Department of Informatics
Technical University of Munich

Guided Research - Project Report
Optimization of Quantum Circuits
using Diagrammatic Calculi

Fabian Putterer

Department of Informatics
Technical University of Munich

Guided Research - Project Report
Optimization of Quantum Circuits
using Diagrammatic Calculi

Optimierung von Quantenschaltkreisen mithilfe
diagrammatischer Kalkule

Author: Fabian Putterer
Supervisor: Prof. Dr. Christian Mendl
Advisor: Qunsheng Huang

Submission Date: October 18, 2021

Contents

1 Introduction

1.1 Quantum Optimization
12 TheZX-Calculus

1.3 Optimization using the ZX-Calculus

2 Related Work

3 The ZX-Calculus

3.1 Generators e e e e,
32 RewriteRules e

4 Implementation

4.1 Toolset e e e
42 Quantum Circuits e
43 Diagrams
4.4 Visualization

5 Circuit Translation

51 Translation Algorithm

6 Transform Validation
6.1 Validation using the ZX-Calculus

6.2 Validation using Tensor Contraction

6.3 Implementation o

7 Matching and Rewriting

71 RewriteRules
72 Matching L
73 Rewriting.
7.4 Implementation of the ZX-Calculus Rules

8 Optimization

81 Optimization.
82 Extraction e e

9 Conclusion

9.1 Furtherwork. e

Bibliography

Appendix - Software Documentation

1 Test Cases o v v o e e e

iii

N R R

Q1 o~

O NN

1 Introduction

1.1 Quantum Optimization

In Quantum Computing, computations are commonly expressed using circuits. Those
consist of multiple gates followed up by measurement operations that yield the final
results. As these gates usually represent a unitary transformation, the entire circuit there-
fore also just represents a unitary transformation. There are multiple different ways to
express this transformation and thereby multiple different circuits that perform the same
computation. Those different representations might have vastly different sizes. As quan-
tum computers are still very susceptible to errors, it is crucial to minimize the number of
computations performed and therefore the number of gates in the circuit while maintain-
ing the equality of the circuit and results.

Multiple different approaches can be used to optimize a circuit. The most common ap-
proach is to attempt to rewrite the circuit directly. This can be done by for example
exploiting some mathematical properties of the gates involved, like the Hadamard gate
being its own inverse or the ability to shift around and exchange certain gates. Another
approach is using graphical (diagrammatic) representations including rewrite rules that
allow transforming equivalent representations into each other. One of those so-called
diagrammatic calculi is the ZX-Calculus, which this report will focus on mainly.

1.2 The ZX-Calculus

The ZX-Calculus is a graphical notation for representing linear maps between quantum
states as diagrams. It generalizes quantum circuits by also allowing non-unitary transfor-
mations to be represented. Additionally, the calculus contains so-called rewrite rules that
allow transforming different diagrams into each other while maintaining the equality of
the underlying linear map.

1.3 Optimization using the ZX-Calculus 2

1.3 Optimization using the ZX-Calculus

A circuit can be translated into a diagram representing the same unitary map. The rewrite
rules can then be used to obtain a simplified version of the diagram that represents the
same transformation. Afterward, a circuit can be extracted from the new diagram to
arrive at an optimized version of the original circuit.

So far, most other research has focused on a specific optimization procedure using a few
algorithmic rules. This work provides an implementation of the presented flow of oper-
ation:

1. Importing a circuit from OpenQASM

2. Translating the circuit to a diagram

3. Optimizing the diagram

4. Validating all performed transformations

It aims at providing a generalized framework for using any ruleset/calculus to perform,
compare and evaluate optimization using diagrammatic calculi. Further research is re-
quired to extract a circuit from any resulting, arbitrary diagram.

First, a data structure for representing and working with circuits and diagrams as well
as importing them from the common OpenQASM notation is proposed. An approach to
diagram visualization is presented. Afterward, an algorithm for circuit to diagram trans-
lation is described. Then, validation approaches for circuits and diagrams are discussed
and implemented. Lastly, a matching and rewriting system for applying an arbitrary
ruleset for optimization of any diagram is proposed and implemented. The used rewrite
rules do not have to be manually written but can be specified as a static rule data struc-
ture declaring the desired patterns before and after rewriting as well as their properties.
Correctness of the rewriter is shown based on the default ZX-Calculus rules using unit
testing and the validity checker developed beforehand.

2 Related Work

Duncan et al.[9] describe a full optimization procedure for quantum circuits using the ZX-
Calculus. After translating the circuit to a diagram, they additionally convert it into a so-
called graph-like state. The resulting diagram then only contains Z spiders, no self-loops
or parallel wires and all wires contain a Hadamard gate. The optimization procedure is
using only a few selected rules, mainly based on local complementation and pivoting.
This yields an optimized diagram with all X spiders eliminated. All non-Clifford spiders
will then be present only as the so-called "inner spiders". They present a circuit extraction
procedure for Clifford-only and general circuits which is based on assumptions fulfilled
by the used optimization procedure. It is therefore not applicable to any general diagram
yet.

This optimization procedure is implemented by Kissinger and van de Wetering[12]. Their
work, called PyZX, deals with implementation-related issues like the representation of
circuits, removal of self-loops and parallel wires as well as the optimization procedure
using matching and rewriting. They demonstrate successful circuit extraction based on
the work by Duncan et al.[9] by implementing the simplification strategy and extending
the extraction algorithm. They implement all matchers and rewriters for simplification
manually without using a generalized framework.

There have been other attempts at generalizing extraction, like the work by Backens et
al.[5], but they require additional properties like preserving so-called "gflow" during op-
timization. So far there is no known procedure that can reconstruct a circuit from any
given ZX-diagram.

Therefore research has also concentrated on other approaches for exploiting the insight
gained from the ZX-Calculus for circuit optimization. In their work on T-count reduction,
Kissinger and van de Wetering[13] describe how to optimize the circuit directly. Based on
the ZX-diagram representation, they gain information on possible rewrites which they
exploit using a trick called "phase teleportation” to modify the original circuit directly,
thereby sidestepping the extraction problem.

