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ABSTRACT

Microscopic traffic simulation is an essential tool for the evaluation of intelligent transportation systems
(ITS). With the increasing complexity of ITS applications, higher-detail simulation models, and the need
to analyze large-scale scenarios, simulation run-times can grow exceedingly large. One way to counter
this problem is the use of parallel computing techniques, such as shared-memory multi-thread parallelism.
While the foundations of parallel traffic simulation are well-known, the effects of different synchronization
and agent-update mechanisms on simulation performance have not been explored systematically. In this
paper, we first analyze the common properties of models used in microscopic traffic simulation to understand
the impact of their data dependencies. We discuss synchronous and asynchronous agent update schemes
and compare them in terms of performance and requirements. We conclude that although it requires more
memory and additional conflict handling, the synchronous agent-state updating approach is favourable in
terms of scalability.

1 INTRODUCTION

In microscopic agent-based road traffic simulation, each agent is usually modeled as a driver-vehicle unit
(DVU) that makes autonomous decisions based on behavioral models and its environment. The emerging
behavior resulting from the interactions of single agents enables the studying of system parameters such
as traffic flow or traffic safety metrics. These simulations can support the solving of some of the severe
problems of modern large cities, such as congestion, emissions, or traffic light optimization. However,
when applied to a large-scale, e.g., city-wide or even nation-wide, microscopic traffic simulation still faces
modeling and computational challenges. Modeling challenges include the realistic representation of human
behavior in conceptual or mathematical models, which often requires large amounts of empirical data for
calibration and validation. With the increasing availability of high-detail traffic data enabled by ubiquitous
sensing systems, we expect novel and more realistic behavioral models in the near future.

The second class of challenges, i.e., the computational challenges, are given by the time and hardware
constraints under which traffic simulations are conducted, especially when considering the exploration of
large parameter spaces and the collection of statistical results where a large number of simulation runs
are required. Beyond a certain scale, simulation at the microscopic level of detail is impractical due to
too long computation times. One common way to approach this problem is parallel computing, where
the simulation is executed in parallel by a number of logical processors (LPs). However, parallel traffic
simulations require careful design of the parallel algorithms to efficiently utilize the available hardware.

Parallelization is commonly associated with overheads and tends to complicate the implementation of
the simulator. These overheads, in addition to imbalances in the distribution of computational tasks, lead to
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the fact that parallel simulations usually do not scale linearly as more processors are introduced (Fujimoto
2016). An additional domain-specific challenge for the simulation of intelligent transport systems (ITS) is
that typically, a combination of models with fundamentally different computational requirements is used,
further complicating efficient parallel execution.

Shared-memory multi-thread parallelism is one of the common parallel programming models due to
the increasing number of CPU cores on a single machine. In shared-memory programs, a number of
threads are executed in the same address space, typically orchestrated by a multi-threading library such as
the Open Multi-Processing (OpenMP) framework. Threads interact by accessing locations in the shared
memory address space, achieving mutual execution based on atomic operations or locks. To execute a
parallel simulation using multi-threads, each LP can be mapped to a thread.

In this work, we aim to explore the challenges and benefits of different parallel execution approaches
using a multi-thread architecture for microscopic traffic simulation. To achieve efficient parallel execution,
we first need to understand the impact of data dependencies of the models used in microscopic traffic
simulation and select the agent state update required for these models. The state update also determines
which multi-thread execution scheme lends itself better to parallel execution.

There are existing parallel and distributed traffic simulators, such as PARAMICS-MP (Liu et al. 2004),
AIMSUN (Barceló et al. 1998), TRANSIMS (Nagel and Rickert 2001), dSUMO (Bragard et al. 2016),
and CityMos (Zehe et al. 2017). The road network is typically partitioned across LPs, and requires
synchronizations between the LPs to maintain the consistency of simulation. To the best of our knowledge,
the present paper is the first to explore the performance implications of different state update mechanisms
for multi-threaded traffic simulations.

The contributions of this paper can be summarized as follows:

• We analyze the properties of common microscopic traffic simulation models and their implications
on parallel execution.

• We discuss and compare the two approaches of agent state updates, asynchronous and synchronous
updates, and propose multi-thread parallel execution schemes based on their different characteristics.

