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ABSTRACT In this article, we propose a k-anonymity approach that prioritizes the generalization of
attributes based on their utility. We focus on transport data, which we consider a special case in which many
or all attributes are quasi-identifiers (e.g., origin, destination, ride start time), as they allow correlation with
easily observable auxiliary data. The novelty in our approach lies in introducing normalization techniques
as well as distance and utility metrics that allow the consideration of not only numerical attributes but also
categorical attributes by representing them in tree or graph form. The prioritization of the attributes in the
generalization process is based on the attributes’ utility and can further be influenced by either automatically
or manually assigned attribute weights. We evaluate and compare different options for all components of our
mechanism as well as present an extensive performance evaluation of our approach using real-world data.
Lastly, we show in which cases suppression of records can counter-intuitively lead to higher data utility.

INDEX TERMS Clustering, k-anonymity, privacy, tap-in tap-out transportation data, utility.

I. INTRODUCTION
Publishing or exchanging datasets is often (rightfully) hin-
dered by privacy protection requirements and by the concern
of disclosing too much information. Especially with regards
to microdata, that is, data that includes user-specific infor-
mation, such as the travel routes of single users, the pri-
vacy implications are too severe to allow disclosure. This
in turn leads to the fact that Open Data initiatives often
suffer from data sparsity and that research, particularly in the
smart mobility domain, cannot be enriched, evaluated, and
validated using real datasets [1]. This often reduces mobility
research to an academic exercise, limiting its impact and
contribution.

There exists an ample body of related research in the
field of privacy-preserving data publishing for microdata [2].
They all share the same problem statement, that is, how
can potentially privacy-critical data be sanitized so that
the publication of this data has no negative effects on the
privacy of the included users. While there are different
approaches, e.g., applying noise to statistical queries [3],
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the conventional methods are more or less based on the
k-anonymity approach [4]. The idea is to remove all iden-
tifiers and then apply generalization (reducing accuracy of an
attribute) and suppression (removing an entire row from the
output dataset) to create clusters of indistinguishable rows in
the dataset with respect to a list of attributes that could allow
the identification of an individual, the quasi-identifiers.

Advancements of k-anonymity include l-diversity [5],
t-closeness [6], and m-invariance [7] which consider the dis-
tribution of the sensitive attributes. What these approaches
have in common is that their mechanisms focus on the
privacy aspects but do not take into consideration impact
on or even control of data utility, or, usefulness. If
data owners were able to better control (and measure)
the utility level of the data they share while at the
same time meeting privacy requirements, they might have
fewer reservations when it comes to data publishing and
sharing.

In this article, we revisit the non-interactive k-anonymity
approach for mobility data from a utility perspective. Our
contributions can be summarized as follows:
• We present a k-anonymity mechanism for public trans-
port data, where the separation of sensitive data and
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quasi-identifiers is difficult, as it was shown to be possi-
ble to derive user identities from origin and destination
pairs, travel times, and so on [8], [9].

• To achieve a general approach to control and measure
utility, we introduce distance and distortion metrics for
heterogeneous attribute types, i.e., numerical, categori-
cal, and graphs.

• We introduce two modes for our entropy-based
utility-driven k-anonymity mechanism, an automated
one to balance utility loss among all attributes as well
as a manual mechanism which allows users to define
which attributes to preserve more.

• We introduce a record suppression scheme that imposes
constraints for record generalization. We show how
record suppression can counter-intuitively benefit data
utility when the inclusion of a data row would require
too much generalization of other entries.

• We compare different options for all of these compo-
nents and extensively evaluate the performance of our
approach using real-world data.

The remainder of the paper is organized as follows: First
we introduce the general concept of k-anonymity and the
format of our dataset in Section II. Section III is structured
according to the building blocks of our mechanism: First we
discuss how to obtain utility values for each attribute.We then
show how these utility values can be incorporated into the
distance between attributes of various types as well as entire
records, with a particular focus on the normalization of those
distances. We describe how the distortion of the dataset can
be measured before we present our k-anonymity mechanism
in detail. In Section IV we present an extensive evaluation of
the various building blocks of our system. Related work is
discussed in Section V, and Section VI concludes the paper.

II. PRELIMANARIES
In this article, we focus on the utility-driven k-anonymization
of public transport data. In k-anonymity and related privacy
mechanisms, the columns (or attributes) of a dataset are
divided into explicit identifiers, quasi-identifiers (columns
that could potentially be used to identify an individual), and
sensitive attributes. For example, in a healthcare dataset,
the name is an explicit-identifier, age and gender are
quasi-identifiers, and disease is a sensitive attribute. Nat-
urally, the explicit identifiers are removed and the mech-
anism then generalizes the quasi-identifiers to an extent
that they form so-called equivalence classes of k indis-
tinguishable entries with respect to their quasi-identifiers.
In transportation data, however, the separation of sensitive
attributes and quasi-identifiers is not so straight-forward. If
the origin and destination points of an individual’s journey
were sensitive attributes then they would not be general-
ized, potentially allowing the identification of an individual
based on easily obtainable auxiliary data such as work and
home addresses [8], [9]. Knowing that a certain individual
is included in the dataset alongside some information about
a trip this individual took could lead to de-anonymization.

TABLE 1. Subset of attributes from transportation dataset and their
description. card_id (an explicit identifier) is removed from the dataset
before processing.

FIGURE 1. An example of public transport showing 4 stations and
2 different lines (blue and black).

Unlike in health or voter data, in mobility data, auxiliary data
can be quite easily obtained by simple observation, making
the k-anonymity approach quite prone to de-anonymization
attacks. To alleviate this problem, we assume that all
attributes in our examples are quasi-identifiers, meaning each
equivalence class would then contain k identical entries.
While this assumption improves privacy protection by elim-
inating some of the common weaknesses of k-anonymity,
it will negatively affect utility as generalization and sup-
pression will now incorporate all attributes. To counter this
general loss of utility, our mechanism therefore allows users
to prioritize the preservation of one attribute over another.

For the sake of simplicity and without loss of generality,
we illustrate all concepts with the help of the actual dataset
we use for the evaluation. Each record in this dataset consists
of a card id, the passenger type, boarding station, alighting
station, ride start time, ride time, and ride distance as shown
in Table 1.

