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Abstract

We talk about the problem of bounding transition systems which occurs in planning and
model checking. It consists of answering the question how long transition sequences
fulfilling certain criteria can be at maximum. The approach of compositional bounding
splits a transition system into smaller parts, which then are bounded using base case
functions, and composed to compute a total bound of the system. We use the recurrence
diameter and the sublist diameter as base case functions. They are both properties of
transition systems but impose bounds of different tightness on them. For the recurrence
diameter, we give a SAT encoding and for the sublist diameter we give a QBF encoding.
Both encodings are implemented and evaluated in Standard ML.
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1 Introduction

Artificial intelligence is a topic that currently gains importance in informatics but also
in society in general. One of the main research areas in artificial intelligence is planning.
Often, there occur scenarios in which a complete plan to a problem is not needed or
not feasible, and one is interested in a bound on the length of a plan.

More generally, we can obtain bounds on transition systems, which are a common way
to describe planning problems. But transition systems can also describe model checking
(Biere, Cimatti, Clarke, & Zhu, 1999).

This thesis deals with two different techniques for computing upper bounds on
lengths of sequences in transition systems. They are both based on compositional
bounding but use different base case functions, i.e., methods to bound the smaller
instances:

• The recurrence diameter, encoded as a propositional satisfiability problem (SAT)

• The sublist diameter, encoded in a quantified boolean formula (QBF)

They are evaluated with respect to an earlier encoding of the recurrence diameter in
satisfiability modulo theories (SMT).

1.1 Summary of the results

With the SAT-based encoding of the recurrence diameter we were able to gain perfor-
mance in some problem domains with respect to the SMT-based encoding. The QBF
encoding of the sublist diameter, instead, is not yet suitable for practical bounding as
the running times of QBF solvers are still too long.

1.2 Planning

Planning (sometimes also called automated planning) is a branch of artificial intelligence
dealing with problems in which the main objective is to synthesize a plan that brings a
system from one state into another. A typical planning problem can be described as:

• A transition system, consisting of
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1 Introduction

– A world of possible states

– Actions that can be executed and lead from one state to another

• An initial state

• A goal condition fulfilled by some of the states

(Ghallab, Nau, & Traverso, 2004, pp. 5–7)
Though there exist many different forms of planning, we focus on classical planning

here because it is what the core of planning is about and can serve as a basis for other,
more complex forms of planning. This most importantly means it is (Ghallab, Nau, &
Traverso, 2004, p. 17):

Finite
The number of states is finite

Implicit time
Time is not considered explicitly, the system just goes from one state to the next

Deterministic
There is no random component, everything influencing the system is known in
advance

Fully observable
There is no unknown component, we can always know every aspect of the system

1.3 Balls in Boxes—a running example

Consider the following scenario. There are two adjacent boxes, A and B. Furthermore,
there are three balls, a red one, a green one, and a blue one. Every ball is always in
one of the two boxes. There is some agent (a human or a robot) who can take the balls
from one of the boxes and put them into the other. We consider the act of taking a ball
and putting it into the other box as an atomic action. The position of a ball inside a box
does not matter. This already gives us a transition system. Its eight states are depicted
in Figure 1.1.

It is easier though, not to reference the states with images every time. Therefore
we introduce the following notation: The three balls are denoted by the first letter of
their color, i.e., “R”(ed), “G”(reen) and “B”(lue). The wall separating the two boxes is
denoted by “|”. So the state where the red and the green ball are in the first box and
the blue ball is in the second box is written as “RG|B”.

2



1 Introduction

RGB| |BGR

RG|B B|GR

RB|G G|BR

R|BG GB|R

Figure 1.1: States of Balls in Boxes

The actions are all of the same kind. They move a specific ball from a specific box to
the other box. We write “R ->” to describe the action taking the red ball from the first
box and putting it into the second. Accordingly, “G <-” moves the green ball from the
second to the first box.

Figure 1.2 shows the complete transition system as a graph. You can see the transition
system is completely symmetric as moving balls always is possible in both directions
and there is no one-way action like destroying a ball. Additionally, there are some
symmetries between the states and corresponding automorphisms on the graph as, e.g.,
the two boxes are practically interchangeable.

We can now pose a planning problem e.g. by saying that the initial state is RGB|
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1 Introduction

and the goal condition is (informally) “The green ball must be in the second box and
the red ball must be in a different box than the blue ball”. A plan solving the problem
would be, e.g., the action sequence R ->, G ->.

1.4 Compositional bounding

To talk about the length of a plan, we restrict ourselves to sequential plans here. This
means that no actions are to be executed in parallel. Instead, their execution has a total
order on it.

