φ − φ0))(t), η

′(t)ξ1
)

dt

−
(
(g1−α ∗ (φ − φ0))(0), ξ1

)
,

∫ T

0

〈
∂tψ , η(t)ξ4

〉
dt = −

∫ T

0

(
ψ(t), η′(t)ξ4

)
dt −

(
ψ(0), ξ4

)
.

Taking the limit m → ∞, we have

−
∫ T

0

( (
g1−α ∗ (φm − φm(0))

)
(t), η′(t)ξ1

)
dt −

(
(g1−α ∗ (φm − φm(0)))(0), ξ1

)

→ −
∫ T

0

( (
g1−α ∗ (φ − φ0)

)
(t), η′(t)ξ1

)
dt −

(
0, ξ1

)
,

−
∫ T

0

(
ψm(t), η′(t)ξ4

)
dt −

(
ψm(0), ξ4

)
→ −

∫ T

0

(
ψ(t), η′(t)ξ4

)
dt −

(
ψ0, ξ4

)
.

Comparing, we have
(
g1−α ∗ (φ − φ0)

)
(0) = 0 and ψ(0) = ψ0. Analogously, we get χ(0) = χ0.

Remark 4.1 The result
(
g1−α ∗ (φ − φ0)

)
(0) = 0 does not imply φ(0) = φ0. However, the function

φ0 plays the role of an initial data for φ in a weak sense. Suppose, φ and ∂t
(
g1−α ∗ (φ − φ0)

)
(t) are in
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 713

C([0, T]; L2(Ω)) and
(
g1−α ∗ (φ − φ0)

)
(0) = 0, then we have φ ∈ C([0, T]; L2(Ω)) and φ(0) = φ0,

see Zacher (2009).

Estimates for the weak solution. We know that norms are weakly (also weakly-∗) lower semicontinu-
ous and using the weak convergences in (4.29)

∥φ∥2
L2(0,T;L2(5)) + ∥µ∥2

L2(0,T;H1(5))
+ ∥u∥2

L2(0,T;H1(5;Rd))
+ ∥ψ∥2

L2(0,T;H1(5))
+ ∥χ∥2

L2(0,T;H1(5))

≤ lim inf
m→∞

(
∥φm∥2

L2(0,T;L2(5)) + ∥µm∥2
L2(0,T;H1(5))

+ ∥um∥2
L2(0,T;H1(5;Rd))

+ ∥ψm∥2
L2(0,T;H1(5))

+ ∥χm∥2
L2(0,T;H1(5))

)
,

≤ C
(

IC + Cf + Cg + ∥Sψ∥2
L2(0,T;L2(5)) + ∥Sχ∥2

L2(0,T;L2(5)) + ∥ψb∥2
L2(0,T;L2(∂5\62))

+ ∥χb∥2
L2(0,T;L2(∂5\62))

)
,

where the final bound is obtained from (4.21), and IC is as defined in the theorem statement.

4.4 Uniqueness

Now we prove the uniqueness of the weak solution under the assumption of Lipschitz continuity
of the nonlinear functions. We assume that there exist two weak solutions (φ1, µ1, u1, ψ1, χ1) and
(φ2, µ2, u2, ψ2, χ2) to the system and prove that these two solutions have to be identical. Introducing
the following notations:

φ̃ := φ1 − φ2, µ̃ := µ1 − µ2, ũ := u1 − u2,

ψ̃ := ψ1 − ψ2, χ̃ := χ1 − χ2,

f1 − f2 := f (φ1, ψ1) − f (φ2, ψ2), g1 − g2 := g(φ1, χ1) − g(φ2, χ2),

we see that (φ̃, µ̃, ũ, ψ̃ , χ̃) satisfies

(
∂α

t φ̃, ξ1
)
+ (Mφ∇µ̃, ∇ξ1) = Nφ

(
f1 − f2, ξ1

)
− Pφ

(
g1 − g2, ξ1

)
, (4.32a)

(
µ̃, ξ2

)
= c

(
φ̃, ξ2

)
+ λ

(
∇ · ũ, ξ2

)
, (4.32b)

2G
(
ε(ũ), ε(ξ3)

)
+ 2Gν

1 − 2ν

(
∇ · ũ, ∇ · ξ3

)
= −λ

(
φ̃, ∇ · ξ3

)
, (4.32c)

〈
∂tψ̃ , ξ4

〉
+

(
Mψ∇ψ̃ , ∇ξ4

)
= −Nψ

(
f1 − f2, ξ4

)
, (4.32d)

〈
∂tχ̃ , ξ4

〉
+

(
Mχ∇χ̃ , ∇ξ4

)
= −Nχ

(
χ̃ , ξ4

)
− Pχ

(
g1 − g2, ξ4

)
. (4.32e)
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714 FRITZ ET AL.

