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Abstract
Microscopic agent-based traffic simulation is an important tool for the efficient and safe 
resolution of various traffic challenges accompanying the introduction of autonomous vehi-
cles on the roads. Both the variety of questions that can be asked and the quality of answers 
provided by simulations, however, depend on the underlying models. In mixed traffic, the 
two most critical models are the models describing the driving behaviour of humans and 
AVs, respectively. This paper presents AVDM (Autonomous Vehicle Driving Model), a 
hierarchical AV behaviour model that allows the holistic evaluation of autonomous and 
mixed traffic by unifying a wide spectrum of AV functionality, including long-term plan-
ning, path planning, complex platooning manoeuvres, and low-level longitudinal and 
lateral control. The model consists of hierarchically layered modules bidirectionally con-
nected by messages and commands. On top, a high-level planning module makes decisions 
whether to join/form platoons and how to follow the vehicle’s route. A platooning manoeu-
vres layer guides involved AVs through the manoeuvres chosen to be executed, assisted by 
the trajectory planning layer, which, after finding viable paths through complex traffic con-
ditions, sends simple commands to the low-level control layer to execute those paths. The 
model has been implemented in the BEHAVE mixed traffic simulation tool and achieved a 
92% success rate for platoon joining manoeuvres in mixed traffic conditions. As a proof of 
concept, we conducted a mixed traffic simulation study showing that enabling platooning 
on a highway scenario shifts the velocity-density curve upwards despite the additional lane 
changing and manoeuvring it induces.
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1  Introduction

Throughout the last three decades we have witnessed an exponential increase in efforts 
for developing fully automated vehicle technologies. Reliability and safety of autonomous 
vehicles (AVs) system are continuously improving with the final objective to integrate 
them into transportation systems. This integration, however, presents multiple challenges 
that need to be carefully analysed. One of the main challenges is often referred to as mixed 
traffic: since conventional vehicles will not be replaced by fully automated vehicles over-
night, humans and autonomous vehicles will have to share the roads for a period of time. 
The implications of this new traffic environment are not trivial to predict.

Real life deployments and tests have resulted in numerous accidents, unfortunately 
also including fatalities [62]. Governments and regulatory bodies have become increas-
ingly concerned over the safety of autonomous vehicles. A reliable confidence level for 
the safety properties of AVs can be reached only after testing specific critical scenarios 
and driving hundreds of millions, or even billions of kilometres [52]. The large amounts of 
time and resources required, combined with the risk exposure to have more accidents calls 
for alternatives. A feasible option would be to move some of these tests from the real-world 
to a simulation environment, decreasing drastically the required time, resources, and casu-
alty risks.

There are multiple simulation options for the evaluation of mixed traffic scenarios. 
Different abstraction levels and testing setups (also referred to as “X”-in-The-Loop) can 
be considered. Each level of abstraction refers to the degree of details each component 
of the AV system is modeled after. For example, simulation tools such as VIPS  [34], 
CARLA [21], Autoware.ai [54] and ROS [1, 72] include a physical engine as well as mod-
els for sensors and mechanical components.

However, analysis with a cyber-physical platform is complex and usually favored for 
the latest stage of the development process. Moreover, simulating sensors, actuators, and 
mechanical components, as well as the implementation of the complete software, requires 
a considerable amount of computation. It is therefore, highly challenging to increase the 
amount of vehicles in the simulation to this level of detail. Simulating traffic on a larger 
scale requires a higher level of abstraction.

Macroscopic models provide a system-wide picture of traffic based on a number of 
assumptions and simplifications. Their low computational requirements make them attrac-
tive for city-scale studies. In fact, studies have been carried out utilizing macroscopic simu-
lation to evaluate the implications of mixed traffic [9, 50]. However, behavioural aspects 
such as lane changing manoeuvres, and, in fact, all types of interactions between vehicles 
are not accounted for in these macroscopic models. Analysing the safety of AVs in traffic is 
therefore impossible due to the lack of vehicle interactions being simulated. This issue can 
be tackled by using microscopic agent-based simulation instead [41].

In microscopic simulation, a vehicle is represented by an agent governed by behaviour 
models that interact with the environment. Multiple microscopic traffic simulators are avail-
able such as VISSIM [25], SUMO [63], or AIMSUN [5]. In this paper, we considered the 
mixed traffic analysis framework called Behaviour Evaluation of Human and Autonomous 
VEhicles (BEHAVE) as it provides suitable conditions for mixed traffic evaluation [49].

Another category of traffic simulation models, known as mesoscopic models, 
is recently gaining more popularity. These models describe the traffic at a high level 
of detail, however, the behaviour of the vehicles and their interactions are described 
at a lower level of detail. This aims to maintain the individual interactions of the 



Autonomous Agents and Multi-Agent Systems (2021) 35:16	

1 3

Page 3 of 30  16

microscopic models while preserving the computational efficiency of the macroscopic 
ones. Mesoscopic models can be found in existing multi-agent traffic simulators such as 
MATsim [42] or POLARIS [93].

An alternative platform known as GAMA  [94] has also been considered for traf-
fic simulation studies  [4, 23]. It is based on an agent-oriented programming language 
(GAML) for modeling agents and environments.

In order to have both human-driven and AVs in a simulation, their respective behav-
iour models need to be designed. The current state-of-the-art in human driven car-fol-
lowing[30, 98] and lane-changing models[56] used in agent-based simulations does not 
sufficiently capture human errors caused by poor perception, distraction, and aggres-
sion. It even seems that the current state of the art for vehicle behaviour is more suited 
to model AVs to some extent. Therefore, new models for human behaviour must be 
developed. Treiber has extended the Intelligent Driving Model (IDM)  [98] by includ-
ing human reaction time and space-ahead anticipation in the Human Driver Model 
(HDM) [99] while Hamdar included human perception error in his model [35]. The lack 
of human factor research in the area of driver behavior has led Michon to propose a 
more cognitive approach [74]

Regarding AVs, the research community has already devoted plenty of resources to 
development various microscopic models like, which can be readily implemented in some 
simulation software such as PLEXE for SUMO [84], AIMSUN [2]. Commercial simula-
tors such as PTV-VISSIM [33] also include models for AVs.

These microscopic models are, however, not sufficient to capture the entire spectrum 
of AV mobility since most of them do not include high-level planning and control needed 
for platoon formation [70, 76]. Plenty of resources have been consecrated to develop pla-
toon models featuring join and split manoeuvres [13, 14, 29]. However, less attention was 
directed to develop platoon models for microscopic simulation. These platoon models do 
not perform any manoeuvres such as join or split [73] or they use simple methods where 
merge manoeuvres are performed when all participants are on the same lane [3]. In [20], a 
model has been proposed to describe how the flow rate and speed reduction (when vehicles 
are joining or leaving the platoon) affect the length of the platoon.