Normally, shorter plans are what we want. Sometimes, there’s also a restriction
on how long a plan may be to be usable at all and therefore one is interested in an
upper bound on the length of a possible plan. This makes one motivation for upper
bounding plan lengths. A second one is, that upper bounds can be used as thresholds
for SAT-based planning: The question whether a planning problem has a solution of
a given length is encoded in SAT, and the search for a solution can be stopped when
the bound is reached. This use of the upper bounds also appears in Bounded Model
Checking, where bounds can be used as completeness thresholds.

The compositional approach to bounding transition systems constitutes in computing
bounds by partitioning a transition system into smaller abstractions. These abstractions
are then passed to subroutines that compute bounds on them by means of a base
case function. Here, we use the Hyb (Abdulaziz, Gretton, & Norrish, n.d.) algorithm/
program.

1.5 Related work

This work builds up on the compositional bounding techniques devised by Baumgart-
ner, Kuehlmann, and Abraham, 2002, which later have been improved in various ways.
The abstractions used first were projections. Abdulaziz, Gretton, and Norrish, 2015,
first proposed the sublist diameter as a base case function, which is also used in the
second part of this thesis. Abdulaziz, Gretton, and Norrish, 2017, introduced snapshots
as another type of abstraction of factored transition systems, besides projections. Ab-
dulaziz and Berger, 2021, gave an efficient encoding of the recurrence diameter and
passed it to an SMT solver.

1.6 Terms and definitions

The following definitions are taken from Abdulaziz and Berger, 2021, and adapted.

4



1 Introduction

1.6.1 STRIPS

STRIPS is a way of modeling planning problems only with propositional variables.

Definition 1 (STRIPS states and actions). A STRIPS maplet v 7→ b maps a variable v—i.e.
a state-characterizing proposition—to a boolean value b. A STRIPS state x is a finite set of
STRIPS maplets where a variable is never mapped to more than one value. We write D(x) to
denote {v | (v 7→ b) ∈ x}, the domain of x, and x(v) to denote the value that v is mapped to in
x. For states x1 and x2, the union x1 ] x2 is defined as {v 7→ b | v ∈ D(x1) ∪D(x2) ∧ if v ∈
D(x1) then b = x1(v) else b = x2(v)}. Note that the state x1 takes precedence. An action is a
pair of states (p, e) where p represents the preconditions and e represents the effects. For an
action π = (p, e), the domain of that action is D(π) ≡ D(p) ∪D(e).

For the following definitions in this section, we do not write “STRIPS” explicitly
anymore.

Definition 2 (Execution). When an action π(= (p, e)) is executed at state x, it produces a
successor state π(x), formally defined as π(x) = if p * x then x else e ] x. We lift execution
to lists of actions −→π , so −→π (x) denotes the state resulting from successively applying each action
from −→π in turn, starting at x.

A factored transition system is a concise representation of a transition system. Rather
than explicitly giving all states and enumerating all transitions between them, we write
down a set of actions with preconditions and effects, where the preconditions only
impose requirements on some variables, and the effects only influence some variables.
This way, one action expresses many state transitions.

Definition 3 (Factored transition system). A set of actions δ constitutes a factored transition
system. D(δ) denotes the domain of δ, which is the union of the domains of all the actions
in δ. Let set(−→π ) be the set of elements in −→π . The set of valid action sequences δ∗ is
{−→π | set(−→π ) ⊆ δ}. The set of valid states U(δ) is {x | D(x) = D(δ)}. G(δ) denotes the set
of pairs {

(
x, π(x)

)
| x ∈ U(δ), π ∈ δ}, which is all non self-looping transitions in the state

space of δ.

Definition 4 (Diameter). The diameter of a transition system, written d(δ), is the length of
the longest shortest action sequence, formally

d(δ) = max
x∈U(δ)
−→π ∈δ∗

min−→π (x)=−→π ′(x)
−→π ′∈δ∗

|−→π ′|

The diameter of Balls in Boxes is at most 3 because with 3 ball movements you can
reach an arbitrary state. Indeed, the diameter happens to be exactly 3.
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1 Introduction

1.6.2 SAS+

SAS+ is similar to STRIPS, with the difference being that not only boolean but arbitrary
finite-domain variables are allowed. We restrict ourselves to non-negative integer-
valued SAS+ though.

Definition 5 (SAS+ states). A SAS+ maplet v 7→ n maps a variable v to a non-negative
integer value n.

The rest is analogous to STRIPS. In this thesis, whenever it’s not explicitly stated, the
STRIPS versions of the objects are meant.
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B
->/B

<-

G ->/G <-

B ->/B <-

G ->/G <-

R
->

/R
<-

B ->/B <-

G ->/G <-

B
->/B

<- G ->/G <-

R
->

/R
<-

R
->

/R
<-

R
->

/R
<-

R|BG

RB|G

RGB|

RG|B

|BGR

B|GR

GB|R

G|BR

Figure 1.2: Transition system of Balls in Boxes
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2 SAT encoding of the recurrence diameter

2.1 The recurrence diameter

The recurrence diameter is the length of the longest simple, i.e., loop-free, path in the
state space of a transition system. It was devised by Biere, Cimatti, Clarke, and Zhu,
1999, p. 203.

