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ABSTRACT Mass Rapid Transit (MRT) systems, i.e. subway systems, all over the world, are experiencing
an increase in ridership. This also means that in case of an unplanned MRT service disruption, the number
of affected passengers is larger, requiring a fast and comprehensive response. In this paper, we thus study the
disruption management of MRT systems. We develop an optimization model to identify the optimal bridging
plan in response to an MRT disruption, so that the negative effects of a disruption could be minimized. Our
approach supports deployment of multiple types of bridging buses, reflecting the diversity of vehicle types
in a typical public transportation provider’s vehicle fleet. The optimization objective of our approach is
to decrease the travel delay of passengers and increase the number of passengers who can be served. We
demonstrate the effectiveness of our approach on a hypothetical case study in the central business district
of Singapore. Moreover, we validate our analytical results with microscopic simulation, showing that our
simplified analytical optimization approach can be used for disruption response planning. Some deviations
indicate, however, that a combined simulation and optimization approach yields better results to obtain an
effective bridging plan.

INDEX TERMS Data-driven optimization, mass rapid transit systems, microscopic simulation, reactive
planning.

I. INTRODUCTION
As cities around the world are growing in population, public
transportation becomes an even more important part of each
city’s transport backbone. For example, in 2015 in Beijing,
approximately 45% of all trips were made by public trans-
portation [24]. This comes as no surprise as public trans-
portation offers a larger capacity and in highly congested
areas even faster travel speeds compared to private vehi-
cles. Often, public transportation infrastructure is developed
complementary to road infrastructure, either underground
(e.g. subway) or in the form of dedicated road space (e.g.
Bus Rapid Transit (BRT) systems [20]) and is thus able to
offer faster travel speeds. In Curitiba, Brazil, it has been
reported that considering only peak hours, the average speed
of the BRT system is 20 km/h compared to an average speed
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of 8 km/h for mixed traffic that includes private cars [20].
Moreover, it has been shown that the speed of taxis in
New York City decreases starting from the city boundary to
the city center (e.g. Manhattan) [28].

In addition to shorter travel times in some cities, public
transportation is also often cheaper, making it the pref-
erence for many. However, frequent disruptions of pub-
lic transportation can push commuters back to using private
transportation modes. Unfortunately, disruptions in public
transportation are inevitable. For example, in Melbourne
almost 16,000 unplanned disruptions occurred only in the
first half of 2011 [25]. During only one day of the same
year, Singapore experienced disruption of 11 stations in
the duration of 5 hours, with more than 100,000 passen-
gers affected [12]. Between October 2018 and March 2021,
7 major disruptions happened in Singapore on different lines
usually affecting multiple stations and lasting a few hours
each [2]. The reason behind the majority of those disruptions
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was a power fault, although unfortunately in one event, one
man was killed by a train after intruding a tunnel [1]. Even
though this number does not seem large, those seven incidents
represent only disruptions that were severe enough to hit the
news headlines.

As disruptions cannot be completely avoided, there are two
ways of easing their negative impact on the affected ridership
– by proactive and reactive transportation planning. Proac-
tive planning refers to designing a transportation system in
such a way that it is more resilient, while reactive planning
proposes what to do once a disruption occurs. Although
designing transportation systems with the goal of minimizing
the possibility of disruption is required (e.g. [12], [23], [24]),
disruptions can never fully be ruled out. Therefore, in our
work we focus on reactive planning by proposing how to
develop an optimal bridging plan for the disruption period.
Unlike during the normal operation hours when operators
tend to organize their service with the goal of reducing their
operation costs while maximizing benefits for passengers,
during the disruption the main goal is to reduce travel delay
for as many affected passengers as possible [7], [9]. In this
paper, we present an optimization model that follows these
two objectives – to reduce travel delay and increase the
number of served passengers during a disruption.
Our model is based on our previous work [21], but has

been significantly revised to enable the use of heterogeneous
vehicle fleets as well as a passenger-based penalty parameter
to avoid underserving of certain passengers or to prioritize
passenger groups if needed. We evaluate our model using a
hypotheticalMass Rapid Transit (MRT) disruption in the cen-
tral business district of Singapore. Additionally, we extended
the microscopic mobility simulator CityMoS [26] to validate
our mathematical optimization model and to identify short-
comings stemming from the necessary simplifications for the
model to be computationally feasible. We also show how a
combined approach could be used to derive effective bridging
plans in a cost and time-efficient way.

The remainder of the paper is structured as follows: In
Section II we provide an overview of related work and how
our method differs from the existing approaches. We present
our optimization model in detail in Section III. Section IV
describes our case study of a hypothetical MRT disruption.
We discuss the results obtained with the optimization model
in Section V. For validation purposes we introduce and
compare a simulation-based approach in Section VI. Finally,
Section VII concludes the paper.

II. LITERATURE REVIEW
Once a disruption happens, first it is important to understand
how many passengers are affected in order to come up with
a bridging plan with sufficient capacity to accommodate the
affected passengers. However, even though the number of
affected passengers might be estimated accurately in the first
place, not all passengers are going to wait for a bridging
service to continue with their travel plans, and an accurate
demand modeling of the affected passengers is thus needed.

Passenger behavior can be modeled using a logit model [6] or
effects of balking and reneging can be considered [25], where
the former refers to the passengers who leave the station
immediately after a disruption happens and the latter one
denotes the passengers who gradually decided to leave the
station before the bridging vehicles were able to pick them
up. Eventually, only the ones who stayed long enough can
be served by the bridging service. In our model, we assume
that the passengers will wait up to 30 minutes for a bridging
vehicle to pick them up after which we assume that they
would renege and the system does not need to serve them
anymore. We take 30 minutes as a proxy of how long people
are willing to wait. However, the maximum waiting time of
passengers is an input parameter of our model and as such
can be set up to some other value as well.

