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Abstract

We migrate the entire code base of the Android application TUM-Lens from Java to
Kotlin. This facilitates the future development of the app as it makes the code more concise
and error-proof. We elaborate on further advantages of the Kotlin language over Java and
analyse how this migration lowered the lines of the existing code. Moreover, we expand the
functionalities of the app by an object detection feature based on Google’s open source deep
learning framework TensorFlow Lite. The implementation follows in the previous TUM-Lens
developer’s footsteps and integrates the object detection to work entirely on-device so that
no data needs to be exchanged with external servers. On the object detection theory side, we
distinguish object detection from other visual machine learning tasks and survey a selection
of modern deep learning architectures - both for backbone and detector networks. In addition,
we study the mechanics of a specific model, the SSD MobileNet v1, as this is the model applied
to the object detection task in TUM-Lens. This thesis expands Maximilian Jokel’s previ-
ous work Implementing a TensorFlow-Slim based Android app for image classification (2020).

The repository containing the source code belonging to this thesis can be found here:
https://gitlab.lrz.de/dvrws/lens
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Introduction and Background Theory
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1. Motivation

The aim of this work was to further develop the Android app TUM-Lens [17]. Its core
function is the analysis of images that are captured by the camera of the Android device
and transmitted to the app as a live feed. With the completion of this work, the pre-existing
image classification capabilities of the app are now complemented by object detection.

For an optimal user experience, the analysis of the images must take place in near real
time. This is the only way to ensure that the analysis results displayed always match the
current content of the camera feed, which can change quickly due to panning of the camera
by its user. While in many applications the analysis of image data can take place decentrally
in powerful data centres, in the case of TUM-Lens the image analysis runs on the mobile
device itself.

1.1. Growing Support for On-Device Machine Learning

Support for the development of machine learning (ml) and also, in particular, deep learning
applications for mobile platforms is growing steadily and from different directions at the
same time. Developer-friendly frameworks such as TensorFlow1, developed by Google
Brain, or PyTorch2, developed by Facebook’s AI Research Lab, are among the best-known
deep learning frameworks [11]. The releases of TensorFlow Lite3 2017 [44] and PyTorch
Mobile4 2019 [32] show that mobile platforms increasingly come into focus of companies
providing machine learning software. In recent years, device manufacturers and operating
system developers also started to provide dedicated hardware and software components for
mobile machine learning. Examples include Apple’s Neural Engine [45], unveiled in 2017,
or Android’s Neural Networks API (NNAPI) [6]. Apple’s Neural Engine is a hardware
component optimised for machine learning requirements. Android’s NNAPI, on the other
hand, is an Android C application programming interface (api) for efficient computation of
ml operations and provides a basic set of functions for higher-level ml frameworks. As a
result of these developments, it is becoming easier for developers to build ml applications
that run efficiently on mobile devices. This support was a major catalyst for the initial and
further development of TUM-Lens in the context of two bachelor theses.

1.2. Offline Usability

TUM-Lens is more independent compared to many other machine learning based apps as
it does not require an internet connection to use it. Often, apps and services require a

1https://www.tensorflow.org/
2https://pytorch.org/
3https://www.tensorflow.org/lite
4https://pytorch.org/mobile/home/
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1. Motivation

connection to the internet because of the nature of the task they are meant to perform. The
Amazon voice assistant Alexa can answer simple voice commands to control smart home
devices or check the time without having access to the world wide web and thus already
uses on-device machine learning. But even if Alexa could analyse and understand all voice
commands locally, the request would still have to be forwarded to the Amazon servers in
most cases. Because of the large number of possible queries, not all answers can be kept on
the device, but must be retrieved from a data centre that has more storage capacity. Such
queries include daily topics such as the weather report, traffic or the result of a sporting
event. However, an internet connection is not required to use the full range of functions
of TUM-Lens. All the information needed for image classification and object detection is
stored locally on the device in the form of various already trained artificial neural network
(ann). With the integration of the corresponding mobile frameworks, the image analysis can
therefore be carried out locally on the device, making the app independent of an internet
connection.

1.3. Improved Privacy

Using on-device ml provides a further mechanism for protecting personal data in the context
of machine learning besides existing methods, such as differential privacy. Due to the growing
support for mobile ml applications mentioned above, but also because of the continually
increasing power of mobile devices [12], not only the use of pre-trained anns becomes possible,
but also the training of new anns on the mobile device itself becomes more and more feasible
and relevant [27]. If the training process takes place locally on the device itself, no data
needs to be transferred to external instances, such as a company’s servers. This makes
it possible to develop applications that adapt more and more individually to the user as
they are used, while guaranteeing a maximum level of data protection. An example of the
development of such an application is DeepType [47]. DeepType attempts to predict the
next word used when the user enters the keyboard. While every user initially starts with
the same pre-trained version of the ann used by DeepType, the application continues to
train this ann with each input and thus adapts more and more to the characteristic input
behaviour of the user - all without the text inputs ever leaving the device.
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2. Important Concepts

It is nearly impossible to imagine our everyday life without the use of the term machine
learning. The multitude of contexts in which machine learning is spoken of - some justifiably
and some unjustifiably - makes it important to create a common understanding of some
machine learning-related concepts used throughout the theoretical chapters of this work.
Therefore, we first introduce the term machine learning and explore a common and helpful
division of the machine learning field into different subdomains. Next, we explain the concept
of an artificial neural network followed by the description of a deep learning, a special class
of both machine learning (ml) as a discipline and anns as a type of data processing tool.

2.1. Machine Learning

A popular definition of machine learning is attributed to Arthur Samuel describing it
as the ”field of study that gives computers the ability to learn without being explicitly
programmed”1. machine learning algorithms circumvent this need for explicit programming
by improving an internal model through data. This process is called training and the data
used to train the model is often regarded to as the model’s experience [29]. As depicted
in figure Figure 2.1, ml can be divided into the subfields supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning.

2.1.1. Supervised Learning

In supervised learning, the learning machine is provided with input data as well as the
output that is expected for the given input [21]. In the classical example of spam filtering,
the input can be a collection of emails and the expected output is a label attached to each
email that either classifies it as spam or as non-spam. The learning machine is then fed all
e-mails as input data and learns to recognise which information in the input is important to
produce the correct classification. As the system knows the correct answer for each training
input, it can process an email, predict whether or not it is spam, and then use the known
answer to change its structure in a way that will make it more likely to lead to a correct
prediction and less likely to lead to a false prediction the next time it is presented with
similar input (more on this adaptation process in Section 2.2).

