
This article was downloaded by: [Iowa State University]
On: 07 October 2013, At: 01:21
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:
Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Advanced Robotics
Publication details, including instructions for authors and subscription
information:
http://www.tandfonline.com/loi/tadr20

A System for Robotic Heart Surgery that
Learns to Tie Knots Using Recurrent Neural
Networks
Hermann Mayer a , Faustino Gomez b , Daan Wierstra c , Istvan Nagy d ,
Alois Knoll e & Jürgen Schmidhuber f
a Department of Embedded Systems and Robotics, Technical University
Munich, 85748 Garching, Germany
b Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), 6928
Manno-Lugano, Switzerland;, Email: tino@idsia.ch
c Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), 6928
Manno-Lugano, Switzerland
d Department of Embedded Systems and Robotics, Technical University
Munich, 85748 Garching, Germany
e Department of Embedded Systems and Robotics, Technical University
Munich, 85748 Garching, Germany
f Department of Embedded Systems and Robotics, Technical University
Munich, 85748 Garching, Germany, Istituto Dalle Molle di Studi
sull'Intelligenza Artificiale (IDSIA), 6928 Manno-Lugano, Switzerland
Published online: 02 Apr 2012.

To cite this article: Hermann Mayer , Faustino Gomez , Daan Wierstra , Istvan Nagy , Alois Knoll & Jürgen
Schmidhuber (2008) A System for Robotic Heart Surgery that Learns to Tie Knots Using Recurrent Neural
Networks, Advanced Robotics, 22:13-14, 1521-1537, DOI: 10.1163/156855308X360604

To link to this article: http://dx.doi.org/10.1163/156855308X360604

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis, our
agents, and our licensors make no representations or warranties whatsoever as to the
accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views
expressed in this publication are the opinions and views of the authors, and are not the views
of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages,
and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection
with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial
or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or

http://www.tandfonline.com/loi/tadr20
http://www.tandfonline.com/action/showCitFormats?doi=10.1163/156855308X360604
http://dx.doi.org/10.1163/156855308X360604

distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use
can be found at http://www.tandfonline.com/page/terms-and-conditions

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

http://www.tandfonline.com/page/terms-and-conditions

Advanced Robotics 22 (2008) 1521–1537
www.brill.nl/ar

Full paper

A System for Robotic Heart Surgery that Learns to Tie
Knots Using Recurrent Neural Networks

Hermann Mayer a, Faustino Gomez b,∗, Daan Wierstra b, Istvan Nagy a,

Alois Knoll a and Jürgen Schmidhuber a,b

a Department of Embedded Systems and Robotics, Technical University Munich,
85748 Garching, Germany

b Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA),
6928 Manno-Lugano, Switzerland

Received 5 February 2008; accepted 29 April 2008

Abstract
Tying suture knots is a time-consuming task performed frequently during minimally invasive surgery (MIS).
Automating this task could greatly reduce total surgery time for patients. Current solutions to this problem
replay manually programmed trajectories, but a more general and robust approach is to use supervised
machine learning to smooth surgeon-given training trajectories and generalize from them. Since knot tying
generally requires a controller with internal memory to distinguish between identical inputs that require
different actions at different points along a trajectory, it would be impossible to teach the system using
traditional feedforward neural nets or support vector machines. Instead we exploit more powerful, recurrent
neural networks (RNNs) with adaptive internal states. Results obtained using long short-term memory RNNs
trained by the recent Evolino algorithm show that this approach can significantly increase the efficiency of
suture knot tying in MIS over preprogrammed control.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008

Keywords
Supervised learning, recurrent neural networks, artificial evolution, minimally invasive surgery, automated
knot tying

1. Introduction

Minimally invasive surgery (MIS) has become commonplace for an ever-growing
number of procedures. Since MIS is performed through small incisions or ports in
the patient’s body, tissue trauma, recovery time and pain are reduced considerably
compared to conventional ‘open’ surgery. While patients have profited enormously,

* To whom correspondence should be addressed. E-mail: tino@idsia.ch

© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008 DOI:10.1163/156855308X360604

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1522 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

surgeons have had to cope with reduced dexterity and perception: the instruments
are long and have fewer degrees of freedom, force and tactile feedback are lost,
and visual feedback is flattened to a two-dimensional image. These factors make
delicate maneuvers such as knot tying very time consuming. A laparoscopically
tied suture knot can take up to 3 min to complete, compared to 1 s for a manually
tied knot.

Robot-assisted MIS seeks to restore the feel of normal surgery by providing the
surgeon with a more intuitive and ergonomic interface. The surgeon tele-operates
a slave robot that manipulates the surgical instruments from a master console that
provides full 6-d.o.f. manipulation, enhanced three-dimensional (3-D) imaging and
often force feedback. Robotic surgical systems such as DaVinci [1] and ZEUS [2]
are in wide use today, performing a variety of abdominal, pelvic and thoracic proce-
dures. However, despite significant advances in robot-assisted surgery, the delicate
task of knot tying is still cumbersome and time consuming, in some cases taking
longer than with conventional MIS [3]. Given that knot tying occurs frequently dur-
ing surgery, automating this subtask would greatly reduce surgeon fatigue and total
surgery time.