In what follows, we use this dataset to introduce some
definitions required for the remainder of this article.

Original Table An original table or dataset (T ) is a set
of records r1, r2, . . . , rn each comprising a sequence of m
attribute values a1, a2, . . . , am.
Example 1 (Original Table): For Figure 1, we con-

sider that Table 2 is an original table containing
8 travel records (r1, r2, . . . ., r8) with each record hav-
ing following 6 attributes: Passenger Type (i.e., pas-
senger_type), Boarding Station (i.e., boarding_stop_stn),
Alighting Station (i.e., alighting_stop_stn), Ride Start
Time (i.e., ride_start_time_seconds), Ride Time (i.e.,
ride_time_seconds), and Ride Distance (i.e., ride_distance).
Note that we use attribute names such as Passenger Type,
passenger_type, and passenger type interchangeably in this
article.
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TABLE 2. An example transportation dataset (original).

Attribute Type An attribute (or column) within the dataset
can be of the type - categorical/qualitative (nominal, ordi-
nal, binary) or numerical/quantitative (discrete, continuous),
where:
• Nominal attributes have no order (e.g., race, etc.)
• Ordinal attributes have an order (e.g., performance clas-
sification)

• Binary attributes take only two values (e.g., test results
pass/fail)

• Discrete attributes take values based on counts (e.g.,
passenger counts)

• Continuous attributes take any value within a range (e.g.,
the height and weight of a person)

Example 2 (Attribute Type): In Table 1, the Attribute Type
column specifies the type of an attribute, with Passenger
Type, Boarding Station and Alighting Station as categorical
types, and Ride Start Time, Ride Time and Ride Distance as
numerical types.
Equivalence Class An equivalence class for table T with
respect to attribute set {a1, a2, . . . , am} is the set of all records
in T with identical values (or ranges) for this attribute set.
Example 3 (Equivalence Class): Records r1 and r2

(in Table 2) form an equivalence class of size 2 with respect
to attribute set {Passenger Type, Boarding Station, Alighting
Station, Ride Start Time, Ride Time, and Distance}.
k-anonymized TableA table Tano is said to be k-anonymized
with respect to attribute set if each record is identical to at
least k − 1 other records (i.e., size of each equivalence class
is greater than or equal to k).
Example 4 (k-anonymized Table): Table 3 is

2-anonymous (i.e., k = 2).
Local Recoding To protect privacy, each record in the pub-
lished k-anonymized dataset needs to be identical to at least
k − 1 other records for a set of attributes with respect to
their quasi-identifiers. For this, the k-anonymity approach
may need to generalize and/or suppress records. This can be
achieved by applying either local recoding or global recoding.
While in global recoding a particular value is generalized
in the same way for all records, local recoding allows this
value to bemapped to different generalized values, depending
into which equivalence class the associated entry belongs.
Since the local recoding method does not overgeneralize an
original table to satisfy privacy requirements as compared
to the global recoding method, we apply the local recoding

TABLE 3. An example 2-anonymized transportation table after applying
local recoding, reordered to visualise equivalence classes.

method to generalize the values within the original table to
prevent a too high loss of data utility. As local recoding can
bemore demanding in terms of memory usage and processing
time, we also investigate its feasibility for our envisioned use
case in Section IV.

When attributes are generalized or entire records are sup-
pressed, the utility of the dataset decreases. Thus, the main
challenge is to form equivalence classes with minimal loss
of data utility, meaning that data privacy and utility are con-
flicting goals. Finding an optimal solution for this trade-off
in k-anonymity has been shown to be NP-hard [10], [11]
(even for small k , e.g., k = 2). Researchers have proposed
well-working heuristics [12] onwhichwewill base ourmech-
anism.
Example 5 (Local Recoding): Table 3 is a 2-anonymized

dataset obtained after applying local recoding on the original
dataset in Table 2. Records forming an equivalence class were
grouped together with their generalized values indicated in
red.

III. SYSTEM MODEL
The paper aims to develop an approach to achieve
k-anonymity that generalizes attributes based on their utility
with the goal ofminimum distortion of the data. Our approach
incorporates the data publisher’s preferences with regards to
privacy and utility by including parameters for both privacy
and utility. We make use of the k-anonymity formulation
as a clustering problem where each cluster (or equivalence
class) contains at least k records and additionally takes into
consideration the utility of an attribute during the formation
of clusters. Our proposed k-anonymity approach has two
modes of operation: manual and automated. In manual mode,
the user is given the option to prioritize certain attributes over
others, whereas in automated mode, we use the entropy of an
attribute to determine its priority.

In what follows, we give a description of all the compo-
nents of our k-anonymity mechanism. A table of all used
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parameters and variables alongside their descriptions can be
found in the appendix in Table 5.

A. UTILITY FACTOR OF AN ATTRIBUTE
In order for our k-anonymity mechanism to consider utility
levels, it needs to either be given a utility value for each
attribute or able to derive a ranking itself.

In the former case – or manual mode – the publisher
decides whether an attribute is assigned a high or low utility
factor based on their requirements. For example, if a user
prefers information about ride start time to be preserved, they
would assign a higher utility factor for the ride_start_time
attribute as compared to other attributes. The user can assign
a value Ua, 1 ≤ Ua ≤ Umax (for example, Umax = 5), where
1 is the lowest utility factor, and Umax the highest. Umax can
be chosen based on the required granularity of the relation of
attributes.

If the user does not wish to provide manual utility factors,
we utilize the Shannon entropy of an attribute, which is a
measure of information content [13], where a higher entropy
value represents a higher degree of information content. The
utility factor (or entropy) of an attribute a, denoted as Ua, is:

Ua =
∑
i∈I

−pilog2(pi) (1)

where pi is the probability of the attribute to take value i
(i ∈ I ), I being the set of values found for this particular
attribute across the dataset. For continuous attributes (and
possibly also discrete attributes), the values are discretized
into buckets of fixed or flexible size, based on the underlying
value distribution to create smaller buckets where the density
of the values is higher and larger buckets where the data is
sparse.

In general, to calculate the utility factor of an attribute
based on entropy, the attribute values within the dataset
should be normalized, as two attributes with a large differ-
ence in possible values will also have significantly different
maximum entropy values.