• We present a comparison of different state update schemes by conducting an extensive performance
evaluation on the impact and overhead of multi-thread parallel execution.

The remainder of this paper is organized as follows: We first present a model taxonomy for microscopic
traffic simulations (Section 2). In Section 3, we discuss two approaches to agent state updating and propose
the multi-thread execution of agent state updates. With the help of an extensive simulation study, we
give insights into various performance aspects of state updates in parallel traffic simulation in Section 4.
Before we conclude the paper, we discuss the advantages and disadvantages of the state update schemes
in Section 5.

2 DEPENDENCIES IN TRAFFIC SIMULATION MODELS

Vehicular traffic can be modeled as a multi-agent system (Kesting et al. 2008; Chen and Cheng 2010),
where agents are individual, autonomous, collaborative, and reactive entities. Agents interact with each
other as well as their environment, the latter consisting of the road infrastructure, e.g., the road network
or traffic light signals.

During the simulation, the simulated world evolves through a virtual simulation time. At any point
in simulation time, agents and the environment have states represented by state variables. For example,
the state variables of an agent, that is, a DVU, consist of acceleration, velocity, and position; the state of
a traffic light is its current signal phase. These states change as the simulation progresses by executing
the state update functions of the employed models. For example, a DVU’s state can be updated by driver
behavior models such as car-following (Brackstone and McDonald 1999), lane-changing (Hidas 2002), and
route-choice models (Dell’Orco and Marinelli 2017).
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Figure 1: Data dependencies for different types of models. Type (a) are internal models, e.g., models
concerned with electric motors and batteries. In contrast, types (b) and (c) are external models. Type (b)
models only extend to limited local space, e.g., car-following models and adaptive traffic lights, whereas
type (c) can span across the whole road network, e.g., for dynamic route calculations.

Table 1: Taxonomy of commonly used models in microscopic traffic simulation.

Application Examples Internal External
Local Global

Emission models (Rakha and Ahn 2004; Maia et al. 2011) •
EV Battery models (Bi et al. 2017) •

General car-following behavior (Brackstone and McDonald 1999) •
Connected autonomous vehicles (Meignan et al. 2007; Gora and Rüb, I 2016) •
Adaptive traffic signal control (McKenney and White 2013) •

Driver information route choice (Dell’Orco and Marinelli 2017) •
EV charging (Bi et al. 2017) •

Agatz2012 Ride-sharing (Pelzer et al. 2015) •

Models can be seen as functions that take as input the current state of the agent and its surroundings,
and their outputs are the changes to the state variables. Models in traffic simulation can come in many
forms such as differential equations, fuzzy logic, or artificial neural networks. To ensure the correctness of
the simulation, data dependencies between models and agents must be considered when agents are updated
concurrently. These dependencies play a critical role in the design of parallel simulations as they have a
significant influence on the induced overheads in terms of locking and state-sharing between the parallel
processors.

Different types of models have different data dependencies and thus different synchronization require-
ments in parallel processing. The models can be classified according to the span of data dependency across
the simulation space. We categorize them into three types: internal, external local, and external global.
An illustration of the data dependencies of different types is shown in Figure 1.

Internal models only input or output states visible inside the agent. The states they read or modify have
no direct effect on other agents, therefore data dependencies do not exceed agent boundaries. Examples
are electric motor and battery models for electric vehicles (EVs), as shown as Type (a) in Figure 1. The
state of charge of the battery is determined by many factors inside the vehicle such as acceleration and
weight, but it is not directly linked to other agents. Therefore, assuming parallel execution on agent-based
level (meaning different LPs will not operate on the same agent), these models will not cause conflicts or
require synchronization messages between the LPs.

In contrast to internal models, external models input or output states that are visible to other agents
and the environment. Examples are car-following and lane-changing models that describe the lateral and
longitudinal movement of a vehicle based on the road infrastructure as well as speed and distance information
of nearby vehicles. The computed acceleration and lane-change decisions are visible to other vehicles
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nearby. Therefore, during parallel execution, such models generally require synchronization among threads
and processes.

