
Causality and Consistency of State Update Schemes
in Synchronous Agent-based Simulations

Wen Jun Tan

wjtan@ntu.edu.sg

TUMCREATE and

Nanyang Technological University

Singapore

Philipp Andelfinger

philipp.andelfinger@uni-rostock.de

University of Rostock

Rostock, Germany

David Eckhoff

david.eckhoff@tum-create.edu.sg

TUMCREATE and

Technical University of Munich

Singapore

Wentong Cai

aswtcai@ntu.edu.sg

Nanyang Technological University

Singapore

Alois Knoll

knoll@in.tum.de

Technical University of Munich and

Nanyang Technological University

München, Germany

ABSTRACT
In an agent-based simulation (ABS), a state update scheme carries

out the transitions of agents from one state to the next. To pro-

duce correct simulation results, the update scheme must respect the

cause-and-effect relationships defined by the agent-based model

and ensure that the resulting overall simulation state is internally

consistent. At the same time, the update scheme should be effi-

cient enough to meet a simulationist’s demand for timely results.

Considering the common class of synchronous time-driven ABS, a

number of update schemes have been employed in the literature

and simulation frameworks. In this paper, various implementations

of update schemes are analyzed and contrasted with respect to their

ability to maintain the simulation correctness as well as their per-

formance characteristics. A semantic model is formulated to define

the reference behavior of synchronous time-driven ABS updates

and model the dependencies among agent updates using a state

access graph. Relying on the formalization, conditions under which

different update schemes achieve causality are shown. Further, res-

olution methods are categorized according to their coordination

mechanisms to achieve consistency by resolving conflicts among

agent state updates. Through two case studies, the empirical per-

formance of different update schemes and resolution methods are

evaluated. For sequential execution, an update scheme based on the

agent’s dependencies achieves the highest performance, whereas

in the parallel case, the choice of update scheme involves a trade-

off between execution time and memory usage. If deterministic

simulation output is required, decentralized coordination generally

outperforms centralized coordination. The results can assist imple-

menters and researchers in their selection of appropriate methods

in the design and implementation of agent-based simulators.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’21, May 31-June 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8296-0/21/05. . . $15.00

https://doi.org/10.1145/3437959.3459262

CCS CONCEPTS
• Computing methodologies→ Systems theory; Agent / dis-
crete models; Simulation environments.

KEYWORDS
Synchronous Agent-based Simulation, State Update Schemes, Cor-

rectness, Causality and Consistency

ACM Reference Format:
Wen Jun Tan, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois

Knoll. 2021. Causality and Consistency of State Update Schemes in Syn-

chronous Agent-based Simulations. In Proceedings of the 2021 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’21),
May 31-June 2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3437959.3459262

1 INTRODUCTION
Agent-based simulation (ABS) is a method for simulating the emer-

gent behavior of a system by modeling and simulating the inter-

actions of its subparts, called agents [35]. In ABS, the simulated

entities are agents that perform actions autonomously and interact

with other agents based on certain rules. ABS typically follows

a Sense-Think-Act cycle [24]: In the Sense stage, an agent detects

and analyses its neighbors as well as the environment in which it

resides. In the Think stage, an agent makes a judgment based on the

information collected during the Sense stage. The update of states

takes place in the Act stage. Often, the simulation time is advanced

in fixed time-steps at which all agents update their states.

When implementing an agent-based model (ABM), it is impor-

tant to select a state update scheme that reflects the semantics of the

model to maintain the correctness of the simulation results [35]. In

this paper, synchronous time-driven simulations are considered, in

which agents are updated all at once by a certain time increment,

with all agents’ actions being based on the same overall simulation

state yielded by the previous update [21]. Incorrect implementation

of the model can lead to causality violations and consistency prob-
lems in the simulation states. A causality violation occurs when the

incorrect implementation leads to a future state change affecting

the past [19]. For instance, in a correct simulation, an observer

should see a weapon fire before seeing that the target has been

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

57

https://doi.org/10.1145/3437959.3459262
https://doi.org/10.1145/3437959.3459262

destroyed [8]. A consistency problem occurs when some agents’

actions lead to conflicting states according to the model semantics.

An example is given by multiple agents moving to the same loca-

tion in the simulation space. If such conflicts are not resolved, the

simulation enters an inconsistent state. The correct and efficient

prevention of causality violations and resolution of consistency

problems requires careful consideration of the agents’ dependen-

cies when implementing the state update schemes.

The correctness of the simulation is a particularly pressing issue

in parallel and distributed ABS, which aims to reduce the frequently

substantial running times induced by the detailed interactions of

large numbers of agents in a typical ABS [8]. If a certain degree of

locality is present in the agent interactions, the simulation can be

divided into a number of logical processes (LPs) assigned to different

processing elements and executed in parallel. Dependencies among

agents across LP boundaries are reflected by communication and

synchronization among the processing elements. The opportunity

for parallel execution hinges on the independence of some of the

agent state updates. Hence, one main challenge of parallel and

distributed ABS lies in exploiting the independence of some of the

agents’ actions while still respecting all dependencies.

In this paper, a systematic approach is proposed to analyze the

state update implementations according to the semantics of syn-

chronous time-driven ABS. The state dependencies in ABS are

analyzed to determine correctness in terms of simulation results.

To clarify the scope and the behavior required for the correctness

of a state update scheme, a semantic model is formulated for syn-

chronous time-driven ABS. The dependencies among the states are

modeled using a state access graph to identify causality violations

and consistency problems. Relying on the formalization, different

agent state update schemes are analyzed to maintain the causality

of the simulation states. A common rule for conflict resolution is

proposed that can be applied to a wide range of simulations with

critical resources, i.e., resources that cannot be shared among agents.

A more specific conflict resolution rule based on agents’ priorities is

also proposed to maintain consistency of the simulation states and

determinism in the simulation results. Resolution methods based on

the common rules are categorized according to their coordination

mechanisms. Situations under which different update schemes and

resolution methods are applicable are pointed out.

Having assessed correctness and applicability aspects, perfor-

mance measurements are presented and discussed for the update

schemes in parallelized implementations on a shared-memory ma-

chine, providing indications regarding the relative overheads. Fi-

nally, an overview of the state update schemes present in existing

agent-based simulators is given.

The main intention of this paper is to enable researchers and

implementers to make an appropriate choice of state update scheme,

taking into consideration the correctness and performance when

designing and implementing agent-based simulators.

2 BACKGROUND
Causality and consistency are key properties to which a state update

scheme must adhere to generate meaningful simulation results [41].

In the following, the background on the semantics of agent updates

is given to sketch the challenges in achieving these properties.

2.1 Semantics of Asynchronous and
Synchronous Updates

State updates in cellular automata (CA) can be defined semantically

as asynchronous or synchronous updates [2]. Asynchronous update
was defined by [2] as picking a cell at random and updating it,

and synchronous update as all cells updating at the same time. As

the model semantics differ, the simulation outcomes of these two

models exhibit different dynamics. For instance, Schönfisch and

de Roos [30] demonstrated through two applications that different

update schemes produced different output patterns.

Asynchronous and synchronous updates have also been used in

ABS, where Railsback and Grimm [21] discussed the importance of

the execution order of agents. In asynchronous update, as soon as

an agent affects the environment, the environment is updated so

that the next agent executed experiences a different environment.

Hence, the order in which the agents execute their actions affects

the simulation results. Synchronous update avoids the effect of the
execution order by updating the environment all at once after all

agents have executed actions that depend on the environment.

As the key observation from the literature, the simulation results

of asynchronous state updates may be dependent on the implemen-

tation, e.g., the execution order of agent state updates. This is par-

ticularly problematic when implementing asynchronous updates in

a parallel and distributed simulation, in which non-determinism in

the progress of logical processes may translate to non-determinism

of the simulation itself. In contrast, synchronous updates can un-

couple the implementations from the results. Hence, this paper

focuses on synchronous time-driven ABS.

2.2 State Causality
In synchronous time-driven ABS, for a given point 𝑡 in logical time,

all agents advance by a time increment 𝜏 . Their actions should

only have causal dependencies on the simulation state observed

at 𝑡 . Consider now two neighboring agents 𝑎 and 𝑏 simulated in

a sequential simulator implementation, which would update the

agents one after the other, in any order. As agents typically base

their actions on their neighboring agents’ states, the agent updated

last would base its action at 𝑡 on its neighbor’s state at 𝑡 +𝜏 , which is
a causality violation [19]. The violation can also occur in a parallel

and distributed ABS, where the order of the state update can be

non-deterministic. From these examples, it is evident that the de-

pendencies among agent updates must be respected by the update

scheme to ensure the correctness of the simulation [15, 41].

