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Abstract

Understanding how systems replicating information can emerge from the interaction of
informational polymers (DNA, RNA) is crucial to comprehend the origins of life on Earth.
System-level properties arising from the interaction of informational polymers must be
identified and understood to reveal the underlying mechanisms that lead to the emergence
of these replicating systems. To this end, we developed a stochastic simulation capable of
simulating the reactions of thousands of strands.

We start with a conceptional embedding of the herein presented research in the field by
considering a hypothetical protocell. We then discuss the properties and representations of
informational polymers and their energy models. Thereafter, we describe in detail the group
of models that the simulation can, in principle, represent. It should also become apparent
how the domain of representable models could be extended. Following that, the theoretical
background of the stochastic simulation is presented in detail.

We then pursue a statistical physics approach, abstracting and coarsening the interaction
details to find universal rules governing systems of interacting informational polymers. In an
initial study, we focus on the self-assembly of informational polymers via templated ligation,
which is the reaction of two strands becoming covalently linked while being hybridized
on a third strand (template). Despite its importance for prebiotic information processing,
a systematic study of self-assembly and strand growth via templated ligation has been
missing. In this work, we use a simple model to study the problem from first principles.
We assume the binding energy of two strands to be simply proportional to their overlap
length, while the sequence dependence is ignored. We find that the competition of the
length-dependent time scale of dehybridization with the time scales of other dynamical
processes leads to a non-monotonous strand length distribution, expressing a minimum
and a maximum: While short strands dehybridize fast, longer strands stay hybridized long
enough for the extension with another strand. Above a first characteristic strand length,
L∗, extension cascades rapidly turn duplexes with overhang into fully-hybridized double
strands without overhang. When the length of these double strands reaches a second length
scale, L ≥ L†, their strong binding renders them inert on a transient or degradation time
scale given by, e.g., an outflux rate. The dynamics of strands of length L∗ < L < L† are
dominated by auto- and heterocatalytic cycles, which lead to the increase of the length
distribution between minima and maxima. An analytic theory allows the prediction of these
characteristic length scales from elementary model parameters.

We further demonstrate the emergence of the non-monotonous length distributions and
the validity of our predictions in an experimental system using DNA strands with random
sequences from a binary alphabet (A,T). These experiments were conducted by Patrick
Kudella in Dieter Brauns’s Lab at the Ludwig Maximilian University of Munich.

Subsequently, I present the first results obtained with a sequence-dependent energy model
and give an outlook on future work.
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Zusammenfassung

Um den Ursprung des Lebens zu entschlüsseln, ist es notwendig zu verstehen, wie aus
der Interaktion von Informationspolymeren (RNA/DNA) informationserhaltende Systeme
emergieren können. Um wiederum die zugrunde liegenden Mechanismen zu verstehen,
welche zur Emergenz eines solchen informationserhaltenden Systems führen, müssen
zunächst makroskopische Eigenschaften identifiziert werden, welche sich aus der Interaktion
von Informationspolymeren ergeben.

Zu diesem Zweck haben wir eine stochastische Simulation entwickelt, welche es er-
möglicht, die Reaktionen zwischen Tausenden von Komplexen, welche sich durch Hybri-
disierung von Strängen zusammensetzen, zu simulieren.

Wir beginnen mit der konzeptionellen Einbettung unserer Arbeit in das Forschungsfeld
anhand der Betrachtung einer hypothetischen Protozelle. Im Anschluss werden die Eigen-
schaften, Repräsentationen und Energiemodelle von Informationspolymeren dargestellt.
Daraufhin beschreiben wir, welche Modelle prinzipiell durch die Simulation abgebildet
werden können. Es sollte durch diese Betrachtung ebenfalls evident werden, wie die Menge
an abbildbaren Modellen durch Modifikation der Simulation erweitert werden könnte.
Anschließend diskutieren wir den konzeptionellen Aufbau der Simulation im Detail.

Wir verfolgen einen „Statistischen Physik“ Ansatz und abstrahieren und reduzieren
die Interaktionsdetails, um universelle Regeln, welche diesen Systemen zugrunde liegen,
zu identifizieren. In einer ersten Untersuchung fokussieren wir uns auf die Selbstassem-
blierung von Informationspolymeren via templierter Ligation. Templierte ligation ist eine
Reaktion bei der zwei Stränge, welche nebeneinander auf einem dritten Strang, dem Templat,
gebunden sind, kovalent verbunden werden. Trotz der Wichtigkeit im Hinblick auf die
präbiotische Informationsprozessierung fehlte bisher eine systematische Untersuchung von
Selbstassemblierung und Strangwachstum via templierter Ligation in der Literatur. Um
diese Fragestellung ausgehend von einfachen Grundprinzipien zu untersuchen, benutzen
wir ein einfaches Modell, welches eine analytische Beschreibung der Resultate zulässt. Wir
nehmen an, dass die Bindeenergie zweier hybridisierter Stränge proportional zu deren
Überlapplänge ist, wobei wir eine Sequenzabhängigkeit vernachlässigen.

Es zeigt sich, dass die Kompetition der längenabhängigen Zeitskala der Dehybridisierung
mit der Zeitskala der übrigen dynamischen Prozesse zu einer nicht monotonen Längen-
verteilung führt: Während kurze Stränge schnell dehybridisieren, bleiben längere Stränge
lange genug hybridisiert, um mit einem anderen Strang verlängert zu werden. Ab einem
gewissen Schwellenwert der Stranglänge, L∗, wandeln sogenannte Extensionskaskaden
einen Duplex in einen vollhybridisierten Duplex ohne Überhang um. Wenn die Länge dieser
Doppelstränge einen zweiten Schwellenwert, L ≥ L†, erreicht, werden diese Duplexe durch
ihre hohe Bindeenergie inaktiv im Bezug auf eine weitere Transiente oder degradierende
Zeitskala, welche z. B. durch eine Ausflussrate gegeben sein kann. Die Dynamik der
Stränge der Länge L∗ < L < L† wird bestimmt durch auto- und heterokatalytische Zyklen,
welche die ansteigende Flanke in der Stranglängenverteilung zwischen Minima und Maxima
verursachen. Die Werte für die Schwellenwerte (charakteristische Längen) können analytisch
aus elementaren Modellparametern abgeschätzt werden.

Wir demonstrieren die Emergenz der durch Computersimulationen entdeckten, nicht

v



Zusammenfassung

monotonen Längenverteilung und die Validität unserer Vorhersagen in einem Laborexperi-
ment. Das Experiment wurde mit DNA Strängen mit randomisierten Sequenzen basierend
auf einem binären Alphabet (A,T) von Patrick Kudella im Labor von Dieter Braun an der
Ludwig-Maximilians-Universität durchgeführt.

Nachfolgend präsentiere ich erste Resultate eines Systems mit einem sequenzabhängigen
Energiemodell und gebe einen Ausblick im Hinblick auf weiterführende Studien.
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1. Introduction

The universe started 13.8 billion years ago in a highly symmetric and hence homogeneous
state. To our belief, this point is the origin of a set of fundamental rules governing this
universe. The interplay of these elementary rules leads to the emergence of larger, more
complex structures, such as atoms, which themselves lead to the formation of larger
structures and the introduction of new rules (chemistry) governing their interactions. One
could conclude that since the initial rules were set, an enormous self-assembly process
started, consequently leading to the formations of galaxies, solar systems, planets, etc., whose
trajectories in space and time are described by the rules of general relativity. Apparently, on
at least one of these planets, the self-assembly led to the emergence of a new process called
evolution. We refer to this event as the origins of life. Evolution is based on the mutation of
a genetic code of individuals, which leads to an advantage or disadvantage with respect to
their ability to reproduce.

It is still an unsolved question how the first system undergoing evolution could emergence
on earth.

Evolution requires individuals with an information storage (genetic code) that couples
to the fitness of individuals. The genetic code is assumed to be stored in heteropolymers
(RNA,DNA,XNA,TNA, etc.), which we call informational polymers or simply a strand. The
residues of the strands are so-called nucleotides.

The selection of advantageous modifications of the genetic code (mutations), with respect
to the ability of creating more (almost identical) offspring, requires individuals.

Individuals must be kept constantly out of chemical equilibrium with their environment,
as they would otherwise dissolve in the surrounding solvent, which requires the constant
consumption of energy [38] in the form of heat and work while releasing entropy. Hence at
the origins of life, the following premises must come together:

• compartmentalization (individuals)

• copying of genetic information with a sufficient fidelity

• coupling of genetic code to fitness

• ability of individuals to consume energy

1.1. Protocell

We can speculate about the function of a protocell that combines all these requirements cf.
[107] (see Figure 1.1). We consider a vesicle formed by a fatty acid bilayer. The vesicle is
embedded in a rich medium that provides the building blocks needed for the assembly
and growth of the protocell, such as short RNA oligonucleotides (monomers, dimers, and
trimers) and fatty acids. The medium must also provide the chemistry to constantly activate
(or supply activated) oligonucleotides.

The membrane encloses longer RNA strands (genome), which cooperatively form a copy
cycle that enables information replication. The genome is trapped inside the vesicle as
“oligonucleotides of four residues or longer cannot cross fatty acid membranes” [61]. The

1



1. Introduction

short oligonucleotides supplied by the environment diffuse through the cell membrane into
the protocell, where they are consumed by the copy cycle.

The genome must now somehow couple to cell growth and division. There is a multitude
of possibilities for how this coupling could be realized in detail.

An indirect coupling could be the control of membrane properties through the genome,
enabling faster integration of fatty acids and hence cell growth. Thereby the protocell is
thought to grow up to a critical size needed for division.

A direct coupling would be the increase in RNA concentration inside the vesicle, which
leads to osmotic swelling, which again leads to more incorporation of fatty acids into the
membrane [51]. In this case, a swollen vesicle grows at the expense of neighboring vesicles
with lower osmotic pressure. A genome expressing a faster copy cycle, incorporating mass
at a faster rate, would thus lead to a faster-growing cell. However, spherical osmotic swollen
vesicles turned out to be hard to divide [87].

In turn, abundant addition of fatty acids into the existing vesicle membrane leads to the
formation of long filamentous vesicles that are divided easily by agitation similar to the
pearling instability [87]. A significant advantage of this mode of division is that the volume
to the surface area, which is broken upon division of a thread-like filament, is relatively
small. We can therefore expect the loss of encapsulated material to be small upon division
compared to dividing a spherical vesicle e.g., via extrusion, see [51].

The required abundant incorporation of fatty acids into the membrane can be achieved
via the addition of phospholipids. Hence a protocell containing more phospholipids in its
membrane will grow at the cost of its neighbors containing fewer phospholipids [87].

Hence an inheritable advantage could be created by the coupling of the copy cycle to the
production of an enzyme that is able to catalyze the production of phospholipids.

1.2. Self-replicating network of informational polymers

The concept of a self-replicating network consisting of informational polymers might seem
simple at first glance, but it might be the most challenging open question considering the
emergence of life. A comprehensive list of problems that need to be overcome can be found
in [61].

A premise for informational polymers to form a self-replicating network is their ability to
hybridize and form double-stranded complexes where the stability is strongly sequence-
dependent. Thereby the binding energy dependce on the sequences of both strands in and
at the vicinity of the binding site [83, 52, 32, 23], but typically grows with the number of
paired nucleotides. Due to Watson–Crick base pairing, informational polymers preferen-
tially hybridize onto strands with complementary sequences. This selective recognition
of complementary strands constitutes the basis of biological information storage both in
modern cells as well as in prebiotic scenarios [34, 71, 16, 31, 3, 61, 94, 55].

In order to assemble copies of the genome, strands have to grow by forming noncovalent
bonds with other strands1. Throughout this work, we refer to this covalent bonding as
ligation. We refer to random ligation as the ligation of two unhybridized strands in solution. In
contrast templated ligation [58, 64, 47, 12] occurs when two strands are adjacently hybridized
on a third strand.

The combined interaction of strands inside the protocell via hybridization, dehybridization,
and ligation must somehow form a self-replicating network.

1Monomers are seen as strands of length one

2



1.2. Self-replicating network of informational polymers

Fatty Acid Membrane

Background: Rich medium

genome with
copy cycles

catalyzes formation
of phospholipids

phospholipids

phospholipids
allow for faster
incorporation
of fatty acids

couples to
ribozyme

Figure 1.1.: Conceptual protocell where copy cycles favor the creation of a ribozyme which catalyzes
the formation of phospholipids which again increases the incorporation rate of fatty acids into the
membrane. This increases the growth rate of the cell membrane leading to a faster cell division.
Hence a coupling between the genome and a higher reproduction rate can be envisioned, leading to
the onset of evolution.
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So far most experimental attempts were restricted to the study of a single process of the
whole network: The (partial) copying of a strand in a so called primer-extension scenario,
see [99, 90, 53, 72, 45, 49, 79, 86], with short oligonucleotides (building blocks). Thereby a
strand (primer) is assumed to be hybridized stably 2 onto a longer strands (template) such
that there is a 5’ overhang. Short oligonucleotides contained in the solution are thereby
assumed to be in (competitive) binding equilibrium with the primer-template duplex, which
allows combining hybridization and subsequent ligation into an effective extension process.
Also, special cases such as the influence of a so-called helper strand creating a pocket for
the hybridization of nucleotide building blocks were considered. These experiments, even
though they consider only one process of the whole network, are of great complexity: As
mentioned above, hybridization is sequence-dependent, but also ligation depends on the
sequence of the building block and the sequence of the primer-template duplex at the
ligation site. The leaving group used for the activation of the nucleotides also influences the
ligation rate (also sequence-dependent). But even the exact process of how the nucleotides
were activated, such as the pH during activation, influences the results. The latter is due
to the formation of di-nucleotides, wherein the process of ligation a complete nucleotide
serves as a leaving group [81].

However, focusing on understanding every detail of a single process of the reaction
network will not allow us to discover possible emergent phenomena that can arise in a
self-replicating network of informational polymers. Work on the self-assembly of complexes
starting from an initial set of short building blocks has (with some notable theoretical [36]
and experimental [105, 100] exceptions) been limited. To my knowledge, there was no
conclusive study including the aspect of the initial self-assembly of small building blocks
into stable structures. The most reasonable approach is to start with simple interaction
rules between strands, such as e.g., : (i) assuming the binding energy of hybridization being
proportional to the overlap length instead of considering a sequence-dependent energy
model (ii) assuming a constant context-independent templated ligation rate (iii) restricting
the number of possible hybridization configurations. After understanding the emergent
phenomena arising in these simplified systems, one can progress by, e.g., considering a
binary alphabet energy model or connecting systems of different physical control parameters
via in and outflux, etc.

1.2.1. State of the art of theoretical studies ‡

Previous theoretical work studying templated ligation was mostly based on effective models.
Usually, the description of the state space has been reduced to strand lengths, without
taking into account the hybridization complexes explicitly [78, 74, 89, 47, 82, 70, 92, 98,
95, 88, 8]. In such a coarse-grained picture, (de-)hybridization and templated ligation are
not elementary reactions but are combined into an effective extension reaction. In order
to specify the corresponding rate rext, the intricacies of the assembly process are neglected
and a priori assumptions regarding the relevant configurations are made [70, 78, 82, 89, 47,
95]. Many models (implicitly or explicitly) neglect the dependence of the binding energy
on the number of paired nucleotides, i.e., the length of the hybridization site [70, 78, 82, 89,
47, 95, 88, 98]. Others consider a length-dependent dehybridization rate only up to some
cut-off length such that the time scale of ligation is always much larger than the time scale
of the dehybridization kinetics [74]. A study addressing the full complexity of the assembly
process was limited by small system-sizes [36].

2Stable in the sense that the probability of the primer dehybridizing during the experiment is negligible.
‡These section builds upon the corresponding section in [106]
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1.3. Structure of this work

In this thesis, the emergent phenomena of oligonucleotide self-assembly and growth via
templated ligation is studied from first principles. While an ab initio scenario circumvents
the need for a priori assumptions, it is computationally demanding. In particular, a vast
combinatorial complexity arises as the number of different complexes grows rapidly with the
overall nucleotide mass in the system. This required the development of a new simulation
tool able to handle the complexity of such systems.

1.3. Structure of this work

In the next Chapter 2 we will give a more detailed description of informational polymers
and will allow us to understand the so-called nearest neighbor energy models. We will
then discuss the possible class of systems that can be modeled by the simulation framework
that we created in Chapter 3. Next we present the theoretical background of the simulation
framework Chapter 4 followed by a technical outline of the actual implementation in
Chapter 5. We will then present what we call the null-model for studying emergent
phenomena in systems on informational polymers undergoing templated ligation, see
Chapter 6. This model assumes a binding energy that is solely proportional to the length
of the hybridization site but not sequence-dependent. Then we present first preliminary
results obtained by a more advanced binary alphabet energy model in Chapter 7, which
showcases the expandability of our simulation framework. In the last Chapter 8 we are
going to discuss possible extensions of the simulation and follow-up investigations.
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2. Informational polymers

Nucleotides of a particular alphabet A can be linked covalently, thereby forming a sequence.
The letters of the alphabet are called bases. The nucleotides are directional, and the linkage
preserves the directionality and thereby transfers it onto the sequence. The directionality
determines the direction from which the encoded information of the sequence must be
read. We call a directional sequence a strand. Two strands aligned in opposite directions
brought into the vicinity of each other can form non-covalent bonds, thereby forming a
double-stranded structure. The stability of the double-stranded structure depends on the
sequences of the two aligned strands. For each letter L ∈ A there is a complementary
letter L∗ ∈ A in the sense that if a double-stranded structure consists of a succession of
complementary base pairs (bp), notated as L.L∗, the double-strand can adopt a particularly
stable form called a helix. The stability of the helix is due to the non-covalent interaction
of the nucleotides. We will generally refer to the helix formation of two strand segments
as hybridization. If the above criteria are fulfilled, the strand is called an informational
polymer.

2.1. Nucleic acids

We kept the definition of information polymers general as, in principle, there can be other
informational polymers than the biologically relevant Nucleic acids DNA, and RNA.

Nucleic acids found in organisms have in general an alphabet of 4 letters A =

{A, G, C, U (T)}, where the letters stand for (A)denine, (G)uanine, (C)ytosine, (U)uracile,
(T)hymine (see Figure 2.1 (a)). In biological system, RNA contains almost exclusively the
base U instead of T, which applies vice versa for DNA. A is complementary to U (T), and
G is complementary to C. The complementary letters can form so-called Watson-Crick
base pairs G.C, A.U/T, which results in the canonical A and B helix of RNA and DNA,
respectively.¨ In the case of RNA also U and G are partially complementary, forming a
so-called wobble base pairs G.U (see [25]). The G.U wobble base pairs of RNA is relatively
to the Watson Crick base pair A.U more stable than G.T is to A.T in DNA [52, 32], which
explains why wobble base pairs are associated with RNA and not DNA.

The four letters encode via motifs of length 3 (codons) for all amino acids required to
build the proteins used in all organisms. However, also informational polymers of more
than the four nucleotides used by nature can be created. For example the Hachimoji nucleic
acids consist of an 8 letter alphabet A = {A, G, C, U, P, Z, B, S}, where additionally P is
complementary to Z and B is complementary to S. It is standing to reason that the selection
of the four biological relevant nucleotides is either a consequence of their abundance at the
origins of life or/and a result of evolution where the four nucleotide alphabet turned out to
be optimal.

The covalent bonds linking nucleotides are phosphodiester bonds between the 5’ carbon
and the 3’ carbon of two adjacent nucleotides, see Figure 2.1 (b). The directionality of the
strand as a whole is a result of the directionality of the nucleotides themselves. The stability
of the helix is mainly due to two types of non-covalent bonds: (base-pairing) hydrogen
bonds between the nucleotides within a base pair and (base-stacking) π-π stacking of the
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2. Informational polymers
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Figure 2.1.: (a) (left) chemical structures of a RNA nucleotide consisting of a phosphate, a D-ribose
(sugar) and a base B ∈ A. The carbons on the sugar are labeled 1’ to 5’, where 5’ to 3’ is used to notate
the directionality of the nucleotide. (right) The bases C and U are pyrimidines (one ring of size 6, 4
carbons, and two nitrogen atoms ), and G and A are purines (one pyrimidine plus a carbon and two
nitrogen atoms forming a second ring of size 5). (b) The nucleotides are linked via phosphodiester
bonds transferring their directionality onto the resulting strand. Matching nucleotides opposite each
other (base pair) form hydrogen bonds. Adjacent nucleotides that are in base pairs interact with each
other via stacking. Both effects stabilize the helix. The four bases illustrated in detail on the left are
part of a larger helix (middle). We can abstract the helix in a simplified secondary structure notation
(right). (b) left got adapted from Wikimedia Commons: ‘Molecular structure of DNA’ by Madeleine
Price Ball under CC0 1.0 License.
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2.2. Possible conformations of informational polymers

C C

CG G

G A A

GG G

A

i) ii)

symmetric 
internal loop

assymmetric
internal loop

hairpin 
loop

helix

single stranded

helix

loops

segment types:

nucleotides:

base pairs:

matching non-matching

Figure 2.2.: example of a secondary structure consisting of basic secondary motifs: two single-
stranded segments, three helices (red) and three loops (blue). The loops are a symmetric and
asymmetric internal loop and a harpin loop. Note that the nucleotides in the loop are in an open
configuration, which does not imply that they are non-matching, as can be seen in cf. i) and ii).

aromatic rings of the bases of adjacent nucleotides. Base-stacking makes the most significant
contribution to helix stability and even dominantly determines its salt, and temperature
dependence [35]. However, both contributions interact with each other and are not clearly
separable [33]. The stability is highly sequence-dependent and is strongest for G, C rich
sequences.

We will in the following use the abstraction for polymers as depicted on the right of
Figure 2.1 (b), where each ⊥ ∈ A corresponds to a nucleotide.

2.2. Possible conformations of informational polymers

The stiffness of informational polymers is length-dependent: Strands shorter than the so-
called persistent length behave like a rigid rod, whereas strands longer than the persistent
length are modeled using a worm-like chain model. The persistent length depends on the
sequence, the temperature, the salt concentrations etc. Naturally, the persistent length of
a helix is longer than that of a single strand. The persistent length can be determined by
measuring the diffusion coefficients via e.g., FCS (fluorescence correlation spectroscopy) and
comparing the measured values to results obtained by simulation [84].

We now discuss the possible conformations such a flexible information polymer or
multiple information polymers can, in principle, adopt. Without loss of generality, we
conduct this discussion at the example of the four nucleotide alphabet A = {A, G, C, U}.
We restrict ourselves to secondary structures; hence the strand is assumed to be confined in
the two-dimensional plane and is transformed via bending. Thereby strand segments can
align each other such that, if the sequences are complementary, contiguous base pairs are
formed, resulting in the formation of helices. An example of such a secondary structure
of two strands is shown in Figure 2.2. It can be split into basic secondary motifs: two
single-stranded segments (yellow), four helices (red), and three-loop (blue).

Two facing nucleotides can be in an open or closed configuration, where only comple-
mentary nucleotides can adopt a closed configuration forming a base pair. Hence a loop
does not necessarily consist of non-matching nucleotides, as depicted in i) and ii) of Figure
2.2. However, the probability that a loop forms at a position where the sequences do match
is suppressed due to a penalty in free energy related to that structure, as discussed in the
next section.
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2. Informational polymers

2.3. Energy models of secondary structures

In this chapter, we briefly review the concept of calculating free energies of secondary
structures by so-called nearest-neighbor energy models. The RNA parameters for these
calculations can be found in the Turner NNDB, see Ref. [52], and the parameters for DNA
are published in Ref. [32].

These rules assign each basic secondary motif m that is not a helix a free energy penalty
of formation ∆G◦form,m that is particular to its type and shape, see Fig. 2.3 (a).

In the literature, there is also an initiation penalty associated with helix formation ∆G◦ini. I
believe this naming is misleading. A better name would be bimolecular acceptance penalty.
In contrast to the other basic secondary motifs, this penalty is not given for each helix (red
in Fig. 2.3 (a)) but rather for the number of bimolecular reactions that were necessary to
assemble the complex. A complex consisting of n strands, naturally, had to undergo n− 1
bimolecular hybridization reactions.

Additionally each block of four that contains at least one base pair is assigned a sequence
dependent free energy ∆G◦B(N1, N2, N3, N4, (bp1, bp2)), Ni ∈ A, bpi ∈ {0, 1}, as illustrated
in Fig. 2.3 (b).

The libraries for DNA and RNA include tabulated measured values for small loops in
dependence of their sequence, such as, e.g., 2x2 internal loops. Note that in this case, the
free energy associated with a block of four containing one base pair and one mismatch is
already included in the tabulated values.

There are also a couple of other rules and special cases such as a penalty for an A.U
base-pair terminating a helix ∆G◦AU or a symmetry penalty ∆G◦sym for self-complementary
strands. The symmetry penalty is equal to ∆G◦sym = 0.43 kcal/mol which corresponds to
∆G◦sym

kBT = ln(2). This symmetry penalty will appear naturally in Section 4.7 when relating the
elementary rates to the rate constants.

In general, the free energy of a complex C consisting of n strands is given by

∆G◦tot(C) = ∑
m∈motifs not helix

∆G◦form,m + ∑
B∈blocks

∆G◦B(N1, N2, N3, N4, (bp1, bp2)) (2.1)

+ k∆G◦AU + σ∆G◦sym + (n− 1)∆G◦ini

where σ is 1 if the complex is rotationally symmetric under a 180◦ rotation in the plane and
zero otherwise, and k is the number if AU(GU) ends of motifs. We call

∆G◦b,tot = ∑
m∈motifs not helix

∆G◦form,m + ∑
B∈blocks

∆G◦B(N1, N2, N3, N4, (bp1, bp2)) (2.2)

the total binding energy. Hence

∆G◦tot(C) = ∆G◦b,tot + k∆G◦AU + σ∆G◦sym + (n− 1)∆G◦ini (2.3)

Simplifications can be undertaken, such as, e.g, neglecting the AU end penalty or assigning
dangling ends (block of four with three nucleotides) an energy of zero.
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2.3. Energy models of secondary structures

Free energy due to initiation penalty of basic secondary motifs:(a)

Free energy due to blocks of four:

N1

N2N4

N3

5' 3'

3' 5'

5' dangling end

3' dangling end two WC-pb

one WC-pb

3 nucleotides 4 nucleotides

>0 Watson-Crick base-pairs0 WC-bp

etc...

(b)

Figure 2.3.: principle outline of the nearest neighbor energy models: (a) We assign each basic
secondary structure motif (e.g. internal loops, helix, hairpin loop etc.) a specific initiation penalty of
formation ∆G◦ini. ∆G◦ini depends on the type and particular geometry of the motif. (b) We basically
assign the helices and their adjacent base pairs a free energy. This can be interpreted as assigning each
block of four a free energy ∆G◦(N1, N2, N3, N4, bp1, bp2). This free energy depends on the nucleotides
contained in the block of four and if N1 N2 and N3 N4 are in a closed configuration forming a
Watson-Crick base pair (WC-bp). As mentioned in Section 2.2 even though, e.g., N1 and N2 of a block
can in principle form a WC-bp, they can be assumed to be in an open configuration, not forming a
WC-bp.
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3. Class of models addressed by the
simulation

In this chapter, we present the class of models that can be studied by our simulation
framework. We first give an overview of the complex-structures that can be formed by
hybridization of informational polymers that are included in our model. Next, we outline
the reactions that these complexes can undergo. Subsequently, we illustrate the assembly
processes that are introduced through the allowed complex structures and reactions. The
system is assumed to be a well-mixed reaction vessel of volume V and is, therefore, zero-
dimensional (see Figure 3.4 (a)). Hence, the rates of the elementary processes have no spatial
dependence.

all secondary structures 

allowed secondary 
structures

C C

CG G

G

A A

GG G

A

(a) (b)

hidden internal structure

Figure 3.1.: (a) Types of secondary structures that can be handled by the algorithm: single strands,
helices and symmetric internal loops. Non symmetric loops such as non symmetric internal loops or
hairpins can not be represented by the data structure. We further only allow for symmetric internal
loops of non-matching opposing nucleotides. Hence effectively, we consider all secondary structures
that can be formed by alignment of the two strands where all possible base pairs are formed. (b)
As we exclude internal loops of matching base pairs, non-matching nucleotides can be represented
unambiguously by a gap. We can simplify the representation even further by hiding all internal
structure.

3.1. Complexes and strands

The basic element of our dynamics is a directed oligomer called a strand-like described in
Chapter 2.

Virtually all secondary structures are taken into account that can be formed by aligning
rigid strands. Therefore the only secondary structures that can be taken into account are
single strands, helices, and symmetric internal loop (see Figure 3.1 (a), green area).

We further assume that two matching nucleotides facing each other in a hybridization
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3. Class of models addressed by the simulation

site adopt a closed configuration and hence form a base pair. This restriction to one possible
configuration upon hybridization excludes symmetric internal loops consisting of matching
base pairs. Non-matching pairs of nucleotides can now unambiguously be represent by a
helix with a gap (Figure 3.1 (b) middle). We facilitate the representation even further by
hiding the internal configuration of a hybridization site using the representation of rigid
blocks (Figure 3.1 (b) bottom).

3.2. Segments

We further virtually divide strands into so-called segments, see Figure 3.2. A segment starts
or ends with a strand or when the strand changes from a double-stranded configuration
into a single-stranded configuration or vice versa. Hence a strand is segmented into single
and double-stranded segments.