Depending on the span of data dependencies across the environment, we further divide external models
into local and global. Local means the data dependency does not span across the whole simulation space
as illustrated as type (b) in Figure 1. A car-following model only requires the states of other agents and
the environment (e.g., traffic lights) within the driver’s perception range. On the other hand, input and
output of global models may span over the entire simulation space. For example, dynamic path-finding
models may require an agent to know the traffic state of the entire road network, visualized as type (c) in
Figure 1. In parallel simulation, global models should therefore be handled with care, as they may lead
to expensive global synchronization. In Table 1, we list examples of different types of models commonly
used in (sub-)microscopic traffic simulation.

In summary, internal models can be updated independently without synchronization, external local
models require synchronization among a subset of agents, and external global models need to be synchronized
globally. While global synchronization in external global models is unavoidable, it is a challenge to reduce
synchronization in external local models to achieve efficient parallel simulation.

3 MULTI-THREAD STATE UPDATES SCHEMES

In this section, we focus on an agent-based simulation consisting of only external local models, e.g.,
car-following models. First, the workload division is selected to reduce synchronization. Second, two agent
state update schemes are discussed in relation to their synchronization requirements. Third, multi-thread
execution schemes are described for parallel execution of the state update schemes.

3.1 Workload Division

In order to parallelize any simulation, the simulation space needs to be partitioned into smaller pieces that
can be computed (at least partially) independently. There exist various approaches to do so, for example,
traffic simulation can be partitioned on an agent level or spatially, assigning lanes or entire regions to
the LPs. This assumes that the number of lanes or regions in the simulation is greater than or equal to
the number of LPs. The partitioned simulation is executed in a lock-step manner, where each partitioned
workload is executed independently and synchronized at a barrier, usually the time step in traffic simulation,
before proceeding to the next step.

When data dependencies necessitate locking to avoid race conditions, a unit of workload may be an
area instead of an agent, e.g., a road segment (Aydt et al. 2013). This reduces locking overhead as one
LP will be responsible for all agents on this particular segment and will therefore not lock agent by agent.
Other considerations include the memory layout: in traffic simulation, it is common to store agents on the
same lane next to each other in memory, allowing for faster access times. It therefore makes sense to treat
a lane as an atomic unit of workload.

3.2 State Update Schemes

Agents inside agent-based simulation commonly follow a standard Sense-Think-Act paradigm. They sense
the environment which may include other agents, then, in the think stage, they make decisions based on
what they have sensed, and lastly, act on the environment as a result.

In parallel simulation, there are several challenges here: first, sensing the environment comes with
reading state variables of other agents, who at the same time might be updated by other LPs. This requires
locking and negatively affects speed-up. In the Act stage, agents may reserve resources of the environment,
for example, some space on a lane. A conflict happens if two agents who are processed simultaneously
aim to reserve the same resource. These conflicts need to be resolved before the simulation can progress.

A general consideration in time-stepped agent-based simulation is the order according to which agent
states are updated at a given time step. Railsback and Grimm (2011) differentiate two ways of scheduling
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Figure 2: Examples for conflicts in traffic simulation. Left: Vehicles v1 and v2 both want to change lane
at the same time. Right: Both vehicles want to advance to lane l3.

agent updates: asynchronous and synchronous. In this section, we discuss two types of agent state update
schemes that deal with the two problems described earlier in different ways.

3.2.1 Asynchronous Update

Simply updating agents one after the other in a random or predefined order leads to asynchronous agent
updates. Given a time step size ∆t, the actions of an agent when updating its state from time t to t +∆t
typically depend on the states of nearby agents, some of which may be at t, while others may already have
been updated to t +∆t. When executing updates in parallel, an additional concern is the locking of agent
and environment states to avoid race conditions.

Often, agents compete for simulated resources such as locations in the simulation space. In traffic
simulations, vehicles driving on different lanes may intend to advance to the same new lane in the same
time step (cf. Figure 2). With the asynchronous update, the update order determines which of the vehicles
will acquire the resource, while all other vehicles will find the new lane occupied. In such scenarios, care
must be taken not to introduce a systematic bias that is not part of the simulation model specification (Yang
et al. 2018). For instance, if vehicles on lane l1 in Figure 2 are consistently updated first, vehicles advancing
from l1 to l3 may frequently block vehicles on l2 from entering l3. A common way to address this issue is
to shuffle the list of agents before updating.