We believe it is significant that platoon formation is modeled since it has be shown 
platooning brings many benefits to traffic [55] such as (1) increasing road capacity and 
decreasing traffic congestion [40, 101], (2) reducing energy consumption [100], and (3) 
minimizing the chances of collision considering that the majority of road accidents are due 
to human errors [16].

It seems more likely that platooning will operate mostly on highways during the early 
stage of autonomous vehicle deployment. States like California or Florida have already 
authorized limited truck platooning testing  [87]. Additional challenges come in when 
vehicles are platooning in more sophisticated environments such as intersections or traf-
fic lights. For example, there is a risk that not all the platoon vehicles are able to cross the 
intersection when traffic light turn red too early. Recent research has investigated intersec-
tion management systems of autonomous vehicle [6, 103]. These systems improve travel 
delay at intersection while increasing throughput and reducing fuel consumption [60].

To enable the microscopic simulation of autonomous vehicles, we present a novel 
microscopic Autonomous Vehicle Driving Model (AVDM) based on a hierarchical com-
mand-and-control system. It enables the simulation and testing of different AVs functional-
ity such as high-level decisions, cooperative behaviour (platooning), motion planning, and 
low-level control in a highway environment.

The main contributions of this paper are:
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•	 AVDM, a hierarchical AV driving model for enabling platooning and long-term plan-
ning on a microscopic agent-based level.

•	 A microscopic agent-based study on effects of platooning in mixed traffic conditions on 
the velocity-density diagram.

The remainder of the paper is organized as follows: Sect. 2 presents literature related to 
simulating AVs and driving behaviour. Sect.  3 describes in detail the hierarchical com-
mand-and-control system used for our AV driving model. Finally, in Sect.  4, different 
experiments are performed to evaluate our autonomous vehicle driving model.

Table 1 provides the list of all parameters and variable used in this paper as well as their 
values if applicable. The values provided in this table are identical for every AVs.

2 � Related work

Modeling more advanced human behavior for microscopic traffic simulation is, without a 
doubt, necessary. However, this is beyond the scope of the paper. Modeling autonomous 
vehicle driving behavior for microscopic simulation is the main focus.

Even with the rising interested in fully automated vehicles, the current literature on 
modeling autonomous vehicle driving behaviour for microscopic simulation is still some-
what limited. Existing studies in microscopic simulation mostly focus on modeling driving 
assistance systems such as Adapative Cruise Control (ACC)  [70, 76]. As stated before, 
simulating fully automated vehicles requires to include other aspect such as perception and 

Table 1   List of all parameters 
and variable with their value if 
applicable

Symbol Parameter Value

�i Vehicle i
xi Position of the vehicle �i
vi Velocity of the vehicle �i
ai Acceleration of the vehicle �i
U(�i) Utility function for the vehicle �i
ai
j

Attribute j for the vehicle i
�j Normalization value for attribute j
r Maximum visible range 100 m
kp CC PI proportional gain 1
ki CC PI int gain 0.5
C
1

Weighting factor 0.5
�n Controller bandwidth 0.2 Hz
� Damping factor 1
dd Desired gap for platoons 5 m
T
0

Time headway 2 s
� ACC parameter 0.1
li Length of the vehicle i
vd Desired velocity
v� Maximum allowed velocity difference 5 m.s

−1
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high-level decision planning. Therefore, we believe that deriving a simulation model from 
the real architecture of an AV seems like a logical and viable option.

Such a general autonomous vehicle system representation is presented in a survey by 
Pendleton et al.[77] and shown in Fig. 1. This architecture is an abstraction from earlier 
developments [32] of autonomous vehicle systems [27, 111]. The system can be split into 
four modules represented as layers: Perception, Planning, Control, and Communication.

2.1 � Perception

The perception layer refers to the ability of an AV to collect information and extract rel-
evant knowledge from its surrounding using data from sensors and V2X messages. It can 
be split into two sub-layers defined as: Environmental perception and Localization.

The Localization or also referred as Simultaneous Localization and Mapping (SLAM) 
aims to build and update an unknown map while simultaneously tracking the AV’s position 
and orientation within it. Multiple studies address this problem involving LIDARs  [109, 
110], cameras [15], cameras combined GPS and IMU [22, 102], or a combination of these 
sensors [66, 106].

An efficient Environmental perception requires to accurately detect and classify the dif-
ferent surrounding objects including : (1) moving and static obstacles (vehicle, pedestrians, 
bicycles, median...) position and velocity, (2) road geometry, (3) road signs information 
(traffic lights...). This can be achieved using Multi-Object Tracking (MOT) and segmenta-
tion methods that usually involve LIDARs [12, 86], cameras [53], radars [47] or a fusion 
between LIDARs and cameras [10, 83].

Implementing real sensor models in simulation (also called Hardware-In-the-Loop) 
has already been considered in several research works [21, 28, 34, 82]. However, using 
sensor models for larger-scale microscopic traffic simulation when the number of sim-
ulated vehicles increases may exceed the computation power requirement. Therefore, 
a perception model with a higher level of abstraction seems more suitable perception 
model for traffic simulation. In [105], Weyns introduced a generic perception model for 
situated multi-agent system where the agent’s perception rely on a set of sensors, pre-
cepts (machine-readable real-object representation) and filters specific to the situation. 

Fig. 1   A typical autonomous vehicle system overview, highlighting core competencies (Based on: [77, 82])
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This model inspired Ketenci to design a limited perception model for drivers in a traffic 
simulation  [59]. Tabelpour and Mahmassani have proposed an alternative approach in 
[95] where sensor range and accuracy limitations were considered to create input data 
for the car-following model.

Considering the high number of agents, a more computationally efficient method is 
required to model the perception layer that can be included in microscopic simulation.

In this paper, we propose an alternative approach described in Sect. 3.

2.2 � Planning

AVs are required to be able to handle any type of traffic condition by making safe and 
adequate driving decisions. This decision-making process is the core of the planning 
layer. Using the environment model provided by the perception layer, the planning 
layer aims to achieve specific goals such as (1) providing an efficient path plan that 
realises the mission incrementally, and (2) ensuring a safe journey that complies with 
all road regulations. The planning layer is presented as a compound of three sub-layers 
defined as: Mission planning, Behavioural planning, and Motion planning.