Definition 6 (Recurrence diameter). Let distinct(x,−→π ) denote that all states traversed by
executing −→π at x are distinct states. The recurrence diameter is the length of the longest simple
path in the state space, formally:

rd(δ) = max
x∈U−→π ∈δ∗

distinct(x,−→π )

|−→π |

In our example Balls in Boxes the recurrence diameter is 7. In Figure 2.1 you see a
path of length 7 marked in blue, which visits no state twice. It is goes RB|G, RGB|,
RG|B, R|BG, |BGR, B|GR, GB|R, G|BR. This is an example for a maximal recurrence
diameter—it equals the number of states minus one because there is a simple path
visiting all states.

In general, we can predict the range in which the recurrence diameter must lie.

Proposition 1 (Bounds of the recurrence diameter). The recurrence diameter of a transition
system is bound below by its diameter and above by the number of states.

d(δ) ≤ rd(δ) < |U(δ)|

(Abdulaziz & Berger, 2021)

2.2 From SAS+ to STRIPS

In order to encode the recurrence diameter of a SAS+ factored transition system in SAT,
we have to translate it to a STRIPS factored transition system. This is because SAS+
allows arbitrary finite-domain values for the variables whereas STRIPS restricts them to
booleans and booleans are what we need for a SAT encoding. The translation process
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2 SAT encoding of the recurrence diameter

we use was inspired by Abdulaziz and Kurz, n.d. It has been adapted to Standard ML
and, to fit the existing code base, some preprocessing was necessary.

We start with a SAS+ transition system δSAS+ and create a STRIPS transition system
δSTRIPS = t(δSAS+), where t is the translation function defined below.

• One SAS+ variable is translated to multiple STRIPS variables. Specifically, for
a variable vSAS+ ∈ D(δSAS+), for each integer n, such that ∃x : (vSAS+ 7→ n) ∈
x ∧ x ∈ U(δSAS+) (i.e., n is a possible value for vSAS+), we create vn,STRIPS.

• One SAS+ state is translated to one STRIPS state. Specifically, for a state
xSAS+ ∈ U(δSAS+), for every (vSAS+ 7→ n) ∈ x, we create t(vSAS+ 7→ n) =

{vn,STRIPS 7→ >} ∪ {vm,STRIPS 7→ ⊥ |m 6= n}. Then xSTRIPS = t(xSAS+) =⋃
(vSAS+ 7→n)∈xSAS+

t(vSAS+ 7→ n)

• One SAS+ action is translated to one STRIPS action. Specifically, for an action
πSAS+ ∈ δSAS+ with πSAS+ = (p, e), we create t(πSAS+) = (t(p), t(e)).

Then δSTRIPS = t(δSAS+) = {t(πSAS+) |πSAS+ ∈ δSAS+}.

2.3 The encoding

The encoding expresses in a propositional formula whether a certain number is greater
equal the recurrence diameter. It comprises four parts. The first three stem from
Abdulaziz and Berger, 2021, p. 5. The fourth part is needed because the STRIPS
transition system is derived from a SAS+ transition system.

The variables in the encoding are in shorter forms than above. Instead of writing
vn,STRIPS, we simply write v for a variable. vi stands for variable v’s value at step i.

The first part, F1(δ, k), states that activated actions must be legal, i.e., at the step of
their activation, their preconditions are met, and one step later, their effects have been
applied. Additionally, no other variables should change their value (frame condition).
This implies that per step at most one action can be activated (except for actions with
identical effects).

For an action π, let pre(π) denote its preconditions and eff(π) denote its effects. For
a state x, let xi denote the formula (

∧
(v 7→>)∈x vi) ∧ (

∧
(v 7→⊥)∈x ¬vi).

F1(δ, k) :=
∧

1≤i≤k

∧
π∈δ

πi =⇒ pre(π)i ∧ eff(π)i+1 ∧
∧

v∈D(δ)\D(eff(π))

vi ⇐⇒ vi+1

The second part, F2(δ, k), requires that per step at least one action is activated.

F2(δ, k) :=
∧

1≤i≤k

∨
π∈δ

πi

9



2 SAT encoding of the recurrence diameter

The third part, F3(δ, k), ensures that the action sequence produces a simple path. No
state can be visited twice, and therefore, for the states at two arbitrary steps, at least
one variable must differ.

F3(δ, k) :=
∧

1≤i<j≤k+1

∨
v∈D(δ)

¬(vi ⇐⇒ vj)

The last part, F4(δ, k), ensures that we are always in a legal state with respect to the
original SAS+ problem. As we have propositional variables in the translated STRIPS
version, that state whether a variable in the SAS+ problem has a certain value or not,
we need to make sure that for all original SAS+ variables, of all the STRIPS variables
derived from it, there is always exactly one which is true.