One way to prevent the violation is to order the agent updates

according to the causal dependencies among the agents. However,

if two agents 𝑎 and 𝑏 are dependent on each other’s state, it cannot

be determined whether agent 𝑎 or 𝑏 must be processed first.

2.3 State Consistency
For this paper, the simulation state at a given point in logical time

is consistent if and only if the agent states are free of conflicts ac-

cording to the model semantics. Conflicts may occur because some

of the agents’ actions, while not necessarily logically contradictory,

may not be compatible because of the resources required by the

action [34]. A conflict is an intention of acquiring at the same time

a resource that cannot be shared or is limited in quantity, resulting

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

58

in competition for the resource. For example, at a transition from a

given point in logical time to the next, multiple agents may attempt

to move to the same location in the simulation space [41]. If the lo-

cation in the simulation space cannot be logically occupied by more

than one agent, a conflict arises. There are two classical strategies

to address conflicts: conflict avoidance and conflict resolution.

2.3.1 Conflict Avoidance. The first strategy is to avoid conflicts

altogether by integrating suitable rules in the specification of the

agent behavior itself [12, 31]. In a traffic simulation, when vehicles

from two lanes merge into a single lane, the right of way rules dic-

tate that the vehicles on the right-most lane have a higher priority

to enter the single lane. In the classical boids simulation [22], the

agents avoid conflicts by avoiding spatial collisions. There are two

common approaches to collision avoidance: force fields and poten-

tial collision detection and avoidance. Force fields avoid collisions

by associating a repelling force with every agent, such that each

agent is ensured to be at least a given distance from another agent.

Similarly, in pedestrian simulation, the Social Force model [10] ap-

plies a repelling force to every agent to avoid collisions. However,

this approach requires sufficiently small time-steps such that the

agents do not move too far and pass through the force field. On the

other hand, the agent can detect potential imminent collisions ahead

of time and take action to actively avoid them. Reciprocal collision

avoidance (RVO2) implements this idea in pedestrian simulations

by allowing each agent to independently compute a collision-free

trajectory through the simulation space [37].

2.3.2 Conflict Resolution. As a second approach to address the

issue of conflicts, modelers can explicitly define the outcome of

conflicting agent actions. A coordination mechanism among agents

may specify that the resource may only be updated by one agent

at a time (mutually exclusive) or updated cumulatively by more

than one agent (cumulative) [17]. In this way, a domain-specific

simulator can pre-define a common set of conflict resolution rules

suitable to the model domain.

If model-specific conflict resolution rules are not available, a

generic conflict resolution based on agent priorities or stochastic

elements may be applied. In this case, measures must be taken to

ensure that the conflict resolution rules do not adversely affect

properties such as determinism and fairness [41]. Similar consider-

ations are required for simultaneous events in discrete-event simu-

lations [25], which need to handle events with identical timestamps

that may lead to different simulation results.

2.4 Determinism
A simulation is deterministic if the same result is obtained from

repeated simulation runs using the same pseudo-random number

generator seed [25]. Determinism is an important property for

ABS, where repeatability of the simulation is often desired [6]. For

instance, it is frequently necessary to reproduce scenarios to inves-

tigate and understand the results [11]. Further, repeatability simpli-

fies debugging the simulator because errors can be reproduced [8].

In this paper, the determinism of different state update schemes is

considered to investigate the correctness of the implementations,

such that different implementations of the update schemes obtain

the same simulation result.

3 MODELS
In this section, a semantic model is formally described for state

updates applied to a synchronous time-driven ABM. Subsequently,

patterns of the causal dependencies among agents are analyzed by

constructing state access graphs.

3.1 Semantic Model for Synchronous
Time-driven Agent-based Simulation

A semantic model is proposed for synchronous time-driven agent-

based simulation loosely based on the formalizations by [7, 28].

Scheutz and Schermerhorn [28] defined an update function that

depends on the states of the resources and neighboring agents to

produce an output. However, the update function does not model

any changes to the resources. Ferber and Miiller [7] proposed an

influence reaction model to model the influence produced by agents’

behavior and the reactions of resources. By combining these two

formalizations, this semantic model can represent the agent interac-

tions with the resources and the interactions among the neighbor-

ing agents. The model considers the state updates in each logical

time-step.

Let 𝐴 be the set of agents, 𝑅 be the set of resources and 𝜏 be the

time-step size of the simulation. An ABM consists of a set of agent

states and resource states, {𝑆𝑡𝑎 : 𝑎 ∈ 𝐴} and {𝑆𝑡𝑟 : 𝑟 ∈ 𝑅} respec-
tively. The transition of the agent states from logical time-step 𝑡 to

𝑡 + 𝜏 is modeled as a two-phase update process:

Agent Update Phase: ∀𝑎 ∈ 𝐴,

𝑹𝑡𝑎 = {𝑆𝑡𝑟 : 𝑟 ∈ 𝑅𝑖 𝑡𝑎} (1a)

𝑵 𝑡
𝑎 = {𝑆𝑡

𝑏
: 𝑏 ∈ 𝑁 𝑡

𝑎} (1b)

< 𝐼𝑡𝑎, 𝑰
𝑡
𝑎 > = 𝑓𝑎 (𝑆𝑡𝑎, 𝑹𝑡𝑎,𝑵 𝑡

𝑎), where 𝑰 𝑡𝑎 = {𝐼𝑡𝑎,𝑟 : 𝑟 ∈ 𝑅𝑜𝑡𝑎} (1c)

𝑆𝑡+𝜏𝑎 = 𝑔𝑎 (𝑆𝑡𝑎, 𝐼𝑡𝑎) (1d)

Resource Update Phase: ∀𝑟 ∈ 𝑅,

𝐼𝑡𝑟 =
∏
𝑎∈𝐴𝑡

𝑟

𝐼𝑡𝑎,𝑟 (1e)

𝑆𝑡+𝜏𝑟 = 𝑔𝑟 (𝑆𝑡𝑟 , 𝐼𝑡𝑟) (1f)

where 𝑅𝑖
𝑡
𝑎 and 𝑅𝑜

𝑡
𝑎 are the sets of resources sensed and updated

respectively by agent 𝑎 at time 𝑡 . 𝑁 𝑡
𝑎 is the set of neighboring agents

of agent 𝑎 at time 𝑡 . 𝐴𝑡
𝑟 is the set of agents updating a resource 𝑟 at

time 𝑡 . In the agent update phase, each agent 𝑎 senses the states of

the resources, 𝑹𝑡𝑎 , (Eq. 1a) and its neighboring agents 𝑵 𝑡
𝑎 (Eq. 1b).

Based on the sensed states, the agent produces a set of influences for

the resources, 𝑰 𝑡𝑎 , and influence for itself, 𝐼𝑡𝑎 , using the function 𝑓𝑎 (

Eq. 1c). 𝐼𝑡𝑎,𝑟 is an influence in 𝑰 𝑡𝑎 from agent 𝑎 to a resource 𝑟 in 𝑅𝑜
𝑡
𝑎 .

The agent updates its next state, 𝑆𝑡+𝜏𝑎 , using the function 𝑔𝑎 based

on its current state and the agent’s influence (Eq. 1d). In the resource
update phase, all the influences for a resource 𝑟 are combined using

the function

∏
(Eq. 1e) to obtain the resulting influence 𝐼𝑡𝑟 . The

resource 𝑟 updates its next state using the function 𝑔𝑟 in Eq. 1f

according to the influence 𝐼𝑡𝑟 .

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

59

3.2 State Access Graph
Based on the semantic model described earlier, the state updates

within a logical time-step aremodeled as a state access graph, defined
as follows:

Definition 3.1 (State Access Graph). A state access graph is a

directed graph𝐺 = (𝐴, 𝑅, 𝐸), where 𝐴 is the set of agent states, 𝑅 is

the set of resource states, 𝐸 is the set of directed edges representing

the state accesses among the agents and resources.