After a passenger demand is assumed, an optimal bridging
plan must be developed. The challenge of organizing a bridg-
ing service can be divided into two sub-problems: finding
a subset of potential bridging routes and assigning bridging
vehicles to the chosen routes. However, even before finding
the potential bridging routes and assigning vehicles to the
routes, one can look at the transportation network properties
in order to understand which stations are more important than
others [16]. In our model, we are considering all stations and
are not looking into network properties of the transportation
system in order to distinguish among the stations.

Once a set of potential stations is derived, either in such a
way that all stations are considered or only subset of them,
the bridging routes can run in parallel with MRT lines [12] or
a column generation algorithm can be used [13], [19]. Col-
umn generation is a well-known algorithm in which solving
one complex problem begins with a small, manageable part
of a problem, followed by solving that part, analyzing that
partial solution to discover the next part of the problem, and
then resolving the enlarged model. The described process is
repeated until it achieves a satisfactory solution for the entire
problem. Finally, bridging vehicles do not necessarily need
to be assigned to only one route, but can change among dif-
ferent routes, which makes the problem of assigning bridging
vehicles to the selected routes evenmore complex [11]. In our
optimization model, we choose that the bridging vehicles run
in parallel with MRT lines and assume that bridging vehicles
stay on the same assigned route until the end of disruption.

The most common way for organizing a bridging service is
to deploy bridging buses, which can be either mobilized from
bus depots or retracted from their regular routes [7], [22].
However, bridging buses are not the only type of vehicles
used in practice. In [27] the authors investigated how to
partner with taxi companies to achieve a quicker response
plan when a disruption occurs. The downside of using taxis as
the only bridging vehicles is that their capacity is limited and
consequently they cannot serve all affected passengers. How-
ever, in light of Mobility as a Service (MaaS) developments,
different mobility packages are likely going to be available. In
that sense, it is reasonable to assume that different passengers
will be willing to pay different prices for the transportation
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service and the ones paying for a more reliable service could
be prioritized when a disruption happens if desired by the
provider. The advantage of our model is we use a penalty
parameter for unserved passengers that could be set to dif-
ferent values if passenger prioritization is required.

In a more broad sense, bus bridging services do not nec-
essarily only have to be deployed in case of an MRT disrup-
tion. Namely, there is a body of research focusing on how
to design temporary bus services and their routes early in
the morning [14] or late in the night [15] to help affected
passengers to transfer between different subway lines during
that time. It has been shown that deploying bridging buses
during those periods can improve connectivity in large-size
subway networks, such as for example in Beijing. Although
in both cases, bridging vehicles are used in order to substitute
for inefficiencies in subway/MRT systems, in our work we
focus on disruptions, which are sudden and unplanned. In that
sense, an optimization model for disruptions has to be sim-
plistic enough to be able to work in a real-time. On the other
hand, first/last train timetabling is a problem that happens
every day and thus is a part of proactive transportation plan-
ning, rather than reactive transportation planning strategies
which are needed for disruptions.

The effectiveness of the proposed model is shown in com-
parison with alternative strategies on a real-world scenario
in the central business district of Singapore. Using informa-
tion collected by transportation smart cards (e.g. EZ-Link
cards in Singapore) and public MRT/bus line information,
we calculated the origin-destination passenger demand and
the available complimentary capacity of the existing buses,
informationwhich is then used to develop an optimal bridging
plan. Utilizing available complimentary capacity of the exist-
ing buses was previously proposed by Jin et al. [12], [13].
However, the aforementioned work did not consider that both
the existing buses and the introduced ones can have different
capacities, thus potentially miscalculating the available com-
plimentary capacity.

In this paper, we consider more practical situations where
multiple types of vehicles are available for bridging services.
This assumption is more realistic because in reality, public
transportation companies usually operate multiple types of
vehicles. For example, Singapore’s bus fleet consists of single
decker, double decker and articulated buses. More specifi-
cally, both our approach and the approach of [21] identify
the best bridging routes and their corresponding headways
that minimize the travel delay and maximize the number
of served passengers. However, the approach proposed in
this paper additionally determines the best type of vehicles
to be allocated on each of selected bridging routes. Com-
pared with the approach proposed in [21], our model has
more binary decision variables due to the consideration of
bridging vehicle types. However, the increase in computa-
tional time is marginal. In particular, for the case we studied
later, both optimization problems could be solved in a few
minutes, which makes them suitable to use in a real-time
situation.

Validation of an analytical model and evaluation of the per-
formance of a bridging strategy can be carried out by means
of simulation. Simulation of public transportation systems
is often macroscopic in nature [17], meaning that individual
vehicles such as buses and trains are not modeled as separate
entities, but analysis is carried out using flows and capacities.
There are several tools that support a microscopic analysis
and that are able to capture effects such as bus bunching [3]
or delays caused by traffic lights and heavy traffic. The
most commonly used tools include VISSIM [10], SUMO [5],
or MATSim [18]. We found that the majority of the available
tools either does not support both relevant modes (i.e. bus and
rail-based traffic), is not easily extendable or is limited in the
other ways relevant for our study. We thus decided to base all
simulation studies in this work on the CityMoS platform [26].

To conclude, contributions of our paper are threefold: our
optimization model (i) supports utilization of different types
of vehicles used for bridging purposes, (ii) allows prioriti-
zation among the affected passengers and (iii) is validated
through a microscopic simulation. The first two points allow
designing a personalized bridging service in case of an MRT
disruption, which is aligned with the idea of MaaS. Namely,
although it is impossible to offer mobility services without
any disruptions, the passengers who will pay a higher pre-
mium can also expect to get a premium service both under
normal circumstances, as well as during disruptions. Finally,
there are plenty of studies on subway/MRT disruptions in
which various mathematical optimization models were pro-
posed, but only a few papers offered validation of the pro-
posed theoretical model with simulation.