Building a good knot-tying controller is difficult because the 3-D trajectories of
multiple instruments must be precisely controlled. There has been very little work
in autonomous robotic knot tying: Kang et al. [4] devised a specialized stitching
device, while Mayer et al. [5] were the first to tie a suture knot autonomously using
general-purpose laparoscopic instruments. In both approaches, the controller uses a
hard-wired policy, meaning that it always repeats the same prescribed motion with-
out the possibility of generalizing to unfamiliar instrument locations. One possible
way to provide more robust control is to learn the control policy from examples of
correct behavior provided by the user.

The focus of this paper is on automating suture knot winding by training a recur-
rent neural network (RNN [6–8]) on human-generated examples. Unlike standard
non-recurrent machine learning techniques such as support vector machines and
feedforward neural networks, RNNs have an internal state or short-term memory
which allows them to perform tasks such as knot tying where the previous states
(i.e., instrument positions) need to be remembered for long periods of time in order
to select future actions appropriately.

To date, the only RNN capable of using memory over sequences the length of
those found in knot-tying trajectories (over 1000 datapoints) is long short-term
memory (LSTM [9]). Therefore, our experiments use this powerful architecture
to learn to control the movement of a real surgical manipulator to successfully tie a
knot. The best results were obtained using the recent hybrid supervised/evolutionary
learning framework, Evolino [10–13].

Section 2 describes the Endoscopic Partial-Autonomous Robot (EndoPAR) ro-
botic system used in the experiments. In Section 3, we give a detailed account of the
steps involved in laparoscopic knot tying. Section 4 describes the Evolino frame-

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1523

work and in Section 5 the method is tested experimentally in the task of autonomous
suture knot winding.

2. The EndoPAR System

The EndoPAR [14, 15] system is an experimental robotic surgical platform de-
veloped by the Robotics and Embedded Systems research group at the Technical
University of Munich (Fig. 1). EndoPAR consists of four Mitsubishi RV-6SL ro-
botic arms that are mounted upside-down on an aluminum gantry, providing a
20 cm × 25 cm × 40 cm workspace that is large enough for surgical procedures.
Although there are four robots, it is easy to access the workspace due to the ceiling-
mounted setup. Three of the arms are equipped with force-feedback instruments;
the fourth holds a 3-D endoscopic stereo camera.

The position and orientation of the manipulators are controlled by two
PHANToM Premium 1.5 devices from Sensable Inc. The user steers each in-
strument by moving a stylus pen that simulates the hand posture and feel of
conventional surgical implements. The key feature of the PHANToM devices is
their ability to provide force feedback to the user. EndoPAR uses a version of the
PHANToM device that can display forces in all translational directions (no torque
is fed back).

Figure 1. EndoPAR system. The four-ceiling mounted robots are shown with an artificial chest on
the operating table to test tele-operated and autonomous surgical procedures. Three of the robots
hold laparoscopic gripper instruments, while the fourth manipulates an endoscopic stereo camera that
provides the surgeon with images from inside the operating cavity. The size of the operating area
(including gantry) is approximately 2.5 m × 5.5 m × 1.5 m and the height of the operating table is
approximately 1 m.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1524 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

Figure 2. Force feedback. Forces are measured in the x- and y-directions (perpendicular to the shaft).
The upper part shows how the strain gauge sensors are arranged along the circumference of the shaft.
Each diametrically opposed pair constitutes a full bridge of four resistors dedicated to one principal
axis. Sensor signals are sent back to servo motors at the input stylus so that the surgeon can sense
forces occurring at the gripper.

Figure 2 shows the sensor configuration used to implement realistic force feed-
back in the EndoPAR system. Each instrument has four strain gauge sensors at-
tached at the distal end of the shaft, i.e., near the gripper. The sensors are arranged
in two full bridges, one for each principal axis. The signals from the sensors are am-
plified and transmitted via the CAN-bus to a PC system where they are processed
and sent to small servo motors that move the stylus to convey the sensation of force
to the user. Since direct sensor readings are somewhat noisy, a smoothing filter is
applied in order to stabilize the results.

Force feedback makes performing MIS more comfortable, efficient, safe and pre-
cise. For knot tying, this capability is essential due to the fine control required to
execute the procedure without breaking or loosing the thread [14]. As a result, the
EndoPAR system provides an excellent platform with which to generate good train-
ing samples for the supervised machine learning approach explored in this paper.