1Althought cited in popular machine learning material like Andrew Ng’s ml course at Stanford [30] the
quote appears neither in Samuel’s 1959 [36] nor his 1967 paper [37].
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2. Important Concepts

Classification of Machine Learning

Supervised Learning

• Regression

• Classification

Unsupervised Learning

• Clustering

• Association

Semi-supervised Learning

• Classification

• Clustering

Reinformcement Learning

• Classification

• Control

Figure 2.1.: The field of machine learning divided into subfields by the characteristics of
the underlying learning process. Also indicates the learning problems that are
typically tried to be solved by applying the respective learning process.

2.1.2. Unsupervised Learning

Detecting hidden patterns and structuring data is where unsupervised learning comes into
play. Learners of this type do not need to be provided with an expected output while
being trained [38]. A scenario for the application of unsupervised learning is the problem
of dividing a customer base into subgroups in order to treat every subgroup according to
their specific needs. An employee might help the machine learning system by providing
the number of subgroups she wants the system to generate. The learner then builds up its
representation of the internal structure of the entire data set with every input it processes.
After having processed enough customers, it will most likely have identified the key metrics
that distinguish customers into the different groups.

2.1.3. Semi-Supervised Learning

One use for semi-supervised learning is cluster analysis, which was already used as an
example in the previous paragraph. In the case of semi-supervised learning, the system no
longer has to work out the different groups (also known as clusters) from the unlabelled
data alone. Instead, it can use a small set of already labelled customers as a reference
and build its internal representation of the entire dataset (labelled and unlabelled) around
the clusters indicated by the pre-labelled data. This is especially useful because in many
domains, collecting or creating labelled data is difficult, expensive, or both [49].

2.1.4. Reinforcement Learning

Reinforcement learning is ”learning what to do - how to map situations to actions - so as to
maximize a numerical reward signal” [42]. Systems are trained via reinforcement learning to
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2. Important Concepts

learn how to behave in dynamic environments. The tasks in these environments can stretch
from playing a video game [46] to driving an autonomous car [35]. These exemplary tasks
show two characteristics that distinguish reinforcement learning from the other subfields of
ml: The reward signal is often delayed and attribution to single actions is difficult. Only
once a game is won or the car has arrived safely at its destination the system knows if all
the decisions it made along the way lead to a positive outcome. Trial-and-error is therefore
a term that summarises this learning paradigm quite precisely.

2.2. Artificial Neural Networks

An artificial neural network - often just referred to as neural network - is a data processing
concept that is inspired by biological neurons and their interconnectivity. As figures Figure 2.2
and Figure 2.3 show, the artificial neurons (also called nodes) in an ann are grouped in
layers. There are three important types of layers: The input layer2, the output layer and
an arbitrary number of hidden layers in between the input and output layer. Similar to
neurons in human brains, nodes of different layers can be connected. In anns, the nodes
exchange signals in the form of numbers. Each node outputs a number that is computed by
applying a non-linear function to its inputs. The output signal can then be a new input for
other nodes, or it can be part of the result returned by the output layer. The connections
between nodes are also known as edges and typically carry a weight. When a signal travels
from one node to the next, it is typically multiplied and thereby changed by the weight of
that edge. With anns, the training process that is typical for all machine learning systems is
the adjustment of these connection weights. The weights and other variables of the ann are
grouped under the term parameters. In summary, an ann transforms an input vector into
an output vector through a series of non-linear functions, where both the calculation of the
output and the training process are characterised by the specific structure of the ann and
its parameters.

Figure 2.2.: 2-layered ann. It is called fully
connected as every node from the
previous layer is connected to ev-
ery node in the next layer.
Source: [22]

Figure 2.3.: 3-layered ann. In anns, nodes in
one layer are connected to nodes
in other layers but not to other
nodes in the same layer.
Source: [22]

2Note that the input layer is usually not counted towards the total number of layers in an ann.
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2. Important Concepts

2.3. Deep Learning

Deep learning is a subarea of machine learning. Deep learning is characterised by the use
of anns with many hidden layers. The more hidden layers a network has, the deeper it is.
The deeper a network is and the more nodes the network has per layer, the more complex
the computations that the ann can successfully perform [10]. As the number of layers and
nodes grows, so does the number of parameters. Their large number is the reason deep
learning requires extensive amounts of data to provide adequate results compared to other
sub-disciplines of machine learning. Networks of this genus have the ability to perform
extraordinarily complex computations at the expense of a resource-intensive training process.
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3. Object Detection

The field of computer vision (cv) encompasses numerous distinct problems and an even
larger number of potential solutions. In the following, object detection as a typical task in
the cv context is distinguished from other cv tasks that are closest to it in terms of learning
objectives. We then give an overview of a selection of modern object detectors, including
their internal structures and differentiating factors. We close this chapter with a description
of the model applied to the object detection task in TUM-Lens.

3.1. How Object Detection Differs from Related Tasks

Figure 3.1.: Object detection differs conceptually from other related cv tasks regarding
spatial information, the concept of objects and the number of detections in a
scene.
Source: [23]

3.1.1. Semantic Segmentation

In semantic segmentation, each pixel of an image is assigned a class. However, there are
no objects. This means that if there are several objects of the same class in the image, all
the associated pixels receive the same class label. Therefore, the different objects cannot be
distinguished based on the result of the semantic segmentation.

3.1.2. Image Classification

In image classification, the result of the detection is a single class. In rare application
variants, a bounding box for one object of the detected class is also returned - as a rule,
however, no spatial extent is associated with the task of classification.

8



3. Object Detection

3.1.3. Object Detection

Object detection deals with the identification of any number of objects within an image.
For each object, a class label and its position are returned as the coordinates of a rectangle
enclosing the object. It is noteworthy that, as depicted in Figure Figure 3.1, several objects
of the same class can also be recognised. Contrary to semantic segmentation, the different
objects of the same class can be differentiated.

3.1.4. Instance Segmentation

The instance segmentation essentially fulfils a better variant of the object detection. Again,
several objects of different classes are detected and the positions of the classes are also
part of the output. However, the positions are not marked by bounding boxes as in object
detection, but each pixel belonging to an object receives a label of this object. The objects
are therefore even more sharply separated from the image areas that do not contain an
object and, in contrast to semantic segmentation, individual objects of the same class remain
distinguishable.