III. OPTIMIZATION METHODOLOGY
We developed a mathematical optimization model to derive
the best bridging plan in the case of an MRT service disrup-
tion with two goals: to reduce the travel delay and increase
the number of served passengers. Our model considers cases
where multiple types of vehicles with different capacities are
available for bridging services. Moreover, it also considers
the existing bus service, that is, when an MRT disruption
occurs, the disrupted passengers can either use the existing
buses or the services provided by the bridging vehicles. The
proposed model determines both the bridging service routes
and the frequency of vehicles on each route.

A. IN/OUT PASSENGER FLOWS DATASET
The basis of our approach is a comprehensive passenger
dataset of Singapore MRT and bus services for a duration of
three months. Each record in this dataset consists of a times-
tamp of tap-in/out associated with an MRT station/bus stop
identification, allowing us to reconstruct the traveled route.
Additionally, we incorporated GPS coordinates of MRT sta-
tions/bus stops, as well as official records onMRT/bus service
andMRT/bus line data including operational starting time and
ending time, traveling time and frequency of MRTs/buses.
Based on the dataset and MRT/bus line data, we elicit the
following information:
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• the number of passengers traveling between each pair of
origin-destination stations;

• the time table and routes of MRT/bus services;
• the travel time of passengers;
• the available capacity of each MRT/bus line.

which is then used as an input for our model.

B. OPTIMIZATION MODEL
Before presenting our optimization model formulation,
we have to define the following sets:

• S denotes the set of bridging buses;
• R denotes the set of routes r ;
• R0 andR+ denote the set of the existing bus routes and
the candidate bridging routes, respectively;

• k denotes a passenger group that includes all passengers
who travel from origin ok to destination sk ;

• K denotes the union of disjoint passenger groups k;
• Rk is used to denote the set of routes that connect origin
ok and destination sk , that is, passengers in group k can
and only take routes inRk ;

• Lr denotes the set of edges/legs l for the route r .
Our model aims at minimizing the total travel time of
affected passengers in the disruption period, including
both their riding time on either the existing or the intro-
duced bridging vehicles and waiting time to board.

Furthermore, in order to discretize continuous time into time
slots, we adopt the time-space network proposed by Jin et al.
to model the time-dimension [13]. For each passenger group
k , we thus discretize the whole time period into ū periods
associated with a demand d(k,u) such that

∑
u d(k,u) = Dk ,

where Dk denotes the number of affected passengers in
group k .

Our optimization model allows the usage of bridging
vehicles with different capacities. Let V ⊆ S denote the
set of vehicles of type v. We use Qv to denote the capac-
ity of a vehicle type v. Furthermore, let (r, h, n) repre-
sent the nth round of a vehicle on the route r when the
headway is h. The set of (r, h, n) is denoted by B(r,h) =

(r, h, n),∀n = 1, 2, 3, . . . ,N(r,h), where N(r,h) is the number
of total rounds of bridging vehicles on the route r in the given
period when the headway is set as h. One round is defined as
a trip a bridging vehicle makes starting from its first assigned
station to the last one. The union of B(r,h) for all h ∈ Pr is
denoted by notation Br .
The passengers in the group k arrive at the station ok at

time t̃(k,u), wait for a vehicle on the route r ∈ Rk , board
and travel on it for c(k,r) units of time. If the arriving vehicle
is full, the passengers have to wait for the next one. Let
w((k, u), (r, h, n)) denote the waiting time of passengers in
the group (k, u) when taking the vehicle (r, h, n). We have:
w((k, u), (r, h, n)) = t((r,h,n),ok ) − t̃(k,u), where t((r,h,n),ok )
denotes the time when the vehicle (r, h, n) arrived at the
station ok , i.e. the origin station for the passenger group k .

Moreover, the passengers from group k cannot take vehi-
cles that arrived at station ok before their arrival time and

we assume that they will not be willing to wait for a time
longer than a limit w̄. In addition, the passengers will only
take vehicles that would transport them from the station
ok to sk , that is, vehicles on the route r ∈ Rk . Hence,
we define the set � that excludes all impossible combina-
tions: ((k, u), (r, h, n) : � = {((k, u), (r, h, n)) : t((r,h,n),ok ) −
t̃(k,u) ≥ 0,w((k, u), (r, h, n)) ≤ w̄, r ∈ Rk

}, where w̄ is
the limit of waiting time. We then generate the matrix of
w((k,u),(r,h,n)) for all (k, u) and (r, h, n) based on the travel
time on each link and the bridging plan to use it as the input
coefficients for our optimization model.

Our model will not only select the bridging routes, but
at the same time it will also determine the frequency and
headway of the vehicles on those selected routes and the
allocation of available vehicle resources among each route.
Herewemake an assumption that on each route, only one type
of vehicle can be allocated. We can then define a discrete set
of bridging deployment plans as follows: Pr := {(r, h) : h ∈
I ,∀hminr ≤ h ≤ h

max
r },where each plan (r, h) is characterized

by the route index r and the headway h; hminr , hmaxr denote
the minimum and maximum allowed headways for route r ,
respectively. Let P+ be the union of Pr ,∀r ∈ R+. The
bridging deployment plans for the existing route r ∈ R are
already determined and their headway is h0r ,∀r ∈ R0. The
decision variables for our model are:

• y((r,h),v) ∈ {0, 1} : ∀r ∈ R+, (r, h) ∈ Pr , v ∈ V.
y((r, h), v) takes 1 if the bridging deployment plan (r, h)
is employed with the vehicle type v assigned on this
route, and 0 otherwise. The domain of y((r,h),v) can be
thus defined as y((r,h),v) ∈ {0, 1},∀(r, h) ∈ P+.