By choosing the test functions µ̃(t), ∂α
t φ̃(t) + µ̃(t), ∂α

t ũ(t) + ũ, ψ̃(t), χ̃(t) for equations (4.34a)-(4.34e),
respectively, and proceeding as in the existence part, we have

c
2
∥φ̃(t)∥2 + M0

(
gα ∗ ∥∇µ̃∥2

)
(t) ≤ C

(
gα ∗ ∥φ̃∥2

)
(t) +

Nφ

2

(
gα ∗ ∥f1 − f2∥2

)
(t)

+
Pφ

2

(
gα ∗ ∥g1 − g2∥2

)
(t), (4.33a)

∥µ̃∥ ≤ c∥φ̃∥ + λ∥∇ · ũ∥, (4.33b)

2G∥ε(ũ)∥2 + Gν

1 − 2ν
∥∇ · ũ∥2 ≤ λ2(1 − 2ν)

4Gν
∥φ̃∥, (4.33c)

1
2
∥ψ̃(t)∥2 + M0

∫ t

0
∥∇ψ̃(s)∥2 ds ≤

(Nψ

2
+ 1

) ∫ t

0
∥ψ̃(s)∥2 ds +

Nψ

2

∫ t

0
∥f1 − f2∥2 ds, (4.33d)

1
2
∥χ̃(t)∥2 + M0

∫ t

0
∥∇χ̃(s)∥2 ds ≤

(
Nχ +

Pχ

2
+ 1

2

) ∫ t

0
∥χ̃(s)∥2 ds +

Pχ

2

∫ t

0
∥g1 − g2∥2 ds.

(4.33e)

We observe that

∫ t

0
∥ϕ(s)∥2 ds ≤ t1−αΓ (α)(gα ∗ ∥ϕ∥2)(t).

Adding (4.35a), (4.35d) and (4.35e), using the Lipschitz condition on the nonlinear functions and the
above estimate, we have

∥φ̃(t)∥2 + ∥ψ̃(t)∥2 + ∥χ̃(t)∥2 ≤ C
(

gα ∗
(
∥φ̃∥2 + ∥ψ̃∥2 + ∥χ̃∥2

))
(t).

Applying the generalized Gronwall-Bellman Lemma 3.3, we have ∥φ̃(t)∥ = ∥ψ̃(t)∥ = ∥χ̃(t)∥ = 0,
almost everywhere in [0, T]. Further, we have from (4.35c) using Korn’s inequality (3.5), and from
(4.35b) that that ∥ũ∥H1(Ω) = ∥µ̃∥ = 0, almost everywhere in [0, T].

5. Numerical discretization

The system (2.10) can be written in the form

∂α
t (X − X0) = F(t, X(t)), X = (φ, ψ , χ) , α = (α, 1, 1) , (5.1)

with

∂α
t (X − X0) =

⎡
⎣

∂α
t (φ − φ0)

∂tψ

∂tχ

⎤
⎦ , F(t, X(t)) =

⎡
⎣

∇ · (Mφ(φ, ψ , χ)∇µ) + Nφ f (φ, ψ) − Pφg(φ, χ)

∇ · (Mψ (φ, ψ , χ)∇ψ) + Sψ − Nψ f (φ, ψ)

∇ · (Mχ (φ, ψ , χ)∇χ) − Nχχ + Sχ − Pχ g(φ, χ)

⎤
⎦

(5.2)
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 715

and µ = µ(φ) implicitly defined via (2.10b)-(2.10c). In (5.1), X0 = (φ0, ψ0, χ0) is the initial condition.
In our simulations, time discretization is performed using a first order quadrature scheme, of which

we now recall the main features.
For ease of presentation, we focus on a single scalar equation. Convolution quadrature schemes

approximate the Riemann–Liouville derivative ∂α
t ϕ (2.6) of some function ϕ = ϕ(t) by a discrete

convolution, see for instance Lubich (1986, 1988) for seminal papers and Zeng et al. (2013) and Jin et
al. (2016) for application to partial differential equations. Let tn = nT/Nt, for n ∈ {0, 1, . . . , Nt}, be
a subdivision of [0, T] in Nt equispaced time intervals of size ∆t := T/Nt. Assuming ϕ(0) = 0, we
approximate the Riemann–Liouville time derivative of a function ϕ by

∂α
t ϕ ≈ ∂

α
t ϕ := 1

(∆t)α

Nt∑

j=0

bjϕn−j, (5.3)

where ϕn−j is the approximation to ϕ(tn−j). The quadrature weights (bj)j≥1 are the coefficients in the

power series expansion of ωα(ζ ), with ω(ζ ) = σ (1/ζ )
ρ(1/ζ ) the generating function of a linear multistep

method (Lubich, 1988). When ϕ(0) = ϕ0 ̸= 0, we have a discretization to the Caputo derivative by
applying (5.3) to ϕ − ϕ0. From (5.3) we see that the memory effect of the fractional time derivative
translates, numerically, to the fact that the value of the solution at some time step depends on its
values at all previous time steps. In the backward differentiation formula of first order, also known
as Grünwald–Letnikov approximation (Dumitru et al., 2012, Section 2.1.2), the quadrature weights are
defined recursively by

b0 = 1, bj = −α − j + 1
j

bj−1 for j ≥ 1. (5.4)

For α = 1, bj = 0 for j ≥ 2, (5.3) coincides with the implicit Euler method. We refer to Jin et al. (2016,
Section 4) for a detailed summary on the derivation of higher order convolution quadrature schemes
together with their convergence properties.