The mission planner considers high-level and long-term objectives, such as routing. 
It aims to provide the most efficient itinerary to reach a destination considering all pick-
up/drop-off tasks. It is usually performed through graph search over a directed graph 
representing the road network, realised by using well-known algorithms such as Dijk-
stra [18] or A* [36]. For larger road networks, there exist a number of alternative meth-
ods with a focus on efficiency, as detailed in a survey paper on road planning [7].

The behaviour planner focuses on short-term objectives to ensure that a vehicle fol-
lows road regulations and safely interacts with other vehicles while progressing along 
the mission planner’s objectives. This allows AVs to make adequate driving decisions 
in city road traffic situations. Finite State Machine (FSMs) are usually utilised to dictate 
actions in response to a specific driving context [27].

In terms of platooning, research projects such as PATH [88] or SARTRE [81] have 
discussed a variety of platoon manoeuvres. FSMs are also considered for the defini-
tion and implementation of platooning manoeuvre [81]. However, these projects do not 
define manoeuvres and platoon entities (platoon leader, follower) formally. To provide a 
standardization of platoon manoeuvring, Maiti et al. have proposed a conceptual frame-
work for platooning [71].

The motion planner layer’s goal is to realise the behaviour planner’s decision. 
Motion planning refers to the process of generating a suitable path and deciding a set of 
actions to reach a specific target as represented in Fig. 2. Several approaches are based 
on using discrete representation of the environment such as Voronoi-diagrams [19] or 
a cell decomposition [26, 107]. Other approaches work with sampling-based methods 
such as Probabilistic RoadMaps [67] or Rapidly-exploring Random Trees [64]. More 
recent research apply the Artificial Potential Field (APF) method to the motion plan-
ning [43, 45]

The functionality of conventional microscopic driving models focuses on keeping a 
safe distance to other vehicles, maintaining a desired velocity, and making lane chang-
ing decisions. However, following a desired trajectory through traffic falls outside of 
their scope. Therefore, in order for AVs to execute commands of the motion planning 
layer, current driving models need to be extended.
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2.3 � Control

The control layer guides the vehicle to execute the planned actions generated by the plan-
ning layer on a physical level. Control systems that autonomously drive the vehicle are 
usually divided into longitudinal and lateral control. In simulation, the longitudinal axis 
movement is described using car-following models which determine vehicle acceleration 
or deceleration depending on the velocity and position of vehicles in front. If there is no 
vehicle directly in front, for instance after changing lanes, longitudinal control allows the 
car to converge to a desired free-flow velocity. Numerous car-following model can be found 
in literature such as the Intelligent Driver Model [98] and its enhancement [58], Gipp’s 
model [30] or the Optimal Velocity Model [37]. Other approaches can also be found based 
on Proportional Integral Derivative (PID) controllers [38, 68, 80] or Model Predictive Con-
trol (MPC)[61, 69].

Most of these car-following models can be used as reference for Adaptive Cruise Con-
trol (ACC) system’s behavior since they are designed to maintain a safe gap to the vehicle 
ahead.

It has been shown that under specific parameter settings, ACC may lead to string insta-
bility [85]. Any variations caused by decelerating or accelerating vehicles will then be 
amplified, generating stop and go waves, or even accidents. For this reason, the research 
community started to work on an enhanced version named Cooperative Adaptive Cruise 
Control (CACC), which exploits wireless communication among vehicles. The idea is to 
share information such as acceleration, velocity, position, etc, to improve the responsive-
ness of the system. CACC also provides interesting and valuable features such as string 
stability for platooning [84]. Moreover, CACC allows a lower headway than ACC systems, 
effectively increasing road capacity. The literature reports several CACCs which differ in 
design, characteristics, and requirements [3, 45, 75, 79].

More recent research for collaborative driving consider communication delay  [78, 97] 
in their approach, with the aim of keeping string stability despite the presence of unavoid-
able communication issues.

While the implications of integrating CACC in traffic systems have been widely studied, 
to the best of our knowledge, the impact of specific platooning (join/split) manoeuvres has 
not been studied in detail yet [40].

Lateral control determines if the vehicle should perform a lane change and is repre-
sented in simulation by lane-changing models. These models will consider informa-
tion about adjacent vehicles and whether performing a lane change is beneficial for the 

Fig. 2   AVs receive information about a platoon and plan trajectories that includes multiple lane changes in 
order to safely join it
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changing vehicle. Unlike car-following models, only few lane-changing models have been 
proposed in the literature. The current state of the art for lane-changing model is MOBIL 
introduced in [57]. It takes as input the current velocity and acceleration of the vehicle and 
estimates the hypothetical velocities and accelerations the vehicle would have if it moved 
to the adjacent lanes, considering the potential preceding and following vehicles. Making 
this decision depends on the benefit for the vehicle and the weighted change of acceleration 
for the current follower and the new follower. This weight is called the politeness factor 
and represents the importance of not impacting other participants too much by changing 
lanes. MOBIL can be coupled with numerous car-following models such as IDM. Tabel-
pour and Mahmassani proposed another approach in [96] based on game theory that also 
exploits V2V communication.

In many simulations, lateral movement is performed instantaneously, which means the 
vehicle will not move continuously on the lateral axis but will be ’teleported’ to the tar-
get lane. Implementing and testing any cooperative manoeuvres is, therefore, constrained. 
Moreover, as stated in [40], impacts of lateral controllers on traffic throughput are usually 
not considered.

2.4 � Communication

The communication layer, or Vehicle-to-X layer, allows AVs to exchange information. The 
information being exchanged is utilised by the perception layer (for additional informa-
tion) and the control layer (for instructions). V2X communication can be realized through 
different wireless technologies. V2X communication is often realised using IEEE 802.11p 
WLAN [46]. Other technologies include C-V2X, that is, communication based on cellular 
networks, such as 4G [11] or 5G [8]. The evaluation of these communication systems is 
often carried out by means of simulation. Multiple network simulators are available, such 
NS-2 [48], NS-3 [39] and Veins [91] (see [90] for a survey of their capabilities). These net-
work simulators can be coupled with mobility simulators for an increased degree of real-
ism [51, 92, 104].

The system architecture as presented in Fig. 1 has been designed to perform the con-
trol of a single vehicle. In addition to a communication system between vehicles, a more 
advanced control structure is required to enable cooperative driving behaviour. As stated 
before, current state-of-the-art driving models (longitudinal and lateral control) are not suf-
ficient for higher-level types of behaviour. Most related work focuses on one a specific 
layer (e.g., control or communication) without considering the other layers. We believe that 
in order to holistically simulate and study AVs in mixed traffic, a model is required that 
unifies all layers and their functionality.