3.2. Object Detection Frameworks

State-of-the-art object detection frameworks run predominantly on deep learning archi-
tectures [2]. The bachelor’s thesis preceding this work, Implementing a TensorFlow-Slim
based Android app for image classification [18], already explains how convolutional neural
networks (cnns) work and why they are the most important building blocks for deep learning
frameworks solving perceptual tasks. This explanation will therefore not be pursued here
once more. Instead, we survey a range of modern object detection frameworks. Each
framework is defined by the combination of a backbone and a detector. Table Table 3.1
shows a selection of popular detectors. The selection was not put together at random, but is
based on popularity and performance in standard object detection benchmarks [4].

backbone first publication detectors

AlexNet 2012 [20] HyperNet [19]

VGG-16 2014 [40] PFPNet-R512 [K]

GoogLeNet 2014 [43] YOLOv1 [33]

ResNets 2015 [13]
BlitzNet512 [8], CoupleNet
[50], RetinaNet [26], Faster

R-CNN [34]

MobileNet 2017 [16] SSD [28]

Table 3.1.: Overview of a few modern cnn backbone networks and detectors that build
upon them. The number of backbones and detectors is steadily increasing
because existing architectures get improved over time or entirely radically new
architectures are invented.
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3. Object Detection

3.2.1. Backbones

The term backbone in the context of anns might be used differently depending on the task
pursued. In the case of visual tasks and this thesis, the backbone is the part of an object
detection framework that extracts features from the input data. This encapsulation of the
feature extraction task in its own set of cnns allows the designer of the object detection
pipeline to swap and test different backbones for the task at hand [4]. In order to demonstrate
how backbones of two types can differ, we will look at the special characteristics ResNets
and MobileNets.

ResNet

While the baseline ann described in Section 2.2 only connects adjacent layers, residual neural
networks (ResNets) are a special subclass of ann that introduces shortcut connections [13].
Shortcut connection are edges in the network that skip one or more layers.

MobileNet

As the name suggests, MobileNets were developed especially for mobile or embedded computer
vision applications. The key innovation of the MobileNet architecture is the combination of
two elements:

1. utilisation of depth-wise separable filters [39]

2. a network structure that enables the developer to scale the model size down by
adjusting only two hyper-parameters

Firstly, using depth-wise separable filters leads to a significantly lower number of parameters
the model needs to learn during the training phase. Secondly, the easy shrinking of the model
by adjusting the two hyper-parameters (named width multiplier and resolution multiplier)
allows the model-builder to scale the model down to exactly the size that is appropriate
for solving the problem the model is applied to [16]. Both of these features are incredibly
valuable for a neural network that needs to run and perform on a mobile device with limited
storage and computing resources. This is also the reason a MobileNet is part of the detection
framework implemented in TUM-Lens.

3.2.2. Detectors

Two-Stage Detectors

This class of detectors separates the object detection task into two distinct stages [41]. The
network of the first stage (named Region Proposal Network (RPN) in the R-CNN detector
family [9]) uses the image data to generate region proposals. The second stage is a separate
network that takes these region proposals (or ROI - short for regions of interest), potentially
decreases the final number of ROI using mechanics that depend on the specific detector, and
then performs the classification on each of the final regions. All classified regions are then
returned as the detected objects. Two-stage detectors tend to have a higher localisation
and object recognition accuracy than single-stage detectors but can only achieve that at the
cost of considerably slower inference speed [14]. Well-known representatives of this type are
members of the R-CNN family.
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3. Object Detection

Single-Stage Detectors

Detection frameworks are considered to have only a single stage when they comprise one
deep neural network only and compute the objects (bounding box coordinates and category)
in a single pass through that network. By eliminating the explicit generation of region
proposals, single-stage detectors outperform their two-stage competitors with respect to
speed while sacrificing a bit of detection accuracy, if at all [28]. This speed improvement
makes single-stage detectors the preferred choice for applications running on mobile or
embedded devices or in applications that require real-time image detection. Alongside
detector implemented in TUM-Lens is described in Section 3.3, RetinaNet [26] and YOLO
(You Only Look Once) [3] are established single-stage detectors.

3.3. The TUM-Lens Object Detector: SSD MobileNet v1

The SSD MobileNet v1 is the TensorFlow-Lite model used for the new object detection
functionality integrated into TUM Lens. The model is pre-trained on the COCO dataset1

and available on TensorFlow Hub2. Since the most important characteristics of MobileNets
have been covered in subsubsection 3.2.1, we focus on the core concepts of the Single Shot
MultiBox Detector (SSD).

Figure 3.2.: The combination of bounding boxes in varying aspect ratios and multi-scale
feature maps allows the SSD to detect objects in different sizes and orientations.
Source: [28]

The SSD consists of a backbone and the SSD head. In theory, the backbone can be any
of the networks mentioned in Subsection 3.2.1 although the choice is not limited to this
selection. When SSD was first introduced in 2015, the authors used the VGG-16 network
as the backbone [28]. In the case of the specific SSD variant implemented in TUM-Lens, a
MobileNet is used as a backbone. The reasons for the particular applicability of MobileNet
in our Android app use case are described in Subsection 3.2.1. Independent of the specific
type of backbone, it is first trained on publicly available image data, e.g. from a database

1https://cocodataset.org/
2https://tfhub.dev/tensorflow/lite-model/ssd_mobilenet_v1/1/metadata/2
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3. Object Detection

like ImageNet3. Once the network is pre-trained, the final layers that originally handled the
classification are then replaced by the SSD head.

The SSD head is the part of the detector that computes category scores and box locations.
It is a characteristic of SSD to work with a fixed set of default bounding boxes. To account
for the different sizes in which objects might appear in an image, SSD applies a sequence
of comparatively small convulational filters to the feature map returned by the backbone
network. Each of the feature maps obtained by this process represents a different receptive
field and allows the network to detect objects at different scales. Consequently, the SSD
computes predictions for all of these feature maps and for each of its pre-defined aspect
ratios. It then fuses the predictions of the different aspect ratios and scales in order to
improve detection accuracy. The range of aspect ratios and scales, although predetermined,
enables the SSD to detect objects in various shapes and sizes. Its multi-scale feature maps
are a core differentiator from other single-stage detectors like YOLO [28, 33] .

3https://image-net.org/
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4. Previous State of the Application

The practical part of this work was built in top of the already existing Android application
TUM-Lens in its version 1.0. In that version, the app is already cable of classifying images
received from the live camera stream in real-time. It can also classify images that are loaded
from the disk of the Android as an alternative operational mode to the camera stream
classification. Moreover, the user can choose between different TensorFlow-Slim1 models to
classify the images. This enables the user to do two things: she can compare the speed of
similar detectors and she can also change the type of objects that can be detected as some
of the available networks were trained on different data and with different class labels [18].
The most impactful design decision of the former developer of TUM-Lens was to run the
entire classification locally on the Android device.