Applying the scheme (5.3)–(5.4) to (5.1) and denoting by φn ≈ φ(tn), ψn ≈ ψ(tn) χn ≈ χ(tn) the
approximate solutions at time tn, n = 1, . . . , Nt, we arrive at the following system of equations:

n∑

j=0

bj(φn−j − φ0) = (∆t)α∇ ·
(

Mφ∇µn

)
+ (∆t)αNφ f (φn, ψn) − (∆t)αPφg(φn, χn) (5.5a)

ψn − ψn−1 = (∆t)∇ ·
(

Mψ∇ψn

)
− (∆t)Nψ f (φn, ψn) + (∆t)Sψ (5.5b)

χn − χn−1 = (∆t)∇ ·
(

Mχ∇χn

)
− (∆t)Nχχn − (∆t)Pχg(φn, χn) + Sχ , (5.5c)

where

µn = cφn + λ∇ · un, (5.5d)

0 = ∇ ·
(

2Gε(un) + 2Gν

1 − 2ν
tr(ε(un))I + λφnI

)
. (5.5e)
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716 FRITZ ET AL.

We obtain an algebraic system using a Galerkin approach with linear finite elements. Namely, let T h

be a quasiuniform family of triangulations of Ω , h denoting the mesh width. For simplicity, we assume
that ∪T∈T h T = Ω , which holds in all our numerical experiments. The piecewise linear finite element
space is defined as

Vh = {ϕ ∈ C(Ω) : ϕ|T ∈ P1(T), ∀T ∈ T h} ⊂H1(Ω),

where P1(T) denotes the set of all affine functions on T . As in the previous section, we assume that
ψ̃b ≡ 0 and χ̃b ≡ 0. We formulate the discrete problem as follows: at the n-th time step, find

φn, µn ∈ Vh, un ∈
(
Vh ∩ H1

0,Σ1
(Ω)

)d
, ψn, χn ∈ Vh ∩ H1

0,Σ2
(Ω)

such that, for all test functions ϕ1, ϕ4 ∈ Vh, ϕ2, ϕ3 ∈ Vh ∩ H1
0,Σ2

(Ω) and ϕ5 ∈
(
Vh ∩ H1

0,Σ1
(Ω)

)d
,

(ψn, ϕ2) + (∆t)(Mψ∇ψn, ∇ϕ2) =(ψn−1, ϕ2) − (∆t)Nψ (f (φn, ψn), ϕ2)

+ (∆t)(Sψ , ϕ2) + (∆t)(ψb, ϕ2)∂Ω\Σ2
(5.6a)

(χn, ϕ3) + (∆t)(Mχ∇χn, ∇ϕ3) + (∆t)Nχ (χn, ϕ3) =(χn−1, ϕ3) − (∆t)Pχ (g(φn, χn), ϕ3) + (∆t)(Sχ , ϕ3)

+ (∆t)(χb, ϕ2)∂Ω\Σ2
(5.6b)

b0(φn, ϕ1) + (∆t)α(Mφ∇µn, ∇ϕ1) = −
n−1∑

j=1

bj((φn−j − φ0), ϕ1) + (∆t)α(b0φ0, ϕ1)

+ (∆t)αNφ(f (φn, ψn), ϕ1) − (∆t)αPφ(g(φn, χn), ϕ1) (5.6c)

(µn, ϕ4) − c(φn, ϕ4) − λ(∇ · un, ϕ4) = 0 (5.6d)

2G(ε(un), ε(ϕ5)) + 2Gν

1 − 2ν
(∇ · un, ∇ · ϕ5) = − λ(φn, ∇ · ϕ5) (5.6e)

(here we have rearranged the order of the equations for easier explanation in the upcoming remarks).
This is a non-linear, coupled algebraic system with unknowns φn, µn, un, ψn, χn. At each time step, we
solve this system with a fixed point iteration. In our experiments, we set the termination criteria for the
latter to be a maximum of 50 iterations and a maximum tolerance for the relative error between two
iterates of TOL=10−6. For all experiments in the next section, this tolerance was always reached within
less than 10 fixed point iterations.

The procedure described in this section has been implemented in FEniCS (Alnæs et al., 2015), using
version 2019.1.0. of the DOLFIN library (Logg et al., 2012), to obtain the numerical results shown in
the next section.