The goal of this work is to provide a generalized framework for reading and translating
circuits and optimizing the resulting diagrams using an arbitrary user-defined ruleset.
Compared to a fixed set of rules that have to be manually implemented as used in other
research, the presented algorithms allow specifying rewrite rules based on their source
and target structures in the resulting diagrams. Matchers and rewriters for applying them
and their inverse are then automatically generated. This allows optimizing ZX-diagrams
with different types of rulesets and calculi. Further research will be required on how to
extract a circuit from an arbitrary diagram.

3 The ZX-Calculus

The ZX-Calculus is a graphical notation for representing linear maps between states in-
troduced by Coecke and Duncan [6]. It generalizes quantum circuits, which are only able
to represent unitary maps between quantum states using the so-called ZX-diagrams. An
example for a quantum circuit and an equivalent ZX-diagram can be seen in Figure 3.1

The ZX-Calculus, being a calculus, also contains rewrite rules. Those allow transforming
one diagram into another while maintaining the equality of the represented linear map.
They can be used for deriving and proving equalities of different diagrams and therefore
in extension circuits.

alo] M
L1

ql1] Y I
O U

(a) The quantum circuit (b) The ZX-diagram

Figure 3.1: A quantum circuit and an equivalent ZX-diagram

3.1 Generators

A ZX-diagram is a type of tensor network composed of a few basic building blocks called
generators. The most fundamental of those generators is the spider, which got its name
due to its legs. All spiders have a color, green or red, determining which operator they
represent. Additionally, each spider has a phase. If the phase is not specified, it is as-
sumed to be 0 as can be seen in Figure 3.1b.

The other basic building blocks of ZX-diagrams are wires. Wires connect spiders to each
other. They always have two ends, although those ends do not necessarily have to be
connected to a node. An open end represents a boundary of the map where it can be
contracted with another map or which can be used as an in- or output.

In most literature, another generator can be found, the Hadamard node. It is usually in-
dicated by a yellow rectangle. Technically it is not a part of the mathematical definition
of the ZX-Calculus but can be generated using three spiders as part of the Euler decom-
position of the Hadamard gate. It can be used in visualizations as a shorthand.

3.2 Rewrite Rules 5

0)®" s [0)®™
n m 1)®" 1y giar[1)Om
else — 0

O™) ®™
n m {[)®" el) O™

else — 0

Figure 3.2: Definition of the tensor represented by a spider with a phase of a

3.2 Rewrite Rules

The rewrite rules specify modifications that can be applied to diagrams while preserving
the equality of the underlying linear map. They can be applied to subgraphs of the dia-
gram by matching them with one side of the rule and replacing the affected part of the
diagram with the other side. This can be seen in Figure 3.3 for the Bialgebra Law B2 rule.

(M M

= 00

Figure 3.3: An application of the B2 rule to a ZX-diagram

N

When used to rewrite diagrams, these rules can introduce a constant phase offset which
can be ignored when optimizing diagrams. Such diagrams are therefore considered
equivalent in this work and the rules usually dealing with those are not listed. The ruleset
of the ZX-Calculus[6] can be found in Figure 3.4.

Additional rules, like the self inverse property of the Hadamard gate, can and will be
added in other contexts but can also be derived by using the other rules of the calculus.

3.2 Rewrite Rules

Figure 3.4: The rewrite rules of the ZX-Calculus

>5—(B:<—O—

a+ B
(a) Spider rule S1 (b) Spider rule S2

T T)
o—
o—
(c) Copy rule Bl (d) Bialgebra law B2 (e) Hopf law H
T T)
- «
<l e
(f) m-copy rule K1 (g) m-commutation rule K2 (h) Color rule C
—D—
T
2 w2 w2

(i) Euler decomposition of
the Hadamard gate

4 Implementation

As part of this research project, the data structures, processing methods, and algorithms
presented in this report were implemented and evaluated. More details on how to use
the implementation can be found in Appendix 9.1.

4.1 Toolset

Quantum gates, circuits, and diagrams usually represent underlying numerical and lin-
ear structures like matrices and tensors. To ease working with those, the Python[19] pro-
gramming language was chosen. It supports a large collection of libraries, e.g. scipy[11]
and numpy[10], that help in dealing with scientifically oriented, mathematical concepts.
Additionally, this ensures the possible interoperability with other projects in the field
which are often built based on Python as well.

One of the main drawbacks of this choice of language is related to performance. Other
compiled languages that produce native executables have faster execution speeds com-
pared to Python. This can be alleviated though by shifting the most intensive algorithms
into a native implementation and just interfacing them using slower Python. This is done
in this project’s implementation by using graph-tool[3] for working with graphs which
offloads the very costly subisomorphism search in graphs to a native executable.

The implementation supports working in an interactive environment like IPython[16]
and Jupyter[15] as well as a standalone application window that can be used to interact
with circuits and diagrams. PyGTK][4] is used as the windowing toolkit.

4.2 Quantum Circuits

Quantum circuits are stored based on their quantum and classical registers as well as in-
dividual components, the gates, barriers, and measurement operators. As they are quite
different from graphs, a graph library is not used. Instead, all components are simply
stored alongside each other and get assigned a "step" which represents its temporal loca-
tion in the circuit. When a new component is added, all of the registers it will affect are
searched for the largest step they were last involved in and the component is placed at
the step after that. This ensures that there is only one component acting on each register
at a time while maintaining the same order they were added in.

O ® N G e W N e

—_
o

N G W =

4.2 Quantum Circuits 8

4.2.1 OpenQASM

Using the circuit structure defined above, it is possible to define and process a variety
of quantum circuits. They can then be used for testing and benchmarking, allowing
different optimization strategies to be evaluated. However, manually defining all cir-
cuits makes comparisons with other implementations complicated. All circuits as well
as algorithms that generate entire families of benchmarking circuits would have to be
transcribed into a different format. To simplify this process, parsing a circuit using a
standardized notation used in lots of existing research benchmarks is desirable.

It was therefore decided to add support for reading circuits from files using the Open
Quantum Assembly Language v2 (OpenQASM) as introduced by Cross et al. [8]. This
provides a standardized way for importing sets of circuits as well as for outputting auto-
matically generated circuits for benchmarking.