The utility factor Ua will then be used to influence the
generalization process. An attribute with a lower utility factor
will be given less weight in terms of utility (or higher level
of generalization). The weight wa of an attribute a is simply
its utility factor Ua normalized using the utility factors of all
other attributes a ∈ A.

wa =
Ua∑
i∈A(Ui)

(2)

This weight can then be used when computing distances
(Section III-B) and distortion (Section III-D).

B. DISTANCE METRICS
When records are grouped together during generalization,
their generalized attributes will be changed to a range
between at least the minimum and maximum of their values
before generalization. It is therefore important to be able to
measure the distance between two values so the algorithm

will preferably merge entries closer to each other to reduce
the impact on the data quality during generalization. In this
section, we provide details on distance metrics considered for
different types of attributes.

1) NON-NORMALIZED DISTANCE
The used distance metric is dependent on the attribute
type and attribute representation structure. As discussed in
Section II, there are different attribute types such as categori-
cal and numerical. Additionally, there may be cases where an
attribute type can be represented in different ways, i.e., there
are multiple options for the attribute representation structure.
For example, a categorical attribute might be represented by
either a tree or a graph. The reason behind choosing these
separate representations for categorical attributes is that in a
tree structure, a domain expert can introduce additional infor-
mation through deciding which node is a parent of another.
For the purpose of applying a distancemetric, the nodes could
for example hold the value according to their depth in the
tree, e.g., a leaf node having the largest value and the root
node being represented by a zero. For a graph structure (e.g.,
for stations in a train network) the vertices usually take the
actual values (e.g., the coordinates of a station or their name)
of an attribute. Our system model therefore needs to support
all attribute types and attribute representation structures by
providing distance metrics for each of them.
Example 6 (Attribute Representation Structure): For cat-

egorical attributes such as Boarding Station and Alighting
Station (from Table 2) taking stations/values A, B, C and D,
are represented using a graph structure as shown in Figure 1.
The vertices are station name and edges represent the distance
and connectivity between stations. A categorical attribute
such as Passenger Type, where a domain expert introduces
a hierarchy and additional values, such as ’Not Adult’ and
’Person’, is represented using a tree structure (as shown
in Figure 2).
We are now ready to define a non-normalized distance

metric for an attribute:

1) Numerical Attributes: The non-normalized distance
between two numerical values vNi and vNj of numerical
attribute N is calculated as:

DN (vNi , v
N
j ) = ||v

N
i − v

N
j || (3)

where ||vNi −v
N
j || is the distance calculated using amet-

ric such as the Euclidean distance, Manhattan distance,
etc.

2) For attributes represented by a tree, the hierarchical tree
structure can be constructed based on the frequency
of leaf nodes, i.e., leaf nodes with lower frequency
are combined to form a common ancestor (for exam-
ple, in Figure 2, two leaf nodes ’Senior Citizen’ and
’Child/Student’ are combined to form ancestor ’Not
Adult’). The non-normalized distance between any two
values (i.e., leaf nodes) of a categorical attribute repre-
sented by a tree is captured by subtracting 1 from the
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FIGURE 2. Generalization Hierarchy for Passenger Type Attribute.

number of leaf nodes at their common ancestor. For
categorical attributes represented by a tree, we calculate
the non-normalized distance between two values (vTi
and vTj ) as:

DT (vTi , v
T
j ) = LTij − 1 (4)

where LTij is the number of leaf nodes at the common
ancestor of vTi and vTj .
Example 7: From Table 2 and Figure 2, the non-
normalized distance between two values ’Senior Cit-
izen’ (in record r5) and ’Child/Student’ (in record r6)
of Passenger Type attribute is = 2-1 = 1.

3) For attributes represented by a graph, the distance
between any two values of a categorical attribute is
captured by the distance between two vertices in that
graph, measuring the shortest path that connects them.
For a categorical attribute represented by a graph G,
we calculate the non-normalized distance between two
values (vGi and vGj ) as:

DG(vGi , v
G
j ) = sp(vGi , v

G
j ) (5)

where, sp(vGi , v
G
j ) is the shortest path between

vGi and vGj .
Example 8: From Table 2 and Figure 1, the non-
normalized distance between two values ’A’ (in record
r1) and ’B’ (in record r3) of the boarding station
attribute is 1. Similarly, the non-normalized distance
between two values ’A’ (in record r4) and ’D’ (in record
r7) of the alighting station attribute is 2.
For weighted graphs sp(vGi , v

G
j ) =

∑n
k=1 w(v

G
k−1, v

G
k ),

wherew(vG0 , v
G
1 ), . . . ,w(v

G
n−1, v

G
n ) represent the weight

of each edge on the shortest path between vGi and vGj .
The weight can represent the actual distance between
two nodes, time taken to travel from one node to
another, profit or loss made when sending goods from
one node to another, etc. Another approach is to use
directed graphs where the distance between nodes is
the length of the shortest directed path between them,
provided at least one such path exists.

4) For categorical attributes that cannot be represented
using any attribute representation structure (e.g.,
a binary attribute), we use the following equation

to calculate the distance between any two values
vi and vj:

D(vi, vj) =

{
0 vi = vj
1 vi 6= vj

(6)

For the sake of readability, we decided to not include
this type in the later sections of this article as our dataset
does not contain an attribute of this type.

2) NORMALIZED DISTANCES
Since the non-normalized distance values for attributes are
not guaranteed (and also are unlikely) to be on the same scale,
we need to normalize them first to be able to compute a fair
distance between two records without over-representation of
one attribute over another. For example, if one attribute was
travel time in milliseconds and another attribute was age in
years, then without normalization the travel time would be
much more prominent and the difference in age would have
no impact on an overall distance between two records.

To normalize the distance, we apply the following two
methods:

1) Maximum distance: Divide the non-normalized dis-
tance by the maximum distance.
• Numerical Attribute: These attributes can be nor-
malized by their domain size (difference between
maximum and minimum values in the domain of
a numerical attribute). The normalized distance
between vNi and vNj using the maximum distance
method is:

D̂N (vNi , v
N
j ) =

DN (vNi , v
N
j )

max(N )− min(N )
(7)

where the denominator is the domain size of the
numerical attribute N .

• Attribute represented by a tree: The normalized
distance between vTi and vTj using the maximum
distance method is:

D̂T (vTi , v
T
j ) =

DT (vTi , v
T
j )

LT − 1
(8)

where LT is the total number of leaf nodes in the
taxonomy tree of categorical attribute T .