3. MIS Knot Tying

Tying a suture knot laparoscopically involves coordinating the movements of three
grippers through six steps. When the procedure begins, the grippers should be in
the configuration depicted in Fig. 3A with the needle already having pierced the
tissue (for safety, the piercing is performed manually by the surgeon). The next
step (Fig. 3B) is to grasp the needle with gripper 1 and manually feed the thread to

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1525

Figure 3. Minimally invasive knot tying. (A) The knot-tying procedure starts with the needle and
three grippers in this configuration. (B) Gripper 1 takes the needle and the thread is fed manually to
gripper 3. (C) The thread is pulled through the puncture and (D) wound around gripper 2. (E) Gripper 2
grabs the thread between the puncture and gripper 3. (F) The knot is finished by pulling the end of the
thread through the loop.

gripper 3, the assistant gripper, making sure the thread is taut. Gripper 1 then pulls
the thread through the puncture (Fig. 3C), while gripper 3 approaches it at the same
speed so that the thread remains under tension. Meanwhile, gripper 2 is opened and
moved to the position where the winding should take place.

Once gripper 2 is in position, gripper 1 makes a loop around it to produce a
noose (Fig. 3D). For this step it is very important that the thread be under the right
amount of tension; otherwise, the noose around gripper 2 will loosen and be lost.
To maintain the desired tension, gripper 3 is moved towards the puncture to com-
pensate for the material needed for winding. Special care must be taken to ensure
that neither gripper 1 nor the needle interfere with gripper 2 or the strained thread
during winding.

After completing the loop, gripper 2 can be moved to get the other end of the
thread (Fig. 3E). Once again, it is critical that the thread stay under tension by
having grippers 1 and 3 follow the movement of gripper 2 at an appropriate speed. In
Fig. 3F, gripper 2 has grasped the end of the thread. Therefore, gripper 1 must loosen
the loop such that gripper 2 can pull the thread end through the loop. Gripper 3 can
now loosen its grasp, since thread tension is no longer needed. Finally, grippers
1 and 2 can pull outward (away from the puncture) in order to complete the knot.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1526 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

The knot-tying procedure just described has been automated successfully by
carefully programming the movement of each gripper directly [5]. Programming
gripper trajectories correctly is difficult and time consuming, and, more importantly,
produces behavior that is tied to specific geometric coordinates. The next section
describes a method that can potentially provide a more generic solution by learning
directly from human experts.

4. EVOlution of Systems With LINear Outputs (Evolino)

Evolino is a general framework for supervised sequence learning that combines
neuroevolution (i.e., the evolution of neural networks) and analytical linear methods
that are optimal in some sense, such as linear regression or quadratic programming.
The underlying principle of Evolino is that often a linear model can account for a
large number of properties of a problem. Properties that require non-linearity and
recurrence are then dealt with by evolution.

The output of the network at time t , y(t) ∈ R
m, is computed by the following

formulas:

y(t) = Wφ(t) (1)

φ(t) = f (u(t), u(t − 1), . . . , u(0)), (2)

where φ(t) ∈ R
n is the output of a RNN f (·) and W is a weight matrix. Note

that because the networks are recurrent, f (·) is indeed a function of the entire in-
put history, u(t), u(t − 1), . . . , u(0). In the case of maximum margin classification
problems [16] we may compute W by quadratic programming. In what follows,
however, we focus on mean squared error minimization problems and compute W

by linear regression.
In order to evolve an f (·) that minimizes the error between y and the correct

output, d , of the system being modeled, Evolino does not specify a particular evo-
lutionary algorithm, but rather only stipulates that networks be evaluated using the
following two-phase procedure.

In the first phase, a training set of sequences obtained from the system, {ui, di},
i = 1, . . . , k, each of length li , is presented to the network. For each sequence ui ,
starting at time t = 0, each input pattern ui(t) is successively propagated through
the recurrent network to produce a vector of activations φi(t) that is stored as a row
in a n × ∑k

i li matrix �. Associated with each φi(t) is a target row vector di in D

containing the correct output values for each time step. Once all k sequences have
been seen, the output weights W (the output layer in Fig. 1) are computed using
linear regression from � to D. The column vectors in � (i.e., the values of each
of the n outputs over the entire training set) form a non-orthogonal basis that is
combined linearly by W to approximate D.

In the second phase, the training set is presented to the network again, but now the
inputs are propagated through the recurrent network f (·) and the newly computed

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1527

output connections to produce predictions y(t). The error in the prediction or the
residual error is then used as the fitness measure to be minimized by evolution.

Neuroevolution is normally applied to reinforcement learning tasks where cor-
rect network outputs (i.e., targets) are not known a priori. Here we use neuroevo-
lution for supervised learning to circumvent the problems of gradient-based ap-
proaches. In order to obtain the precision required for time-series prediction, we
do not try to evolve a network that makes predictions directly. Instead, the net-
work outputs a set of vectors that form a basis for linear regression. The intuition
is that finding a sufficiently good basis is easier than trying to find a network
that models the system accurately on its own. Evolino has been shown to out-
perform gradient-based methods on continuous trajectory generation tasks [10].
Unlike gradient-based methods, it has the ability to escape local minima due to
its evolutionary component. Moreover, it is capable of generating precise outputs
by using the pseudo-inverse, which computes an optimal linear mapping. Previous
work with Evolino has concentrated on comparisons with other methods in rather
abstract benchmark problems, such as the Mackey–Glass time series. This paper
presents the first application of Evolino to a real-world task.