3 � Autonomous vehicle driving model

This paper presents a step towards unifying all layers of an autonomous vehicle system by 
introducing a framework based on a hierarchical command-and-control system as shown 
in Fig.  3. It combines the Planning, Control, and Communication layers into a single 
behaviour model, effectively enabling the simulation and analysis of complex platooning 
manoeuvres, long-term planning of microscopic AV agents, and efficient AV integration 
solutions for city-scale deployment. Similar to Fig. 1, our proposed system is composed of 
four different layers ranging from High-Level decisions to Low-Level control.
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As mentioned previously, platoons are more inclined to be deployed in highways before 
downtown. Focusing on highways as a first step seems a relevant option. It is also essen-
tial to indicate that we did not consider on-and-off ramps for this paper. The High-Level 
decisions,Platooning Manoeuvres and Trajectory planner are therefore built on this envi-
ronment context. Every simulated AV in this paper is assumed to have the same vehicle 
characteristics (braking and acceleration) and share the same communication system and 
protocols.

The Perception layer as presented in Sect.  2.1 is not modeled in this paper. Conse-
quently, no sensor models have been considered and implemented. However, the AVs still 
need to be aware of their surroundings to execute platoon manoeuvers safely. Therefore, we 
proposed an alternative approach to build the environment model required by our system. 
This alternative is assumed to be error-free as a first step. Modeling a perception system for 
microscopic simulation will be the focus of future work.

The topmost layer is the High-Level decision layer which can be interpreted as the 
behavioural layer from Fig. 1. It provides a decisions-making process regarding the choice 
of manoeuvres and actions to execute depending on the known environment. The High-
Level decision layer is also responsible for reading and sending messages, evaluating 
requests, etc.

The Platooning Manoeuvres layer, a framework based on hierarchical state machines, 
guides vehicles to perform cooperative manoeuvres [17]. This framework ensures manoeu-
vres are executed correctly and, in cases where the manoeuvre has to be aborted, takes 
care of the safe termination of the procedure. The layer is connected upwards to the High-
Level decision layer to allow the upper layer to also consider any incoming platooning mes-
sages layers and react accordingly. The downwards connection is used to provide different 
instructions in the form of action primitives to the Trajectory planner layer or directly to 
the Low level control layer.

The Trajectory planner generates trajectories, or paths, through current traffic to a new 
target position if required. (The Trajectory planner layer can be interpreted as the motion 
planning layer from Fig. 1.) The path will then be translated to a set of commands (e.g. 
acceleration, braking, lane change right/left) used as input to the Low level control layer, 
which is in charge of physically applying these commands.

Fig. 3   Hierarchical command-and-control structure for autonomous vehicles
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Before describing all the layers that compose AVDM, we will first specify the vehicle 
dynamics model used in the microscopic traffic simulator BEHAVE [49].

3.1 � Vehicle dynamics

Let xi, vi, ai be the longitudinal position, speed, and acceleration of the ith vehicle respec-
tively, where ai is also the control input and 𝜏 > 0 is the sampling time. The control ai 
is assumed to be constant on each time interval. The discrete-time longitudinal vehicle 
dynamics is described by the following double-integrator model:

All the vehicle position and velocity are updated at each time step. This vehicle dynam-
ics model is widely used for system-level car-following control design [31].

Since the model relies on messages being transferred between the vehicles, we will first 
introduce the nomenclature used in V2V communication.

3.2 � Vehicle‑to‑Vehicle (V2V) communication

The syntax for V2V messages used by the AV communication system is inspired from 
Amoozadeh et al. [3]. Five different types of messages are defined (see Table 2): Requests 
(REQ), orders (ORD), done-confirmation (DN), abort (ABT), and acceptance/rejection 
(ACK/NACK). The types REQ, ORD, and DN are intended for specific manoeuvres. For 
example, a free AV seeking to join a platoon will send a REQ_JOIN message to the pla-
toon leader.

In this paper we consider no packet loss or other communication restrictions, but assume 
a perfect communication channel under a unit-disc propagation model. Imperfections can 
also be modeled based on random process and added to our communication system.

3.3 � Layer 1: High‑level decisions

This layer allows vehicles to make decisions about future actions, for example, make the 
decision to form or join a platoon, initiate platoon lane-changes, etc. A vehicle can be 
either choosing a platoon to join/form (described in 3.3.1) and sending request messages 
or receiving a request message from another vehicle (described in 3.3.2). For this paper, 
it is assumed that request messages can only be sent by free vehicles, while vehicles that 
receive request messages can be either free (platoon formation) or platoon leaders (join 
manoeuvres).

3.3.1 � Evaluating platoons

A free vehicle 𝜈̃ , willing to create or join a platoon evaluates its nearest neighbors to find 
the most suitable option. The utility of joining a considered vehicle or platoon �i is a com-
bination of several attributes ai

j
 of the vehicle i: (1) difference in velocity, (2) path to vehi-

cle, and (3) traffic density around the vehicle.

(1)

{

xi(k + 1) = xi(k) + �vi(k) +
�2

2
ai(k)

vi(k + 1) = vi(k) + �ai(k)
i = 1, ..., n
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The first attribute is, as indicated by its name, the absolute value of the difference in 
velocity between the considered vehicle �i and the free vehicle 𝜈̃ . The path to vehicle refers 
to the difficulty of the autonomous vehicle 𝜈̃ to reach the target �i . It is computed as the 
number of actions required to reach a target position (see Sect. 3.5) coupled with a malus 
system. Traffic density refers to the number of vehicles close to the considered vehicle �i.

An interesting attribute to look at is the lifetime of a platoon, that is the expected time a 
vehicle spends inside the platoon (e.g. affected by the route choice of the vehicle). In this 
paper, traffic is simulated on an infinite highway without on/off ramps, therefore, the life-
time of a platoon is not a discriminating attribute.

The final utility of joining vehicle i is represented by U(�i) which is the mean of the 
three attributes. This can be extended to an optimisation problem of finding the optimal 
weight for each attribute minimising the failure rate of the free vehicle reaching the consid-
ered vehicle �i in time.