• Attribute represented by a graph: The normalized
distance between vGi and vGj using the maximum
distance method is:

D̂G(vGi , v
G
j ) =

DG(vGi , v
G
j )

Diam(G)
(9)

where Diam(G) = max
vGi ,v

G
j ∈G

DG(vGi , v
G
j ) is the graph

diameter of categorical attribute G.
2) Zero-mean unit-variance: In this method, we first cal-

culate the pairwise distance for each record w.r.t.
an attribute, and then utilize the mean and standard
deviation of pairwise distances to normalize the dis-
tance. This method is required to avoid domination
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of one attribute over another as we will show in
Section IV.
• Numerical Attributes: The normalized distance
between vNi and vNj using the zero-mean
unit-variance method is:

DN (vNi , v
N
j ) =

DN (vNi , v
N
j )− µ(D

N )

σ (DN )
(10)

where, µ(DN ) and σ (DN ) are the mean and the
standard deviation of the pairwise distance of all
values present in the table for numerical attribute
N .

• Attributes represented by a tree: The normalized
distance between vTi and vTj using the zero-mean
unit-variance method is:

DT (vTi , v
T
j ) =

DT (vTi , v
T
j )− µ(D

T )

σ (DT )
, (11)

where µ(DT ) and σ (DT ) are the mean and the
standard deviation of the pairwise distance of cat-
egorical tree-represented attribute T .

• Attributes represented by a graph: The normalized
distance between vGi and vGj using the zero-mean
unit-variance method is:

DG(vGi , v
G
j ) =

DG(vGi , v
G
j )− µ(D

G)

σ (DG)
, (12)

where µ(DG) and σ (DG) are the mean and the
standard deviation of the pairwise distance of cat-
egorical graph-represented attribute G.

C. UTILITY-WEIGHTED RECORD DISTANCE
Now that we are able to compute the difference (i.e, distance)
between two values of any attribute type, we need to define
the distance between two records. This is required to identify
records for an equivalence class with minimum generaliza-
tion. Consider, A = {N1, . . . ,Np,T1, . . . ,Tq,G1, . . . ,Gr }
to be the set containing attributes of the original table T ,
where Ni(i = 1, 2, . . . , p) are the numerical attributes,
Tj(j = 1, 2, . . . , q) are the categorical tree attributes, and
Gk (k = 1, 2, . . . , r) are the categorical graph attributes.
Then, the non-normalized distance between two records r1
and r2 is:

D(r1, r2) =
p∑
i=1

wNi (D
Ni (r1[Ni], r2[Ni]))

+

q∑
j=1

wTj (D
Tj (r1[Tj], r2[Tj]))

+

r∑
k=1

wGk (D
Gk (r1[Gk ], r2[Gk ])), (13)

where DNi , DTj , DGk are the distances between the different
attributes. r1[Ni], r2[Ni] are the values of the ith numerical
attribute (Ni) for records r1 and r2. Similarly, r1[Tj], r2[Tj]
are the values of the jth categorical attribute represented using

a tree (Tj), and r1[Gk ], r2[Gk ] are the values of the k th

categorical attribute represented using a graph (Gk ). Ana-
logue to computing the non-normalized distance D(r1, r2),
we compute the normalized distances D̂(r1, r2) and D(r1, r2)
by simply using the respective normalized distance functions
for each attribute as defined in the previous section. The
weights wNi , wTj , and wGk are used to weigh each attribute
according to its utility as introduced in Section III-A.

D. DISTORTION
The last metric required for our k-anonymity approach
is a metric to measure how much the underlying dataset
was distorted due to generalization and suppression. We
define the total information distortion (normalized) 0tot in a
k-anonymized table:

0tot = 0g + (1− 0g) ∗ 0s (14)

where 0g is information distortion caused by generalization
and 0s is information distortion caused by record suppres-
sion. By incorporating (1 − 0g) into the right side of the
equation, we ensure a smoother transitioning between distor-
tion values. To calculate0g, we first calculate the information
distortion in an equivalence class. The information distortion
0cg in an equivalence class c is given as:

0cg = |c| ∗ (
∑
i

wNi
max(Ni(c))−min(Ni(c))

max(Ni)−min(Ni)

+

∑
j

wTj
wlca ∗ (L

Tj
lca(c)− 1)

LTj − 1

+

∑
k

wGk
max(sp(∪Gk (c)))

Diam(Gk )
) (15)

where max(Ni(c)) and min(Ni(c)) are the maximum and min-
imum values of attribute Ni in c and max(Ni) and min(Ni)
are the maximum and minimum values of attribute Ni in gen-
eral. The second term measures the distortion in tree-based
attributes with L

Tj
lca(c) as the number of leaf nodes at the least

common ancestor for values of attribute Tj in equivalence
class c, and LTj is the total number of leaf nodes in attribute Tj.
For the computation of graph-based attribute distortion in the
third term we make use of ∪Gk (c) as the union set of values
in c with respect to attribute Gk . Then, max(sp(∪Gk (c))) and
Diam(Gk ) are the maximum values of the shortest paths
between two values in c with respect to Gk and the diameter
of the graph that represents categorical attribute Gk .

To account for the utility in the computation of the infor-
mation distortion, we have used the weights assigned to
attributes in the automated mode, i.e., wNi , wTj , and wGk are
the weights assigned to attributes Ni, Tj, and Gk .
Let EC be the set of all equivalence classes in the

anonymized table Tano. Then the information distortion due
to generalization in Tano is:

0g =
∑
c∈EC

0cg

|Tano|
(16)
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where |Tano| is the number of records that are published,
i.e., the size of k-anonymity table. To calculate the infor-
mation distortion caused by record suppression, we use the
following method:

0s =
S
|T |

(17)

where S is the number of records suppressed and |T | is the
total number of records in the original table.

While the total distortion gives information about the
entirety of the dataset, it might be required to measure the
distortion of single attribute to better understand how the data
was affected by the k-anonymity approach.