1https://github.com/google-research/tf-slim
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5. Design Updates

We also took the chance to introduce some design updates to modernise the app. The
fresh look of the DetectionActivity can be seen in Figure 5.1 and an overview of all newly
introduced screens next to their counterpart from the previous app version (if applicable)
can be found in Figure A.1 in the appendix. Two major advances of the updated design are
the slight transparency added to the bottom sheet and the expansion of the camera preview
behind the status bar. The first update is not merely a UI decision. It also leads to a better
user experience because the bottom sheet in the DetectionActivity can easily cover the
entire screen. Still, being able to see a bit of what the camera is currently capturing helps
to understand, e.g. the different classification results shown. The second update regarding
the transparent status bar makes the experience of the app more immersive. In fact, we
also implemented a truly full-screen mode making the navigation bar transparent as well
and extending the image preview to the entire area of the display. However, this behaviour
is reserved for a small number of special use cases like e.g. gaming or image gallery apps.
Therefore, we reverted that change as soon as we realised it did not fit to the use case of
TUM-Lens.

Figure 5.1.: Current Design of the App

15



6. Migration from Java to Kotlin

During the Google I/O conference 2017 Google announced that they are making the
programming language Kotlin a first-class citizen in Android [7]. Two years later, Google
refined this statement annunciating that Android development will ”be increasingly Kotlin-
first” and, at the present day, the Google Developers website recommends developers
to choose Kotlin when they start building a new Android app [5]. This alone can be
reason enough to migrate an application to Kotlin - especially while its code base is still
as manageable as the code base of TUM-Lens. To provide further explanations for the
soundness of such a step, we will first look at the advantages of Kotlin over Java - with
particular emphasis on the context of TUM-Lens being developed by students as part of
their final theses. After that, we look at the code conversion process from Java to Kotlin,
which is backed by powerful functionality integrated into Android Studio. We will also see
an example of a pitfall that can be easily overlooked in such a semi-automated conversion
process. In Section 8.1, we will also analyse how the number of lines of code changed from
the Java files in app version 1.0 compared to the current state of the project being fully
migrated to Kotlin.

6.1. Advantages of Kotlin

Continuing the development of TUM-Lens in Kotlin has several advantages. As the is
app currently exclusively developed by students, Kotlin’s enhanced expressiveness and
conciseness over Java makes it easier for students to understand the entire application within
the scope of a bachelor’s or master’s thesis. Moreover, students can learn more in the given
amount of time they spend working on the app because they can focus more strongly on the
implementation of additional features instead of having to write boilerplate Java code. As
students are more error prone than professional developers, they surpassingly benefit from
the safety features integrated into the Kotlin language. The most common cause for crashes
of Java applications is the null pointer exception [15, 48]. With Kotlin being a strongly
typed language, a lot of these null pointer exceptions will be avoided because Kotlin’s safety
features help the developer to identify potential sources of such errors easily. Google itself
claims that Android apps are 20% less likely to crash when they contain Kotlin code [5].

6.2. Converting Java Files to Kotlin Files

Android Studio offers a convenient way to convert files from Java to Kotlin. On macOS, we
first have to open the Java file we want to migrate in Android Studio. Next, we select Code
from the menu bar and then the menu item Convert Java File to Kotlin File. If we have not
yet configured Kotlin in your project, Android Studio will prompt us to either do so or abort
the migration process. Once Kotlin is set up, Android Studio will immediately start the
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conversion. At the end of the process, we are prompted with a dialogue asking ”Some code
in the rest of your project may require corrections after performing this conversion. Do you
want to find such code and correct it too?” which we confirm by clicking on the yes-button.
The file has now been converted from Java to Kotlin. In some cases, the resulting Kotlin
code works right away, but in the context of TUM-Lens manual adjustments were mandatory
in every file because of several reasons.

For a start, Android Studio could not always infer all types automatically. With Kotlin
being strongly typed, it was necessary to restructure the code so that the compiler could
know each variable’s type or safely cast a variable to the appropriate type (called Smart
Cast in Kotlin). We solved this situation using two different approaches, distinguished by
the importance of the successful execution of the respective code block. In the case of
non-critical functionality, using Kotlin’s safe call operator ?. to access properties that might
be null was sufficient. For core functions, wrapping such functionality in an additional safety
check was the better option. This not only capacitates the compiler to be certain that a
mutable property had not accidentally become null before being accessed. It also enables us
to react appropriately if the safety check fails.

1 var <propertyName >[: <PropertyType >] [= <property_initializer >]

2 [<getter >]

3 [<setter >]

Listing 6.1: Kotlin’s declaration syntax for a mutable property. Getter and setter are
optional. The property type is only optional when the compiler can infer it from
the context (meaning either from the initializer or from the return type of the
getter).

There is one part to Android Studio’s built-in code migration tool-chain that actu-
ally tricked us into introducing a bug: the conversion of getters and setters. Listing 6.1
shows the syntax for the declaration of a property in Kotlin. Every property has de-
fault public getters and setters if not explicitly defined otherwise. Java, on the other
hand, conventionally defines methods like public variableType getVariableName() and
public void setVariableName(variableType newValue) for every variable of a private class
that shall be retrieved or overwritten from outside that class.

Listing 6.2 contains the original Java code and Listing 6.3 shows the final solution that
we implemented in addition to Kotlin’s property accessors. The default Kotlin getter is
not enough here as it would omit the crucial conversion task. However, this is exactly
what happened during the auto-conversion: only the default getter was available after the
conversion had successfully finished. As a result, other parts of the logic broke because the
rgbBytes object could not be properly processed, which, in turn, lead to the application not
working as expected. In this special case, some accessors of the particular property required
the image conversion while other accessors did not. Therefore, we did not put the image
conversion into a custom getter because we did not want to call imageConverter!!.run()
every time the property was used. Retrospectively, placing it in the separate method
getConvertedRgbBytes() has been an excellent decision for us.
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1 protected int[] getRgbBytes () {

2 imageConverter.run();

3 return rgbBytes;

4 }

Listing 6.2: Java code that lead to the introduction of a bug after using Android Studio’s
built-in Java to Kotlin conversion command. The bug was created when this
code block was substituted with a default getter in Kotlin omitting parts of its
logic.