First, consider an agent 𝑎 ∈ 𝐴 sensing nearby resources 𝑅𝑖
𝑡
𝑎 and

its neighboring agents𝑁 𝑡
𝑎 . When agent𝑎 senses the state of a nearby

resource 𝑟 ∈ 𝑅𝑖 𝑡𝑎 , there is an edge (𝑟, 𝑎) from the resource 𝑟 to agent

𝑎 (see Fig. 1a). When agent 𝑎 senses the state of a neighboring agent

𝑏, there is an edge (𝑏, 𝑎) from agent 𝑏 to agent 𝑎 (see Fig. 1b). Next,

the agent 𝑎 updates itself and the resources, 𝑅𝑜
𝑡
𝑎 . There is an edge

(𝑎, 𝑎) when the agent 𝑎 updates itself (see Fig. 1d) and an edge (𝑎, 𝑟)
when agent 𝑎 updates the resource 𝑟 ∈ 𝑅𝑜𝑡𝑎 (see Fig. 1c). At each

logical time-step, this graph evolves as the environment changes

affect the neighborhood of an agent and the surrounding resources

that an agent can sense.

𝑎 𝑟

(a) Edge (𝑟, 𝑎) – Agent 𝑎 senses
a resource 𝑟 .

𝑎 𝑏

(b) Edge (𝑏, 𝑎) – Agent 𝑎 senses
agent 𝑏.

𝑎 𝑟

(c) Edge (𝑎, 𝑟) – Agent 𝑎 updates
resource 𝑟 .

𝑎

(d) Edge (𝑎, 𝑎) – Agent𝑎 updates
itself.

Figure 1: State accesses among agents and resources. Dashed
arrows represent sensing, while solid arrows represent up-
dates.

Two types of dependencies are defined in the state access graph:

Lemma 3.1 (AgentDependency). An agent dependency is a direct
dependency between two agents.

(𝑎, 𝑏) ∨ (𝑏, 𝑎) where 𝑎, 𝑏 ∈ 𝐴 (2)

Lemma 3.2 (Resource Dependency). A resource dependency is
an indirect dependency between two agents via accesses to a common
resource.

(𝑎, 𝑟) ∧ (𝑟, 𝑏) where 𝑎, 𝑏 ∈ 𝐴 and 𝑟 ∈ 𝑅 (3)

There are two special cases of cyclic dependencies, i.e., the depen-

dencies form a closed chain: self-dependency and local dependency.
Self-dependency is a special case of agent dependency where an

agent only updates itself (see Fig. 1d). The local dependency is a

special case of resource dependency where a resource is only read

and updated by a single agent.

Lemma 3.3 (Self-dependency). A self-dependency is a cyclic
agent dependency involving a single agent.

(𝑎, 𝑏) ∨ (𝑏, 𝑎) where 𝑎, 𝑏 ∈ 𝐴, 𝑎 = 𝑏 (4)

Lemma 3.4 (Local dependency). A local dependency is a cyclic
resource dependency involving only a single agent and a resource.

(𝑎, 𝑟) ∧ (𝑟, 𝑏) where 𝑎, 𝑏 ∈ 𝐴 and 𝑟 ∈ 𝑅, 𝑎 = 𝑏 (5)

4 IMPLEMENTATIONS
In this section, the state update schemes implemented according to

the semantic model are described in detail, including various agent

state update schemes to prevent causality violation and resolution

methods to resolve state conflicts.

4.1 Agent State Update Schemes
In the agent update phase, there are causal dependencies among the

agents and between agents and resources. To maintain causality,

the update scheme must resolve these dependencies, i.e., execute

the corresponding read or write operations in the correct order.

This constraint is defined as follows:

Definition 4.1 (State Causality Constraint). ∀(𝑢, 𝑣), (𝑤,𝑢) ∈ 𝐸,

where 𝑢, 𝑣,𝑤 ∈ 𝐴 ∪ 𝑅 and 𝑢 ≠ 𝑣 , (𝑢, 𝑣) must precede (𝑤,𝑢).

To prevent causality violations from occurring, the dependencies

between agents are categorized to identify suitable agent state

update schemes: (i) independent update, (ii) ordered update, (iii) two-
state update, and (iv) temporary state update.

4.1.1 Independent Agents.
First, considering independent agents that have no dependencies

with each other in a logical time, as defined in the following:

Definition 4.2 (Independent Agents). Agents in a state access

graph are independent agents if and only if all dependencies are only
self-dependencies (Lemma 3.3) or local dependencies (Lemma 3.4).

Proposition 4.1 (IndependentUpdate). For independent agents,
any agent update order satisfies the causality constraint.

Agents in local and self-dependencies can be processed in any

order since these dependencies obey the causality constraint. Hence,

the above proposition is true as there are no other dependencies

that could violate the constraint.

The independence of the state enables an arbitrary agent update

ordering, enabling for instance a parallel and distributed execution

without synchronization within a single time-step. While it seems

unlikely for most simulations to satisfy the requirements for inde-

pendent update throughout their entire running time, there may be

periods in logical time during which agent updates are independent.

For example, in a spatial agent-based simulation, the agents may

be sufficiently far apart so they do not sense each other [1, 9].

4.1.2 Acyclic Dependent Agents.
Dependent agents are agents connected by dependencies. First,

considering dependent agents without any cyclic dependencies

among two or more agents:

Definition 4.3 (Acyclic Dependent Agents). Agents in a state

access graph are acyclic dependent agents if they have no cyclic

dependencies outside of self-dependencies (Lemma 3.3) or local

dependencies (Lemma 3.4).

Proposition 4.2 (OrderedUpdate). For acyclic dependent agents,
there is an agent update order that satisfies the causality constraint.

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

60

𝑎

𝑟1

𝑏

𝑟2

Figure 2: Causal dependency between agent 𝑎 and 𝑏 – Agent
𝑎 senses and updates resource 𝑟1. Agent 𝑏 senses resource 𝑟1
and 𝑟2, and updates resource 𝑟2.

First, local and self-dependencies in the state access graph can

be excluded as they satisfy the causality constraint. After that, it is

possible to find a linear ordering for updating the agents by sorting

according to the causality constraint. Hence, the above proposition

is true.

A method is proposed to execute the agent update according to

the causality constraint. First, the state access graph is reduced to

an agent graph, which represents the causal dependencies among

the agents. The local and self-dependencies are removed from con-

sideration by merging resource vertices into the agent vertices for

local dependencies and removing edges for self-dependencies. For

example, in Figure 2, agent 𝑎 senses resource 𝑟1 and updates it,

while agent 𝑏 also senses 𝑟1. Hence, agent 𝑏 needs to be processed

before agent 𝑎. After merging 𝑟1 to 𝑎 and 𝑟2 to 𝑏, the state access

graph is reduced to an agent graph containing the dependency

(𝑎, 𝑏). This implies that agent 𝑏 has a causal dependency on agent

𝑎.

Algorithm 1 Ordered Update Scheme

1: while 𝐴 ≠ ∅ do ⊲ Agent Update Phase
2: for all 𝑎 ∈ 𝐴 parallel do
3: if 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑎) = 0 then
4: 𝐴𝑔𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (𝑎)
5: 𝐴← 𝐴 \ 𝑎
6: end for
7: . . . ⊲ Resource Update Phase

Next, Algorithm 1 executes the agents in topological order. out-
Degree(a) returns the number of outgoing edges of agent 𝑎. Agents

with no outgoing edge are processed first. This ensures that the

agent which is being updated has no other agents that are causally

dependent on it. After updating the agent, the agent is removed

from the agent graph 𝐴 (line 5). This is processed iteratively until

all agents have been updated. Following the example in Figure 2

where there is only a dependency (𝑎, 𝑏) after reducing the agent

graph, agent 𝑏 is updated first as the out-degree is zero, then agent

𝑎 is updated. If the dependencies among the agents do not change

throughout the simulation, an ordered list of agents can be pre-

computed before the simulation and the agents can be updated

according to the list during the simulation.

4.1.3 Cyclic Dependent Agents.
Next, considering dependent agentswith cyclic dependencies among

two or more agents:

Definition 4.4 (Cyclic Dependent Agents). Agents in a state ac-

cess graph with cyclic dependencies that are not self-dependencies

(Lemma 3.3) and local dependencies (Lemma 3.4).

𝑟1

𝑎 𝑏

𝑟2

Figure 3: Cyclic dependencies between agent 𝑎 and 𝑏 – Agent
𝑎 senses resource 𝑟1 and 𝑟2, and updates resource 𝑟1. Agent 𝑏
senses resource 𝑟1 and 𝑟2, and updates resource 𝑟2.