The information distortion in attribute a is calculated as:

0a = 0ag + (1− 0ag) ∗ 0
a
s (18)

where 0ag is the information distortion due to generalization
and 0as is the information distortion due to suppression.
To calculate the information distortion due to suppression,
we use equation 17. The information distortion due to gen-
eralization is calculated as:

0ag =

∑
c∈EC |c| ∗ 0(â

c)
|Tano|

(19)

where âc represents the generalized value of attribute a in
equivalence class c, and 0(âc) is calculated as:

0(âc) =



max(âc)−min(âc)
max(a)−min(a)

a is numerical

max
p,q∈âc;p6=q

sp(p, q)

Diam(a)
a is categorical (graph)

L(âc)− 1
La − 1

a is categorical (tree)

(20)

where max(âc) and min(âc) are the maximum and the min-
imum of the generalized value of the numerical attribute.
max(a) and min(a) refer to the maximum and the minimum
value of the numerical attribute before generalization. sp(p, q)
is the shortest path between p and q, and Diam(a) is the
diameter of the attribute a represented by the graph. L(âc)
and La are the number of leaf nodes at the generalized value
and total number of leaf nodes of the tree attribute.

E. FORMATION OF EQUIVALENCE CLASSES
We can now make use of the attribute weights (Section III-
A) and distance metrics (Section III-B) to form equivalence
classes such that each equivalence class has a size greater than
or equal to k . To form equivalence classes, we implement and
compare the two following clustering algorithms: greedy and
density. The process for the formation of an equivalence class
is as follows:

1) Selection of cluster head:
a) In greedy, select a random record r as cluster

head.

b) If density, calculate the average distance of k
nearest neighbors of each record and select record
r with the lowest average distance as a cluster
head. The average distance µD for record r in a
cluster of records K is calculated as:

µDr =

∑
r̂∈K D(r, r̂)
|K |

(21)

whereD(r, r̂) is the distance between record r and
r̂ as introduced in Section III-B.

2) Selection of cluster members: We can have 2 cases:

a) When record suppression is not desired, the user
does not impose constraints and the algorithm
will select k − 1 neighbor records of cluster head
with minimum distortion.

b) When record suppression is allowed, the user
imposes constraints and the algorithm selects k−
1 neighbor records of cluster head with minimum
distortion such that no constraints are violated.

3) Repeat above steps until all records are covered,
i.e., either assigned an equivalence class or suppressed.

There are different ways to suppress records, such as:
C1: defining an attribute distortion limit, i.e., associating a

value with each attribute to limit its generalization [14].
C2: defining a suppression threshold as a percentage of

records that can be suppressed during the anonymiza-
tion process [15] or as a disclosure risk value for each
record [16].

C3: defining a level of information loss based on statistical
measures (for example, mean, mode, median for numer-
ical attributes), prior to the k-anonymization process.

For the sake of simplicity, all the above methods are called
constraints. In this article, we focus on record suppression by
applying constraint C1, i.e., distortion limits are defined for
each attribute as indicated by the user. To apply constraint
C1 on any attribute, we set a limit by which that attribute
value can be generalized. If the generalization crosses that
limit, then we simply do not form an equivalence class and
suppress that record. For example, the user could impose
a limit on the Boarding Station (BS) attribute to limit the
generalization of any given boarding station to four hops. In
this case, an equivalence class with two boarding stations A
and B will satisfy the constraint if the distance between them
is less than or equal to four hops. If the constraint is not
satisfied, then the record holding value A is suppressed, given
that this record was selected a cluster head. Other records
assigned to this cluster head can be reassigned to different
clusters.

Algorithm 1 provides the pseudo-code of our proposed
k-anonymity approach with following details - (A). Assign-
ing a weight to each attribute (lines 4-8); (B) Formation
of equivalence classes (lines 9-29); (C) Generalization /
Record Suppression (lines 30-33); and (D) Generation of the
k-anonymized table (line 34). The equivalence_set consists
of all the equivalence classes, and attribute values within
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Algorithm 1 Proposed k-Anonymity Approach
1: Input: Dataset T ; k; Generalization hierarchies; Distance metrics; Constraints; Mode of Operation.
2: Output: Tano (k-anonymized Table).
3: if |T | ≥ k then
4: ifMode of Operation == manual then F Assigning a weight of each attribute
5: User-assigned attribute weights
6: else
7: Determine the utility factor based on entropy.
8: Determine the weight of an attribute.
9: equivalence_set = {}; initial_set = {records in T}; suppression_set = {}. F Formation of Equivalence Classes

10: while |initial_set| 6= 0 do
11: if |initial_set| ≥ k then
12: if greedy clustering then
13: Select a record (r) from initial set and its ’k − 1’ neighbors
14: else
15: Calculate the average distance of each record.
16: Select the record with lowest average distance and its ’k − 1’ neighbors.
17: if k-anonymity with record suppression then
18: if constraints satisfied then
19: Delete the selected record and its ’k − 1’ neighbors from initial_set .
20: Move these records into equivalence_set as equivalence class.
21: else
22: Delete the selected record from initial_set .
23: Move the selected record into suppression_set .
24: else
25: Delete the selected record and its ’k − 1’ neighbors from initial_set .
26: Move these records into equivalence_set as equivalence class.
27: else
28: Move record r into the best equivalence class
29: Delete record r from initial set
30: for c in equivalence_set do F Generalization
31: Generalize the attribute values in c.
32: for record in suppression_set do F Record Suppression
33: Suppress the record.
34: Generate the k-anonymized table F k-anonymized table
35: else
36: Number of records within dataset is less than k

these equivalence classes are generalized. The records within
suppression_set are suppressed.

IV. RESULTS AND DISCUSSIONS
We discuss the experiments conducted to evaluate the pro-
posed approach. We apply the proposed approach on a
real-world public transportation dataset (Section II). We con-
sider tap-in and tap-out data recorded on a single day. Before
the experiments, the dataset was pre-processed, where we:

• Cleaned up the dataset to remove obvious errors, e.g.,
removing journeys outside the operation of the public
transport system, negative travel time trips, etc.

• Select four attributes (passenger_type as categorical
attribute represented as tree; boarding_stop_stn and
alighting_stop_stn as categorical attributes represented

as graph; and ride_start_time_seconds as numerical
attribute).

• To calculate the entropy, ride_start_time_seconds
attribute is discretized by considering an interval
of 900 seconds.