• χ((k,u),(r,h,n)) ≥ 0 : the number of passengers in the
group (k, u) who take the vehicle (r, h, n).

• η(k, u) : the number of passengers in the group (k, u)
who are unable to board any vehicle by the end of the
waiting time limit w̄. This number is always equal or
greater than zero, i.e. η(k,u) ≥ 0,∀(k, u).

Let c0k denote the travel time of a single passenger in the
group k ∈ K when there is no disruption (i.e. the usual MRT
travel time). The bridging route selection process and the
deployment problem can then be formulated as follows:

min
∑

((k,u),(r,h,n))∈�

(c(k,r)+w((k,u),(r,h,n))−c0k )χ((k,u),(r,h,n))

+

∑
(k,u)

θ(k,u)η(k,u) (1)

s.t.
∑
(r,h,n)

χ((k,u),(r,h,n)) + η(k,u) = d(k,u), ∀(k, u) (2)

∑
(k,u)

γ(k,(r,l))χ((k,u),(r,h,n)) ≤ Q0
(r,h,n,l),

∀r ∈ R0, ∀(r, h, n) ∈ Br , ∀l ∈ Lr (3)∑
(k,u)

γ(k,(r,l))χ((k,u),(r,h,n)) ≤
∑
v

Qvy((r,h),v),

∀r ∈ R+, ∀(r, h, n) ∈ Br , ∀l ∈ Lr , ∀v ∈ V (4)
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∑
h|(r,h)∈Pr ,v∈V

y((r,h),v) ≤ 1, ∀r ∈ R+ (5)

∑
(r,h)∈P+

n(r,h)y((r,h),v) ≤ Amaxv , ∀v ∈ V (6)

χ((k,u),(r,h,n)) = 0, ∀r /∈ Rk (7)

The objective function (1) minimizes: 1) the total increase
in travel time for passengers taking either the existing buses
or other bridging vehicles and 2) the number of passen-
gers who cannot board, weighted by a penalty parameter
θ(k,u). By having two sub-objectives in our optimization
function, we simultaneously want to reduce the travel delay
and increase the number of served passengers during the
disruption. As mentioned previously, the penalty parameter
θ(k,u) can be set up separately for each passenger instead
of the whole passenger group k , which can then result in
prioritizing passengers who are paying for a premium service.
Furthermore, constraint (2) guarantees that the total number
of passengers who boarded plus the number of passengers
who did not board equals a passenger demand d(k,u).
Let γ ((k, (r, l)) be a binary variable that takes 1 if the leg l

is used by the passenger group k when they take the route r ,
and 0 otherwise. Constraints (3) and (4) ensure that on each
leg l ∈ Lr of each vehicle (r, h, n), the number of passengers
on board (r, h, n) does not exceed the available vehicle capac-
ityQ0

(r,h,n) of the existing bus routes and the total capacityQ
v

of the introduced bridging vehicles, respectively.
Constraint (5) guarantees that the route r can either be

selected with one specific headway h or not selected at all.
Constraint (6) guarantees that the total number of each type
of the bridging vehicles does not exceed the total number
of vehicles available, where n(r,h) is the number of vehicles
required for the route r with the headway set as h and Amaxv
denotes the number of available vehicles for the type v.
Constraint (7) ensures that passengers in the passenger group
(k, u) cannot take any route r that is not in Rk , meaning that
does not connect the station ok with the station sk .

C. OPTIMIZATION MODEL ASSUMPTIONS
The main assumption of our model is that the bridging vehi-
cles on the same route belong to the same vehicle type. To
relax this assumption, besides the routes to select and the
headway to adopt, we would also need to determine which
type of vehicles to use for each round of the bridging vehicle
on each selected route. This would substantially increase the
number of integer decision variables. In particular, let |N |
denote the average number of rounds of bridging vehicles
over all candidate routes and let |Y | denote the number of
binary variables in our model. Then the optimization model
with the relaxed assumption would introduce |N | × |Y | addi-
tional binary decision variables.

The introduction of additional decision variables and
constraints results in significantly longer solving times. In
particular, we tested the above-mentioned assumptions and
constraints on one case study and found that it took up to

20 hours for the model to be solved with a fleet size of
only 10 vehicles. For fleet sizes larger than 10, we could
hardly solve the proposed model using off-the-shelf algo-
rithms implemented in CPLEX. One potential way to solve
this problem is to design a customized algorithm for this
problem. However, this is beyond the scope of this paper and
could serve as one possible direction for future research.

Moreover, to maintain a manageable parameter space and
a reasonably short solving time, our optimization model is
based on various assumptions and simplifications, such as:

• travel times of buses and MRT are estimated based on
historical data and do not account for an increase of road
traffic volume due to adding new bridging vehicles;

• inter-arrival times of the disrupted passengers are mod-
eled as a constant within a given time interval and do not
depend on time;

• capacities of bus stops are assumed to be unlimited
meaning that each deployed bridging vehicle can make
a stop at the bus stop no matter howmany other bridging
vehicles are already at the same bus stop, and finally

• bus dwell times are assumed to be static and do not take
into consideration howmany passengers are boarding or
alighting buses at each stop.

all of which are addressed later in simulation.
The main reason why travel times are static is because they

are used as input parameters of the model. With that being
said, if they would depend on the real traffic conditions due
to the effect of bridging services, then they would be a part of
the model, which would significantly affect the solving time
as we would have a circular dependence. The reason why we
canmodel different traffic conditions in simulation is because
it takes a fixed bridging plan from the optimization model,
which then does not change during the whole simulation
period. The inter-arrival times of the disrupted passengers can
be modeled to be constant within the discrete time interval in
the optimization model as the time intervals are small and
the demand does not significantly change during one discrete
time interval. Finally, although in theory the capacities of bus
stops are unlimited, defining the minimum headway hminr for
each route r prevents the unlimited number of buses to be
simultaneously on the same bus stop.