𝑟𝑡
1

𝑎𝑡 𝑏𝑡

𝑟𝑡
2

𝑟𝑡+𝜏
1

𝑟𝑡+𝜏
2

Figure 4: Converting the state access graph from Figure 3
into a two-state access graph separates the resource states
into the current state at 𝑡 and the future state at 𝑡 + 𝜏 .

For example, the state access graph in Figure 3 is reduced to an

agent graph with two edges (𝑎, 𝑏) and (𝑏, 𝑎). Since there is a cyclic
dependency between 𝑎 and 𝑏, it is impossible to find an ordering

that would satisfy the causality constraint. To still perform the agent

updates in a causality-preserving manner, a state access graph is

transformed into a two-state access graph by separating the states

for the agents and resources into the current states and new states:

Definition 4.5 (Two-state Access Graph). A two-state access graph

is a directed graph,𝐺2 = (𝐴𝑡 , 𝐴𝑡+𝜏 , 𝑅𝑡 , 𝑅𝑡+𝜏 , 𝐸𝑡 , 𝐸𝑡+𝜏), where𝐴𝑡
and

𝐴𝑡+𝜏
are the current and new states of agents respectively, 𝑅𝑡 and

𝑅𝑡+𝜏 are the current and new states of resources respectively, 𝐸𝑡

is a set of directed edges representing state accesses to the current

states of agents and resources, and 𝐸𝑡+𝜏 is a set of directed edges

representing state updates from the current states to the new states.

The two sets of edges in the two-state access graph represent the

following relations: An edge in 𝐸𝑡 represents an agent 𝑎 reading a

resource 𝑟 : (𝑟𝑡 , 𝑏𝑡), or an agent 𝑏 reading an agent 𝑎: (𝑎𝑡 , 𝑏𝑡). An
edge in 𝐸𝑡+𝜏 represents an agent 𝑎 updating a resource 𝑟 : (𝑎𝑡 , 𝑟𝑡+𝜏),
or an agent 𝑎 updating itself: (𝑎𝑡 , 𝑎𝑡+𝜏). Figure 4 shows the state
access graph from Figure 3 transformed into a corresponding two-

state access graph.

Proposition 4.3 (Two-state Update). Processing cyclic depen-
dent agents using two separate states in any order satisfies the causal-
ity constraint.

When separating the current and new states, the target vertex of

any edge is a new state, and new states have no outgoing edges, i.e.,

∀(𝑢, 𝑣) ∈ 𝐸𝑡+𝜏 : (𝑢 ∈ 𝐴∨𝑢 ∈ 𝑅) ∧ (𝑣 ∈ 𝐴𝑡+𝜏 ∨𝑣 ∈ 𝑅𝑡+𝜏). Hence, the
resulting two-state access graph is acyclic. Since in an acyclic state

access graph, the state causality constraints are trivially satisfied,

the above proposition is true.

Algorithm 2 shows the pseudocode for two-state update. To im-

plement the two-state access graph, two sets of state variables are

used, 𝑆1 and 𝑆2. In contrast, the independent and ordered updates

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

61

Algorithm 2 Two-state Update Scheme

1: for all 𝑎 ∈ 𝐴 parallel do ⊲ Agent Update Phase
2: 𝑹𝑎 ← {R(𝑆1𝑟) : 𝑟 ∈ 𝑅𝑖 𝑡𝑎}
3: 𝑵𝑎 ← {R(𝑆1𝑏) : 𝑏 ∈ 𝑁

𝑡
𝑎}

4: < 𝐼𝑎, 𝑰𝑎 >← 𝑓𝑎 (𝑆1𝑎, 𝑹𝑎,𝑵𝑎)
5: 𝑆2𝑎 ← 𝑔𝑎 (𝑆1𝑎, 𝐼𝑎)
6: end for
7: . . . ⊲ Resource Update Phase
8: 𝑠𝑤𝑎𝑝 (𝑆1, 𝑆2)

require only a single set of state variables. 𝑆1 represents the current

state, which agents use as a basis of their behaviors; and 𝑆2 repre-

sents the new state, which agents update. At the end of a time-step,

the current state is swapped with the new state. As the update

steps across agents are independent, all agents can be processed in

parallel. For example, in Figure 4, agent 𝑎 or 𝑏 can be processed at

the same time, e.g., making the update scheme suitable for execu-

tion on parallel computing platforms, e.g., GPUs or FPGAs [39, 40].

The key disadvantage of this method is the doubling of memory

utilization by storing the current and new states.

Algorithm 3 Temporary State Update Scheme.

1: for all 𝑎 ∈ 𝐴 parallel do ⊲ Agent Update Phase
2: 𝑹𝑎 ← {R(𝑆𝑟) : 𝑟 ∈ 𝑅𝑖 𝑡𝑎}
3: 𝑵𝑎 ← {R(𝑆𝑏) : 𝑏 ∈ 𝑁 𝑡

𝑎}
4: < 𝐼𝑎, 𝑰𝑎 >← 𝑓𝑎 (𝑆𝑎, 𝑹𝑎,𝑵𝑎)
5: 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒 ()
6: 𝑆𝑎 ← 𝑔𝑎 (𝑆𝑎, 𝐼𝑎)
7: end for
8: . . . ⊲ Resource Update Phase

Another update scheme, temporary state update, that requires
only a single set of state variables is shown in Algorithm 3. This

scheme can reduce the memory utilization if the temporary vari-

ables use less memory space compared to the additional simulation

states. However, the need for synchronization introduces additional

overhead. First, all the agents compute their influences in line 4 into

a set of temporary variables 𝐼𝑎 and 𝑰𝑎 . A global synchronization

(line 5) is required before performing the update (line 6).

4.2 State Conflict Resolution Methods
Agent state update schemes only address the issue of causality. In

the resource update phase, the resources do not sense any agents, so

they do not violate the causality constraint. The

∏
function in Eq. 1e

combines the influences from different agents to obtain the resulting

influence used to update the resource. Conflicts may arise when

multiple agents attempt contradictory actions. In the following,

assume that contradictory actions are reflected by simultaneous

resource updates by multiple agents, for instance, expressing the

agents’ intention to move to the same location in the simulation

space. Accordingly, a conflict during the resource update phase is

defined as follows:

Definition 4.6 (State conflict). There is more than one agent up-

dating a resource.

∃(𝑎, 𝑟) ∧ (𝑏, 𝑟), where 𝑎, 𝑏 ∈ 𝐴, 𝑟 ∈ 𝑅 and 𝑎 ≠ 𝑏 (6)

To resolve state conflicts, a common rule is proposed for updating

resources in simulations, the mutually exclusive update rule, based
on which only one agent is able to update a resource. The other

agents can either perform no update or seek another resource.

Definition 4.7 (Mutually Exclusive Update Rule). Given a non-

empty set 𝐴𝑡
𝑟 of agents generating influences to update resource

𝑟 at logical time-step 𝑡 , exactly one agent 𝑎𝑟 ∈ 𝐴𝑡
𝑟 is selected by a

tie-breaking function Φ to update resource 𝑟 .

Algorithm 4 Mutually Exclusive Update Rule

1: . . . ⊲ Agent Update Phase
2: for all 𝑟 ∈ 𝑅 parallel do ⊲ Resource Update Phase
3: 𝑎𝑟 ← Φ(𝐴𝑡

𝑟)
4: 𝑆𝑡+𝜏𝑟 ← 𝑔𝑟 (𝑆𝑡𝑟 , 𝐼𝑡𝑎𝑟 ,𝑟)
5: end for

The application of this rule is shown as pseudo-code in Algo-

rithm 4. Instead of combining the influences using the

∏
function,

the tie-breaking function Φ determines the winner 𝑎𝑟 (line 3) and

allows the influence from 𝑎𝑟 to be used to update the resource

(line 4). There are different tie-breaking mechanisms to determine

the winning agent: (i) no coordination, (ii) centralized coordination,
and (ii) decentralized coordination.

The simulation model may specify the exact rule for breaking

ties. Alternatively, unique priorities can be assigned so that each

conflict is won by the agent with the highest priority.