Listing 4.1: A circuit preparing a Bell state described in OpenQASM

OPENQASM 2.0;
include "gelibl.inc";

gqreg qflz2];
creqg cl[2];

h g[0];

cx ql[0],qll];

measure g[0] -> c[0];
measure gl[l] -> c[1l];

OpenQASM aims to be a simple, assembly-like language for defining quantum circuits.
It is easy to write and understand. Technically it distinguishes itself quite a lot from a
regular assembly language for a classical computer though. Additionally to containing
a few basic gates, it supports defining new gates and therefore instructions which can
themselves be composed of more self-defined gates. Those gates can use parameters
that can be combined using unitary and binary operators, thereby forming an algebraic
system. Such a self-defined gate as present in the standard library can be seen in Listing
4.2 It therefore requires a different approach for parsing compared to traditional assembly
which can be read from top to bottom while executing each command step by step.

Listing 4.2: The controlled Z rotation (CRZ) gate from gelibl.inc []

gate crz (lambda) a,b
{
ul (lambda/2) b;
cx a,b;
ul (-lambda/2) b;
cx a,b;
}
Parsing

To simplify processing, ANTLR[1] was used to automatically read in OpenQASM-based
circuits based on a specified grammar.

4.3 Diagrams 9

Most commonly used gates are not part of the actual OpenQASM specification but are
defined in gelibl.inc which is usually imported at the start of each file. This library
then defines those gates based on the unitary and controlled not gates. The implemented
OpenQASM parser of this project fully supports reading those gate definitions as well as
evaluating expressions. To simplify further processing, visualization, and translation to
ZX-diagrams though, the H, X, Y, Z, S, T gatesarehard-coded and detected in the
parser.

4.3 Diagrams

To simplify the representation of diagrams in memory, special boundary generators which
are not part of the ZX-Calculus itself have been used in this work to denote in- and out-
puts. Additionally, Hadamard gates are not stored as generators. Instead, each wire is
given a property specifying if it contains a Hadamard gate. This reduces the expressive-
ness of the stored diagrams as it removes the ability to add multiple Hadamard gates
sequentially. It does not affect the equivalence of the underlying map or the processing
algorithms though, as multiple Hadamard gates just cancel themselves. This property
will be indicated in visualizations by using blue color as can be seen in Figure 4.1. This
representation is based on the work by Kissinger and van de Wetering in PyZX[12, p.
231].

The ZX-Diagrams themselves could be stored in the implementation by using a simple
graph containing some node-based properties. To speed up processing as well as ease the
computation of graph subisomorphisms used in the matcher (chapter 7) though, a library
is used for storing and dealing with diagram graphs. In this case, graph-tool[3] was
chosen. It is used to store the underlying graph of the diagram, using vertices as spiders
and undirected edges as wires. Additional diagram properties like color and phase are
stored separately.

Most of the rewrite rules do not require a specific color but change the color of spiders in
a certain way or require multiple spiders to have the same/different color. Therefore the
stored color may also contain a placeholder which is indicated in all figures of this report
as well as the implementation by using white and grey colors.

Graph Library

graph-tool[3] is implemented as a native library and just exposes a Python interface.
It is therefore able to maintain the performance of a native application for processing
algorithms like subisomorphism search.

It allows storing additional properties such as color and phase of a spider or the Hadamard
property of a wire in so-called PropertyMaps. Those can then also be used for the
matching procedure to ensure equality of the Hadamard property on found subgraphs.
Due to its performance-oriented implementation though, special care needs to be taken
in case of diagram manipulating algorithms that e.g. remove spiders and therefore ver-
tices from the graph. This causes all pointers to vertices and edges to be invalidated due
to their index changing.

Additionally, graph-tool allows rendering graphs using cairo[2] which simplifies
visualization as that library is also used for the rendering of circuits.

4.4 Visualization 10

Additional properties

For each vertex, multiple additional properties are stored:

* Vertex identifier: Used to identify the vertices after a rewrite as the handles used
by the graph library may have changed.

* Vertex type: Specifies whether the vertex is a spider or boundary as well as the type
of boundary or the color of the spider.

* Phase: Specifies the phase of the given spider.

* Qubit index: Indicates the qubit register this spider or boundary was placed on in
the original circuit which is useful for rendering.

Edges and therefore wires only have one property, specifying whether the wire contains
a Hadamard gate or not.

4.4 Visualization

For development, testing, and evaluation purposes it will be necessary to display and
interact with generated circuits and diagrams. The implementation therefore supports
rendering those. This allows investigating the processing steps of each algorithm or cal-
culus ruleset.

The output can be displayed as an image in an inline context within an interactive note-
book or be rendered to a standalone PyGTK window. In the case of diagrams, the second
option allows interacting with the diagram in real-time.

4.4.1 Circuit

Circuits are rendered using cairo[2] which can target an inline context as well as a
PyGTK drawing area. First, the individual quantum and classical registers are rendered.
Then, each component is added to the qubit it mainly affects. Finally, other affected
qubits like control bits and measurement targets are connected.

4.4.2 Diagram

Rendering diagrams is a bit more complicated compared to circuits. They do not have a
natural order by themselves and may be placed in any arrangement that maintains the
given graph structure without changing their meaning. Rendering this can be achieved
using functionality from the graph library.

To make working with them more intuitive, an algorithm was developed that tries to
guess the qubit each spider should belong to and therefore to align it similarly to the
original circuit.

It works by first placing the input boundary vertices based on the qubit registers that
were stored when translating the circuit into a diagram. Afterward, it places all remain-
ing spiders and boundaries one by one. In each step, it attempts to place as many spiders
as possible. Itlooks at all vertices which neighbor an already placed one and tries to place

4.4 Visualization 11

O—0O0——=0

O0—O0O——=~0
00)-+11)

Figure 4.1: A visualized diagram preparing the Bell state 7

them along with all of their placeable neighbors. A vertex is considered ready for place-
ment if all of its unplaced neighbors on other registers are placeable within the current
iteration.