In this study, Evolino is instantiated using enforced subpopulations (ESP) to
evolve LSTM networks. The next sections describe ESP and LSTM, and the de-
tails of how they are combined within the Evolino framework (Fig. 4).

Figure 4. Evolino: three components of the Evolino implementation used in this paper: the ESP
neuroevolution method, the LSTM network architecture (shown with four memory cells) and the
pseudo-inverse method to compute the output weights. When a network is evaluated, it is first pre-
sented the training set to produce a sequence on network activation vectors that are used to compute
the output weights using the pseudo-inverse. Then the training set is presented again, but now the
activation also passes through the new connections to produce outputs. The error between the outputs
and the targets is used by ESP as a fitness measure to be minimized.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1528 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

4.1. ESP

ESP [17] differs from standard neuroevolution methods in that, instead of evolving
complete networks, it co-evolves separate subpopulations of network components
or neurons. Evolution in ESP proceeds as follows:

(i) Initialization. The number of hidden units H in the networks that will be
evolved is specified and a subpopulation of n neuron chromosomes is created
for each hidden unit. Each chromosome encodes a neuron’s input, output and
recurrent connection weights with a string of random real numbers.

(ii) Evaluation. A neuron is selected at random from each of the H subpopulations
and combined to form a recurrent network. The network is evaluated on the
task and awarded a fitness score. The score is added to the cumulative fitness
of each neuron that participated in the network.

(iii) Recombination. For each subpopulation the neurons are ranked by fitness, and
the top quartile is recombined using one-point crossover and mutated using
Cauchy distributed noise to create new neurons that replace the lowest-ranking
half of the subpopulation.

(iv) Repeat the evaluation–recombination cycle until a sufficiently fit network is
found.

ESP searches the space of networks indirectly by sampling the possible net-
works that can be constructed from the subpopulations of neurons. Network eval-
uations serve to provide a fitness statistic that is used to produce better neurons
that can eventually be combined to form a successful network. This cooperative
coevolutionary approach is an extension to symbiotic, adaptive neuroevolution
(SANE [18]), which also evolves neurons, but in a single population. By using sep-
arate subpopulations, ESP accelerates the specialization of neurons into different
subfunctions needed to form good networks because members of different evolving
subfunction types are prevented from mating. Subpopulations also reduce noise in
the neuron fitness measure because each evolving neuron type is guaranteed to be
represented in every network that is formed. This allows ESP to evolve recurrent
networks, where SANE could not.

If the performance of ESP does not improve for a predetermined number of gen-
erations, a technique called burst mutation is used. The idea of burst mutation is to
search the space of modifications to the best solution found so far. When burst mu-
tation is activated, the best neuron in each subpopulation is saved, the other neurons
are deleted and new neurons are created for each subpopulation by adding Cauchy
distributed noise to its saved neuron. Evolution then resumes, but now searching in
a neighborhood around the previous best solution. Burst mutation injects new di-
versity into the subpopulations and allows ESP to continue evolving after the initial
subpopulations have converged.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1529

4.2. LSTM

RNNs are a powerful class of models that can, in principle, approximate any dy-
namic system [19]. This means that RNNs can be used to implement arbitrary
sequence-to-sequence mappings that require memory. However, training RNNs
with standard gradient descent techniques is only practical when a short time win-
dow (less than 10 time steps) suffices to predict the correct system output. For
longer time dependencies, the gradient vanishes as the error signal is propagated
back through time so that network weights are never adjusted correctly to account
for events far in the past [20].

LSTM [9, 21, 22] overcomes this problem by using specialized, linear memory
cells that can maintain their activation indefinitely. Memory cells consist of a linear
unit that holds the state of the cell and three gates that can open or close over time.
The input gate ‘protects’ a neuron from its input: only when the gate is open can
inputs affect the internal state of the neuron. The output gate lets the state out to
other parts of the network and the forget gate enables the state to ‘leak’ activity
when it is no longer useful.

The state of cell i is computed by:

si(t) = neti (t)g
in
i (t) + g

forget
i (t)si(t − 1), (3)

where gin and gforget are the activation of the input and forget gates, respectively,
and net is the weighted sum of the external inputs:

neti (t) = h

(
∑

j

wcell
ij cj (t − 1) +

∑

k

wcell
ik uk(t)

)

, (4)

where h is usually the identity function and cj is the output of cell j :

cj (t) = tanh(gout
j (t)sj (t)), (5)

where gout is the output gate of cell j . The amount each gate gi of memory cell i is
open or closed at time t is calculated by:

g
type
i (t) = σ

(
∑

j

w
type
ij cj (t − 1) +

∑

k

w
type
ik uk(t)

)

, (6)

where type can be input, output or forget and σ is the standard sigmoid function.
The gates receive input from the output of other cells cj and from the external inputs
to the network.