Let samesas(u, v) mean that u and v are derived from the same SAS+ variable.

F4(δ, k) :=
∧

1≤i≤k+1

 ∧
v∈D(δ)

∨
u∈D(δ)

samesas(u,v)

ui

 ∧
∧

v,u∈D(δ)
samesas(u,v)

¬vi ∨ ¬ui

We put those four together to obtain a lower bound on the recurrence diameter. Let
k ∈ N0 and δ be a factored transition system. Then

rd(δ) ≥ k ≡ F1(δ, k) ∧ F2(δ, k) ∧ F3(δ, k) ∧ F4(δ, k)

To turn it into an encoding suitable for a SAT solver, we need to express it in a
DIMACS string, and therefore have to convert it to Conjunctive Normal Form (CNF).
F2(δ, k) and F4(δ, k) are already in CNF, and for F1(δ, k) this is relatively trivial. We
express the implication as a disjunction with the first argument, πi, negated. Then we
push ¬πi inwards into the clauses.

F′
1(δ, k) :=

∧
1≤i≤k

∧
π∈δ

 ∧
(v 7→>)∈pre(π)

¬πi ∨ vi

 ∧

 ∧
(v 7→⊥)∈pre(π)

¬πi ∨ ¬vi


∧

 ∧
(v 7→>)∈eff(π)

¬πi ∨ vi+1

 ∧

 ∧
(v 7→⊥)∈eff(π)

¬πi ∨ ¬vi+1


∧

 ∧
v∈D(δ)\D(eff(π))

(¬πi ∨ vi ∨ ¬vi+1) ∧ (¬πi ∨ ¬vi ∨ vi+1)


≡ F1(δ, k)

10



2 SAT encoding of the recurrence diameter

For F3(δ, k) though, naive transformation would result in an exponential blowup of
the formula. One way to illustrate this is to have a conjunction over all valid states,
which are exponentially more than the variables. This conjunction over the states has
no semantic meaning here and merely serves as generating all possible boolean strings
over the variables:

F′
3(δ, k) :=

∧
1≤i<j≤k+1

∧
x∈U(δ)

 ∨
(v 7→>)∈x

vi ∨ vj

 ∨

 ∨
(v 7→⊥)∈x

¬vi ∨ ¬vj

 ≡ F3(δ, k)

An exponentially increased formula would make the encoding perform poorly. There-
fore, we introduce auxiliary variables ai,j,v, which is fine because we only need an
equisatisfiable encoding. This way, we obtain a more compact encoding which will
perform better.

F′′
3 (δ, k) :=

∧
1≤i<j≤k+1

( ∧
v∈D(δ)

(¬ai,j,v ∨ vi ∨ vj) ∧ (¬ai,j,v ∨ ¬vi ∨ ¬vj)

∧ (ai,j,v ∨ ¬vi ∨ vj) ∧ (ai,j,v ∨ vi ∨ ¬vj)

)
∧

∨
v∈D(δ)

ai,j,v

≡SAT F3(δ, k)

Theorem 1 (Recurrence diameter in CNF). Let k ∈ N0 and δ be a factored transition
system. Then the recurrence diameter of δ is at least k if and only if the conjunction of the above
formulae holds.

rd(δ) ≥ k ≡ F1(δ, k)′ ∧ F2(δ, k) ∧ F′′
3 (δ, k) ∧ F4(δ, k)

2.4 Implementation

The implementation was done in Standard ML ’97. Consequently, the implementation
was all done in functional programming style. It builds up on an existing code base of
a tool used to compute bounds for transition systems. The old version of the tool uses
an SMT encoding of the recurrence diameter.

Of the abstractions computed by the program, only some are bounded using the
recurrence diameter as a base case function. The others are bounded using different
base case functions which are easier to compute. The decision, when to use the
recurrence diameter, is based on a threshold. If, in an abstraction, the number of states
is not greater than the threshold, the recurrence diameter is used.

11



2 SAT encoding of the recurrence diameter

It would take too much space to show and explain the entire code here. Therefore,
we stick with one example to give a rough idea of the implementation style.