IV. CASE STUDY
In this section, we consider a hypothetical MRT disruption in
a business district of Singapore during morning peak hours
(i.e. 7-9 AM). The study area including MRT and bus lines
is shown in Figure 1. We model a disruption affecting the
links from station A to station D of the purple line for the
whole morning peak hour period. We apply our optimization
approach to find the best bridging plan for the assumed
disruption. First we start with generating the candidate bridg-
ing routes by replicating the MRT services, considering all
possible routes parallel to the disrupted purple MRT line
(i.e. for 4 disrupted MRT stations we generate 11 candidate
bridging routes). Then, once all routes are generated, our
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optimization model finds the optimal bridging plan by simul-
taneously choosing the optimal bridging routes and assigning
the available bridging vehicles to the chosen routes.

The passenger demand and the available capacity of exist-
ing buses are derived from historical smart card data which
indicates that almost 6,000 passengers would be affected. For
each passenger, his/her origin and destination MRT station
are known from the data, while the route he/she is taking
is modeled with the shortest path in the network. When a
disruption happens, the affected passengers have to turn to
other transportation services to reach their destination, such
as to existing bus lines (represented by dashed lines in Fig-
ure 1), temporary bridging routes specifically allocated for
the disruption, taxis, or bicycles.

Using the data, we calculated that the existing buses on
relevant lines would make around 80 rounds passing through
the disrupted area during the affected hours, with an average
available capacity of approx. 74 passengers per bus per link.
Although these buses seem to provide sufficient capacity to
serve all affected passengers, in reality only one existing bus
line serves station D. Station D, with its connection to the
red and yellow MRT lines would be the ideal location for
passengers to continue their journey should their original
destination not lie within the disrupted area itself.

In our case study, we use multiple types of bridging buses,
where both the total number of buses (i.e. |S|) and the number
of buses of each type (i.e. |V|) are given as input parameters
of our model. The buses currently operating in Singapore
can be generally divided into three types: single decker bus
with an average capacity of 88, double decker bus with an
average capacity of 131, and articulated bus with an average
capacity of 148. We assume that the distribution of the three
types of bridging buses (i.e. single decker, double decker and
articulated) in our optimization model follows the one of the
currently operating buses in Singapore (i.e. 70.12%, 24.93%
and 4.95%, respectively). Distributions of different types of
buses given different fleet sizes are shown in Figure 2.

The parameters of the optimization model are set as fol-
lows: the minimum and maximum headways of the bridg-
ing vehicles are set to 1 and 31 minutes respectively, with
the minimum incremental value set to be 1 minute. The
range for headways is set considering factors such as the
current headways of the existing buses, the highmorning peak
demand and the capacity of bus stops. Furthermore, the limit
of the waiting time w̄ is set to 30 minutes, after which we
assume that the passengers leave the system. The given time
is arbitrarily chosen and can be changed as it is a parameter.

The penalty parameter θ (k, u) changes with u, which
denotes the arrival time of the passenger group k and is
calculated as 120−u. 120 minutes was taken as a constant as
it denotes the whole duration of the assumed disruption. This
penalty parameter ensured that the passengers who came first
were served first as well. Please note here that although our
mathematical model allows using this parameter to prioritize
passengers on various criteria (e.g. a premium they are paying
for the service), in this case study we are assuming it depends

only on the arrival time of the passenger group k . The reason
why we chose to define it as such is because our simulation
does not support passenger prioritization and is based on a
first-come-first-serve approach. And since we want to use
simulation to validate our mathematical model, we decided
to define the penalty parameter as described.

Bridging vehicles are allocated to serve throughout the dis-
ruption period. In particular, no bridging vehicle will depart
after the MRT service is restored (i.e. after 9 AM in this
case), but those vehicles that have already departed before
9 AM will continue to serve until they reach their designated
destination. Finally, our model was programmed in Python
and solved using CPLEX v12.9 running on a computer with
Intel(R) Xeon(R) Silver 4116 CPU@ 2.10GHz and 62.5GiB.
The solver found a solution within several minutes. The
reason why we chose the study area of only 4MRT stations in
the central business district of Singapore is because our main
focus in this paper is to validate our proposed mathematical
model. Namely, those 4 MRT stations see a large passenger
flow during the morning rush hours. Nevertheless, in future
work, a more efficient solving algorithm could be developed
for deriving the optimized bridging plans for disruptions
affecting a larger number of MRT stations.

V. OPTIMIZATION RESULTS
First, we performed a sensitivity analysis to investigate the
impact of the bridging vehicle fleet size by steadily increasing
the number of available bridging vehicles from 0 to 15 (refer
to Figures 3 and 4). We chose this range as 14 bridging vehi-
cles were sufficient to serve almost all affected passengers.
As mentioned before, the distribution of bus types follows the
pattern of different types of buses observed on Singapore’s
streets. Nevertheless, as this is an input to our optimization
model, a service operator can define the numbers of each
type of available bridging vehicles based on their respective
fleet. We also studied cases where the bridging vehicle fleet
only consists of single decker buses and articulated buses,
as those two types present buses with the smallest and largest
capacities of buses observed in Singapore.