Remark 5.1 Equations (5.6a)-(5.6b) are decoupled from (5.6d)-(5.6e) and they are coupled with (5.6c)
just through the non-linear terms on the right-hand side involving the functions f and g, respectively.
This can be exploited to improve efficiency when solving the non-linear system: in the spirit of a Gauss-
Seidel method, at each fixed point iteration one can first update ψn and χn with (5.6a)-(5.6b) using the
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 717

Table 1 Parameter values used in the simulations of Section 6, unless otherwise stated

Equation
Parameter values

Mφ Nφ Kψ Pφ c λ G ν Mψ Nψ Mχ Nχ Pχ Kχ

(2.10a) 0.0001 0.6 2 1.1
(2.10b) 0.4 0.002
(2.10c) 0.4615 0.3
(2.10d) 1 40
(2.10e) 1 3 30 0.6

previous iterate of φn on the right-hand side, and then insert these updated values in the right-hand side
of (5.6c) and solve the last three coupled equations to update φn, µn and un.

Remark 5.2 When using first order finite elements, further efficiency can be gained by using mass
lumping (Quarteroni & Valli, 2008, Sect.11.4) in (5.6d). More precisely, if in the first two terms in
(5.6d) we approximate the mass matrix by its lumped version (which is diagonal), the latter can be
inverted cheaply and we can express explicitly the coefficients vector of µn (with respect to the finite
element basis functions) in terms of the coefficient vectors for φn and un. Using the resulting expression
for the coefficient vector of µn in (5.6c) allows to eliminate (5.6d) from the system of equations and
thus to reduce the system’s size.

6. Numerical simulations

In this section, we present the numerical approximations of the variables φ, µ, u, ψ , χ in the model
(2.10) with a two-dimensional domain Ω = (0, 1)2. In Section 6.1, we study the effects of introducing
the fractional time derivative in the reaction–diffusion model, neglecting mechanical effects and in
absence of treatment. We next introduce, in Section 6.2, the coupling with mechanical forces, still
in absence of treatment. Finally, in Section 6.3, we consider the effect of chemotherapeutic agents,
including a periodic source for the treatment.

Where not otherwise stated, we choose the parameters to have the dimensionless values listed in
Table 1. We have Mφ ≪ Mψ , Mχ because the tumour diffuses at a much lower speed compared to
how fast the nutrient and chemotherapeutic agents diffuse. We set Nφ ≪ Nψ because the nutrient rate of
decrease is much faster than the proliferation rate of the tumour due to the nutrient consumption (usually
a tumour can at most double its size in one day) and, for similar reasons, we have Pφ ≪ Pχ . The half
maximum value Kψ has been chosen to be lower than the maximum concentration reached by the
nutrient, in order to observe both effects of low-density limited and maximum capacity-limited growth
of the tumour. Accordingly, Kχ has been chosen to be lower than the maximum concentration reached
by the chemotherapeutic agents. The degradation rate Nχ is large compared to the other coefficients in
the reaction terms of the equation for the chemotherapeutic substances because the latter degrade quite
fast (their half-time is usually a couple of hours). The parameters c, λ, G and ν < 0.5 have been selected
to be in the ranges considered in (Lima et al., 2016).

In the simulations, we have set ∆t = 1/15 for the time stepping and we have discretized the domain
Ω using a regular, triangular mesh with mesh size h =

√
2/150 for all simulations but those in Figs 1

and 2, where we have used a finer mesh with h =
√

2/200 to have a more precise computation of the
radius of the tumour.
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718 FRITZ ET AL.

Fig. 1. Reaction–diffusion model and circular initial condition (6.1) with a = 0.22 and b = 0.05. Left: evolution of radius of the
tumour over time with parameters as in Table 1 and α = 0.25(orange—–), α = 0.5 (red—–), α = 0.75 (violet—–) and α = 1
(cyan—–). Right: evolution of the radius over time for parameters as in Table 1 and α = 0.5 (red—–), same line as in the left plot,
and Mφ = 0.0001/1.803, Nφ = 0.6/1.803 and α = 1 (cyan—)

Fig. 2. Reaction–diffusion model and circular initial condition. Cross-section of the tumour density along the x-axis at T = 30
for α = 0.25 (orange—–), α = 0.5 (red—–), α = 0.75 (violet—–) and α = 1 (cyan—–). Left: results for initial condition (6.1)
with a = 0.22 and b = 0.05. Right: results for initial condition (6.1) with a = 0.2 and b = 0. In both plots, the dashed line depicts
the initial condition.

We refer to the quantities
∫
Ω φ(x, t)dx,

∫
Ω ψ(x, t)dx and

∫
Ω χ(x, t)dx as the tumour, nutrient and

chemotherapy mass, respectively. Since φ is a volume fraction, the mass of the tumour is technically
given by

∫
Ω ρφ(x, t)dx, but, since we assume ρ to be constant,

∫
Ω φ(x, t)dx is the mass up to rescaling.

6.1 Reaction-diffusion system without treatment

The goal of this section is to show the basic effects of introducing a fractional time derivative and the
new modelling possibilities that it offers. For this, we consider the reaction–diffusion model (2.10a),
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ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 719

(2.10b) and (2.10d) with the parameters λ = 0, Pφ = 0, in which case we have two variables φ and ψ .
For both φ and ψ we impose homogeneous Neumann boundary conditions and a constant nutrient is
supplied over the whole domain by setting Sψ ≡0.5.