This ensures spiders are placed flowing from inputs to outputs therefore maintaining the
temporal flow of the original circuit. Additionally, looking at neighbors on other qubits
aligns structures like controlled Pauli gates similarly to their placement in a quantum
circuit.

This procedure most of the time produces an intuitive image that clearly shows the struc-
ture of the rendered diagram. In some cases, however, this approach will fail and may
overlap wires therefore hiding them. To mitigate those cases and enable further investi-
gation, diagrams shown in a standalone window can also be manipulated manually.

5 Circuit Translation

To optimize a circuit that was read from OpenQASM as described in Chapter 4, it needs
to be translated into a diagram. An algorithm that achieves this is described in the fol-
lowing sections. The resulting diagram will be structured as described in Section 4.3
and therefore does not contain Hadamard generators anymore. This also automatically
removes any duplicate Hadamard gates as can be seen in Figure 5.1c.

5.1 Translation Algorithm

First, input boundaries are created for each register qubit. The algorithm maintains a
frontier that points to the generator that was last added for each register. That way any
newly added components can be added to the diagram in the correct position based on
the registers they operate on. Additionally, another map is maintained, describing the
Hadamard status of each register. When a Hadamard gate is applied to a register, the
status is flipped. When a new component is added to a register, the newly added wire
gets assigned the current Hadamard status of that wire.

Then, the algorithm proceeds through the circuit step by step. When it encounters a new
gate, it will add it to the affected registers. This is achieved by mapping them to their
current representation in the diagram based on the frontier and appending the new gen-
erators in that location. When it encounters a Hadamard gate, the Hadamard status is
flipped as described above. Gates are mapped to their corresponding ZX representations
based on the definition described by van de Wetering[18, p. 87]. The current implemen-
tation supports X, Y, Z, S, and T single-qubit gates as well as controlled X and controlled
Z gates.

After adding each component for the current step, the frontier is advanced to the newly
added generators and the correct Hadamard status is set to the wire and reset. This
continues until the entire circuit has been processed and the output boundaries can be
added, thereby completing the diagram.

5.1.1 Further Processing

The produced diagram can be further processed if desired. While the implementation
supports duplicate wires and recursive wires between spiders, a lot of simplification
strategies require them to be removed. Therefore the implementation also supports re-
solving and removing any duplicate wires between two spiders as well as recursive wires
on a single spider as described by PyZX[12]. This is achieved in part by using rewrite
rules as specified in Chapter 7, in case of self-loops by simply searching for them and
changing the phase of the affected spiders.

12

5.1 Translation Algorithm 13

glo] * A
= sl R Y

1
1

cl[o

cl[1]

(a) A quantum circuit

Ny /

(b) An equivalent translated ZX-diagram

@

),
D,
),
©

(c) A simplified diagram indicating H gates using wires and removing dupli-
cate gates

Figure 5.1: A quantum circuit getting translated into an equivalent ZX-diagram

6 Transform Validation

Using the matching and rewriting algorithms from Chapter 7, ZX-diagrams can be rewrit-
ten into different diagrams. This way the number of generators can be reduced and there-
fore the underlying circuit will be optimized. To ensure the validity of the implemented
rewrite rules, the equality of the linear map of two different diagrams needs to be vali-
dated.

Validation is also required after translating a circuit to a diagram as described in Chap-
ter 5 to ensure there were no errors in the translation and the diagram describes the same,
in this case unitary, map as the input circuit.

6.1 Validation using the ZX-Calculus

Validation and therefore proving the equality of two ZX-diagrams can be achieved by
using the ZX-Calculus itself without even looking at the represented linear map as pro-
posed by Kissinger and van de Wetering[13]. This is achieved by exploiting the property
of an inverted diagram representing the inverse linear map. Combining a diagram with
its inverted self will therefore yield a diagram representing the identity which can be
reduced to a single wire using the rules of the ZX-Calculus.

This way, the equality of two diagrams can be proven by inverting one and combining
them. If a matching and rewriting algorithm is then able to reduce the resulting diagram
to a single wire, the diagrams do indeed represent the same linear map.

The main disadvantage of this approach is that it uses the unit it is trying to test for
verification. In case the matcher or rewriter is faulty or uses an incorrect ruleset, it may be
able to prove the equality of two diagrams it just produced itself which do represent two
different linear maps. Additionally, there is no guarantee this procedure will terminate
in case it fails to find the correct transformation for reducing the diagram.

A different procedure will therefore be needed for verifying the correctness of the match-
ing and rewriting and therefore optimization algorithms. This can then also be used for
the validation of a circuit translation, as the previous technique is not able to investigate
equality between a circuit and a diagram.

6.2 Validation using Tensor Contraction

Another approach for validation is computing the represented linear maps in the form of
a tensor. This can be done for both, circuits as well as diagrams. This approach works for
comparison with any structure that represents a linear map.

In case of a circuit, obtaining the unitary map is trivial. For diagrams, a tensor contraction
can be used to obtain those linear maps. Afterward, they can be compared using some
minor tolerance to cope with numerical errors.

14

6.2 Validation using Tensor Contraction 15

6.2.1 Circuit validation

The tensor/matrix representing the unitary map of a circuit can be easily obtained by
iterating over it step by step, where a step is defined as in Section 4.2. For each time
step, the matrix representing the transform at that step is calculated and then composed
together with all other matrices in order. The only challenge is obtaining the gate unitary
matrix for arbitrary controlled gates.

For each step s € §, first, the transformations of all non controlled gates N, including the
applied gates A, as well as identities I for the qubits ¢ without a gate are collected:

Ns = {U(s,q) ‘ qgeEQAN _‘C(Q)}

As - {U(s,q) ‘ qc Q7 U(s,q) S GS}
Is = {I | qc Q) U(s,q) §é GS}

where U, ,) is the unitary applied to qubit ¢ € Q atstep s € S and C(q) indicates whether
the unitary gate is a controlled gate.

They are joined using the Kronecker product to obtain the combined, non-controlled
transformation 7, ¢ at that time step.

;o= K n

ne(AsUIg)

The controlled gate unitaries 75 = {C(, 4))|¢ € @} are obtained by summing both possible
cases for the control bit.

