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Abstract— Ensuring safety is crucial for the successful
deployment of autonomous systems, such as self-driving
vehicles, unmanned aerial vehicles, and robots acting close
to humans. While there exist many controllers which opti-
mize certain criteria, such as energy consumption, comfort,
or low wear, they are usually not able to guarantee safety
at all times for constrained nonlinear systems affected
by disturbances. Many controllers providing safety guar-
antees, however, have no optimal performance. The idea
of this paper is therefore to synthesize a formally correct
controller that serves as a safety net for an unverified,
optimal controller. This way, most of the time, the optimal
controller is in charge and leads to a desired, optimal
control performance. The safety controller constantly mon-
itors the actions of the optimal controller and takes over
if the system would become unsafe. The safety controller
utilizes a novel concept of backward reachable set com-
putation, where we avoid the need of computing under-
approximations of reachable sets. We have further devel-
oped a new approach that analytically describes reachable
sets, making it possible to efficiently maximize the size of
the backward reachable set. We demonstrate our approach
by a numerical example from autonomous driving.

Index Terms— Set-based control, reachability analysis,
backward reachable sets, safety controller, safety net, non-
linear systems, disturbed systems, constrained systems,
and optimization.

I. INTRODUCTION

As modern control applications become more autonomous
and are used in closer interaction with humans, ensuring safety
becomes more and more difficult. For instance, autonomous
vehicles should never cause an accident to achieve broad
public acceptance. The same holds true in human-robot col-
laboration scenarios. Both examples have in common that the
system has to avoid unsafe sets at all times – a difficult task,
since the controlled systems often are complex, nonlinear,
affected by disturbances as well as noisy sensors, and are
subject to state and input constraints.

Even though safety is undeniably the most important feature
for a successful application of autonomous systems, there are
also other important aspects which determine a successful
application in practice, e.g., comfort, energy consumption,
and long-term wear. There exists a wide variety of classical
controllers which focus on these performance goals and are
often used in practice, e.g., standard MPC [1]. However, due
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to the way they are designed, they cannot be formally verified
to prove safety in all situations. Formally correct control
algorithms, on the other hand, focus on ensuring safety under
all possible situations, which often requires large input values
and fast input changes opposing comfort, energy consumption,
and long-term wear goals. Before we propose a solution to
these problems, we first summarize the state of the art for all
aspects related to our paper.

a) Safe Controllers: There is a great interest in the de-
sign of controllers which provide formal safety guarantees.
However, it is hard to find efficient algorithms which solve
constrained nonlinear control problems affected by distur-
bances. Examples from the literature include tube-based MPC,
where an auxiliary controller is used to keep the system in a
tube around a trajectory which is iteratively optimized over
a moving horizon [2]–[7]. An alternative is to use explicit
MPC, where the optimization problem is solved offline and
stored [8]–[11]. Other approaches which control all states in
tubes or funnels are LQR trees [12], [13], controllers which
use so-called trajectory robustness [14], and approaches which
concatenate invariant sets of different controllers in trees [15].
Abstraction-based controllers [16]–[24], are a large class of
formal approaches which discretize the state and input spaces
and use methods from automata theory to provide guarantees
for the satisfaction of complex specifications.

b) Under-Approximative Reachable Sets: When using ap-
proximations of reachable sets to ensure safety, one has to
compute over-approximations for forward reachable sets and
under-approximations for backward reachable sets [25]. While
the idea is simple, the computation of under-approximative
backward reachable sets is not straightforward. There exist
fewer methods than for forward reachable set computation like
[26] and they are often more conservative than the forward
algorithms. They exist for linear systems [27]–[29], piecewise
affine systems [30], and polynomial systems [31]–[33]. Only
a few consider general nonlinear systems, e.g., [34]–[39], of
which most consider systems without inputs [34]–[38]. The
combination of backward reachable sets and controller design
is done in [40], however only for discrete-time, linear systems
without disturbances.

Since we consider nonlinear systems, let us review the
approaches for these systems in more detail. Several ap-
proaches, mostly for polynomial systems, use the Hamilton-
Jacobi framework to find under-approximations of reachable
sets [31], [33], [34]. While they obtain quite good results
for low-dimensional polynomial systems, they do not scale
well with higher dimensions or polynomial degrees, which
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restricts their application to around seven dimensions with a
low polynomial degree. Recent approaches use decomposition
to deal with the unfavorable computational complexity of
their methods [41], at least for suitable classes of nonlinear
systems, where the dynamics are loosely coupled. Other
approaches use Taylor models in combination with polytopic
level sets to under-approximate the reachable set [37]. They
have the disadvantage that they might result in unconnected
sets, where only one is the actual under-approximation, which
then requires computationally expensive checks to find the
proper set. Computational challenges also arise when trying
to solve practical problems with the approach in [35], which
uses so-called polynomial level-set functions to represent the
under-approximative reachable sets and is too hard to compute
for larger state spaces. Another method is proposed in [38],
which has been extended for systems with inputs in [39]. Their
results are promising, however, they only compute under-
approximations of projections on the coordinate axes. To the
best of our knowledge, there exists no approach which com-
putes actual under-approximative reachable sets for nonlinear
systems with inputs. Therefore, and since we need a special
preservation of input effects for our controller synthesis, which
is not provided by any of the existing techniques, we develop
a new approach in this work.

c) Safety Nets: The idea of a controller safeguarding
other controllers has been previously proposed, e.g., by [42].
There, stability is proven for certain regions with a simple
controller, which takes over if a more complex controller
fails to satisfy certain safety constraints. This framework is
extended in [43], [44] by including the online computation of
reachable sets to identify the regions from which the verified
controller can recover the system to a stable region. Computing
a safe invariant region for a safety controller and ensuring
that a second controller cannot leave this region is done in
invariance control [45], [46]. Combining the satisfaction of
safety constraints with performance controllers can also be
achieved using control barrier functions and has been applied
to different types of systems, such as autonomous cars and
robotic applications [47], [48]. A related method is that of
reference governors [49]–[51], which monitor the system and
modify the inputs when constraints would be violated. The
idea of using reachability analysis together with a safety
controller is also used for motion planning in [52] and for
safe reinforcement learning in [53]. Another type of safety
net controller named shielding is presented in [54], which can
also be used for safe reinforcement learning [55].

d) Previous Work: In earlier works, we obtained safe con-
trollers by combining optimal control with reachability anal-
ysis. In [56], [57], we obtained a piecewise-constant control
law by interpolating optimal open-loop trajectories of extreme
states and generators, respectively. In [58], we optimized
continuous feedback controllers, but only for disturbed linear
systems. In [59], we combine the ideas of [57] and [58] to
benefit from the advantages of both approaches.

e) Proposed Approach: To benefit from the advantages of
optimal and safe control, we pursue the following idea in this
paper: We combine a formal controller serving as a safety net
with an optimal, unverified controller which minimizes some

cost function. While worst-case behavior has to be considered
for safety, in most situations, such behavior does not occur
and an optimal controller can achieve better performance. To
ensure safety, the formal safety controller monitors the optimal
controller by computing its reachable set for the near future.
As long as this set is safe, the optimal controller is applied.
Otherwise, the safety controller takes over to keep the system
safe. Thus, we combine the optimality of classical control
with the safety of formal controller synthesis. To compute the
formal safety net, we use a set-based control method similar
to [57] which combines controller synthesis with reachability
analysis.