4.3. Combining ESP With LSTM in Evolino

We apply our general Evolino framework to the LSTM architecture, using ESP for
evolution and regression for computing linear mappings from hidden state to out-
puts. ESP coevolves subpopulations of memory cells instead of standard recurrent
neurons (Fig. 4). Each chromosome is a string containing the external input weights,

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1530 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

and the input, output and forget gate weights, for a total of 4 ∗ (I + H) weights in
each memory cell chromosome, where I is the number of external inputs and H is
the number of memory cells in the network. There are four sets of I + H weights
because the three gates (6) and the cell itself (4) receive input from outside the cell
and the other cells. ESP, as described in Section 4.1, normally uses crossover to re-
combine neurons. However, for the present Evolino variant, where fine local search
is desirable, ESP uses only mutation. The top quarter of the chromosomes in each
subpopulation are duplicated and the copies are mutated by adding Cauchy noise to
all of their weight values.

The linear regression method used to compute the output weights (W in 2) is the
Moore–Penrose pseudo-inverse method, which is both fast and optimal in the sense
that it minimizes the summed squared error [23] (compare [24] for an application
to feedforward RBF nets). The vector φ(t) consists of both the cell outputs, ci (5),
and their internal states, si (3), so that the pseudo-inverse computes two connection
weights for each memory cell. We refer to the connections from internal states to
the output units as ‘output peephole’ connections, since they peer into the interior
of the cells.

For continuous function generation, backprojection (or teacher forcing in stan-
dard RNN terminology) is used where the predicted outputs are fed back as inputs
in the next time step: φ(t) = f (u(t), y(t − 1), u(t − 1), . . . , y(0), u(0)).

During training, the correct target values are backprojected, in effect ‘clamping’
the network’s outputs to the right values. During testing, the network backprojects
its own predictions. This technique is also used by echo state networks (ESNs),
but whereas ESNs do not change the backprojection connection weights, Evolino
evolves them, treating them like any other input to the network. In the experi-
ments described below, backprojection was found useful for continuous function
generation tasks, but interferes to some extent with performance in the discrete
context-sensitive language task.

5. Experiments in Robotic Knot Winding

Our initial experiments focus on the most critical part of suture knot tying: winding
the suture loop (steps C–F in Fig. 3). While the loop is being wound by gripper 1,
gripper 2 stays fixed. Therefore, networks were trained to control the movement of
gripper 1.

5.1. Experimental Setup

LSTM networks were trained using a database of 25 loop trajectories gener-
ated by recording the movement of gripper 1 while a knot was being tied
successfully using the PHANToM units. Each trajectory consisted of approxi-
mately 1300 gripper (x, y, z)-positions measured at every 0.1-mm displacement,
{(xj

1 , y
j

1 , z
j

1), . . . , (x
j
lj
, y

j
lj
, z

j
lj
)}, j = 1, . . . ,25, where lj is the length of sequence j .

At each step in a training sequence, the network receives the coordinates of grip-

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1531

per 1 through three input units (plus a bias unit) and computes the desired displace-
ment (�x,�y,�z) from the previous position through three output units.

Both gradient descent and Evolino were used in 20 experiments each to train
LSTM networks with 10 memory cells. The Evolino-based networks were evolved
for 60 generations with a population size of 40, yielding a total of 3580 evaluations
(i.e., passes through the training set) for each experiment.

Figure 5 illustrates the procedure for training the networks. For the gradient de-
scent approach, the LSTM networks were trained using Backpropagation Through
Time [6] where the network is unfolded once for each element in the training se-
quence to form an lj -layer network (for sequence j) with all layers sharing the
same weights. Once the network has seen that last element in the sequence, the
errors from each time step are propagated back through each layer as in standard
backpropagation and then the weights are adjusted.

For Evolino-trained LSTM, each network is evaluated in two phases (see Sec-
tion 4). In the first phase the activations of the network units are recorded, but no
outputs are produced as, at this point, the network does not have output connections.
After the entire training set has been seen, the output connections are computed us-
ing the pseudo-inverse. In the second phase, the network produces control actions
that are used to calculate the fitness of the network.

The error (fitness) measure used for both methods was the sum-squared differ-
ence between the network output plus the previous gripper position and the correct
(target) position for each time step, across the 25 trajectories:

25∑

j=1

lj−1∑

t=1

(x
j
t + �xt − x

j

t+1)
2 + (y

j
t + �yt − y

j

t+1)
2 + (z

j
t + �zt − x

j

t+1)
2,

where �xt , �yt and �zt are the network outputs for each principal axis at time t

which are added to the current position (xt , yt , zt) to obtain the next position. Note
that because the networks are recurrent, the output can in general depend on all of
the previous inputs.

