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Abstract

This dissertation presents a novel embedded wake approach for the
solution of the full-potential equation using finite elements. The ulti-
mate goal of this embedded approach is to effectively perform aircraft
aeroelastic optimization at the early stages of aircraft design, taking
transonic effects into account. Currently, this is not possible using stan-
dard full-potential solvers because they require modeling a gap in the
mesh across the wake to support a jump in the potential. This additional
requirement on the mesh generation process hinders the effective use of
such solvers for aircraft aeroelastic optimization, where the wake’s posi-
tion may change due to the structural deformation and the geometry’s
evolutionary steps. Therefore, this dissertation aims to determine how
to avoid modeling the wake in the mesh. To this end, a novel embedded
wake approach for potential transonic solvers is proposed.
In the proposed approach, upper and lower wake surfaces are discon-
nected by enriching the space of the finite elements cut by the wake
with additional degrees of freedom. Subsequently, the additional equa-
tions that stem from the discretization are used to apply the wake
boundary conditions. Since the wake cuts the finite elements arbitrarily,
the system of equations can potentially be ill-conditioned due to the
so-called small-cut element problem. To ensure robustness and avoid
large condition numbers, a full-integration technique is presented. Fur-
thermore, shock waves are captured using an artificial compressibility
method, which is used to stabilize the problem in supersonic flow regions
preventing the Jacobian from becoming singular.
The proposed embedded wake approach is validated and verified on
unstructured meshes in two and three dimensions. These verification
studies show that the results accurately match the reference data. Ac-
cording to these results, an extra mesh refinement to capture the wake
is not required, making the method’s computational cost comparable
to other full-potential solvers. Moreover, the wake’s surface can be
generated automatically by shedding it from the trailing edge in the
freestream direction. This implicit representation of the wake within the
domain saves modeling time and allows efficient aeroelastic optimiza-
tion in practical applications. The solver is implemented in KRATOS
Multiphysics and is available under a BSD license.
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Zusammenfassung

In dieser Dissertation wird ein neuartiger Ansatz zur Lösung der vollen
Potentialgleichung mit Finiten Elementen vorgestellt, in den die Wir-
belschleppe im Netz eingebettet ist. Das Endziel dieses eingebetteten
Ansatzes ist es, die aeroelastische Optimierung von Flugzeugen in den
frühen Phasen des Flugzeugentwurfs unter Berücksichtigung der trans-
sonischen Effekte effektiv durchzuführen. Derzeit ist dies mit Standard-
Vollpotentiallöser nicht möglich, da diese die Modellierung eines Spalts
im Netz erfordern, um einen Potentialsprung quer zur Wirbelschleppe
zu ermöglichen. Diese zusätzliche Anforderung an den Netzgenerierungs-
prozess behindert den effektiven Einsatz solcher Löser für aeroelastische
Optimierung, bei der sich die Position der Wirbelschleppe aufgrund
der strukturellen Verformung und der Evolutionsschritte der Geometrie
ändern kann. In dieser Dissertation wird daher untersucht, wie sich die
Modellierung der Wirbelschleppe im Netz vermeiden lässt. Zu diesem
Zweck wird ein neuartiger Ansatz für eingebettete Wirbelschleppen für
transsonische Potentiallöser entwickelt.
Bei dem hier vorgestellen Ansatz werden obere und untere Wirbelschlep-
penflächen voneinander getrennt, indem der Ansatzraum der durch die
Wirbelschleppe geschnittenen Finiten Elemente mit zusätzlichen Frei-
heitsgraden angereichert wird. Anschließend werden die zusätzlichen
Gleichungen, die sich aus der Diskretisierung ergeben, zur Aufbringung
der Wirbelschleppe-Randbedingungen verwendet. Da die Wirbelschleppe
die Finiten Elemente willkürlich schneidet, kann das Gleichungssys-
tem aufgrund des so genannten Klein-Geschnitten-Element-Problems
schlecht konditioniert sein. Um Robustheit zu gewährleisten und große
Konditionszahlen zu vermeiden, wird eine Vollintegrationstechnik vor-
gestellt. Darüber hinaus werden Stoßwellen mit einer künstlichen Kom-
pressibilitätsmethode erfasst, die zur Stabilisierung des Problems in
Überschallströmungsgebieten verwendet wird, um zu verhindern, dass
die Jacobi-Matrix singulär wird.
Der entwickelte Ansatz für eingebettete Wirbelschleppen wird auf un-
strukturierten Netzen in zwei und drei Dimensionen validiert und verifi-
ziert. Diese Verifizierungsstudien zeigen, dass die Ergebnisse genau mit
den Referenzdaten übereinstimmen. Entsprechend dieser Ergebnisse
ist eine zusätzliche Netzverfeinerung zur Erfassung der Wirbelschleppe
nicht erforderlich, sodass der Rechenaufwand der Methode mit dem
anderer Vollpotentiallöser vergleichbar ist. Außerdem kann die Wirbel-
schleppe automatisch erzeugt werden, indem sie von der Hinterkante in
Richtung der Freistromgeschwindigkeit abgeworfen wird. Diese implizite
Darstellung der Wirbelschleppe innerhalb des Gebiets spart Modellie-
rungszeit und ermöglicht eine effiziente aeroelastische Optimierung in
praktischen Anwendungen. Der Löser ist in KRATOS Multiphysics
implementiert und ist unter einer BSD-Lizenz verfügbar.