4 segments

1 segment1 segment 2 segments

double stranded
segment

single stranded
segment

Figure 3.2.: The strands of the complex shown
in Fig. 3.1 (b) are divided into so-called seg-
ments.

3.3. Elementary processes

In this section, we present the elementary processes (or reactions) informational polymers
can undergo in our simulation framework. The internal elementary processes compatible
with the data structure of our simulation are: hybridization, dehybridization, templated
ligation, and cleavage (see Figure 3.3 (a)). In addition, influx and outflux couple the system
to its environment (see Figure 3.3 (b)).

influx of short oligomers

outflux rate

hybridization and dehybridization 

(b) external processes(a) internal processes

cleavage of single stranded segment templated ligation and cleavage 

ligation site

hybridization site

cleavage sites

Figure 3.3.: (a) Overview of all internal reactions. Hybridization and dehybridization rates are
chosen thermodynamically consistent. Cleavage reactions can have different rates depending on if
a single strand (rcs) or a strand in a double strand configuration (rcd) is cleaved. Covalent bonds
between a double strand and a single strand are supposed to be cleaved at the single strand rate rcs.
(b) Overview of external reactions that couple the system to two external reservoirs.

3.3.1. Influx and outflux

The influx of single strands of lengths m ∈ R is implemented by keeping their concentration
cm constant, which can be interpreted as a coupling of the system to a large external reservoir.
Each complex is removed from the system with an outflux rate denoted as rout.
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3.3. Elementary processes

The chemostat concentrations cm will be used to model the influx of small building blocks
such as monomers, dimers, and trimers. This can be thought to represent the situation
discussed in Chapter 1.1, where a rich medium surrounded a protocell, and building blocks
entered the cell via diffusion. Further, choosing e.g., a constant outflux rate rout = const
could account e.g., for a serial dilution upon division of the protocell. At the same time, an
outflux can facilitate studying the properties of a system as a stationary state can be reached
even if cleavage is excluded from the model.

3.3.2. Hybridization and dehybridization

Hybridization and dehybridization are assumed to be elementary reactions occurring with
rates ron and roff, defined for a single hybridization site. We assume that hybridization and
dehybridization are one step reactions: Upon hybridization of a particular alignment of
two strands, all possible base pairs are formed, and upon dehybridization all base pairs
are dis-ruptured. Thermodynamic consistency [54, 80] connects the elementary rates ron

and roff for hybridization and dehybridization to the standard binding free energy ∆G◦b of a
hybridization site:

roff

ron
= (VNAc◦)eβ∆G◦b , (3.1)

where β = (kBT)−1, kB is Boltzmann’s constant and T denotes the (absolute) temperature,
NA is the Avogadro constant and c◦ = 1 mol/l is the standard concentration.

3.3.3. Templated ligation and cleavage

When two strands of length L1 and L2 are hybridized adjacently on a third strand L3, they
form a ligation site, see Fig. 3.3 (a). In such a configuration the strands L1 and L2 can ligate
at rate rlig, forming a strand of length L1 + L2. This process is called templated-ligation,
with the third strand understood as the template.

Cleavage, on the contrary, breaks strands apart. Cleavage of a bond of a single-stranded
segment, with elementary rate rcs, forms two separate complexes. In principle, cleavage of
bonds in double-stranded segments could also be implemented in a straightforward manner.
It would also be possible to assign the bonds located at the transition from a double-stranded
segment to single-stranded segment or bonds located at a templated ligation site a particular
cleavage rate.

3.3.4. Random ligation

Note that we did not include random ligation of two complexes at this point. However,
the short building blocks, such as, e.g., dimers, must form through non templated ligation
of monomers in the first place. Therefore, it is desirable to include random ligation into
the model. Including this reaction into the code of the simulation framwork is manageable.
However, the physical parametrization in order to still provide a thermodynamic consistent
hybridization energy model is highly challenging.

3.3.5. Example dynamics

An example of successive reactions is illustrated in Figure 3.4 (b), thereby tracking a specific
dimer (blue). The model dynamics were implemented in C++ based on the Gillespie
algorithm [7, 5, 24]. An important feature of our stochastic simulation is that the state space

15



3. Class of models addressed by the simulation

well mixed (zero dimensional)
reaction vessel of volume V

influx

outflux

(a) illustration of the reaction vessel (b) example: subsequent reactions of a dimer

1

2

3
4

5

6

7

8 10
9

11

Figure 3.4.: (a) Illustration of the system (reaction vessel). (b) Illustration of successive reactions by
tracking the fade of a specific dimer (blue): (1&2) After the dimer enters the system, it becomes
ligated to a second dimer via templated ligation. (3) After the third dimer, which served as a template,
dehybridizes the newly formed single-stranded tetramer undergoes cleavage (4). Thereafter the
dimer hybridizes onto a duplex (5). As there is a gap between the dimer and its neighboring strand
on the template, no ligation site is created. (6) Subsequently, another dimer hybridizes onto the
triplex, whereby a ligation site is formed. The duplex, apart from the ligation site dehybridizes
(7), and the triplex becomes a duplex via templates ligation (8). Next, the duplex is extended by a
monomer (hybridization and subsequent ligation) (9&10). Cleavage of the remaining overhang leads
to a fully-hybridized duplex (11) (duplex without overhang), which thereafter leaves the system.

of complex configurations is dynamically generated rather than completely generated in
advance.
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4. Theoretical foundation of the simulation
framework*

4.1. Markov Chain on the state space of copy numbers

Let us consider a system of Ntot
n complexes, where n defines the exact state of the system.

We define the countable set of all possible complex species by S . Each individual complex i
belongs to a species Sji ∈ S . We further define the state n as

n = (N1, N2, N3, ...), (4.1)

where Ni is the copy number (occupation number) of a species Si ∈ S . The total number
of complexes is thus Ntot

n = ∑i Ni. We also define the set of species present in state n as
Sn = {Si : Si ∈ S and Ni > 0}. The total number of species in state n is thus Stot

n = |Sn|.
All possible states n span the state space of copy numbers N .

The complexes can undergo reactions µ ∈ Mn, where Mn is defined as the set of all
possible reactions of a system in state n. Thus the number of possible reactions in state n
is Mn = |Mn|. Within our model µ is either a hybridization, dehybridization, ligation or
outflux of a complex, for which we use the labels on, off, lig and out respectively. The index
µ can be mapped onto a tuple

(on, i, j, c) for hybridization,a) (off, i, c) for dehybridization,b)

(lig, i, c) for ligation,c) and (out, i) for outflux,d)

where i, j label the species of the reactants, and c specifies the hybridization or ligation site
(channel) between two complexes or within a complex. We assign each reaction µ a so-called
elementary rate rµ (or reaction parameter, see [5]). It is the rate at which individual com-
plexes (monomolecular reactions) or tuples of complexes (bimolecular reactions) undergo
a specific reaction. The elementary rates have units of time t0. Using the mapping of µ

onto its corresponding tuples, the elementary rates rµ can be written as ron(i, j, c), roff(i, c),
rlig(i, c) and rout(i).

The above reactions connect the state space N and define the transition rates of a Markov
chain: If n′ ∈ N can not be reached from n ∈ N via the above reactions, the transition
rate is zero, w(n → n′) = 0. If n ∈ N can transition to state n′ ∈ N via one of the above
reactions, the transition rate is equal to w(n → n′) = hµrµ, where hµ is the number of
possible reactant combinations for the reaction µ to occur. In our model each transition rate
is related to a specific reaction µ, we can thus simplify the notation of the transition rates to
w(n→ n′) = rtot

µ , which we call the total rate of reaction µ:

rtot
µ = hµrµ. (4.2)

We call hµ the combinatorial factor of the reaction µ. We will derive the combinatorial factors
for the canonical choice of chemical species in Sec. 4.7, which we will use to connect the

*This chapter got adapted from the supplement of [106]
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4. Theoretical foundation of the simulation framework

elementary rates rµ to the chemical rate constants kµ. In the next section, we first present
the principles of the Gillespie algorithm, which we use to compute the time evolution of the
Markov chain.

4.2. Gillespie algorithm

We use the Gillespie algorithm [7] to compute the time evolution on the Markov chain.
Assuming that at time t the chain is in state n ∈ N , each possible transition rate rtot

µ is
calculated. The probability p(µ) that the transition µ is chosen to be the next transition to
occur is given by the ratio of rµ to the total transition rate rtot = ∑Mn

µ=1 rtot
µ ,

p(µ) =
rµ

rtot . (4.3)

The waiting time τ for the next reaction to happen is exponentially distributed

τ ∼ rtote−rtotτ. (4.4)

Exponentially distributed waiting times are generated from uniformly distributed random
variables u (p(u) = U (0, 1) where U (0, 1) is the uniform distribution on the unit interval)
and the aid of the inverse transform sampling theorem:

p(τ) = − ln(u)
rtot . (4.5)

When a reaction is chosen, the system time is updated according to t→ t + τ. The Markov
chain transitions from state n to state n′.

4.3. Implementation of the Gillespie algorithm

The algorithm’s performance can be improved by drawing the next reaction µ using a binary
tree [24]. Thereby, the scaling of the simulation time reduces from O(Stot

n ) to O(ln(Stot
n )).

The state n ∈ N is represented in a data structure on the computer. Performing the
reaction implies modifying the data structure representing n according to the rules of the
reaction such that it represents n′. Also the set of possible reactions needs to be updated to
match the new state: {

rµ

}
µ∈In
→

{
rµ

}
µ∈In′

(4.6)

Instead of an update, one could recalculate all possible reactions of state n′. However,
this would be disadvantageous performance-wise. Our implementation of the algorithm
tries to keep the number of reactions and the data structures that need to be updated after
each reaction as small as possible while still keeping the bookkeeping manageable. One
way to achieve this is not to sample bimolecular reactions (hybridizations) directly but
instead decompose them into collision events, followed by the selection of one possible
hybridization (channel) upon collision. The reaction channels need to be calculated only
upon collision. Furthermore, choosing the collision rate to be the same for all pairs of
potentially colliding complexes allows the compression of all hybridizations into a single
collision event. We will explain this procedure in detail in Sec. 4.6.
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4.4. Decomposition of the hybridization rate

4.4. Decomposition of the hybridization rate

As introduced in the previous sections, each hybridization represents a transition from
a state n to a new state n′, as depicted in Fig. 4.1(a). The system contains three species.
Several hybridizations are possible (thin blue lines). The magenta line highlights the chosen
hybridization.

In our implementation, we separate the transport process that brings the molecules
into proximity (collision) from the specific interactions upon encounter. To this end, we
decompose ron into the rate at which the reactants of species Si, Sj ∈ S collide (rcoll),
times the probability that the collision leads to a hybridization (:= pa(cceptance)), times the
probability for the specific reaction channel (:= pc(hannel)):

ron(i, j, c) = rcoll(i, j)pa(i, j)pc(i, j, c). (4.7)

After a collision, we directly evaluate whether an interaction occurs (probability pa(i, j)).
If the reaction is reactive, we choose a hybridization channel. The hybridization is then
performed immediately. This can be interpreted as the introduction of a transient state with
a lifetime of effectively zero, see Fig. 4.1(b).

transient state

dehybridization

(a) Direct hybridization via ron leading to transition from state n to n'

(b) Hybridization split into collision and transient state, leading to transition from state n to n'

Nm

Ni>1

Nj=1

N'm=Nm

N'i=Ni-1

N'k=1

hybridization

dehybridization

Nm

Ni>1

Nj=1

N'm=Nm

N'i=Ni-1

N'k=1

n'n

n'n

Collis
ion

Figure 4.1.: Hybridization on the Markov chain on the space of copy numbers N where (a) hybridiza-
tions are individual reactions and (b) a hybridization is split into a collision and a subsequent transient
state (b). The system contains three complex species Sm, Si, Sj with copy numbers Nm, Ni > 1, Nj = 1.
The hybridization performed is between a complex of species Si and Sj (magenta line in (a)), leading
to the new species Sk. (a) Each blue line corresponds to a possible hybridization reaction with
elementary rate ron(i, j, c). (b) Hybridization is interpreted as a two step reaction. First, the two
complexes highlighted by the dotted orange ellipse collide. The complexes form a transient state
with probability pa, and the reaction gets rejected with probability 1− pa. Upon formation of the
transient state, a channels c is selected with probability pc.
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4. Theoretical foundation of the simulation framework

4.5. Extracting the volume dependence from the collision rate

Assigning each reaction an elementary rate that only depends on the reacting chemical
species neglects any spatial heterogeneity and assumes a spatially homogeneous distribution
of the reactants [5]. Furthermore, we assume that the local equilibrium distribution of the
velocities is restored sufficiently fast after a reactive reaction. Both criteria require that
the nonreactive (elastic) encounters are much more frequent than the reactive (inelastic)
encounters. A system fulfilling these criteria is also called well-mixed. This could lead to
the conclusion that the acceptance probability pa must be small in our model. However,
the criteria can also be fulfilled by introducing nonreactive species, which are not explicitly
modeled. For RNA/DNA systems, those nonreactive species simply correspond to the
solvent molecules.

If the criteria are fulfilled, the elementary collision rate is equal to the ratio of the
(ensemble) averaged collision volume per unit time 〈dVcoll(i, j)/dt〉 to the system volume V
(see [5]):

rcoll(i, j) =
1
V

〈
dVcoll(i, j)

dt

〉
(4.8)

〈dVcoll(i, j)/dt〉 will depend on the details of the transport process, the temperature, the
solvent etc. However, the 1/V scaling is a generic feature due to the spatial homogeneity
assumption. This equation also shows that the rate constant for a bimolecular reaction,
kµ = VNArµ is actually (as it should be) independent of the volume.

4.5.1. Example: Decomposition of the bimolecular reaction rate of hard spheres

Instead of looking at the more complex hybridization reactions, let us consider a reaction
between two gases S1, S2 of hard spheres as a simple example for the decomposition of a
bimolecular reaction rate as done in [5]. The bimolecular reaction rate is colloquially called
the on-rate ron. The radii of the reactants are R1, R2, and their masses are given by m1, m2.
Whenever the distance of two spheres becomes equal to the sum of their radii d12 = R1 + R2,
a collision takes place. Let us assume that for a reaction to occur, the reactants further have
to overcome an energetic barrier E. The on-rate for this reaction is consequently given by:

ron =
1
V

〈
dVcoll(i, j)

dt

〉
e−

E
kT =

1
V

πd2
12 〈v12〉 e−

E
kT =

1
V

πd2
12

(
8kT

πm12

) 1
2

e−
E

kT , (4.9)

where 〈v12〉 is the average velocity of an arbitrary S1 molecule relative to an arbitrary
S2 molecule and m12 = m1m2/(m1 + m2) is the reduced mass. We can identify rcoll =

1
V πd2

12

(
8kT

πm12

) 1
2
, pa = e−

E
kT , and pc = 1 as there is only one possible reaction channel.

4.5.2. Effective collisions rate r0

For convenience we define

r0(i, j) := NAc◦ 〈dVcoll(i, j)/dt〉, (4.10)

where NA is the Avogadro constant and c◦ = mol/l is the standard concentration. We call
r0 the effective collision rate. Hence, the elementary collision rate can be written as (cf.
Eq. (4.8))

rcoll(i, j) =
1

VNAc◦
r0(i, j). (4.11)
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4.6. Constant collision rate allows for a single total collision rate

The last equation will be useful when deriving the free energy of a hybridization site in the
next section.

4.6. Constant collision rate allows for a single total collision rate

A constant collision rate rcoll = const., independent of the properties of the colliding
complexes, allows us to condense all collisions into a single total collision occurring with
rate

rtot
coll =

Ntot
n (Ntot

n − 1)
2

rcoll, (4.12)

where Ntot
n is the total number of complexes in state N ∈ N . When the Gillespie algorithm

has selected the total-collision as the next reaction to be performed, two individual complexes
that undergo the collision must be drawn. In order to obtain the correct combinatorial
factors for bimolecular reactions, we simply draw each pair of individual complexes with
the same probability. The total collision rate within a species Si is thus given by

rtot
coll(i, i) =

Ni(Ni − 1)
2

rcoll, (4.13)

whereas the total collision rate between two different species Si, Sj is

rtot
coll(i, j) = NiNjrcoll. (4.14)

The two combinatorial factors hµ are illustrated in cf. Figure 4.2. We can write Eq. (4.12) as
a sum of collisions within a species and between species.

rtot
coll =

Ntot
n (Ntot

n − 1)
2

rcoll =
Stot

n

∑
i=1

Ni(Ni − 1)
2

rcoll + ∑
i,j

i<j

NiNjrcoll. (4.15)
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S1-S1-pairs: N1(N1-1)/2=3 
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Figure 4.2.: Combinatorial factors for simple
chemical species: The number of possible
reactant pairs within a species Si is given
by h(on,i,i) = Ni(Ni − 1)/2. For reactions be-
tween two species Si 6= Sj the combinatorial
factor is equal to h(on,i,j) = Ni Nj. Orange
lines: Reacting pairs within species S1. Blue
lines: Reacting pairs within species S2. Black
lines: Reacting pairs between species S1 and
S2.

4.6.1. Constant effective collision rate

As the collision rate is constant, also the effective collision rate r0 is constant (cf. Equa-
tion (4.11)). We set r0 = 1/t0, where t0 is the arbitrary unit of time. Thus, the elementary
collision rate is given by

rcoll =
1

VNAc◦
r0 =

1
VNAc◦

1
t0

. (4.16)
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4. Theoretical foundation of the simulation framework

4.7. Combinatorial factor hµ and the relation between rate constants
and elementary rates

In chemical equilibrium, the ratio of the rate constants for hybridization and dehybridization
is given by (determines) the change in Gibbs free energy associated with the reaction:

ln
(

koff(i, j, c)
c◦kon(i, j, c)

)
= ∆G◦hyb(i, j, c). (4.17)

Further, in chemical equilibrium, the concentration of species that can be formed by hy-
bridization, are determined by the initial concentrations and ∆G◦hyb(i, j, c). We aim to choose
the elementary rates of hybridization and dehybridization such that our system, only un-
dergoing these two reactions, would reach chemical equilibrium. We, therefore, have to
connect the chemical rate constants kµ to the elementary rates rµ. For this purpose, we
have to derive the combinatorial factors hµ, where we closely follow the work of Gillespie
[5]. For completeness, we derive the combinatorial factors not only for hybridization and
dehybridization but for all reactions present in our model as they would be needed, e.g.,
to compare results obtained via our stochastic simulation to results obtained via solving a
set of chemical rate equations. For simple chemical reactions the combinatorial factors are
illustrated in Fig. 4.2:

• For bimolecular reactions of two different reactants, Si 6= Sj, the combinatorial factor
is hµ = NiNj, and for two reactants of the same species Si it is hµ = Ni(Ni − 1)/2.

• For monomolecular reactions of a species Si it is hµ = Ni.

The elementary rates are connected to their corresponding (chemical) rate constants kµ (for
molar concentrations) via:

• kµ = VNArµ for bimolecular reactions with Si 6= Sj, and kµ = VNArµ/2 in case that
Si = Sj, where NA is the Avogadro constant.

• kµ = rµ for monomolecular reactions.

In our case, these relations must be modified to account for multiple channels leading to
the same product due to the internal structure of the complexes. We will therefore derive
modified relations for hµ and kµ in this section.

4.7.1. Rotationally symmetric duplexes

To this end, we need the notion of a rotationally symmetric complex, see Fig. 4.3, where we
used the previously defined block notation but with an example sequence. In the following
sections, we will omit the notation of the sequences.

The probability of the formation of a rotationally symmetric complex will generally
decrease with the size of the alphabet and the length of the complex. Also, generally (for
a non self-complementary choice of nucleotides, hence |A| > 1), symmetric duplexes will
have a large positive binding energy (unstable) as they must include many non-matching
base pairs. The only exception being symmetric duplexes, where the strands consist of
alternating sequences.
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Rotationally symmetric complexes

 = 180° rotation in plane

 
A T T A 

A T T A 

 
A T T A 

A T T A 

A T T A 

A T T A 

A T T A 

A T T A 

(a)

(b)

Figure 4.3.: Two example complexes that are
rotationally symmetric under a 180° rotation
in the plane: (a) symmetric duplex, (b) sym-
metric complex of four strands.

4.7.2. Hybridization

Let us briefly revise the relationship between the elementary rate and the corresponding
rate constant for simple bimolecular reactions where the number of channels is c = 1. We
first consider a bimolecular reaction where two reactants of species Si = Sj react to species
Sk, i.e. µ = (on, i, i),

Rµ : 2Si → Sk. (4.18)

As illustrated in Fig. 4.2, the combinatorial factor is hµ = Ni(Ni − 1)/2. Hence the total
reaction rate as defined in Eq. (4.2) reads:

rtot
µ =

Ni(Ni − 1)
2

rµ. (4.19)

For large Ni this becomes approximately rtot
µ ≈ N2

i rµ/2. Let us now consider an ensemble of
systems, all in the current state n. The ensemble average δt

〈
N2

i
〉
rµ/2 will then correspond

to the average number of reactions in the system that will occur in the next time step δt.
Neglecting fluctuations we can write

〈
N2

i
〉
=
〈
(〈Ni〉+ δNi)

2〉 = 〈Ni〉2 +
〈
δN2

i
〉
≈ 〈Ni〉2,

which we can use to formulate a (chemical) rate equation

˙〈Nk〉 =
rµ

2
〈

N2
i
〉
≈

rµ

2
〈Ni〉2 . (4.20)

Rewriting this equation in molar concentrations ci = 〈Ni〉 /(NAV), with NA = 6.022× 1023mol−1

being the Avogadro constant, yields

ċk =
rµ

2
VNAc2

i , (4.21)

from which we can identify the rate constant kµ to be related to the on-rate rµ by

kon(i, i) =
ron(i, i)

2
VNA. (4.22)

Let us now consider the simple bimolecular reaction µ = (on, i, j) of two different reactants
Si 6= Sj

Rµ : Si + Sj → Sk. (4.23)

The combinatorial factor is given by hµ = NiNj. The procedure of deriving the relationship
between the rate constant and the elementary rate is analogous to the above derivation,
except that instead of fluctuations, correlations between the copy numbers are neglected,〈

NiNj
〉
≈ 〈Ni〉

〈
Nj
〉
, yielding

kon(i, j) = ron(i, j)VNA. (4.24)
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4. Theoretical foundation of the simulation framework

These relations must be adapted in our system because of configurations where multiple
hybridization channels lead to the same product complex. This is the case if one or both
of the reactants are (rotationally) symmetric, see Figure 4.3. The combinatorial factors hµ

for bimolecular reactions are replaced by hµ → 2mhµ, cf. Fig. 4.4. The relation between the
elementary rate and rate constant for a hybridization µ = (on, i, j, c) is thus generally given
by

kon(i, j, c) = 2m−δij ron(i, j, c)VNA. (4.25)

An overview of the values of the prefactor 2m−δij can be found in Table 4.1.

m = 0 m = 1 m = 2
Si = Sj 1/2 1 2
Si 6= Sj 1 2 4

Table 4.1.: Overview of prefactor for the relation between the on-rate and rate constant, 2m−δij ron. m
is the number of species that undergo the hybridize which are rotationally symmetric under a 180◦

rotation.

1
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2

=
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S2
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m2=2

S2
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(b) four hybridization channels 
leading to the same species

(a) two hybridization channels 
leading to the same species

1

2

3

4

S3

S3

S3

S3

S3

S3

Figure 4.4.: (a) The complex of species S1 is rotationally symmetric, whereas the the complex of
species S2 is not, hence m = 1. The two hybridization sites 1 and 2 lead to the same complex
(chemically) of species S3. (b) The complexes of species S1 and S2 are rotationally symmetric, hence
m = 2. The four hybridization sites 1,2,3, and 4 lead to the same complex (chemically) of species S3.

4.7.3. Dehybridization

For a dehybridization µ = (off, i, c) of a complex of species Si, into complexes of species Sj
and Sk,

Rµ : Si → Sj + Sk, (4.26)

the combinatorial factor is given by hµ = Ni. However, a special situation occurs for
rotationally symmetric complexes consisting of more than four strands n ≥ 4 (cf. Fig. 4.5).
In this case, there are always two dehybridizations leading to the same resulting complex
species except for the hybridization site in the (geometric) center, which leads to two
symmetric complexes of the same species j = k. Hence, for the center dehybridization, the
combinatorial factor is simply given by hµ = Ni whereas for the other dehybridizations the
combinatorial factor is hµ = 2Ni. Generally, the relation between the elementary rate rµ and
the rate constant kµ is thus given by

koff(i, c) = 2m1−δjk roff(i, c), (4.27)
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where m1 = 1 if the initial complex is rotationally symmetric and m1 = 0 otherwise and
2−δjk accounts for the center dehybridization resulting in two complexes of the same species.

 S2

=
S1 S3

+

+

S2

=
S1 S3

S2

S3

Two Dehybridizations channels leading to the same resulting complex

m1 = 1 m1 = 1
S3

S2

Figure 4.5.: Two elementary dehybridizations lead to the same complexes. This is the case for all
dehybridizations of a rotationally symmetric complex consisting of more than four strands, n ≥ 4,
except the center dehybridization.

4.7.4. Collision

As the collision between two complexes is a regular bimolecular reaction the relation
between the rate constant and the elementary rate is

kcoll(i, j) = 2−δij rcoll(i, j). (4.28)

4.7.5. Ligation

The derivation of the combinatorial factors for ligation reactions µ = (lig, i, c) is analog
to the derivation of the combinatorial factors for dehybridization of the last section. The
relation between the elementary rate and the rate constant is thus given by

klig(i, c) = 2m1rlig(i, c), (4.29)

where m1 = 1 if the initial complex is rotationally symmetric and m1 = 0 otherwise, see
Fig. 4.6.

 

S2

S1

  

=
S1

S2=
m1 = 1 m1 = 1

Two ligation channels leading to the same resulting complex

Figure 4.6.: Two ligations lead to the same complex. This is the case for ligations in rotationally
symmetric complexes.

4.7.6. General rule for mapping between rate constants and rates

Like we have seen in the previous sections for hybridization, dehybridization, and ligation,
the standard combinatorial factors need to be multiplied by a factor 2m where m is the
number of symmetric complexes undergoing the reaction. Additionally, we must divide by
a factor 1/2 if the reaction consumes or generates two complexes of the same species.

In order to obtain a combined expression for reactions that change the number of com-
plexes, ∆Ntot = ±1, (such as hybridization and dehybridization) and reactions that do not
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4. Theoretical foundation of the simulation framework

change the number of complexes, ∆Ntot = 0, (such as templated ligation), we assign the non
existing second complex the species label S0:

hµ → 2m−δij hµ, (4.30)

where i, j ∈ N is the species of the two generated/consumed complexes and j = 0 if the
reaction is a monomolecular reaction that does not lead to an increase in the number of
complexes (e.g., templated ligation, cleavage of strand in a double strand configuration).

4.7.7. Cleavage

According to Section 4.7.6 the relation between the rate constant and elementary rate for
cleavage of a complex of species Si into species Sj, Sk is:

kc(i, c) = 2m−δjk rcs(i, c). (4.31)

We can distinguish between cleavage of strands in a double strand configuration and the
cleavage of a single strands or strands at an interface to a double-strand which leads to two
product strands:

kcd(i, c) = 2mrcd(i, c) (4.32)

kcs(i, c) = 2m−δjk rcs(i, c). (4.33)

4.8. Gibbs Free Energies of Hybridization

In this section, we will first show how the correct choice of the off-rate leads to a Gibbs free
energy of a hybridization site, which is physically meaningful. The thereby derived free
energy of a hybridization site is in agreement with standard energy models for DNA or
RNA [52, 32]. We then use these results to derive the Gibbs free energy of a complex and
show that it is independent of the specific assembly trajectory.

4.8.1. Specific choice of kinetics

We start with an overview of the rates defined in the last sections. The elementary rate for a
hybridization (Eq. 4.7), using Eq. 4.11, is given by

ron(i, j, c) =
1

VNAc◦
r0(i, j)pa(i, j)pc(i, j, c). (4.34)

Thus the rate constant (Eq. 4.25) is

kon(i, j, c) = 2m−δij pa pcr0
1
c◦

. (4.35)

The rate constant kcoll(i, j) of the elementary collision rate rcoll(i, j) is given by (simple
bimolecular reaction)

kcoll(i, j) := 2−δij r0
1
c◦

. (4.36)

We now choose the elementary rate for the dehybridization to be

roff(i, c) = pcr0eβ∆G◦b , (4.37)
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4.8. Gibbs Free Energies of Hybridization

and hence the rate constant for the dehybridization becomes (Eq. 4.27)

koff(i, c) = pcr02m1(1−δij)eβ∆G◦b . (4.38)

The justification for this choice will become apparent in the course of this and the following
section. It will lead to a thermodynamically consistent energy model for the total free energy
of a complex.

We further set the probability of a hybridization channels to be chosen equal to

pc =
1
Θ

, (4.39)

where Θ is the number of possible hybridization channels, see Figure 4.7. Note that the
following discussion of the energy model is independent of this choice as the hybridization
and dehybridization rates are both proportional to pc and will therefore cancel out.

1

2

2

number of hybridization channels
Figure 4.7.: Specific choice of the the
probability of a hybridization channel
to be chosen upon collision, pc = 1/Θ.