_ 0 1
Caa) = Cog) + Cls)
First, using the projector |0) (0| with the controlling qubit "set to |0)" and the target qubit
applying the identity.
Clog =1®...010)(0]®..0T

Secondly, using the projector |1) (1| with the controlling qubit "set to |1)" and the target
qubit applying the controlled gate.

Clog =190)(1@U;H®..01

In both cases, the projector is at the location of the control qubit and U, , at the location
of the controlled qubit. Afterward, the combined transformation at that time step can be
obtained as:

US = T;C X H C(S’q)
C(S,q)GTSC

The circuit transformation can then be found as:

7 =]]U:

SES

6.3 Implementation 16

6.2.2 Diagram validation

As a diagram is just a tensor network, tensor contraction can be used to obtain the linear
map it represents.

To ease the computational process, all red spiders are converted to green spiders using
the Hadamard rule. This simplifies the tensors used for all spiders. As the used data
structure uses a flag for each wire to store Hadamard gates, those need to be converted
back to individual gates whose tensors will be used during the contraction as well.

Afterward, the tensor for each node needs to be determined. In case of Hadamard gates,
it simply equals the 2-dimensional H matrix. Those nodes always have two adjacent
edges, one "in-" and one "output'. As H = H7, the order of those also does not matter
during contraction.

The tensor representation of all other nodes, being green spiders, is according to the ZX-
Calculus definition[18, p. 13]

1 ifig=4,=0, Yae|m] Vbe[n]
T = e ifig=j,=1, Va€[m] Vbe [n]

0 else

where n and m are the in- and output dimensions. It therefore only contains two non-
zero values. It additionally equals its transpose in any dimension due to being symmetric,
meaning the order of in- and outputs does not matter for the spiders either.

Afterward, each edge gets assigned an index. Boundary indices get negative values.
As discovered before, the dimension of contraction does not matter as all participat-
ing tensors are equal to their transpose in any dimension. We can therefore simply ob-
tain the edges connected to each tensor and compute the contraction. In this case, the
tensornetwork[17] library’s ncon function was used to achieve this.

6.3 Implementation

The current implementation supports computing tensors representing the underlying
transformation from circuits as well as diagrams. For the tensor contraction process it
uses the tensornetwork[17] library. The resulting value will be a matrix expressing the
transform from input qubits to output qubits. Equivalent transformations may differ by
a scalar factor though. This means they can not be compared directly.

One solution to checking equivalence between two representations, e.g. a circuit and a
diagram, is to generate a random input state |siy) and apply the linear transformations
U and U, to it. Afterward, all measurements using random observables Oy, ..., 0, on
the obtained states |s1) = Uj |sin), |S2) = Uz |s;) will yield equivalent results. As the
states represent a quantum state though, the sum of their squared entries, representing a
probability, will have to sum up to one. Therefore it is sufficient to compute the proba-
bilities (s;|s;) ,i € {1,2} for both states and then normalize them. The equivalence of the
resulting two vectors then corresponds to the equivalence of the compared circuits and
diagrams, taking into account numerical errors due to rounding.

7 Matching and Rewriting

One big challenge when using a calculus for automatic optimization is that applicable
rules of the calculus need to be detected and locations in the diagram where they can be
applied need to be found. The decision on which rule to apply where can then be made
by the optimization algorithm (see Chapter 8).

Afterward, the diagram needs to be rewritten by replacing or moving the individual
spiders while maintaining all their properties like color and phase as well as wires to
other components not part of the replaced rule structure.

7.1 Rewrite Rules

The matching and rewriting algorithms require a ruleset specification, like the ZX-Calculus
(see Section 7.4), which they can use for performing the actual restructuring. Those rules
have to specify the "source" graph structure to look for in the diagram, its properties,
as well as the target structure with which to replace it. Additionally, they need to spec-
ify how to apply properties gathered from the source to the new target, like the original
colors, the phases as well as the wires connecting to spiders outside of the subsection
affected by the replacement.

This allows defining an arbitrary ruleset and therefore using different calculi for imple-
menting and experimenting with different optimization strategies.

7.1.1 Rule

The rules have the following structure:

* Source structure: The source structure describing the subgraph of the diagram the
matcher should search for and that will be replaced by the rewriter.

* Target structure: The target structure describing the subgraph that will be inserted
by the rewriter when applying the rule.

¢ Variable mapping: A mapping of variables from the source to the target structure.
Variables will capture phase values from the diagram on matching and apply them
to the target on rewriting.

¢ Connecting wire mapping: A mapping of spiders from the source to the target
structure. Wires leading to diagram spiders that are not part of the rule will be
mapped to the specified target spider on a rewrite.

In case of more complicated rules like the copying rule, the connecting wire mapping
may also specify a list of target spiders for each spider in the source rule. In that case,
wires leading to the spider are distributed among the target spiders equally.

17

7.1 Rewrite Rules 18

7.1.2 Rule structure

The rule structure represents one half of the rule as being realized as a part of a diagram.
It either describes the diagram part that will be replaced (source) or the part it will be
replaced with (target).

* Spiders: The spiders that are part of this structure.

¢ Spider phases: A phase for each spider, specified by a phase expression (see Sec-
tion 7.1.3).

¢ Inner wires: The wires between spiders of this structure.
¢ Hadamard property: Which of the inner wires contain a Hadamard gate.

¢ Connecting wires: How many spiders not part of the structure is a spider con-
nected to. Can be unlimited. The number of connecting wires that will flip their
Hadamard property also has to be specified.

¢ Colors: What colors do the spiders have. Apart from the usual colors green and red,
black and white can be used to signify arbitrary, but identical/different colors. An
arbitrary color is indicated by gray.

* Variables: Variables can be used as the phases of spiders, they need to be resolved
during matching before the phases of the target structure can be determined.

7.1.3 Phase expression

Phase expressions represent the phase of a spider in the source or target structures. They
can have arbitrary or constant values or represent a variable or binary operation. Arbi-
trary or constant values are only used during matching or for directly setting the phase
value after the rewrite.