In Figures 3 and 4 we compare performances of three
approaches: 1) Conventional approach, 2) approach with one
type of vehicles (Single decker bus and Articulated bus), and
3) approachwithMultiple types of vehicles. TheConventional
approach of designing bridging services does not consider the
complementary capacities of the existing buses when allocat-
ing the bridging vehicles and refers to the current approach
when responding to a disruption. The approach with one type
of vehicles we presented in our previouswork [21]. The afore-
mentioned model does take into account the complementary
capacity of the existing buses, but does not allow multiple
types of vehicles to be deployed, as the model proposed in
this paper allows. All three scenarios can be run using the
proposed optimization model. Namely, our model accepts a
boolean variable as an input parameter indicating whether
complementary capacity is used and as discussed previously
the total number and the types of bridging vehicles are also
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FIGURE 1. Region of interest for the case study. Affected MRT stations are station A, B, C, and D.

FIGURE 2. Distribution of different bus types.

input parameters of our model and can be set accordingly to
match the described scenarios.

Figure 3 compares the percentage of served passengers
across three different approaches. The x-axis depicts the
number of available bridging vehicles, while the y-axis starts
at 40% (instead of 0%) as already the existing buses could
serve slightly more than 40% of the disrupted passengers.
Each group of bars represents one configuration of bridging
vehicles where the total number of available vehicles is fixed.
For readability reasons, we limit the x-axis to 15 bridging
vehicles as after that, all approaches performed almost iden-
tically. Generally speaking, the percentage of served passen-
gers should increase as bridging vehicles are added, however,
as our optimization function has two objectives - to reduce

FIGURE 3. The percentage of served passengers with different
approaches.

the travel delay and to increase the number of served pas-
sengers, this is not necessarily the case. This leads to the fact
that between two consequential bridging configurations the
percentage of served passengers can increase if it results in a
shorter travel delay and vice versa.

Results from Figure 3 show that the Conventional
approach always performs worse or equal compared to the
other approaches. Moreover, we observe that the number of
served passengers does not reach 100% for any approach
due to the maximum waiting time limit w̄ that was set to
30 minutes and the minimum headway time set to 1 minute.
When a disruption occurs, a large number of passengers are
affected at once, leading to a peak in demand. Due to limited
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FIGURE 4. The average travel delay with different approaches.

road and bus stop capacities, we can only deploy a finite
number of bridging vehicles on themost affected routes. Con-
sequently, a limited capacity and waiting time result in some
of the affected passengers not being servedwithin 30minutes.
Those passengers are then marked as unserved.

Figure 4 shows the average travel delay of all affected
passengers across three different approaches where for the
unserved passengers we assume that their travel delay is equal
to the total duration of disruption, i.e. 120 minutes. For the
served passengers, their travel delay is equal to summation
of their waiting time for either the existing or the bridging
vehicle and possibly a longer travel time as buses tend to be
slower than the MRT. Similarly to Figure 3, x-axis depicts
the number of available bridging vehicles, while the y-axis
represents the average travel delay measured in minutes. As
expected, the average travel delay of all affected passengers
and the percentage of unserved passengers decrease almost
linearly as the bridging vehicle fleet size increases.

Figures 3 and 4 show that ignoring the complementary
capacity of the existing buses leads to allocating the bridging
buses to serve passengers who could have already been served
with the existing buses. This results in an oversupply on
some routes and undersupply on the others, leading to the
Conventional approach to perform worse or equal compared
to other approaches both in terms of the served passengers
and the average travel delay. Moreover, the performance of
the Multiple types of vehicles approach lies between the per-
formance of the bridging plans with only the smallest Single
decker buses and only the largest Articulated buses.
The results of our sensitivity analysis gave one optimal

bridging plan for every configuration of bridging vehicles.
Please note that the bridging plan for each configuration is
calculated separately and it is completely independent from
the bridging plans for other configurations of bridging vehi-
cles. In the interest of space, we will show only one example
of an optimal bridging plan for 12 bridging vehicles. A total
of 12 available bridging vehicles would include 8 single

decker buses, 3 double decker buses, and 1 articulated bus
(following the distribution shown in Figure 2). Table 1 shows
the optimal bridging plan for this case.

TABLE 1. An optimal bridging plan where N stands for the number of
allocated bridging vehicles on each route.

The results from Figure 3 showed that with this bridging
plan, more than 95% of the affected passengers could be
served, with about 40% passengers served by existing buses
and about 55% served by bridging vehicles. We can thus
conclude that the existing bus capacities are of a critical
importance for the design of bridging deployment plans.
Table 1 shows that all bridging vehicles are allocated to serve
station D, but start from different affected MRT stations. Two
facts could explain this observation: first, station D connects
threeMRT lines and second, all passengers whose destination
is beyond the disrupted area are diverted to station D to take
the other operating lines. Moreover, when the purple line is
disrupted, station D is only served by one existing bus line
(i.e. bus line 2 shown in Figure 1.)

VI. VALIDATION
Our optimization model is based on various assumptions
and simplifications, as discussed in Section III-C. The main
reason for those assumptions was to maintain a manageable
parameter space and a reasonably short solving time of the
model. Nevertheless, we wanted to check how those sim-
plifications affected the results our model produced. That is
why we decided to use simulation for the validation purposes.
Before developing a simulation framework, we had to choose
a type of simulation to use. The use of a macroscopic simula-
tion model would largely be based on similar simplifications
and might even incorporate the same equations as our opti-
mization model, making it an invalid choice for the purpose
of validation. We thus decided to use microscopic simulation
that does not make use of these simplifications and can be
considered as an entirely different and independent approach.

In the simulation, travel times of buses depend on the
traffic conditions on the road, dwell times at each bus stop are
calculated based on passenger demand on that stop and bus
stops are set to have a constant capacity of a maximum of two
buses simultaneously allowed to dwell at the same bus stop.
Those assumptions are different from the optimizationmodel,
as discussed in Section III-C. Please note that the microscopic
simulation itself does not yield a bridging deployment plan,
but is only used to evaluate the bridging plans that were gen-
erated by our optimization model. Using simulation-based
optimization would be infeasible as each combination of
input parameters requires running of the simulation. While
there are approaches to explore the parameter space more
efficiently [4], the run time of simulation-based optimization
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would be in stark contrast with the requirements of reactive
bridging service planning.