4.8.2. Free energy of a hybridization site

We now relate the ratio of the rate constants for (de)hybridization to the Gibbs free energy
of a hybridization site c, ∆G◦hyb(c):

ln
(

koff

c◦kon

)
= β∆G◦b + (δij −m + m1(1− δij)) ln(2)− ln(pa) = β∆G◦hyb(c), (4.40)

We can further simplify the term δij − m + m1(1 − δij). Let us therefore consider a de-
hybridization of a complex of species S that leads to two complexes of species Si and
Sj.

• If S is rotationally symmetric, (m1 = 1) the dehybridization leads either to two
different complexes Si 6= Sj, where non is symmetric (m = 0, Fig. 4.8(a) top), or to two
equal and symmetric complexes (m = 2, Fig. 4.8(a) bottom).

• If S is not symmetric (m1 = 0) the dehybridization leads to two complexes of different
species Si 6= Sj, see Fig. 4.8(b). Either non of the resulting complexes is symmetric
(m = 0) or one (m = 1).

We therefore have

δij −m + m1(1− δij) = (m1 −m) = ∆m, ∆m ∈ {−1, 0,+1} . (4.41)

Thus, ∆m appears as the difference in the number of rotationally symmetric complexes due
to a hybridization. The values of ∆m in dependence of m1 and m are shown in Table 4.2.
The expression of the Gibbs free energy Eq. (4.40) of a hybridization site then becomes

β∆G◦hyb(c) = β∆G◦b + ∆m ln(2)− ln(pa)︸ ︷︷ ︸
ν

. (4.42)
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S
+

Si≠Sj,mon=0

+

Si=Sj,mon=2

moff=1

 
S

moff=0

 

+

+

Si≠Sj,mon=1

Si≠Sj,mon=0

a) b)

Figure 4.8.: m1 indicates if a dehybridizing complex is symmetric (m1 = 1) or non-symmetric
(m1 = 0). m indicates the number of symmetric complexes undergoing a hybridization, m = 0, 1, 2.
(a) Dehybridization of a symmetric complex m1 = 1: The dehybridization leads either to two different
non-symmetric complexes Si 6= Sj (m = 0) or to two equal and symmetric complexes of species
Si = Sj (m = 2). (b) Dehybridization of a non-symmetric complex: The dehybridization leads either
to two non-symmetric complexes (m = 0) or one (m = 1) non-symmetric complex.

mon = 0 mon = 1 mon = 2
moff = 0 0 -1
moff = 1 +1 -1

Table 4.2.: Possible values for ∆m, the change
in number of rotationally symmetric com-
plexes due to the reaction.

The three different terms of the hybridization energy are (see [10]):

(i) β∆G◦b = γl the standard binding free energy (in units of kBT) due to base pairing
and possible internal secondary structures of the hybridization (internal loops), see
Chapter 3.

(ii) ∆m ln(2) is a symmetry correction, which gives an energy reward of − ln(2), if the
hybridization caused a reduction in the number of symmetric complexes, and an
energy penalty of + ln(2) if the number of symmetric complexes is increased. The
term is zero if there is no change in the number of symmetric complexes. This term
corresponds to the symmetry correction of +0.43kcal/mol in the nearest neighbor data
base cf. Ref. [52, 32].

(iii) pa is the probability that a hybridization is performed upon collision. It can be
thought of as the probability to form a first base pair p1bp times the probability
that the formation of the first base pair leads to zipping of the strands onto each
other pzip, (see [66]). We can therefore write pa = p1bp pzip. Thus, we can interpret
ν = − ln(pa) ≥ 0 as an energy penalty associated with the formation of the first base
pairs upon hybridization.

The choice of the hybridization rate made in Eq. (4.37) led to an energy model for
the hybridization site that can be interpreted in a physically meaningful manner and is
conceptually equivalent to standard energy models for DNA and RNA as presented in
Section 2.3.

4.8.3. Total Gibbs free energy of a complex

The total Gibbs free energy ∆G◦tot of a complex C of order n is the sum over the free energies
of its n− 1 hybridization sites c ∈ C and is given by

β∆G◦tot = β
n−1

∑
c=1

∆G◦hyb(c) = σ ln(2) + (n− 1)ν + ∑
c

∆G◦b (c), (4.43)
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4.8. Gibbs Free Energies of Hybridization

where σ = 1 if the complex is symmetric and σ = 0 if it is not, and ν is the initiation penalty
of the duplex formation. ∆G◦tot is independent of the specific assembly path (trajectory),
i.e., the order in which the hybridizations are formed. It is only a function of the complex
structure itself. Hence the choice of roff, Eq. 4.37, led to a thermodynamic consistent energy
model.

As an example, consider the two different assembly trajectories leading to the same
complex configuration shown in Fig. 4.9. Even though the hybridization energies among the
trajectories are different, as the number of symmetric complexes m differs after the second
hybridization, the total free energies ∆G◦tot of the resulting complexes are the same.

+

+ +

+  

+ln(2)

-ln(2)

m = 0

m = 1

m = 0

m = 1

+ln(2)

+ln(2)

+ln(2)

+ln(2)

m = 0

m = 1

m = 2

m = 1

-ln(2)

+ln(2)

symmetry
penalty:

symmetry
penalty:

Figure 4.9.: The left and right assembly trajectory lead to the same final complex. The hybridizations
among trajectories have different free energies, as the numbers of symmetric complexes after the
second hybridization differs (left: m = 0, right: m = 2), but their sum yields the same ∆G◦tot. m is the
number of rotationally symmetric complexes at each assembly step. Only the penalty term ∆m ln(2)
is shown, as the sum over the other two contributions ∆G◦b and ν is independent of the trajectory.

4.8.4. Thermodynamically consistent kinetics for nearest-neighbor models

For a thermodynamically consistent model, the parametrization of the (de-)hybridization
kinetics is constraint by the binding energy. In particular, thermodynamic consistency
implies that that the free energy ∆G◦tot (see Eq. (4.43)) of any complex is independent
of the assembly trajectory. Consequently, using an energy model that is in the spirit of
common nearest neighbor models, cf. Eq. (4.44), introduces constraints on the available
parameterizations.

More precisely, thermodynamic consistency with nearest-neighbors models requires that
the energy associated with a hybridization channel, ∆G◦hyb(c), is independent of θ. In general,

∆G◦hyb is determined by the choice of the rate constants kon and koff via β∆G◦hyb = koff
c◦kon

.
The rate constants and rates can be mapped onto each other via Eq. (4.25) and Eq. (4.27).
Choosing a collision based Ansatz for the on-rate (Eq. (4.7)) ron = (VNAc◦)−1r0 pa pc, and
writing the off-rate as roff = aeγl , ∆G◦hyb becomes

∆G◦hyb = γl + ∆m ln(2) + ln
(

a
pa pcr0

)
. (4.44)

In order to get a path independent ∆G◦tot, the acceptance probability pa, the channel
probability pc and the effective collision rate must be chosen such that the third term
of Eq. (4.44) becomes constant and hence independent of the (mutual) properties of the
hybridizing complexes.
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4. Theoretical foundation of the simulation framework

As discussed above we can interpret ν = − ln(pa) as the initiation energy. In the simplest
form of the kinetics, the channel probabilities pc must sum to unity over the θ different
channels. The simplest and least biased choice is then pc = 1/θ. Hence, Eq. (4.44) becomes

∆G◦hyb = γl + ∆m ln(2) + ν + ln
(

aθ

r0

)
. (4.45)

In order to have a thermodynamically consistent energy model that is still in the spirit
of a nearest-neighbor model, we have to eliminate the factor θ from the binding energy.
Otherwise, the total energy of a complex, Eq. (4.43), would depend explicitly on more
detailed properties of all the strands involved.

There are two possible canonical choices of a and r0 that can be made in order to set the
last term to zero 2: (i) a = r0/θ or (ii) a = 1 and r0 = r∗0θ, where r∗0 is a constant. Both choices
lead to a thermodynamic consistent energy model but may be considered microscopically
unsatisfactory: (i) This is the choice we used for our model. At first glance, it seems odd that
the off-rate depends on the number of channels θ. However, this problem is intrinsic when
using kinetics in nearest-neighbor type models. (ii) The second choice has the advantage
that the θ-dependence is contained in the hybridization rate and is altogether absent from
dehybridization. It has the microscopic advantage, that the hybridization rather than the
dehybridization rate depends on θ. However, this is also physically questionable from the
perspective of microscopic, diffusive dynamics (see below).

As we will see in Chapter 6, whatever the exact choice, as long as it is not exponential in
the strand length, microscopic kinetic factors like θ only contribute subexponentially to the
length-scales derived from the competition of time scales.

The primary reason for our choice (i) is computational. Having a collision rate that
is independent of the exact nature of the complexes allows us to sample colliding pairs
without considering their possible hybridizations a priori. Any other choice would massively
increase the computational complexity because of the additional computation that needs
to be performed for all pairs of species, cf. Fig. S4. After each hybridization we would
have to update the whole reaction network, which scales as ∼ 〈θ〉 (Ntot

n − 1), where 〈θ〉
is the average number of hybridization channels, which is computationally impractical.
In fact, implementing such a more complex kinetics along the lines of (ii) was our first
attempt. However, for the above reasons, the algorithm then became prohibitively slow and
complicated.

As explained in Sec. 4.6, our implementation is fast because it assumes a constant collision
rate, which allows us to reduce all collision events to a single total collision reaction. Only
after the colliding pair is drawn, we subsequently choose a channel and then update the
possible hybridization and dehybridization reactions just in time.

Moreover, a closer look at the kinetics (ii) reveals that it is not necessarily more physical,
as long as the underlying transport process is not further specified. For example, r0 = r∗0θ

neglects the decrease in mobility with strand length as would be the case for regular
diffusion. To illustrate this aspect more thoroughly, let us consider a simple model of
two diffusing strands with diffusion coefficients D1, D2. We assign to the strands the
hydrodynamic radii R1, R2 and assume that the strands undergo a reaction as soon as
their distance becomes smaller than R1 + R2. The collision rate is then obtained via the
Smoluchowski rate coefficient [1, 9, 27]

rcoll =
1
V

4π(R1 + R2)(D1 + D2). (4.46)

2a remaining constant could be absorbed into ν
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4.8. Gibbs Free Energies of Hybridization

Using that the hydrodynamic radius is inversely proportional to the diffusion coefficient
[44], Eq. (4.46) becomes

rcoll ∼
1
V

4π
(D1 + D2)2

D1D2
. (4.47)

Experimentally, the following relation between diffusion coefficient and length for single
(double) stranded DNA has been found:

D ∼ L−ν, (4.48)

where ν = 0.45 (ν = 0.67) [28, 50]. Thus the collision rate is proportional to

rcoll ∼
(Lν

1 + Lν
2)

2

Lν
1Lν

2
=: f (L1, L2, ν). (4.49)

This expression scales differently with L1 and L2 than θ = L1 + L2− 1, compare Fig. 4.10(left)
with Fig. 4.10(right).
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Figure 4.10.: (left) rcoll ∼ f (L1, L2) for
ν = 0.45. (right) number of channels
θ(L1, L2). f (L1, L2) and θ(L1, L2) have
different scaling.

One potential solution to this apparent dilemma would be the introduction of interme-
diate states. This state would be characterized by two molecules that have collided but
have not yet formed a hybridization complex. From this intermediate state, molecules
can then either hybridize along a channel or go back into solution. In accordance with
microscopic reversibility, the dehybridization has to pass through this intermediate state,
which effectively allows the constituent strands of a complex to reassemble.

In that case, the factors weighing the hybridization into different channels could be
completely arbitrary since the corresponding probabilities would not need to sum to unity
but only determine the (average) lifetime of this intermediate state. Acceptance probabilities
with a more general parameter dependence can be formulated independently from an
(optional) “initiation energy” in a nearest-neighbor model. However, such a simulation
would require many more (unknown) parameters and a different implementation.
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5. Implementation of the simulation
framework

5.1. Implementation of the simulation framework

In this section, we briefly discuss the implementation of the simulation framework and give
some insights into the technical details. The simulation implements a Gillespie algorithm
on the Markov chain of copy numbers as introduced in Sec. 4.1. The codebase is written in
C++. It was jointly developed between Tobias Göppel and myself, where I took stronger
responsibility for the architecture during the first years, and he took stronger responsibility
implementing important speedups such as. e.g., the generation of a constant background.
Further, I was mostly responsible for developing the software necessary to run and manage
the data acquisition on the cluster.

5.1.1. Data structure of complexes

The main requirements of the data structure of the complexes are twofold: (i) The ability to
quickly calculate all possible hybridizations between two complexes, and (ii) to allow for a
simplistic update of the complex structure upon hybridization, dehybridization, or ligation.
It turned out that these requirements are fulfilled well by splitting strands into segments
as already presented in Section 3.2. A new segment starts whenever a new hybridization
site in a complex starts or ends, cf. Fig. 5.1(a) (red dotted lines). A network of linked
segments then represents a complex, cf. Fig. 5.1(b). A complex has two pointers onto the two
end-segments of this quasi-linked list (seg1, seg2 in 5.1(b)), which define the entry points of
custom iterators. We can then traverse the network by going to the left, right, or hybridized
neighbor of a segment. Each end-segment is marked by a virtual end-segment token. For
example, a single strand would correspond to a complex with one segment, whereas a
duplex has minimally two and maximally four segments.

This data structure allows for a fast calculation of the possible hybridizations. For example,
for the hybridization of a single strand onto a duplex, only the single-stranded end segments,
if there exists one, must be considered.

Each segment class has a string member variable that stores its sequence information. It
also allows for the labeling of individual complexes by assigning them a specific sequence,
as used in Section A.5 for the sampling of trajectories.

Like already defined in Chapter 2, we call the set of allowed nucleotides alphabet and
notate it by the letter A.

The null model, which will be presented in Chapter 6 uses an energy model that is only
length-dependent. In this case, it had been sufficient to store the length of each segment in
an integer member variable of the latter. However, in order to keep the algorithms generic,
we instead query the length of the sequence. Hence, the choice of alphabet does not matter
in this case and we simply set A = {A}.
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5. Implementation of the simulation framework

(b) Data structure of a complex as network of segments

(a) segmentation of complex into segments
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Figure 5.1.: (a) Mapping a complex consisting of hybridized strands onto segments. A new segment
starts whenever a new hybridization site starts or ends (red dotted lines). A is the alphabet of the
nucleotides. A ligation site is represented by two vertical lines between two adjacent segments.
(b) A complex is basically a linked list of segments. Each segment has pointers to its neighboring
segments: hyb, left and right. The pointer is 0 if the neighboring position is not occupied. The
segments specifying the ends of the linked list, called seg1 and seg2, point to a unique segment
called virtual end segment (v). The complex class itself has only pointers to seg1 and seg2. A custom
iterator uses them as an entry point in order to iterate over the segments of the complex.

5.1.2. Container of species

If several complexes belonging to the same species are present in the system, we do not
store them separately. Instead, we store one instance of the complex together with its copy
number. Hence, a species is characterized by a complex and its associated copy number. We
store all species present in the system in an unordered map, to which we refer to as species
container. The unordered map allows for fast insertion and deletion of species via a key
created by uniquely mapping a complex structure onto a string. When inserting a complex
of species Si into the species container, it is first checked if the species Si already exists. If
this is the case its copy number is increased, Ni → Ni + 1. If the species is not yet contained
in the species container, the complex is inserted with copy number Ni = 1. Drawing an
individual complex from the species container because it is involved in a reaction means
creating a copy of the species and reducing the copy number, Ni → Ni − 1. If the copy
number of the complex, which is chosen for the next reaction, is one, the complex is removed
from the container.

5.1.3. Process flow of the simulation

We send an ensemble of jobs (simulations) to the computer cluster, managed by a Sun
Grid Engine (SGE) queuing system. At the start of a simulation, the initial species are
read in. All reactions are created and stored in a reaction container. The reaction container
has an interface to a binary search tree, which is used to select a reaction based on its
weight according to the Gillespie Algorithm (cf. Sec. 4.2). First, all monomolecular reactions
(dehybridizations and ligations) are calculated and inserted into the reaction-container.
The bimolecular reactions (hybridizations) do not need to be calculated individually. As
described in Sec. 4.6, we condense them into a single total collision reaction, and therefore
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5.1. Implementation of the simulation framework

only need to track the total number of complexes Ntot
n in the system. We also insert the total

collision reaction into the reaction-container. Its rate is updated whenever the total number
of complexes changes. The number of monomolecular reactions scales with the number of
species present Stot

n , whereas the number of hybridizations scales like (Stot
n )

2. By contracting
the bimolecular reactions onto one single collision reaction, we reduce the computational
complexity of the reaction selection step from ≈ O(ln(Stot

n + Stot
n

2
)) to ≈ O(ln(Stot

n )).

When the simulation is set up, one reaction is chosen from the container via the binary
search tree based on the weight of its rate, and the system time is updated (cf. Sec. 4.2). If it
is a monomolecular reaction, it can be performed directly. If the total-collision-reaction is
chosen, a specific hybridization reaction must be generated. For that, two complexes are
chosen from the species container, to perform the actual collision event. Next, the number of
possible hybridizations Θ is calculated. If Θ = 0, the algorithm returns to the selection step
of a reaction. If Θ > 0 a specific hybridization channel is chosen. We thereby implement the
acceptance probability pa and channel probability pc as described in Sec. 4.4.

Independent of whether the picked reaction is a collision leading to a hybridization or a
monomolecular reaction, the resulting complex structure must be obtained. In the following,
we discuss the case of a monomolecular reaction. The bimolecular reaction is handled
analogously: First, the complex undergoing the reaction is drawn from the species container.
We then form the new complex-structure specified by the reaction and insert it into the
species container as described in Sec. 5.1.2. If it belongs to a new species, we create all
ligations and dehybridizations. As discussed in Sec. 4.8.1, the dehybridization rate for a
hybridization site c is given by

roff(i, c) =
1

Θc
eγlc 1

t0
. (5.1)

Hence the hybridization channels Θc need to be calculated for all hybridization sites. This
calculation is implemented via a virtual dehybridization of the complex, see Fig. 5.2. The

channels for each 
hybridzation site?

(4)(3)

(1) (2)
rotate

Figure 5.2.: Example of the calculation of
the channel factor Θc for each hybridiza-
tion site: (1) The complex we want to cal-
culate the channel factors for is a triplex
with two hybridization sites. (2) We
virtually open the hybridization site be-
tween the green an the orange strand
and calculate all possible hybridization
channels. (3) Equivalent to (2) but for
the blue-orange hybridization site. (4)
summary of the calculated channel fac-
tors.

reaction is completed, and the program returns to the selection step of a reaction. The
described process starts to repeat itself. After a set time interval, observables such as, e.g.,
species and length distributions are saved. As the SGE sets a time limit on the runtime of
jobs, jobs resubmit themselves automatically until the simulation finishes. Therefore, when
the runtime exceeds a specific value (1.5h), the state of the simulation is saved, and a new
job referring to the unfinished simulation is passed to the SGE-queue. When the newly
submitted job starts, the simulation’s previous state is loaded, and the algorithm continues.
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5. Implementation of the simulation framework

5.1.4. Speed up by the introduction of background species

We achieve a speedup of the simulation by the introduction of so-called background species.
We calculate the hybridization equilibrium of the short building blocks of the reservoir
(monomers, dimers) and insert them into a container of background species. Species of the
background can not collide among each other, though they can collide with species in the
regular species container. The concentrations (copy numbers Ni) of the background species
are kept constant.
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6. The null model*

6.1. Introduction

Like described in Chapter 1 a bottom up study of emergent phenomena of oligonucleotide
self-assembly and growth via templated ligation was missing so far in the literature.

The goal of this work is to close this gap. To this end, we investigate a simple model that
contains all the elementary processes important for growth processes governed by templated
ligation. To focus on the self-assembly process alone, we ignore the sequence-dependence
of hybridization in the present study. Instead, the binding energy of a hybridization site
is proportional to its length, where the binding energy per nucleotide is negative and of
the order of the thermal energy. As such, this model serves as a null model for other models
which might include sequence-dependent binding.

Our main finding is that the competition of time-scales between (length-dependent)
dehybridization, extension and a third global time scale leads to the emergence of a non-
monotonous strand-length distribution. We show that this feature is generic and appears in
experiments, cf. Fig. 6.1(a), and our simulation, cf. Fig. 6.1(b). Furthermore, we can predict
the characteristic strand lengths that lead to strong catalytic behaviour and thus shape the
non-monotonous strand-length distribution.

Figs. 6.1(c-f) schematically illustrate these ideas: Hybridization and bare ligation are
combined into extension reaction which occurs at an effective rate rext, cf. Fig. 6.1(c).
Above a characteristic strand length L∗, the rate of extension becomes larger than the rate
of dehybridization. The extended duplex binds stronger and dehybridization is further
suppressed. Another extension then becomes even more likely leading to a fast process
we refer to as an extension cascade, cf. Fig. 6.1(d). Generically, extension cascades only stop
when a persisting configuration is reached where no further extension is possible. When
long duplexes eventually dehybridize, the released single strands recombine and trigger
further extension cascades. The time-scale of combined extension and reassembly is limited
by the dehybridization rate. When strands are constantly removed, a non-equilibrium
steady state is established and the dehybridization rate competes with the outflux rate
rout. In contrast, in a transient non-equilibrium situation, dehybridization times compete
with the observation time τobs. In both cases, the length dependence of dehybridization
yields an associated length scale L†, which corresponds to the local maxima in strand-length
distributions. Together, the characteristic length scales L∗ and L† define different dynamical
regimes in the strand-length distribution, cf. Fig. 6.1(e). Applying the same arguments in
an experimental scenario using random DNA sequences, we are able to predict and observe
the emergence of a non-monotonous length distribution.

Our work is structured as follows: In Section 6.2 we cover the specific thermodynamic
and kinetic model used. Section 6.3 first presents the core simulation results. In parallel,
we develop the analytical theory necessary to understand the observed phase transitions
and shape of the strand-length distributions. In Section 6.5 we present the results of a
DNA-ligation experiment and interpret it using our theory. The implications of our results
in the context of the origins of life are discussed in Section 6.6.

*This chapter got adapted from [106]
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(c) extension = hybridization + ligation
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Figure 6.1.: An overview about this work. (a) Random DNA sequences with a ligase exhibit a
non-monotonous strand-length distribution when subjected to temperature cycles. The positions of
the local minimum and maximum depend on the temperature in the hot phase Thot. (b) Stochastic
simulations of our model reproduce this behavior. Strands to the left of the minimum (Lmin ∼ L∗)
are dominantly single-stranded, while longer strands are fully hybridized and thus non-extendable.
These double strands cause a local maximum at Lmax ∼ L†. (c) An important parameter of the
dynamics is the emergent extension rate rext, which combines hybridization and ligation reactions.
(d) A duplex is stable when the extension rate rext exceeds the dehybridization rate roff. Extension
cascades lead to non-extendable, fully-hybridized duplexes. (e) The dehybridization rate roff(L)
relates length and time-scales: The minimal length scale for stable duplexes, L∗, is set by roff(L∗) =
rext. At the typical length scale for the fully-hybridized duplexes, L†, the dehybridization rate equals
the global outflux rate, roff(L†) = rout. (f) Different regions in the strand length distribution exhibit
different dynamical regimes. In the region L∗ ≤ L ≤ L† extension-reassembly dynamics dominate a
dynamical regime that is far from equilibrium. The size of arrows scales with the magnitude of the
associated rates roff (purple, arrow pointing to top), rext (brown, arrow to the right), and rout (red,
arrow to the bottom).
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influx of short oligomers

constant outflux rate

hybridization and dehybridization 

templated ligation

(b) external elementary processes(a) internal elementary processes

(c) self-assembly and strand growth in the reaction vessel

Figure 6.2.: (a) The internal elementary processes are hybridization, dehybridization, and templated
ligation with corresponding rates ron, roff, and rlig. (b) The external elementary processes couple the
system to its environment. Short strands of length L = µ for µ ∈ R are chemostated via the coupling
to an external reservoir of initial building blocks at fixed concentrations cµ. All complexes leave the
system at a constant rate rout. (f) Short strands that enter the reaction vessel from the reservoir Rin
are the initial building blocks of the system. Inside the vessel, strands form various complexes via
hybridization and dehybridization. Subsequent ligation leads to longer strands. All complexes can
leave the system by a constant outflux rate rout, which can be interpreted as a coupling of the system
to an infinite empty reservoir Rout.

6.2. Model and simulation method

In this section, we formulate the specific model used in this chapter to study the self-
assembly and growth of informational polymers via templated ligation.

We start building the model in a bottom-up approach: Oligonucleotides (or “strands”) are
either free in solution or part of a hybridization complex. In order for two strands to become
ligated, they need to be hybridized next to each other on a third strand. The most simple
configuration allowing for templated ligation is thus a triplex see Fig. 3.1 (b)(left). However,
neither do all triplex configurations allow for templated ligation, nor does templated ligation
only occur in triplexes.

The internal reactions in our model are hybridization and dehybridization as well as
templated ligation, cf. Fig. 6.2 (a). While the bare ligation rate rlig is assumed to be constant,
the dehybridization rate roff depends on the binding energy of a complex.

The binding energy of two strands is proportional to the length of the hybridization site
and characterized by the dimensionless binding energy per nucleotide γ. We also include
a “bounded” variant of our model, where the dehybridization rate cannot become smaller
than some prescribed “cutoff” rate rcut.

The system is coupled to an environment which regulates the in- and outflux of strands
and complexes, cf. Fig. 6.2 (b). Since the goal is to study the self-assembly of longer
strands and complexes from short oligomers, we couple the system to an external reservoir
Rin which keeps the concentration of initial building blocks constant. All complexes are
subjected to a stochastic outflux prescribed by a constant rate rout, which can be interpreted
as the coupling to an infinite empty reservoir Rout.
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6. The null model

Consequently, the stochastic dynamics of self-assembly and growth are simulated ab initio
with the dynamics schematically illustrated in Fig. 6.2 (c).

6.2.1. Complexes and strands

As described in Chapter 3 the basic element of our dynamics is a directed oligomer called a
strand, which consists of a number of covalently bound nucleotides. Strands have distinct
upstream and downstream directions pointing towards the 5′ and 3′ oligonucleotide ends.
The only form of secondary structure taken into account here is the hybridization of strands
to form hybridization complexes. Self-folding is excluded from our model. Complexes
generally consist of an arbitrary number of strands and are called complexes of order n.
A complex of order n = 1 is a single strand and will also be called an m-mer, where we
explicitly refer to monomers, dimers, trimers and tetramers for the cases of m = 1, 2, 3, 4,
respectively. The simplest nontrivial complex is a duplex consisting of n = 2 strands.
Because of the linear topology, an nth-order complex has exactly n− 1 distinct hybridization
sites. Each hybridization site involves exactly two strands and is characterized by an overlap
length l, see Fig. 6.3. Thereby internal loops structures are excluded from the model, and
there are no other secondary structures than helices.

3 hybridization sites2 hybridization sites

Figure 6.3.: Examples of higher order
complexes with multiple hybridiziation
sites: (left) A triplex with a templated
ligation site. (right) A complex of order
4 with not ligation site.

6.2.2. Elementary processes and parameters

Fig. 6.2 (c)(f) gives an overview of the model dynamics: Short single strands enter a well-
mixed reaction vessel of volume V. Within the reaction vessel, strands hybridize to form
complexes. Strands in suitable complexes may undergo templated ligation. All complexes
leave the reaction vessel at a constant rate, mimicking a flow-reactor or (fast) serial dilution.

The internal elementary processes (i.e., reactions), are hybridization, dehybridization and
templated ligation, see Fig. 6.2 (a). Hybridization and dehybridization are assumed to be
elementary and reversible reactions occurring with rates ron and roff, which are defined for
single hybridization sites.

Thermodynamic consistency [54, 80] connects the elementary rates ron and roff for hy-
bridization and dehybridization to the standard binding free energy ∆G◦b of a hybridization
site:

roff

ron
= (VNAc◦)eβ∆G◦b , (6.1)

where β = (kBT)−1, kB is Boltzmann’s constant and T denotes the (absolute) temperature,
NA is the Avogadro constant and c◦ = 1 mol/l is the standard concentration.

When two strands of length L1 and L2 are hybridized adjacently on a third strand, they
can ligate and become a new strand of length L1 + L2. This process is called templated-
ligation, with the third strand understood as the template. In this model, templated ligation
is the only process through which strand length is increased. We assume this process to be
irreversible and to occur with a bare ligation rate rlig. While no process in nature is truly
irreversible, this simplification is justified under the assumption that either (i) single strands
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enter the system in an activated form providing chemical energy ∆G◦lig � kBT (e.g. [69])
or (ii) if templated ligation is catalyzed under the consumption of energy by an enzyme
(a ligase) [100, 63, 48, 73]. The irreversibility of the ligation reaction is a hallmark of a
non-equilibrium system, with an energy source provided by reactive building blocks or the
chemical fuel consumed by a ligase. Since template-free random ligation is a much slower
process than templated ligation [64], the former process is ignored in this simple model.

In addition to the internal reactions, two external reactions account for the connection of
the system with its environment, cf. Fig. 6.2 (b): (i) Coupling the system to a large reservoir
keeps the concentrations cm of single strands with lengths m ∈ R constant. (ii) Strands and
complexes are removed from the system with a constant rate denoted as rout, which is the
same for all complexes. Thermodynamically, our system is open and coupled to different
external reservoirs. It and thus allows for non-equilibrium stationary states.