In our earlier works [56]–[59], we aim at minimizing the
reachable set for a given initial set as fast as possible. When
using these approaches as safety net controllers, the sets in
which the optimal controller has to stay would be small so
that the safety controller would take over most of the time. In
this work, we address this problem by computing backward
reachable sets. By fixing the final reachable set, we compute
backwards in time the maximum set for which we can find
a safety controller, thereby maximizing the set in which the
optimal controller can safely operate and thus minimizing
interventions from the safety controller.

f) Contributions: The paper has five main contributions:
(i) We present a novel way of computing under-

approximative reachable sets for nonlinear systems with dis-
turbances. While there exists no approach in the literature
which is capable of doing this, it is required for synthesizing
set-based controllers with safety guarantees. In addition, our
novel reachability algorithm allows us to obtain analytical
dependencies between the reachable set and its initial set
and inputs acting on the system. These dependencies make
it possible to substantially speed up computations since one
obtains a simple cost function for the optimization.
(ii) We use the results from (i) to develop a new control
algorithm based on backward reachable sets. This algorithm
has the same advantages as our previous set-based control
algorithms [56]–[58], as it provides a control law by opti-
mizing over all possible trajectories starting from an initial set
under all possible disturbance realizations. While providing
formal guarantees for the constraint satisfaction of disturbed
nonlinear systems, our approach has the advantage that it
does not require discretizing the state space. Similarly, we do
not need to find invariant sets or Lyapunov functions, which
together with the required computations, such as sums-of-
squares programming suffer from bad scalability for higher
dimensional systems. At the same time, our approach results
in an optimized, time-dependent feedback law, which has a
better performance than a fixed feedback controller, as often
used in most existing approaches including tube-based MPC.
All complex computations can be performed offline and the
solutions can be stored in a maneuver automaton (see Sec. III),
thereby allowing a fast online application.
(iii) In addition to these advantages, our new approach com-
putes the largest initial set for which we can control all
trajectories to the desired final set despite the presence of
disturbances. This makes it very suitable for the application
as a safety net controller.
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(iv) We present a novel way of set-based safety net control
which uses reachable set computation. Our reachable set al-
gorithm scales polynomially and therefore better than existing
approaches. As a result, this algorithm can even be used for
checking the safety of the optimal controllers online.
(v) In contrast to most other methods, we explicitly consider
the computation time of our approach during the online
verification. We are even able to guarantee safety without
requiring a worst-case execution time, since we can safely
switch to the safety controller if the execution time exceeds
the allocated time.

g) Outline: The remainder of this paper is organized as
follows. We begin with a formal problem statement in Sec. II
and some background in Sec. III. In Sec. IV, we present
the online application of our combined approach. Afterwards,
we explain how backward reachable sets are used to obtain
the safety controller: first for linear systems in Sec. V and
then for disturbed, nonlinear systems in Sec. VI. We illustrate
the applicability of our approach with numerical examples in
Sec. VII, before we conclude with a discussion in Sec. VIII
and a summary in Sec. IX.

II. PROBLEM FORMULATION

We consider a disturbed, nonlinear, time-continuous system
of the form

ẋ(t) = f(x(t), u(t), w(t)), (1)

with states x(t) ∈ Rn, inputs u(t) ∈ Rm, and disturbances
w(t) ∈ W ⊂ Rd (W is compact, i.e., closed and bounded).
The disturbance does not need to be additive and we do not
require any stochastic properties for w(·); we only assume that
any possible disturbance trajectory is bounded at any point in
time in the compact set W. We denote this by w(·) ∈ W,
which is a shorthand for w(t) ∈ W,∀t ∈ [0, tf ], where tf ∈
R+

0 is the final time. The same shorthand is also used for
state and input trajectories throughout the paper. We denote the
solution of (1) with initial state x0, input u(·), and disturbance
w(·) at time t by ξ(x0, u(·), w(·), t). The solution satisfies the
following two properties:

ξ(x0, u(·), w(·), 0) = x0,

ξ̇(x0, u(·), w(·), t) = f
(
ξ
(
x0, u(·), w(·), t

)
, u(t), w(t)

)
,

∀t ∈ R+
0 .

If we consider an undisturbed system, we use ξ(x0, u(·), 0, t)
to denote the solution without disturbances, i.e., W = {0}.

The task is to find an initial set X0 ⊂ Rn with maximum
volume around a desired state x0 and a corresponding verified
control law uver(x, t) such that for system (1), all solutions
starting at t = 0 in X0 end in a given final set Xf ⊂ Rn at t =
tf despite the disturbance set W. Furthermore, the controller
must ensure that all solutions satisfy convex constraints on the
states and inputs, i.e.,

ξ(x0, u(·), w(·), t) ∈ S, ∀t ∈ [0, tf ], (2)
u(t) ∈ U , ∀t ∈ [0, tf ], (3)

where S and U are both convex sets with half-space represen-
tations

S = {x ∈ Rn|CSx ≤ dS}, (4)
U = {u ∈ Rm|CUx ≤ dU}, (5)

where CS ∈ RqS×n, dS ∈ RqS , CU ∈ RqU×m, and dU ∈ RqU .
As explained in the following section, we solve this problem

offline and store its solution in a maneuver automaton. Since
the locations of most non-convex constraints, such as other
traffic participants in automated driving, are usually not known
during offline computation, we only consider convex input
constraints, e.g., maximum acceleration or steering, and con-
vex state constraints, e.g., maximum velocity. The non-convex
dynamic constraints are handled during the online planning
using the maneuver automaton, which is a standard approach
and can be done using existing techniques (see e.g., [60]).

III. BACKGROUND

Before discussing our approach, let us first provide some
background. We begin by defining reachable sets:

Definition 1 (Reachable Set): For system (1), the reachable
set Rt,U,W(S) ⊂ Rn for a time t, inputs u(·) ∈ U ⊂ Rm,
disturbances w(·) ∈ W ⊂ Rd, and a set of initial states S ⊂
Rn is the set of end states of trajectories starting in S after
time t, i.e.,

Rt,U,W(S) = {x(t) ∈ Rn|∃x0 ∈ S, u(·) ∈ U , w(·) ∈ W :

ξ(x0, u(·), w(·), t) = x(t)}.

The reachable set over a time interval [t1, t2] is the union of
all reachable sets for these time points, i.e.,

R[t1,t2],U,W(S) =
⋃

t∈[t1,t2]

Rt,U,W(S).

If we consider the reachable set for a system with feedback
ufb(x), then we denote by Rt,ufb,W(S) the reachable set
obtained if we consider the closed-loop dynamics ẋ(t) =
f(x(t), ufb(x(t)), w(t)). Since it is not possible to compute
exact reachable sets for most systems [61], we compute
approximations instead.

The efficiency of the computation of reachable sets depends
on the chosen set representation. A type of set which has
very favorable properties for nonlinear systems are polynomial
zonotopes [62], which are closed under quadratic and higher-
order maps. In this work, we use a sparse representation of
polynomial zonotopes, which are defined as follows (see [63,
Def. 1]):

Definition 2 (Polynomial Zonotope): A set is called a poly-
nomial zonotope if it can be written as

PZ =

{
x ∈ Rn

∣∣∣x = c+

vI∑
j=1

µjg
(j)
I

+

v∑
i=1

(
y∏
k=1

λ
Ek,i

k

)
g(i), λk, µj ∈ [−1, 1]

}
.

(6)

Here, c ∈ Rn is the starting point, g(j)
I ∈ Rn, j ∈ {1, . . . , vI},

are the independent generators, g(i) ∈ Rn, i ∈ {1, . . . , v}, are
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the dependent generators, and E ∈ Ny×v0 is the matrix that
stores the polynomial exponents.

A special case of polynomial zonotopes are zonotopes,
which have only independent generators:

Definition 3 (Zonotope): A set is called a zonotope if it can
be written as

Z =
{
x ∈ Rn

∣∣∣x = c+

r∑
i=1

αig
(i), αi ∈ [−1, 1]

}
.

Here, c ∈ Rn defines the center of the zonotope, and g(i) ∈
Rn, i ∈ {1, . . . , r}, are r = o n generators, with o denoting
the order of the zonotope. We use 〈c, g(1), . . . , g(r)〉 as a more
concise notation of Z.
Zonotopes offer a simpler set representation compared to
polynomial zonotopes and especially for linear systems, poly-
nomial zonotopes do not have any advantages over zonotopes.
Therefore, we use zonotopes for computations with linear or
linearized systems and polynomial zonotopes when dealing
with nonlinear dynamics.

Since reachability analysis is rather time consuming, the
computation of the safety controller can often not be done
in real time. A solution to this problem is to construct safe
maneuver automata [64] (see also [65]–[67]) as illustrated
in Fig. 1: One computes safe controllers for short trajectory
pieces (a.k.a. motion primitives), e.g., drive straight or turn left
(see Fig. 1(a)). These motion primitives are stored as states in
a maneuver automaton. There is a transition from one state
to another, if the final set of the first motion primitive ends
in the initial set of the second motion primitive as illustrated
in Fig. 1(b). These pre-computed motion primitives can be
combined online to safely control the system, as shown in
Fig. 1(c)–(f).

Definition 4 (Maneuver Automaton): A maneuver automa-
ton MA = {M,D} is a tuple of a set of motion primitives
M and a set of discrete transitions D ⊂ M ×M defining
which motion primitives can be followed by each other.

Definition 5 (Motion Primitive): A motion primitive

MP =

{xref (·), uref (·), tf ,X0,Xf , uver(·),R[0,tf ],uver,W(X0)}

is again a tuple, containing a reference trajectory xref (·), the
corresponding reference input uref (·), a duration tf , initial and
final sets X0 and Xf , respectively, a verified safety controller
uver(·), and the reachable set of the verified safety controller
R[0,tf ],uver,W(X0).