In order to be able to directly compare the attributes, they need to be normalised first. 
We achieve this by dividing the original attribute value by the maximum absolute value 
observed for this attribute �a in a set of experiments. After the normalisation we know 
that −1 < a∕𝜂a < 1 . Furthermore, in order to position this value between 0 and 1 we apply 
a Gaussian envelope to it via the function f and further normalise the value as shown in 
Eq. 3 such that 0 < f (a) < 1 . A high value means the vehicle �i is a suitable candidate for 
platooning according to the attribute ai

j
 (e.g. �i is just in front or drive at the same speed):

Figure 4 shows an example of how an AV evaluates its surrounding based on all the 
attributes described earlier. In this example, the blue vehicle is surrounded by three 

(2)U(�i) =

∑

j f (a
i
j
)

3

(3)f (a) =

exp

(

−
1

2

(

a

�

)2
)

− exp
(

−
1

2

)

1 − exp
(

−
1

2

)

Fig. 4   Illustration of how an AV in a free state (neither platooning nor performing manoeuvres) makes the 
most suitable choice for creating a platoon. The free vehicle 𝜈̃ (orange) is located at the center of the Figure. 
There are two other free autonomous vehicles (represented in blue and red). The remaining vehicles are 
human-driven. The orange AV compares the blue and red AV based on the three attributes (difference of 
velocity, path to vehicle and density). The blue AV seems closer and would therefore, be faster to reach. 
However, it is surrounded by several human drivers. Meanwhile the red AV is further away but less sur-
rounded. The utility function U(�

i
) aims to determine the most suitable choice between the red and the blue 

AV
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vehicles. We have observed through experimentation that the maximum absolute value �a 
for the density attribute is equal to 8. The Eq. 3 returns a value of:

Applying this approach to the red vehicle will return 1 since there is no surrounding 
vehicles.

The vehicle 𝜈̃ will choose the option with the highest utility, given it is larger than a pre-
defined threshold value Uth , otherwise no action will be taken. The influence of the thresh-
old value is analyzed in Sect. 4.1. If a viable option is recognized, a REQ_JOIN message 
requesting to join/create a platoon is sent by vehicle 𝜈̃.

3.3.2 � Evaluating a request message

Free vehicles and platoon leaders will accept any REQ_JOIN message. If a vehicle is 
already performing a manoeuvre or the platoon is at its maximum capacity, REQ_JOIN 
messages will be rejected. If the receiving vehicle is a free agent it will initiate a JOIN_
TAIL; if it is a platoon leader, it has to decide what type of manoeuvre will be executed 
to join the platoon. REQ_JOIN messages are not sent to platoon follower vehicles. This 
decision-making process is described in Fig. 5. Accepting a request activates the Platoon-
ing Manoeuvres layer in charge of executing the chosen manoeuvre.

3.4 � Layer 2: Platooning manoeuvres

The purpose of this layer is to safely perform the manoeuvre chosen by the High-level 
Decisions layer. To do so, this layer translates the manoeuvre into a set of comprehensible 
commands that will be executed by the Low-Level control layer. Any success or failure sce-
nario is then reported to the High-level Decisions. Ideally, all autonomous vehicles share a 
catalogue of common manoeuvre descriptions to ensure interoperability of AVs from dif-
ferent providers.

Each manoeuvre consist of several sequential or parallel steps that need to be fol-
lowed to arrive at a final, stable state. The most common method of describing 
manoeuvres is the use of Finite State Machines (FSM). For example, projects such as 

f (ablue
density

) =

exp

(

−
1

2

(

3

8

)2
)

− exp
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−
1

2

)

1 − exp
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−
1

2

) = 0.8274389

Fig. 5   Decision making process when an AV that is not a follower in a platoon receives a REQ_JOIN
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SARTRE [81] or SCANIA [65] use their own manoeuvre description based on FSMs. 
Without loss of generality, we have chosen to use the Standardisation, Encapsulation, 
Abstraction, and Decoupling (SEAD) framework as described in [17] to represent this 
layer. For the sake of comprehensiveness of the later sections in this article, we will give 
a brief introduction to this framework.

In SEAD, every manoeuvre is decomposed into sub-manoeuvres; sub- manoeuvres 
can be then represented as a sequence of logically ordered primitives. These primitives 
can be either be physical or logical. We refer to these actions as primitives as they rep-
resent the lowest level in the hierarchy and should be designed in a way so that they 
cannot be expressed by a combination of other primitives. Physical primitives provide 
directions that will affect the vehicle’s position and velocity by communicating down to 
the Low-Level control layer. Logical primitives manage transition from one logical state 
(e.g. platoon leader, platoon follower) into another, or cause the vehicle to wait for an 
event to occur.

Since SEAD is based on FSM, every vehicle has to be in a certain state at any time. 
If the vehicle is currently not executing a platooning manoeuvre, it is in an Idle state. 
An Idle state does not refer to the physical state (location, velocity, acceleration, etc.), 
but a logical state that constitutes the driving mode it currently operates on (e.g. free 
vehicle, platoon leader). This logical state is used to determine the behaviour of a vehi-
cle during a manoeuvre and its reaction to messages.

Sub-manoeuvres define the communication and actions between two or more vehicles 
while describing and encapsulating the behaviour for each participant. Sub-manoeuvres 
can perform transitions on the logical state of the vehicle. For instance, a free vehi-
cle that has successfully joined a platoon will change its Idle state to platoon follower. 
These sub-manoeuvres are ultimately used in two kinds of overarching structures: The 
Reactive State Machine (RSM) and the Proactive Manoeuvring Engine (PME).

The RSM is in operation for any vehicle that participates in a manoeuvre in a reac-
tive way, meaning that it will only react to incoming directives and report results. Thus, 
the RSM is a universal description of the reactive platooning-behaviour of vehicles and 
is thus identical for all vehicles. The PME, however, operates on the proactive partici-
pant. It contains the logic that defines the manoeuvres including any abort scenarios and 
provides directives to the reactive participants.

An example of this envisioned description language is given in Fig.  6 where we 
model the JOIN_TAIL manoeuvre. It contains three sub-manoeuvres, MOVETOPOS, 
ATTACH, and GAPCLOSE. The manoeuvre includes two vehicles, the platoon leader vPL 
and the free vehicle vFV willing to join the platoon.

First, the platoon leader (PL) sends the target position to the free vehicle. This trig-
gers the MOVETOPOS sub-manoeuvre in which the joining vehicle tries to reach the 
given position by following a path among the traffic while PL waits for feedback. 

Fig. 6   Description of the JOIN_TAIL manoeuvre according to the PME logic
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MOVETOPOS can be aborted for two reasons: the free vehicle failed to reach the posi-
tion (1) before a timeout or (2) because the target position is too far away.

In case MOVETOPOS succeeds, the next step is ATTACH where the joining vehicle 
changes its Idle state from Free Vehicle to Temporal Platoon Leader (TPL), forming a tem-
porary platoon only containing itself.. Note, that this sub-manoeuvre is purely logical and 
does not trigger any physical action.