We first consider the evolution of a circular tumour and then of a tumour concentration having,
initially, two disconnected components.

For the circular tumour, we consider the initial conditions

φ0(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if ∥x − c∥ ≤ b,

exp
(

1 − (a−b)2

(a−b)2−(∥x−c∥−b)2

)
if b < ∥x − c∥ ≤ a,

0 otherwise,

(6.1)

and ψ0 ≡ 0. We first set c = (0.5, 0.5), a = 0.22 and b = 0.05. A cross section of (6.1) along the x-axis
is depicted in the left plot of Fig. 2, dashed line.

Experiments with in vitro cell cultures as well as in vivo data (Jiang et al., 2014) have shown that
the growth of the tumour size over time can have different power law exponents depending on the type
of cells and the surrounding environment. For this reason, we have tracked the radius of the tumour over
time for different values of α, whose results are shown in Fig. 1, left plot. Here we have defined the
radius of the tumour as

R(t) = argmax∥x−c∥,x∈Ω

{
φ(x, t) ≥ Rthresh

}
,

with Rthresh a threshold value that we have set to 10−3. The left plot in Fig. 1 clearly shows that,
by varying α, the radius grows with different power laws. This means that, if one is only interested
in predicting the tumour size at a certain time, then a reaction-diffusion model with properly tuned
diffusion and reaction coefficients would be sufficient. However, if one is interested in the dynamics,
then the model with fractional exponent can express behaviours that cannot be modelled with an integer
order model with time-constant coefficients. To show this, we have taken α = 1 and tuned Mφ and Nφ in
order to obtain the same radius at t = 30 as the one obtained with α = 0.5 and parameters as in Table 1.
The results are shown in the right plot in Fig. 1, where, for α = 1, we have taken Mφ = 0.0001/1.803
and Nφ = 0.6/1.803. We see that, with the new values for Mφ and Nφ , the model with integer order
time derivative can predict the same radius for the tumour at t = 30 as α = 0.5 and the parameters in
Table 1. However, the dynamics is quite different in the two cases.

The left plot in Fig. 2 shows a cross section along the x axis of the density of the tumour at final
time T = 30. For reference, the dashed line is the initial condition. We observe that the spreading of the
tumour is very sensitive to α, and when α is large, the spreading is faster. When α is smaller, not only the
tumour grows more slowly, but the interface between the tumour and the surrounding tissue is less sharp.
The initial condition (6.1) has a plateau around the centre of the domain where the tumour density is 1.
A question that can arise is what happens when we start with an initial condition, which has no plateau.
To test this, we have run a second experiment with b = 0 and a = 0.2. The cross section of the tumour
density at T = 30 is shown in the right plot of Fig. 2, where again the dashed line refers to the initial
condition. Here we can observe that, for α < 1, the tumour grows over time without forming a plateau
in the centre, which happens for α = 1. Such different behaviour is not surprising if one notices that
varying the fractional exponent is not a simple re-scaling of the time variable and it introduces instead
different nonlinear behaviours in the model.
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720 FRITZ ET AL.

Fig. 3. Reaction–diffusion model with two ellipses as initial condition. Zoom in [0.2, 0.8]2 of tumour volume fraction for different
values of α at different times using a constant nutrient source Sψ ≡ 0.5. The range for the colorbar has been fixed to be [0, 1] for
all plots.

We now consider an initial condition with two disconnected components, namely, two initially
separated elliptical tumour masses:

φ0(x) =

⎧
⎪⎪⎨
⎪⎪⎩

exp
(

1 − a2

a2−∥A(x−c1)∥2

)
if ∥A(x − c1)∥ ≤ a,

exp
(

1 − a2

a2−∥A(x−c2)∥2

)
if ∥A(x − c2)∥ ≤ a,

0 otherwise,

(6.2)

with A =
(

1 0
0 γ

)
, γ =

√
5, c1 = (0.5, 0.6), c2 = (0.5, 0.4) and a = 0.2. This initial condition is

depicted in the first column of Fig. 3. As before, we take ψ0 ≡ 0. The evolutions of the tumour for
four values of α are depicted in Fig. 3. There, we can see that different values of the fractional exponent
affect the coalescence speed of the two ellipses: the smaller the α, the lower the speed at which they
merge. Moreover, as in the circular tumour case, we see that, the larger the α, the sharper the interface
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Fig. 4. Reaction–diffusion model with two ellipses as initial condition. Tumour mass (
∫
Ω φ dx) and nutrient mass (

∫
Ω ψ dx) over

time obtained by giving a periodic nutrient source (6.3), for different values of the fractional exponent: orange—– α = 0.25,
red—– α = 0.5, violet—– α = 0.75, cyan—– α = 1.

between the tumour and the healthy tissue (compare for instance α = 1 at t = 9 with α = 0.75 at t = 15
and t = 20). Similar observations were made in Liu et al. (2018) in a fractional phase-field model for
porous media applications.