1 protected fun getConvertedRgbBytes (): IntArray? {

2 imageConverter !!. run()

3 return rgbBytes

4 }

Listing 6.3: Complementing the default Kotlin getter with this method solved the problem.
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7. Implementing Object Detection Using the
TensorFlow Lite Framework

As described in Chapter 4 the core feature of TUM-Lens v1.0 is image classification. Most
notably, the classification task is not outsourced to some remote server but performed offline
on the device itself. We adhere to this decision and built our logic on top of Google’s
TensorFlow Lite example app for object detection [24, 25]. The detection task is therefore
carried out locally using the same TensorFlow-Lite API as the image classification. We also
integrate our detection results into the images received from the camera live-stream so that
the user of the app can experience the object detection in real-time. This being said, there is
some discrepancy to the existing set of functionalities built around the image classification.
Only one model for object detection is currently available within the app and the detection
logic cannot be applied to images that have been loaded from the storage of the device.

7.1. Expansion of the Existing App Architecture

In order to make the structure of the app more accessible to new developers, we put the core
classes responsible for image classification and object detection into two distinct packages.
The project now includes the four packages classification, detection, fragments and
helpers. Only the two base activities StartScreenActivity and PermissionDeniedActivity

remained on the top-level. The UML diagram depicted in Figure 7.1 is a good starting point
for interested people who want to familiarise themselves with the newly added contents
of the app. Most of the code that was added is located within the detection package.
However, adjustments in other parts of the app where necessary in order to integrate the
new functionalities into the existing project.

7.2. Detection and Tracking

Just as the ClassificationActivity is the core activity that handles the image classification
of the camera feed, the new DetectionActivity is the central activity for object detection.
The user can easily switch between the different mode of image analysis by using a toggle
button on top of the screen. We decided to use a toggle switch here since there are exactly
two operating modes (classification and detection) and they are working mutually exclusively
in order to best utilise the computation power of the device. This design decision may
be revised later when the scope of the app is expanded to cover more visual tasks (see
Section 3.1 for examples of such tasks). Another reason for a rework can be the fact that
mobile devices might have enough computing power so that solving multiple tasks in parallel
does not make a noticeable difference for the app user, meaning images are still processed in
real-time. In this section, we will not explain the code step by step as this can be done be
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reviewing the code itself and reading the comments further explaining important parts it.
Instead, we will explain a few key concepts and classes so that people scanning the code
after reading this thesis know what to look for.

7.2.1. Inheritance for Receiving and Rendering of Images

The DetectionActivity inherits from the abstract class CameraActivity and implements the
OverlayView.DrawCallback interface. The CameraActivity handles all communication with
Androids camera api and implements the proper setup and behaviour of the elements in
the bottom sheet. The DrawCallback interface provides a single function definition that the
DetectionActivity overrides in order to render the detected objects as rectangles in a layer
on top of the preview of the camera image stream. The actual drawing is delegated to an
MultiBoxTracker object as we will see in Subsection 7.2.3.

7.2.2. Bitmap Conversion

Since TUM-Lens can run on a multitude of devices with varying combinations of camera
and display resolution, the DetectionActivity uses matrices to convert the image data back
and forth between the different formats the data is needed in. For contemporary Android
devices, the potential resolution of the camera is usually above the maximum resolution of
the display. This is also the case for the Xiaomi Mi 9 on which we tested the application
during its development (see Appendix B for its technical specifications). It is the developers’
task to decide in which quality the camera input is displayed. Sticking to the example of
Xiaomi Mi 9, the images captured by the camera have 20 (selfie camera) or 45 (main camera)
megapixels and are scaled down to less than 2.5 megapixel to be displayed on the device
screen. After that, they are again scaled down to a bitmap of 300x300 pixels1 as this is the
appropriate input size for the implemented detection framework described in Section 3.3.
Once the detector returns bounding boxes for the objects detected in its input image the
coordinates of these rectangles in turn are scaled back up to mark the corresponding areas
in the higher resolution image shown on the device display.

7.2.3. DetectionActivity and MultiBoxTracker

The DetectionActivity also orchestrates the two most fundamental tasks of the object
detection process: object detection and, since the images are derived from a contin-
uous camera stream, object tracking. It instantiates the object detector of the class
TFLiteObjectDetectionAPIModel to handle the interactions with the TensorFlow Lite api and
a MultiBoxTracker object tracker that tries to assign each rectangle drawn on the screen
to its related recognition result across successive input images. This is important because
the bounding boxes that are drawn as an overlay on the camera view use different colours
for different objects. If no tracking would happen, the colour that is assigned to an object
will change randomly with every new image the detector processes. This would be very
confusing for the user. Therefore, the recognition results returned by the detector are not

1The image received by the detector might indeed be even smaller than 300x300 pixels as the camera input
is usually not square and the aspect ratio is kept throughout the image conversion pipeline. Therefore,
the 300 pixels denote the larger dimension (width or height) of the actual content of the input bitmap.
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directly rendered on the screen but first processed by the tracker.

The tracker guarantees two properties: Firstly, empty or degenerated recognition results
are skipped and not tried to be displayed. Secondly, the 15 colours the tracker can assign
to the remaining objects are allocated in the same order every time the old drawings are
cleared from the canvas and new ones are drawn. This process of detecting objects, clearing
old rectangles from the screen and drawing new ones happens with every image the detector
processes. While the tracking is far from perfect, the order in which recognitions are returned
by the detector stays roughly the same. This happens because they are ordered by the
coordinates of their bounding boxes. Depending on the camera settings, the camera can
usually stream 30 to 60 frames per second. If the user does not move the camera surpassingly
fast, the coordinates of the recognition results stay close enough together so that they get
assigned the same colour across the changing camera frames. New objects appearing in
the scene (or existing ones becoming larger as the user gets closer) are currently the major
cause of inconsistent object colouring. However, as long as no new objects are recognised,
the existing ones tend to keep their colours. This is already a significant achievement given
the tracking is purely based on properties of the TensorFlow Lite api and does therefore
add effectively non-existent overhead to the object detection pipeline.

The detection threshold is currently defined in a constant and set to 0.5 in order to display
the most relevant objects. Hence, only recognition results received from the detector that
have a confidence score of 0.5 or higher are handed to the tracker. This further improves
the user experience supplementary to the object tracking.
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Figure 7.1.: UML class diagram of the new detection package. Only public properties and
methods are shown.
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8. Evaluation

We are going to evaluate two metrics in this chapter. First, we will have a look at the impact
of changing the programming language from Java to Kotlin regarding the number of lines of
code. Second, the performance of the application is evaluated based on the goals that were
set before we took on the topic of this thesis.