A. SIMULATION MODEL
As a simulator, we chose the City Mobility Simulator (City-
MoS) [26], which is an agent-based, discrete-event and
sub-microscopic traffic simulator that supports private vehi-
cles, buses, rail-based transportation, and individual passen-
gers. The simulation engine makes use of parallel computing
techniques which allows us tomaintain fast turn-around times
when evaluating our optimization bridging deployment plans.
We started with the implementation of our simulation by
modeling the relevant part of the Singapore MRT network
(see Figure 1), which we parameterized using real, publicly
available information (i.e. train sizes and inter-arrival times).

We extended CityMoS to allow for disruptions, stopping
passengers from boarding trains at affected MRT stations
and forcing passengers to alight the train when it reaches
such an MRT station. We extended the passenger routing
model to allow for mode changes so that passengers would
try to adapt to the changing conditions by finding a new route
using the bridging services. Additionally, we implemented a
bridging fleet manager which reads bridging plans output by
the optimization model and assigns buses accordingly.

Since we did not model the entire MRT network, the first
MRT stations inside the study area were modeled as so-called
entry points.We assumed that trains do not depart empty from
these stations, but that the number of boarding passengers
at the entry points represents the number of passengers who
would be on the train if the entire network was modeled. The
numbers were derived from the same historical smart card
data as we used for the optimization model. However, slight
differences are possible as discussed in Section VI-B.
We then modeled the relevant parts of the bus system

for the evaluation of the bridging plans. This includes the
pre-existing lines that passengers could take instead of
the MRT, as well as the new bridging routes. We reduced the
capacity of the existing lines according to the real demand
to account for the passengers who were on the bus when it
entered the study area. The capacity and frequency of the
bridging vehicles were set according to the bridging plans.
The dwelling time of the bus was based on the number of
boarding and alighting passengers, assuming parallel board-
ing and alighting [8]. Furthermore, we assigned one bus stop
to each MRT station as its associated stop.

Passengers affected by the disruption walk to the asso-
ciated bus stop. While generally, passengers in CityMoS
experience delays from walking to platforms or bus stops,
we did not model walking times from the MRT station to the
bus stop as for this to exhibit a high level of realism it would
require a detailed 3D model of the area to capture delays
inside the station, traffic light timings if the bus stop is on the
other side of the road, and most importantly, real-world data
to validate it. If this was available, it would be straightforward
to extend both the optimisation approach and the simulation
with a distribution of walking speeds to estimate travel time

FIGURE 5. Screenshot of the CityMoS environment showing bus and MRT
operation. Passenger information for each station, stop, train, and bus
can be displayed.

delays caused by walking from the disrupted MRT station to
the bus stop. To capture delays from walking to the bus stop,
the optimization model itself would not need to be extended,
as this travel delaywould only need to be added in themodel’s
evaluation function.

All passengers were modeled as individual agents with
their own origin and destination according to historical data.
They would board and alight trains and buses according
to their fastest route. The simulation allows us to track
trains through the network, where information about each
station includes waiting and transiting passengers as shown
in Figure 5. When passengers are waiting at a bus stop, they
board arriving buses in a greedy fashion, that is, they would
try to board the first bus that brings them to either their
destination or to the nextMRT station on their route that is not
affected by the disruption. In the simulation, the passengers
queue in a first-in first-out fashion. When the disruption
occurs at 7:00 AM, all the passengers on the affected trains
alight at the first disrupted MRT station and are transferred to
the associated bus stop. Other passengers who start their jour-
ney inside the disrupted zone walk directly to the associated
bus stop instead of the affected MRT station.

To validate the simulation model itself, we compared the
real bus and MRT travel times in Singapore with the ones
produced by our simulation. We calibrated the travel speeds
and traffic light timings so that the simulated travel times do
not deviate from the real world travel times by more than
10%. Since the passenger demand, as well as the bus and
MRT schedules were based on real data, there was no need
for calibration. For car-following, we used the intelligent
driver model and while for lane-change models we employed
MOBIL, we hardly witnessed any lane changes by buses
except for the ones necessary to follow their routes.

B. COMPARING OPTIMIZATION AND SIMULATION
MODELS
We collected detailed information about all passengers, i.e.
the buses they boarded and their travel times, as well as statis-
tics for all buses andMRT trains that traversed the study area.
For validation purposes, we compared our Multiple types of
vehicles optimization approach with the results obtained from
the simulation model, using two main metrics: the average
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FIGURE 6. The percentage of served passengers for optimization and
simulation.

travel delay (expressed in minutes) and the percentage of
served passengers for each configuration of bridging vehi-
cles. Similarly to comparing the three different approaches
presented in Figures 3 and 4, here we also performed a
sensitivity analysis to investigate the impact of the bridging
vehicle fleet size by steadily increasing the number of avail-
able bridging vehicles from 0 to 20.

Figure 6 compares the percentage of served passengers,
i.e. the number of disrupted passengers who can be served
within 30 minutes, for our optimization (i.e. denoted as Ana-
lytical results) and simulationmodels. The x-axis presents the
number of available bridging vehicles, while the y-axis starts
at 40% for the same reasons as previously described. The
difference is that this time the x-axis starts at 1 (instead at 0 as
in previous figures) as we are only interested in comparing
configurations of bridging vehicles where the number of
bridging vehicles is larger than 0, i.e. the bridging vehicles
that were actually deployed.