6.2.3. Thermodynamics and kinetics of hybridization

For real oligonucleotides, the binding energy ∆G◦b of hybridization depends on the number
and nature of paired nucleobases at and adjacent to the hybridization site. Typically, a
nearest-neighbor model is used for calculating binding energies [52, 32] as presented in
Chapter 2.3. The possible structures that can potentially be represented by our simulation
were presented in Chapter 3:

In this chapter, however, a hybridization site and thus its binding energy is only charac-
terized by the overlap length l, cf. Fig. 6.3. The binding energy of a hybridization site is thus
given by

β∆G◦b (l) = γl, (6.2)

where γ < 0 is a parameter that gives the (negative) binding energy per unit length in units
of the thermal energy kBT.

Via Eq. (6.1), the binding energy determines only the ratio of ron and roff. An additional
kinetic parameter is needed for a full parametrization of these rates. We therefore introduce
the rate of collision between two complexes rcoll = (VNAc◦t0)−1, where t0 = (r0)−1 is a
microscopic, intensive collision time scale, see Sec. 4.5.2. In what follows, all times are
measured units of t0.

In general, two colliding complexes can form multiple hybridization configurations via Θ
distinct hybridization channels (see Fig. 4.7). The conditional probability of choosing one of
these channels is

phyb =

{
0, Θ = 0

1/Θ, Θ > 0
. (6.3)

. We thereby set the acceptance probability pa = 1 and combined it with the channel
probability pc = 1

Θ to phyb. With that, the hybridization rate for a given hybridization
channel reads

ron = rcoll phyb, (6.4)

whereas the dehybridization rate

roff =
1
Θ

eγl (6.5)

is given by Eqs. (6.1) and (6.2).
In reality, the collision rate depends on the properties of the colliding complexes, the

properties of the solvent and temperature. This choice of kinetics can be interpreted as
an activation-controlled regime, where the activation barrier is assumed to be constant, cf.
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Ref. [65]. A parametrization where the binding energy γl is attributed to the dehybridization
rate roff is a common kinetic assumption, which has been qualitatively confirmed by
experiments, cf. Refs. [4, 67, 93]. Implementing the kinetic sampling in the way described
above reduces the computational complexity due to hybridization massively while still
sampling all complex configurations in a thermodynamically consistent way.

With these elementary rates, the total binding energy of a complex C is found to be

β∆G◦tot(C) = γ ∑
i∈C

li + σ ln(2), (6.6)

where we sum over all hybridization sites in the complex, cf. Eq. (4.43). Recall that the final
term σ ln(2) is a “symmetry penalty” that occurs if the complex is rotationally symmetric
(σ = 1) and is zero (σ = 0) otherwise. It also appears in the standard databases for oligonu-
cleotide binding energies [32, 52] and was derived in detail in Section 4. Thermodynamically,
it is equivalent to a decrease in the (standard internal) entropy by a factor of ln(2) due to
the rotational symmetry.

In addition to our standard model (where the binding energy is strictly proportional
to the overlap length, Eq. (6.2)), we also consider a “bounded” variant of our model. In
this bounded model, the dehybridization rate cannot become smaller than a minimal rate
rcut, such that roff = rcut if eγl/Θ < rcut. The bounded model can be thought of as an
effective implementation of a system that is subjected to an external mechanism that causes
dehybridization of all complexes with a timescale of τ ∼ (rcut)−1. Such a situation can
be realized, for example, in a thermocycler, a “thermal trap” situated in the vicinity of a
hydrothermal vent or be the consequence of day–night or other naturally occurring cycles,
cf. Refs. [74, 97, 91, 48, 73, 102].

6.2.4. Standard choice of parameters

In what follows, we first discuss a model where the initial building blocks entering from
the reservoir are dimers only. If not indicated otherwise, the dimer concentration is fixed
at c2 = 2 mM = 2×10−3c◦. In what follows, values of the concentrations will always be
stated in molar units. With this concentration, the reaction volume is chosen such that
this corresponds to 104 single-stranded dimers constantly present, which is a much larger
system than used in previous studies [58, 36, 82, 70].

This dimer-only model is the simplest model that allows for templated ligation and makes
analytical considerations easier. As we show below, all the features that are important in the
context of this work are generic with regard to the composition of the reservoir. That being
said, the dimer-only model has a special symmetry since all possible strands have an even
length. This leads to a particular shape of the tail of the distribution, which we will discuss
in more detail in Section 6.4.5.

Our remaining parameters are thus the binding energy per unit length, γ, the ligation rate
rlig, and the outflux rate rout, with values specified in units of r0 = (t0)−1. If not otherwise
stated, their standard values are γ = −0.5, rlig ≈ 2.5 · 10−3 and rout = 5×10−9. In the
bounded model, the cutoff rate rcut is a further optional parameter.

6.3. Simulation results and analysis

The main observable in this work is the strand-length distribution ρ(L), shown in Fig. 6.1(a,b).
It expresses the concentration of a strand of length L, irrespective whether it is part of a
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complex or free in solution. Note that ρ(L) should not be confused with the concentration
cm of single strands of length m.

Unlike the concentrations of all possible chemical species, the strand-length distribution is
an observable that is much more tractable. Quantitative experimental methods (like gel elec-
trophoresis used in this work) provide access to the strand-length distribution, cf. Refs. [85,
100]. Notice, that the strand-length distribution on its own does not contain information
about the structure of the complexes. However, within our simulation framework we have
full access to this information.

6.3.1. Self-enhancing catalysis leads to long-tailed distributions

(a) direct strand creation from reservoir (dimer as template)

(b) strand creation by autocatalysis (template length > 2)

binding equilibrium
of dimers

 

configurations

configurations

Figure 6.4.: (a) Formation of a tetramer from the dimer background. A total overlap of two leads to a
total binding energy of β∆G◦ = 2γ. (b) Templated ligation of dimers on an m-mer. There are two
overhanging configurations with β∆G◦ = 3γ and m− 3 configurations with β∆G◦ = 4γ.

Self-assembly via templated ligation is a self-enhancing process, where long strands
facilitate their own formation. In general, this process competes with a mechanism that
leads to their destruction by strands breaking apart (“cleavage”, [74, 58, 82]) or being
removed from the system ([100, 92, 96]). Our model, featuring an outflux with a constant
rate rout, implements the latter scenario.

For large outflux rates, strands remain inside the reaction volume only for short amounts
of time. Thus any strand participates in only a few or even no templated ligations. The
resulting stationary length distribution is therefore expected to be short-tailed with few long
strands present.

In contrast, for a small outflux rate, strands spend more time inside the system and
thus have a higher chance to serve as a template or to get ligated to another strand,
eventually leading to the formation of longer strands. Longer strands again allow for larger
hybridization sites and in turn, become better templates.

Consequently, we expect the existence of a crossover value for the outflux rate rout = rc
out,

where the formation of longer strands is dominantly self-enhancing, leading to a qualitatively
different strand-length distribution.

Under the assumption that (i) short-tailed distributions are dominated by the smallest
building blocks and (ii) that the time scales of the dehybridization of these small building
blocks are small compared to the time scale of ligation we can derive the value of this
cross-over rate:
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Consider the total concentration ρ> of strands with a length larger than two, i.e., strands
that are not provided as building blocks by the reservoir. In a steady state we have

0 = ∂tρ> = φ− ρ>rout, (6.7)

where φ is the concentration flux indicating processes by which ρ> grows, namely the
formation of tetramers from dimers. Notice that the formation of strands with L ≥ 4 does
not change ρ>. In general, this templated ligation can happen in all complex configurations
with two dimers that are adjacently hybridized on a third strand. Ignoring higher-order
complexes, we assume that the most important contribution to the production of longer
strands arises from a ligation reaction happening at triplexes consisting of two dimers and
another templating strand of length L ≥ 2, see Fig. 6.4.

As the hybridization dynamics of dimers are fast, we assume it to be approximately at
equilibrium. This means that the ratio of the concentration of a triplex and its constituents
is determined by its binding energy. Under that assumption, the ligation flux for triplexes
consisting of dimers only is φ2 = (c2)3e−2γrlig, see Fig. 6.4 (a). In contrast, the ligation
corresponding to templates of length m > 2 is

φm = (c2)
2(2e−3γ + (m− 3)e−4γ)cmrlig, (6.8)

where we took into account the different configurations of the relevant triplexes, see
Fig. 6.4 (b).

We separate the ligation flux into two components, φ = φ2 + φ>. The first term, φ2,
only involves the building blocks provided by the reservoir. In contrast, the second term
φ> := ∑m>2 φm involves the concentrations of whose formation is catalyzed by longer
strands and is thus a self-enhancing process. Assuming that the length distribution is
still short tailed and that most of the strands are single stranded configuration we can
approximate ρ> ∑ ρm ≈ ρ4 ≈ c4. Thus the steady state condition approximately

0 = φ2 + φ4(c4)− c4rout. (6.9)

We assume the transition to occur when the concentration of tetramers becomes large
enough such that the auto-catalytic term becomes equal to the strand growth from the
background, φ>(cc

4) = φ2, which yields the condition

0 = 2φ>(cc
4)− cc

4rout, (6.10)

for the transition to occur. Plugging in the expression for φ4, Eq. (6.8), the latter condition
becomes

0 = 2(c2)
2(2e−3γ + e−4γ)rlig − rout, (6.11)

which we can use to determine the critical outflux rate rc
out for the transition

rc
out = 2(c2)

2
(

e−4γ + 2e−3γ
)

rlig. (6.12)

We now probe the stationary distribution of the bounded (rcut = e−6) and unbounded
model using simulations for various values of the outflux rate rout. Simulation results
for the standard model are shown in Fig. 6.5(a). For comparison, Fig. 6.5(b) shows the
analogous results for the bounded model, where the dehybridization rate cannot become
smaller than some rcut. As a consequence, the (slow) time scales of the effective extension
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reactions (characterized by an inverse rate r−1
ext) are well separated from the time scales of

hybridization and dehybridization of any complex.
Since the derivation of Eq. (6.12) does not rely on the dynamics of long strands, we expect

the same transition from short to long-tailed strands to occur in both situations. The first
column of Fig. 6.5 shows the stationary strand-length distribution in both models. For
sufficiently large outflux rates the resulting short-tailed strand-length distribution looks
qualitatively and quantitatively similar between the two models. In both cases, the curve for
t8he crossover outflux rate rc

out = 3.24×10−7 obtained from Eq. (6.12) is indicated in orange.
The long-tailed distributions obtained for small outflux rates differ significantly: In the

standard model, Fig. 6.5(a), we see the emergence of a characteristic hump leading to a local
minimum and maximum. In contrast, the long-tailed distributions in the bounded model,
Fig. 6.5(b), still decay monotonously.

The reason for this behavior becomes clear from the second column, where we sketch
the dependence of the (effective) rates of the important processes on strand length. In the
unbounded model, the dehybridization rate roff intersects the horizontal lines corresponding
to constant extension and outflux rates at two distinct length scales L∗ and L†. This
behavior already hints at the two emergent length scales Lmin and Lmax in the strand-length
distribution. In contrast, this intersection does not occur for the bounded model, where
there are no distinct scales visible in the strand-length distribution.

An analogous argument to Eq. (6.12) for the transition from long to short tales was made
by Maslov and Tkachenko in Ref. [74]. In that work, the authors studied templated ligation
in a different model, where long strands break by cleavage. In contrast to a stochastic
simulation, they numerically solved an effective set of ordinary differential equations
showing a phase transition from a short to long-tailed length distribution.

The crucial difference between their work and our standard model is that in their model
ligation is always the slowest process. Similar to the situation used in the bounded model,
they motivated an effective slowest dehybridization rate by means of a cyclic process
that separates all strands on some time-scale τcycle ∼ r−1

cut. Importantly, the long-tailed
distributions obtained in their model were also monotonically decaying, similar to the
results obtained in the bounded model.
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Figure 6.5.: Stationary strand-length dis-
tributions for the standard (unbounded)
model (a) and its bounded variant (b) for
different values of the outflux rate rout.
In the bounded model, dehybridization
cannot become smaller than rcut = 0.05.
Dehybridization is thus faster than lig-
ation (rlig = 2.5×10−3) for all lengths.
In both models, the length distributions
(left) develop long tails when decreas-
ing the outflux rate rout. The orange
curves corresponds to a system where
the outflux rate takes the crossover value
rout = 3.24 × 10−7, cf. Eq. (6.12). For
outflux rates below the transition value,
the unbounded model exhibits a non-
monotonous strand-length distribution
with a local minimum at Lmin and local
maximum Lmax. Decreasing the outflux
rate does not affect the minimum but in-
creases both the position and the value
of maximum.
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6.4. Estimation of the outflux rate at the transition from short- to
long-tailed distributions

6.4.1. Competition of time scales enables extension cascades and persisting
complexes

For the rest of this work, we focus on our standard (unbounded) model with sufficiently low
outflux rates, such that the strand-length distribution exhibits the non-monotonous behavior
shown in Fig. 6.5(a). From the discussion, it already became clear that this behavior occurs
for complexes for which dehybridization is not necessarily the fastest process.

To be more precise, consider the fates of duplexes illustrated schematically in Fig. 6.1(f).
If its binding energy is close to zero, it will dehybridize quickly. In contrast, if the binding
energy has a large (absolute) value, the complex is stable, and extensions with a third
strand become more probable. The extended complex is then even more stable, and another
extension becomes even more probable. We call this phenomenon an extension cascade.
Extension cascades originate from the fact that time scales of dehybridization and extension
are not clearly separated.

Disregarding dehybridization and outflux for now, an extension cascade only stops when
a configuration is reached where no further extension is possible. In our model, this is only
the case for a fully-hybridized duplex, i.e., a duplex consisting of two maximally overlapping
strands with the same length. Since extensions cannot occur in this configuration, fully-
hybridized duplexes persist for long times. Eventually, the fate of such a long-lived complex
is determined by either dehybridization or outflux. The competition between these two
processes leads to non-monotonous strand-length distributions.

6.4.1.1. A closer look at the structure of complexes

We partition complexes into different classes by distinguishing between single strands,
duplexes, and higher-order complexes, cf. Fig. 6.6. We then further subdivide duplexes
according to their overhangs, i.e., the length of the single-stranded segments at their ends.
In the dimer-only model, where all strands are of even length, we consider the parity
of an overhang. Zero-parity duplexes are fully hybridized and have no overhang. In
contrast, duplexes with odd and even parity have overhangs with an odd and even length,
respectively.

fully hybridized

duplex subclasses:

odd parity

even parityhigher order complexes

single strands
Figure 6.6.: Strands are grouped accord-
ing to the order of the hybridization
complex they belong to. In addition,
duplexes are distinguished by their par-
ity: Fully-hybridized duplexes have zero
parity, whereas duplex with odd and
even overhangs have odd and even par-
ity, respectively.

Extension cascades only reach a terminal fully-hybridized duplex when they start from
even duplexes. Duplexes with odd parity will undergo quasi-infinite extension cascades
where the role of “primer” and “template” changes with each extension.

For our standard set of parameters, Fig. 6.7(a,b) shows the strand-length distribution
partitioned into these sub-classes. As expected, short strands are predominantly single-
stranded. In contrast, the peak of the length distribution is dominated by fully-hybridized
duplexes. The effect of infinite extension cascades is indeed visible in the long tails. We call
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the complexes of the long tail with a length C much larger than Lmax, C � Lmax elongators.
Also, we see that higher-order complexes are much less abundant and do not contribute
significantly to the shape of the strand-length distribution.

The minimum of the distribution appears due to the increase of the concentration of
fully-hybridized duplexes at a characteristic length scale L∗ < Lmin. Fig. 6.7 (c) shows that
this is the typical length-scale where duplexes become stable enough that extension cascades
start playing a role.

6.4.1.2. Characterization and kinetics of duplexes

Since the dehybridization rate depends on the length of the hybridization region, it connects
time scales with length scales. As such, the characteristic scales L∗ and L† also divide the
strand-length distribution into the different dynamical regimes depicted in Fig. 6.1(f). Since
the strand-length distribution is dominated by single strands and duplexes, we consider the
kinetics of duplexes in more detail.

A duplex consisting of two strands S1 and S2 with corresponding lengths L1 and L2 is
fully characterized by the three-tuple D := (L1, L2, o1). The number o1 is the (positive or
negative) overhang of strand S1 on its 3′ end, see Fig. 6.8. The overhang o2 at the 3′-end of
S2 then obeys 0 = L1 − L2 − o1 + o2. From these numbers, the overlap which determines
the binding energy, is given as l = 1

2 (L1 + L2 − |o1| − |o2|). When the two strands collide,
they can form Θ = L1 + L2 − 1 different configurations. Applying this to Eq. (6.5), the
dehybridization rate of a duplex is given as

rdupl
off (D) =

1
L1 + L2 − 1

eγl(D). (6.13)

An extension with an m-mer is the combined process of an m-mer hybridizing next
to a strand of a duplex D. Assuming that this happens at the non-zero overhang oi of
the duplex, a triplex Ti is formed as an intermediate where the subsequent templated
ligation may occur. The length of the hybridization site of the m-mer with the duplex
is given by zi = min(|oi| , m). In order to calculate an effective rate for this process, we
assume that the dynamics of the second hybridization is fast compared to the bare ligation rate.
Moreover, we assume that the length of the hybridization site zi is small enough, such that
the dehybridization rate of the m-mer is much larger than the dehybridization rate of the
duplex itself.

Under these conditions, we may assume the hybridization of a duplex and a (short) m-mer
into a triplex Ti to be in equilibrium. The index i ∈ (1, 2) distinguishes the two ligatable
triplexes that can be formed by the m-mer attaching to the overhang oi of the duplex. Thus
we obtain

cTi = cDcme−γzi . (6.14)

With this we define the effective extension rate with an m-mer as the ratio of the rate of
ligations from that triplex and the duplex concentration, i.e., rext,m = rligcT/cD. Using
Eq. (6.14) and taking into account that in general there are two ligation sites (i = 1, 2), the
extension rate with a m-mer reads

rext,m(D) = rligcm ∑
i∈{1,2}

oi 6=0

e−γzi . (6.15)
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Figure 6.7.: Partitioning the contributions of the different subgroups (cf. Fig. 6.6) to the strand-length
distribution reveals the dominant configurations: Short strands are mostly single-stranded. Strands
with lengths around the peaks are in the persistent fully-hybridized zero-parity configuration. In the
dimer-only model, all strands are of even length. Odd duplexes thus never reach a fully-hybridized
state and cause the long tail of the distribution. (c) The probability of different complex types
conditioned on strand length. (d) The probability that a duplex with non-zero parity is stable
conditioned on strand length. Around L = L∗ (cf. Eq. 6.18) this probability increases rapidly.
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duplex characterisation

 

3'

3'

3'

Figure 6.8.: Duplexes are uniquely characterized by the strand lengths L1, L2 ∈N and the overhang
o1 ∈ Z of strand S1 at its 3′ end. The overhang o2 ∈ Z is defined analogously. Overhangs oi can be
negative, as for the case of o2 in the right example. Only three of these numbers are independent
since 0 = L1 − L2 − o1 + o2.

Consequently, the rate of extension with a short m-mer is given by

rext(D) = ∑
m

rext,m(D). (6.16)

The ratio of the extension rate rext and the dehybridization rate roff gives the condition for
the onset of extension cascades for the duplex D, 1 < rext(D)/rdupl

off (D). As dimers are the
most abundant species, we approximate rext(D) < rext,2(D) which yields a lower bound for
the latter condition:

1 <
rext,2(D)

rdupl
off (D)

. (6.17)

Up to now, we have focused on a specific duplex D. In order to obtain a more systemic
view, we now consider a system containing only strand lengths smaller or equal to some
fixed value L0. We then determine the minimal L0 such that duplexes appear, which can
undergo extensions cascades.

Using Eq. (6.13) and Eq. (6.15) we write the ratio appearing on the right-hand side of
Eq. (6.17) as

rext,2(D)

rdupl
off (D)

= (L1 + L2 − 1)c2rlig ∑
i∈{1,2}

oi 6=0

e−γ(l+zi).

This ratio is largest for symmetric duplexes with L1 = L2 = L0 where l(D) + zi = L0. The
two duplex configurations maximizing the ratio are thus the odd duplex D±1 = (L0, L0,±1)
and the even duplex D±2 = (L0, L0,±2). In our system, the former corresponds to a
duplex that will undergo an infinite extension cascade, whereas the latter will reach a
fully-hybridized configuration.

The smallest L0, for which extension cascades become possible, defined as L∗, can then be
found by solving

1 = 2(2L∗ − 1)c2rlige−γL∗ , (6.18)

which yields L∗ ≈ 16.2. As the shortest building blocks are dimers, L∗• = dL∗e is calculated
by ceiling L∗ to the next even integer, which yields L∗• = 18.

Notice that for strong binding, i.e., γ < −1, the (kinetic) subexpontial length-dependence
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which enters via the channel number Θ can be neglected. To leading order one then has

L∗ ≈ ln
(

c2
rlig

r0

)
γ−1, (6.19)

where we made the dependence of the microscopic kinetic parameter r0 explicit.
As shown in Fig. 6.7, the distinct hump in the strand-length distribution is caused by

persisting, fully-hybridized duplexes (L, L, 0). We also know that these duplexes are the end-
points of extension cascades and that they will persist for long times, unless they eventually
dehybridize or leave the system. This gives rise to two different fates of fully-hybridized
duplexes depending on their length.

On the one hand, for L smaller than some critical value L†, rdupl
off (L, L, 0) > rout, such

that their production in stationary state is for the most part balanced by dehybridization.
On the other hand, for long duplexes with L > L†, we have rdupl

off (L, L, 0) < rout and
hence the stationary concentration is determined for the most part by a balance of their
production with the outflux. Importantly, the outflux rate is independent of L, whereas
the dehybridization rate decreases exponentially with L. We thus expect the existence of
two different regimes where the stationary concentration of the fully-hybridized duplexes
exhibit a different dependence on L.

Formally, we can find the length where the dehybridization-rate becomes smaller than
the outflux-rate by

roff(L†, γ) =
eγL†

2L† − 1
= rout. (6.20)

Solving this equation numerically for our standard parameters, we obtain L† = 30.07.
Ceiling to the next even integer yields L†

N = dL†e = 32.
As above, for strong binding energies we can ignore the logarithmic kinetic dependence

on the length and obtain

L† ≈ ln
(

rout

r0

)
γ−1, (6.21)

where again, we made the dependence of the collision rate explicit.

6.4.1.3. Understanding the shape of the strand-length distribution

We briefly summarize our main findings: Strands with L < L∗ typically dehybridize rapidly,
such that they are most often single stranded. For L > L∗ duplexes dominate. The strand-
length distribution exhibits a characteristic hump that is caused by fully-hybridized and
thus persistent species, whose stationary concentration is either balanced by dehybridization
or outflux. The strand length determining the transition between these regimes is estimated
by the characteristic length L†.

From Fig. 6.7 (a) we already see that L† coincides with the position of the maximum
Lmax in the strand-length distribution. On the two different sides of the maximum, the
stationary balance equation for fully-hybridized duplexes has a different dependence on
the strand length. Thus, the emergent length scale L† separates two different dynamical
regimes resulting in the peak at Lmax ∼ L†.

The other scale L∗ serves as a proxy for the position of the minimum Lmin in the strand-
length distribution. While L† formally marks the onset of extension cascades, cf. Fig. 6.7 (c).
The minimum in the strand length distribution is caused by the consumption of single
strands of lengths L & L∗ at the start of extension cascades.
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We will discuss the strong nonequilibrium dynamics of strands with lengths between L∗

and L† in more detail below.

6.4.2. Exploration of the parameter space

In order to show that our results are indeed generic, we performed an exhaustive screening
of the parameter space of our model. As above, we empirically determine Lmax and Lmin

from our simulations and compare them with the analytical expressions for L∗ and L†.
The results are shown in Fig. 6.9. In each row, a single parameter is varied while all

the other parameters are fixed at their standard values. The left column in Fig. 6.9 shows
simulated stationary strand-length distributions. The right column presents the analytical
expressions for the (ceiled) values of L∗ and L† with the characteristic lengths Lmin and
Lmax of the simulated strand-length distribution. A colored curve in the left panel always
corresponds to the accordingly colored marker in the right panel.

Fig. 6.9(a) shows the result for a variation of the outflux rate rout. The transition from
a short to a long-tailed length distribution was already discussed in Section 6.3.1. As the
outflux rate should not influence the onset of extension cascades, we expect the position of
the minimum to remain constant, which the simulation confirms. Increasing the outflux
rate shifts Lmax to lower lengths in an approximately logarithmic way in accordance with
Eq. (6.21).

In Fig. 6.9(b) we vary the binding energy γ. We observe that increasing the binding energy
displaces the characteristic hump towards shorter strands. The behavior of both curves is
roughly inverse proportional L ∝ −γ−1.

Next, we vary the bare ligation rate rlig, see Fig. 6.9(c). The position of the maximum
remains unchanged, since the transition determining the fate of a fully-hybridized state is
not affected by the ligation rate, see Eq. (6.20). In accordance with Eq. (6.18), decreasing
rlig logarithmically shifts the onset of the extension cascade and thus the position of the
minimum to larger lengths. For the lowest ligation rate plotted, we cross the transition
towards short-tailed distributions described in Section 6.3.1 and the characteristic hump in
the length distribution disappears.

Fig. 6.9(d) shows the effect of varying the dimer concentration c2. Since reducing c2

logarithmically reduces the effective rate of extension with a dimer, higher concentrations
enable extension cascades already for duplexes consisting of shorter strands, shifting the
minimum to the left. Again, the position of the hump remains constant. For the smallest
concentration shown we cross the transition towards a short-tailed distribution.

In summary, both the phenomenological position of the minimum Lmin as well as the
position of the hump, Lmax are well described by the expressions for L∗ and L†, Eqs. (6.18)
and (6.20). As such, the characteristic features of the length-distribution can really be
understood in the context of the onset of extension cascades that lead to persisting, fully-
hybridized duplexes.
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Figure 6.9.: Probing the parameter space of the dimer-only model. Left column: stationary strand-
length distributions. Right column: Comparison of the observed values Lmin and Lmax and the
predictions for L∗ and L† via Eqs. (6.18) and (6.20). Variable parameters are (a) the outflux rate rout,
(b) the dimensionless binding energy per nucleotide γ, (c) the bare ligation rate rlig and (d) the
concentration of chemostated single-stranded dimers c2.
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6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

6.4.3. Sweep of the cutoff rate rcut

In this section, we consider a variation in the cutoff rate rcut. We separated it from the
other parameter sweeps presented above as the associated transformation of the length
distribution is more complex, see Fig. 6.11(left). We use the parametrization rcut = eγlcut .
The minimum dehybridization rate is then given by roff = eγlcut and thus, the maximal time
scale that strands are hybridized onto each other is tcut = e−γlcut = e0.5lcut .

6.4.3.1. Average strand length as a function of lcut

Apart from the transformation of the length distribution, we want to analyze the average
strand length in steady-state, 〈L̄〉, where the bar notates the time average and the brackets
notate the ensemble average.

We say that a steady state is reached if the time-dependent ensemble average of the strand
length 〈L〉 (t) becomes constant. But as can be seen from Fig. 6.11(right) not for all values of
llig a steady state was reached.

We therefore consider 〈L〉 (tmax), where tmax is the maximum simulation time reached
for the respective lcut. The ensemble size used to calculate 〈L〉 (tmax) varies, as not all runs
belonging to a lcut necessarily reached tmax. The value of 〈L〉 (tmax) can be read of from
Fig. 6.11(right), as it is given by the last point of each line, and are plotted as a function if
llig in Fig. 6.10.

However we deduce from Fig. 6.11(right) that the ordering of 〈L〉 (tmax) as a function of
lcut is the same as 〈L̄〉. Or in other words, 〈L〉 (tmax) is monotonously increasing/decreasing
if and only if 〈L̄〉 is monotonously increasing/decreasing, and therefore, the positions of the
minima and maxima are the same. We will therefore, in the following discussion, treat both
quantities equivalently.
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Figure 6.10.: 〈L〉 (tmax) is the ensemble
average length at the maximum simu-
lation time that got reached by all runs
belonging to a particular llig (see Fig-
ure 6.11,right). If a steady state was
reached 〈L〉 is equivalent to 〈L̄〉. As can
be seen from Fig. 6.11(right), 〈L〉 (tmax)
and 〈L̄〉 have the same ordering, hence
the position of the maxima (lcut = 16, 40)
are the same in both cases.

Let us now follow the transformation of the length distribution when changing the cutoff
lcut. We start with a short cut off length lcut = 6, which only allows for short-lived duplexes.
Upon increasing lcut to lcut = 16 (red line) the length ´distribution extends to longer lengths
at the cost of a decrease in concentration of strands of lengths L ≈ 10− 1000, which leads
to an increase in the average length, see Fig. 6.10. A further increase of lcut leads to a
decline of the average length, thus the average length has a maximum at lcut = 16, which is
approximately the point where stable duplexes become possible. It marks the sweet spot
between extension and dehybridization: A (almost) stable duplex gets formed and extended
by an other strand. The strands dehybridize quickly thereafter such that the extended strand
and the template are again available to catalyze further extensions.
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6. The null model

Increasing lcut from lcut = 16 to lcut = 28 leads to a decrease of the weight in the tail of the
strand length distribution causing a decline in the average strand length 〈L̄〉. In this range
stable duplexes arise that can undergo extension cascades. The lifetime of fully-hybridized
duplexes of length Lmax is still to short compared to 1/rout such that they do not become
stalled in the fully-hybridized configuration. Hence, there is no accumulation of strands
around Lmax. Further increasing their stability by changing lcut from lcut = 28 to lcut = 36
leads to the formation of a saddle point. We conjecture that no minimum has formed yet,
as strands longer then Lmax are still destabilized due to the cutoff and hence are available
as templates for the ligation of strands L < Lmax. Also 〈L〉 (tmax) increases again until the
saddle point in the length distribution is formed at lcut = 36. But the associated maximum
in the mean length distribution is much smaller than the previous one at lcut = 16.