For the evaluation of our mechanism, we have removed the
ride_time and ride_distance as they can be directly derived
from the boarding_stop_stn and alighting_stop_stn attributes.
While such direct dependencies may be trivial to discover,
others may not be. In a public transport dataset, many, if not
all, attributes can exhibit correlation to one or more other
attributes. For example, seniors may be less likely to travel
during the morning rush hour, stations in a residential area
are more likely to be destinations in the evening hours,
or the choice of boarding station may be used to predict the
destination station to a certain extent. These dependencies
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FIGURE 3. Attribute information distortion and total information distortion (automatic utility weight assignment); Dataset size,
|T | = 10K records.

may even change, vanish, or be reversed over the course
of a day, week, or year. While we do not incorporate a
specific mechanism to incorporate these correlations into the
utility metric, we avoid a privacy attack where one attribute
could be used to de-generalize another attribute by treating
every attribute as a quasi-identifier, requiring each entry in
an equivalence class to be identical with respect to every
attribute.

A. CLUSTERING AND DISTANCE NORMALIZATION
In this first experiment, we compare the different distance
normalization and clustering methods without suppression of
records during k-anonymization. Since we have introduced
two distance normalization methods (max distance D̂ and
zero-mean unit varianceD) and two different clusteringmeth-
ods (greedy and density), we have a total of four possible
configurations.

Figure 3 shows the information distortion in each attribute
and the total information for k = 5, 20. Utility weights
were assigned automatically according to Section III-A. From
Figures 3a and 3b, we first observe that the zero-mean unit
variance distance normalization (D) performs better than the
configurations using the max distance normalization (D̂). The
former method seems to sacrifice more of the passenger type
attribute to conserve information in the others, in particular
the boarding and alighting stations. Additionally, the ride start
is slightly more distorted as it seemed to dominate the other
distances for other attributes when using the max distance
normalization method.

In the zero-mean unit variancemethod for distance normal-
ization, the distances for each attribute type is standardized
by their mean and standard deviation, reducing the effect of
a dominating distance metric when multiple distance metrics
are combined. In comparison, the max distance normalization
is more sensitive to the minimum and maximum values and
the presence of outliers as they would compress the distance
values in a narrower range. The robustness of the zero-mean
unit variancemethod to this problem is reflected in the results.

Comparing greedy vs density clustering, we observe that
density clustering outperforms greedy. This was expected
as the greedy method is a naive approach that may choose
sub-optimal cluster heads leading to unnecessarily coarse
generalization, while density tries to select a cluster head
which is close to at least k − 1 other records.

While there are other underlying factors such as attribute
homogeneity and value distribution that determine by how
much the greedy method will perform worse, we found that
for a general public transport dataset with a large number of
records, it seems to be a viable alternative.

To understand whether one of the methods offers a benefit
in terms of computing resources or whether our distance
metrics have an effect on the wall-time of either approach,
we compared their run-time in Figure 4. We found that
no significant differences can be observed between the two
approaches, regardless of the dataset size or the privacy
parameter k .
We conclude that to achieve lowest distortion during the

generalization process, a configuration consisting of the
density clustering approach combined with zero-mean unit
variance normalization performs best. For the remainder
of this experiment section, we therefore make use of this
configuration.

B. UTILITY-DRIVEN GENERALIZATION
In this set of experiments, we analyze the performance of our
utility-driven k-anonymity approach without suppressing any
records during k-anonymization. To test the various aspects of
our approach, we consider four different scenarios in manual
mode (where attribute utility factors are user-defined) and one
scenario in automated mode (where attribute utility factor is
determined by the system using entropy):

1) Origin-Destination scenario SOD: In this manual sce-
nario, the user wishes to maintain information about
boarding and alighting station attributes. The utility
factors of boarding_stop_stn and alighting_stop_stn
attributes are set to 5, and 1 for all other attributes.
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FIGURE 4. Simulation time (in seconds) for greedy and density methods.

FIGURE 5. Attribute information distortion for manual and automated utility weights; dataset size, |T | = 10K records.

2) Ride Start Time scenario SRST: In this scenario, the user
wishes to maintain information about the ride start time
attribute. The utility factor of ride_start_time_seconds
attribute is set to 5, and 1 for all other attributes.

3) Passenger Type scenario SPT: In this scenario, the user
wishes to maintain the information about passenger
type attribute, setting the utility factor of passen-
ger_type attribute is set to 5, and 1 for all others

4) Equal scenario SEQ: In this manual scenario, all
attributes are given equal utility weights, where the user
does not have any preference in which attribute should
be preserved.

5) Automated scenario SAUTO: In this automated sce-
nario, attributes are preserved based on their utility
determined by the system. The user does not pro-
vide any specific weights to attributes, instead the
weights are determined automatically based on entropy
as described in Section III-A.

Table 4 mentions the weights assigned to attributes during
each scenario (manual and automated mode). Please note that
these weights have been normalized according to Equation 2.
This means that if the user assigns a weight of 5 to both
Boarding and Alighting Station and a weight of 1 to Pas-
senger Type and Ride Start Time (see scenario SOD), their
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FIGURE 6. Attribute distortion (distribution); Dataset size, |T | = 10K records; Privacy parameter, k = 5.

TABLE 4. Normalized attribute weight in each scenario.

actual weights will be 5/12 ≈ 0.416 and 1/12 ≈ 0.083,
respectively.

Figure 5 shows the information distortion in each attribute
at k = 5, 10, 20, 50 for all the scenarios considered. Natu-
rally, information distortion grows with k as the minimum
number of records per equivalence class is larger, requiring
more coarse generalization. In terms of utility, each sce-
nario introduces less information distortion in the attribute to
which the user assigned a higher utility weight, showing how
our approach effectively allows the user to preserve certain
attributes better. For example, in scenario SOD, we see that
less information distortion is introduced in the boarding and
alighting station attributes when compared to other attributes.

In scenario SPT, low information distortion is introduced in
the passenger type attribute (0.0 for k = 5, 0.007 for k = 50),
which is due to the fact that the domain size of passenger
type attribute is small. Also, scenario SAUTO shows that the
information in each attribute is distorted as per its utility,

i.e., the passenger type attribute which holds less information
is distorted more (0.31 for k = 5, 0.91 for k = 50) than the
ride start time attribute, and boarding and alighting stations
are distorted significantly less.