8.1. Project Size after the Migration to Kotlin

Using the npm distribution of the tool Count Lines of Code (cloc)1 we can easily count lines
of Java and Kotlin code while ignoring blank lines and comment lines. This enables us to
monitor how the shift from Java to Kotlin influenced the number of lines of code. With Perl,
Node and npm installed on our machine, we run the following command which prints its
output to stdout:

1 (base) david@DDs -MBP lens -david % npx cloc --by -file --git -diff -rel --

match -d=’main’ --include -lang=Java ,Kotlin -csv f6a18e0f 031 a26a7

Listing 8.1: npx cloc command with its options and arguments. Prints the lines of code
analysis comapring files before and after the Java to Kotlin conversion. The
output was also saved as cloc.csv and can be found in lens-david/thesis/raw data.

The --by-file option enables us to compare each Java file with its Kotlin equivalent directly
as it changes the output so that the results are returned for every source file encountered.
--git-diff-rel interprets the command line arguments as git targets and compares only
files which have changed in either commit which is exactly what we need to measure the
change in the number of lines of code. Only files in the main directory are of our concern,
so we let cloc only search this directory using the option --match-d=’main’. This excludes
e.g. the test directory from being searched. With --include-lang=Java,Kotlin we limit
the output to files written in the languages we seek to collate. Other files (like Android’s
XML layout files) are not of interest for this analysis. Finally, we provide two git commits.
f6a18e0f is the last commit pushed by the previous developer of TUM-Lens and bf0dbf7f is
the more recent commit that does not contain Java files anymore but replaced them with
their respective Kotlin substitute. Table 8.1 shows the results of the cloc output. Overall,
the total size of the original Java codebase shrank because of the migration to Kotlin. This
is particularly impressive as understandably further logic was added to existing classes in
order to account for the new object detection functionality.

1Original cloc project by Al Danial: https://github.com/AlDanial/cloc

cloc npm distribution by Kent C. Dodds: https://www.npmjs.com/package/cloc
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Files in TUM-Lens v1.0 migrated from Java to Kotlin Delta in lines of code

CameraRoll -34

Classifier 4

ListSingleton -9

PermissionDenied -8

StartScreen -12

ViewFinder -7

fragments/CameraRollPredictionsFragment 9

fragments/CameraSettingsFragment -15

fragments/ModelSelectorFragment 5

fragments/PredictionsFragment 4

fragments/ProcessingUnitSelectorFragment -7

fragments/SmoothedPredictionsFragment 6

fragments/ThreadNumberFragment -6

helpers/App 1

helpers/CameraEvents 0

helpers/FreezeAnalyzer -6

helpers/FreezeCallback 0

helpers/ImageUtils 43

helpers/Logger 6

helpers/ModelConfig -2

helpers/ProcessingUnit -2

helpers/Recognition -26

helpers/ResultItem -21

helpers/ResultItemComparator -2

cumulative delta over all relevant files -79

Table 8.1.: This table presents the results from the command line prompt in Listing 8.1.
Packages are shown as a prefix to the file name to resemble the original project
structure of TUM-Lens v1.0 and file extension are omitted.

8.2. Performance

One goal of this work is the expansion of TUM-Lens by integrating a real-time object
detection feature running entirely on the device itself. With that in mind and judging by
the updated version of the app we have produced, this goal is fully achieved. For those
who want to test the new app and its performance themselves, the updated version of the
app can be installed on an Android device by cloning our GitLab repository2. We will also
release the updated version 2.0 to the Google PlayStore3 to make it accessible for a broader
audience. Hereafter, we will outline how we conduct a test in which we detect objects with
TUM-Lens and log the detection timings to prove that the detection can indeed be regarded
as performing in real-time.

2https://gitlab.lrz.de/dvrws/lens
3https://play.google.com/store/apps/details?id=com.maxjokel.lens
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8.2.1. Test Environment

We measure the real-time characteristic of our implementation not only subjectively by
assessing what we see on the screen when we run the app. We also track the time it takes
the app between the moment the camera api returns a new image and the bounding boxes
of the recognitions returned by the detector are actually drawn on top of that image. While
the detection time can vary based on the input data it needs to process, we did not try
to measure this influence. However, we conduct our test in a private home which actually
matches the types of categories the SSD MobileNet can detect quite well (e.g. bottle,
cup, chair, couch, bed, dining table, tv, refrigerator, ...). This makes us confident of our
analysis being viable for the assessment of the real-time quality of the object detection we
implemented.

8.2.2. Data Collection

We log the Android system trace on the test device directly4 (specs in Table B.1) because it
allows us to walk around and capture different scenes without having to be attached to a
computer. Once we are done collecting input, we attach the test phone to our computer and
retrieve the data with the following command:

1 (base) david@DDs -MBP lens -david % cd thesis/raw_data && adb pull /data/

local/traces/ .

Listing 8.2: The android-developer-tools (adb) offer a convenient way to retreive trace files
saved on an Android device. This command transfers the system trace from our
test device to the development machine it is attached to via an usb cable.

The command creates a new folder traces in the given directory if it does not already
exist. Since our device runs Android 10, the trace files saved in the new folder have the
.perfetto-trace format. We use Google’s open source trace analysis platform Perfetto5

to open and process the trace file we recorded while walking through the apartment. The
Perfetto UI6 offers a powerful and convenient tool to visualise the data stored in the trace
file. Moreover, it also allows to query the data using SQL commands. Executed within the
Perfetto UI, the query in Listing 8.3 returns a list of the three types of tracked events we are
interested in: imageAvailable, recogniseImage and DrawFrame including their ids, names, a
timestamp indicating the beginning of their execution (ts) and their entire duration (dur).

1 SELECT id , name , ts, dur

2 FROM slice

3 WHERE type = ’internal_slice ’ and

4 (name = ’imageAvailable ’ or name = ’recognizeImage ’ or name = ’DrawFrame ’)

Listing 8.3: SQL command to query object detection related events tracked with Android’s
system tracing.

4https://developer.android.com/topic/performance/tracing/on-device
5https://perfetto.dev/
6https://ui.perfetto.dev/

26

https://developer.android.com/topic/performance/tracing/on-device
https://perfetto.dev/
https://ui.perfetto.dev/


8. Evaluation

The source code includes carefully placed Trace.beginSection([SectionName]) and
Trace.endSection() function calls so that these events are properly tracked. All timings
were measured with the default configuration of using 4 CPU-cores for the object detection
which can also be seen in Figure 8.1 - the recognizeImage slice is traced in the main detection
thread and three further threads support it.