There exists a transition from one motion primitive MPi
with final set X (i)

f to another motion primitive MPj with
initial set X (j)

0 , i.e., (MPi,MPj) ∈ D if and only if
X (i)
f ⊆ T (X (j)

0 ), where T (X (j)
0 ) is an allowed transformation

depending on the system dynamics. For example, if the system
dynamics is independent of the initial state, it is admissible to
translate the initial state of the second motion primitive into
the final set of the initial motion primitive. In this case, it
is only important that the final set is completely contained
in the shifted initial set. We give an example for such a
transformation in the numerical example in Sec. VII.

Offline

(a) Computation of motion primi-
tives

(b) Connectivity check and com-
bination in maneuver automaton

Online

(c) Occupancy prediction of other traffic participants

(d) Discrete trajectory planning

(e) Check for collisions

(f) Drive safe trajectory

Fig. 1. Overview of robust maneuver automata design for an example
in automated driving.

IV. ONLINE CONTROL WITH SAFETY NET

For the online control, we assume that we have found a
safe sequence of motion primitives, which connect the initial
state with the goal state. We discuss how to compute such
safe motion primitives used in a maneuver automaton offline
in Sec. V and Sec. VI. There exist several techniques to find
such a safe sequence of motion primitives given a maneuver
automaton, e.g.,
• discrete search techniques using sampling, e.g., search-

tree based methods [60];
• algorithms which try to match reference trajectories [68];
• moving-horizon planning techniques which can be com-

bined with fail-safe maneuvers [69].
Let us start by describing how our online controller works,
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which is summarized in Alg. 1 and illustrated in Fig. 2. We
explain this for a single motion primitive to simplify the
notation. At the end of each motion primitive, we simply
switch to the following one. During the online application,
we repeatedly need to decide when to use the unverified,
optimal controller or the verified, safety controller. To this
end, we use a safety net controller which acts in discrete-
time and allows switching to and from the optimal controller
at discrete switching times tk := k∆t, k ∈ N0, where
∆t :=

tf
M , M ∈ N. Similarly, we only start a new optimization

for the optimal controller once in each time step, so that the
control behavior remains predictable. Besides this restriction,
we are flexible with the form of the unverified controller and
also allow continuous-time controllers.

reachable set of the
safety controller

initial
state

reachable set of the
optimal controller

optimal controller might
be unsafe, safety

controller takes over

Fig. 2. Overview of the online control: Based on the measurement of the
current state, we compute the reachable set for the optimal controller. If it
ends inside the reachable set of the safety controller and if it satisfies all
constraints, we apply the optimal controller (see first time step). If this is
not the case, we switch to the safety controller (see second time step).
After the intervention of the safety controller, we check if the optimal
controller is safe once again, and switch back to it if safety can be
ensured (see third step).

Algorithm 1 Online Control Algorithm
Input: f(x, u, w), W , ∆t, tc, MP, uunv(·), x(·)
Output: control inputs uappl(·)

1: while t < tf do
2: x(tk − tc)← measured state at t = tk − tc
3: X̂ (tk|tk − tc)← Rtc,uappl,W(x(tk − tc))
4: X̂ (tk+1|tk − tc)← R∆t,uunv,W(X̂ (tk|tk − tc))
5: if computation finished before tk and satisfaction of

(7)-(9) then
6: uappl(·)← uunv(·), ∀t ∈ [tk, tk+1)
7: else
8: uappl(·)← uver(·), ∀t ∈ [tk, tk+1)
9: end if

10: end while

For each switching time tk, we have to decide which
controller we want to apply in the next time interval. Let
us assume that we are applying a feasible controller uappl(·)
for the previous time interval [tk−1, tk]: either the unverified,
optimal controller uunv(·) or the verified, safety controller
uver(·). Since the computation of the reachable set takes some
time, we need to measure the state x(tk − tc) and start the
computations at time tk−tc, to know at tk which controller to
apply during time period [tk, tk+1]. Here, tc ≤ ∆t denotes an
allocated computation time consisting of (i) the computation
time of the optimal controller, (ii) the computation time of the
verifier, and (iii) a buffer time. It can be chosen by testing

how long these computations take on the used machine. If
the actual computation time takes longer, we simply apply the
safety controller for the next time step to ensure safety.

We assume here that we can measure the current state,
possibly subject to some measurement errors. If not all states
are measurable, we can also use a set-based observer [70],
[71]. For a simpler notation, we present our approach without
measurement errors. In the case of measurement errors or set-
based observers, we would obtain an initial set instead of
a single initial state. Since we use set-based operators, this
would not change much.

Based on the measurement of x(tk−tc) (see Alg. 1, line 2),
we first compute the reachable set at time tk for the currently
applied controller uappl(·) (Alg. 1, line 3):

X̂ (tk|tk − tc) := Rtc,uappl,W(x(tk − tc)),

where we use the notation X̂ (t2|t1) to refer to the reachable
set at time t2 which is computed based on the information
at time t1. Starting from X̂ (tk|tk − tc), we then compute the
reachable set at tk+1 (Alg. 1, line 4) using the unverified,
optimal controller uunv(·):

X̂ (tk+1|tk − tc) := R∆t,uunv,W(X̂ (tk|tk − tc)).

Next, we check if the controller would satisfy the state
constraints

R[0,∆t],uunv,W(X̂ (tk|tk − tc)) ⊆ S (7)

and the input constraints

uunv(x, tk + τ) ∈ U , ∀x ∈ Rτ,uunv,W(X̂ (tk|tk − tc)),
∀τ ∈ [0,∆t), (8)

during the whole time interval [tk, tk+1] and if it would end
completely inside the reachable set of the safety controller at
time tk+1 (Alg. 1, line 5):

X̂ (tk+1|tk − tc) ⊆ Rtk+1,uver,W(X0). (9)

This means that the solution of the optimal controller can leave
the reachable set of the safety controller as long as it satisfies
the state and input constraints and returns to the reachable
set of the safety controller at tk+1. This ensures that we can
switch at tk+1 to the safety controller, if no safe solution of
the optimal controller exists for [tk+1, tk+2].

If all three constraints are satisfied and the computations
are finished before time tk, we can safely apply the optimal
controller during the time interval [tk, tk+1) (Alg. 1, line 6);
otherwise, we switch to the safety controller (Alg. 1, line 8).

Theorem 1: Given a motion primitive MP from Alg. 2
connecting the initial state x0 with the desired final set
Xf ⊆ S and satisfying the state constraints (2), Alg. 1 returns
the input trajectory uappl(·). This input trajectory satisfies
the input constraints (3) and results in a state trajectory
ξ(x0, uappl(·), w(·), ·), which satisfies the state constraints (2)
and reaches the final set, i.e., ξ(x0, uappl(·), w(·), tf ) ∈ Xf .

Proof: The proof follows by construction of the algo-
rithm and is shown by induction:
Base Case: At time t0, we know a safe solution from the
safety controller for the time interval [t0, t1] which satisfies
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the state constraints by assumption and the input constraints
by construction (as described later in Sec. VI).
Induction Hypothesis: If we know a safe controller for the
time interval [tk−1, tk], we can always get a safe solution for
the following time interval [tk, tk+1].
Induction Step: When we measure the state x(tk − tc), we
know that we are inside the reachable set of the currently
applied controller. By the definition of reachable sets, ap-
plying the same controller ensures that the reachable set
Rtc,uappl,W(x(tk − tc)) ends inside the previously computed
reachable set, i.e.,

Rtc,uappl,W(x(tk − tc)) ⊆ R∆t,uappl,W(X̂ (tk−1|tk−1 − tc))
(9)
⊆ Rtk,uver,W(X0).

Since Rtk,uver,W(X0) is the reachable set of the safety con-
troller at time tk, we can always safely switch at tk to the
safety controller. Therefore, we always check the constraints
with the optimal controller for the time interval [tk, tk+1] at
time tk − tc: If this is safe, we apply the optimal controller
for the next time interval; otherwise, we switch to the safety
controller at time tk to obtain a safe solution for the next time
interval [tk, tk+1].
In the next two sections, we discuss how to construct the safety
controller by using backward reachability analysis.