Φ(𝐴) = {𝑎 |max

𝑎∈𝐴
(𝑎.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)} (7)

This tie-breaking function is referred to as the priority update rule.
The priorities may either be statically assigned and used throughout

the entire simulation, re-determined after each update, or chosen

on a per-conflict basis [41]. As the priorities ensure a deterministic

conflict resolution, resolution methods that implement the priority

update rule produce the same simulation output.

In the following subsections, five resolution methods are dis-

cussed to apply the tie-breaking mechanisms with coordination

using the priority update rule.

4.2.1 NoCoordination. A simple tie-breakingmethod is the execution-
order based approach used in the MatSim traffic simulator [32]. This

approach only requires a single update phase, in which the first

agent successfully updates the resource, whereas each of the other

agents seeks another resource. Agent and resource update phases

are not required to be separated. In a parallel implementation, the

agents atomically update the resource. Although this method iden-

tifies a winner for each conflict, the results depend on the execution

order of the agent updates. Thus, determinism cannot be guaran-

teed.

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

62

4.2.2 Centralized Coordination. In centralized coordination, re-

sources make a centralized decision to select a winner out of the

competing agents based on the priority update rule [38]. During

the agent update phase, the agent priorities are collected together

with the agent influences for tie-breaking in the resource update

phase. There are two methods for collecting the priorities: A push
method, where agents indicate their priority to the resources; and

a pull method, where resources query the interested agents for

their priority. In both methods, multiple iterations of updates in a

time-step may be required for all agents to update the resources.

In the push method, each agent appends its priority to a per-

resource list. Then each resource selects the agent with the high-

est priority from the list. The agents that have not been selected

choose another resource in the next iteration. If the newly selected

resource has selected the winning agent in the previous iteration,

the resource needs to perform the tie-breaking again. In a paral-

lel implementation, synchronized access to the per-resource list is

required as multiple agents may append to the list concurrently.

In the pull method, each agent selects a resource and stores the

decision temporarily as part of the agent state. Subsequently, each

resource scans for interested agents and selects the winning agent

based on the agents’ priorities. This process repeats until all agents

have obtained resources. A parallel implementation of this method

does not require atomic operations [23]. However, as the number

of agents potentially interested in each resource may be large, the

overhead for scanning can be substantial [41].

4.2.3 Decentralized Coordination. In decentralized coordination,

agents are responsible for coordination on their behalf, i.e., there is

nomoderator or controller that centrally determines a winner based

on the priority update rule for each conflict [38]. As the conflict

resolution and resource update are performed in the agent update

phase, the resource update phase is no longer required.

In iterative decentralized coordination, each resource is associ-

ated with a variable storing the highest priority of any agent that

has attempted to update the resource. An agent intending to update

a resource sets the priority variable to its priority if the variable

is unset or the currently stored priority is lower. If the agent was

able to store its priority, it also updates the resource. In this fashion,

updates by higher-priority agents displace any previous updates.

The displaced agents may select another resource in the next it-

eration. A parallel implementation of this method utilizes atomic

maximum operations to ensure race-free updates by the agents

with the highest priorities [16].

There is a variant of decentralized coordination using only a

single iteration for processing each update. If an agent observes that

a higher-priority agent has already updated a resource, the current

agent immediately attempts to obtain another resource. Otherwise,

the displaced agent is determined and another resource selection

and an update attempt is performed for this displaced agent imme-

diately. In a parallel implementation, some LPs may need to process

many displaced agents, which may result in workload imbalance.

The properties of different resolution methods are summarized

in Table 1. Only coordination mechanisms that utilize the priority

update rule can guarantee deterministic simulation results. Intu-

itively, higher performance would be expected for the approaches

Table 1: Properties of the Resolution Methods.

Resolution Method Update

Phases

Iterative Deter-

ministic

None (Execution-order) 1 ✗ ✗

Centralized (Pull) 2 ✓ ✓

Centralized (Push) 2 ✓ ✓

Decentralized (Iterative) 1 ✓ ✓

Decentralized (Non-Iterative) 1 ✗ ✓

requiring only a single update phase. Similarly, non-iterative ap-

proaches would be expected to perform better, as the repeated

global synchronization required in iterative approaches is avoided.

5 PERFORMANCE EVALUATION
In this section, the performance overhead of different agent state

update schemes and resolution methods are evaluated through two

case studies. The experiments were run on a shared-memory ma-

chine with the following hardware configurations: two Intel Xeon

E5-2690v3 (2.6GHz, 12 cores) processors (i.e., 24 physical cores),

and 128 GB RAM. The processors operate in cluster-on-die mode,

which splits each processor into two clusters of six cores, dividing

the processor into two NUMA nodes. There are cache conflicts if

threads allocated to different NUMA nodes access the same cache

line [18]. GCC 4.9.3 is used with OpenMP support. To obtain in-

sights into the performance of the evaluated approaches, various

configurations for the number of OpenMP threads are considered.

5.1 Traffic Simulation
In microscopic agent-based road traffic simulation, each agent is

usually modeled as a driver-vehicle unit (DVU) that makes au-

tonomous decisions based on behavioral models and its environ-

ment. The agents accelerate and decelerate according to a car-

followingmodel. Often, the intelligent drivermodel (IDM) is used [36],

in which the acceleration is a function of the agent’s velocity and

the net distance gap and velocity difference to the leading agent.

IDM ensures that the agents maintain a safe distance from the

leading agent and guarantees collision-free driving. This simula-

tor is built on an existing microscopic traffic simulator [33]. Only

single-lane roads are considered for clarity in the analysis. Since

each agent on a lane only depends on the leading agent in front of

it, the dependencies among the lanes can be considered instead of

dependencies among the agents on a lane-by-lane basis.

There are two state variables to be maintained for each agent:

(i) the position of the agent on the road and (ii) the velocity of the

agent. During the agent update phase, the velocity and position of

each agent are computed according to IDM. Then in the resource
update phase, each agent is updated to its new position. When the

ordered update is used, the simulator only stores a single copy of

the road states (agent positions) and agent states (agent velocities).

Two-state update stores the road states and agent states in two sets

of state variables. Temporary state update only stores a single set

of state variables. The update computes the agents’ accelerations

(influences) and stores them in temporary variables during the

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

63

(a) Out-tree network. (b) In-tree network.

(c) Cyclic network.

Figure 5: Three road network scenarios in traffic simulation.
(a) The out-tree network has agents diverging into different
roads, and hence no state conflicts. (b) The in-tree network
has agents merging into a single road, resulting in state con-
flicts. (c) The cyclic network has cyclic dependencies among
the agents.

agent update phase. Then in the resource update phase, the velocities
and positions are updated based on the accelerations.

In a collision-free simulation, it is unrealistic for vehicles to

overlap spatially. Thus, when agents compute their new positions

independently and attempt to move into the same space, state

conflicts arise. Given the collision-free movement defined by IDM,

such conflicts may only occur whenmoving across lanes. To resolve

conflicts, a lane-merging model merges the traffic from different

roads, ensuring there is no overlapping of agents. Based on the

different road networks, suitable agent state update schemes are

applied and the user-defined conflict resolution is utilized in the

resource update phase when necessary.

Three different road networks based on real-world scenarios

are evaluated: out-tree, in-tree, and cyclic network, as shown in

Figure 5. In the out-tree network (Fig. 5a), agents diverge into

different lanes. This represents after-work traffic where the drivers

are traveling from central business districts back home. Due to the

traffic divergence, there are no state conflicts. Hence, it is possible

to apply the ordered update using a linear ordering of the lanes

based on the road network dependencies. Two-state and temporary

state update can also be applied to the out-tree network. In the

in-tree network (Fig. 5b), agents merge from multiple lanes into

a single lane. This represents before-work traffic during which

drivers travel from their homes to the central business districts.

Conflict resolution is required to maintain the state consistency

of the agents when they enter the same lane. The cyclic network

(Fig. 5c) introduces cyclic dependencies among the lanes, which

often occurs in real-world road networks. Since there is no linear

ordering of lanes, only two-state and temporary state updates can

be used.

For the experiments, the networks were configured as follows:

the out-tree and in-tree networks are tree networks comprised of

five levels, where lanes either diverge or merge. Each network con-

sists of 30 road segments. The cyclic network is a square connected

in a cycle, with five road segments in a straight line on each side.