Upon further increase, lcut = 36 to lcut = 40 the average strand length 〈L̄〉 decreases while
the characteristic maximum and minimum in the strand length distribution emerge.

For lcut ≥ 50, the average strand length and the whole shape of the length distribution
become independent of llig. Hence for our system lcut ≥ 50 is equivalent to a system without
cutoff lcut = ∞.

6.4.3.2. Further system properties as a function of lcut

We further analyzed the total number of complexes
〈

Ntot
C

〉
, the average complex mass 〈m〉

and the total number of strands
〈

Ntot
S

〉
. As there was no steady-state reached for some lcut,

we proceed equivalent as for the average strand length and consider the average quantities
at the latest sampled time point tmax, see Fig. 6.12.

Fig. 6.12(left) shows the number of complexes
〈

Ntot
C

〉
(tmax) which decreases with increas-

ing lcut. This behavior can be expected as strands can cluster into higher-order duplexes due
to the higher possible stability of hybridizations. There is a local minimum of

〈
Ntot

C

〉
(tmax)

at lcut = 36. The increase of
〈

Ntot
C

〉
(tmax) for lcut = 40 can be understood the following way:

At this point 1/rcut becomes larger than the simulated system time and hence the number of
elongators that do not dehybridize before leaving the system increases. Hence these strands
do not serve as a template for the ligation of short single strands, which would lead to a
decrease in

〈
Ntot

C

〉
(tmax).

From Fig. 6.12(middle) we can deduce that 〈m〉 has a maximum around lcut ≈ 28. Hence
for this, value complexes are largest. The question is then if they are formed by the
hybridization of a multitude of strands (higher-order complexes) or if they consist of few
but long strands?

As the average strand length decreases for lcut > 16, we conjecture that the increase of
〈m〉 is due to the formation of complexes of higher-order complexes, while the strand length
decreases. The formation of higher-order complexes goes along with an increase in the total
number of strands in the system, which also peaks around lcut ≈ 28.

We can further use
〈

Ntot
C
〉
, 〈m〉 and 〈L〉 to calculate the energy and mass flux per unit

volume through the system:

ΦM =

〈
Ntot

C
〉

V
〈m〉 rout, (6.22)

ΦE =

〈
Ntot

C
〉

V
〈m〉
〈L〉

1
2
(〈L〉 − 1) rout (6.23)
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Figure 6.11.: Sweep rcut = eγlcut (left) transformation of the strand length distribution by varying lcut
from lcut = 6 to lcut = 80. (right) average strand length vs lcut. For some values of lcut no steady state
was reached (using a constant average strand length as the indicator for steady state).
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Figure 6.12.: (top) Temporal development of the total number of complexes
〈

Ntot
C
〉
, the average

mass of a complex 〈m〉 and the number of strands
〈

Ntot
S
〉
. (bottom) The value of these quantities is

evaluated at the latest simulation time tmax for each llig. The color code is the same as in Fig. 6.11
reaching from lcut = 6 (dark purple colors) to lcut = 6 (bright yellow colors). (middle) The line
corresponding to lcut = 28 was colored black as we (by eye) identify it as the most likely position of
the maximum of 〈m〉 (tmax).
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6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

where we used that the order of the complex is approximately 〈n〉 ≈ 〈m〉
〈L〉 and that 1

2 (〈L〉 − 1)
give the number of ligations necessary to build a strand of length 〈L〉 by ligation of
dimers. The fluxes 〈ΦM〉 (tmax), 〈ΦM〉 tmax are shown in Figure 6.13. The unbound model
is apparently the model which requires the smallest influx of energy and mass in order
to be operational. Those fluxes can, in principle, be used to estimate the required influx
of building blocks through a membrane of a potential protocell in order to sustain the
growth modes discussed in this work. Also, the impact of a limited supply of nucleotides,
implemented via an influx proportional to the difference in concentration between the
reactor and its surrounding, would be interesting to study.
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Figure 6.13.: The mass and energy flux
per unit volume. Note that the pecu-
liar shape of the curves is due to the
system not having reached steady state.
Never the less it is certain that the curves
increase with lcut for lcut 6 16, and de-
crease for lcut > 36. The final distri-
bution show presumably a single maxi-
mum.

6.4.3.3. Summary lcut sweep

In summary, for lcut = 6, we start in a state where the system has a maximum amount of
complexes. However, these complexes are all short single strands. Upon an increase of lcut,
the average strand length increases until a sweet spot for the extension of strands is hit at
lcut = 16, while the number of complexes decreases. Further increase of lcut leads again
to shorter strands while the order of complexes increases until lcut = 28. Thereafter the
order of complexes decreases again until single strands and duplexes are the only relevant
complexes, while the average strand length stays roughly constant, and the maximum at
Lmax emerges.

The behavior of the system due to a variation of lcut can be highly relevant when concep-
tually thinking about the mode of operations of a hypothetical protocell. By variation of rcut,
the strand and complex properties can be radically changed. For example, the maximum in
the mean strand length distribution produces long strands, which could potentially fold
into functional entities (ribozymes). Then the increase in lcut could lead to the formation of
even more complex ribozymes consisting of several subunits. The further increase of lcut

could bring the system into a state that is well suitable for the copying of information.

6.4.4. Transient behavior in closed systems

We further investigated closed systems without in- or outflux. We prescribed the concentra-
tion of initial building blocks and let the system evolve transiently. Due to the irreversibility
of the ligation reaction, closed systems are not ergodic: Short building blocks will deplete,
and the final configuration contains only two very long strands. However, this stationary
state will never be reached on practical time scales both in simulations and experiments.

Thus, instead of analyzing the stationary state of the system, we consider a transient state
at intermediate times. More precisely, we focus on the situation where long strands have
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6. The null model

already formed, and extension cascades are possible, but there is still a sufficient amount of
short building blocks. Then, the system behaves similarly to the stationary situation in an
open system with small outflux rates.

Considering the limiting behavior rout → 0 provides us with an intuition about the
transient length distribution in this case. From Eqs. (6.20) or (6.21) we see that formally
L† → ∞ and the time to reach the stationary state also diverges.

Fig. 6.14(a) shows the strand-length distribution for the standard choice of parameters
for various values of the transient observation time t = τobs. As in the stationary case, we
observe a distinct minimum and maximum in the strand-length distribution. Fig. 6.14(b)
shows that the position of the maximum increases logarithmically with the observation
time.

In order to get an intuition for this behavior, we again use an argument involving the
competition of time scales. As in the open systems, strands longer than L∗ will dominantly
occur in fully-hybridized configurations. In contrast, the second time scale is not determined
by a global outflux rate, and fully-hybridized duplexes eventually dehybridize with a
length-dependent rate roff(L). Yet, dehybridization of duplexes of length L can only play a
role for observation times longer than τobs ∼ roff(L)−1.

With respect to the typical feature of the strand-length distribution, we thus expect global
transient observation time τobs to play the same role as the time scale r−1

off in an open system.
The length-scale L = L† that determines the peak in a closed system can then be obtained by
replacing roff with τ−1

obs in Eqs. (6.20) or (6.21). In that case, the position of the peak should
increase logarithmically with time, consistent with the results shown in Fig 6.14(b).
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Figure 6.14.: Transient strand-length dis-
tributions: (left) Temporal development
of the length distribution in a closed
system. Over time the concentration
of short strands decreases and the min-
imum develops into depleted region.
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wards longer lengths.

6.4.5. Building block mixtures

So far, we have studied systems that used dimers only as their initial building blocks. While
this made our calculations more convenient, only strands of even length appear in the
system. This enabled “infinite” extension cascades starting from duplexes with odd parity
and resulted in a heavy tailed strand-length distribution. In this section, we will consider
monomer-dimer and dimer-trimer building block mixtures.

6.4.5.1. Monomer-dimer mixture of initial building blocks

Fig. 6.15 (a) shows the strand-length distribution for a reservoir where the total initial
building block concentration ctot = c1 + c2 = 2 mM is constant. We then vary the monomer
fraction fm := c1

ctot
from zero up to 90 %. The orange curve ( fm = 0) is the dimer-only

system at standard parameters, showing the long tail caused by the infinite extension
cascades. For any finite monomer concentration, infinite extension cascades are suppressed,
and the long tail collapses. The partitioning of complexes into various substructures is
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6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

shown in Fig. 6.15 (b) for fm = 70 %. The tail of the distribution is now dominated by
fully-hybridized duplexes. As above, duplexes with finite overlap are distinguished by the
parity of their overhangs, with the addition of mixed parity duplexes, having different parity
at the different sites.

Overall, the length distributions for finite monomer fractions look qualitatively similar. In
the stationary state, the total mass in the system depends on the balance between in and
outflux: The higher the monomer fraction, the less nucleotide mass is added by the influx,
and the overall strand-length distribution shows lower concentrations.

Moreover, the lower the monomer concentration, the more of the bias towards strands
with even lengths is retained. This bias is most visible for short strands, leading to the
zig-zag pattern visible in Fig. 6.15 (a). For long strands, the bias vanishes.
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Figure 6.15.: Strand-length distributions
for monomer-dimer mixtures. The
monomer fraction fm is varied between
zero and 90 % at a total concentration
ctot = 2 mM. (a) Steady state length
distributions for different fm. For low
fm the concentration between even and
odd strands oscillates heavily for short
strands. The long tail that is present for
fm = 0 (orange curve, only even strand
lengths shown) collapses even for very
small fm. (b) Partitioned strand-length
distribution for fm = 70 %. In contrast to
Fig. 6.7, virtually all strands with L > L∗

belong to a fully-hybridized duplex.

Importantly, the general understanding of the characteristic features of the strand-length
distribution presented above remains valid. In accordance with Eq. (6.20), the position
of the maximum is unchanged, as it does not depend on the (constant) building block
concentration. The position of the minimum also remains mostly constant.

Repeating the calculations leading to Eq. (6.18) for the onset of extension cascades, with
the combined extension rate for both monomers and dimers leads to the same equation,
with the dimer concentration c2 replaced by the total concentration ctot:

In general, for reservoirs with mixed building blocks, the typical length L∗ for the onset
of extension cascades is derived analogously to the dimer-only model using the condition
1 < rext(D)/rdupl

off (D), cf. Sec. 6.4.1.2. Instead of only considering the extension with a dimer
building block, one needs to include the extension with a monomer. The extension rate thus
becomes

rext(D) ≈ rext,1 + rext,2 (6.24)

= rlig ∑
i∈{1,2}

oi 6=0

[
c2e−γ(min(|oi |,2)) + c1e−γ(min(|oi |,1))

]
.
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The criterion for extension cascades then reads

1 ≤(L1 + L2 − 1)rlig× (6.25)

∑
i∈{1,2}

oi 6=0

[
c2e−γ(l+min(|oi |,2)) + c1e−γ(l+min(|oi |,1))

]
.

The right side of the Eq. (6.25) is maximal for the odd duplex configuration D±1 =

(L0, L0,±1), for which l + min(|oi|, 2) = l + min(|oi|, 1) = L0, which leads to

1 ≤ 2(2L0 − 1)rlig(c2 + c1)e−γL0 . (6.26)

Consequently, L∗ for monomer-dimer mixtures obeys

1 = 2(2L∗ − 1)rligctote−γL∗ , (6.27)

where ctot = c2 + c2 is the total concentration of building blocks.
Like already mentioned above, Equation (6.27) is the same formula as for the dimer

only-system, except that the dimer concentration c2 is substituted by the total concentration
of building blocks ctot. In accordance with formula Eq. (6.27), we observe that the position of
the minimum is constant Lmin = 19 under variation of the monomer fraction while keeping
the total concentration fixed at ctot = 2 mM (see Fig. 6.16). Only the dimer-only system has
a different minimum position Lmin = 18.
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Figure 6.16.: L∗ in the monomer dimer
system is calculated via Eq. (6.27), which
is the same as the formula for the dimer
only system upon substituting the dimer
concentration with the total concentra-
tion ctot.

6.4.6. Dimer-trimer mixtures of initial building blocks

Fig. 6.17 (a) shows the strand-length distribution for a reservoir containing dimers and
trimers, at a fixed total initial building block concentration ctot = c2 + c3 = 2 mM. Equivalent
as we did for monomer mixtures, we then vary the trimer fraction ft := c3

c2tot
.

The orange curve ( ft = 0) is again the dimer-only system at standard parameters. The
system shows the expected behavior equivalent to the monomer-dimer system: Adding a
few monomers is enough to cause a collapse of the long tail as all duplexes undergoing
extension cascaded become fully hybridized at some point. The position of the maximum
and the minimum Lmin, Lmax are roughly constant. The tail of the length distribution seems
to become gradually bend toward smaller lengths upon an increase of the trimer fraction
from ft = 0 to ft = 0.5. Simultaneously the length distribution of the small strands seems
to become shifted in the log-log representation, which indicates a change in the prefactor
governing the power-law distribution of small strands. But in the limit ft → 1 the length

60



6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

distribution does apparently not seems to follow this monotonous transformation as for
ft = 1, trimers only, the concentrations of short strand lengths are largest (yellow curve).
Remarkably, the trimer-only length distribution expresses a plateau that spans roughly one
order of magnitude ≈ 100− 1000.

The partitioning of complexes of the trimers only system into various substructures (see
Fig. 6.17 (b)) reveals that the strands of the tail and hence the plateau are not contained in
duplexes, but in complexes of higher-order n ≥ 3.
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Figure 6.17.: Strand-length distributions
for dimer-trimer mixtures. The trimer
fraction ft is varied between zero and
1 at a total concentration ctot = 2 mM.
(a) Steady state length distributions for
different ft. The behavior is, except for
the trimer only system ft = 1, analo-
gous to the behavior of the monomer-
dimer mixture. The trimer-only system
expresses a plateau where the concen-
tration seems to be independent of the
length over roughly one order of magni-
tude (100-1000). (b) Partitioned strand-
length distribution of the trimer only sys-
tem ft = 1. In contrast to the other sys-
tems studied, the strands of the tails are
not part of a duplex, but higher-order
complexes n ≥ 3.

6.4.6.1. Trimer only system plateau in the length distribution

In order to obtain an insight into the processes of the trimer only system that causes the
plateau, we start with considering the complex length distribution ψ(C), Fig. 6.18.

ψ(C) expresses a pattern, for i ∈N we have ψ(3i) < ψ(3i + 1) < ψ(3i + 2). The pattern
can be understood by considering the simplified reaction network, see Figure 6.19 (a) where
we neglected the directionality of the complexes. Within this network, an even-odd complex
of length 3i becomes by extension with a trimer either an odd complex of length 3i + 1 or an
even complex of length 3i + 2. The extension 3i→ 3i + 1 involves an overlap of 2, whereas
3i → 3i + 2 includes an overlap of 1, which favors the formation of complexes of length
3i + 1.´ For small lengths the ratio is accordingly given by e−γ, see Fig. 6.18 (b).

Stable duplexes with an overhang mod (oi.3) = 0 will become fully-hybridized at some
point, whereas stable duplexes with mod (oi.3) = 1 and mod (oi.3) = 2 will continue
growing thereby switching from an mod (oi.3) = 1 to an mod (oi.3) = 2 overhang and vice
versa. These elongators cannot grow by interaction with other duplexes (duplex-duplex
extension) with an overhang of length oi = 1 and oi = 2 and subsequent ligation as shown
in Figure 6.19 (b) resulting in even longer elongators with gaps.

We can speculate that this mechanism causes the plateau in the strand length distribution:
The average number of strands 〈n〉 forming the long complexes grows linearly 〈n〉 =

0.0023C + 2.2, cf. Fig. 6.18 (c). For very long complexes we can assume that 〈n〉 ≈ 0.0023C.
Let us further assume that the length of a complex is the number of strands times a typical
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length scale Lp, C = 〈n〉 Lp, which yields Lp = 1/0.0023 ≈ 435, which coincides roughly
with the center of the plateau in the strand length distribution. This mechanism is apparently
weak in the dimer only system as in that case, the extension of an elongators with the most
abundant building block (dimers) leads to a new overhang of length one. Two elongators
with overhang one hybridizing onto each other lead to two ligation sites but no overhang, see
Figure 6.19 (c). Two subsequent ligations result in a duplex, not resulting in the emergence
of a plateau in the strand length scale. In a system containing monomers the plateau can
not be formed neither as all duplexes become fully-hybridized at some point and the tail
decays quickly.
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Figure 6.18.: Analysis of complexes of
the trimer only system. (a) The complex
length distribution ψ(C): Complexes of
lengths Ci = 3i, i < 0 being an integer,
resemble die minimum and maximum
also seen in the strand length distribu-
tion. Note that those complexes must
not be in a fully hybridized configura-
tion. The length distribution shows a
pattern ψ(3i) < ψ(3i + 1) < ψ(3i + 1)
for i ∈ N. (b) Ratio ψ(3i + 1)/psi(3i +
2): For C < Lmin the ratio is approxi-
mately equal to e−γ. (c) Mean number
of strands of vs length of complexes.
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Figure 6.19.: (a) Simplified reaction scheme of trimer dynamics. The formation of a complex of
length Co(i) = 3i + 1 from an even-odd complex of length Ceo = 3i is approximately proportional
to ∼ e−2γ, whereas the formation of an even complexes of length Ce(i) = 3i + 2 is proportional to
∼ e−γ. (b) Duplex-duplex extension in a trimer only system can lead to elongators with gaps of
length 1. (c) Duplex-duplex extension in a dimer only system.

6.4.7. Growth of complexes

In the previous section, we have established how the length-scales L∗ and L† shape the
strand-length distribution. We will now consider how they determine the properties of the
extension cascades in more detail.
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6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

The first length scale L∗ sets the typical start of extension cascades and separates strands
into two regimes. Strands that are shorter than L∗ form unstable duplexes. While some
ligations occur for those strands, they are relatively rare, and the dynamics is thus only
weakly out of equilibrium. In contrast, strands longer than L∗ form stable duplexes that
usually undergo extension events. This dynamics is strongly out of equilibrium and gives
rise to the nonmonotonous distribution.

Even though we know that the second length scale L† relates the dehybridization time to
the outflux (or transient) time scale, its role in the dynamics is not as straightforward. In the
following, we will show that L† is a typical scale where the self-enhancing processes that
leads to the growth of strands and complexes breaks down.

6.4.7.1. Configurations of stable duplexes

The basis of our analysis are the statistics of individual trajectories of stable duplexes until
they reach a fully-hybridized configuration and finally leave the system. An initial stable
duplex consists of a long and a short strand of size Llong and Lshort ≤ Llong with an initial
overlap linitial. The length of this initial duplex is Cinitial = Llong + Lshort − linitial. Notice that
different combinations of Llong and Lshort correspond to the same values of Cinitial and linitial,
cf. Fig. 6.20 (a).

These stable duplexes then grow by multiple extension events and become a fully-
hybridized duplex of length Cfinal ≥ Cinitial. If Cfinal = Cinitial, we say the trajectory grew
via pure primer extension. In contrast, if Cfinal ≥ Cinitial, processes must have occurred that
extended the length of the complex.

Our sampling algorithm is consistent with the actual (rate of) events that occur in a steady
state and are explained in detail in Section A.5 of the Supplemental Material. In particular,
the distribution p(Cfinal) characterizing the final complex length is proportional to their
stationary concentration. For a concrete example, we sample trajectories from the stationary
state of the system shown in Fig. 6.15, where monomers and dimers are kept at a total
concentration ctot = 2mM with a monomer fraction of fm = 70 %. First, we are interested in
the configurations of initial stable duplexes, i.e., in the statistics of linitial, Cinitial, Llong and
Lshort.

Fig. 6.20 (b) shows the joint distribution p(Cinitial, linitial). The probability is maximal for
Cinitial ∼ L† and linitial ∼ L∗. Since the probability decays fast away from that maximum, we
say that these values define a typical initial configuration.

The next question regards the individual strands that form a typical initial duplex.
Fig. 6.20 (c) shows the joint distribution p(Llong, Lshort). We see that it is dominant in the
lower triangle defined by L∗ ≤ Lshort ≤ Llong ≤ L†. Within the triangle, the distribution is
approximately uniform.

Knowing the properties of the initial configuration, we now turn to the final configuration.
Fig. 6.20 (d) shows the joint distribution p(Cfinal, Cinitial). A considerable part of the weight
(around 17 %) of the distribution is on the diagonal Cinitial = Cfinal, corresponding to the
pure primer extension. The maximum weight (around 2.5 %) is located at Cfinal = Cinitial =

31 ∼ L†. We further see that off-diagonal elements are centered around this maximum.
While we cannot neglect the off-diagonal elements accounting for complex extension, it is
convenient to consider the pure primer-extension scenario first.

6.4.7.2. Catalytic growth processes and reassembly

Consider a stable duplex growing by pure primer extension. The generic case is shown in
Fig. 6.21 (a). After a fully-hybridized duplex is reached, it will eventually dehybridize or
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pure primer extension
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Figure 6.20.: (a) Sampled trajectories start with an initial stable duplex characterized by its strand
lengths Llong and Lshort together with the initial overlap linitial and complex length Cinitial. Trajectory
statistics can be understood from various joint probability distributions, with the corresponding
marginal histograms plotted on the axis. Horizontal and vertical dashed lines indicate the typical
scales L∗• = 17 (blue) and L†

N = 31 (red). For the arguments made in this section, we do not
distinguish between the float and ceiled values, L∗• L∗ and L†

N L†. The black dashed line is the
diagonal, where abscissa and ordinate are equal. (b) Typical initial stable configurations have
Cinitial ∼ L† and linitial ∼ L∗. (c) Strand combinations (Llong, Lshort) are almost uniformly distributed
in the triangle defined by L† ≥ Llong ≥ Lshort ≥ L∗. (d) About ∼ 17 % of trajectories grow by pure
primer extension (diagonal Cfinal = Cinitial) with no complex extension. (e) The joint probability
p(Llong, Cfinal). The weight on the diagonal Llong = Cfinal (∼ 2.5 %) indicates autocatalysis.
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6.4. Estimation of the outflux rate at the transition from short- to long-tailed distributions

leave the system. If it dehybridizes, it may hybridize to another single-strand and thus create
a stable duplex with a fresh overhang. This reassembly of strands is the mechanism by which
long strands catalyze the formation of other long strands in the strongly non-equilibrium
regime.

The reassembly probability pra is mostly determined by competition between outflux and
dehybridization, resulting in a sigmoidal dependence on the length Cfinal:

pra ∼
roff

roff + rout
∼
(

1 + eγ(L†−Cfinal)
)−1

. (6.28)

For complexes that have reached Cfinal ∼ L†, the reassembly probability decays exponentially
to zero and the process stops. Thus the production rate of strand lengths reduces drastically
above L†.

As long as L∗ . Cfinal . L†, longer fully-hybridized duplexes accumulate more strongly.
Notice that while the concentration of single strands is strictly decaying in that regime, the
concentration of fully-hybridized complexes of length Cfinal increases. This fact emphasizes
the strong nonequilibrium character of the dynamics in this region, cf. Fig. 6.15 (b).

Enhanced accumulation and the frustration of the heterocatalytic reassembly process
are thus the dynamic processes governing the emergence of the nonmonotonous strand
length distribution. While this process is dominant, also autocatalysis occurs if Llong =

Cinitial = Cfinal and hence Lshort = linitial (Fig. 6.21 (b)). This process is particularly strong for
the typical configuration with Llong = L† and Lshort = L∗, see Fig. 6.20 (e): The diagonal
Cfinal = Llong (black dashed line) represents the autocatalytic cycles shown in Fig. 6.21(b),
which is maximal around Llong ∼ L†. In the big picture, however, autocatalysis trajectories
only represent about 2.5 % of all trajectories.

The longer strand in the initial stable duplex with lengths Llong are provided by the
fully-hybridized double strands that are still more likely to dehybridize than to leave the
system. In contrast, the shorter strand with length Lshort are provided by the assembly
processes in the weakly non-equilibrium regime. Importantly, for this typical cycle, the short
strand is typically not one that is released in the dehybridization of final duplexes, making
the process truly autocatalytic.

(b) autocatalytic copy cycle

pure primer
extension

dehybridization

hybridization
weakly

nonequilibrium
"background"

(a) heterocatalytic growth: reassembly

primer extension

reassembly

Figure 6.21.: Hetero- (a) and autocatalytic (b) processes for the growth of strands. In the strongly
non-equilibrium regime, extension cascades cover the available overhang of stable duplex and form
longer fully-hybridized strands. These long strands can then dehybridize and reassemble, thus
creating new overhangs (copy sites) to be covered by extension cascades. The reassembly probability
pra is determined by the balance between dehybridization and outflux and decays to zero fast for
L & L†.
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6.4.7.3. Beyond pure primer extension

So far, we have pretended that only pure primer extension occurs when strands grow, i.e.,
that no new overhang is created during the trajectory, see Fig. 6.22 (a). While pure primer
extension only accounts for about ∼ 17 % of all trajectories, the discussion of the catalytic
extension-reassembly dynamics does not rely on this fact. Still, in order to account for the
remaining trajectories, we also discuss the processes that lead to complex extension.

First, notice that the growth happens essentially independently at each end of a duplex.
It thus makes sense to take the perspective of a single end since it allows us to distinguish
the two strands by their roles: We call the strand whose end is overhanging the template,
whereas the other strand is called the primer. Moreover, we refer to the length of the
overhang at the start of a trajectory as its initial copy site length lcs.

The obvious mechanism that leads to complex extension is depicted in in Fig. 6.22 (b). It
occurs when the original primer is extended with a strand that is longer than the (remaining)
length of the copy site. After this extension, the roles of primer and template are reversed
and a new copy site is created. We thus denote this process as primer-template switching.
Notice that unstopped primer-template switching was responsible for the infinite extension
cascades encountered in the dimers-only system.

Secondly, a complex undergoing an extension cascade is not always a simple duplex.
Ligation reactions can also occur away from the stable hybridization site. We say that
template extension occurs, if another strand facilitates the extension of the template strand, see
Fig. 6.22 (c). From the perspective of the stable hybridization site, the length of its associated
copy site lcs has increased.

Fig. 6.22 (d) shows the number of extension events along a trajectory conditioned on the
initially single-stranded length that is covered during the trajectory, Cfinal − linitial. Standard
primer-extension steps (p, red curve) are most common. In contrast, template extension
(t, blue curve) is rare. For large Cfinal − linitial, the number of events behaves strictly linear
and primer-template switching (s, black curve) occurs approximately three times less than
primer extension. For small values of Cfinal − linitial, the relative fraction of primer-template
switching increases, since a short available overhang increases the chance of primer-template
switching.

6.4.7.4. Partial trajectories and copy site distribution

Each primer-template switching event along a trajectory creates a new distinct copy site,
Fig. 6.22 (b). Consequently, trajectories naturally split into partial trajectories, which are
defined by their copy site length lcs and the sequence (Bi)i∈[1,...,k] of the building blocks used.

Fig. 6.22 (e) shows the distribution p(lcs) of copy site lengths in a double-logarithmic
plot. Short copy sites are created by primer-template switching events and dominate the
distribution. Longer copy sites, in contrast, are overwhelmingly created when single strands
reassemble to form the initial complex at the start of trajectories. For the typical configuration
Cinitial ∼ L† and linitial ∼ L∗, the typical scale of the initial copy site is L† − L∗. The influence
of these two regimes can be seen in the double-logarithmic representation. Different flanks
of the distribution suggest a power-law decay with an exponent α1 up to lcs ≈ L† − L∗ = 14
and a second exponent α2 < α1 beyond that. The faster decay with exponent α2 reflects the
circumstances that for a copy site of length lcs > L† − L∗, the formation of a initial stable
duplex with Llong > L† is needed. As those duplexes are dominantly stalled in a fully
hybridized configuration, the required initial stable duplexes are not formed.
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Figure 6.22.: Pure primer extension (a) and complex extension (b,c). The overhang at the beginning
of a (partial) trajectory is called a copy site (blue) with length lcs. (b) In primer-template switching
events a building block extends the primer beyond the original copy site. The original copy site is
fully covered and a new copy site is established. The roles of primer and template have changed. (c)
Copy sites can grow independently of the original primer by template extension with the help of a
helper strand. Right: (d) Number of extension events occurring during the covering of the total copy
site Cfinal − linitial. (e) Distribution of copy site lengths of partial trajectories. (f) Mean building block
length conditioned on copy site length.

6.4.7.5. Building blocks and the influence of the weakly nonequilibrium regime

From the perspective of prebiotic self-assembly and the emergence of structural motifs,
we also wonder about the buildings blocks used for extension. In contrast to controlled
experiments, where building block sizes are prescribed, in our model the distribution of short
strands arises from the weakly nonequilibrium regime. Since the weakly nonequilibrium
regime is not the scope of this paper, the remainder of this section is mostly descriptive.