Variables will be resolved during matching while ensuring that all spiders with the same
variable have the same phase. They will then be used for determining the phase of spi-
ders of the target structure. This can be achieved by using an operation expression, which
consists of two other expressions and an operation. This allows capturing two variables
from the source part of the diagram before rewriting, summing them up, and setting the
value of a new spider from the target to their sum.

7.1.4 Inverting

For each rule, an inverted rule is automatically computed and used if desired. This is
achieved by simply exchanging source and target structures and inverting the variable
and connecting wire mappings. Sometimes it may not be possible to invert a rule or
doing so would cause a rule that matches in every possible location like S2. Those cases
need to be handled separately.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

7.2 Matching 19

7.2 Matching

The matching algorithm takes as input a diagram as well as a rule. It then searches the
diagram for occurrences of the rule’s source structure, verifies all necessary properties,
and returns the occurrence location for further processing like rewriting.

Additionally, it captures the necessary, variable properties from the matched location that
will be needed for rewriting.

1. First of all, the graph of the selected diagram is searched for subisomorphisms.
This search is performed one by one checking the properties of possible match-
ing candidates first instead of generating all subisomorphisms at once. For this,
graph-tool[3]’s implementation of the VF2 algorithm[7] is used.

Additionally, the Hadamard property of wires is also checked in this step, ensuring
equality of Hadamard gates between the diagram and source rule wires.

2. Afterward the colors and phases of the matched subgraph are checked. If they
contain wildcards like black, white, grey or a variable in case of the phase, the corre-
sponding value is noted in the rule for rewriting. Itis also used to verify that spiders
with the same color/phase in the source part of the rule match in their values.

3. Then the number of wires to "external" spiders in the original diagram connecting
to spiders of the source rule is checked. The "connecting neighbors" are noted down
by the spider in the rule they connect to for rewriting. Additionally, for each con-
necting wire, the Hadamard property is captured and combined with the number
of connecting wires to be flipped to determine if the wire after the rewrite should
contain a Hadamard gate.

4. If all properties matched, the matching subgraph of the original diagram can be
returned. Otherwise, the algorithm will reset the captured properties of the rule,
restart at step 1 and look at the next generated subgraph.

An overview of the algorithm as pseudo-code can be seen in Listing 7.1.

def match (diagram, rule):
find graph structure, including hadamards
isomorphisms = diagram.search_graph_subisomorphisms (rule)

for subgraph in isomorphisms:
check_and_resolve_spider_colors()
check_and_resolve_spider_phases|()
check_and_resolve_external_connecting _wire_count ()
determine_connecting_wire_hadamard_property ()

if all matched:

return subgraph # containing resolved properties
else:

rule.reset ()

return NotFound

1
2
3
4
5
6
7
8

7.3 Rewriting 20

7.3 Rewriting

The rewrite algorithm can be performed after the matching algorithm has found a sub-
graph suitable for rewriting and will replace the found match representing the rule’s
source structure with the rule’s target structure. It does so while maintaining the colors
resolved from the match as specified in the rule. It also has to deal with connecting the
replaced structure with external spiders while correctly determining if a Hadamard gate
is needed.

It takes the original diagram, a rule, and the found subgraph as input and produces a
rewritten diagram.

1. Captured properties from the matching process are resolved and copied over to
the target structure. This involves resolving expressions such as rewrite variables
which can be added to each other as well as obtaining the actual colors assigned
to the placeholders black, white and grey. Additionally, unresolved colors for which
the opposing color has been resolved need to be determined in cases where the rule
e.g. flips the color of a spider like it is the case with the Hadamard rule.

2. The spiders of the rule’s target structure are added.

i. For visualization purposes, the register index of the added spider needs to
be determined. This is achieved by guessing based on the source rule spider
whose connecting wires get mapped to the newly added target spider.

ii. The spider’s color is determined based on either a fixed color value in the
target structure or by looking at the resolved colors.

iii. The spider’s phase is determined based on the resolved phase variables.

3. The inner wires of the rule’s target structure are added setting their Hadamard gate
property according to the rule.

4. External neighbors in the diagram are connected to the newly added structure using
wires. Each original spider in the subgraph of the diagram is mapped to its relative
newly added target spider as specified in the rule’s connecting wire mapping. For
each new wire, its Hadamard property is determined by looking at its old property
as well as the rule’s structure specifying if it should get flipped.

5. The spiders of the rule’s source structure are removed from the diagram.

Due to the way the used graph library, graph-too1[3], handles the internal represen-
tation of vertices, spiders from the source rule structure are only removed at the end
so pointers to them used for determining the connecting neighbors are not invalidated
beforehand.

The entire algorithm can be seen using pseudo code in Listing 7.2.

def rewrite(diagram, rule, matching_ subgraph) :
rule.target.variables = source.resolve_variables ()
rule.target.colors = source.resolve_colors()
rule.target.colors.resolve_unknown_placeholders ()

add spiders and wires with correct properties
add_target_structure (diagram, rule, matching_subgraph)

9
10
11
12
13
14
15
16
17
18
19

20
21

23

N

4
25
26
27
28
29
30

32

7.4 Implementation of the ZX-Calculus Rules 21

for spider in matching_subgraph:
neighbors = matching_ subgraph.external neighbors (spider)
target_spider = rule.connecting wire_map[spider]

if target_spider exists:
for n in neighbors:
is_hadamard = was_hadamard[n] * should_flipI[n]
diagram.add_new_wire (is_hadamard)
else:
for (nl, n2) in neighbors:
is_hadamard = was_hadamard[nl] *~ should_flip[nl]
was_hadamard[n2] ~ should flip[n2]
diagram.add_new_wire (is_hadamard)

A

return diagram

def add_target_structure(diagram, rule, subgraph)
for spider in rule.target:
determine_qubit_index () # from matched subgraph
determine_color ()
determine_phase ()
diagram.add_new_spider ()

for wire in rule.target:
diagram.add_new_wire (wire.is_hadamard)

7.4 Implementation of the ZX-Calculus Rules

Using the rule structure defined in Section 7.1.1 and Section 7.1.2 a lot of rewrite rules
can be specified. This includes quite many of the ZX-Calculus’ rules such as S1, S2, B1,
B2, P2, and C.