3.2.2 Synchronous Update

To avoid locking during the Sense and Think stages, agents can instead be updated in a synchronous manner.
All agents perform their actions concurrently, i.e., each agent considers the states of nearby agents at time
t. This is achieved by read-only access to both agents’ state and environment state at time t, while the new
states at t +∆t are written to a separate set of variables. While this approach doubles the memory required
for visible agent state variables of external models, it will achieve a higher speed-up during the Sense and
Think stages as it does not require locking. However, dependencies may still arise in the Act stage.

We revisit the situation depicted in Figure 2 with synchronous updates. Vehicles v1 and v2 would both
attempt to advance to l3 at the same time. Since vehicles cannot overlap in the simulation space, this
situation constitutes a conflict. A conflict resolution mechanism can be introduced to decide which of the
agents should be able to advance to the desired lane and to modify the states of any competing agents in
order to break the tie.

One possible way to break this tie is to apply a policy such as “the most ahead vehicle acquires the
lane”. We resolve conflicts on a lane l as follows (cf. Figure 2): If the spaces occupied by two vehicles
overlap, the vehicle that is further behind is a) moved back to the original lane if the conflict is caused by
lane-changing or b) pushed back to a minimum distance from the other vehicle if the conflict is caused by
moving forward. Since this may generate new conflicts, the process repeats until all conflicts have been
resolved.
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3.3 Multi-thread Parallel Execution Schemes

This subsection describes two multi-thread parallel execution schemes for the efficient execution of agent-
based simulation. To maintain data consistency on the concurrent modification of a resource by different
threads, the resource has to be locked by the thread accessing it. Two methods of locking can be used:
blocking lock and try lock. Blocking lock ensure that when one thread locks the resource, other threads
need to wait for the thread to complete and release the lock. Try lock only acquires the lock when no other
thread is locking it, and returns a failure when other thread is currently having the lock. The benefit of
try-lock is allowing the thread to process other workloads if the lock fails, thus reducing the waiting time
for locking.

3.3.1 Chunk Execution

A straightforward approach to distributing the workload is by grouping it into chunks and then assigning
each chunk to a thread. The main overhead for chunk execution is locking. Blocking locks can be used to
lock the workload by the thread accessing it. In the worst-case scenario, if all threads attempt to lock the
same resource, lock contention will lead to the serialization of execution.

3.3.2 Workload Pool

One of the main goals when partitioning the simulation space is to minimize workload imbalance. The
slowest thread determines the maximum achievable speed-up, as all other threads wait at synchronization
barriers. That means, that in order to advance to the next time step in the simulation, all agents need to
be updated. Using chunk execution, in the worst-case scenario, the simulation can be serialized where all
agents residing on one lane are exclusively handled by one thread. Due to workload imbalance between
threads, serialized execution of a parallel simulation can perform worse than a sequential one.

Thread pool design aims to minimize this workload imbalance. Workload balance can be maximized
by creating a workload pool where threads process one workload after another until all workloads have
been processed. Blocking locks can be used to lock all dependencies required by the workload. However,
when all threads attempt to acquire the same lock, blocking locks will serialize the execution.

To reduce the time spent waiting to acquire locks, try-locks can be used with two workload pools.
When a thread tries to acquire the locks and fails, the workload is placed into another workload pool p2.
After the first workload pool p1 finishes executing, the workloads in p2 will be processed. For workloads
that fail to acquire locks in p2, they are placed in p1. These two pools are executed iteratively until all
workloads are processed.

However, there can be a significant overhead if threads frequently fail to acquire locks due to lock
contention, and need to place the workload in the next pool. In the best-case scenario, all the workloads
can be processed in a single iteration. There is a possibility that only one thread manages to acquire the
locks for a workload in each iteration, which will serialize the execution.

3.4 Parallel Execution of State Updates

The locking behavior for asynchronous and synchronous updates are different. Hence, different parallel
execution schemes are suitable for each update mechanism.