For the first 50 time steps, each training sequence is a straight line in the
x-direction and the network receives the corresponding sequence entry. During this
period, the network outputs are not fed back, so that the arbitrary initial state is dis-
carded or ‘washed out’ of the network. After this washout time, the current network
output and the previous input are fed back as the input for the next time step, and
the network then makes predictions based on previous predictions, i.e., having no
access to the training set to steer it back on course. This procedure allows the error
to accumulate along the entire trajectory, so that minimizing it forces the network
to produce loop trajectories autonomously, i.e., no ‘teacher’ signal.

Once a network has learned the training set, it is tested in a 3-D simulation envi-
ronment to verify that the trajectories do not behave erratically or cause collisions.
If the network passes this validation, it is transferred to the real robot where the pro-
cedure is executed inside the artificial rib cage and heart mockup shown in Fig. 1.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1532 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

To tie the entire knot, a preprogrammed controller is used to start the knot and then
the network takes over for the loop, steps C–E. During the loop, the robot fetches
a new displacement vector from the network every 7 ms and adds it to the cur-
rent position of gripper 1. Gripper 2 remains stationary throughout this phase and
gripper 3 is moved away from the knot at a predefined rate to maintain tension on
the thread. When the loop is complete, the control switches back to the program to
close the knot. As in training, the winding network receives an initial ‘approaching
sequence’ of 50 points that control the robot to start the wind and then completes
the loop itself while feeding back its own outputs.

5.2. Experimental Results

Figure 6 shows the learning curve for the Evolino-trained LSTM networks. Each
datapoint is the average error on the training set of the best network, measured in
millimeters. By generation 40, the error has reached a level that the networks can
effectively produce usable loop trajectories. The gradient-trained LSTM networks
were not able to learn the trajectories, so the error for this method is not reported.
This poor performance could be due to the presence of many local minima in the
error surface which can trap gradient-based methods.

Figure 5. Training the knot-winding networks. LSTM networks are trained on a set of recordings
that sample the position of gripper 1 at 0.1-mm increments during a human-controlled suture knot.
The figure shows three such training sequences; the one with the thicker path shows the sample
points that the network uses as input and targets. For each training sequence, the network receives
the (x, y, z)-position of the gripper 1 and outputs a prediction of the distance to the next position of
the gripper (i.e., the next sample in the sequence). The prediction is added to the input and compared
to the correct (target) next position to produce an error signal that is used either for gradient descent
learning, or as a fitness measure for Evolino, after all the training sequences have been processed.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1533

Unlike gradient-based approaches, Evolino is an evolutionary method and, there-
fore, is less susceptible to local minima. All of the 20 Evolino runs produced
networks that could generate smooth loop trajectories. When tested on the real ro-
bot, the networks reliably completed the loop procedure, and did so in an average of
3.4 s, a speed-up of almost 4 times over the preprogrammed loop. This speed-up in
knot-winding results in a total time of 25.8 s for the entire knot compared to 33.7 s
for the preprogrammed controller.

Figure 7 shows the behavior of several Evolino-trained LSTM networks from the
same run at different stages of evolution. As evolution progresses, the controllers
track the training trajectories more closely while smoothing them. The network in
the right-hand side of Fig. 7 was produced after approximately 4.5 h of computation
time (Intel Xeon CPU 2.80 GHz).

Figure 6. Evolino learning curve. The plot shows the average error on the training set measured in
millimeters for the best network in each generation, averaged over 50 runs. The vertical bars indicate
one standard deviation from the average.

Figure 7. Evolution of loop-generating behavior. Each of the three 3-D plots shows the behavior of the
best network at a different generation during the same evolutionary run. All axes are in millimeters.
The dark curve is the trajectory generated by the network; the lighter curve is the target trajectory.
Note that the network is being tested to reproduce the same target trajectory in each plot. The best
network in the first generation tracks the target trajectory closely for the first 15-mm or so, but diverges
quickly when the target turns abruptly. By generation 10, networks can form smooth loops, and by
generation 60, the network tracks the target throughout the winding, forming a tight, clean loop.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1534 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

To measure generalization, the evolved network was tested on new initial trajec-
tories not seen during training. Just as in training, the network was presented with
straight trajectories lasting the duration of the 50-step washout time, but now ro-
tated up to ±30◦ about the x- and z-axes. Twenty such tests were performed on the
physical robot where the network was able to produce clean loops for rotations of
up to ±20◦ in both axes.

These first results show that RNNs can be used to learn from training sequences
of over 1000 steps and possibly provide useful assistance to expedite MIS proce-
dures.