But as creating a calculus gives near endless possibilities on how to design rewrite rules,
not all possible rules are covered by the system. This includes e.g. the Pi Copy Rule K1,
which requires creating a dynamic amount of spiders based on the number of connecting
wires of a spider. Those edge cases need to be taken care of during the implementation.

7.4.1 Edge cases

Empty target structure

In some cases, like the S2 Spider rule, the resulting diagram might not contain a spider
for the matched subgraph, in such a case the connecting neighbors need to be connected

while correctly determining their Hadamard property. This is taken care of in line 24 of
the pseudocode in Listing 7.2.

Multiple connecting wire targets

In other cases like the B1 rule, connecting wires from one spider might be mapped to mul-
tiple targets. In that case, the algorithm will have to additionally take care of distributing

7.4 Implementation of the ZX-Calculus Rules 22

them equally among target spiders. This is not shown in Listing 7.2 for readability rea-
sons.

Dynamic amount of spiders

Some rules like the Pi Copy Rule K1 can remove or add an arbitrary amount of spiders
based on the number of connecting wires. To support this, the algorithm will have to
additionally store a property for each spider of the rule specifying the type of spider
added/removed on that connecting wire and apply that during matching and rewriting.
As this requires generating spiders during rewriting, detecting spiders on connecting
wires during matching, and supporting normal non-spider containing wires at the same
time, it is currently not yet implemented.

7.4.2 Decision policies

Some rules are non-deterministic but require some kind of decision to be made such as
splitting a spider into two, therefore distributing its phase over two new values such as
S1. The same applies to rules that can be applied in lots of locations such as the Hopf
Law H, the Color Rule C, and the Spider Rule S2. The latter one can be applied in any
location to create a new spider, the color of which is arbitrary.

Therefore a decision policy needs to be passed to the matching and rewriting algorithms
when constructing the rule. It will then be used by the algorithm to resolve such non-
deterministic decisions, e.g. by obtaining the split phases of an inverse Spider Rule S1.

8 Optimization

Using the data structures and algorithms described in the previous chapters, full circuit
translation and diagram optimization can now be implemented in one pipeline. First,
the circuit is read using the OpenQASM parser from Chapter 4. Then, it is translated
into a diagram according to Chapter 5. Afterward, the diagram is optimized by applying
the rewrite rules of the desired calculus according to Chapter 7. Every step, including
translation and rewriting, is validated as described in Chapter 6. The entire process can
be seen in Figure 8.1

8.1 Optimization

The optimization procedure uses the rules of the calculus, as an example in this case
the ZX-Calculus. It applies them using a trial and error approach while maintaining a
ranking of the most and least desired rules to be applied.

The optimizer relies on a user-defined optimization strategy in conjunction with a sim-
plifier to tell it which rule to apply next. Inspired by the work of Kissinger and van de
Wetering in PyZX[12], simplifiers are categorized into two types, single rule and com-
pound simplifiers. A single rule simplifier just contains a single rule, a compound one
consists of multiple other simplifiers. This allows defining hierarchies of rules to be ap-
plied, therefore prioritizing them. This is desirable as some rules like the Bialgebra Law
may only match in a few certain instances but simplify the diagram quite a lot. Others, on
the other hand, might introduce new, undesired complexity and should only be chosen
in a few scenarios where there is no other option.

To prevent the optimizer from getting stuck, randomized simplifiers are also imple-
mented. They order their rules in a random way each time they are asked about which
rules to try. This allows the optimizer to backtrack and reverse any rewrite it has per-
formed and then afterward chose a different path.

In the current implementation, the only strategy used is ranked optimization, which sim-
ply uses the rules in the order they are supplied in by the simplifier. Once a rule matches,
it starts back at the highest-ranking rule again. It terminates when no rule matches any-
more.

8.2 Extraction

After the diagram has been optimized, a circuit will have to be extracted. This has not
been implemented as part of this research project due to time constraints. As described
by Duncan et al.[9] and Backens et al.[5], there are approaches to circuit extraction. Those
are limited to cases though, where additional conditions are met by the diagram, that
have been taken into account by the previous optimization strategy.

23

8.2 Extraction 24

There are also other approaches like sidestepping the problem entirely by using the dia-
gram merely as a guide and performing optimization on the original diagram directly as
shown by Kissinger and van de Wetering[13].

As this work focused on developing a generalized optimization framework using dia-
grams for arbitrary rulesets, those extraction strategies are not applicable without sub-
stantial modification. Further research will be necessary on how to extract a circuit from
any simplified diagram.

Figure 8.1: The entire pipeline automatically performing a validated translation and sim-
plification of a swap circuit

q[0] A

) 0O
ql1] — A — @ @
c[o] @ O O @
c[1]

(b) The translated diagram

(a) The input circuit

O—=0©

o—=©0

(c) Bialgebra Law applied

(g) Spider Rule 2 applied

(h) The simplified diagram

9 Conclusion

As part of this project, a generalized processing and simplification framework for dia-
grams based on the ZX-Calculus or similar calculi was developed and implemented. It
shows how a circuit represented using the OpenQASM[8] notation can be translated into
a diagram. A solution for validating this transform as well as further rewrites on the
resulting diagram was presented.

A matching and rewriting framework was proposed, that allows arbitrary, user-defined
rulesets to be applied to a diagram, which enables further experimentation with different
optimization strategies. The correctness of the rewriter was verified using the transform
validation method as well as individual unit testing.

Finally, a simple optimization strategy using the matching and rewriting system was
shown, that can successfully simplify diagrams while validating all performed transfor-
mations.

9.1 Further work

As discussed in Section 8.2, extraction has not been implemented yet and further research
will be required on how to extract a circuit from a diagram in the general case.

The correctness of possible optimization using the matcher and rewriter was proven us-
ing a simple optimization strategy and simplifier rule hierarchy. Further work will be
required on how to design such a strategy more intelligently. Other possible solutions
include alternating between rules instead of just picking the most prioritized one and
using the decision policies (see Section 7.4.2) as part of the strategy itself.