A first estimate of the typical length covered in an extension can be obtained from
Fig. 6.22 (d). For sufficiently long copy sites, the combined slope of primer extension and
template-switching has a value of about 1

3 . Since this slope is the average number of
extension events needed to cover a single nucleotide, it implies that each extension event
covers about 3 units of copy site length. In order to obtain a more precise picture, we
consider the mean building block length for each copy site of a partial trajectory,

B̄ :=
1
k

k

∑
i=1

Bi. (6.29)

Fig. 6.22 (f) shows the conditional averages 〈B̄|lcs〉 (brown curve). For completeness, we
also show the mean effective building block size

〈
B̄eff|lcs

〉
(purple curve), where the final

building block is only counted according to its overlap. Both curves initially grow with lcs

and reach a plateau for large lcs, which is close to the value determined from the slopes in
Fig. 6.22 (e).

For short copy sites, covering occurs in a single step. Since the extension rate is mostly
determined by the available copy site length lcs, i.e., the overlap, we initially have the
proportionality 〈B̄|lcs〉 ∝ lcs. For larger copy sites, extensions involve multiple extension
steps. Each extension after the initial one has only a reduced overhang. Moreover, since
the concentration of single strands decays with increasing length, there are also less single
strands available that can make proper use of the (remaining) overhang. Consequently,
the initial linear slope flattens in a way determined by the interplay between reduced
concentration and increased binding energy.
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6. The null model

The existence of a plateau for very long copy sites is also easy to understand. The longer
the copy site becomes, the less influence its actual length has, and only the concentration
of building blocks plays a role. Moreover, the nonmonotonous behavior for copy sites of
lengths around lcs ∼ 6 corresponds to another intrinsic scale of the dynamics. At a value of

llig ∼
rlig
γ

−1 ∼ 6, time scales of dehybridization and bare ligation become comparable. Thus,
the incorporation of building blocks around that size is limited by the bare ligation rate
rather than dehybridization.

6.4.8. A closer look at the relation between Cfinal and Cinitial

With the understanding gained in the previous section, we consider the conditional proba-
bility distribution p(Cinitial|Cfinal). It is the probability that a complex that reached a certain
length Cfinal started with an initial length Cinitial. Like can be seen in Fig. 6.23, complexes
with a final length Cfinal < Lmax started most likely to grow from an initial complexes that
had same length (diagonal) or was only slightly shorter, Cfinal ≈ Cinitial. This reflects the
hetero- and autocatalytic cycles discussed above. In contrast final complexes larger than
Lmax start most likely with a initial complex of length Cinitial ≈ Lmax, cf. the median C̃initial in
Fig. 6.23. We can understand this behavior as for reaching a long final complex, one has to
start to form an initial complex with the longest single strand available, which is of length
Llong ≈ Lmax.
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Figure 6.23.: Conditional probability distribu-
tion p(Cinitial|Cfinal). It is the probability that
a complex that reached a certain length Cfinal
started with an initial length Cinitial. Final
complexes with a length Cfinal < Lmax start
most likely with initial complexes of the same
length Cfinal = Cinitial (diagonal), whereas
longer final duplexes start most likely with
initial complexes of length Cinitial ≈ Lmax (me-
dian).

6.4.9. Summary of results

In this chapter, we have analyzed self-assembly and growth processes via templated ligation.
At first, we considered the transition from long-tailed to short-tailed distributions. In
systems where dehybridization becomes slower with hybridization length, a competition
between extension and dehybridization creates a strongly nonequilibrium regime leading
to a nonmonotonous strand-length distribution. We then derived the typical scales that
shape the strongly nonequilibrium regime for strands with typical lengths L∗ . L . L†. The
rapid production of long strands is self-enhancing via auto- and heterocatalysis. Catalytic
enhancement stops as strands become too stable and thus inert at a typical scale L†, which
is determined by the outflux rate. In a situation without outflux, the typical scale L† is
set by the balance of the observation time, and the time it takes for a reassembly, i.e.,
dehybridization. The value of L∗ as well as the building blocks used in extension cascades

68



6.5. Thermocycler experiments

are determined by the concentration and properties of the short strands in the weakly
nonequilibrium regime.

The complexity of the process even in this simple, sequence-independent null model is
remarkable. The universality of the arguments make it appealing to apply our insights to
experiments performed on real oligonuclotides with random sequences.

6.5. Thermocycler experiments

Finally, we study an experimental system using DNA strands with random sequences from
a binary alphabet. As in the simulation, we consider the strand length distribution formed
by templated ligation from a reservoir of oligonucleotides of a fixed initial length acting
as the starting material. Variations in temperature are achieved with a thermocycler. The
ligation is performed by an evolved TAQ DNA ligase enzyme.

In order to observe the nonmonotonous length distribution, the time-scales of various
processes need to be compatible. In particular, the following three requirements need to be
fulfilled:

1. The effective extension rate rext determining the onset of extension cascades L∗ must
be larger than the rate rout or τ−1

obs, associated to the process that sets the length scale
of the peak L†.

2. In a transient system without outflux, parameters must be such that τobs is still
compatible with realistic experimental time scales.

3. To resolve the nonmonotonous nature of the strand length-distribution, the predicted
length scales must be compatible with the experimental resolution, which is set by the
length of the smallest building blocks.

While tuning these parameters independently of each other is easy in a simulation, this
is not necessarily the case for real experiments. Usually, the generic experimental control
parameters (like temperature, salt concentration, buffer composition) will affect the values
of all time scales in a non-trivial manner. In particular, it may be possible that by varying
a single parameter one cannot achieve an experimental situation, where all the above
requirements are fulfilled. In what follows, we show that some of these difficulties can be
overcome in a thermocycler, where temperature oscillation drive the extension-reassembly
process.

6.5.1. Theoretical preliminaries

An important factor is the temperature dependence of the dimensionless binding energy
γ = ∆G◦

kBT . To zeroth order, the Gibbs standard free energy is obtained as ∆G◦ = ∆H◦− T∆S◦.
The most drastic physical effects occur when the binding energy changes sign at the critical
temperature Tc = ∆H◦/∆S◦, which is determined by the ratio of ∆H◦ and ∆G◦. Around
the critical temperature, a linear approximation yields

γ(T) = −∆H◦

kBT2
c
(T − Tc) =

T − Tc

σ
(6.30)

where σ = − kBT2
c

∆H◦ = −
kB∆H◦
(∆S◦)2 has units of temperature and characterizes the (inverse) slope of

γ(T) around the critical temperature. In general, ∆H◦ and ∆S◦ also depend in a complicated
way on the details of the hybridization site. Within our model we use an effective ∆H◦ and
∆S◦ per nucleotide.
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6.5.1.1. Effective melting curves

Melting curves in oligonucleotide melting experiments can be interpreted as the probability
p(T) of a nucleotide to be unpaired for a given temperature. Such melting curves typically
have a sigmoidal shape varying from p = 0 for low temperatures to p = 1 for high
temperatures. A common fit function is the Fermi-like function

p(T) =
(

exp
(

T − Tc

σ

)
+ 1
)−1

, (6.31)

where Tc is the critical or “melting” temperature defined as p(Tc) =
1
2 . The parameter σ

determines the width of the transition region.
Typical values for DNA composed of adenine (A) and thymine (T) nucleotides at common

buffer conditions are Tc ∼ 55± 10 ◦C, cf. Refs. [30, 40]. The width σ is typically on the order
of 10 ◦C for short AT-oligomers, such that typical melting curves look like Fig. 6.24(a). In
accordance with the thermodynamic considerations above, we use T−Tc

σ as a proxy for an
dimensionless binding energy per nucleotide γ, cf. Fig. 6.24(b).

While this mapping is certainly a crude approximation, we can use it as a proxy for
the temperature dependence of γ within our effective model. As a consequence, the
dehybridization rates roff(T) ∼ r0 exp(γL) should have a typical behavior as the one shown
Fig. 6.24(c), where we chose a physically reasonable collision rate of r0 = 106 s−1 [57, 43,
26]. We expect this mapping from melting curves to a parametrization for γ(T) to only
yield good results below the melting temperature, i.e., for γ sufficiently negative. As
soon as γ approaches zero, the kinetic and sequence-dependent details start dominating.
Consequently, we do not expect a quantitative agreement between the real (experimental)
dynamics and our analysis for systems above or close to the melting temperature. However,
as we will see below, they can still be used for semi-quantitative prediction of experimental
results.
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Figure 6.24.: (a) An effective melting curve
with a critical temperature Tc = 62◦C and
σ = 13◦C. The gray line indicates the cold
temperature Tcold = 33◦C which is optimal
for extension. (b) Upon approaching the criti-
cal temperature, the binding energy in the hot
phase approaches zero. (c) The effective de-
hybridization rate decays exponentially with
a (log-)slope corresponding to the effective
binding energy. Without cycling (Thot = Tcold,
gray curve), the system is simply too cold for
anything too happen. Approaching the criti-
cal temperature, the binding energy and thus
the slope become smaller in magnitude. Inter-
sects with the horizontal lines mark the scales
L∗ and L† (dots) and their ceiled values to
the next higher multiple of Lbb = 12 (circles
and triangles). Parameters: τcycle = 180 s,
rext = (τcycle)

−1 = 5.56×10−3 s−1, τobs =

Ncycle × τcycle = 1.8×105 s and r0 = 106 s−1.
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6.5. Thermocycler experiments

6.5.1.2. Effective extension rates and thermocycling

Obtaining extension rates which are compatible with the above criteria for the emergence of a
nonmonotonous length distribution may be challenging. In enzyme-free systems, templated
ligation is a very slow process and thus not necessarily compatible with experimental time
scales. Enzyme-assisted templated ligation with a ligase may speed up these extensions
considerably but requires the formation of a chemical complex involving at least three
strands plus the ligase itself. Generically, the probability of finding such a complex decreases
with increasing temperature. Further, the ligase activity itself is temperature dependent.
These effects generally lead to an experimental situation where the effective extension rate
has a non-trivial temperature dependence.

In particular, one may encounter a “stalemate” situation in an isothermal system: On
the one hand, for high temperatures, the extension rate is small because the formation of
the complexes necessary for ligation is thermally suppressed. On the other hand, for low
temperatures, the dehybridization rate is so small that the system is essentially frozen and
the relevant dynamics come to a halt.

Fortunately, this stalemate can be resolved with the help of a thermocyler, which periodi-
cally cools the system to a temperature that is optimal for ligation cf. Fig. 6.25(a): During
the cool phase, the rate of ligation is initially very high, until all ligation sites in existing
complexes have been used up. However, the formation of any new complexes allowing for
ligations is drastically slowed down. Hence, the hot phase is required in order to create the
new ligatable complexes.

Recall that the extension rate rext is defined as the effective rate with which any given
duplex binds a third strand which then subsequently ligates. In the scenario described
above this would correspond one extension per cycle and thus rext ∼ τ−1

cycle. In a transient

experiment without outflux, the inverse observation time τ−1
obs which replaces rout in deter-

mining L† (and thus Lmax) is given as τobs = Ncyclesτcycle, where Ncycles is the number of
cycles performed in the experiment. For cycles with a duration τcycle = 180 s = 3 min and
Ncycles = 1000, we obtain the two horizontal lines shown in Fig. 6.24(c). The intersection
of these lines with the dehybridization rate determines the scales L∗ and L†. For a system
whose smallest building blocks are of length Lbb = 12, the big symbols denote the values L∗•
and L†

N obtained by ceiling to the next integer multiple of Lbb.

6.5.2. Experimental method and results

As described above, the experimental system consists of A (Adenine) and T (Thymine)
only DNA strands with a building block length Lbb = 12 nt and random sequences, thus
including all possible 212 = 4096 sequences. The ligation is performed by an evolved
enzymatic molecule, the TAQ DNA ligase from NEB. This allows for very high ligation
rates in comparison to chemical ligation [64]. In the experiment two strands are ligated
in the same way as in the theoretical model: two (substrate) strands hybridize on a third
(template) strand, that overlaps both substrate strands, by Watson–Crick base pairing. The
ligase then connects the sugar backbones of the 3’ end of the first strand to the 5’ end of
the second strand. The rather high building block length Lbb = 12 was enforced due to the
properties of the ligase. This experimental setup is similar to the setup used in [103]. The
resulting coarse resolution for the strand-length corresponds to the discretization shown in
the schematic plot for effective thermocyler experiments shown in Fig. 6.25(b).

Unlike the theory described above, the experimental setup is a closed system without in-
or outflux and thus does not reach a comparable steady-state. While transient observation
time τobs is connected to the outflux rate rout (see Sec. 6.4.4), depletion effects are present.
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Figure 6.25.: Product concentration analysis
for a 12nt random sequence AT-only pool.
(a) Experimental temperature profile. Liga-
tion occurs for 120 s at 33 ◦C after which the
sample is heated to the variable hot reassem-
bly temperature Thot for 20 s. (b) Image of a
PAA gel with SYBR gold post stained DNA.
The first lane on the left shows the “base-
line” sample, which is similar to the other
lanes but was not subjected to temperature
cycling. The other lanes have the same lig-
ation conditions but different temperatures
for dissociation. (c) Quantitative results for
the strand-length distribution obtained via
our custom software. From 50 ◦C to 58 ◦C the
transition of a quickly exponentially falling
product length distribution to a shallowly de-
creasing exponential distribution is notable.
The transition shows the feature simulated
before, with a clear peak.

Analysis of the length distribution are done by running the samples in polyacrylamide gel
electrophoresis (PAGE), post staining the DNA with intercalating SYBR gold dye and taking
fluorescent images of the gel in a BioRad ChemiDoc MP. Concentration quantification for the
experimental data is then done with a custom software that extracts lane intensity from gel
photos. For the baseline correction and normalization the software needs a reference sample
in one lane per gel that is the same as all the other samples, but was stored in the fridge
and not subjected to temperature cycling, as described in Sec. A.6.3 in the Supplemental
Material. The bands visible at lengths of 16 and 24 nt are artifacts from buffer and DNA
synthesis and visible for all lanes.

The temperature cycling necessary to prevent the stalemate conditions discussed above
are done with a ThermoFisher ProFlex PCR system thermocycler. We analyzed the strand
length distribution for various observation times τobs at different isothermal conditions,
whereas the temperature alternates between Tcold = 33 ◦C for τcold = 120 s, and τhot = 20 s at
variable temperature Thot for cycling conditions. Linear temperature ramps of 20 s connect
the hot and cold phases, as shown in Fig. 6.25(a).

Isothermal experiments resulted in no product formation within 60 and 116.5 hours for
none of the considered temperatures. We could not observe strands longer than the initial
12 nt (see Fig. S11), as already expected for the stalemate condition.

For the temperature-cycled experimental conditions, the variation in Thot yields very
different product distributions, as shown in Fig. 6.25(b). The strand-length distribution
decays quickly for a dissociation temperature of Thot = 50 ◦C, with much slower decay at
Thot = 58 ◦C. All strand-length distibutions show a non-monotonous behaviour exhibiting a
local minimum with Lmin between 36 and 48 nt and a maximum at Lmax ranging from 36
and 72 nt. Note that these lengths are consistent with the semi-quantitative predictions of
the effective cycler model shown in Fig. 6.24(c). For higher dissociation temperatures, the
peak becomes flatter and wider. Importantly, the overall shape of the distribution changes
significantly in a very limited temperature range for Thot in the vicinity of typical melting
curves for DNA composed of A and T only.

We also recorded the transient behavior of the strand length distribution at various
temperatures. Fig. 6.26 shows how the multimer composition changes with Thot of 52, 54
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6.5. Thermocycler experiments

and 56 ◦C over the curse of 500, 1000, 1500 and 2000 temperature cycles. For Thot = 52 ◦C
at 500 cycles, the length distribution is quickly monotonously decaying and the maximum
appears not before 1000 cycles. For Thot = 54 ◦C we already see a saddle point at 500 cycles
at 48 nt (corresponding to the position of the developed minimum Lmin) and for Thot = 56 ◦C
the maximum has already fully formed at 500 cycles.
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Figure 6.26.: Transient strand-length distri-
butions after 500, 1000, 1500 and 2000 cy-
cles. (a) Gel electrophoresis image of SYBR
gold stained DNA with marked sample lanes.
The reference lanes is the same for all sam-
ples. The rightmost lane is the ligation buffer
only and shows no bands. Quantitative
analysis of the strand-length distribution for
(b) Thot = 52 ◦C, (c) Thot = 54 ◦C and (d)
Thot = 56 ◦C

6.5.3. Comparison with theory

Our experimental results are in good qualitative agreement with our theory. The isothermal
system does not show any product for reasonable experimental time scales. We believe
the system to be in the stalemate situation described above: For low temperatures, even
the shortest duplexes with strands of length Lbb cannot separate efficiently. For high
temperatures, the effective extension rate is suppressed because virtually no stable ligatable
complexes are formed.

For the cycled systems, the results are consistent with the effective theory described above:
We obtain long-tailed length-distributions with a pronounced ladder of long strands for all
probed values of Thot. This strongly suggests that during the cold phase at Tcold = 33 ◦C,
the system allows for an effective ligation of available ligatable complexes.

We were able to observe non-monotonous length distributions for all dissociation tem-
peratures between 50 ◦C ≤ Thot ≤ 58 ◦C. The experimentally observed values of Lmin and
Lmax and their change with temperature agree well with the effective theory illustrated
in Fig. 6.24(c). Similar as in standard polymerase chain reactions, the main role of tem-
perature cycling in the experiment is to drive the reassembly process by separating long
fully-hybridized strands.
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6. The null model

We conclude that the basic principles shaping the self-assembly process are sufficient
to understand experimental results. This is a remarkable, since there are various factors
that make the experiment different from the idealized simulation conditions: For instance,
depletion of building blocks and the degeneration of chemicals play a role in the experiment.
Self-folding of longer strands may also be an important experimental mechanism that is
absent from the simple theory, as suggested in [103]. Moreover, the quantitative evaluation
of the gel-electrophoresis plots becomes more difficult for long strands, due to the resolution
limit.

Future theoretical work could build on the general understanding established in this
work, guided by further experiments. While such extended theory and experiments are
certainly important, a more exhaustive experimental study is beyond the scope of this work.

6.6. Summary and discussion

Self-assembly and growth of oligonucleotides by template-directed ligation play a key role
in prebiotic chemistry and the emergence of self-replicating systems on early Earth. The
microscopic dynamics of this process exhibits a large complexity due to the vast amount of
possible chemical structures involved. As a consequence, the majority of previous studies
has either focused on pure primer extension scenarios [99, 90, 53, 72, 45, 49, 79, 86] or
considered simplified models [78, 74, 89, 47, 82, 70, 92, 98, 95, 88, 8].

In this work, we presented and analyzed a model for this self-assembly process. Ignoring
any dependence on sequences, the binding energy of two oligonucleotide strands only
depends on the length of their hybridization site and ligation occurs with a constant rate.
Crucially, we studied the self-assembly and growth of short building blocks via templated
ligation in an ab initio scenario without the requirement for further a priori assumptions.

We showed that the strand-length distribution arising in this situation is determined from
the competition of three natural time scales, or equivalently, their corresponding rates:

1. The dehybridization rate roff which decreases exponentially with strand length L with
a rate determined by the binding energy per nucleotide γ.

2. An effective extension rate rext of strands in hybridization complexes, which is deter-
mined by the ligation rate rlig, γ and system properties like initial conditions and/or
coupling to an environment.

3. A global time-scale either determined by the outflux rate rout (which is the inverse
average life-time of any complex) or a global observational time scale τobs (which is
the maximal life time of any complex in a transient system).

The competition between rext and rout (2 and 3) determines whether we see a long-tailed
distribution at all: If rout is larger than rext, there is not enough time on average to have any
ligations. The competition between roff and rext (1 and 2) leads to the emergence of extension
cascades at a typical length scale L∗: As soon as strands in a hybridization complex have
a length such that rext > roff, they will undergo extension cascades that lead to persistent
configurations, which can not extend any further. The fate of such a persistent configuration
is determined by a competition between roff and rout (1 and 3): Fully-hybridized duplexes
that are shorter than L† dehybridize before they leave the system. The single strands created
in this way act as templates in other extension cascades, enabling further strand growth.

We showed that these simple arguments allow us to explain the assembly and growth
dynamics of oligonucleotides via templated ligation in both in vitro and in silico experiments.
In what follows, we discuss our results in the context of the broader research field.
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6.6.1. The simulation framework

A major part of this work focused on the emergent length-scales defined via the competition
of time scales in the self-assembly process of long strands. While the results may be
obvious in hindsight, having access to a microscopic stochastic simulation was key in their
formulation. Moreover, the detailed analysis of self-assembly and primer extension would
not have been possible without access to simulated trajectories of individual chemical
structures.

Even though the concept of such a simulation seems natural, no simulation framework
capable of handling the full complexity of the process was available. The biggest challenge
in any implementation is the immense size of the stochastic state space. At any time, the
system state is defined by an occupation number for each of the infinite number of species
defined by different hybridization complexes. Enumerating or counting the different species
is already a non-trivial combinatorial problem. As a consequence, there is no practical
way to specify the states and the stochastic transitions between them a priori. Instead, our
algorithm dynamically generates the relevant part of the network of states just in time.
Even then, due to the vast range of relevant time scales in this problem, simulations were
executed on high-performance computing hardware and optimized for speed.

6.6.2. Joint experimental, computational and theoretical efforts

Experimental studies of templated ligation and other prebiotically relevant dynamics of
informational polymers have attracted considerable attention in recent years [100, 58, 14,
11, 13, 105, 99, 90, 53, 72, 45, 49, 79, 86, 56]. A huge experimental challenge for probing
the origins of life in vitro are the potentially long time scales. While interesting prebiotic
phenomena can occur fast in terms of geological time scales, the involved time scales can be
prohibitively long from the perspective of the relevant experiments.

We have seen how this problem occurs in isothermal experiments and how it can be
overcome with the use of thermal cycling. Finding the correct points in a large experimental
parameter space is a challenge and usually requires good experimental intuition. Analytical
arguments and the simulation tool brought forward in this work can help to guide this
intuition. In particular, the theory presented here allows us to experimentally control the
characteristic scales of oligunucleotide structures emerging in the self-assembly process.

6.6.3. Step by step towards the RNA world

Accepting the RNA world hypothesis, one of the central question regarding the origin of
life is the path from prebiotic chemistry to the first self-replicating systems of informational
molecules [61, 71, 100].

Since major transitions in evolution appear to have occurred due to smaller entities coming
together to form larger entities [19], a multi-steps scenario also seems natural in a prebiotic
context, cf. Fig.6.27. While the importance of templated ligation in this scenario is generally
accepted [18], the mechanisms emerging from the combined action of short building blocks
are not yet fully understood. While most other work focuses on scenarios further down the
evolutionary road, our study shows the emergence of oligomer structure in a kinetically
and thermodynamically consistent ab initio scenario.

Since both characteristic scales are to leading order proportional to the reciprocal binding
energy per nucleotide in units of kBT, their values will differ for different nucleotide pairs
with different thermodynamic properties [83, 52, 32, 23].

75



6. The null model

more structure

more function

prebiotic steps towards the RNA world
primordial
chemistry random

polymerization

hybridization &
templated ligation functional

selection

primordial
soup

short oligo-
nucleotides

long oligo-
nucleotides

 ribozymes
complex

secondary structures

nucleotides

cooperative
 ligation

emergent mechanisms

emergent entities

this work

Figure 6.27.: Evolution is a multi-step process that creates new emergent entities which exhibit
emergent mechanisms of interaction. As a process far from equilibrium, evolutionary dynamics is
able to funnel the phase space of all possibilities into distinct regions exhibiting ever more complex
structural entities. Our work outlines the emergence of structured oligonucleotides from the smallest
building blocks in a thermodynamically and kinetically consistent model.

In addition, the scale of the start of extension cascades, L∗, crucially depends on the
kinetic aspects of the ligation reaction [76, 58].

The typical strand-length scale, L†, on the other hand emerges from a competition of
transient or degradation time-scales and dehybridization. It is thus independent of the
ligation kinetics. Coupling to other non-equilibrium driving forces like temperature or
concentration cycles which naturally occur in prebiotic environments, shape the relevant
time and length-scales [48, 97, 85]. Our experiments show that the value of the emergent
characteristic length scales can be tuned without changing the underlying chemistry of the
oligonucleotides.

As such, the strands of a characteristic scale L† produced by the basic self-assembly
mechanisms presented here, can act as the basic building blocks of a higher-level form of
organization. For instance, the work of Eigen and Schuster on hypercycles and quasi-species
[6] as well as Kauffman’s notion of an autocatalytic set [17] provided valuable conceptual
frameworks. However, recent theoretical advances along this lines have relied on premises
arising from coarse-grained assumptions [8, 55, 74, 88, 82, 100, 47]. Our results and the
use of an elementary stochastic simulation framework will help to provide a solid base for
further research.

6.6.4. Connection to evolutionary dynamics

While various definitions of the necessary properties of evolutionary dynamics exist, most
researchers agree that they include:

• Mutation, i.e., stochasticity, possibility of rare events.

• Selection, which arises from replication (i.e., autocatalysis) coupled to global con-
straints (i.e., global degradation, carrying capacities etc. ).

• Cooperation, for instance in the form of mutually catalytic networks, see Refs. [100,
95].

• Structural entities that persist and allow for information storage (strands, sequence
motifs, genes, cells, individuals).

The results and the simulation method used in this chapter lend themselves naturally to
further studies. While we did not treat sequence information explicitly, the emergent self-
assembly and growth processes in our model exhibit all of these properties: Mutation arises
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directly from the stochastic simulation framework. Selection results from a competition
between dehybridization and degradation (or transient) time scales and thus leads to
structure on the level of strand lengths. The combined hetero- and autocatalytic nature of
the assembly process emphasize the importance of cooperation, see Sec. 6.4.7.

Since extension cascades enable the classical primer-extension scenario, additional selec-
tion and cooperative behavior is a natural consequence, cf. Ref. [100]. Under this premise,
the results of Refs. [100, 95] as well as the more conceptual ideas of Eigen and Kaufmann
imply structure formation in sequence space.

Finally, our work shows the emergence of distinct structural entities, i.e., strands of a
typical length, in a prebiotically plausible self-assembly scenario. In a linguistic analogy,
where letters amount to nucleotide identities, our work allows us to understand the typical
length of words and sentences: Letters and words occur as the small, single strands of
length L . L∗. In contrast, the length of typical sentences is determined by the scale L†. The
catalytic self-assembly dynamics analyzed in this context then allow us to understand a part
of the underlying syntax of the prebiotic language. However, the semantics of this language
only emerges in the context of an evolutionary process. We hope that our work contributes
towards understanding a crucial step within the larger story.

6.6.5. Switching mode of operation of a hypothetical protocell genome

In Section 6.4.3 we saw that the average strand length as a function of the cutoff rate
rcut = eγlcut exhibits a maximum at lcut = 16. The average length at the maximum is eight
times larger than the average length of a system without a cutoff, lcut ≥ 50. Like discussed,
this corresponds to a growth mode where duplexes dehybridize after a single extension
leading to a rapid increase of strand length. However, this mode of operation does not allow
for copying of longer sequences in a templated fashion. We consequently term this regime
the fast incorporation regime and the regime without cutoff the copy regime.

We can transition from the copy regime towards the fast incorporation regime by e.g., in-
creasing the ambient temperature or lowering the pH which reduces the melting temperature
[91].

While the change in temperature can only be induced through a change in the envi-
ronment, there are indications that the latter could also be self induced by the membrane
growth of a hypothetical protocell: In [62] they show that the pH of a model protocell with a
fatty acid bilayer can be reduced by constant incorporation of fatty acids into the membrane
(growth).

Such a coupling between the growth of the membrane and the mode of operation of
the genome (copy mode, fast incorporation mode) could enable a synchronization of inner
protocell processes to its growth-division cycle.

6.6.6. Outlook

The null model considered in this chapter serves as the most simple model allowing the
study of structure formation through templated ligation. Never the less the secondary
structures so far included in the model are limited, most evident in the fact that we excluded
self folding of strands. Self folding could lead to the emergence of yet an other length scale
and it would be interesting to see its impact on the length distribution. Though desirable,
extending the algorithms to include self folding is a possible but daunting task. Further,
coupling the system to an influx and outflux that mimic diffusion of informational polymers
through membranes could be considered. In particular, this would require fluxes which
are length dependent and proportional to the difference in the concentration between the

77



6. The null model

environment and the reactor. One could for example consider a scenario where complexes of
length larger than C ≥ 3 can not leave the system. Cell division can be mimicked relatively
simple by stochastically removing half of the complexes or by implementation of serial
dilution. Further, the possibility of driving time resolved temperature cycles in the reactor
would be beneficial as it would allow for a more direct comparison with the experimental
setup.
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7. Preliminary results for a
sequence-dependent model

The simulation by design can handle sequence-dependent energy models. Here, we show
preliminary results for a system of oligunucleotides with a binary alphabet. The energy
model used here is a nearest-neighbor model. Non-complementary base pairs introduce a
thermodynamic penalty and optionally a stalling effect on the rate of templated ligation.
The model extensions got designed in cooperation between Tobias Göppel and me. The
simulation code got extended by Tobias Göppel to include the breaking of oligonucleotides
(hydrolysis) for both single and double strands. He also wrote the code for the analysis of
the error fractions, discussed below.