If we compare attribute distortion in the different scenarios
(Sub-figures 5a to 5e), we see that, for example, SOD only
introduces a distortion of 0.04 for k = 5, while SRST already
exhibits a distortion in the same attribute of 0.12, caused by
attribute prioritization in the generalization process. In SAUTO
this distortion lies in-between these two scenarios with a
distortion value of 0.06. These trends can also be observed for
higher values of k and for other attributes in their respective
prioritization scenario.

Figure 6 shows histograms of the attribute distortion for
each of the five utility configurations and in Figure 7 we plot
the average attribute distortion. Again, the results confirm
that our approach is able to take user preferences into consid-
eration in the generalization process, evidenced by the lower
distortion of the attributes in the respective configurations.
We note that the information distortion is not zero in the
respective manual mode, because the shown attributes have a
higher domain size, and the number of records considered for
experiments is lower. This leads to the situation that there are
not enough records to form an equivalence class without also
generalizing these attributes. Additionally, our configurations
chose a value of 5 for the prioritized attribute, leading to a
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FIGURE 7. Average attribute (a-c) and total (d) distortions; Dataset size, |T | = 10K records.

ratio of 1 to 5 in the distance metrics. This means that at one
point, the distance of the remaining records can be too large
in the low priority attributes to outweigh the smaller distance
in the priority attribute.

Figure 7d shows the actual information distortion obtained
to satisfy the privacy parameter k ∈ {5, 10, 20, 50} for the
database with 10k records. We observe that scenario SAUTO
exhibits the lowest information distortion because theweights
for the attributes are automatically assigned based on their
utility. On the other hand, the scenario SOD shows the highest
information distortion. This is induced by the distribution of
the other attributes (ride start time, passenger type) of the
dataset, causing the approach to generalize attributes that are
not close together to maintain origin and destination stations.

C. RECORD SUPPRESSION
In our last set of experiments, we analyze the performance
of the proposed algorithm when we allow record suppression
during k-anonymization. For record suppression, we intro-
duce limits on the attribute value.

For this experiment, we consider following two
configurations:
• For scenario SOD, we limit the boarding and alight-
ing station attribute values to 4, 6, 8, 10, 12, 14,
and 16 hops.

• For scenario SRST, we limit the ride start time attribute
values to 3600, 5400, 7200, 9000, 10800, 12600, and
14400 seconds.

In addition to the distortion metrics introduced in
Section III-B we also take into consideration application-
specific metrics to gain better insights into the effects of
record suppression:
• For scenario SOD: The average of difference in number
of passengers travelling between the top 20 pairs of
boarding and alighting stations between original and
k-anonymized table.

• For scenario SRST: The difference in mean ride start
time between original and k-anonymized table. Since
we generalize the ride start attribute value into intervals
[rstmin, rstmax], we shall take minimum value (rstmin) to
determine the mean ride start time of the k-anonymized
table.

Figure 8 shows the distortion in the SOD scenario when
suppression thresholds of 4 to 16 are introduced. Figure 8a
shows the distortion using the general metric and Figure 8b
makes use of the application-specific metric. In both fig-
ures we observe that suppression can improve data utility as
evidenced by lower values for the distortion of the blue line
for threshold values of 8 and higher. This means that some-
times it is better to suppress a record than adding this record
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FIGURE 8. Record Suppression in SOD Scenario; Dataset size, |T | = 10K; k = 5.

FIGURE 9. Total Information Distortion with and without record Suppression; Dataset size, |T | = 10K records; k = 5.

to an equivalence class, causing a coarse generalization of
an attribute. To illustrate this, assume an equivalence class c
with an attribute a to be generalized to the range [4, 8]. If the
only remaining unassigned record has a value for a = 10,
then adding this record to c, would cause a to be changed to
[4, 10] for all members of c, introducing higher distortion.
We also observe that information distortion is high when
the suppression threshold is low. A low threshold causes the
k-anonymization approach to drop a large number of records
as it would be unable to form equivalence classes without
generalizing attributes more than the threshold.

The SRST scenario shown in Figure 10 exhibits sim-
ilar behaviour in terms of attribute distortion. However,
the application-specific metric in Figure 10b suggests that
record suppression always performs better. This is caused by
this specific metric which always prefers less generalization
(i.e., smaller alterations to the ride-start time), showing that
applying biased metrics can lead to misleading results. The
general-purpose metric takes into account the number of sup-
pressed records and shows that only thresholds of 10800 and
higher lead to an improvement in distortion.

Lastly, we analyzed whether this lower attribute distortion
will translate to a lower total distortion in both scenarios.

Figure 9 confirms this and shows that record suppression
lowers the total distortion, both for the SOD and SRST scenario.
In this experiment we manually applied the suppression

threshold for an attribute, however, we like to highlight the
need for methods that can automatically determine these
thresholds. One way to achieve that is to take into account the
pairwise distance between attribute values and then use the
mean, mode, or other measures of the pairwise distances as a
suppression threshold, instead of an iterative manual assign-
ment of a threshold value and a subsequent check whether
distortion improved.

V. RELATED WORK
There exists a wide range of k-anonymity privacy mech-
anisms using different methods to achieve the forming of
equivalence classes. For example, researchers have proposed
hierarchy-based generalization [17], [18], partition-based
generalization [10], and clustering methods [19], [20] [12].
Datafly [17] and Incognito [18] are single-dimensional
full-domain generalization methods. Datafly counts the fre-
quency over the attribute set, and if k-anonymity is not sat-
isfied, it generalizes the attribute having the most distinct
values until all the records are included in an equivalence

23620 VOLUME 9, 2021



B. S. Bhati et al.: Utility-Driven k-Anonymization of Public Transport User Data

FIGURE 10. Record Suppression in SRST Scenario; Dataset size, |T | = 10K; k = 5.

class of size at least k . Datafly does not provide minimal
generalization [21]. Incognito constructs a generalization lat-
tice, and traverses it using a bottom-up breadth-first search
to find the best solution (each node in the lattice repre-
sents a solution). LeFevre et al. propose Mondrian [10],
a multi-dimensional method that recursively partitions the
dataset into equivalence classes, each of which contains at
least k records. Mondrian chooses an attribute with the widest
range of values to perform partitions on that attribute and
then splits/partitions the attribute using the median parti-
tioning approach. Since the median-partitioning approach
requires a total order for each attribute, it is more suitable for
numerical attributes. In the case of the categorical attribute
(which does not have proper ordering), partitioning may not
be possible, or it will affect the semantics associated with
values.