V. BACKWARD CONTROLLER SYNTHESIS FOR LINEAR,
DISCRETE-TIME SYSTEMS

Before we consider nonlinear systems for synthesizing safe
controllers, we discuss the case of discrete-time, linear, time-
varying systems without disturbances of the form

x(tk+1) = Akx(tk) +Bku(tk), (10)

with Ak ∈ Rn and Bk ∈ Rm denoting the time-varying state
and input matrices at time tk. We assume that the matrices
Ak have full rank, i.e., they are invertible. If we obtain them
as time-discretized versions of continuous time systems, this
assumption is satisfied, as the matrix exponential eA∆t is
always invertible [72, Ch. 7.2, Thm. 2]. In this case, the
backward reachable set can be computed exactly. Afterwards,
we extend the idea presented in this section to continuous-
time, nonlinear systems with disturbances in Sec. VI. In both
sections, we present the algorithms to compute a single motion
primitive. For obtaining a full maneuver automaton, these
algorithms are simply applied for different initial sets and
desired final states.

A. Backward Reachable Set
To obtain the backward reachable set of (10), we express

the evolution of a single state x(tk) after H steps as

x(tk+H) = Āx(tk) +

k+H−1∑
i=k

B̄iu(ti), (11)

where we use the shorthand notation:

Ā = Ak+H−1 · · · · ·A0,

B̄i = Ak+H−1 · · · · ·Ai+1Bi, ∀i ∈ {k, · · · , k +H − 2},

and B̄k+H−1 = Bk+H−1. Solving (11) for x(tk) leads to

x(tk) = Ā−1

(
x(tk+H) +

k+H−1∑
i=k

(−1)B̄iu(ti)

)
. (12)

After replacing concrete values with sets, we obtain the
backward reachable set as:

X (tk) = Ā−1

(
X (tk+H)⊕

k+H−1⊕
i=k

(−1)B̄iU

)
, (13)

where ⊕ denotes the Minkowski sum defined as A ⊕ B =
{a+ b|a ∈ A, b ∈ B} and

⊕
the corresponding sum symbol.

This computation can be done easily with zonotopes, as
they are closed under linear maps and Minkowski sum. For
zonotopic sets X (tk+H) = 〈ck+H , g

(1)
k+H , . . . , g

(rk+H)
k+H 〉 and

U = 〈cu, g(1)
u , . . . , g

(ru)
u 〉, the backward reachable set is

X (tk) = Ā−1

(
X (tk+H)⊕

k+H−1⊕
i=k

(−1)B̄iU

)

=
{
x ∈ Rn

∣∣∣x = Ā−1ck+H −
k+H−1∑
i=k

Ā−1B̄icu

+

rk+H∑
i=1

αiĀ
−1g

(i)
k+H −

k+H−1∑
i=k

ru∑
j=1

βi,jĀ
−1B̄ig

(j)
u ,

αi, βi,j ∈ [−1, 1]
}

=:
{
x ∈ Rn

∣∣∣x = ĉ+

r̂∑
i=1

α̂iĝ
(i), α̂i ∈ [−1, 1]

}
, (14)

where

ĉ := Ā−1ck+H −
k+H−1∑
i=k

Ā−1B̄icu,

ĝ(i) := Ā−1g
(i)
k+H , ∀i ∈ {1, . . . , rk+H},

ĝ(rk+H+i ru+j) := −Ā−1B̄k+ig
(j)
u , ∀i ∈ {0, . . . ,H − 1},
∀j ∈ {1, . . . , ru}.

Here, rk+H denotes the number of generators of X (tk+H) and
r̂ := rk+H+Hru. By introducing ĉ, ĝ(1), . . . , ĝ(r̂), we obtain a
simpler notation and are able to handle the generators resulting
from the states and inputs in the same way.

B. Resulting Online Control Law
Let us now discuss how to obtain the control law steering

the system from a state x ∈ X (tk) to the desired set X (tk+H).
Each state x ∈ X (tk) can be expressed as a superposition of
the generators ĝ(i) by finding the corresponding parameters α̂i
(see (14)). Since, in general, the choice of α̂i is not unique,
we solve the following optimization problem:

min
α̂

r̂∑
i=1

ρi|α̂i| (15)

s.t. x = ĉ+

r̂∑
i=1

α̂iĝ
(i), (16)

− 1 ≤ α̂i ≤ 1, ∀i ∈ {1, . . . , r̂}, (17)
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with weights ρi ∈ R+
0 . We then multiply Gu =

[g
(1)
u , . . . , g

(ru)
u ] with the weights α̂i corresponding to the input

generators at time step k+j to obtain the following piecewise-
constant control law ∀j ∈ {0, . . . ,H − 1} :

u(x, tk+j) = cu +Gu[α̂rk+H+j ru+1, . . . , α̂rk+H+(j+1) ru ]T ,

It follows from the superposition principle of linear systems
that if we use the weighted combination of the corresponding
inputs, we ensure that any state x ∈ X (tk) is steered in the
desired set, too (see, e.g., [56], [57] for details). Since some
generators ĝ(i) in (14) result from states converging to the
desired set without inputs and others from generators which
are controlled to the origin by the inputs, the choice of ρi
balances the applied inputs to the size of the final set: Higher
weights for ρ1, . . . , ρrk+H

in (15) lead to solutions which use
higher inputs and end closer to the center of X (tk+H). Higher
weights for ρrk+H+1, . . . , ρr̂, on the other hand, punish large
inputs and will lead to solutions which save input capacities
on the price of ending closer to the boundaries of X (tk+H).

Since the optimization problem in (15) is a linear program, it
can be solved online. For instance, solving the linear problem
for the numerical example in Sec. VII only takes around 3ms
for a MATLAB implementation, and even less when using
C++. If computation time or effort is a bigger concern, one can
also simply apply the first solution which satisfies constraints
(16)–(17). If even faster solutions are required, one can express
the zonotopes as a convex combination of their extreme states
for which closed-form expressions exist [73].

VI. BACKWARD CONTROLLER SYNTHESIS FOR
NONLINEAR, CONTINUOUS-TIME SYSTEMS

Let us now extend the presented ideas to nonlinear, contin-
uous time systems, for which the superposition principle no
longer holds and where the backward reachable sets cannot
be computed exactly or efficiently in an under-approximative
way.

A. Overview

To obtain an estimate of the backward reachable set, we
linearize the dynamics without disturbances for a short time
horizon, so that we can use the techniques from Sec. V. In the
next step, we compute the forward reachable set considering
the actual disturbed, nonlinear dynamics of the controlled
system and scale it until it ends in the original final set Xf .
We iterate these steps until the initial state x0 is closest to
the center of the reachable set, as presented in Alg. 2 and
Fig. 3. Note that the same approach could also be used without
a reference trajectory for computing regions of attraction or
control invariant sets.

B. Reference Trajectory

We start by computing a reference trajectory from the center
of the final set center(Xf ) to the desired initial state x0 (see
Fig. 3(a)), where center(·) returns the volumetric center of a
set. This is done in function compute reference trajectory in

x0

Xf

xref (·)

(a)

X̄f

X (t2)

(b)

R(X (t2))

(c)

X ∗(t2)

R(X ∗(t2))

(d)

X ∗(t0)

R(X ∗(t0))

R(X ∗(t1)) R(X ∗(t2))

(e)

Fig. 3. Illustration of the backward controller synthesis for nonlinear
systems: (a) We compute a reference trajectory xref (·) from the
center of the final set Xf to the desired initial state x0 and divide
it into M parts (here, M = 3). (b) For computational reasons,
we can under-approximate the final set by a zonotope X̄f (yellow)
with fewer generators. We then compute the backward reachable set
X (t2) for the linearized dynamics for a short time horizon. (c) Starting
from this set, we compute the forward reachable set R(X (t2)) :=
R∆t,uver,W(X (t2)) based on the disturbed, nonlinear dynamics.
(d) If the forward reachable set R(X (t2)) does not end inside the
under-approximated final set X̄f (see (c)), we scale the backward
reachable set X∗(t2) until R(X∗(t2)) ends inside the desired set.
(e) We iteratively repeat these steps until we obtain the desired initial
set X∗(t0).

line 1 of Alg. 2, where we solve the following optimization
problem:

min
uref (·)

‖ξ(x0, uref (·), 0, tf )− center(Xf )‖

+ γ

N−1∑
k=0

‖uref (τk)‖ (18)

s.t. ξ(x0, uref (·), 0, t) ∈ S̄, ∀t ∈ [0, tf ],

uref (τk) ∈ Ū , ∀k ∈ {0, · · · , N − 1},

where N = M H, H ∈ N, τk := k∆τ, k ∈ N0, with ∆τ :=
tf
N = ∆t

H , and where γ ∈ R+
0 is a factor used to weight the

input costs in relation to the state costs. We restrict the inputs
to be piecewise constant, so that problem (18) can be solved
efficiently using multiple-shooting algorithms [74]. The norm
‖·‖ can be chosen based on the application. To leave capacities
for the set-based controller, we use tightened state and input
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Algorithm 2 Backward Reachable Set Algorithm
Input: f(x, u, w), Xf , x0, ∆τ , tf ,N,M , r̄, S,U , S̄, Ū , γ
Output: motion primitive MP