7.1. Overview of the model

The model presented here uses a binary alphabet A = A, U, where A.U and U.A are
considered matches, whereas A.A and U.U are mismatches. This constitutes a simplification
with respect to the four nucleotide alphabet used today by biology; however, it is considered
a possible prebiotic scenario [2, 15, 58]. Further, there are examples for ribozymes composed
of only two bases [29, 42] and many theoretical models use a two-letter alphabet for
simplicity, cf. Refs. [8, 39, 58, 82, 70, 41, 104, 37].

Energy model for a binary alphabet

TT
A
U

A
U A

UA
U= -1.25...=

TS -0.625A
U

A
A
U

U= ...=

TF +0.375= ...=A
U

A
A A

U
U
U

FF +0.75= ...=U
U

A
A U

U
U
U

FS +0.375U
U

A
U
U

U= ...=

TT

ij blocks of four Figure 7.1.: Dimensionless binding energies
γ = ∆G

kBT for all possible block configurations.
Energy values only depend on the number
of matching base pairs (T) and unpaired nu-
cleotides (S). The configurations TS and FS
consisting of 3 nucleotides are also known
as “dangling end” contributions in common
nearest neighbor models [52, 32].

We choose an energy model that assigns a binding energy to each possible 4-block of
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neighboring nucleotides, cf. Fig. 7.1. As such, it is similar to common nearest neighbor
models [52, 32]. Here, for the sake of simplicity, we only distinguish between complementary
(T) and non-complementary (F) nucleotide pairs and single (S) nucleotides, cf. Fig 7.1.

Sequence-dependent ligation rates

interface ligation site

Figure 7.2.: Mismatches in the vicinity of the
ligation site decrease the ligation rate. We
include the influence up to the next nearest
neighbors of the ligation site.

From experimental observations [49], it is well known that enzyme-free extension of a
primer is considerably slowed down after a mismatch. This effect is usually known as
“stalling” and has been shown to depend on the presence of mismatches around the ligation
site. Stalling due to non-complementary base pairs is also observed for ligation-reaction
catalyzed by a ligase [46, 77].

In our extended model we can include stalling by making the bare rate of templated
ligation, rlig, explicitly dependent of the sequence context. In particular, the rate of templated
ligation decreases for any mismatch at a distance up to two nucleotides away from the
ligation site, see Fig. 7.2.

To be close to experimental observation, we parametrize rlig in the following way:

rlig(i−2, i−1, i1, i2) =
r0

lig

s(i−2, i−1, i1, i2)
. (7.1)

In this formula, r0
lig is a neutral (maximal) ligation rate. The neutral ligation rate is modified

by a stalling factor s(i−2, i−1, i1, i2) ≥ 1 that depends on the sequence context of nearest
(index ±1) and next-nearest neighbours (index ±2) of the ligation site. Using the boolean
function b(i) for the basepair bpi at position i,

b(i) =

{
0, if bpi = T, S

1, if bpi = F
, (7.2)

a convenient multiplicative form of the stalling factor is given by

s(i−2, i−1, i1, i2) := σ
∑j∈{−1,1} b(ij)

1 σ
∑j∈{−1,1} b(ij)b(i2j)

2 (7.3)

where σi is an elementary stalling factor attributed to mismatches that are i base pairs away
from the ligation site. Values of σ1 = 20 and σ2 = 10 are consistent with experimtal data in
[64, 49].

7.1.1. Degradation by hydrolysis and double-strand breakage

In addition, we implemented cleavage of single strands with elementary rate rcs and the
breaking of double strands with rate rdb, cf. Fig. 7.3. A process leading to the spontaneous
cleavage of single-stranded segments is auto-hydrolysis, while double-strand breakage can
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cleavage of single strand

breakage of double strand

cleavage on double strand

Figure 7.3.: (top left) Cleavage of single strand with elementary rate rcs. (top right) Cleavage of a
hybridized strand which is not included in our model. (bottom) Breakage of a double strand with
elementary rate rdb.
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Figure 7.4.: Closed binary alphabet system with cleavage of single strands as the only degradation
mechanism. (a) Strand-length distribution for various values of the single-strand cleavage rate rcs.
In all cases, the position of the maximum is predicted by the competition of the length-dependent
dehybridization time, r−1

off and observation time τobs via Eq. (7.4). (b) The mean strand length as a
function of time.

be caused by ionizing radiation [22, 68, 75]. For the purpose of this simple model extension,
we neglected auto-hydrolysis of strand segments that are hybridized, see Fig. 7.3 (top
right). Experimental evidence suggests that this phenomenon is negligible since the double-
stranded configuration inhibits the attacking 2’-OH from attacking the phosphodiester
bond [21]. Further, the rates of auto-hydrolysis are different between DNA and RNA,
with experiments suggesting that under similar conditions, the rate constant for DNA
auto-hydrolysis is by a factor of 1×105 smaller than that of RNA [22]. For r0

lig we used the
standard value of Chapter 6, r0

lig = e−6.

7.2. Preliminary results

We report preliminary results on the strand-length distribution obtained in this model and
its dependence on the cleavage processes. In particular, we demonstrate that a time-scale (or
rate) analysis that is similar to the one presented in Chapter 6 can be used to predict the
relevant features of the distribution.

7.2.1. Cleavage of single strands

We first consider a closed system where we only allow for cleavage of single-stranded
segments. The system is initialized with a mixture of all possible n-mers at at initial
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concentrations cn with values c1 = 8.7 mM, c2 = 0.696 mM, c3 = 0.348 mM and c4 =

0.174 mM. Sequence-dependent parameters are kept constant for all simulations. The single
strand cleavage rate rcs (as always, expressed in units of r0) is then varied between between
1×10−10 and 1×10−7.

Fig. 7.5 (a) shows the resulting length distributions at an observation time τobs = 1×109.
Depending on whether the inverse cleavage rate is comparable to the system time, systems
have (approximately) reached a semi-stationary state. This behavior is visualized by the
time-dependent average length shown in Fig. 7.5 (b).

We see the emergence of the typical shape of the non-monotonous strand-length distribu-
tion in all cases. Importantly, the position of the maximum is independent of the cleavage
rate.

This observation is consistent with our general understanding of the competition of
time scales involving the dehybridization rate of duplexes. Since duplexes are not affected
by cleavage at all, the single-strand cleavage rate does not influence the position of the
maximum. Notice, however, that it changes the distribution of the short strands, which
are predominantly single-stranded. Moreover, since we consider a closed system here, the
overall mass of the system is constant, and thus the exact form of the distribution will
depend on this semi-stationary balance.

For rcs ≥ 10−8 a steady state was reached and Lmax can be estimated by calculating the
strand length for which the dehybridization rate of a fully hybridized configuration with
zero mismatches becomes equal to the total double-strand breakage rate (L− 1)rdb of the
duplex:

L†(τobs) via
e−1.25(L−1)

2L− 1
=

1
τobs

. (7.4)

Solving this equation yields the prediction L†(tsys) = 16.6, which is represented by a vertical
bar in Fig. 7.5 (a), which agrees well with the position of the maximum.

For completeness, we also note that increasing the value of the degradation rate triggers
another transition, akin to the transition from long- to short-tailed distributions for high
outflux rates. If degradation is simply too fast with respect to extension, no long-tailed
distribution can form. In the present situation, this competition can even lead to the
“extinction” of all long strands: Starting at a cleavage rate of about rcs = 10−6, the system
quickly reaches a state where only monomers are present. Then, any strand growth becomes
impossible since templated ligation requires at least dimers as template.

7.2.2. Double-strand breakage

Next, we consider the same system as in the previous section but also allow for double-strand
breakage at a rate which we assume to be 100 times slower than single-strand cleavage, i.e.,
rdb = rcs/100. In contrast to the single-strand cleavage rate, double strand-cleavage is a
process that affects the extension-reassembly process and thus, potentially the position of
the maximum L†.

However, we will only see that effect when the lifetime of the most stable duplexes
becomes shorter than or comparable to the transient system time. For the given parameters,
we would thus assume such a stationary balance only for the largest double-strand breakage
rates. Then, L† can be calculated by equating the rate of dehybridization of a fully-hybridized
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Figure 7.6.: Simulation results with single strand cleavage and double strand breakage rcs and
rdb = rcs/100: (a) Strand length distributions. Vertical dashed lines indicate the corresponding L†

calculated from Eq. (7.5). The grey solid line is the length-scale determined by the system time via
Eq. (7.4) and independent of breakage. (b) Mean strand length as a function time.

duplex with its (total) breaking rate (L− 1)rdb:

L†(rdb) via
e−1.25(L−1)

2L− 1
= (L− 1)rdb. (7.5)

Again, for the energy parameter γ = −1.25 we use the value corresponding to matching
blocks. For the fastest double-strand breakage rates, rdb = 1×10−9 and rdb = 1×10−10, the
formula (7.5) yields L† = 13.0 and L† = 14.65, respectively. Fig. 7.7 (a) shows the simulated
strand-length distributions.

For the largest rates of breakage, the scales determined by Eq. (7.5) coincide well with the
observed maxima at Lmax = 13 and Lmax = 16. For slower rates of double-strand breakage,
the system time τobs determines the limiting rate, and Eq. (7.4) needs to be used. The
variation of the mean strand length as a function of time confirms this transient behavior, cf.
Fig. 7.7 (b).

7.2.3. Error fraction of fully hybridized strands

In the system considered in the last section we saw that the estimate for Lmax obtained
via considering only fully hybridized duplexes (Eq. (7.5)) underestimated the actual value,
L†(10−10) = 14.65 < Lmax(10−10) = 16. This can be interpreted as an indication that for
larger Lmax (smaller rdb) mismatches need to be considered in formula Eq. (7.5). But in this
case, Eq. (7.5) would loos its predictive power as we do not have a formula for the average
numbers of mismatches contained in a strand. Let us therefore consider the error fraction of
fully hybridized duplexes, see Fig. 7.8.
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Figure 7.8.: Error fraction of fully hybridized
duplexes vs strand length. Only for the
largest cleavage rate the position of the max-
imum (vertical lines) coincides exactly with
the position of the minimum.

The error rate seems to decay exponentially for small lengths until L ≈ Lmin where we
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conjecture the onset of extension cascades, L∗ (Fig. 7.8). At L ≈ Lmin the error fractions drops
rapidly, forming a minimum at around Lmax. Hence, the appearance of primer extension
cascades leads to a strong decrease of the error fraction. For rdb = 1×10−7, Lmax is exactly
at the position of the minimum in the error rate, but for rdb < 1×10−7, there is an offset
between both quantities. Like expected from the fact that L†(1×10−10) < Lmax(1×10−10),
the error rate at Lmax(1×10−10) is larger than the error rate for Lmax(1×10−9).

Correcting formula Eq. (7.5) by neglecting the possibility of multiple errors, we can
estimate L†(1×10−10) by:

pe(0) + pe(1) ≈ 1 (7.6)

pe(1) = 0.272

〈∆G〉 (L) = (L− 1) ∗ (−1.25) ∗ (1− 0.272) + ((L− 3) ∗ (−1.25) + 2 ∗ 0.375) ∗ 0.272

L†(rdb) via
e〈∆G〉(L)

2L− 1
= (L− 1)rdb,

where pe(n) is the probability that the duplex contains n mismatches. Applying this formula
yields L†(10−10) = 15.29, which is closer to the actual value Lmax = 16.

7.2.4. Double strand breakage in a system without stalling

In order to demonstrate the principles discussed above in a system closer to the null model
discussed in Chapter 6, we again run the simulation of the double strand breakage system
using identical conditions as above, but without a context dependent stalling factor, hence
rlig(i−2, i−1, i1, i2) = r0

lig = e−6. The results are shown in Figure 7.9. It is to no surprise
that the results are qualitatively identical, with the exception that the error rate seems to
be larger in the system without stalling, compare Fig. 7.8 with Fig. 7.10 (c). Hence, as one
would expect, the context-dependent stalling factor reduced the error rate, and the positions
of the maximum could be better approximated with the formula only considering matches,
Eq. (7.5).
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Figure 7.9.: Simulation results with single strand cleavage and double strand breakage rcs and
rdb = rcs/100: (a) Strand length distributions. Vertical dashed lines indicate the corresponding L†

calculated from Eq. (7.5). The grey solid line is the length-scale determined by the system time via
Eq. (7.4) and independent of breakage. (b) Mean strand length as a function time.

7.3. Conclusion

In this chapter, we have shown that the basic arguments presented in the simple, sequence-
independent null model can also be applied to systems with a sequence-dependent energy
model and a different degradation mechanism (breakage of strands). By using a sequence-
dependent ligation rate that includes stalling after mismatches, we further showed that the
important features of the assembly process do not depend on these microscopic details.
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7.3. Conclusion

Further, we demonstrated that the assembly processes far away from equilibrium will have
an impact on the error rate of the fully hybridized complexes and hence on the sequence
space. It is an intriguing open question to study how information is copied in such a system.
Further, this study should be repeated with an alphabet of four nucleotides in the future.
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8. Summary and outlook

A main goal in the origins of live research is finding a system of interacting informational
polymers that exhibits replication of information. As there was no appropriate simulation
software available to approach this question, we developed the simulation framework
presented in this thesis. In the last chapter, we demonstrated the capability of the simulation
to handle more evolved models, including cleavage and sequence dependence. One of the
future challenges will be to not become lost in the forest of endless potential models that can
be simulated. The null-model studied in detail in [106] and this thesis will be of great help
in selecting promising models in order to find a self-replicating system. Further, quantities
that allow measuring the degree of replication must be determined.

8.1. Toehold/branch migration

A possible extension of our simulation could be the toehold/branch migration mechanism,
as experimentally studied in [101]. The authors claim that it could circumvent the strand
separation/re-annealing problem. Nevertheless, the article does not explain how the toehold
configuration does form from a fully-hybridized configuration in the first place.

The separation/re-annealing problem describes the following process: After a full ex-
tension of a primer-template duplex, the fully-hybridized duplex is separated by a rise in
temperature (or change in pH, or salt concentration etc. ). Thereafter the temperature is
lowered again, but the formation of new primer-template duplexes is suppressed due to the
re-hybridization of the template strand and its full complement, which results again in a
non-extendable fully-hybridized duplex. However, it is not clear to me if this problem is
primarily due to the consideration of simplified scenarios where there are, e.g., only primers,
templates, and nucleotides and could be circumvented by using mixtures of strands of
different lengths.

8.2. Coupling to ribozyme activity

An intriguing open question is how a system of informational polymers undergoing the
basic reactions described in this thesis can couple to ribozymes that emerge spontaneously.
One possibility discussed in the introduction was that the genome of a hypothetical protocell
could favor the appearance of a ribozyme that catalysis membrane growth.

Alternatively, the spontaneous emergence of a cleaving ribozyme could be an interesting
scenario to study. The so-called hammer head ribozyme I/III, see [20, 59, 60], is a catalyst
that accelerates the cleavage of single strands with a minimum size of about 22 nucleotides.
Its cleavage rate is sequence-dependent, but as it is one of the most studied ribozymes,
sufficient data should be available such that its specific impact on the sequence space can
be modeled at least quantitatively. The concentration of the ribozyme could be assumed
to be proportional to the concentration of the sequences constituting its reactive core of 13
nucleotides1. The introduced sequence-dependent cleavage of single strands will likely have

1not counting nucleotides that must be present in the substrate strand of the I/III configuration
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Figure 8.1.: The virtual circular genome G, green cycle in the middle, is not assumed to be present in
the system. Instead its sub-sequences are assumed to be present. Hence a replication of the cyclic
genome can be achieved by the growth in concentration of each of its sub-sequences. The image was
taken from [107].

an impact on the hetero-catalytic cycles.

8.3. Virtual circular genome

Recently Zhou,Ding, and Szostak [107] suggested the concept of a virtual circular genome.
In this section, I will briefly outline how one could study the suggested mechanism with
the help of the simulation framework presented in this thesis. For this purpose, we first
need to define the required quantities: We denote the sequence of the cyclic genome by
G, see green circle in Fig. 8.1, and denote the set of all sub-sequences by SG. The number
of different sub-sequences is then given by M = |SG|. We further denote a sub-sequence
species as gi, i ∈ {1, 2, .., M} and the frequency of gi in G by xi. A sub-sequence has a length
Li which is smaller or equal to the length of the genome LG. We further define the number
of sub-sequence species of length L as QL := ∑i = 1MδLi ,L. We denote the set of species
being present in the system as C by SC (c = cell) and the copy number of species si in C by
ni.

The actual circular genome G is not present in the system C, instead (almost) all of its
sub-sequences gi are assumed to be contained. The contained sub-sequences must constitute
a full coverage of G, such that

⋃
gi∈C gi = G.

Further, we require a decaying strand length distribution in the interval [1, LG] such that
NL+1 = αNL, α < 1, where NL is the frequency of strands of length L. The authors conclude
that: “A surprising consequence of such a concentration versus length gradient is that
average oligonucleotide growth by as little as one nucleotide could result in replication of
the entire genomic ensemble”[107].

Our simulation offers a suitable tool to study the suggested mechanism theoretically.
I suggest starting with a randomly generated circular genome of length LG = 30 with an

alphabet of 4 nucleotides. To provide presumably optimal conditions for the replication
of the genome, we initialize the system only with its (single stranded) sub-sequences gi
weighted by their occurrence in the genome (this constraint can be relaxed in further
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experiments). We thereby restrict the system to initial sub-sequences of a maximal length of
Ls = 10.

We set N1 = 1.5×104 monomers corresponding to a concentration of c1 = 1 M and choose
α = 1/2, which yields an initial gradient of NL = e− ln(2)(L−1)N1, for L ≤ Ls and NL = 0 for
L > Ls. The initial total number of strands for each length is consequently given by

L 1 2 3 4 5 6 7 8 9 10
NL 15000 7500 3750 1876 938 469 235 118 59 30

Note that the quantities were chosen such that the smallest copy number N10 = 30 does
not fall below the maximal number of sub-sequences n10, which is for all lengths limited
by LG = 30. Therefore all sub-sequence species are included initially in the system and the
copy numbers of a sub-sequence can simply be calculated by2

ni =
xi

QLi

NLi . (8.1)

We further chemostat the monomer, dimer and trimer concentration. and apply a constant
outflux rate, see Chapter 6. The outflux rate must be tuned s.t. a steady state can be reached
in a reasonable amount of time.

For the first conceptual study, I would suggest an energy model similar to the one
presented in the last chapter that assigns energies to blocks of four nucleotides based on the
number of matches and mismatches. Also, a further simplified model could be considered,
where hybridization is only allowed for perfectly matching sequences.

Regarding a cutoff in the dehybridization rate, both the bound and the unbound model
are interesting scenarios to consider for this experiment.

Now the remaining question is, what are valuable observables for quantifying the strength
of the replication reaction network associated with the cyclic genome? A simple observable
could be the fraction of strands which are part of the cyclic genome in dependence of the
strand length,

fG(L) =
ρ(L | strand in G)

ρ(L)
. (8.2)

Initially we have fG = 1, for L < Ls and fG = 0 for L > LS, as all strands are initially part of
the genome. But in the course of time, new strand sequences will be created. If the system
produces completely random strands, then fG(L) should decay towards p = 1/4L.

Another interesting variable would be the number of cyclic genomes that can be assembled
by alignment of the strands contained in the system at a certain time point, NG.

We therefore define the entirety of strands present in the system at time t that are
sub-sequences of the genome G as Z(t).

We would then uniformly draw a strand from Z(t) and subsequently sample all align-
ments where it matches the genome and covers a nucleotide that was not covered through a
previous attempt. When the whole genome is covered, the copy number of the genome NG
is incremented. This repeats until there are no more strands left to draw from.

2A small python script that can be used for this calculation can be found on my github account [link].
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A.1. Hybridization

The number of possible hybridizations two complexes can undergo is denoted as Θ. We do
not allow for rejection if a hybridization between the two colliding complexes is possible
(Θ > 0), and therefore set

pa =

{
0, Θ = 0

1, Θ > 0.
(A.1)

This corresponds to setting the penalty for the formation of the first base pairing to zero,
ν = − ln(pa) = 0. We equally weight the different hybridizations upon collision

pc =
1
Θ

. (A.2)

We call 1/Θ the channel factor. In the main text pa and pc got combined into the hybridiza-
tion probability phyb = pa pc. Consequently the hybridization rate and the corresponding
rate constant are given by

ron =
1
Θ

1
VNAc◦

1
t0

and kon = 2m2−δij
1
Θ

1
c◦t0

. (A.3)

Note that in the simulation the concentration of a reference species cref in c◦ and its
corresponding copy number Nref are input parameters.

The dehybridization rate and rate constant are given by

roff =
1
Θ

eγl 1
t0

and koff =
1
Θ

2m1(1−δij)eγl 1
t0

. (A.4)

A.2. Scaling of the kinetic parameters of a stationary system

Consider the reaction fluxes φ in terms of the concentration vector ~c and the rate constants:

φon(~c, kon, koff, klig, kout) ∝ cicjkon,

φoff(~c, kon, koff, klig, kout) ∝ ckkoff,

φlig(~c, kon, koff, klig, kout) ∝ ckklig,

φout(~c, kon, koff, klig, kout) ∝ ckkout.

A transformation of the form

~c→ ~c′ = αc~c, kon → k′on = αonkon, koff → k′off = αoffkoff, klig → k′lig = αligklig, kout → k′out = αoutkout

that scales all reaction fluxes by the same amount changes only the intrinsic time-scale of
the dynamics. In particular, it leaves the stationary distributions invariant.

By forming the three independent ratios of the reaction fluxes, ond finds that all transfor-
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mations that lead to the same ratios

α1 :=
αoff

αlig
, α2 :=

αoff

αout
, α3 :=

αoff

αonαc
,

are equivalent with respect to the stationary distribution. In particular, it shows that scaling
the hybridization rate has the same effect as scaling the concentration.

A.3. Initiation penalty

Throughout this article we set the acceptance probability constant to pa = 1, and thus the
initiation penalty to ν = − ln(pa) = 0. We did not vary this parameter explicitly. In this
section, we apply the scaling relations derived in the previous section, in order to show that
a variation of the initiation penalty is equivalent to a variation in concentration. In order to
compare the thereby obtained values of the initiation penalties to the values given in the
literature, we provide formulas for the conversion between different energy units in the next
section.

A.3.1. Conversion between units of free energy

For clarity, in this section we denote the value of a physical quantity x by curly brackets
and its unit by squared brackets, x = {x} [x]. For example, the Avogadro constant is written
as NA = {NA}[NA], where {NA} = 6.022× 1023 and [NA] = mol−1. This notation will be
useful in this section to give simple expressions for converting different energy units.

Free energies measured in experiments are usually given in units of kcal/mol, ∆Gm =

{∆Gm} kcal/mol, which can be converted to the free energy of a single molecule in Joule
via ∆Gs = 4184{∆Gm}

{NA} J. Dividing by the Boltzmann constant leads to

∆Gs

kB
=

4184 {∆Gm}
{R} K = 503.22 {∆Gm}K, (A.5)

where R = 8.31 J K−1 mol−1 is the gas constant. Thus, standard free energies measured at
T◦ = (273.15 + 37)K can be converted to their corresponding values in kBt0 via

∆Gs

kBt0
= 1.62 {∆Gm} . (A.6)

For example the standard binding energy per nucleotide γ = −0.5 would correspond to
−0.3 kcal/mol.

A.3.2. Scaling of concentrations is equal to a variation of the initiation penalty

In Sec. 4.8.1 we set the acceptance probability to pa = 1 and consequently the initiation
penalty to ν = − ln(pa) = 0. Introducing an acceptance probability pa < 1 into our model
corresponds to a scaling of the hybridization rate with the factor αon = pa. As shown in
Sec. A.2, this is in turn the same as scaling the concentration with αc = pa. We can thus map
the concentration sweep ( cf. Fig. 6.9(d)) onto an initiation penalty sweep. For this, we use
the system with the highest simulated dimer concentration c∗2 = 5.5×10−3Mm as a reference
system. A concentration can then be mapped onto the corresponding initiation penalty via
ν = − ln(αc), where αc = c2/c∗2 . For c∗2 = 5.5Mm being the reference concentration we have
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c2 (mM) 5.5 3.5 2.5 1.5 1 0.5 0.2
αc 1 0.64 0.45 0.27 0.18 0.09 0.04
ν 0 0.45 0.79 1.30 1.70 2.40 3.31

Measured values for the free energies of the initiation penalty for RNA under standard
conditions at T = 37 °C are ∆Gν,RNA(37 °C) = 4.09 kcal/mol, ∆Hν,RNA = 3.61 kcal/mol [52].
The associated entropy is therefore ∆Sν,RNA = −1.5×10−3 kcal/mol.

For DNA in a magnesium (Mg2+) rich buffer at T = 25°C measured values for the free
energies and entropy are ∆Gν,DNA(25 °C) = 0.91 kcal/mol, ∆Hν,DNA = 2.77 kcal/mol and
∆Sν,DNA = 6.2×10−3 kcal/mol [83]. Hence at T = 37 °C this corresponds to a Gibbs free
energy of ∆Gν,DNA(37 °C) = 0.847 07 kcal/mol.

Hence in kBT◦, with T◦ = 310.15 °C, the Gibbs free energies of the initiation penalty for a
single molecule are (see Sec. A.3.1):

νRNA =
∆Gs

ν,RNA(37)
kBt0

= 6.64,

νDNA =
∆Gs

ν,DNA(37)
kBt0

= 1.37.

Assuming that the standard binding energy per nucleotide γ = −0.5 corresponds to
T = T◦, the measured value of the initiation penalty for DNA, νDNA = 1.37, lies within the
simulated values, cf. Table ??.

A.4. Smoothing filter

In this section, we describe the smoothing filter that we used in our data analysis. We
applied it onto length distributions ρ(L) in steady state to smooth the long noisy tail of the
distribution.

The filter is a moving average that takes data points (xi, yi), i ∈ {1, ..., N}, as an input
and generates a smoothed set of data points (ai, bi), i ∈ {1, ..., M} , M ≤ N. The principle of
the algorithm is illustrated in Fig. A.1(a). The size of the window for the moving average
is adaptively increasing with the value of xi. We define a vector that sets the boundaries
at which the window size changes v = (100, 500, 1000, 5000, 10000, ...). If xi < v(0) no
smoothing is applied and (ai, bi) = (xi, yi). Each interval given by [v(j), v(j + 1)] is divided
into mj = 10(v(j + 1)/v(j)− 1) sub-intervals s, s ∈

{
1, ..., mj

}
, of length ∆Lj = v(j)/10. For

each of these sub-intervals a value as is calculated, by assigning it the lower limit of each
sub-interval (cf. dashed orange line in Fig. A.1(a))

as = v(j) + (s− 1)∆Lj. (A.7)

The corresponding value bs is calculated by taking the average over all yi, for which the
corresponding xi is not further away than ∆Lj/2 from as:

bs =
1
|Is| ∑i∈Is

yi, where Is =
{

i : xi ∈
[
as − ∆Lj/2, as + ∆Lj/2

[}
. (A.8)

Let us consider two examples: (1) Consider j = 0, hence v(0) = 100 and v(1) = 500 and
thus ∆L0 = 10. We calculate a2 = 100 + 10 = 110. Thus, b2 is the average over all yi, where
105 ≤ xi < 115. In a system that is coupled to a reservoir containing only dimers, only
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strands of even length are present, i.e. xi ∈ xi ∈ {106, 108, 110, 112, 114}. Hence b2 is an
average over 5 data points.

(2) Consider j = 2, hence v(2) = 1000 and v(3) = 5000, thus ∆L2 = 100. We calculate
a2 = 1000 + 100 = 1100. Thus, b2 is the average over all yi, where 1050 < xi < 1150.

The filter’s effect on the length distribution is shown in Fig. A.1(b). Only the noise in the
tail is smoothed, the shape of the length distribution is preserved.

x

Smoothing algorithm with variable window size

v(j) v(j+1)

...

ΔLj = v(j)/10 
ΔLj ΔLj ΔLj 

ΔLj/2 ΔLj/2 

v(0)

y

bs

Data points (xi,yi)

as=v(j)+(s-1)ΔL , s=2

 

 

(a)

100 101 102 103 104

strand length L

10 6

10 5

10 4

10 3

10 2

10 1

100

co
nc

en
tra

tio
n 

(L
) (

m
M

)

no smoothing
smoothed

(b)

Figure A.1.: Illustration of the smoothing algorithm: (a) The pink square labeled bs is the average
values over all yj where the corresponding xj ∈

[
as − ∆Lj/2, as + ∆Lj/2

]
. The case illustrated

corresponds to s = 2. (b) Application of smoothing filter on the length distribution (dimer only
reservoir, standard parameters). The red curve is the original curve, and the black curve the resulting
smoothed length distribution. The effect of smoothing is only visible in the tail and makes it easier
to visualize the trend.

A.5. Trajectories of extension cascades

For further investigation of the assembly and growth processes in our model, we analyzed
the trajectories of duplexes that undergo extension cascades resulting in a fully-hybridized
duplex.

A.5.1. Sampling of trajectories

We start with a background obtained form a simulation that reached steady state. We set the
complexes as background species, hence do not allow for reactions within this background,
as described in Sec. 5.1.4. As mentioned in Sec. 5.1.1, internally, the simulation implements
complexes via segments, all of which have a poly(A) sequence. We insert a dimer with a
specific sequence (“TB”) into the system, which serves as a label for an individual tracer
complex. The dimer can undergo hybridizations with all background species. Thereby the
label becomes integrated into other complexes. The complex with the specific label is always
kept as the only non-background species in the system (it undergoes reactions with the
background). We call this specific complex the tracked complex. After each reaction we
check if the complex contains a stable sub-duplex (see Fig. A.2(a)).