Results show that the analytical and the simulation results
are in agreement up until around 4 bridging vehicles and then
later on from 12 bridging vehicles onwards, where both mod-
els seem to have reached their saturation points. However, for
configurations of 5 to 11 bridging vehicles, the percentage
of served passengers predicted by the optimization model is
higher than for the simulation model. In terms of an average
delay (see Figure 7), we observe that the results of simulation
and optimization models follow the same patterns as for the
percentage of served passengers.

The main source of differences between the optimization
and simulation models comes from the different number of
non-empty rounds that the bridging vehicles would make
through the disrupted area in both cases. The bridging plan
(which one example is shown in Table 1) sets the total number
of buses and their headways for each of the bridging routes.
Once a bridging vehicle reaches the end of its route, it is
deployed to go back to the beginning of the route, making
one round. When comparing the total number of rounds the

FIGURE 7. The average travel delay for optimization and simulation.

FIGURE 8. The total number of bridging vehicle rounds.

bridging vehicles are making both in the simulation and in the
optimization, the numbers are virtually the same as shown
in Figure 8. As mentioned before, the reason behind this is
because the number and frequency of the bridging vehicles
in simulation are set according to the bridging plan proposed
by the optimization model.

Figure 9 shows the differences in the number of rounds that
are non-empty (i.e. that are carrying the affected passengers).
It can be seen that the number of non-empty rounds for
both models is roughly the same until 4 introduced bridging
vehicles. That is the reason why the percentage of served
passengers and the average travel delay shown in Figures 6
and 7 are the same both for simulation and optimization
models. With 12 or more bridging vehicles, the performances
of optimization and simulationmodels are again in agreement
as the number of non-empty rounds in the simulation is
large enough to serve all disrupted passengers who can be
theoretically served.

The reason for the difference in results is that the optimiza-
tion model is unable to capture effects such as bus bunching
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FIGURE 9. The number of bridging vehicle rounds carrying passengers.

where a bus is catching up with another bus of the same
line but cannot overtake it. This will result in two buses of
the same line arriving at the bus stop in short succession. In
the simulation this would result in all passengers boarding the
first bus while the second bus would remain empty. Addition-
ally, in the optimization model the passenger demand curve
is assumed to be constant over a time slot whereas in the
simulation, a large number of passengers arrive with each
MRT train, causing an uneven distribution of arrivals. As
discussed before, due to the maximum waiting time which is
set to 30 minutes and a high demand being created immedi-
ately after a disruption happens, not all of affected passengers
could be served even in theory.

What can be also seen from Figure 8 is that the number of
total rounds for the configuration with 16 bridging vehicles is
larger compared to the configurations with 15 and 17 bridging
vehicles. The reason behind this is that the bridging deploy-
ment plan for each configuration is calculated separately with
the purpose of reducing the average travel delay and the
percentage of unserved passengers and does not depend on
the bridging deployment plan of the previous or the next
configuration. More concretely, the increase in the number
of rounds for the configuration with 16 bridging vehicles
comes from the fact that instead of having 4 double decker
buses deployed on the same route, as it is the case with
15 and 17 bridging vehicles, the bridging deployment plan for
configuration with 16 bridging vehicles deploys one double
decker bus on a new line. As the total time needed tomake that
round is shorter, that bridging vehicle can make more rounds
(please refer to Table 2).
The remaining differences between the results for the opti-

mization and simulation models can be explained by the
differences in passenger demand between the two models.
As shown in Figure 10, for the simulation model passen-
ger demand slightly changes across the different configura-
tions of bridging vehicles. Unlike for the optimization model
where the passenger demand is an input, for the simulation

TABLE 2. Deployment plans with 15, 16 and 17 bridging vehicles (N
stands for the number of allocated bridging vehicles on each route).

FIGURE 10. The oscillations in a passenger demand for the simulation
model.

model, the demand is calculated within the simulation itself
and can vary among the different configurations. Box plots
in Figure 10 show that for different configurations of bridging
vehicles these variations can be up to 40 passengers for exam-
ple for the passengers traveling between stations A and D. In
the optimization model we are using the same demand across
all configurations, set to the mean value of all simulation
values.

The main take-away from the validation is that our opti-
mization model yields a valid bridging plan and can be used
as guidance to policy makers. A simulation-based approach
can be then used to offer more fine-grained insights into
the performance of a bridging plan and capture effects a
mathematical model could not. We thus advocate the use of
this combined approach for an effective disruption response.

VII. CONCLUSION AND DISCUSSION
In this paper, we proposed an optimization model to allocate
bridging services in response to MRT disruptions. The model
considers the case where a heterogeneous bus fleet is avail-
able to be used as bridging services. Moreover, the model
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allows to prioritize which groups of passengers / individual
passengers should be served first, allowing for a premium
service during disruption to be designed. The output of this
model includes the routes to select, their corresponding head-
ways and the type of vehicles to be used on each route.

Once when a disruption happens, the affected passengers
who are served can either be transferred by a bridging vehicle
to their final destination if that station was one the same line
andwas disrupted or to the first station on the line that was not
affected by a disruption. In that sense, our optimizationmodel
can be perceived as designed for disruptions on a line. The
reason behind that is that among seven severe MRT disrup-
tions that have happened in Singapore in the last three years,
six of them happen along the same MRT line, indicating that
this type is a more frequent one [2].

We demonstrated our model using a case study in the
central business district of Singapore. The results showed
that our approach could generate bridging deployment plans
that would effectively reduce the average travel delay of
affected passengers and the number of passengers who could
not board the bridging vehicles. We validated our approach
using a detailed microscopic simulation model and found
that in some cases the analytical results were too optimistic,
meaning that they underestimated the number of bridging
vehicles needed to serve all affected passengers. Rather than
diminishing the importance of the analytical approach to
solve a disruption problem, our results emphasize the need of
using a combined approach when designing bridging plans.
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