The last sub-manoeuvre of JOIN_TAIL is shown in detail in Fig. 7. The top part is 
the proactive manoeuvring engine (PME) of the platoon leader PL; the bottom part shows 
the reactive state machine (RSM) of the temporary platoon leader TPL. The smaller grey 
boxes represent the physical and logical primitives. PL sends a ORD_GAPCLOS message 
to TPL, ordering it to reduce its space ahead to a desired intra-platoon gap. After success-
fully reducing the gap, TPL changes its Idle state to Platoon Follower (PF). If closing the 
gap is taking too long, a timeout causes the platoon leader to abort the manoeuvre and 
sends an ABT message to the TPL.

In this relatively simple manoeuvre, all participants will already be in a stable state 
should any of the sub-manoeuvres be aborted. Manoeuvres with higher levels of complex-
ity, however, may require an additional construction of sub-manoeuvres to handle each 
specific abort scenario. Defining a complete catalogue of platooning manoeuvres will be 
the focus of future work.

3.5 � Layer 3: Trajectory planner

Some manoeuvres require that participating AVs move to specific positions (e.g. to the 
tail of a platoon) as fast as safely possible. The Trajectory planner layer aims to provide 
guidance on how to reach this specific position taking into consideration the current traffic 
conditions. This guidance is represented by a set of actions used as input to the Low-level 
control layer. The Trajectory planner layer can be thought of as the motion planning layer 
from Fig. 1. However, in order to plan its path, each vehicle needs to be constantly aware of 

Fig. 7   Example of sub-manoeuvre description and encapsulation for GAPCLOSE 
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its surrounding environment (positions and velocities of nearby vehicles) within a certain 
range, referred to as the neighbourhood range.

The neighbourhood range of every vehicle is extracted from an environment model 
that we have built using a modified version of the sweep and prune approach. The sweep 
and prune approach is well-known for its low computational cost for collision detection in 
physical simulations [24].

Instead of focusing on collisions, the sweep and prune is used here to locate the nearest 
neighbors within a certain range. Only one axis is sorted in this case since we are working 
in a infinite highway. The lateral position is therefore no longer a discriminating variable. 
Working on only one axis reduces the computation time compared to the general sweep 
and prune. However, it is not applicable to more complex road networks. Continuous k 
nearest neighbors algorithms can be considered for larger road network [44].

The result is then used to create a grid network as represented in Fig. 8. Each cell is 
vehicle length long and one lane wide. Each cell also has a value which indicates what 
type of vehicle is contained in the cell (H for human-driven vehicle and A for autonomous 
vehicle). If two vehicles are located in one cell, the type of vehicle occupying more space 
within the cell will be considered.

At this point it must be noted that the environment model we are creating would typi-
cally first pass through a perception layer as described in Fig.  1. However, we consider 
this to be beyond the scope of this work, since any perception layer from the literature can 
simply be integrated into our proposed system as a function on the real input to the models 
provided by the simulation.

The grid shown in Fig.  8 is used as input to the path-finding A* algorithm [36]. 
Using information given by the platoon leader, A* provides the shortest path on the grid 

Fig. 8   Results of spatial partitioning for the green agent
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from the agent to his target. An example of a generated path is shown in Fig. 9. The path 
is then translated into a sequence of actions that can be: lane change left, lane change 
left, move forward which are sent to the Low-level control layer.

This sequence of actions is also used by the function f(a) from Eq. 3 for the path to 
vehicle attribute. In the same example shown in Figs. 8 and 9, the result value is equal 
to 3.

Merging with a platoon is more challenging when several lane changes are involved. 
Moreover, the traffic flow might also be affected if the AV must slow down when its tar-
geted vehicle is behind. Therefore, we have included a malus system. Every lane change 
will add a value of 2 to the attribute while decelerating will add a value of 1. The final 
value for the path to vehicle attribute in the example of Fig. 8b is equal to 7.

3.6 � Layer 4: Low‑level control

The Low-level control layer aims to apply any higher-level decisions on the physical 
level (acceleration or braking) required by a manoeuvre. This Section presents the mod-
ifications made to the current state of the art of longitudinal and lateral controllers to 
achieve this objective.

The low-level control layer is at the bottom of the hierarchy of the presented AV 
model. Its outputs are longitudinal and lateral accelerations that can be sent to any 
microscopic agent-based simulator engine to be applied during the next time step of 
execution.

Fig. 9   Results of path-finding for the VIP agent
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3.6.1 � Longitudinal controller

Usually referred to as car-following models, longitudinal controllers ensure that the 
vehicle keeps a safe distance to the preceding vehicle. As stated previously, conven-
tional car-following models are not designed to apply the commands given by the Tra-
jectory Planner. Therefore, we introduce a new longitudinal control logic to overcome 
this limitation. Our approach is a combination of three existing methods composed by 
CC, ACC, and CACC, all as defined in [80] where some modifications have been added 
to enable path following for AVs.

The control law used for the CC is defined as:

where vi and vd are the current and the desired velocity, respectively. The parameters kp and 
ki can be changed to tune the behaviour of this controller.

The control law used for the ACC is defined as:

where vi−1 is the velocity of the vehicle in front, xi and xi−1 are the positions of the consid-
ered vehicle and its preceding vehicle.

The control law used for the CACC is defined:

with,

where a0 and v0 are the acceleration and velocity of the platoon leader; dd is the desired 
intra-platoon gap.

The value given to the desired gap dd is not fixed and may change during the simula-
tion (e.g. during a GAPCLOSE sub-manoeuvre).

As illustrated in Fig. 10, the applied controller changes accordingly to the AV’s cur-
rent state.

To overcome the issue that these controllers are not capable of following a path or 
completing a task required by a manoeuvre, we extend them accordingly. “Forcing” the 
AVs to accelerate or decelerate is possible by controlling the desired velocity.

This new desired velocity considers the distance to the target vehicle. If the target 
vehicle is behind (or in front), the desired velocity will be slower (or faster) than the 
target vehicle’s current velocity vt . The desired velocity is defined as follows:

where v� represents the maximum allowed velocity difference to ensure smooth traffic and 
safety. It is defined as :

(4)ai = −kp(vi − vd) − ki ∫ (vi − vd)dt

(5)ai = −
1

T0
(vi − vi−1 + �(xi − xi−1 + li−1 + T0vi))

(6)ai = �1ai−1 + �2a0 + �3(xi − xi−1 + li−1 + dd) + �4(vi − v0) + �5(vi − vi−1)

(7)
�1 = 1 − C1; �2 = C1; �5 = −�2

n

�3 = −(2� − C1(� +
√

�2 − 1))�n

�4 = −C1(� +
√

�2 − 1)�n

(8)vd(�t) = vt +
2v�

�
arctan(��t)
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The distance error function �t is defined as:

where xi and xt refer to the position of the considered AV and its target, lt refers to the 
length of the target vehicle, and dd refers to the desired gap.