3.4.1 Asynchronous Update Workload Pool

In the asynchronous updates, the input for updating agents can include other agents that might have already
been forwarded to time t +∆t as well as agents still residing at time t. To avoid race conditions, the lane
on which the agent resides and all other lanes within the sensing range of the agent have to be locked.
When chunk execution is used for asynchronous updates, processing each lane requires the locking of all
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1: p1← Lt
2: while |p1|> 0 do
3: for each thread do
4: lt ← p1.pop()
5: if tryLock(lt) then
6: Sense(lt)
7: T hink(lt)
8: lt ← Act(lt)
9: unlock(lt)

10: else
11: p2.push(lt)
12: end if
13: end for
14: swap(p1, p2)
15: end while

(a) Asynchronous Update

1: parallel for lt ← Lt do
2: Sense(lt)
3: T hink(lt)
4: end for
5: parallel for lt ← Lt do
6: lock(lt+∆t)
7: lt+∆t ← Act(lt)
8: unlock(lt+∆t)
9: end for

10: repeat
11: parallel for lt+∆t ← Lt+∆t do
12: lock(lt+∆t)
13: lt+∆t ←Con f lictResolution(lt+∆t)
14: unlock(lt+∆t)
15: end for
16: until #conflicts = 0

(b) Synchronous Update

Figure 3: Pseudocodes for parallel execution of a time step t.

neighboring lanes. Using a workload pool can increase parallelism, by reducing the waiting time to acquire
locks, compared to chunk execution.

Pseudocode for executing a time step t for the asynchronous update using workload pools is shown
in Figure 3a. First, the set of all lanes Lt are added to the first workload pool p1. Each thread will
retrieve a lane and attempts to lock the lane and its neighboring lanes. If the locking is successful, the
Sense-Think-Act stages can be executed, and the lanes are unlocked. If the thread is unable to lock the
lane, the lane is placed in the second workload pool p2. After all lanes in p1 are completed, the lanes in
p2 will be processed. This is executed iteratively until there is no more workload in the pools.

3.4.2 Synchronous Update Chunked Execution

Synchronous updates circumvent the issue of large locking overheads by basing all state updates for t +∆t
on the states at time t. This means that the new states need to be buffered and not overwritten during the
update phase, increasing memory requirements. When chunk execution is used for synchronous updates,
locking is not required during the Sense and Think stages. Hence, the workloads can be executed in parallel
during the Sense-Think stages without any locks. However, during the Act stage, conflicts can occur when
agents want to occupy the same resource. Therefore, locking is only required for updating the agents and
when resolving conflicts in the Act stage. Chunk execution is suitable for synchronous updates, where each
of the agent-update stages is executed in chunks.

Pseudocode for executing a time step t for the synchronous update is shown in Figure 3b. In each of
the parallel for sections, the lanes are divided into equal chunks and distributed among the threads. The
Sense and Think stages are performed on the current state t, while the Act stage is based on state t and
written to state t +∆t. Based on the next state t +∆t, conflict resolutions are iteratively executed until there
are no more conflicts. However, this also requires splitting the stages into different parallel regions, and
increases the overhead of synchronization between the regions.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of two parallel state update schemes and compare performance
properties (simulation time and speed-up) for microscopic traffic simulation.
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(a) Asynchronous update using workload pools.
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(b) Synchronous update using chunked execution.

Figure 4: Execution time and its components of each parallel state update scheme across different numbers
of threads.

4.1 Simulation Setup

We implemented the parallel design into our microscopic agent-based traffic simulator consisting of only
external local models. The agents move according to the intelligent driver car-following model (IDM) and
the MOBIL lane-changing model. The time-step ∆t length for agent updates was set to 0.6 seconds.

We simulated road traffic on a synthetic grid network of 10× 10 intersections, each road being 100
meters long with 3 lanes per direction. Uniform traffic is generated to travel across the grid network.
Routing for each agent is precomputed before the start of the simulation.

The experiments were run on a compute node with the following hardware configurations: two Intel
Xeon E5-2670 (2.6GHz, 8 cores) CPUs (i.e., 16 physical processors), and 128 GB RAM. We used GCC
7.5 with OpenMP support. To obtain insights into the performance of the evaluated approaches, we use
various configurations for the number of OpenMP threads.

4.2 Results

We present the break-down of simulation wall time and speed-up of the two parallel state update schemes.
Our results are shown in Figure 4.