1: (xref (·), uref (·))← compute reference trajectory(f(x, u, w), x0,Xf , γ,N, tf , S̄, Ū) . see Sec. VI-B
2: (Ak, Bk)← linearize and discretize(f(x, u, w), xref (·), uref (·),∆τ) . see Sec. VI-B
3: X (τMH)← Xf
4: for l = M, . . . , 1 do
5: X̄ (τlH)← reduce zonotope order(X (τlH), r̄) . see Sec. VI-C
6: X (τ(l−1)H)← compute backwards reachable set(X̄ (τlH), Ak, Bk,U , H) . see Sec. VI-D and VI-E
7: X ∗(τ(l−1)H)← optimal rescaling(X (τ(l−1)H), X̄ (τlH), f(x, u, w),W,S, H) . see Sec. VI-F
8: R[τ(l−1)H ,τlH ],uver,W(X ∗(0))← forward reachable set R[0,H ∆τ ],uver,W(X ∗(τ(l−1)H))
9: end for

10: MP← {xref (·), uref (·), tf ,X ∗(0),Xf , uver(·),R[0,tf ],uver,W(X ∗(0))}

constraint sets S̄ ⊆ S and Ū ⊆ U . We denote the resulting
reference trajectory by xref (·) = ξ(x0, uref (·), 0, ·).

We then linearize the system along xref (·) at τ ′k = 1
2 (τk+1−

τk), k ∈ {0, . . . , N − 1}, (function linearize and discretize
in line 2 of Alg. 2) to obtain the system matrices

Ac,k =
∂f(x, u, 0)

∂x

∣∣∣∣x=xref (τ ′k)

u=uref (τ ′k)

, (19)

Bc,k =
∂f(x, u, 0)

∂u

∣∣∣∣x=xref (τ ′k)

u=uref (τ ′k)

.

Since the inputs are constant in each time interval, we can
treat the system as a discrete-time, linear system as in (10)
with

Ak = eAc,k∆τ , Bk =

∫ ∆τ

0

eAc,ktdt Bc,k. (20)

To improve computational efficiency during the follow-
ing backward reachable set computation and optimization,
we group the N pieces of the reference trajectory into M
parts consisting of H time steps ∆τ each. We iteratively
compute the backward reachable set for all time intervals
[τ(l−1)H , τlH ], l ∈ {1, . . . ,M}, starting at time τMH = tf .

C. Zonotope Order Reduction
Due to the addition of input generators in the backward

reachable set computation, the number of generators and there-
fore the order (see Def. 3) of the reachable sets increases dur-
ing each iteration. To limit the computational effort, we restrict
the generator number in each iteration by under-approximating
the reachable set X (τlH) with a zonotope X̄ (τlH) ⊆ X (τlH)
of a maximum number of r̄ generators, as illustrated in
Fig. 3(b) and done in function reduce zonotope order (line 5
of Alg. 2). The maximum number of generators is a design
parameter, which is used for a trade-off between approxima-
tion error and computational effort. There exists a number
of methods to compute an enclosing zonotope with fewer
generators, see, e.g., [75]–[77]. However, for our case, we need
an under-approximative approach, which is harder to compute.

Given a zonotope X = 〈c, g(1), . . . , g(r)〉 we first sort the
generators according to their length:

‖g(a1)‖2 ≥ · · · ≥ ‖g(ar)‖2, (21)

where a ∈ Nr is a vector of indices that defines the order. To
obtain a reduced-order zonotope with r̄ ≥ n generators, we
keep the p = r̄−n best generators and under-approximate the
zonotope defined by the remaining generators with a box:

X̄ = 〈c, g(a1), . . . , g(ap), δ1e
(1), . . . , δne

(n)〉, (22)

where e(i) ∈ Rn is the i-th unit vector. The scaling factors
δ1, . . . , δn are determined by the following linear program:

max
δ1,...,δn

n∑
i=1

δi (23)

s.t. 〈0, e(1)δ1, . . . , e
(n)δn〉 ⊆ 〈0, g(ap+1), . . . , g(ar)〉, (24)

δi ≥ 0, ∀i ∈ {1, . . . , n}, (25)

where 0 denotes a vector containing only zeros. Zonotope
containment in (24) is checked by converting the zonotope
X to a polytope in half-space representation according to [76,
Theorem 2.1]:

X =
{
x ∈ Rn

∣∣∣CXx ≤ dX}, (26)

with CX ∈ RqX×n, dX ∈ RqX . To check if X̄ is located inside
X , we use the following proposition (see [78, Theorem 2] for
a proof):

Proposition 1: The zonotope X̄ = 〈c̄, ḡ(1), . . . , ḡ(r̄)〉 is
contained in a set X if the projection of X̄ onto the normal
vectors of the half-spaces from the representation (26) satisfy
the inequality constraints in (26):

CX c̄+

r̄∑
i=1

|CX ḡ(i)| ≤ dX . (27)

For high-dimensional zonotopes X or for sets with many
generators, computing a half-space representation can become
computationally challenging. In this case, the zonotope con-
tainment problem (24) can also be solved using the approaches
from [79] or [80].

D. Backward Reachable Set

Let us now describe how to compute an estima-
tion of the backward reachable set based on the lin-
earized dynamics for each of the larger time intervals
[τ(l−1)H , τlH ], l ∈ {1, . . . ,M} (see Sec. VI-B). For each
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time interval, we apply (13) to compute the backward reach-
able set as illustrated in Fig. 3(b) and done in function
compute backwards reachable set (line 6 of Alg. 2). Since
we use a reference trajectory, we cannot use the whole inputs
for the feedback controller, but have to reduce the available
inputs by the inputs already used for the reference trajectory.
We do this by introducing for each input generator g(j)

u a
scaling factor φj(τi) := 1 − |θj(τi)| ∈ [0, 1], where θj(τi) ∈
[−1, 1] are chosen such that cu+

∑ru
j=1 θj(τi)g

(j)
u = uref (τi).

By substituting the input generators by their scaled coun-
terparts φj(τi)g

(j)
u , the backward reachable set X (τ(l−1)H)

starting from the under-approximated previous set X̄ (τlH) =

〈c̄lH , ḡ(1)
lH , . . . , ḡ

(r̄)
lH 〉 can be expressed as a zonotope analogous

to (14):

X (τ(l−1)H) =
{
x ∈ Rn

∣∣∣x = xref (τ(l−1)H) +

r̄∑
i=1

αiĀ
−1ḡ

(i)
lH

−
lH−1∑

i=(l−1)H

ru∑
j=1

βi,jĀ
−1B̄iφj(τi)g

(j)
u ,

αi, βi,j ∈ [−1, 1]
}

=:
{
x ∈ Rn

∣∣∣x = ĉ+

r̂∑
i=1

α̂iĝ
(i), α̂i ∈ [−1, 1]

}
,

where

ĉ := xref (τ(l−1)H),

ĝ(i) := Ā−1ḡ
(i)
lH , ∀i ∈ {1, . . . , r̄},

ĝ(r̄+i ru+j) := −Ā−1B̄(l−1)H+iφj(τ(l−1)H+i)g
(j)
u ,

∀i ∈ {0, . . . ,H − 1}, ∀j ∈ {1, . . . , ru},

with r̂ = r̄ +Hru.
We calculate the control law for the nonlinear continuous-

time systems analogously to the linear case in Sec. V-B by
solving a linear program equivalent to (15) so that ∀i ∈
{0, . . . ,H − 1} :

uver(x, τk+i) = uref (τk+i)

+Gu(τk+i)[α̂r̄+i ru+1, . . . , α̂r̄+(i+1) ru ]T ,

where we again denote the matrix containing
all (scaled) input generators by Gu(τk+i) :=

[φ1(τk+i)g
(1)
u , . . . , φru(τk+i)g

(ru)
u ]. Due to the time-

dependent weighting with φj(τk+i) which accounts for
the reference inputs, the matrix Gu(τk+i) becomes time
dependent.

E. Reachability Analysis

After computing the backward reachable set based on the
linearized, time-discretized dynamics without disturbances, we
have to check if its forward reachable set with the real,
nonlinear dynamics actually ends in the desired final set, see
Fig. 3(c). If this is not the case, we have to shrink the initial set
obtained from the backward reachability analysis by reducing
the length of the generators until the forward reachable set
ends up inside the desired final set as illustrated in Fig. 3(d).