Our modified ACC​ shown in Fig. 10 returns the minimum between (1) the output of Eq. 
(5) and (2) Eq. (4) with the new desired velocity from Eq. (8).

As shown in Fig. 12, the modified ACC​ converges to a desired position (as presented in 
Fig. 11) regardless whether the target vehicle is in front or behind.

3.6.2 � Lateral controller

We have considered the current state-of-the-art lane-change model MOBIL [57] as a basis 
for our extensions. It can be modelled using the lane change utility function u which has to 
satisfy a set of conditions:

(9)v� =
1

10
vt

(10)�t = xt − lt − xi − dd

Fig. 10   The autonomous vehicle current state defines which controller will be applied

Fig. 11   In this example, the modified ACC​ is evaluated in two scenarios. Case 1: target vehicle is the pre-
ceding vehicle of the considered AV ( �

1
 ), the objective is to reduce the space ahead towards a desired gap d

d
 

by accelerating. Case 2: target vehicle is located at the tail of a platoon behind the considered AV ( �
2
 ), the 

objective is to reach the desired position by decelerating
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where subscript n represents a new following vehicle, o is old following vehicle, and tilde 
represents the hypothetical value of acceleration when the vehicle has been placed on 
the respective adjacent lane. Whether a lane change is performed to the right or the left 
depends on the values of CR and CL:

(11)uL = ãL
i
− ai + P(ãL

n
− aL

n
+ ãL

o
− aL

o
) − 𝛥ath − 𝛥abias

(12)uR = ãR
i
− ai + P(ãR

n
− aR

n
+ ãR

o
− aR

o
) − 𝛥ath − 𝛥abias

(a)

(b)

Fig. 12   Two cases of a vehicle approaching a target vehicle using the modified ACC. In the first case, the 
joining vehicle is in front of the target vehicle, in the second case it is behind
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If both are 1, the values of uR and uL are compared. A vehicle chooses the lane with 
higher utility and initiates the according lane-change.

AVs participating in a manoeuvre will be commanded to perform a lane change that 
might not necessarily provide higher utility values according to the model. However, the 
lane change still needs to be executed for completing a manoeuvre or sub-manoeuvre. 
Therefore, a different lane change strategy is required. In order to ensure that a lane change 
will not have a disruptive effect on traffic, the AV will perform two tests which are similar 
to the functionality of gap-acceptance lane changing models.

First, the vehicle (platoon leader or free AV) evaluates the available space on the target 
lane. This available space is defined by the distance to the hypothetical preceding and fol-
lowing vehicle. If the space is higher than a threshold, performing a lane-change is consid-
ered safe. A second test is made by analysing the hypothetical deceleration of the potential 
new follower. The lane-change is considered safe and not disruptive to the flow of traffic, 
if the deceleration does not exceed a certain threshold, meaning the hypothetical new fol-
lower does not have to brake strongly. The lane-change will be performed if and only if the 
two conditions are satisfied. An example is shown in Fig. 13.

4 � Evaluation

As a proof of concept for the functionality and usefulness of the AV model outlined in this 
paper, we have performed two experiments in mixed traffic conditions. The first experi-
ment studies the success rate of the JOIN_TAIL manoeuvre while the second experiment 
investigates the effects AVs and platooning have on the velocity-density diagram of traffic 
flow.

We integrated our autonomous vehicle model into the mixed traffic analysis tool 
BEHAVE  [49], based on the CityMoS engine  [108]. It allows for the co-existence of 

(13)CL =

{

1, IfuL > 0

0, Else

(14)CR =

{

1, IfuR > 0

0, Else

Fig. 13   When an AV have to change lane to follow a defined path, it will make two tests. First it will check 
the space ahead and behind and make sure it does not go below a defined threshold. Second, it will estimate 
the hypothetical acceleration for the ’new’ follower, if the deceleration is below another threshold, the lane 
change is considered dangerous and will not be performed
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vehicles governed by different models on the road. Those groups of different vehicles are 
referred to as populations, and the model parameters of those populations can be further 
specified.

In both experiments, we have simulated a mixed traffic scenario of human-controlled 
vehicles and AVs. The Human Driver Model [99] is used to represent human behaviour 
and our AVDM governs the behaviour of AVs. The desired velocity vd for humans is drawn 
from a uniform distribution while all AVs share the same desired velocity, which is in the 
center of the uniform distribution used for humans. All other model parameters that the 
two populations have in common are identical. Table 3 shows the parameters value for the 
HDM used in this paper. The experiment conditions consist of a simulation region, cen-
tered around an ego vehicle, moving through an endless five lane highway. Since the high-
way does not contain on-and-off ramps, vehicles are continuously spawned/deleted at the 
borders of the simulated region. The spawning intensity can be adjusted in order to control 
the traffic density inside the simulated region. The traffic is assumed to be right-handed and 
all vehicles are allowed to overtake from both left and right sides. There is no dedicated 
AV lanes in this scenario.

4.1 � JOIN_TAIL manoeuvre

This experiment studies the success rate of completing the JOIN_TAIL manoeuvre in 
mixed traffic. The traffic density for this experiment is kept constant at 0.02 vehicle/m/lane. 
The ratio between human vehicles and AVs is set to 1 : 1. A manoeuvre is considered suc-
cessfully completed if and only if all the sub-manoeuvres that compose the manoeuvre are 
successful. For each simulation run, a total of 10, 000 manoeuvres have been performed.

The main AV model parameter which can be used to steer the dynamics of platoon-
ing in the simulation is the threshold utility value Uth for triggering a platoon manoeuvre. 
Figure 14 shows the average success rate for completing JOIN_TAIL as a function of Uth . 
There seems to be only a marginal improvement in the success rate for utility values under 
0.6. This could indicate that choosing to join a random platoon within the sensing area 
would result in 65% success rate for the JOIN_TAIL manoeuvre. Going beyond a certain 
critical utility value, however, (in this case 0.6) renders some of the options unacceptable 
and thus this is the area where the high level control layer effectively begins filtering out 
poor options.