If one of the sub-duplexes starts to undergo an extension cascade (the dehybridization rate
of its hybridization site is smaller than its extension rate), we start to track the sub-duplex
within the tracked complex. We store the initial stable sub-duplex in a buffer. Whenever the
stable sub-duplex is extended via templated ligation, the newly formed duplex is appended
to the buffer. The stored sequential snapshots of the extensions of the stable sub-duplex
is what we call a trajectory. If the duplex dehybridizes, the trajectory is deleted, and the
recording restarts as soon as a new stable duplex that undergoes extension cascades is
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formed. When the tracked complex leaves the system via outflux, we save the trajectory
to disk and the assembly process restarts with a labeled dimer. The schema is illustrated
in Fig. A.3. As mentioned above, the tracked complex can undergo hybridizations with
the background. There is, however, one caveat: The tracked complex is only allowed to
undergo hybridizations with background complexes that do not itself contain sub-duplex
that undergo extension cascades. We further reject trajectories where two duplexes that
can undergo extension cascades are formed within a complex. These restrictions guarantee
the sampling of trajectories that start with the onset of a extension cascade and finish in
a fully-hybridized configuration. For the rejected trajectories it would not be possible to
identify a unique starting point. It can be expected that the thereby obtained strand length
distribution tends to underestimate the length distribution obtained via the full simulation.

A comparison between the strand length distribution obtained via the full simulation
and the sampled trajectories reveals that the latter resembles the first one, cf. Fig. A.2(b).
Hence the sampling is consistent with the dynamics. But indeed, the length distribution
obtained via sampling trajectories underestimates the concentration of strands of length
L ≥ 50 ≥ Lmax. For L = 40, the relative deviation is only −3%, whereas for L = 50 the
deviation is −19%.
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Figure A.2.: (a) The tracked complex of order n (n − 1 hybridization-sites) can be decomposed
into n− 1 sub-duplexes. (b) The length distribution of fully-hybridized strands obtained from the
trajectories (red curve) resembles the length distribution of the fully-hybridized strands obtained
from the full simulation (gray curve). The length distribution for all strand lengths (black line) is
plotted for orientation. The system shown here is the monomer-dimer system with a monomer
fraction fm = 0.7. The length distributions are normalized on the concentration at the maximum
Lmax = 33. Only at the tail the length distribution obtained via trajectory sampling underestimates
the concentration of long strands. This behavior is expected since certain trajectories leading to long
fully hybridized complexes are rejected.

A.5.2. Analysis of trajectories

We denote the total number of sampled trajectories as Ω and denote a single trajectory by
ω. A trajectory contains the assembly information starting from a stable sub-duplex (as
explained in the last section) of length Cinitial until it reaches a fully-hybridized duplex of
length Cfinal (cf. Fig. A.4(a)). A trajectory ω can be divided into the covering of P(ω) copy
sites j of length lcs(ω, j) (cf. Fig. A.4(b)), which we call a partial trajectory. In the following
we will use the notion of template and primer introduced in Sec. 6.4.7 of the main text. Each
copy site can again be resolved into building blocks i of length B(ω, j, i) used to built the
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Figure A.3.: The simulation loads the complexes from a simulation that reached a steady state and
utilizes them as background species. A labeled dimer (“TB”) is inserted into the reaction vessel
(simulation). The complex containing the (“TB”) motif is called the tracked complex. It can undergo
dehybridizations and ligations, and collisions with the background. As soon as the tracked complex
contains a stable sub-duplex, the trajectory of the sub-duplex is recorded. Whenever a ligation
happens, the sub-duplex structure is written to a buffer. Hybridizations and dehybridizations are not
explicitly tracked, i.e. the resulting new complex structure is not written to the buffer. However, if
the tracked stable duplex disassembles via dehybridization, the trajectory is rejected and the buffer is
cleared. We again start saving a trajectory as soon as the complex containing the “TB” motif contains
a stable sub-duplex. We also neglect trajectories that include two stable duplexes at some point, and
in this case, restart with a "TB" dimer. If the complex leaves the reaction vessel via outflux and if it
has reached a fully hybridized configuration, we save the trajectory to disk. The buffer gets cleared
and we restart with the dimer motif.
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partial trajectory (cf. Fig. A.4(c)). A building block is incorporated into the primer template
duplex via one of the following growth processes (cf. Fig. A.4(b)):

(p) primer extension: The building block extends the primer and is shorter than the
remaining overhang.

(s) switching: The building block extends the primer but is longer than the remaining
overhang resulting in a new copy site.

(t) template extension: The building block extends the template.

The length that is covered by the incorporation of a building block is called Beff(ω, j, i). In
the main text, we referred to this quantity as the effective building block length. If the
building block is incorporated via primer extension its effective building block length is
equal to its regular length, Beff(ω, j, i) = B(ω, j, i). In contrast, if it is incorporated via
template extension the effective building block length is Beff(ω, j, i) = 0. In the case of
switching Beff(ω, j, i) is the length of the last overhang of the copy site, or equivalently,
the difference between the building block length and the length of the new copy site. The
assembly over the course of time of a copy site is illustrated in Fig. A.4(d).

Cinitial trajectory

ω 

lcs(ω,1)=1 lcs(ω,2)=7 

lcs(ω,3)=6 

possible extension events:

- primer extension "p"

- template extension "t"

- template switching "s"
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for "p" : Beff(ω,j,i) = B(ω,j,i)
for "t" : Beff(ω,j,i) = 0  

(a)

(c) 
Trajectory ω  by copy sites lcs(ω,j)
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p t p

p s
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copy site

Building blocks of copy site lcs(ω,2):

- B(ω,2,i) (label inside strands)
- Beff(ω,2,i) (label outside strands)  

:
  

Figure A.4.: (a) A trajectory ω contains the assembly information of a fully-hybridized duplex of
length Cfinal, starting from a stable sub-duplex of length Cinitial. (b) A trajectory can be split into
several copy sites of length lcs(ω, j). The assembly of a copy site is called a partial trajectory. A
switching event creates a new copy site and reverses the role of primer and template. If the copy site
becomes fully covered and no switching happens, it results in a blunt end. A duplex with two copy
sites reaching a blunt end is a fully-hybridized duplex. (c) The length of the building blocks B(ω, j, i)
and effective building blocks Beff(ω, j, i) that assemble copy site j = 2. (d) Assembly of copy site
j = 2. In the last step, the switching events creates a new copy site.
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A.6. Laboratory experiment 12 nt random A-T-DNA strands

A.6.1. Initial sequence space of 12 nt A-T strand

The initial 12mer AT random DNA pool was ordered as 5’-WWWWWWWWWWWW-3’
with 5’- phosphate modification from biomers.net. The randomness of this initial pool can
only be accessed after next generation sequencing, which might introduce a bias due to
several enzyme-driven PCR- and ligaseextension reaction necessary for the attachment of
the primers and barcodes to the strands. Sequencing results show an overall bias towards
A-rich sequences and a lack of poly-T sequences. Fig. A.5(a) shows all 4096 (=212) possible
12mer binary sequences. Fig. A.5(c) shows the abundance of 6 nt long subsequences (26=64
possible sequences). Motives with poly-T are rare in comparison to other strands. Motives
with poly-A are overrepresented. Overall, there are 4067 of the 4096 possible submotives.

Figure A.5.: AT-only random sequence 12mer DNA pool: (a) Frequency of all possible 4096 sequence
motives sorted in a binary way (0:A, 1:T). (b) Abundance of sequences, including single misreads (G,
C in AT-only DNA). (c) Frequency of 6 nt (26=64) submotives in 12mer “monomer” strands. Poly-T
motives are underrepresented while poly-A motives are overrepresented.

A.6.2. Resulting PAGE gels

Fig. A.5 shows the frequency of sampled 12mer strands with maximal one mismatched base.
In AT-only DNA reads for G and C are, by definition, false reads. The long tail between
binary strand sequence 0 and about 1800 is made almost entirely of single mismatch reads.
The assumption of a random sequence pool with a slight bias towards poly-A sequences is a
valid starting point for the experiment. In direct sequence analysis, the bias might influence
the result if the system selects for specific sequences.

The numerical model assumes a constant ligation temperature Tcold for the entire reaction
time until a steady-state is reached. In the experiment, a constant Tcold does not produce
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multimer products over 60 hours, see Fig. A.6(a) and (b). Therefore, we assume that the
binding energy is too large to repeatedly build complexes, ligate, and dissociate in the
experimental duration of 60 h. The dynamics are essentially frozen. Temperature cycling is
an easy way to “reset” dsDNA to their ssDNA state to promote further hybridization and
ligation reactions.
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Figure A.6.: PAGE gels for experiments at constant temperature (a) and (b) and experiments exposed
to 1000 temperature cycles. AT-only random sequence 12mer DNA does not show signs of multimer
products from templated ligation during incubation at constant temperatures. In contrast, the
experiments for temperature cycles show significant multimer production. In this case, the pattern
of the PAGE gel change with temperatures.

A.6(c) again shows the PAGE gel from Fig. 6.25 in the main manuscript with the results
for 1000 temperature cycles between Tcold and varied Thot, which takes about 40 to 60 hours
depending on the temperatures and the temperature ramp of the PCR thermos cycler device.

A.6.3. Concentration quantification on PAGE gels by Image Analysis

We used a custom LabView program for concentration quantification of bands on PAGE
gels, as shown before [103]. The method has limitations, as described in depth below, but
for the samples used in this study, the method is reliable, and results are reproducible.

First, each lane is marked with a top and a bottom cursor that span a rectangular ROI
(region of interest, about 10-30 % of the lane width) on the lane, as shown in Fig. A.7(a). The
intensity is read as mean intensity values averaged over the width of the ROI. The center
region of each lane is the lowest lateral intensity change in the band and is therefore ideal for
selecting ROIs to compare different lanes. Additionally, the areas in between lanes are also
selected with separate ROIs (red). The inter-lane ROIs characterize the gel background and
a possible inhomogeneous illumination. For each lane, the average background calculated
from the left and the right inter-lane ROIs is calculated and subtracted to get the band
intensity only, as shown in Fig. A.7 (b).

To finally quantify each band, the intensity of each lane is normalized to the reference
lane. This step includes some of the limitations of this analysis:

• The total intensity per lane is homogeneous for each lane:

– The total amount of DNA in the reference sample and in each lane is the same,
just in different length distributions. We assume there is a similar chance for all
DNA to be stained by SYBR gold, resulting in the same total intensity per lane.
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Figure A.7.: Concentration quantification workflow:
(a) Selection of the lanes on the gel image. (b) Background corrected (red lines in a) intensity over
position graph. (c) Concentration estimation from the peak-areas in b. (d) Corrected concentration
due to subtraction of the baseline signal, which is then called the detection limit. (e) Final graph, the
position of the 24mer is extrapolated from the normal-log plot in d.
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– The increase in intensity at similar concentrations for longer bands is due to the
increase in length. With the item above, an increase in length is similar to a linearly
increasing probability of SYBR staining. This is not true for non-denaturing gels,
dsDNA, and DNA with all four bases.

– Differences in the total intensity of each lane are attributed to the pipetting error
that occurs due to handling small volumes of fluid with high viscosity.

• There is a need for a reference sample of known length and concentration. Furthermore,
the products need to be well defined as resulting from the monomers. This analysis
is not suitable for pools with different illumination per length samples with similar
product lengths.

• The concentration of DNA products in comparison to the monomers can only vary in
the range of detection.

In the last step, the baseline is subtracted from all lanes to achieve the final concentrations.
The band at a length of about 24 nt was identified as artifacts during the strand synthesis
(see [103]). Therefore, the position of the 24mer baseline is extrapolated in a linear fashion
from the normal-log plot, as shown in Fig. A.7(e).

Each lane is then accessible as an intensity over gel-position data structure. Due to the
background correction described above, there is no tilting or region-specific shift in the
baseline. The intensities in each lane are only slightly too high due to the lane being slightly
lighter in the fluorescent image than the rest of the gels. Each band is then either fit by a
Gaussian curve, or all data points in the region of the band, from baseline to baseline, are
simply summed up. The concentration is then a function of band-peak intensity and the
position in the lane (meaning the length of the reaction product).
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leading to the onset of evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. (a) (left) chemical structures of a RNA nucleotide consisting of a phosphate, a
D-ribose (sugar) and a base B ∈ A. The carbons on the sugar are labeled 1’ to
5’, where 5’ to 3’ is used to notate the directionality of the nucleotide. (right)
The bases C and U are pyrimidines (one ring of size 6, 4 carbons, and two
nitrogen atoms ), and G and A are purines (one pyrimidine plus a carbon
and two nitrogen atoms forming a second ring of size 5). (b) The nucleotides
are linked via phosphodiester bonds transferring their directionality onto
the resulting strand. Matching nucleotides opposite each other (base pair)
form hydrogen bonds. Adjacent nucleotides that are in base pairs interact
with each other via stacking. Both effects stabilize the helix. The four bases
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6.3. Examples of higher order complexes with multiple hybridiziation sites: (left)
A triplex with a templated ligation site. (right) A complex of order 4 with not
ligation site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.4. (a) Formation of a tetramer from the dimer background. A total overlap of
two leads to a total binding energy of β∆G◦ = 2γ. (b) Templated ligation
of dimers on an m-mer. There are two overhanging configurations with
β∆G◦ = 3γ and m− 3 configurations with β∆G◦ = 4γ. . . . . . . . . . . . . 43

6.5. Stationary strand-length distributions for the standard (unbounded) model
(a) and its bounded variant (b) for different values of the outflux rate rout. In
the bounded model, dehybridization cannot become smaller than rcut = 0.05.
Dehybridization is thus faster than ligation (rlig = 2.5×10−3) for all lengths. In
both models, the length distributions (left) develop long tails when decreasing
the outflux rate rout. The orange curves corresponds to a system where the
outflux rate takes the crossover value rout = 3.24× 10−7, cf. Eq. (6.12). For
outflux rates below the transition value, the unbounded model exhibits a
non-monotonous strand-length distribution with a local minimum at Lmin

and local maximum Lmax. Decreasing the outflux rate does not affect the
minimum but increases both the position and the value of maximum. . . . . 45

6.6. Strands are grouped according to the order of the hybridization complex they
belong to. In addition, duplexes are distinguished by their parity: Fully-
hybridized duplexes have zero parity, whereas duplex with odd and even
overhangs have odd and even parity, respectively. . . . . . . . . . . . . . . . . 46

6.7. Partitioning the contributions of the different subgroups (cf. Fig. 6.6) to the
strand-length distribution reveals the dominant configurations: Short strands
are mostly single-stranded. Strands with lengths around the peaks are in
the persistent fully-hybridized zero-parity configuration. In the dimer-only
model, all strands are of even length. Odd duplexes thus never reach a
fully-hybridized state and cause the long tail of the distribution. (c) The
probability of different complex types conditioned on strand length. (d) The
probability that a duplex with non-zero parity is stable conditioned on strand
length. Around L = L∗ (cf. Eq. 6.18) this probability increases rapidly. . . . 48

6.8. Duplexes are uniquely characterized by the strand lengths L1, L2 ∈ N and
the overhang o1 ∈ Z of strand S1 at its 3′ end. The overhang o2 ∈ Z is
defined analogously. Overhangs oi can be negative, as for the case of o2

in the right example. Only three of these numbers are independent since
0 = L1 − L2 − o1 + o2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.9. Probing the parameter space of the dimer-only model. Left column: stationary
strand-length distributions. Right column: Comparison of the observed values
Lmin and Lmax and the predictions for L∗ and L† via Eqs. (6.18) and (6.20).
Variable parameters are (a) the outflux rate rout, (b) the dimensionless binding
energy per nucleotide γ, (c) the bare ligation rate rlig and (d) the concentration
of chemostated single-stranded dimers c2. . . . . . . . . . . . . . . . . . . . . 52

6.10. 〈L〉 (tmax) is the ensemble average length at the maximum simulation time
that got reached by all runs belonging to a particular llig (see Figure 6.11,right).
If a steady state was reached 〈L〉 is equivalent to 〈L̄〉. As can be seen from
Fig. 6.11(right), 〈L〉 (tmax) and 〈L̄〉 have the same ordering, hence the position
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6.11. Sweep rcut = eγlcut (left) transformation of the strand length distribution by
varying lcut from lcut = 6 to lcut = 80. (right) average strand length vs lcut.
For some values of lcut no steady state was reached (using a constant average
strand length as the indicator for steady state). . . . . . . . . . . . . . . . . . . 55

6.12. (top) Temporal development of the total number of complexes
〈

Ntot
C
〉
, the

average mass of a complex 〈m〉 and the number of strands
〈

Ntot
S
〉
. (bottom)

The value of these quantities is evaluated at the latest simulation time tmax

for each llig. The color code is the same as in Fig. 6.11 reaching from lcut = 6
(dark purple colors) to lcut = 6 (bright yellow colors). (middle) The line
corresponding to lcut = 28 was colored black as we (by eye) identify it as the
most likely position of the maximum of 〈m〉 (tmax). . . . . . . . . . . . . . . . 56

6.13. The mass and energy flux per unit volume. Note that the peculiar shape of
the curves is due to the system not having reached steady state. Never the
less it is certain that the curves increase with lcut for lcut 6 16, and decrease
for lcut > 36. The final distribution show presumably a single maximum. . . 57

6.14. Transient strand-length distributions: (left) Temporal development of the
length distribution in a closed system. Over time the concentration of short
strands decreases and the minimum develops into depleted region. (right)
The position of the maximum Lmax shifts logarithmically with time towards
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6.15. Strand-length distributions for monomer-dimer mixtures. The monomer
fraction fm is varied between zero and 90 % at a total concentration ctot =

2 mM. (a) Steady state length distributions for different fm. For low fm

the concentration between even and odd strands oscillates heavily for short
strands. The long tail that is present for fm = 0 (orange curve, only even
strand lengths shown) collapses even for very small fm. (b) Partitioned strand-
length distribution for fm = 70 %. In contrast to Fig. 6.7, virtually all strands
with L > L∗ belong to a fully-hybridized duplex. . . . . . . . . . . . . . . . . 59
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6.17. Strand-length distributions for dimer-trimer mixtures. The trimer fraction ft

is varied between zero and 1 at a total concentration ctot = 2 mM. (a) Steady
state length distributions for different ft. The behavior is, except for the trimer
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6.18. Analysis of complexes of the trimer only system. (a) The complex length dis-
tribution ψ(C): Complexes of lengths Ci = 3i, i < 0 being an integer, resemble
die minimum and maximum also seen in the strand length distribution. Note
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6.19. (a) Simplified reaction scheme of trimer dynamics. The formation of a complex
of length Co(i) = 3i + 1 from an even-odd complex of length Ceo = 3i is
approximately proportional to ∼ e−2γ, whereas the formation of an even
complexes of length Ce(i) = 3i + 2 is proportional to ∼ e−γ. (b) Duplex-
duplex extension in a trimer only system can lead to elongators with gaps of
length 1. (c) Duplex-duplex extension in a dimer only system. . . . . . . . . 62

6.20. (a) Sampled trajectories start with an initial stable duplex characterized by
its strand lengths Llong and Lshort together with the initial overlap linitial and
complex length Cinitial. Trajectory statistics can be understood from various
joint probability distributions, with the corresponding marginal histograms
plotted on the axis. Horizontal and vertical dashed lines indicate the typical
scales L∗• = 17 (blue) and L†

N = 31 (red). For the arguments made in this
section, we do not distinguish between the float and ceiled values, L∗• L∗ and
L†
N L†. The black dashed line is the diagonal, where abscissa and ordinate

are equal. (b) Typical initial stable configurations have Cinitial ∼ L† and
linitial ∼ L∗. (c) Strand combinations (Llong, Lshort) are almost uniformly
distributed in the triangle defined by L† ≥ Llong ≥ Lshort ≥ L∗. (d) About
∼ 17 % of trajectories grow by pure primer extension (diagonal Cfinal = Cinitial)
with no complex extension. (e) The joint probability p(Llong, Cfinal). The
weight on the diagonal Llong = Cfinal (∼ 2.5 %) indicates autocatalysis. . . . . 64

6.21. Hetero- (a) and autocatalytic (b) processes for the growth of strands. In the
strongly non-equilibrium regime, extension cascades cover the available over-
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pra is determined by the balance between dehybridization and outflux and
decays to zero fast for L & L†. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.22. Pure primer extension (a) and complex extension (b,c). The overhang at the
beginning of a (partial) trajectory is called a copy site (blue) with length lcs.
(b) In primer-template switching events a building block extends the primer
beyond the original copy site. The original copy site is fully covered and a
new copy site is established. The roles of primer and template have changed.
(c) Copy sites can grow independently of the original primer by template
extension with the help of a helper strand. Right: (d) Number of extension
events occurring during the covering of the total copy site Cfinal − linitial.
(e) Distribution of copy site lengths of partial trajectories. (f) Mean building
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6.23. Conditional probability distribution p(Cinitial|Cfinal). It is the probability that
a complex that reached a certain length Cfinal started with an initial length
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6.24. (a) An effective melting curve with a critical temperature Tc = 62◦C and
σ = 13◦C. The gray line indicates the cold temperature Tcold = 33◦C which
is optimal for extension. (b) Upon approaching the critical temperature,
the binding energy in the hot phase approaches zero. (c) The effective
dehybridization rate decays exponentially with a (log-)slope corresponding
to the effective binding energy. Without cycling (Thot = Tcold, gray curve),
the system is simply too cold for anything too happen. Approaching the
critical temperature, the binding energy and thus the slope become smaller
in magnitude. Intersects with the horizontal lines mark the scales L∗ and L†

(dots) and their ceiled values to the next higher multiple of Lbb = 12 (circles
and triangles). Parameters: τcycle = 180 s, rext = (τcycle)

−1 = 5.56×10−3 s−1,
τobs = Ncycle × τcycle = 1.8×105 s and r0 = 106 s−1. . . . . . . . . . . . . . . . . 70

6.25. Product concentration analysis for a 12nt random sequence AT-only pool.
(a) Experimental temperature profile. Ligation occurs for 120 s at 33 ◦C after
which the sample is heated to the variable hot reassembly temperature Thot
for 20 s. (b) Image of a PAA gel with SYBR gold post stained DNA. The
first lane on the left shows the “baseline” sample, which is similar to the
other lanes but was not subjected to temperature cycling. The other lanes
have the same ligation conditions but different temperatures for dissociation.
(c) Quantitative results for the strand-length distribution obtained via our
custom software. From 50 ◦C to 58 ◦C the transition of a quickly exponentially
falling product length distribution to a shallowly decreasing exponential
distribution is notable. The transition shows the feature simulated before,
with a clear peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.26. Transient strand-length distributions after 500, 1000, 1500 and 2000 cycles. (a)
Gel electrophoresis image of SYBR gold stained DNA with marked sample
lanes. The reference lanes is the same for all samples. The rightmost lane
is the ligation buffer only and shows no bands. Quantitative analysis of
the strand-length distribution for (b) Thot = 52 ◦C, (c) Thot = 54 ◦C and (d)
Thot = 56 ◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.27. Evolution is a multi-step process that creates new emergent entities which ex-
hibit emergent mechanisms of interaction. As a process far from equilibrium,
evolutionary dynamics is able to funnel the phase space of all possibilities
into distinct regions exhibiting ever more complex structural entities. Our
work outlines the emergence of structured oligonucleotides from the smallest
building blocks in a thermodynamically and kinetically consistent model. . 76

7.1. Dimensionless binding energies γ = ∆G
kBT for all possible block configurations.

Energy values only depend on the number of matching base pairs (T) and
unpaired nucleotides (S). The configurations TS and FS consisting of 3 nu-
cleotides are also known as “dangling end” contributions in common nearest
neighbor models [52, 32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2. Mismatches in the vicinity of the ligation site decrease the ligation rate. We
include the influence up to the next nearest neighbors of the ligation site. . . 80

7.3. (top left) Cleavage of single strand with elementary rate rcs. (top right) Cleav-
age of a hybridized strand which is not included in our model. (bot-
tom) Breakage of a double strand with elementary rate rdb. . . . . . . . . . . 81
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7.4. Closed binary alphabet system with cleavage of single strands as the only
degradation mechanism. (a) Strand-length distribution for various values of
the single-strand cleavage rate rcs. In all cases, the position of the maximum is
predicted by the competition of the length-dependent dehybridization time,
r−1

off and observation time τobs via Eq. (7.4). (b) The mean strand length as a
function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.6. Simulation results with single strand cleavage and double strand breakage
rcs and rdb = rcs/100: (a) Strand length distributions. Vertical dashed lines
indicate the corresponding L† calculated from Eq. (7.5). The grey solid line is
the length-scale determined by the system time via Eq. (7.4) and independent
of breakage. (b) Mean strand length as a function time. . . . . . . . . . . . . 83

7.8. Error fraction of fully hybridized duplexes vs strand length. Only for the
largest cleavage rate the position of the maximum (vertical lines) coincides
exactly with the position of the minimum. . . . . . . . . . . . . . . . . . . . . 83

7.9. Simulation results with single strand cleavage and double strand breakage
rcs and rdb = rcs/100: (a) Strand length distributions. Vertical dashed lines
indicate the corresponding L† calculated from Eq. (7.5). The grey solid line is
the length-scale determined by the system time via Eq. (7.4) and independent
of breakage. (b) Mean strand length as a function time. . . . . . . . . . . . . 84

8.1. The virtual circular genome G, green cycle in the middle, is not assumed to
be present in the system. Instead its sub-sequences are assumed to be present.
Hence a replication of the cyclic genome can be achieved by the growth in
concentration of each of its sub-sequences. The image was taken from [107]. 88

A.1. Illustration of the smoothing algorithm: (a) The pink square labeled bs is the
average values over all yj where the corresponding xj ∈

[
as − ∆Lj/2, as + ∆Lj/2

]
.

The case illustrated corresponds to s = 2. (b) Application of smoothing filter
on the length distribution (dimer only reservoir, standard parameters). The
red curve is the original curve, and the black curve the resulting smoothed
length distribution. The effect of smoothing is only visible in the tail and
makes it easier to visualize the trend. . . . . . . . . . . . . . . . . . . . . . . . 96

A.2. (a) The tracked complex of order n (n− 1 hybridization-sites) can be decom-
posed into n− 1 sub-duplexes. (b) The length distribution of fully-hybridized
strands obtained from the trajectories (red curve) resembles the length distri-
bution of the fully-hybridized strands obtained from the full simulation (gray
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115



List of Figures

A.3. The simulation loads the complexes from a simulation that reached a steady
state and utilizes them as background species. A labeled dimer (“TB”) is
inserted into the reaction vessel (simulation). The complex containing the
(“TB”) motif is called the tracked complex. It can undergo dehybridizations
and ligations, and collisions with the background. As soon as the tracked
complex contains a stable sub-duplex, the trajectory of the sub-duplex is
recorded. Whenever a ligation happens, the sub-duplex structure is written
to a buffer. Hybridizations and dehybridizations are not explicitly tracked,
i.e. the resulting new complex structure is not written to the buffer. However,
if the tracked stable duplex disassembles via dehybridization, the trajectory
is rejected and the buffer is cleared. We again start saving a trajectory as soon
as the complex containing the “TB” motif contains a stable sub-duplex. We
also neglect trajectories that include two stable duplexes at some point, and in
this case, restart with a "TB" dimer. If the complex leaves the reaction vessel
via outflux and if it has reached a fully hybridized configuration, we save the
trajectory to disk. The buffer gets cleared and we restart with the dimer motif. 98

A.4. (a) A trajectory ω contains the assembly information of a fully-hybridized
duplex of length Cfinal, starting from a stable sub-duplex of length Cinitial.
(b) A trajectory can be split into several copy sites of length lcs(ω, j). The
assembly of a copy site is called a partial trajectory. A switching event creates
a new copy site and reverses the role of primer and template. If the copy site
becomes fully covered and no switching happens, it results in a blunt end. A
duplex with two copy sites reaching a blunt end is a fully-hybridized duplex.
(c) The length of the building blocks B(ω, j, i) and effective building blocks
Beff(ω, j, i) that assemble copy site j = 2. (d) Assembly of copy site j = 2. In
the last step, the switching events creates a new copy site. . . . . . . . . . . . 99

A.5. AT-only random sequence 12mer DNA pool: (a) Frequency of all possible
4096 sequence motives sorted in a binary way (0:A, 1:T). (b) Abundance of
sequences, including single misreads (G, C in AT-only DNA). (c) Frequency
of 6 nt (26=64) submotives in 12mer “monomer” strands. Poly-T motives are
underrepresented while poly-A motives are overrepresented. . . . . . . . . . 100

A.6. PAGE gels for experiments at constant temperature (a) and (b) and experi-
ments exposed to 1000 temperature cycles. AT-only random sequence 12mer
DNA does not show signs of multimer products from templated ligation
during incubation at constant temperatures. In contrast, the experiments for
temperature cycles show significant multimer production. In this case, the
pattern of the PAGE gel change with temperatures. . . . . . . . . . . . . . . . 101

A.7. Concentration quantification workflow:
(a) Selection of the lanes on the gel image. (b) Background corrected (red
lines in a) intensity over position graph. (c) Concentration estimation from
the peak-areas in b. (d) Corrected concentration due to subtraction of the
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