4.2.1 Asynchronous Update Workload Pool

In Figure 4a, we observe the reduction in wall time used by the lane-changing and car-following models
as more threads are added. We observed the shortest wall-time when there is a good balance in the time
spent between executing the simulation models and processing the workload pool.

However, when more than 6 threads were used, the total simulation time increased, as the probability
of different threads attempting to lock non-disjoint sets of lanes increased. When the threads failed to
acquire the locks, the workload is placed in the next workload pool. Therefore, the overall time spent in
the workload pool increases due to lock failures. This is also directly reflected in the increased time spent
in the locking and workload pool. When 16 threads are used, although the time spent in the simulation
models are the lowest, there is a considerable overhead from the workload pool and locks.

The overhead in the processing of the workload pool is dependent on the probability of lock failures.
First, this is largely affected by the scenario, such as the size of the network and density of traffic. For
example in a small road network, the probability of two threads locking non-disjoint set of lanes is higher.
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(a) Strong-scaling using a fixed problem size.
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(b) Weak-scaling using a varying problem size.

Figure 5: Speed-up of (a) asynchronous update using workload and (b) synchronous update using chunked
execution compared to sequential execution.

This will require multiple iterations of the workload pool to process all workloads. In a large road network,
the probability of two threads attempting to lock non-disjoint set of lanes is lower. Hence, it is possible to
process the workload pool in a single iteration. Second, increasing the number of threads also increases
the probability of locking non-disjoint set of lanes.

4.2.2 Synchronous Update Chunked Execution

In Figure 4b, the synchronous update scheme generally shows a decrease in simulation time when more
threads are added. The better performance can be attributed to lower locking overhead, since only the Act
stage and conflict resolution require locking. As each of the Sense-Think-Act stages can be parallelized,
the synchronous update mechanism offers better scalability compared to the asynchronous approach.

However, there are significant overheads when using synchronous updates, which lead to higher
simulation times compared to asynchronous updating when a small number of threads are used. First, there
is a workload imbalance when a small number of threads are used as there is no redistribution of lanes
among the threads during the simulation. With an increasing number of threads, the workload is distributed
more evenly across the threads, reducing the threading overhead as shown in Figure 4b. Second, thread
overhead (i.e., forking/joining of parallel regions) is increased for the synchronous update because of the
explicit separation of the Think-Sense-Act stages, leading to smaller parallel regions. The third overhead
is due to additional conflict resolution required by the synchronous update.

4.2.3 Speed-Up

We measured the speedup of parallel asynchronous and synchronous updates compared to a sequential
execution, which runs on a single thread without locks or conflict resolution. Our results for strong-scaling
and weak-scaling are shown in Figures 5a and 5b respectively.

For the strong-scaling experiment, the total problem size is fixed while the number of threads is varied.
In our case, the total number of agents is fixed at 10,000. When a small number of threads are used (<= 10
threads), the asynchronous update scheme has a better speedup compared to the synchronous update one.
As there are fewer lock contentions for a small number of threads, the asynchronous update exhibits better
performance. Using one thread shows a small slowdown compared to sequential execution, indicating the
overhead of executing the workload pool is small. It exhibits the best performance (1.77× speedup) for
six threads. However, the asynchronous update has a reduction in the speedup when more than 6 threads
are used. Initially for a small number of threads, the synchronous update is shown to have a slowdown
compared to sequential execution. This indicates that the overhead for the threading and two-state update
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is large. There is only a speedup when four or more threads are used. However, it demonstrates better
scaling compared to asynchronous updating, with a maximum speedup of 2.02× using 16 threads.

For the weak-scaling experiment, the problem size per thread is fixed while the number of threads and
the total problem size is varied. We scaled the total number of agents by the number of threads, i.e., 1,000
agents per thread. For an algorithm with good scalability, the parallel part is expected to scale linearly with
the number of threads. The asynchronous update exhibits speedup with an increasing number of threads,
with the best performance (1.65× speedup) for 8 threads. However, the speedup decreases for more than
eight threads due to the workload pool and locking overheads. Synchronous updates have a slowdown
for four threads or fewer, mainly due to workload imbalance. It exhibits approximate linear scaling with
2.15× speedup at 16 threads.