Table 3   Parameters of the HDM 
with the values used in this 
paper. (based on [99])

Symbol Parameter Value

T ′ Reaction Time 1 s
na Number of anticipated vehicles 1 veh
Vs Relative distance error 5%
rc Inverse TTC error 0.01/s
� Error correlation time 20 s
s
0

Minimum gap 2 m
T Time head way 2 s
a Maximum acceleration 1.8 m.s

−2

b Maximum deceleration 2 m.s
−2
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Failures are generally caused by 1) target that has been set but becomes hard to reach 
when the manoeuvre has already been initiated or 2) inability to execute a low-level com-
mand fast enough. The source of both failure types is fast changing traffic conditions. More 
than 80% of failures occur during the execution of the MOVETOPOS sub-manoeuvre and 
are due to external factors (e.g. slow vehicles preventing the sub-manoeuvre to be com-
pleted correctly).

Figure 15 shows the measured duration for every step of the JOIN_TAIL manoeuvre. 
With a success rate higher than 90% , the average time for an AV to complete the manoeu-
vre is less than 30s. The biggest variation is observed in the MOVETOPOS sub-manoeuvre 
due to its high sensitivity to traffic conditions surrounding the vehicle. The ATTACH sub-
manoeuvre is purely logical and therefore has no time and no duration variation. The vari-
ation in the duration of the GAPCLOSE sub-manoeuvre is caused by the variation of the 
final position of the joining vehicle during the attach phase and also due to the varying 
traffic conditions in front of the platoon leader. The duration of this sub-manoeuvre can be 

Fig. 14   Influence of the threshold value U
th

 on the outcome of the JOIN_TAIL manoeuvre

Fig. 15   Duration of all sub-manoeuvres composing the JOIN_TAIL manoeuvre when they are success-
fully completed for U

th
 set to 0.9
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reduced tuning some of the car-following model parameters, however, a too quick GAP-
CLOSE would induce a higher risk of collision if the platoon has to stop abruptly during 
the time the gap is being closed.

This experiment demonstrates two things : (1) the ability of the Platooning manoeuvre 
layer to supervise and execute successfully a manoeuvre or handling failures in mixed-
traffic scenarios (2) the ability of the Low-Level control layer to follow a path and move to 
a specific position as mandated by the Platooning manoeuvre layer.

4.2 � Average velocity with mixed traffic

In a second experiment, as a proof of concept, we study the velocity-density relationship 
of traffic for varying percentages of AVs on the road. For the purpose of this experiment, 
the spawning intensity in the simulation area is being gradually increased, thus producing 
traffic conditions from free flow to slight congestion. Furthermore, two settings of mixed 
traffic scenarios are defined: (1) platooning is disabled (2) platooning is enabled.

In the first setting, AVs are moving freely without initiating any cooperative manoeu-
vres, while in the second, AVs have the choice between creating/joining platoons or 
remaining free agents. The threshold utility value Uth for triggering a platoon manoeuvre 
has been set to 0.8. For each experiment, we vary the proportion of humans and AVs in the 
simulation using 0, 25, 50, and 75 percent of AVs.

We can observe from the results shown in Fig. 16 that AVs introduce improvements to 
the average velocity of traffic in general. These improvements seem to be proportionate to 
the penetration rate of AVs in the simulation (vertical distance between the lines). Moreo-
ver, enabling platooning provides greater improvements to the average traffic flow (vertical 
distance between the dashed and solid lines of the same colour).

Fig. 16   Velocity-density diagram comparison between different mixed traffic scenarios
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These results are in-line with the general consensus that AVs can contribute to improv-
ing the average traffic flow [73, 89, 101]. This is mainly due to smaller inter-vehicle dis-
tances that technically increase the road capacity. However, we believe that more research 
is mandated to precisely quantify the benefits that can be expected from various platooning 
strategies. Many of the studies on the benefits of platooning found in the literature do not 
take into consideration possible disruptions caused by platooning manoeuvres. The present 
AVDM model can be used to study these effects in detail. In our proof-of-concept study, 
we can already observe that for simple join/tail manoeuvres, the positives outweigh the 
negatives in our simulation scenario. This is strong indication that AVDM is able to ade-
quately guide the vehicles through the platooning process in mixed traffic conditions and 
adapt quickly to the fast changing traffic situations.

5 � Conclusion

In this paper, we presented a hierarchically structured model for autonomous vehicles in 
microscopic agent-based simulations to enable more realistic mixed traffic simulation. The 
model incorporates a large spectrum of existing AV technology such as 1) long-term plan-
ning and decision-making, 2) complex platoon manoeuvre execution, 3) path planning, and 
4) low level vehicle control. Furthermore, the model architecture takes care of the connec-
tions between those various control layers and determines the information flow in order to 
holistically simulate AVs.

As a proof of concept, we implemented the proposed model in the BEHAVE simulation 
platform and performed an experiment showing that platoon joining manoeuvres have a 
high success rate in mixed traffic. This indicates that our model successfully incorporates 
the respective processes on various levels of abstraction and effectively manages the flow 
of commands back and forth between the hierarchical layers. To demonstrate the useful-
ness of mixed traffic simulation, we also performed an experiment to test whether platoon-
ing would improve traffic conditions in a mixed traffic scenario. This experiment yielded 
positive results, showing that for the studied AV penetration rates, platooning always 
brings improvement to the traffic flow compared to scenarios with AVs that do not engage 
in cooperative behaviour.

In order to improve upon mixed traffic simulation both AV and human driver models 
need to be extended. A limitation of the experiments performed in this paper is the incor-
porated human driver model as it does not manage to contrast the human-driver behaviour 
from the AVs sufficiently. The main human factor that differentiates this model is a longer 
reaction time. However, longer reaction times, even with high levels of spatial anticipa-
tion, produce considerable stop-and-go waves and even accidents. In order to overcome 
this issue, future efforts include building on top of human driver models. We believe that 
human models should also emulate unpredictable and even irrational human behaviour. 
Including stochastic elements in the model is a possible approach to do so. This aims to 
bring them closer to reality in terms of mixed traffic simulation.

As future work we would like to extend the model by introducing statistical modeling of 
the perception layer and increasing the accuracy of V2X communication. The impacts of 
perception errors and sensor noises on the Trajectory Planner and Low-level Control will 
be investigated accordingly. The High-Level decisions, Platooning Manoeuvres and Trajec-
tory Planner layers also need to be extended for more sophisticated environments such as 
intersections and traffic lights. Constrains can also be added in the High-Level decisions 
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and Trajectory Planner to take different road regulations and policies into account. These 
will allow the model to represent a complete AV framework and support a more precise 
evaluation through simulation of various mixed traffic scenarios, thus facilitating AV inte-
gration in the real world in a faster and safer way.
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