The encoding is based on a datatype for propositional formulae:

datatype ’a formula = Atom of ’a
| Not of ’a formula
| And of ’a formula * ’a formula
| Or of ’a formula * ’a formula

We use a folding function to do a conjunction over lists. The same function is imple-
mented for disjunctions too.

fun big_and [x] = x
| big_and (x :: xs) = And (x, big_and xs)
| big_and [] = raise Empty

An example from the encoding. This part ensures that at least one action is activated
per step.

fun encode_at_least_one_operator_per_step (prob : (int * int) strips_problem) k =
let

val ops = #operators_of prob
in
big_and (map (fn i =>
big_or (map (fn opr => Atom (Operator (i, index ops opr))) ops)

) (tl (list_up_to k)))
end

To translate the formula datatype into DIMACS, we need to encode variables as natural
numbers. Below, you can see the corresponding code, which is tailored to the encoding
and the implementation. A more general approach such as Cantor’s encoding would
produce too large numbers.

fun var_to_int k nops nvars (Operator (i, opr)) = 1 + i + (k + 2) * opr
| var_to_int k nops nvars (State (i, var)) = 1 + i + (k + 2) * (nops + var)
| var_to_int k nops nvars (Auxiliary (i, j, var)) =
1 + i + (k + 2) * (nops + var) + (k + (k + 2) * (nops + nvars)) * (j - 1)

The iterative testing for the recurrence diameter uses Theorem 1.

fun RDsat_algo sas_prob max_d =
let

val path_to_solver = "/usr/local/bin/kissat"
val solver_options = ["-q", "-n"]

12



2 SAT encoding of the recurrence diameter

val (sat_fmt, unsat_fmt) = ("s␣SATISFIABLE\n", "s␣UNSATISFIABLE\n")

val strips_prob = SasToStrips.translate sas_prob

fun sat_for_d d =
...

fun iterate_d d = if d > max_d then max_d
else if not (sat_for_d d) then d - 1 else iterate_d (d + 1)

in
iterate_d 1

end

For SAT solving, Kissat, version 2.0.0, (Biere, Fazekas, Fleury, & Heisinger, 2020) was
used. The encoding is expressed as a DIMACS string. The SAT solver is spawned
as a child process with the Unix.execute function. The DIMACS string was finally
fed to the SAT solver using a TextIO.outstream and the result was read using a
TextIO.instream. Both were created with the Unix.streamsOf function.

2.4.1 Gaining performance using functional fusion

During the experiments (more on that later), it became clear that most of the time was
consumed on building the DIMACS string of the encoding formula and not, as one
could have thought, on SAT solving. As we wanted SAT-solving to be the bottleneck,
we implemented a pipelining process which creates a part of the DIMACS string and
directly forwards it to the SAT-solver. The concept is reminiscent of functional stream
fusion (Coutts, Leshchinskiy, & Stewart, 2007, 9) and we will therefore call it the fusion
approach.

fun sat_for_d d =
let

val sat_proc =
Unix.execute (path_to_solver, solver_options)

val (instrm, outstrm) = Unix.streamsOf sat_proc
val _ = TextIO.output (outstrm, RDCheckSAT.get_header (strips_prob, d))
val encodings = RDCheckSAT.get_encodings (strips_prob, d)
val _ = app (fn enc =>
TextIO.output (outstrm, RDCheckSAT.to_dimacs
(strips_prob, d, enc) ^ "␣0\n")) encodings

val _ = TextIO.closeOut outstrm

13



2 SAT encoding of the recurrence diameter

val ret = TextIO.input instrm
val status = Unix.reap sat_proc

in
if ret = sat_fmt then true
else if ret = unsat_fmt then false
else raise Fail ("Something␣went␣wrong␣with␣the␣SAT␣solver:\n" ^ ret)

end

2.5 Experimental results

The experiments were conducted on this hardware:

• x86_64 architecture

• Intel Xeon Processor (Skylake, IBRS)

• 2394.372 MHz

• 32KB L1 data cache

• 32KB L1 instruction cache

• 4096KB L2 cache

• 16384KB L3 cache

• 44GB RAM

For the performance measurements, several common planning benchmarks were used.
Table 2.1 shows a first comparison of the two program versions. It is grouped by the
domains of the benchmarks. The first column shows the domain name, and the second
column gives the total number of problems that were used during that run in that
domain. Then follow the number of bounded instances and the average computation
time taken to compute the bounds, both for the SMT-based (old) version of the program
and for the SAT-based (new) version which was implemented in this thesis. A timeout
of one hour was used.

This first comparison is based on the program version which does not use the
fusion approach. It can be seen that the SAT-based program performs worse on some
of the benchmarks and almost never better than the SMT-based. Therefore we did
measurements with a higher threshold, conjecturing that the relative performance
would be better because SAT should be more efficient than SMT for bigger instances.

14



2 SAT encoding of the recurrence diameter

SMT-basd SAT-based

Domain Total Bounded Average time Bounded Average time

elevators 210 164 120 114 237
hiking 40 21 261 21 271
logistics 407 407 245 356 252
nomystery 124 124 5 124 4
rover 104 50 214 51 278
tpp 89 12 556 12 550
transport 203 14 49 14 44
zeno 50 48 118 48 485

Table 2.1: Comparison without fusion with threshold 50

In Table 2.2 you see a comparison with a threshold of 100 for the recurrence diameter
subroutine. Here, we increased the timeout to two hours and left it at two hours for
the rest of the measurements. It can be seen that a higher threshold indeed slightly
increases the relative performance of the SAT approach. Nevertheless, it still falls
behind our expectations.