Figure 8.1.: The image shows a systrace visualisation using the Perfetto UI. The horizontal
axis shows the relative time (starting at 0 seconds) and the vertical axes lists
important types of events. These events are sorted to reflect their chronology
as close as possible.
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We imported the output of the Perfetto SQL query into a Microsoft Excel spreadsheet7

(located in the project repository under thesis > raw_data > traces > systrace.xlsx. Two
observations can be drawn from Figure 8.1 that we want to explain because it puts the
measurements into context and makes them easier to understand.

1. The device renders images at an almost fixed rate taking whatever input is currently
available. We used the systrace output to verify this and measured an average of 55
frames per seconds to be displayed on the screen. The DrawFrame tracking event can
be found in in Figure 8.1 in the row RenderThread 4025 (its name is cropped because
of its short duration).

2. The code that contains the imageAvailable section will be entered every time a new
input image is returned from the camera api. However, it only executes fully if the
previous recognition process has already finished as only one image is processed at
a time. In case a new image arrives while an old one is still being processed, the
execution of the code that contains the imageAvailable trace stops almost immediately.
This behaviour can also be visually tracked in Figure 8.1.

8.2.3. System Trace Analysis

We look at the systrace entries of the recognizeImage event from two different angles. First,
we calculate the mean of the duration of the recognizeImage task which is 36,110,754
nanoseconds (ns). This can be converted to potential frames a detector with this speed
provides which is 28 frames per second (fps) on average. This is a decent performance and
can definitely be considered real-time (as a reference: movies are usually recorded with 24
fps). Moreover, it is also close to how academic papers usually measure the performance
of neural networks. However, this is not congruent with what the user experiences as it
implies that the detector is working non-stop - which it does not. Thus, we measure a second
metric to access the performance closer to what a user experiences. This second metric
measures the average time from the start of one recognizeImage event to next. Thereby,
we automatically include both the additional time needed to retrieve the image from the
camera and also the downtime in which no detection is being computed but also no new
image data is available. The average time for this metric is 61.500.325 ns translating to
around 16 fps. This time is low enough for the bounding boxes to track the corresponding
objects accurately and therefore qualifies as real-time. However, it is not low enough for the
tracking to appear complete stutter-free which would be the ideal case. The average joint
time of a non-aborted imageAvailable and its subsequent recognizeImage is 43.100.228 ns
or 23 fps. In order to achieve the maximum visible performance on the test device, this
time needs to be lowered to less than 15.640.005 ns (or over 64 fps) which is the average
time between DrawFrame events - while also being in perfect sync with the latter. This is a
challenge to be taken on in a new project for someone who wants to optimise the current
code for performance or when further detection frameworks become available.

7For people who do not have excel installed: Google Docs offers a spread sheet functionality under
https://docs.google.com/spreadsheets that can read and manipulate .xlsx files as well
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9. Outlook

9.1. Possible Applications

As touched upon in Chapter 1, there are at least two major drivers that will fuel future
development efforts. Protecting the sphere of privacy will definitively be a major motivation
to build apps running machine learning frameworks locally. We have already introduced
this idea by alleging the example of DeepType in Section 1.3. The second driver for an
increase in on-device machine learning applications has been introduced in Section 1.2. It is
the need for machine learners that can act independently of an internet connection. This is
important as it is simply impossibly to guarantee such a connection in some circumstances.
We will expand this line of thought by adding the requirement for increased speed that
some challenges have. We will use the following paragraphs to introduce a wide range of
potential applications centred around the idea of on-device machine learning partitioned by
their major drivers.

9.1.1. Autonomy and Speed Inspired Use Cases

We will not go into too much detail in this section as this work emphasises the importance
of low latency performance for object detection on Android devices in multiple occasions
already. Still, we want to highlight the case of on-device machine learning application
requiring both autonomy and speed that will change our life in the most profound way.

Autonomous Navigation

Many applications in the field of autonomous navigation will greatly benefit from both
aspects of on-device computation - autonomy and speed. Driving (or rather being chauf-
feured by) an autonomous vehicle is the showpiece of on-device machine learning. Firstly,
it needs the fast reaction time provided by algorithms running on embedded hardware to
minimise the distance and thereby time the data needs to travel when it is captured by the
car’s myriad of sensors. This facilitates the car’s decision engine to compute decisions in
real-time. Given the high speed at which cars can travel and the unpredictability of other
traffic participants, it is of utmost importance to react to changes in the environment in
real-time. Secondly, a connection to some remote instance that analyses data online might
not be given in all situations. Cars must pass tunnels, rural areas might have poor network
coverage, or the network itself might have an outage because of unforeseen events such as
climate catastrophes, terrorist attacks or cyber attacks. In any of these cases, the car must
not lose control but be able to continue to navigate smoothly and safely. The core of its
data processing and machine learning pipeline must therefore function decoupled from all
external networks.
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Having said this, autonomous cars are not the only use case for navigation relying on
on-device machine learning. We can also conceive other areas such as deep sea exploration,
drone navigation and even space travelling where either offline usage, minimal latency or
both is required for successful autonomous navigation.

9.1.2. Privacy Inspired Use Cases

Biometric Data

Some company like Apple and Snap1 are already heavily influenced and driven by privacy
concerns - at least in specific areas of their business practices. Apple’s Face ID is a well-known
security feature of Apple’s smartphone and table division. It relies purely on on-device
machine learning to pick up all the important details that make a face unique and thereby
successfully secures the device without transferring sensitive user data to the cloud. Snapchat
uses on-device machine learning to power its manifold filters so that user data only gets
transmitted once the user actively shares a photo or video via the app. Protecting biometric
user data has already become a mainstream use case for big tech companies. However, these
large firms can afford to employ a considerable amount of machine learning experts to ensure
their artificial neural networks can also run on mobile devices with their limited storage and
computing capabilities. Smaller firms, on the other hand, rarely have the capacity to hire
many machine learning engineers. It is these firms that exceedingly benefit from on-device
machine learning getting ever more accessible and increasingly easy to implement even for
small teams.