Each road segment is 2000 meters long. The time-step size 𝜏 for

agent updates was set to 0.6 seconds. A total of 10,000 agents were

simulated, terminating once agents have exited the network. For

each road network, all update schemes are verified to produce the

same simulation results. Performance evaluations are done for both

serial and parallel execution of ordered, two-state and temporary

state updates. As the dependencies among the agents do not change

during the simulation, the serial execution order was determined

offline.

Performance results are evaluated by the speedup relative to

single thread execution of two-state update. Figure 6 shows the

speedup on different road networks. The performance results of

the out-tree network are shown in Figure 6a. For serial execution,

ordered update achieves the best performance (1.25×) as the execu-
tion order can be computed offline. Temporary state update exhibits

better serial performance (1.2×) than two-state update (1.12×) as
two-state update requires additional memory transfers.

For parallel execution, ordered update achieves a speedup of

only 1.22× for two threads. There is a slowdown for ordered update

using more than two threads mainly due to the limited parallelism

in parts of the out-tree network. For example, in Figure 5a, the first

lane can only be executed by one thread. As the lanes branch out,

more lanes can be processed in parallel. On the other hand, two-

state update outperforms temporary state update, as temporary

state update requires an additional global synchronization among

the threads. Parallel execution of two-state and temporary state

updates achieves a speedup using two or more threads, with the

best speedup of 2.01× and 1.87× respectively using six threads. The
speedup decreases beyond six threads due to the cache conflicts

among the NUMA cores. A slowdown is observed beyond 14 threads

for two-state update and beyond 12 threads for temporary state

update.

The performance results of the in-tree network are shown in

Figure 6b. The in-tree network shows similar serial performance

characteristics as the out-tree network (ordered update at 1.16×,
two-state update at 1.03×, temporary state update at 1.07×). Parallel
execution of ordered update shows a slowdown when more than

two threads are used. Both two-state and temporary state update

exhibit a speedup with more than two threads, the maximum be-

ing 2.79× and 2.55× respectively. The speedup decreases beyond

8 threads. As the agents enter the in-tree network through the

leaf edges, there are more agents in the network which increases

the workload per road compared to the out-tree network. Ordered

update faces limited parallelism due to tree structure. However,

better parallel performance can be observed for two-state and tem-

porary state updates as the agents can be executed in parallel (see

Algorithms 2 and 3).

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

64

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
p

ee
d

u
p

Two-state Update

Temp. State Update

Ordered Update

(a) Speedup on the out-tree road network.

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p Two-state Update

Temp. State Update

Ordered Update

(b) Speedup on the in-tree road network.

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Threads

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

S
p

ee
d

u
p

Two-state Update

Temp. State Update

(c) Speedup on the cyclic road network.

Figure 6: Speedup on the road networks relative to single
thread execution of two-state update.

The performance results of the cyclic network are shown in

Figure 6c. Temporary state update achieves a maximum parallel

speedup of 2.73× using six threads, but the speedup decreases be-

yond six threads. Overall, two-state update outperforms temporary

state update, with the best speedup over serial execution at 3.03×
using six threads. As with temporary state update, the speedup

decreases when more than six threads are used, which again is in

accordance with the processor’s NUMA design.

In summary, ordered update exhibited the highest serial perfor-

mance compared to other state update schemes. Generally, two-

state update achieves the highest parallel performance compared

0 2 4 6 8 10 12 14 16 18 20 22

Number of Threads

0

2

4

6

8

10

S
p

ee
d

u
p

No (Execution-ordered)

Decentralized (Iterative)

Decentralized (Non-Iterative)

Centralized (Pull)

Centralized (Push)

Figure 7: Performance evaluation of conflict resolution
methods in Schelling’s segregation model.

to other state update schemes in this scenario. Compared to tem-

porary state update, two-state update is simpler to implement but

requires twice the memory to store the states, resulting in more

memory transfers. In contrast, temporary state update uses only a

single set of states but requires global synchronization.

5.2 Segregation Model
Schelling’s Segregation model simulates the self-segregation of two

populations of agents on a grid over time [27]. For each time-step,

the agents may observe and move within a limited neighborhood,

e.g., of 3 × 3 cells. This simulator is implemented based on [41],

but it does not consider fairness in this evaluation. During the

agent update phase, agents determine a happiness value based on

the number of agents from the same population group in their

neighborhood. If the happiness is below a threshold, the agent

decides to move to a new location. During the resource update
phase, the agents compete with other agents moving to the same

location.

Each grid cell stores either the identifier of the agent in the cell

or an empty value. Since an agent’s population group does not

change throughout the simulation, it is not stored as part of the

agent’s state. Hence, agents do not contain any state. As each agent

needs to scan the agents in its neighborhood, there are dependen-

cies between an agent and its neighboring agents. Since there can

be cyclic dependencies between the agents, two-state update is

applied. As this case focuses on the resolution methods, temporary

state update is not evaluated. The five resolution methods from

Table 1 are compared to address conflicts when agents compete for

cells: no coordination (execution order), decentralized coordination

(iterative and non-iterative), and centralized coordination (pull and

push). A fixed number of agents is maintained while varying the

number of threads.

The segregation is configured with the following parameters:

The percentage of populated cells is 50%. The simulation space

is a grid of about 4 million (2048 × 2048 = 2
22
) cells. The agents’

happiness threshold is set to 5. The simulation terminated after

100 time-steps. The simulations with decentralized and centralized

coordination are verified to be deterministic and produce the same

output.

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

65

Figure 7 shows the speedup of the conflict resolution methods

relative to single thread execution-ordered update. For execution-

ordered update, the speedup increases with the number of threads.

There is a dip in speedup at 14 threads as threads are assigned to

different processors. Decentralized coordination methods have a

lower speedup compared to execution-ordered update due to the

additional processing of displaced agents. Non-iterative decentral-

ized coordination is associated with less synchronization overhead,

but there may be workload imbalance among the threads. Overall,

there is no significant difference in the performance between the

iterative and non-iterative approaches. With centralized pull-based

coordination, the overhead of scanning for interested agents is too

large to achieve a speedup over the single-thread execution-ordered

update. Although centralized push-based coordination exhibits a

speedup, it is still significantly slower than the decentralized co-

ordination methods. There is an overhead of maintaining a list of

agent priorities, and multiple iterations are required if the agent is

unable to acquire its resource.

In conclusion, as is to be expected, the best performance is

achieved without coordination, which cannot guarantee determin-

ism. If determinism is required, decentralized coordination is rec-

ommended.

6 STATE UPDATE SCHEMES IN EXISTING
AGENT-BASED SIMULATORS

The state update schemes of existing agent-based simulators are

shown in Table 2. The approaches used to prevent causality viola-

tions and resolve conflicts are summarized.

Independent update has been implemented in SWAGES as asyn-
chronous update [29], which utilizes spatial information to identify

regions where the agents do not have any influence on other agents,

such that these agents can be updated concurrently.

Two-state update has been implemented in two simulators. In

FLAMEGPU, agents communicate through so-calledmessage boards

representing the states, where the agents read from one board and

write to another board to avoid synchronization for every write [3].

A continuous space ABS (CS-ABS) for GPU stores the agent states

in two arrays, in which agents read data from the first array and

write their updated state to the second array [14].

The other simulators implement temporary state updates.

HLA_RePast update the agents in the local LPs at every time-step

before updating the shared states across the LPs [4]. D-Mason di-

vides each simulation step into two phases: Sense and Think-Act [5].
SWAGES can also be executed synchronously which collects the

current state first before updating the agents [29]. Pandora sepa-

rates the Sense-Think stage from the Act stage [26]. InMASS CUDA,
each agent first reads the neighboring agent states into an array,

then updates all the agents [13]. eVolutus processes the agents syn-
chronously in an arbitrary order, which executes the Sense-Think
stage first, then executes the Act stage [20].

Only three of the simulators (HLA_RePast, FLAME GPU, and

MASS CUDA) implement methods to resolve agent state conflicts.

HLA_RePast supports conflict resolution using two mechanisms:

mutual exclusion (execution-ordered) only allows one agent to per-

form the update, while cumulative update combines the updates

from multiple agents [17]. FLAME GPU uses a parallel centralized

pull-based coordination where the resources (i.e., unoccupied cells)

read all requests to determine the interested agents [23]. MASS
CUDA supports three conflict resolution approaches: (1) execution-

order, (2) smallest priority, and (3) user-provided.