6. Discussion and Future Work

An important advantage of learning directly from expert behavior is that it requires
less knowledge about the system being controlled. Supervised machine learning can
be used to capture and generalize expertise without requiring the often tedious and
costly process of traditional controller design. The Evolino-trained LSTM networks
in our experiments were able to learn from surgeons and outperform them on the
real robot.

Our current approach only deals with the winding portion of the knot-tying task.
Therefore, its contribution is limited by the efficiency of the other subtasks required
to complete the full knot. In the future, we plan to apply the same basic approach
used in this paper to other knot-tying subtasks (e.g., the thread tensioning performed
by the assistant gripper and knot tightening) that are currently implemented by pro-
grammed controllers. The separate subcontrollers can then be used in sequence to
execute the whole procedure.

The performance of automated MIS need not be constrained by the proficiency
of available experts. While human surgeons provide the best existing control, more
optimal strategies may be possible by employing reinforcement learning techniques
where target trajectories are not provided, but instead some higher-level measure
of performance is maximized. Approaches such as neuroevolution could be used
alone or in conjunction with supervised learning to bootstrap the learning. Such
an approach would first require building a simulation environment that accurately
models thread physics.

7. Conclusions

This paper has explored the application of supervised machine learning to the im-
portant task of automated knot tying in MIS. LSTM neural networks were trained
to produce knot-winding trajectories for a robotic surgical manipulator, based on
human-generated examples of correct behavior. Initial results using the Evolino
framework to train the networks are promising: the networks were able to perform
the task on the real robot without access to the teaching examples. These results
constitute the first successful application of supervised learning to MIS knot tying.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1535

Acknowledgements

This research was partially funded by SNF grant 200020-107534 and the EU Min-
dRaces project FP6 511931.

References

1. G. Guthart and J. K. Salisbury Jr, The Intuitive™ telesurgery system: overview and application,
in: Proc. Int. Conf. on Robotics and Automation, San Francisco, CA, pp. 618–621 (2000).

2. A. Garcia-Ruiz, N. G. Smedira, F. D. Loop, J. F. Hahn, C. P. Steiner, J. H. Miller and M. Gagner,
Robotic surgical instruments for dexterity enhancement in thorascopic coronary artery bypass
graft, J. Laparoendoscop. Adv. Surg. Tech. 7, 277–283 (1997).

3. A. Garcia-Ruiz, Manual vs robotically assisted laparoscopic surgery in the performance of basic
manipulation and suturing tasks, Arch. Surg. 133, 957–961 (1998).

4. H. Kang, Robotic assisted suturing in minimally invasive surgery, PhD Thesis, Rensselaer Poly-
technic Institute, Troy, NY (2002).

5. H. Mayer, I. Nagy, A. Knoll, E. U. Schirmbeck and R. Bauernschmitt, The EndoPAR system
for minimally invasive surgery, in: Proc. Int. Conf. on Intelligent Robots and Systems, Sendai,
pp. 3637–3642 (2004).

6. P. Werbos, Backpropagation through time: what does it do and how to do it, Proc. IEEE 78,
1550–1560 (1990).

7. A. J. Robinson and F. Fallside, The utility driven dynamic error propagation network, Technical
Report CUED/F-INFENG/TR.1, Engineering Department, Cambridge University (1987).

8. R. J. Williams and D. Zipser, A learning algorithm for continually running fully recurrent net-
works, Neural Comput. 1, 270–280 (1989).

9. S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9, 1735–1780
(1997).

10. J. Schmidhuber, D. Wierstra and F. Gomez, Evolino: hybrid neuroevolution/optimal linear search
for sequence learning, in: Proc. 19th Int. Joint Conf. on Artificial Intelligence, Edinburgh, pp. 853–
858 (2005).

11. D. Wierstra, F. Gomez and J. Schmidhuber, Modeling systems with internal state using Evolino,
in: Proc. Genetic Evolutionary Computation Conf., New York, NY, pp. 1795–1802 (2005).

12. H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll and J. Schmidhuber, A system for robotic heart
surgery that learns to tie knots using recurrent neural networks, in: Proc. Int. Conf. on Intelligent
Robotics and Systems, Beijing, pp. 543–548 (2006).

13. J. Schmidhuber, D. Wierstra, M. Gagliolo and F. Gomez, Training recurrent neural networks by
Evolino, Neural Comput. 19, 757–779 (2007).

14. I. Nagy, H. Mayer, A. Knoll, E. U. Schirmbeck and R. Bauernschmitt, EndoPAR: an open eval-
uation system for minimally invasive robotic surgery, in: Proc. IEEE Conf. on Mechatronics and
Robotics, Aachen, pp. 1464–1467 (2004).

15. H. Mayer, I. Nagy, A. Knoll, E. U. Braun, R. Lange and R. Bauernschmitt, Adaptive control for
human-robot skilltransfer: trajectory planning based on fluid dynamics, in: Proc. IEEE Int. Conf.
on Robotics and Automation, Rome, pp. 1800–1807 (2007).