SMT-based SAT-based

Domain Total Bounded Average time Bounded Average time

elevators 188 142 313 88 837
hiking 40 22 457 22 494
logistics 285 253 315 277 501
nomystery 124 124 5 124 3
rover 58 26 700 26 701
tpp 47 13 929 13 938
transport 203 14 51 14 45
zeno 50 40 213 39 685

Table 2.2: Comparison without fusion with threshold 100

After investigating what takes the most time during the runs of the SAT-based
program, we ran the improved version with functional fusion for the string-building
process. Table 2.3 shows the results of the new measurements. The fusion string
building decreases the running time of the new program, so that for all domains except
“elevators” it performs at least as good as the old SMT-based version, and performs

15



2 SAT encoding of the recurrence diameter

better on some domains.

SMT-based SAT-based

Domain Total Bounded Average time Bounded Average time

elevators 210 164 380 129 649
hiking 40 22 469 22 512
logistics 305 253 320 303 416
nomystery 124 124 5 124 3
rover 85 47 587 49 619
tpp 53 13 930 13 930
transport 203 14 50 14 41
zeno 50 40 216 43 409

Table 2.3: Comparison with threshold 100

Table 2.4 shows similar results for a threshold of 1000. It is interesting that the
performance of both program versions only decreases little compared to using 100 as
the threshold.

SMT-based SAT-based

Domain Total Bounded Average time Bounded Average time

elevators 210 159 382 124 678
hiking 40 22 475 22 506
logistics 316 251 318 301 382
nomystery 124 106 107 112 268
rover 92 40 522 43 645
tpp 67 13 940 13 946
transport 203 14 54 14 45
zeno 50 28 259 31 554

Table 2.4: Comparison with threshold 1000

Figure 2.2, Figure 2.3, Figure 2.4 and Figure 2.5 show scatter plots comparing the
running times for the computed bounds. During the experiments it became clear
that the process of SAT solving takes almost no time in comparison to the process
of building the encoding. We have no comprehensive measurements for that, but for
example, for one instance in the elevators domain, the SAT solving took less than a
millisecond for all but two calls, the two exceptions being 1 and 3 milliseconds. In

16



2 SAT encoding of the recurrence diameter

contrast to that, building the encoding took multiple seconds in about half of the calls.
Beyond the runtime measurements it became clear that for another benchmark

domain, newopen, the old SMT-based program produced false results for the bounds
by claiming the recurrence diameter would always be 0. We did not have the time to
further investigate in that, though.
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2 SAT encoding of the recurrence diameter
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Figure 2.4: Comparison with threshold 100 with functional fusion for SAT version
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3 QBF encoding of the sublist diameter

Abdulaziz, Gretton, and Norrish, 2015, showed that the sublist diameter, in contrast to
the diameter, can be used for compositional bounding.

3.1 Quantified Boolean Formulae

QBF describes a class of problems that is a superset of SAT. It covers satisfiability and
validity problems but, in addition to plain propositional logic, allows to quantify over
the possible values of propositional variables. For example:

∀A : ∃B : (A ∧ B) ∨ (¬A ∧ ¬B)

is valid, but
∃B : ∀A : (A ∧ B) ∨ (¬A ∧ ¬B)

is not. Note that free variables are allowed and are equivalent to outermost existentially
quantified variables. So the last formula is equivalent to

∀A : (A ∧ B) ∨ (¬A ∧ ¬B)

QBF is the canonical PSPACE-complete problem (Cadoli, Giovanardi, & Schaerf, 1998).
Provided that PSPACE 6= NP, this means that QBF is harder than SAT.

3.2 The sublist diameter

A list l′ is a sublist of l, written l′ � · l, if and only if all the members of l′ occur in the
same order in l. We can treat action sequences as lists and therefore define the sublist
diameter on them.

Definition 7 (Sublist diameter). Given a factored transition system δ, the sublist diameter
sd(δ) is the length of the longest shortest equivalent sublist to any execution −→π ∈ δ∗ starting
at any state x ∈ U(δ). Formally,

sd(δ) = max
x∈U−→π ∈δ∗

min−→π (x)=−→π ′(x)
−→π ′ �·−→π

|−→π ′|
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3 QBF encoding of the sublist diameter

The sublist diameter of Balls in Boxes is 3. A sketch of the reason is visualized
in Figure 3.1: The longest simple paths always move balls back and forth. These
movements can be dropped in a sublist path: RB|G, R|BG, |BGR, G|BR.
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Figure 3.1: Sublist diameter of Balls in Boxes