In the experiments shown so far, we have used a time-constant supply of nutrient, meaning a strictly
increasing tumour mass over time. To observe the effects of varying α in a more dynamic setting, we
still consider the initial condition (6.2) but now a periodic source of nutrient, i.e. we set:

Sψ (t) =
{

0.5 if 1 < t ≤ 3 or5 < t ≤ 7 or 9 < t ≤ 10,
0 otherwise.

(6.3)

The mass of the tumour and nutrient up to T = 10 are depicted in Fig. 4, left and right plot, respectively.
Regarding the tumour evolution, we observe conservation of mass up to t = 1, because of no nutrient
supply and homogeneous Neumann boundary conditions. For 1 < t ≤ 3, we can see that, in the
beginning, the tumour grows faster over time when α is smaller and it grows faster for α larger as
time passes. We notice that, when the nutrient is again not provided, for 3 < t ≤ 5 (and for 7 < t ≤ 9),
the tumour keeps growing nevertheless, because there is still some nutrient in the domain, and it grows
faster for larger α. Regarding the nutrient, we see that, for 1 < t ≤ 3, the nutrient consumption is
approximately the same for all values of α, while, for longer times, the larger the α, the larger the
nutrient uptake. This can be expected from the fact, that, for later times, the tumour mass is larger for α

large and therefore it consumes more nutrient.

6.2 Reaction-diffusion system with mechanical coupling in absence of treatment

The goal of this section is to show results of the reaction-diffusion model with a mechanical coupling as
given in (2.10c), and (2.10d) with Pφ = 0, in which case we have four variables. We use homogeneous
Neumann boundary conditions for φ, µ, ψ , for u we use homogeneous Dirichlet boundary condition on

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/4/688/6294804 by Technische U

niversitaet M
uenchen user on 02 August 2021



722 FRITZ ET AL.

Fig. 5. Reaction–diffusion model with mechanical coupling and initial condition (6.4). Evolution of tumour mass (
∫
Ω φ dx)

and of total displacement (
∫
Ω |u| dx) over time: yellow!30!orangecmyk 0,0.35,1,0—– α = 0.25 and constant coefficients,

orange!20!brownrgb 0.8,0.5,0.2—– α = 0.25 and spatially varying coefficients, cyan—– α = 1 and constant coefficients,
blue!60!blackrgb 0,0,0.6—– α = 1 and spatially varying coefficients.

the left boundary and homogeneous Neumann elsewhere. We give a constant nutrient source Sψ ≡ 0.5.
We consider both constant coefficients Mφ , Mψ as from Table 1 and spatially varying ones, given by
M̃φ = Mφexp(5(y − 0.5)), M̃ψ = Mψexp(5(y − 0.5)), with again Mφ , Mψ as from Table 1. We note that
both constants and non-constant coefficients take the same value at the centre of the domain, where we
locate the irregularly shaped initial tumour mass

{
exp

(
1 − 1

1−f (x)

)
if f (x) < 1, −0.45 < x < 0.2, −0.4 < y < 0.35,

0 otherwise,
(6.4)

where f (x) = sin(6x + 2y + 1)(7x − 0.2)2 + sin(−8x + 10y + 1.1)(9x − 0.1)2. This initial condition is
depicted in the left plot of Fig. 7. As in the previous experiments, ψ0 ≡ 0. In this section, we compare
the results when using α = 0.25 and α = 1.

Figure 5 shows the evolution of tumour mass and of the total displacement
∫
Ω |u|dx over time,

when using constant and non-constant coefficients. In both cases, we observe that, apart from the very
beginning, the tumour grows faster for α = 1, and consequently, the displacement of the tumour is
larger in this case. It is then for α = 1 that, for later times, we can observe some difference between the
case of constant and non-constant coefficients. The fact that the tumour grows more when α = 1 can
also be seen in the cross sections along the y-axis at time T = 10 in Fig. 6 (tumour density in the left
plot and modulus of the displacement in the right plot), where the dotted lines denote the corresponding
initial conditions: we note that for α = 0.25 the shapes of the solutions at T = 10 are closer to the initial
conditions than for α = 1, for both constant and spatially-varying coefficients. Furthermore, in Fig. 6
we see that the spatial variability of the coefficients (in the y-direction) translates in a more pronounced
asymmetry of the solution with respect to the y-axis. Regarding the displacement, the asymmetry is
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Fig. 6. Reaction–diffusion model with mechanical coupling and initial condition (6.4). Cross-sections along the y−axis at T = 10:
yellow!30!orangecmyk 0,0.35,1,0—– α = 0.25, constant coefficients, orange!20!brownrgb 0.8,0.5,0.2—– α = 0.25, spatially
varying coefficients cyan—– α = 1, constant coefficients, blue!60!blackrgb 0,0,0.6—– α = 1, spatially varying coefficients.
Left: cross section of the tumour volume fraction. Right: cross-section of the modulus of the displacement. The dashed lines
denote the corresponding initial conditions.

more evident when α = 1, because there the magnitude of the displacement is larger compared to when
α = 0.25.