16. V. Vapnik, The Nature of Statistical Learning Theory. Springer, New York, NY (1995).
17. F. J. Gomez, Robust nonlinear control through neuroevolution, PhD Thesis (Technical Report AI-

TR-03-303), Department of Computer Sciences, University of Texas at Austin, Austin, TX (2003).

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

1536 H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537

18. D. E. Moriarty and R. Miikkulainen, Efficient reinforcement learning through symbiotic evolution,
Mach. Learn. 22, 11–32 (1996).

19. H. T. Siegelmann and E. D. Sontag, Turing computability with neural nets, Appl. Math. Lett. 4,
77–80 (1991).

20. S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmidhuber, Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, in: A Field Guide to Dynamical Recurrent Neural
Networks, S. C. Kremer and J. F. Kolen (Eds), pp. 237–244. IEEE Press, New York, NY (2001).

21. F. A. Gers, J. Schmidhuber and F. Cummins, Learning to forget: continual prediction with LSTM,
Neural Comput. 12, 2451–2471 (2000).

22. F. A. Gers and J. Schmidhuber, LSTM recurrent networks learn simple context free and context
sensitive languages, IEEE Trans. Neural Netw. 12, 1333–1340 (2001).

23. R. Penrose, A generalized inverse for matrices, in: Proc. Cambridge Philos. Soc. 51, 406–413
(1955).

24. E. P. Maillard and D. Gueriot, RBF neural network, basis functions and genetic algorithms, in:
Proc. IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 2187–2190 (1997).

About the Authors

Daan Wierstra graduated from Utrecht University and is currently a PhD student
at IDSIA. His research has focused on policy gradient and evolutionary strategy-
based methods for reinforcement learning in non-Markovian environments, and
for long-term dependency sequence processing.

Faustino Gomez received his PhD in Computer Science from the University of
Texas at Austin, USA, in 2003. Shortly after, he held a Post-doctoral research
position (2004–2006) at IDSIA, where he is now a Senior Researcher. His areas
of expertise include evolutionary computation, artificial neural networks and re-
inforcement learning. He is also a Lecturer at the University of Lugano in the
Intelligent Systems Masters program.

Hermann Mayer received his Diploma degree in Computer Science from the
Technical University Munich, in 2003, and the PhD, in 2008. He has been work-
ing on the automation of surgical procedures and the employment of robots for
medical applications. Currently he is working as a Research Assistant at the Ro-
botics and Embedded Systems lab.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

H. Mayer et al. / Advanced Robotics 22 (2008) 1521–1537 1537

Istvan Nagy received both his Diploma degree in Computer Science and his PhD
from the Technical University Munich. His main research topic was medical image
processing in stereo-endoscopic views in the context of surgical robotics. Cur-
rently he is working for BMW on camera-based driver assistance systems.

Jürgen Schmidhuber is Professor of Cognitive Robotics at TU Munich (since
2004), Co-Director of the Swiss Institute for Artificial Intelligence IDSIA (since
1995), Professor at SUPSI (since 2003) and also adjunct Professor of Computer
Science at the University of Lugano (since 2006). He obtained his Doctoral degree
in Computer Science from TUM, in 1991, and his Habilitation degree, in 1993, af-
ter a Post-doctoral stay at the University of Colorado, Boulder, USA. He helped
to transform IDSIA into one of the world’s top 10 AI labs (the smallest!), ac-
cording to the ranking of Business Week magazine. His numerous research grants

have yielded more than 200 peer-reviewed scientific papers on topics ranging from machine learning
and mathematically optimal universal AI and artificial recurrent neural networks to adaptive robotics
and complexity theory, digital physics and the fine arts. He frequently gets invited to give keynote
addresses at international conferences.

Alois Knoll is the Director of the research group ‘Robotics and Embedded Sys-
tems’. From 2001 to 2005, he was a Member of the Board of Directors of the
Fraunhofer-Institute for Autonomous Intelligent Systems, St Augustin, Bonn. His
research interests include sensor-based robotics, multi-agent systems, data fu-
sion, adaptive systems and multimedia information retrieval. In these fields, he
has published over 200 technical papers and guest-edited international journals.
He has been part of (and has coordinated) several large-scale national collabo-
rative research projects. He initiated and was the Program Chairman of the First

IEEE/RAS Conference on Humanoid Robots (IEEE–RAS/RSJ Humanoids 2000), he was General
Chair of IEEE Humanoids 2003 and General Chair of Robotik 2008, the largest German conference
on robotics. He is a member of the German Society for Computer Science (Gesellschaft für Infor-
matik) and the IEEE.

D
ow

nl
oa

de
d

by
 [

Io
w

a
St

at
e

U
ni

ve
rs

ity
]

at
 0

1:
21

 0
7

O
ct

ob
er

 2
01

3