As for the recurrence diameter, we want to obtain an iterative approach to finding
the sublist diameter. We can use the recurrence diameter for that because, looking at
Definition 7, we see that if we always just take −→π ′ to be −→π without its loops, instead of
the actual minimal sequence, we get the recurrence diameter.
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3 QBF encoding of the sublist diameter

Proposition 2 (Bounds of the sublist diameter). The sublist diameter of a transition system
is bound below by its diameter and above by the recurrence diameter.

d(δ) ≤ sd(δ) ≤ rd(δ)

(Abdulaziz, Gretton, & Norrish, 2015, p. 6)

3.3 The encoding

The encoding works as follows: Two action sequences are encoded. Over the variables
of the first one we quantify universally, and we quantify existentially over the variables
of the second one. These two correspond to −→π and −→π ′ from Definition 7, respectively.
For both of them we encode the length and require that the second one is a sublist
of the first. If then, for all possible action sequences of the first length (universally
quantified), there exists a corresponding second action sequence with the second given
length which is a sublist of the first and produces the same final state if executed from
the same initial state, we have upper bounded the sublist diameter. From now on we
call the first action sequence, which is universally quantified over, the original action
sequence, and the second action sequence, depending on it, the sublist action sequence.
We will explore the single parts of the encoding in the following.

First, similar to encoding the recurrence diameter, we need to make sure that between
states the variables change according to the action executed. Again, this also ensures
that (except for actions with identical effects) at most one action is executed per step.
We will later use this part for both the original and the sublist sequence. We introduce
an additional empty action because we want original paths of all lengths and not only
the maximal length. This can be simulated by executing the empty action in a step.

G1(δ, k, m) :=
∧

0≤i<n

∧
π∈δ∪{(∅,∅)}

πi,m =⇒

pre(π)i,m ∧ eff(π)i,m ∧
∧

v∈D(δ)\D(eff(π))

vi,m ⇐⇒ vi+1,m

We denote the set of atoms {πi,m | 0 ≤ i < k ∧ π ∈ δ ∪ {(∅, ∅)}} ∪ {vi,m | 0 ≤ i ≤
k ∧ v ∈ D(δ)} on which G1(δ, k, m) is defined by D(G1(δ, k, m)). Note that, since the
kth step is the last one, no action can be executed in it.

We demand that in every step at least one action is executed.

G2(δ, k, m) :=
∧

0≤i<k

∨
π∈δ∪{(∅,∅)}

πi,m
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3 QBF encoding of the sublist diameter

The action sequences have to have the same initial state.

G3(δ) :=
∧

v∈D(δ)

v0,1 ⇐⇒ v0,2

And the same final state.

G4(δ, h, l) :=
∧

v∈D(δ)

vl,1 ⇐⇒ vh,2

We define correspondences between actions in the original and the sublist sequence.
They require that at the respective steps in the sequences the same action is executed.
Note that i 7→ i′ is one propositional variable.

G5(δ, h, l) :=
∧

0≤i<h

∧
i≤i′≤l−h+i

i 7→ i′ =⇒
∨

π∈δ∪{(∅,∅)}
πi′,1 ∧ πi,2

The domain of all correspondence variables is C = {i 7→ i′ | 0 ≤ i < h ∧ i ≤ i′ ≤
l − h + i}.

For every action in the sublist action sequence there must be a corresponding action
in the original action sequence.

G6(h, l) :=
∧

0≤i<h

∨
i≤i′≤l−h+i

i 7→ i′

But there cannot be more than one corresponding action.

G7(h, l) :=
∧

0≤i<h

∧
i≤i′≤l−h+i

∧
i′<i′′≤l−h+i

¬i 7→ i′ ∨ ¬i 7→ i′′

Finally, to have the sublist property, the corresponding actions have to be ordered.

G8(h, l) :=
∧

0≤i<h

∧
i≤i′≤l−h+i

i 7→ i′ =⇒
∧

i<i′′<h

∨
i′′<i′′′≤l−h+i′′

i′′ 7→ i′′′

By combining all of this, we can express the sublist diameter. Note that for the sublist
diameter a maximum is encoded, i.e., we state it must be lower equal some number.
For the recurrence diameter it was a minimum, i.e., we stated it must be greater equal
some number.

Theorem 2 (Sublist diameter). Let h, l ∈ N0, h ≤ l and δ be a factored transition system.
Then, if l is the recurrence diameter of δ, the sublist diameter of δ is at most h if and only if the
conjunction of the above formulae holds.

sd(δ) ≤ h ≡ l = rd(δ)∧
∀D(G1(δ, l, 1)) : ∃D(G1(δ, h, 2)) : ∃C : (G1(δ, l, 1) ∧ G2(δ, l, 1)) =⇒

(G1(δ, h, 2)∧G2(δ, h, 2)∧G3(δ)∧G4(δ, h, l)∧G5(δ, h, l)∧G6(h, l)∧G7(h, l)∧G8(h, l))
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3 QBF encoding of the sublist diameter

The encoding states that if the variables of the original path form a valid such, then
a corresponding sublist path must exist. If, on the other hand, the variables for the
original path just state nonsense, then of course there also does not have to be a valid
sublist path.