With most existing reachability approaches, it is not possible
to see how the size of the generators of the reachable set
depends on the size of the generators of the initial set and
of the applied inputs. This would require us to recompute
the whole reachable set for each optimization loop, as is
the case in our previous works [58] and [59]. To overcome
this problem, we subsequently present a new approach based
on the conservative polynomialization approach from [62] to
understand the correlation between initial and final set so
that we can simply minimize an algebraic function for the
backward reachable set. The details of this new approach can
be found in [81].

Let us start with X0 := X (τ(l−1)H), which we obtain
from the backward reachable set computation, and introduce
a scaling factor si ∈ [0, 1] for every zonotope factor α̂i. The
initial set with scaling factors is defined as

X0 :=
{
x ∈ Rn

∣∣∣x = ĉ+

r̂∑
i=1

siα̂iĝ
(i), α̂i ∈ [−1, 1]

}
. (28)

We use the notation X0 = X0(s) to denote that the
initial set depends on the vector of scaling factors s =

[s1, . . . , sr̂]
T ∈ R+r̂. The resulting forward reachable set

Rf (s) = RH ∆τ,uver,W(X0(s)), using [62] is represented as
a polynomial zonotope:

Rf (s) =

{
x ∈ Rn

∣∣∣∣∣x = cf +

vI∑
j=1

µjg
(j)
I,f

+

v∑
i=1

(
r∏

k=1

s
Ek,i

k

)(
r∏

k=1

δ
Ek,i

k

)
g

(i)
f , δk, µj ∈ [−1, 1]

}
.

(29)

The expression in (29) contains the desired analytical relation
describing how changes in the initial set X0(s) influence the
final reachable set Rf (s). The independent generators gI,f
resulting from disturbances and over-approximation errors are
the only part which we cannot influence and which therefore
always increase the final reachable set Rf (s). Since they are
usually rather small compared to the dependent generators,
they do not affect the results much. If they get too large, we
can always refine the reachable set computation, see [62]. Let
us demonstrate in the following numerical example how the
analytical relations between initial set and reachable set can be
used to quickly find subsets which satisfy a given constraint:

Example 1: We consider the example shown in Fig. 4,
where the initial set is

X0(s) =

{
x ∈ Rn

∣∣∣∣ x =

[
−8
−2

]
+

[
1
−0.5

]
s1δ1 +

[
0
1

]
s2δ2,

δ1, δ2 ∈ [−1, 1]

}
,

resulting in the final forward reachable set (see Fig. 4)

Rf (s) =

{
x ∈ Rn

∣∣∣∣ x =

[
0
0

]
+

[
0

0.5

]
µ1 +

[
2
0

]
s1δ1+[

0
2

]
s2δ2 +

[
1
1

]
s3

1s2δ
3
1δ2, µ1, δ1, δ2 ∈ [−1, 1]

}
,

(30)
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Fig. 4. Visualization of Example 1: The original initial setX0(s) and its
corresponding final reachable setRf (s) with s = [1, 1]T are depicted
in dark blue, where Rf (s) violates the constraint shown in red. We
reduce the scaling factors s∗ such that the final set with the new scaling
factors satisfies the constraints. The scaled final set Rf (s∗) and the
corresponding scaled initial set X0(s∗) are shown in light blue.

Our goal is to find suitable scaling factors s∗ =
[s∗1 s∗2]T , s∗1, s

∗
2 ∈ [0, 1], such that the final reachable set

Rf (s∗) starting from the scaled initial set X0(s∗) satisfies the
constraint [1 1]Tx ≤ 5 that is depicted in red in Fig. 4. Since
X0(s) and Rf (s) both depend on the same scaling factors s,
we determine s∗ such that ∀x ∈ Rf (s∗) : [1 1]Tx ≤ 5, which
is identical to

max
x∈Rf (s∗)

[1 1]Tx ≤ 5. (31)

Since it holds that

{[1 1]Tx | x ∈ Rf (s∗)} (30)
= {x ∈ R | 0.5µ1 + 2s∗1δ1 + 2s∗2δ2

+ 2s∗1
3s∗2δ

3
1δ2, µ1, δ1, δ2 ∈ [−1, 1]},

the constraint in (31) can be equivalently formulated as

max
µ1,δ1,δ2∈[−1,1]

0.5µ1 +2s∗1δ1 +2s∗2δ2 +2s∗1
3s∗2δ

3
1δ2 ≤ 5 (32)

An example for scaling factors satisfying (32) are s∗1 = 1 and
s∗2 = 0.625. We show the reachable set Rf (s∗) for the scaled
initial set X0(s∗) in Fig. 4 and see that it in fact satisfies the
constraint.

F. Optimization Problem

Using the ideas demonstrated in Example 1, we are now
interested in finding scaling factors si ∈ [0, 1] which maximize
the volume of the initial set X0(s) for which the forward
reachable set Rf (s) still ends up inside the desired under-
approximated final set Xg := X̄ (τlH). Experiments in Sec. VII
have shown that it is advantageous to only scale the generators
resulting from the states, i.e., s1, . . . , sr̄ and keep the scaling
factors corresponding to the input generators equal to one. This
restriction both ensures that we do not change the resulting
control law and reduces the number of optimization variables,
which leads to a faster convergence to good solutions.

a) Objective Function: Our goal is to maximize the volume
of the initial set X0(s), i.e., maxs V (X0(s)). The volume of
a scaled initial set X0(s) as defined in (28) can be computed

according to [82] as

V (X0(s)) = 2n
ncomb∑
i=1

∣∣det
([
sG(i)

1
g(G(i)

1 ), . . . , sG(i)
n
g(G(i)

n )
])∣∣

= 2n
ncomb∑
i=1

∣∣det(Gi) det
(
diag

([
sG(i)

1
, . . . , sG(i)

n

]))∣∣
= 2n

ncomb∑
i=1

∣∣det(Gi)
∣∣( n∏

j=1

sG(i)
j

)
, (33)

where det(·) refers to the determinant of a matrix. We de-
note by

{
g(G(i)

1 ), . . . , g(G(i)
n )
}

the ncomb possible n-membered
subsets of the generator set

{
g(1), . . . , g(r̂)

}
and Gi =[

g(G(i)
1 ), . . . , g(G(i)

n )
]
. Since for high dimensions computing

the volume using (33) can become hard, we can use p-
radius minimization or segment length minimization [83] as
alternatives to approximate the volume in a scalable way.

b) Constraints: We have to consider three constraints: (i)
the final forward reachable set RH ∆τ,uver,W(X0(s)) must
be located inside the desired under-approximated final set
X̄ (τlH), (ii) the reachable set for the whole time interval must
be inside the state constraints S, and (iii) the scaling factors
si for the state generators must be between zero and one, i.e.,

si ∈ [0, 1], ∀i ∈ {1, . . . , r̄}. (34)

As we see in (32) of Example 1, checking if the polynomial
zonotope Rf (s) is located inside the target set results in an
optimization problem which is computationally expensive to
solve. Therefore, we compute a zonotope over-approximation
R̄f (s) of Rf (s) from (29) according to [63, Prop. 4]:

R̄f (s) =
{
x ∈ Rn

∣∣∣x =c̄f (s) +

v∑
i=1

δ̄iḡ
(i)
f (s)

+

vI∑
j=1

µjg
(j)
I,f , δ̄i, µj ∈ [−1, 1]

}
,

where c̄f (s) and ḡ(i)
f (s) are polynomial functions in s. Using

Proposition 1, the check if R̄f (s) is located inside the half-
space representation of Xg = {x ∈ Rn|CXgx ≤ dXg}, with
CXg ∈ RqXg×n, dXg ∈ RqXg , simplifies to checking the
following inequality:

CXg c̄f (s) +

v∑
i=1

|CXg ḡ
(i)
f (s)|+

vI∑
j=1

|CXgg
(j)
I,f | ≤ dXg . (35)

If the computation of the half-space representation of Xg
becomes too complex, we can again use the approximations
from [79] or [80]. The same constraints are formed for the
reachable sets of intermediate time intervals [τk, τk+1], ∀k ∈
{0, . . . ,H − 1}:

CS c̄k(s) +

v∑
i=1

|CS ḡ(i)
k (s)|+

vI∑
j=1

|CSg(j)
I,k| ≤ dS , (36)

where c̄k(s), ḡ
(i)
k (s), and g(j)

I,k are the center and generators of
the zonotope over-approximation of the reachable set of the
time interval [τk, τk+1].
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c) Optimization Problem: With the objective function (33)
and the constraints (34)–(36) as derived above, the optimiza-
tion problem becomes a nonlinear program:

max
s1,...,sr̄

2n
ncomb∑
i=1

|det (Gi)|
( n∏
j=1

sG(i)
j

)
(37)

s.t. CXg c̄f (s) +

v∑
i=1

|CXg ḡ
(i)
f (s)|+

vI∑
j=1

|CXgg
(j)
I,f | ≤ dXg ,

CS c̄k(s) +

v∑
i=1

|CS ḡ(i)
k (s)|+

vI∑
j=1

|CSg(j)
I,k| ≤ dS ,

∀k ∈ {0, . . . ,H − 1},
si ∈ [0, 1], ∀i ∈ {1, . . . , r̄}.