Methods based on clustering such as density-based cluster-
ing [20], k-member clustering [12], and attribute hierarchical
structure [19] have been proposed to overcome the order issue
related to categorical attributes. Clustering-based methods
utilize distance metrics (defined for both - numerical and cat-
egorical attributes) to measure the similarity between records
and form equivalence classes. Zhu and Ye [20] provide
k-anonymity based on clustering, where equivalence classes
are formed using a density metric, which is measured by
the k-nearest neighbors distance. Similarly, Li et al. [19]
and Byun et al. [12] propose k-anonymity based on clus-
tering by defining generalization distances between records.
Ni et al. [22] propose Grading, Centering, Clustering, and
Generalization (GCCG), a clustering-based local generaliza-
tion algorithm. He et al. [23] assumes a global order on all
possible values in the domain of each attribute, which may
not be a reality for categorical attributes. Most of the existing
works are either not suitable to handle all attribute types or
do not provide a proper definition to distance metrics for
all attribute types. We have extended most of the works by
providing a distance metric for all attribute types.

Applying any k-anonymity privacy mechanism leads to
a reduction of data utility. Thus, researchers have proposed

k-anonymity approaches that minimize the utility loss
[24]–[28]. Assuming that each attribute has different utility,
Xu et al. [24] propose a heuristic local recoding method for
utility-based anonymization, where authors assign weights to
each attribute to reflect its utility. To achieve minimum utility
loss, Ye and Chen [25] propose Attribute Utility Motivated
k-anonymization (AUM), where authors classify the
attributes as key attributes and an anchor attribute (first
attribute to be processed). The algorithm starts by creat-
ing regions according to anchor attribute and then perform
multi-dimensional recoding and partitioning in each region
until the equivalence class size is less than k . The authors
aim to satisfy the heterogeneous needs of different users.
Unlike in our k-anonymity, their approach does not provide
an automated mechanism to determine the utility of attributes
which ultimately leads to lower utility loss.

Similarly, Kiyomoto et al. [26] generate an anonymized
table based on the user’s requirement satisfying k-anonymity
and l-diversity. The anonymization scheme is based on
both top-down and bottom-up approaches for global recod-
ing model - full-domain and partial-domain generalization.
Global recoding results in a higher loss of data utility when
compared to local recoding model. Another drawback of the
paper is that it has assumed tree hierarchy for all the attribute
types. This approach is therefore not applicable for many
application settings, including the assumed application in our
paper.

To minimize information loss and achieve privacy protec-
tion, Bhaladhare and Jinwala [28] introduce two approaches
that produce sub-databases from the original database,
i.e., the generated database contains a smaller number of
attributes. However, it attains lower data utility at some level
when considering the database with all attributes.

Lin et al. [29] and Zhang et al. [30] aim to minimize the
information loss as well as to reduce run-time required to gen-
erate an anonymized transactional dataset. For this, [29] pro-
poses PTA, where a divide-and-conquer method is applied to
partition the sorted transactions into several parts based on the
Hamming distance. Similarly, [30] proposes the ANonymity
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for Transactional database (ANT) algorithm to achieve
k-anonymity and l-diversity. The authors use k-means clus-
tering to form clusters of highly similar data by considering
their non-sensitive items. Although the k-means clustering is
fast, it is challenging to determine the optimal value of k ,
which may result in high information loss. Rajaei et al. [31]
introduce a greedy algorithm to generate non-overlapping
and anonymized groups of network data. The approach aims
to reduce information loss by constructing the groups with
a minimum number of members and maximum average
desirability (which depends on the used utility and privacy
metrics).

To further minimize the loss of data utility,
Kohlmayer et al. [15] and Orooji and Knapp [16], combine
generalization with suppression. Both works experimentally
show that combining generalization with suppression signifi-
cantly increases data utility and reduces disclosure risk. Sim-
ilar to earlier works, we perform experiments by considering
record suppression and see how it affects data utility. The
earlier works perform record suppression by applying a limit
on the number of records to be suppressed. Instead of limiting
the number of records that are suppressed, we approach the
problem by introducing a generalization threshold to the
attribute itself, showing that this can improve data utility.

Campan et al. [14] proposed p-sensitive k-anonymization,
which introduces a set of generalization thresholds (i.e.,
multiple limitations) for each attribute, represented by
pre-defined tree hierarchies. In our work, we do not primarily
focus on record suppression and impose constraints by intro-
ducing a single, manually set limitation for each attribute.
Our mechanism can be combined with the approach in [14]
to create utility-driven p-sensitive k-anonymization.
To overcome the limitations of earlier works, we auto-

matically assign utility weights to attributes and consider a
range of different attribute types. Additionally, we consider
the case where all the attributes are quasi-identifiers. These
assumptions make our approachmore practical for real-world
deployment. Though the proposed work focuses on trans-
portation data, we have discussed why the underlying ideas
are not limited to that use case and that they can be applied to
diverse kinds of datasets. Our approach is flexible and hence
can be tuned to meet different application and user needs.

VI. CONCLUSION AND FUTURE WORKS
In this article, we tackled the challenge of utility-driven and
privacy-preserving transport data publishing based on the
k-anonymity approach. Our mechanism allows the user to
assign utility weights to each attribute, allowing them to
control which attributes the privacy mechanism preserves
over other attributes. To maximize utility, we also intro-
duced an automated mechanism to determine those weights.
We investigated the performance of generalization meth-
ods with our newly introduced distance metrics and pre-
sented a mechanism based on the density-based method
using zero-mean unit variance distance normalization.
We demonstrated the feasibility and effectiveness of our

approach using a real-world public transport dataset. Further,
we have shown that, in some cases, it is better to suppress
records to preserve utility.

Future work includes the automatic determination of sup-
pression threshold values to further improve the data utility of
the anonymized table. Another interesting approach would be
to attack the problem from a different angle, that is, instead of
letting users define k , they define a target utility (or distortion)
value and the privacy mechanism automatically determines k
and a suitable suppression threshold.

APPENDIX

TABLE 5. Notations and their definition.
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