Again, we have to convert the propositional part of the encoding into CNF to be able
to produce a QDIMACS string. But in this case we omit the CNF version here because
it would become too unreadable.

3.4 Implementation

For QBF solving, DepQBF, version 6.03, (Lonsing & Egly, 2017) was used. The imple-
mentation follows the same style as for the recurrence diameter but the fusion approach
was not used for communication with the solver since here QBF solving was already
clearly the bottleneck.

Here you see the code that controls the incremental search for the sublist diameter.
Notice how the recurrence diameter has to be computed first.

fun SD_algo sas_prob max_d =
let

val rd = RDsat_algo sas_prob max_d

val path_to_solver = "/usr/local/bin/depqbf"
val solver_options = []
val (sat_fmt, unsat_fmt) = ("SAT\n", "UNSAT\n")

val strips_prob = SasToStrips.translate sas_prob

fun sat_for_d d =
let

val qbf_proc =
Unix.execute (path_to_solver, solver_options)

val (instrm, outstrm) = Unix.streamsOf qbf_proc
val _ = TextIO.output (outstrm, SDCheckQBF.generate (strips_prob, d, rd))
val _ = TextIO.closeOut outstrm
val ret = TextIO.input instrm
val status = Unix.reap qbf_proc

in
if ret = sat_fmt then true
else if ret = unsat_fmt then false
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3 QBF encoding of the sublist diameter

else raise Fail ("Something␣went␣wrong␣with␣the␣QBF␣solver:\n" ^ ret)
end

fun iterate_d d = if d = rd then rd
else if not (sat_for_d d) then iterate_d (d + 1) else d

in
iterate_d 1

end

3.5 Experimental results

The experiments were conducted on the same hardware as in section 2.5. Timeouts
were still two hours.

It can be seen in Table 3.1 that the use of the sublist diameter as a base case function
heavily increases the running times. For those experiments a threshold of 10 was set for
use of the sublist diameter as a subroutine, and a threshold of 100 for the recurrence
diameter. Recall that, to compute the sublist diameter, it is necessary to first compute
the recurrence diameter.

The entries in the table are to be read the following way: The numbers in the first
“Bounded” column report the number of instances bound using the recurrence diameter
as a base case function. However, for the other columns only those instances were
considered which were bound both by the recurrence diameter and by the sublist
diameter program

Only for six instances in the logistics domain the sublist diameter-based program
was able to compute lower bounds in time. For all other instances, it either did not
terminate in time or computed the same bound.

In contrast to the recurrence diameter subroutine, often, the most time was consumed
by the QBF solving process and not building the encoding.

Figure 3.2 and Figure 3.3 show scatter plots comparing the running times and the
bounds.
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3 QBF encoding of the sublist diameter

SAT-based recurrence diameter QBF-based sublist diameter

Domain Bounded Avg. bound Avg. time Bounded Avg. bound Avg. time

hiking 22 360204777 512 22 360204777 490
logistics 92 17551 63 34 17527 195
nomystery 124 3240 4 105 3240 395
rover 49 32488 260 21 32488 292
tpp 13 402 530 11 402 573
transport 14 488188665 5 8 488188665 5
zeno 43 72995 849 19 72995 82

Table 3.1: Comparison with threshold 100/10
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Figure 3.2: Running time comparison with threshold 10 for the sublist diameter and
100 for the recurrence diameter
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4 Conclusion

As of today, QBF solving is not yet that advanced and optimized as SAT solving is. This
is reflected in the impractical running times of the QBF-based encoding of the sublist
diameter.

With the SAT encoding of the recurrence diameter, though, we were able to gain
performance in some domains with respect to the SMT encoding. We did not manage
to make SAT-solving the bottleneck yet and if fusion for the string building is applied,
the encoding process takes the most time. It seems though, that a basis is created
on which further optimization might lead to very valuable performance increases in
compositional bounding.

4.1 Future work

It would be of interest to formalize aspects of this work in an interactive theorem prover,
such as Isabelle (Nipkow, Paulson, & Wenzel, 2002), e.g. proving the encoding of the
sublist diameter correct.

Furthermore, it is an open research question whether the encodings we give are
the most efficient ones. And it would be very interesting to further optimize the
implementation of both the recurrence diameter and the sublist diameter and fine-tune
the thresholds to appropriate values. Perhaps the most imminent question is why
exactly the SAT-based encoding performs so bad on the elevators domain. Also, it is an
option to implement the recurrence and sublist diameter encoding in an imperative
language and to compare the performance.
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