Since the computation of the forward reachable set is not
required during optimization, (37) can be solved efficiently.
The optimization is performed in function optimal rescaling
in line 7 of Alg. 2.

VII. NUMERICAL EXAMPLE

We demonstrate our approach for an autonomous vehicle.
As a model, we choose the kinematic car model from [57],
which covers the most important dynamics:

v̇ = a+ w1, Ψ̇ = b+ w2, ẋ = v cos(Ψ), ẏ = v sin(Ψ),

where the states v,Ψ, x, and y are the velocity, orientation,
and positions in x and in y directions, respectively. The accel-
eration a and the normalized steering angle b are the inputs,
and w1 and w2 are additive disturbances. They are constrained
by the intervals a ∈ [−9.81, 9.81]ms2 , b ∈ [−0.4, 0.4] rads ,
w1 ∈ [−0.5, 0.5]ms2 , and w2 ∈ [−0.02, 0.02] rads .

A. Safety Controller
For the safety controller, we construct a maneuver automa-

ton consisting of several motion primitives, each computed
with our backward-reachable-set-based control approach from
Alg. 2. Due to space limitations, we present the details for a
single motion primitive and show how multiple motion primi-
tives are used for planning at the end of this section. We choose
a turn left maneuver based on the one from [57], where we
consider the final set Xf = [19.8, 20.2]ms × [0.18, 0.22]rad×
[19.67, 20.07]m× [1.79, 2.19]m. We are looking for a set X0

around the desired initial state x0 =
[
20 m

s , 0 rad, 0m, 0m
]T

,
which is as large as possible and for which all trajectories can
be steered to the final set after one second. We divide the one
second time horizon into N = 40 time steps, and consider
M = 10 time intervals of horizon H = 4 time steps, which
results in ∆t = 0.1 s and ∆τ = 0.025 s. During the under-
approximation of the reachable sets, we reduce the number of
generators to r̄ = 12.

The car dynamics are independent of the absolute orienta-
tion and position. Therefore, to concatenate motion primitive
MPj to MPi, we can transform the initial set X (j)

0 of MPj
by

T (X (j)
0 ) = rot(Ψ

(i)
f )X (j)

0 ⊕ [0,Ψ
(i)
f , x

(i)
f , y

(i)
f ]T ,

where Ψ
(i)
f , x

(i)
f , y

(i)
f refers to the end states of the reference

trajectory of MPi and rot(Ψ
(i)
f ) a rotation matrix, which

rotates the x and y states by Ψ
(i)
f . Therefore, for building a

maneuver automaton, it suffices if all motion primitives start
at the origin for Ψ, x, and y dimensions and only the velocity
has to be discretized.

We implement1 the control approach in MATLAB, where
we use CORA [84] for the reachable set computations and
ACADO [85] for optimizing the reference trajectory. The
computations are performed on a computer with a 3.1 GHz
Intel dual-core i7 processor and 16 GB memory. The offline
computation of the controller takes around 70 seconds without
using parallel computations. When we solve this example
without the analytical relations between initial set and final set,
the numerical optimization algorithm requires us to compute
over fifty reachable sets for each time step, compared to only
one when using the analytical relations.

We show the resulting reachable sets for the turn left
maneuver in Fig. 5. We see that the final set is much smaller
than the initial set. Therefore, we would be able to connect
the maneuver with itself in a maneuver automaton.

Fig. 5. Reachable sets of the safety controller for a turn left maneuver
projected onto the (v,Ψ) and (x, y) planes. The initial set is shown in
green and the final set in blue.

B. Optimal Controllers
For comparison and a better illustration, we present two

different online controllers: first, an LQR-based tracking con-
troller and second, a model predictive controller (MPC).

a) LQR Tracking Controller: Instead of using just a single
LQR controller, we compute p of them with different weights
Q

(i)
LQR, R

(i)
LQR, i ∈ {1, . . . , p}, and select the best one online.

To compute the LQR controllers, we use the reference tra-
jectory xref (·) and reference input uref (·) from the current
motion primitive and linearize the system along the reference
trajectory using (19):

uLQR(x(t)) = uref (t) +K(i)(t)(x(t)− xref (t)).

Based on the linearized dynamics, we compute the LQR
matrices K(i)(t), i ∈ {1, . . . , p}, by solving the algebraic
Riccati equation [86] for the weights Q(i)

LQR, R
(i)
LQR.

For our example, we compute p = 2 controllers, where
without loss of generality we keep the state weights constant as

1The implementation will be included in the next version of the AROC
toolbox, available at https://aroc.in.tum.de.
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QLQR = diag([0.2, 10, 31.2, 1]) and choose the input weights
as R

(1)
LQR = diag([50, 170]) and R

(2)
LQR = diag([60, 200]).

Lower input weights lead to more aggressive controllers which
apply higher inputs to reduce any tracking errors faster and
vice versa.

At any point during the online application, we compute the
reachable set and check the constraints (7)–(9) for each con-
troller K(i)(t). Afterwards, we apply the one which satisfies
the constraints and has the smallest normalized error to the
reference trajectory. This allows us to always aim for the best
performance, and the different controllers increase the chances
to find one which satisfies the state and input constraints.
Using multi-core processors allows us to parallelize the com-
putations. If none of the controllers satisfies the constraints,
we switch to the safety controller, as described in Sec. IV.

b) Model Predictive Controller: Our second controller is
a standard MPC which tracks the reference trajectory by
optimizing over a horizon of P = 6. It has a time step size
∆tMPC = L∆τ which, for computational efficiency, is larger
than the internal time step size ∆τ of the safety controller by
a factor of L = 2. Its optimization problem is given by

min
uMPC(·|τk)

xd(τk+LP |τk)TQMPCxd(τk+LP |τk) (38)

+

P−1∑
i=0

uMPC(τk+Li|τk)TRMPCuMPC(τk+Li|τk),

s.t. ∀i ∈ {0, . . . , P − 1} :

uMPC(τk+Li|τk) ∈ U ,
ξ(x(τk), uMPC(·|τk), 0, τL(i+1)) ∈ X ∗(τk+L(i+1)),

with xd(τk+LP |τk) := ξ(x(τk), uMPC(·|τk), 0, τLP ) −
xref (τk+LP ). In contrast to the LQR tracking approach, we
only need a single MPC, as we can include constraints (7)–(9)
directly in the optimization problem of the MPC. As weight
matrices we choose QMPC = diag([24, 20, 120, 70]) and
RMPC = diag([2, 3]). By restricting uMPC(·) to be piecewise
constant, we are able to solve (38) fast with standard optimal
control solvers, like direct multiple shooting algorithms [74].

C. Results of Combining the Safety and Optimal
Controllers

We illustrate the combination of safety controller and online
controller for the turn left maneuver. When concatenating
two motion primitives, we know that the trajectories for the
second motion primitive start inside the final set Xf of the first
motion primitive. Therefore, we choose the set from which our
simulated trajectories start to be the final set Xf shifted around
the desired initial state x0. We compute for both optimal
controllers 100 trajectories which start at random states inside
this initial set and show them in Fig. 6 for the LQR tracking
controller and the MPC. For the 100 trajectories with 10 steps
each, the safety controller takes over 2.2% of the time steps for
the LQR controller and 0.6% for the MPC. As desired, we are
able to apply the optimal controller most of the time; however,
there are instances when the optimal controller becomes unsafe
and the safety controller takes over. For both controllers, we
choose the same maximum computation time of tc = 0.05 s,

Fig. 6. Illustration of 100 simulations of the LQR tracking controllers
(top) and MPC (bottom). All simulations are randomly chosen from the
final set shifted to the center of the backwards computed initial set. We
show in green when the LQR controllers and MPC are active and in red
when the safety controller takes over.

which is large enough that the safety controller never has to
take over because the computation takes too long.