Health Data

Since smartphones are just a subcategory of mobile devices, different hardware opens the
door for new types of applications. Health care is an industry that can benefit from on-
device machine learning as health data is among the data categories that are most worthy
of protection. Today, there is already an astonishing variety of devices that capture health
data - each of which also comes in a ”smart” version that not only collects this data but also
sends it to decentralised servers for storage and processing: smart watches, scales, portable
electrocardiogram (ecg) and electroencephalography (eeg) devices, blood pressure monitors,
glucometers, thermometers and many more. Future developments might combine more and
more of such tools into personal health companion devices that can capture and track every
aspect of our health condition. Combining these various inputs to a coherent assessment
of one’s health status is an ideal use case for the application of machine learning. Since
the data is sensitive and can easily tell a story people might want to keep private, it is a
reasonable assumption that there will be a market for health companions that perform their
analysis offline without sharing any data with a third party.

Further Dimensions

Listing all application domains of on-device machine learning would exceed the scope of this
work. It can be observed, however, that there is not only the dimension of machine learning

1Snap Inc. is the developer of Snapchat, a mobile app known for its various and peculiar filters that users
can apply to manipulate the images captured by the smartphone camera.
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task along which different applications can be found (image classification, object detection,
natural language processing, ...) but also other dimensions such as hardware on which the
machine learning algorithm is deployed (smartphones, gadgets, robots, ...) or industries
benefiting from customers being less scared about privacy breaches (entertainment, media,
public sector, ...).

9.2. Future Work

To wrap up this thesis, we want to suggest a variety of topics that have not been covered by
this work or its predecessor and might interest to students at TUM. By doing so, we hope to
inspire other students to continue the development of TUM-Lens. In the eyes of the author,
this app is a fertile ground for students striving for both challenging and interesting tasks
ranging from state-of-the-art mobile development up to training custom neural networks for
mobile devices.

Replace Deprecated Code and Fix Bugs

A first improvement can be the replacement of deprecated code. We have already achieved
substantial progress in modernising the app by migrating it to Kotlin but there is still a
significant number of outdated code that can be modernised by the next student working on
the TUM-Lens project. Unfortunately, the app is also not entirely bug free. One bug we
have found in version 1.0 that we were not able to fix is the changeability of models once an
image has been loaded from storage. This does currently not trigger a re-classification with
the newly selected network and should be fixed in a future release.

Enable Input Freezing and Analysis of Images Loaded from Storage

These tasks primarily aim at aligning object detection features with those available for
image classification. In the future, a double tap while being in object detection mode shall
thus freeze the detection process and keep the frozen results on screen. Furthermore, the
user shall be able to select an image from the device storage and the app shall display the
detected objects recognised for that specific input.

Load New Models from Remote Servers and Increase Number of Available Models

This might sound counter-intuitive to the goal of this thesis but downloading models and
the corresponding label file from an online resource would further improve the usability of
the app. Currently, a new app version needs to be published in order to add a new neural
network to the app. This is the case because as of now, all models must be saved to the
assets folder of the application before it is built. Lastly, the user should have the option to
choose from multiple object detection framework available within TUM-Lens just as in the
image classification case.

Expand The Set of Features of TUM-Lens

The final tip is the expansion of the features of the app. With image classification and
object detection we already cover two major disciplines in computer vision. In a follow-up
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project, instance segmentation could be implemented to further increase the capabilities of
TUM-Lens. While this would add an entirely new feature, improvements to existing function
are also possible. On the easier side of the enhancement spectrum are further customisation
options for the user. In the current state of the app, the user can adjust the number of
threads to utilise for carrying out the object detection tasks. More options like changing the
minimum confidence threshold a detection must have to be displayed are also conceivable.
Ranked among the more difficult advancements is the implementation of better tracking
than the mechanism currently implemented and described in Subsection 7.2.3.

9.3. Conclusion

We have delivered an updated version of TUM-Lens that now also provides a real-time
object detection function running locally on the device. Moreover, we have modernised the
app both design wise and with regards to the programming language it is written in. In
summary, it can be stated that we have achieved all goals that had been set in the beginning
of this work. With every new contribution to TUM-Lens, the number of new directions
in which one can take the app is only growing. We therefore encourage fellow students to
follow suit and continue to evolve this project.
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A. Screenshots of the Application

(a) Classification v1.0 (b) Classification v2.0 (c) Detection v2.0

(d) Bottom sheet in
classification v1.0

(e) Bottom sheet in
classification v2.0

(f) Bottom sheet in de-
tection v2.0

Figure A.1.: Development of app visuals from version 1.0 to 2.0. The bottom sheet is now
slightly transparent and the camera preview stretches into the status bar.
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B. Test Device Specifications

The development of TUM-Lens v2.0 was tested on a Xiaomi Mi 9. Development and testing
occurred April to August 2021. The most relevant specifications are as follows.

Brand and name Xiaomi Mi 9

CPU
Octa-core: 8 Kryo 485 cores with respective clock speeds of
1x2.84 GHz, 3x2.42 GHz and 4x1.78 GHz

GPU Adreno 640

RAM 6.00 GB

Screen resolution 1080 x 2340 pixels (≈ 2.5 MP)

Screen aspect ratio 19.5:9

Screen size (diagonal) 6.39 inches

Main camera (triple)
48 MP, f/1.8, 27mm (wide), 1/2.0”, 0.8µm, PDAF
12 MP, f/2.2, 54mm (telephoto), 1/3.6”, 1.0µm, PDAF
16 MP, f/2.2, 13mm (ultrawide), 1/3.0”, 1.0µm, PDAF

Selfie camera (single) 20 MP, f/2.0, (wide), 1/3”, 0.9µm

Model identifier M1902F1G

MIUI version MIUI Global 12.0.5 (QFAEUXM)

Android version 10 QKQ1.190825.002

Release Date 25th of March 2019

Table B.1.: Test Device Specifications
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Acronyms

adb android-developer-tools.

ann artificial neural network.

api application programming interface.

cnn convolutional neural network.

cv computer vision.

ecg electrocardiogram.

eeg electroencephalography.

ml machine learning.

NNAPI Neural Networks API.

ResNet residual neural network.
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Glossary

application programming interface set of functions and procedures allowing the creation
of applications that access the features or data of an operating system, application, or
other service (Oxford Dictionary).

differential privacy property of a learning algorithm that uses personal data for training
while guaranteeing that an individual’s data cannot be reverse engineered by analysing
the algorithm while potentially even having access to the data of all the other individuals.
In other words, the differentially private algorithm behaves very similar (if not entirely
identical) regardless of whether a particular personal information was used during
training..

electrocardiogram time-voltage-graph of the electrical activity of the heart measured by
electrodes touching the skin.

electroencephalography measures electrical signals emitted by the brain to observe brain
activity.
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