7 CONCLUSION
Causality and consistency are key properties to achieve correctness

in synchronous time-driven ABS. To reason about the ability of

different state update schemes to satisfy these properties, we pro-

posed a semantic model for synchronous time-driven ABS. Based

on the semantic model, different implementations of the state up-

date schemes were analyzed to identify necessary conditions to

achieve correctness in the simulation results.

We constructed state access graphs to analyze the dependencies

of the state updates within a logical time-step. The dependencies

between the agents were categorized into independent, acyclic,

and cyclic dependencies. The different agent state update schemes

were evaluated on a shared-memory machine using a traffic simu-

lation where the dependencies between the agents can be explicitly

defined through the road network structure.

The choice of agent state update scheme depends on the simu-

lation scenario. For simulations where the dependencies do not

change through the simulation, ordered update was shown to

achieve the best serial performance. However, in the general case,

when dependencies are dynamic, e.g., the agents move around in

the environment and interact with their neighbors, two-state or

temporary state update achieved better parallel performance.

Both two-state and temporary state updates are easily paral-

lelizable on shared memory processors, with different strengths

and weaknesses. Two-state update is straightforward to implement

while requiring more memory and performing more memory trans-

fers. Temporary state update is more complex to implement and

requires global synchronization. Evaluations show that the relative

performance of these methods depends on the simulation scenario.

Agent state update schemes only ensure causality. State conflicts

resulting from the agents’ competition for limited resources must

be solved separately. A common rule is proposed for state con-

flict resolution that can be applied to a wide range of simulations,

such as spatial simulations. Based on this rule, three coordination

mechanisms are described with five conflict resolution methods.

The performance of these resolution methods was evaluated using

Schelling’s segregation.

While the best performance was achieved when resolving con-

flicts without any coordination, the resulting simulation output

cannot be guaranteed to be deterministic. Determinism is required

to reproduce a given simulation output, e.g., for verification and val-

idation. Hence, decentralized coordination is recommended, which

generally outperforms centralized coordination.

In future work, a detailed memory analysis of the case studies

can provide a closer understanding of the memory demands of

the update schemes. The analysis of conflict resolution schemes

can also be expanded to different update rules, e.g., simulations in

which multiple agents may update a resource at the same time. The

analysis of ABS implemented in optimistic discrete-event simulators

can also be considered. This will require extending the state access

graph to a temporal graph spanning a period of logical time.

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

66

Table 2: Causality violation prevention and state conflict resolution in existing ABS

Simulator Causality Violation Prevention State Conflict Resolution

CS-ABS [14] Two-state update -

D-Mason [5] Temporary state update -

eVolutus [20] Temporary state update -

FLAME GPU [3] Two-state update Centralized coordination (Pull)

MASS CUDA [13] Temporary state update Execution-ordered, agent priority, and user-provided

Pandora [26] Temporary state update -

HLA_RePast [4] Temporary state update Execution-ordered, or cumulative update

SWAGES [29] Synchronous – Temporary state update -

Asynchronous – Independent update

ACKNOWLEDGMENT
Financial support was provided by the Deutsche Forschungsge-

meinschaft (DFG) research grant UH-66/15-1 (MoSiLLDe).

REFERENCES
[1] Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll.

2018. Fast-Forwarding Agent States to Accelerate Microscopic Traffic Simulations.

In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation - SIGSIM-PADS ’18. ACM Press, Rome, Italy, 113–124. https:

//doi.org/10.1145/3200921.3200923

[2] Hugues Bersini and Vincent Detours. 1994. Asynchrony Induces Stability in

Cellular Automata Based Models. In Artificial Life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems. The
MIT Press, Cambridge, Massachusetts, USA. https://doi.org/10.7551/mitpress/

1428.001.0001

[3] Simon Coakley, Marian Gheorghe, Mike Holcombe, Shawn Chin, David Worth,

and Chris Greenough. 2012. Exploitation of High Performance Computing in

the FLAME Agent-Based Simulation Framework. In 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012 IEEE
9th International Conference on Embedded Software and Systems. IEEE, Liverpool,
538–545. https://doi.org/10.1109/HPCC.2012.79

[4] Nicholson Collier and Michael North. 2013. Parallel Agent-Based Simulation

with Repast for High Performance Computing. SIMULATION 89, 10 (Oct. 2013),

1215–1235. https://doi.org/10.1177/0037549712462620

[5] Gennaro Cordasco, Francesco Milone, Carmine Spagnuolo, and Luca Vicidomini.

2014. Exploiting D-Mason on Parallel Platforms: A Novel Communication Strat-

egy. In Euro-Par 2014: Parallel Processing Workshops. Springer, Porto, Portugal,
407–417.

[6] Nuno Fachada, Vitor V. Lopes, Rui C. Martins, and Agostinho C. Rosa. 2017.

Parallelization Strategies for Spatial Agent-Based Models. International Journal of
Parallel Programming 45, 3 (June 2017), 449–481. https://doi.org/10.1007/s10766-

015-0399-9

[7] Jacques Ferber and Jean-Pierre Miiller. 1996. Influences and Reaction : A Model

of Situated Multiagent Systems. In Proceedings of Second International Conference
on Multi-Agent Systems (ICMAS-96). The AAAI Press, Kyoto, Japan, 72–79.

[8] Richard M. Fujimoto. 2000. Parallel and Distributed Simulation Systems. Vol. 300.
Wiley New York, New York, NY, USA.

[9] Jack Harris and Matthias Scheutz. 2012. New Advances in Asynchronous Agent-

Based Scheduling. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA). World Comp, Athens,

7.

[10] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.

Physical review E 51, 5 (1995), 4282.

[11] David R. C. Hill, Claude Mazel, Jonathan Passerat-Palmbach, and Mamadou K.

Traore. 2013. Distribution of Random Streams for Simulation Practitioners.

Concurrency and Computation: Practice and Experience 25, 10 (2013), 1427–1442.
https://doi.org/10.1002/cpe.2942

[12] Nick Jennings. 1994. Cooperation in industrial multi-agent systems. Series in
Computer Science, Vol. 43. World Scientific, New Jersey, USA. https://doi.org/

10.1142/2257

[13] Lisa Kosiachenko, Nathaniel Hart, and Munehiro Fukuda. 2019. MASS CUDA: A

General GPU Parallelization Framework for Agent-Based Models. In Advances in
Practical Applications of Survivable Agents and Multi-Agent Systems: The PAAMS
Collection (Lecture Notes in Computer Science). Springer International Publishing,
Cham, 139–152. https://doi.org/10.1007/978-3-030-24209-1_12

[14] Xiaosong Li, Wentong Cai, and Stephen John Turner. 2016. Supporting Efficient

Execution of Continuous Space Agent-Based Simulation on GPU. Concurrency
and Computation: Practice and Experience 28, 12 (2016), 3313–3332. https://doi.

org/10.1002/cpe.3808

[15] Henry X. Liu, Wenteng Ma, R. Jayakrishnan, and Will Recker. 2005. Distributed

Large-Scale Network Modeling with Paramics Implementation. In Proceedings.
2005 IEEE Intelligent Transportation Systems, 2005. IEEE, Vienna, Austria, 232–238.
https://doi.org/10.1109/ITSC.2005.1520053

[16] Mikola Lysenko and RoshanM. D’Souza. 2008. A Framework forMegascale Agent

Based Model Simulations on Graphics Processing Units. Journal of Artificial
Societies and Social Simulation 11, 4 (2008), 10.

[17] Rob Minson and Georgios K. Theodoropoulos. 2008. Distributing RePast Agent-

Based Simulations with HLA. Concurrency and Computation: Practice and Experi-
ence 20, 10 (2008), 1225–1256. https://doi.org/10.1002/cpe.1280

[18] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Wolfgang E. Nagel. 2015.

Cache Coherence Protocol and Memory Performance of the Intel Haswell-EP

Architecture. In 2015 44th International Conference on Parallel Processing. IEEE,
Beijing, China, 739–748. https://doi.org/10.1109/ICPP.2015.83

[19] James J Nutaro and Hessam S Sarjoughian. 2003. A unified view of time and

causality and its application to distributed simulation. In Summer Computer
Simulation Conference. Citeseer, Montreal, Quebec, Canada, 419–425.