Fig. 7. Plot of the inputs of the 100 simulations of the LQR controllers
(top) and MPC (bottom) with safety net. The spikes occur at times when
the safety controller takes over.

In Fig. 7, we show the inputs for the safety net controller
with the LQR tracking controller and with the MPC, respec-
tively. Aside from the b input for the MPC, the inputs are not
very large and do not change drastically most of the time. This
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is the desired use of inputs, which of course also depends on
the fact that the initial states start in a small set around the
initial state of the reference trajectory. The spikes we see in
Fig. 7 occur at times when the safety controller takes over.
As the safety controller aims to ensure safety for the largest
possible set of states, it uses rather large inputs and switches
quickly between them. Therefore, if the LQR controllers and
MPC are safe, we benefit from their smoother inputs; if they
would become unsafe, the safety controller steps in and brings
the system back to a safe state.

D. Comparison with Forward Reachable Set Optimizing
Controller

We compare the new backward controller with our forward
reachable set optimizing controller from [59] in Fig. 8. We
consider the same turn left maneuver as before, but start from
a set with the size of the previous final set around the initial
state x0 (shown in red). We use the controller from [59] to
compute the smallest forward reachable set (blue) around the
desired final state center(Xf ). Starting from this final set, we
use our new backward algorithm to compute the maximum
initial set (green) for which we can steer all states into the
final set of the forward algorithm. We see that this backwards
computed initial set is much larger than the original initial
set. If we use the controller from [59] as a safety controller
in the previous subsection and let the trajectories start from
its shifted smaller final set, it would have to take over in
79% of the time steps for the LQR controller and in 73%
for the MPC. This shows the advantage of the new algorithm,
as the larger reachable set allows more freedom for the optimal
controller to steer the system without the safety controller
having to step in. For a fair comparison, we use the same
parameters and algorithms for the reachable set computation
for both approaches. If smaller reachable sets from our new
approach are desired for easier online planning, we can always
limit their size during the controller synthesis or compute
subsets (online), based on measurements or final sets of motion
primitives, with the methods from [81].

Fig. 8. Comparison with the controller in [59]: Reachable set of
controller from [59] shown in dark gray. It starts in the red set and ends
in the blue. Our new backward controller starts from the blue set and
computes the backward reachable set (light gray), which ends in the
green set. This set is much larger than the original initial set, as desired.

E. Application in a Maneuver Automaton
Finally, we illustrate how planning with a maneuver automa-

ton using our motion primitives looks like. We consider the

Fig. 9. Visualization of a planned maneuver for an ego vehicle
(red) using safe motion primitives (green) under consideration of other
vehicles (blue). Simulation of the driven maneuver at times 0 s, 2 s, 4 s,
6 s, 8 s (top to bottom).

scenario with ID ZAM Zip-1 19 T-1 from the CommonRoad
database [87]. For better planning, we restrict the lateral size of
the motion primitives to the lane width. We compute 25 motion
primitives, where each has an average offline computation
time of around 80 seconds. Using the motion primitive, we
plan for a horizon of 9 s under consideration of the time-
dependent occupancies of three other vehicles. The planning
takes 1.5 s and we show a simulation of the resulting maneuver
at different points in time in Fig. 9. When one gets new
measurements, this optimization can be performed in a moving
horizon fashion using the updated occupancies of the other
traffic participants.

VIII. DISCUSSION

Online Computational Complexity
For the online complexity, we have to distinguish the three

parts of our safety net framework: the optimal controller, the
safety controller, and the switching logic. The complexity of
the online controller depends on the applied control approach
and is independent of the presented approach. For example, the
LQR approach results in a simple matrix vector multiplication
with computational complexity of O(nm), with n denoting
the number of states and m denoting the number of inputs.
Our safety controller requires the solution of a linear program
to obtain the parameters α̂ and then some matrix vector mul-
tiplications to obtain the input. As shown, e.g., in [88], linear
programs can be solved with polynomial time complexity in
the number of optimization variables and constraints.

The last part is the switching logic, which requires the
computation of the reachable set for the current state. This is
only performed for the short time horizon [tk − tc, tk+1], i.e.,
a single controller time step plus the allocated computation
time tc for online controller computation and reachable set
computation, and only for a single initial state. Therefore,
this can be computed fast and by using the reachability
algorithm from [76], which has a computational complexity
of O(n3) and which has been successfully applied for the
online verification of an autonomous vehicle in [89].

This is also demonstrated in our numerical example, where
all online computations are performed in the allocated time
tc = 0.05 s. Note that this was done with a standard MATLAB
implementation of the reachable set algorithm and the compu-
tation time could be significantly reduced with an optimized
implementation and faster programming languages like C++.
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Offline Computational Complexity

We cannot provide fixed complexity bounds for the offline
complexity, as it relies on nonlinear programming for which no
complexity bounds exist. Since we cannot bound the number
of iterations of the nonlinear programming algorithm, we
cannot bound the overall complexity. Let us still give an idea
of the complexity of the different parts.

The computation of the reference trajectory is done by
solving a single optimal control problem. Even though it is
a nonlinear optimization problem, this can be solved fast in
practice, especially when restricting the inputs to be piecewise
constant. The backward reachable set computation of the lin-
earized dynamics involves only matrix multiplications, whose
computational complexity is less than O(n3), if n ≥ m.

The forward reachability algorithm has a computational
complexity of O(n5) [62]. During the controller optimization,
we solve a nonlinear program, where we cannot bound the
number of iterations. In each iteration, however, we do not
have to recompute the reachable set, only the approximation
of the reachable set based on the scaling factors, which has a
computational complexity of just O(n2) [81].

Optimality

Optimality is ensured by the applied optimal, unverified con-
troller and consequently depends on the used controller type.
While we still try to provide optimal solutions with the safety
controller, this is not as relevant, as its main objective is to
ensure safety. As we rely for the safety controller on nonlinear
programming algorithms that do not guarantee convergence to
a global optimal solution, we can only expect to obtain a local
optimum. In fact, there is no efficient method able to obtain
globally optimal controllers for disturbed, nonlinear systems
[90], [91]. Most optimal control approaches only consider
open-loop dynamics or only undisturbed feedback controllers
[92], [93]. With our new approach however, we are able to
maximize the size of the initial set for which we can control
all states under observance of constraints on states and inputs
to the desired final set despite the effect of disturbances. As a
result, we optimize over the set of all possible solutions with
all possible disturbance realizations and optimize a controller
which maximizes the set for which we can provide guarantees.
This is not done in comparable methods, as most other formal
approaches consider fixed controllers, e.g., tube-based MPC,
or fixed control inputs for the whole set, such as in abstraction-
based methods.

IX. CONCLUSION

We present a novel safety net control approach by com-
bining an unverified optimal controller with a verified safety
controller. Most of the time, the optimal controller is active
and only if its behavior would become unsafe does the
safety controller take over. We are thereby able to ensure
safety of optimal controllers which cannot guarantee safety
on their own. Since optimal controllers have a better control
performance than safety controllers, which always have to
consider the worst-case behavior, this combination leads to a

better control outcome than pure safety controllers, while still
maintaining safety guarantees in our numerical experiments.

We also present a novel way for computing the motion
primitives of the safety controller, which is based on a)
backward reachable sets and b) circumventing the problem
of computing under-approximations of reachable sets, and c)
using polynomial zonotopes to obtain an analytical correlation
between initial sets and reachable sets. As a result, our
approach is the first that is able to formally safeguard an
optimal controller for disturbed nonlinear systems under state
and input constraints with the use of a set-based safety-net
controller whose underlying reachable set computation scales
polynomially. Since most computations can be performed
offline in advance, the online control is fast and efficient. Since
the resulting control law is simple to apply and the controller
synthesis does not require a deep understanding of control
theory or finding Lyapunov functions or such, the control ap-
proach is appealing for practical application. We demonstrated
the effectiveness of our approach by safeguarding an LQR
tracking controller and an MPC for an autonomous vehicle.

ACKNOWLEDGMENT

The author gratefully acknowledges financial support from
the European Commission projects UnCoVerCPS under grant
number 643921 and justITSELF under grant number 817629,
and the Central Innovation Programme of the German Federal
Government under grant ZF4086007BZ8.

REFERENCES

[1] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Nob Hill, 2009.

[2] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predic-
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[3] S. V. Raković, B. Kouvaritakis, M. Cannon, C. Panos, and R. Findeisen,
“Parameterized tube model predictive control,” IEEE Transactions on
Automatic Control, vol. 57, no. 11, pp. 2746–2761, 2012.
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