6.3 Reaction-diffusion system with mechanical coupling and chemotherapy

In this section, we show simulations of a more realistic situation and include the treatment of cancer
by giving chemotherapeutic agents. In all, we have five unknowns, solving (2.10a)-(2.10e). In the
previous sections, nutrient supply with a source term for the nutrient could be thought as a situation
close to an in vitro setting, where nutrients are added directly in the wells. Here, we assume nutrients
and chemotherapeutic agents to be supplied through some blood vessels, which are around the tumour
area, and so we take zero source functions Sψ = Sχ ≡ 0 and non-homogeneous Dirichlet boundary
conditions for ψ and χ , over the whole boundary. We take ψ̃b ≡ 2 as Dirichlet boundary condition for
the nutrient and

χ̃b(t) =
{

1 if t ≤ 2 or6 < t ≤ 8 or12 < t ≤ 14,
0 otherwise,

for the chemotherapeutic agents, which are usually administered in cycles.
The boundary conditions for φ, µ and u are as in the previous section. We plot the mass of the tumour

and chemotherapy for different values of α. The initial condition for the tumour is the one with irregular
shape as in the previous section and in the left plot of Fig. 7. We take χ0 ≡ 0 for the chemotherapeutic
agents. For the nutrient, we take an initial condition with values close to the concentration of the nutrient
at equilibrium, namely, we take ψ0(x) = 2 − 0.5x(1 − x)y(1 − y).

The tumour densities at T = 20 for α = 0.25 and α = 1 are shown in the centre and right plot
of Fig. 7, respectively (the left plot showing the initial condition). Figure 8 shows the evolution of the
tumour mass (left) and of the mass of chemotherapeutic agents for different values of the fractional
exponent. From the left plot, we see that the response of the tumour to the therapy in the model depends
sensitively on α: the smaller the α, the more nonlinear the responses to applying or removing the supply
of chemotherapeutic substances. One could also think about using a piecewise constant α, one for when
chemotherapy is supplied, one when it is not, in order to model a different response of the tumour in
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724 FRITZ ET AL.

Fig. 7. Left: zoom in [0.2, 0.8]2 of initial condition for the tumour with irregular shape. Centre and right: reaction–diffusion
model with mechanical coupling and treatment, zoom in [0.2, 0.8]2 of tumour density at T = 20 for α = 0.25 (centre) and α = 1
(right). The range for the colorbar has been fixed to be [0, 1] for all plots.

Fig. 8. Reaction–diffusion model with mechanical coupling and treatment and initial condition (6.4). Tumour mass (
∫
Ω φ dx)

and chemotherapy mass (
∫
Ω χ dx) over time: orange—– α = 0.25, red—– α = 0.5, violet—– α = 0.75, cyan—– α = 1.

these two scenarios. The mass of chemotherapy over time is instead very similar for all values of α. In
particular, when administration of the chemotherapeutic agents is interrupted, their concentration drops
quickly to 0 because of the degradation term (−Nχχ) in (2.10e).

7. Conclusions

We have presented a new model for tumour growth with fractional time derivatives, including
mechanical effects and treatment by chemotherapy. Existence and uniqueness of a weak solution to
the coupled, nonlinear model are obtained by a Galerkin method. Numerical experiments, based on low
order finite elements in space and convolution quadrature in time, show that the order of the fractional
time derivative influences strongly the evolution. Using the fractional order as an additional parameter

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/4/688/6294804 by Technische U

niversitaet M
uenchen user on 02 August 2021



ON A SUBDIFFUSIVE TUMOUR GROWTH MODEL WITH FRACTIONAL TIME DERIVATIVE 725

results in a larger model class. This can be of future interest for calibration of the model parameters by
experimental data.
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A. Existence Result for Nonlinear Finite Dimensional System

Consider the multi-order fractional differential system of the form

d
dt

(
g1−αk

∗ (Xk(t) − Xk,0)
)
(t) = Fk(t, X1(t), . . . , Xm(t)), k = 1, . . . , m,

(
g1−αk

∗ (Xk − Xk,0)
)
(0) = 0, k = 1, . . . , m,

(A.1)

where 0 < αk ≤ 1, Xk : [0, T] → R , Fk : [0, T] × R m → R is such that Fk(·, X1, . . . , Xm) ∈ L2(0, T)

and it is Lipschitz in the other variables. Existence of a solution to a similar system with continuous
function Fk is given in (Diethelm, 2010, Lemma 5.3), here we prove the result in the vector form. In the
vector notation, the system (A.1) can be written as

Dα(X − X0) = F(t, X(t)),
(
k ∗ (X − X0)

)
(0) = 0,

(A.2)

where

Dα(X − X0) = d
dt

(
k ∗ (X − X0)

)
(t), X(t) =

⎛
⎜⎝

X1(t)
...

Xm(t)

⎞
⎟⎠ , X0 =

⎛
⎜⎝

X1,0
...