Additional work will also be required in developing a mechanism or heuristic for termi-
nating the optimization procedure. So far it only stops when no rule can be matched, but
this is, apart from trivial identity circuits, nearly never the case. The optimizer therefore
needs to be able to decide when it has reached the end of the simplification process. It is
then just repeating the same rules over and over and has to detect that it should terminate
the optimization procedure.

25

Bibliography

[1] ANTLR. https://www.antlr.org/. Accessed: 2021-10-15.

[2] Cairo. https://www.cairographics.org/documentation/. Accessed: 2021-
10-15.

[3] graph-tool. https://graph-tool.skewed.de/. Accessed: 2021-10-06.

[4] PyGTK. https://gitlab.gnome.org/GNOME/pygobject. Accessed: 2021-10-
13.

[5] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski, and John
van de Wetering. There and back again: A circuit extraction tale. Quantum, 5:421,
Mar 2021.

[6] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra
and diagrammatics. New Journal of Physics, 13(4):043016, Apr 2011.

[7] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(10):1367-1372, 2004.

[8] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quan-
tum assembly language, 2017.

[9] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-
theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum, 4:279,
June 2020.

[10] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Ferndndez del Rio, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy.
Nature, 585(7825):357-362, September 2020.

[11] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001-.

[12] Aleks Kissinger and John van de Wetering. PyZX: Large scale automated diagram-
matic reasoning. Electronic Proceedings in Theoretical Computer Science, 318:229-241,
May 2020.

[13] Aleks Kissinger and John van de Wetering. Reducing T-count with the ZX-calculus.
Physical Review A, 102(2), Aug 2020.

[14] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for dia-
grammatic reasoning. Lecture Notes in Computer Science, page 326-336, 2015.

[15] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain

26

https://www.antlr.org/
https://www.cairographics.org/documentation/
https://graph-tool.skewed.de/
https://gitlab.gnome.org/GNOME/pygobject

27

Corlay, Paul Ivanov, Damidn Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks — a publishing format for reproducible computational workflows. In
E. Loizides and B. Schmidt, editors, Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pages 87 — 90. I0S Press, 2016.

[16] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21-29, May 2007.

[17] Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine,
Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer. Tensornetwork: A
library for physics and machine learning, 2019.

[18] John van de Wetering. ZX-calculus for the working quantum computer scientist,
2020.

[19] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

Appendix - Software Documentation

The entire implementation can be found within the git repository:

https://github.com/putterer/zx—-optimization-framework

It contains the data structures and algorithms described in this report as well as some test
cases showcasing how it can be interfaced.

The provided code can be run using Python by installing the dependencies specified in
the requirements. txt file. A system-wide installation of graph-tool and PyGTK is
required as well. Additionally, the ANTLR based parser needs to be generated based on
the provided grammar by executing the compile. sh script.

The entire code can be used interactively within an IPython[16] / Jupyter[15] environ-
ment. Alternatively, it can be run as a standalone application, therefore, creating a win-
dow using PyGTKI4]. This also allows interacting with generated diagrams.

1 Test Cases

All test cases are located within the top-level test directory.

1.1 Circuits

The circuit test case in data_structures/circuit/circuit_test.py showcases
how individual circuits can be manually constructed according to Section 4.2. The code in
visualization/test_circuit_renderer.py then shows how to render the given
circuit as a visualization using a standalone window as described in Section 4.4. The
example provided in opengasm/test_open_gasm_parser.py demonstrates how to
read a circuit from an OpenQASM-based file, as in Section 4.2.1.

Some sample circuits are provided in the OpenQASM format in the top-level circuits
directory.

1.2 Diagrams

visualization/test_diagram_renderer.py explains how a diagram can be man-
ually created as specified in Section 4.3. Afterward, it uses the corresponding renderer to
show a visualization of the created diagram. Instead of creating the diagram manually,
it can also be automatically created from a given circuit based on Chapter 5 as shown in
translation/test_circuit_translator.py.

28

https://github.com/putterer/zx-optimization-framework

1 Test Cases 29

1.3 Validation

The validation of circuits and diagram equality according to Chapter 6 is implemented
and tested within the validation directory.

Thetest_circuit_diagram_translation_equality.py testcase showcases how
the circuit and diagrams can be converted to a linear matrix representation and how the
equivalence of the circuit to diagram translation can be ensured.

1.4 Matching and Rewriting

The implementation supports matching and rewriting based on the rewrite rules and
algorithms specified in Chapter 7. Apart from the Pi-Copy rule, all ZX-Calculus rules
are implemented and can be used. They are all unit tested to ensure correct functionality
in rewriting/matcher_rewriter_test.py. This can also be used as a reference on
how to perform matching and rewriting using the implemented algorithms and calculus
rules.

1.5 Entire Pipeline

Putting it all together, the goal of the project and implementation is quantum circuit
optimization. The entire pipeline, reading in a circuit from OpenQASM, rendering it,
translating it to a ZX-diagram, and optimizing that using the matcher and rewriter in
combination with a ruleset can be seen in optimization/test_optimization.py.
The resulting diagram is then visualized. As described in Chapter 8, circuit extraction is
not yet implemented.

	1 Introduction
	1.1 Quantum Optimization
	1.2 The ZX-Calculus
	1.3 Optimization using the ZX-Calculus

	2 Related Work
	3 The ZX-Calculus
	3.1 Generators
	3.2 Rewrite Rules

	4 Implementation
	4.1 Toolset
	4.2 Quantum Circuits
	4.3 Diagrams
	4.4 Visualization

	5 Circuit Translation
	5.1 Translation Algorithm

	6 Transform Validation
	6.1 Validation using the ZX-Calculus
	6.2 Validation using Tensor Contraction
	6.3 Implementation

	7 Matching and Rewriting
	7.1 Rewrite Rules
	7.2 Matching
	7.3 Rewriting
	7.4 Implementation of the ZX-Calculus Rules

	8 Optimization
	8.1 Optimization
	8.2 Extraction

	9 Conclusion
	9.1 Further work

	Bibliography
	Appendix - Software Documentation
	1 Test Cases