[20] Kamil Piętak and Paweł Topa. 2018. Towards Multi-Agent Simulations Ac-

celerated by GPU. In Parallel Processing and Applied Mathematics (Lecture
Notes in Computer Science). Springer International Publishing, Cham, 456–465.

https://doi.org/10.1007/978-3-319-78054-2_43

[21] Steven F. Railsback and Volker Grimm. 2019. Agent-Based and Individual-Based
Modeling: A Practical Introduction. Princeton university press, Princeton, New

Jersey, USA.

[22] Craig W. Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral

Model. In Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’87). Association for Computing Machinery,

New York, NY, USA, 25–34. https://doi.org/10.1145/37401.37406

[23] Paul Richmond. 2014. Resolving Conflicts between Multiple Competing Agents

in Parallel Simulations. In Euro-Par 2014: Parallel Processing Workshops, Vol. 8805.
Springer International Publishing, Cham, 383–394. https://doi.org/10.1007/978-

3-319-14325-5_33

[24] Patrick F. Riley and George F. Riley. 2003. SPADES - a Distributed Agent Simu-

lation Environment with Software-in-the-Loop Execution. In Proceedings of the
2003 Winter Simulation Conference, Vol. 1. IEEE, New Orleans, LA, USA, 817–825

Vol.1. https://doi.org/10.1109/WSC.2003.1261500

[25] Robert Ronngren and Michael Liljenstam. 1999. On Event Ordering in Par-

allel Discrete Event Simulation. In Proceedings of 13th Workshop on Parallel
and Distributed Simulation (PADS 99). IEEE, Atlanta, Georgia, USA, 38–45.
https://doi.org/10.1109/PADS.1999.766159

[26] Xavier Rubio-Campillo. 2014. Pandora: A Versatile Agent-Based Modelling

Platform for Social Simulation. In Proceedings of SIMUL 2014. IARIA, Nice, France,
6.

[27] Thomas C. Schelling. 1971. Dynamic Models of Segregation. The Journal of Math-
ematical Sociology 1, 2 (July 1971), 143–186. https://doi.org/10.1080/0022250X.

1971.9989794

[28] Matthias Scheutz and Paul Schermerhorn. 2006. Adaptive Algorithms for the

Dynamic Distribution and Parallel Execution of Agent-Based Models. J. Parallel
and Distrib. Comput. 66, 8 (Aug. 2006), 1037–1051. https://doi.org/10.1016/j.jpdc.

2005.09.004

[29] Matthias Scheutz, P. Schermerhorn, R. Connaughton, and Aaron Dingler. 2006.

SWAGES - An Extendable Distributed Experimentation System for Large-Scale

Agent-Based Alife Simulations. In Proceedings of Artificial Life X. MIT Press,

Bloomington, USA, 412–419.

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

67

https://doi.org/10.1145/3200921.3200923
https://doi.org/10.1145/3200921.3200923
https://doi.org/10.7551/mitpress/1428.001.0001
https://doi.org/10.7551/mitpress/1428.001.0001
https://doi.org/10.1109/HPCC.2012.79
https://doi.org/10.1177/0037549712462620
https://doi.org/10.1007/s10766-015-0399-9
https://doi.org/10.1007/s10766-015-0399-9
https://doi.org/10.1002/cpe.2942
https://doi.org/10.1142/2257
https://doi.org/10.1142/2257
https://doi.org/10.1007/978-3-030-24209-1_12
https://doi.org/10.1002/cpe.3808
https://doi.org/10.1002/cpe.3808
https://doi.org/10.1109/ITSC.2005.1520053
https://doi.org/10.1002/cpe.1280
https://doi.org/10.1109/ICPP.2015.83
https://doi.org/10.1007/978-3-319-78054-2_43
https://doi.org/10.1145/37401.37406
https://doi.org/10.1007/978-3-319-14325-5_33
https://doi.org/10.1007/978-3-319-14325-5_33
https://doi.org/10.1109/WSC.2003.1261500
https://doi.org/10.1109/PADS.1999.766159
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1016/j.jpdc.2005.09.004
https://doi.org/10.1016/j.jpdc.2005.09.004

[30] Birgitt Schönfisch and André de Roos. 1999. Synchronous and Asynchronous

Updating in Cellular Automata. Biosystems 51, 3 (Sept. 1999), 123–143. https:

//doi.org/10.1016/S0303-2647(99)00025-8

[31] Yoav Shoham and Moshe Tennenholtz. 1995. On social laws for artificial agent

societies: off-line design. Artificial intelligence 73, 1-2 (1995), 231–252.
[32] David Strippgen and Kai Nagel. 2009. Using Common Graphics Hardware for

Multi-Agent Traffic Simulation with CUDA. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (Simutools ’09). ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering),

Rome, Italy, 1–8. https://doi.org/10.4108/ICST.SIMUTOOLS2009.5666

[33] Wen Jun Tan, Philipp Andelfinger, Wentong Cai, Alois Knoll, Yadong Xu, and

David Eckhoff. 2020. Multi-thread State Update Schemes for Microscopic Traffic

Simulation. In 2020 Winter Simulation Conference (WSC). IEEE, USA, 1–12.
[34] Catherine Tessier, Laurent Chaudron, and Heinz-Jürgen Müller. 2006. Conflicting

Agents: Conflict Management in Multi-Agent Systems. Vol. 1. Springer Science &
Business Media, Berlin, Germany.

[35] Jonathan Thaler and Peer-Olaf Siebers. 2019. The Art of Iterating: Update-

Strategies in Agent-Based Simulation. In Social Simulation for a Digital Society:
Applications and Innovations in Computational Social Science (Springer Proceedings
in Complexity). Springer International Publishing, Cham, 21–36. https://doi.org/

10.1007/978-3-030-30298-6_3

[36] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested Traffic

States in Empirical Observations and Microscopic Simulations. Physical Review

E 62, 2 (Aug. 2000), 1805–1824. https://doi.org/10.1103/PhysRevE.62.1805

[37] Jur van den Berg, Stephen J Guy, Jamie Snape, Ming C Lin, and Dinesh Manocha.

2011. Rvo2 library: Reciprocal collision avoidance for real-time multi-agent

simulation.

[38] Tom Wagner, John Phelps, and Valerie Guralnik. 2004. Centralized VS. Decen-

tralized Coordination: Two Application Case Studies. In An Application Science
for Multi-Agent Systems, Thomas A. Wagner (Ed.). Vol. 10. Kluwer Academic

Publishers, Boston, 41–75. https://doi.org/10.1007/1-4020-7868-4_4

[39] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.

2018. Exploring Execution Schemes for Agent-Based Traffic Simulation on

Heterogeneous Hardware. In 2018 IEEE/ACM 22nd International Symposium on
Distributed Simulation and Real Time Applications (DS-RT). ACM, Madrid, Spain,

1–10. https://doi.org/10.1109/DISTRA.2018.8601016

[40] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.

2019. A Survey on Agent-Based Simulation Using Hardware Accelerators. Com-
put. Surveys 51, 6 (Jan. 2019), 131:1–131:35. https://doi.org/10.1145/3291048

[41] Mingyu Yang, Philipp Andelfinger, Wentong Cai, and Alois Knoll. 2018. Evalua-

tion of Conflict Resolution Methods for Agent-Based Simulations on the GPU.

In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (SIGSIM-PADS ’18). ACM, New York, NY, USA, 129–132.

https://doi.org/10.1145/3200921.3200940

Session 2: Agent-Based Models SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

68

https://doi.org/10.1016/S0303-2647(99)00025-8
https://doi.org/10.1016/S0303-2647(99)00025-8
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5666
https://doi.org/10.1007/978-3-030-30298-6_3
https://doi.org/10.1007/978-3-030-30298-6_3
https://doi.org/10.1103/PhysRevE.62.1805
https://doi.org/10.1007/1-4020-7868-4_4
https://doi.org/10.1109/DISTRA.2018.8601016
https://doi.org/10.1145/3291048
https://doi.org/10.1145/3200921.3200940

	Abstract
	1 Introduction
	2 Background
	2.1 Semantics of Asynchronous and Synchronous Updates
	2.2 State Causality
	2.3 State Consistency
	2.4 Determinism

	3 Models
	3.1 Semantic Model for Synchronous Time-driven Agent-based Simulation
	3.2 State Access Graph

	4 Implementations
	4.1 Agent State Update Schemes
	4.2 State Conflict Resolution Methods

	5 Performance Evaluation
	5.1 Traffic Simulation
	5.2 Segregation Model

	6 State Update Schemes in Existing Agent-based Simulators
	7 Conclusion
	References