Xm,0

⎞
⎟⎠ ,

k(t) =

⎛
⎜⎝

g1−α1
0 . . . 0

...
0 . . . 0 g1−αm

⎞
⎟⎠ , F(t, X(t)) =

⎛
⎜⎝

F1(t, X1(t), . . . , Xm(t))
...

Fm(t, X1(t), . . . , Xm(t))

⎞
⎟⎠ .

Lemma A.1 Let F(·, X) ∈ L2(0, T; R m) for any X ∈ R m and X(·) ∈ L2(0, T; R m). Then X(t)
satisfies (A.2) if, and only if, X(t) satisfies the following Volterra integral equation

X(t) = X0 +
∫ t

0
l(t − s)F(s, X(s))ds, (A.3)

where

l(t) =

⎛
⎜⎝

gα1
0 . . . 0

...
0 . . . 0 gαm

⎞
⎟⎠ .

Proof. First we prove necessity. Let X(·) ∈ L2(0, T; R m) satisfy (A.2). With the initial condition(
k ∗ (X − X0)

)
(0) = 0 and the result l ∗ k = 1, we have

l ∗ d
dt

(k ∗ (X − X0))(t) = d
dt

(l ∗ k ∗ (X − X0))(t). (A.4)

Taking a convolution with l on both sides of (A.2), using (A.4), we obtain (A.3), and hence the necessity
is proved.

Now we prove the sufficiency. Let X(·) ∈ L2(0, T; R m) satisfy (A.3). Taking a convolution with k
and differentiating on both sides of (A.3), using l∗k = 1, we arrive at (A.2). Further from the continuity
of (1 ∗ F(t, X)) (t), we have (1 ∗ F(t, X(t))) (0) = 0, which implies

(
k ∗ (X − X0)

)
(0) = 0, and this

proves the sufficiency part. !
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Lemma A.2 (Banach Fixed point theorem)[(Kilbas et al., 2006, Theorem 1.9)] Let (U , d) be a
nonempty complete metric space, let 0 ≤ ω < 1, and let Λ : U → U be a map such that, for every
ϕ1, ϕ2 ∈ U , the relation

d(Λϕ1, Λϕ2) ≤ ωd(ϕ1, ϕ2)

holds. Then the operator Λ has a unique fixed point ϕ∗ ∈ U . Furthermore, if {Λk}k∈N is the sequence of
operators defined by

Λ1 = Λ, Λk = ΛΛk−1, ∀k ∈ N \{1},
then, for any ϕ0 ∈ U, the sequence {Λkϕ0}∞k=1 converges to the above fixed point ϕ∗.

Theorem A.1 The initial value problem given by the system of multi-order fractional differential
equations along with the initial condition (A.1) has a uniquely determined solution on the interval [0, T].

Proof. To prove the existence for the nonlinear differential equation (A.2) it is enough to show the
existence to its equivalent integral equation (A.3) as shown in Lemma A.1. The nonlinear integral
equation is converted to a linear integral equation and Banach fixed point theorem is used to show the
existence of the unique solution to (A.3). For a particular Y ∈ L2(0, T; R m), we obtain the corresponding
linear equation to (A.3) as

X(t) = X0 +
∫ t

0
l(t − s)F(s, Y(s))ds. (A.5)

Define the operator Λ on U := L2(0, Th; R m) for some Th > 0 as

ΛY(t) := X0 +
∫ t

0
l(t − s)F(s, Y(s))ds.

Using Young’s inequality for convolution (3.6), we have

∥ΛY∥2
L2(0,Th;Rm) ≤ C

(
∥X0∥Rm + ∥l∥L1(0,Th;Rm)∥F(t, Y)∥L2(0,Th;Rm)

)
,

≤ C
(
∥X0∥Rm + ∥l∥L1(0,T;Rm)

(
LF∥Y∥L2(0,Th;Rm) + ∥F(t, 0)∥L2(0,T;Rm)

))
,

≤ C∥Y∥L2(0,Th;Rm).

(A.6)

This means that Λ maps U into itself. Further we get

∥ΛY − ΛZ∥L2(0,Th;Rm) ≤ ∥ (l ∗ (F(t, Y) − F(t, Z))) (t)∥L2(0,Th;Rm),

≤ LF∥l∥L1(0,Th;Rm)∥Y − Z∥L2(0,Th;Rm).

We choose Th > 0 such that LF∥l∥L1(0,Th;Rm) < 1, which means Λ is a contraction. By Lemma A.2
there exists a unique solution X ∈ L2(0, Th; R m) to (A.5) on the interval [0, Th]. Further we see that for
any τ ∈ (0, T), we have by proceeding as before in (A.6)

∥X∥L2(0,τ ;Rm) ≤ C,

for some constant independent of τ . Therefore we obtain X ∈ L2(0, T; R m). Then F ∈ L2(0, T; R m),
and the initial condition implies X ∈ Wα

2,2(0, T; X0, R m, R m). !
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