In summary, with a small number of threads, the asynchronous update shows better speedup compared
to the synchronous update. However, the synchronous update shows to have better scalability compared to
asynchronous updating.

5 DISCUSSION

Asynchronous or synchronous updates have been inspired by related works in cellular automata (Huberman
and Glance 1993). While the focus in these works lies on asynchronous or synchronous updates on the
modeling side, our focus is on the simulation execution.

There are several issues regarding asynchronous updates. First, when an agent affects the environment,
the environment is updated so that the next agent to execute experiences a different environment. Hence, the
simulation outcome is dependent on the execution order of the agents, where the order in which workload
items are pulled from the pool can affect the simulation outcome. Second, there are lock contentions when
multiple threads attempt to update a single resource. The probability of lock-contentions is high when an
increasing number of threads are added. This is also dependent on the scenario, e.g., more lock-contentions
are expected for congested traffic as many vehicles are close together. In sparse traffic, the likelihood for
lock-contention is lower.

There are several advantages and disadvantages of synchronous updating. First, locking is not necessary
with synchronous updates in the Sense and Think stages. Second, the workload division no longer has to
be a lane; a finer (per-agent) parallelism granularity can be utilized. This can improve workload balance as
the agents can be divided more evenly among the threads, especially for the worst-case scenario where all
agents are on a single lane. Third, synchronous updates also introduce determinism in the simulation as
the competitions for resources are resolved by the conflict resolution mechanism and no longer depend on
the execution order. Fourth, synchronous updating is also more suitable to be offloaded to other compute
devices. For example in Xiao et al. (2018), the traffic simulation is partially offloaded to execute on graphics
processing units (GPUs) using the synchronous update scheme. The opportunity to avoid extensive locking
also fits the synchronous programming style and execution mode of GPUs.

Railsback and Grimm (2011) stated that synchronous updating is useful in situations when the agents
do not update their environment or when they deplete a resource at a slower rate compared to the time steps.
In traffic simulations, agents compete strongly for a resource, i.e., a position on a lane. Hence, conflict
resolution mechanisms are required to maintain the consistency of the simulation. Usually, modelers need
to define how such conflicts should be resolved. The problem of maintaining determinism and freedom of
bias for simulation models that do not specify a tie-breaking policy is considered in (Yang et al. 2018). A
variety of conflict resolution methods for GPUs are also evaluated by the authors.

However, the overhead for conflict resolution can be significant depending on the scenario. For
example, on a congested road where vehicles are close together, the agents need to compete with the
surrounding agents during lane changing. Since the agents are close together, conflict resolution may also
generate new conflicts, which needs to be resolved iteratively until all conflicts have been resolved. These
conflict resolutions induce an additional processing overhead during the Act stage. Other disadvantages

191

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 06:31:04 UTC from IEEE Xplore.  Restrictions apply. 



Tan, Andelfinger, Xu, Cai, Knoll, and Eckhoff

for synchronous updates include overheads from workload imbalance, an increase in parallel regions, poor
cache performance, and increased memory usage.

6 CONCLUSION AND FUTURE WORK

In this work, we outlined the challenges of parallel microscopic traffic simulation. We first presented a
taxonomy of models with regards to their data dependencies for parallel execution, discussed different
design choices for agent update and multi-thread execution schemes. Performance evaluation is conducted
on two parallel state update schemes using a synthetic grid scenario. The asynchronous update shows to have
a better speedup when a small number of threads are used, while suffering from significant workload pool
overhead when more threads are added. Although the synchronous update has a higher thread overhead, it
exhibits better scalability across the threads. We conclude that the performance of the asynchronous update
scheme largely depends on the scenario, while the advantages of synchronous update (less locking, better
scalability) outweigh the disadvantages (more memory consumption, conflict resolution).

There exist a number of research avenues to further improve the performance of traffic simulation. First,
we believe that there is a large potential in the field of partitioning and graph-ordering algorithms to reduce
the blocking of threads and to achieve better load balance. Second, application-specific synchronization
protocols can further improve performance by reducing overhead. Last, automatic resource allocation for
an optimal number of threads can be investigated to increase the efficiency of parallel traffic simulation.
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