iv



Acknowledgments

This thesis would not have been possible without the support of my
mentors and my colleagues. First and foremost, I would like to thank
my advisor Professor Kai-Uwe Bletzinger for giving me the opportunity
to do research at his Chair and for providing me with all the necessary
support to carry out this investigation. I also wish to thank Professor
Roland Wüchner for his guidance and for putting me in touch with
our industrial partners. In addition, I would like to thank Professor
Riccardo Rossi and Professor Christian Breitsamter for reviewing this
dissertation and Dr. Stefan Kollmannsberger for charing the examiner
committee. Special thanks to Professor Riccardo Rossi for introducing
me to the Kratos team and for his original ideas. His numerical intuition
and programming skills provided me with the tools I needed to develop
this method.
I would also like to gratefully acknowledge the work and support of my
colleagues at the Chair, at CIMNE, at the Chair of Aerodynamics, and
at Airbus. This thesis is the result of our fruitful collaboration. I would
like to especially thank: Marc Nuñez for our technical discussions and for
reviewing this work, Dr. Julie Piquee for sharing invaluable knowledge
in aerodynamics, Philipp Bucher for reviewing and helping improve
the implementation, Dr. Altug Emiroglu for sharing his ideas and
compilation skills, Dr. Andreas Apostolatos for our lengthy discussions,
and Máté Péntek for reviewing this thesis. I also want to thank Dr.
Michael Andre, Dr. Jordi Cotela, Dr. Rubén Zorrilla, Aditya Ghantasala,
and Suneth Warnakulasuriya for mentoring me during this period. I
am very grateful for Tobias Teschemacher’s contagious good spirit and
positive attitude.
This work started during my time at Airbus Defence and Space. I would
like to thank my supervisors Dr. Fernass Daoud and Stepan Rechtik, for
helping me shape the topic of this thesis. In addition, I am very grateful
to my colleagues: Alessandro Gastaldi, Daniel Nussbächer, Dr. Sebastian
Deinert, Dr. Alexander Hormann, Ögmundur Petersson, and Reinhold
Maier, for their insights in the practical aspects of multidisciplinary
aircraft optimization.
I thank my family for their support and encouragement. I am very
grateful for the education and the opportunities my parents have given
to me. Thanks to them I could come to Germany to complete my
studies.
Finally, I would like to thank Nina for her selfless support. She has
always been there for me during the last six years, listening to my
problems and providing invaluable advice.

Iñigo Pablo López Canalejo
Technische Universität München
November 9, 2021

v





Contents

Abstract iii

Zusammenfassung iv

Acknowledgments v

List of Symbols xi

1 Introduction 1
1.1 Motivation 1
1.2 Developments in numerical potential transonic flow solvers 4
1.3 Outline 8

2 Fundamentals of Potential Flow 11
2.1 Navier-Stokes equations 11

2.1.1 Initial and boundary conditions . . . . . . . . . . . 12
2.1.2 Non-dimensionalization . . . . . . . . . . . . . . . 13

2.2 High Reynolds number flow 16
2.2.1 Isentropic flow . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Steady compressible Bernoulli equation . . . . . . 18
2.2.3 Irrotational flow . . . . . . . . . . . . . . . . . . . 18

2.3 Full-potential equation 19
2.3.1 Classification of the full-potential equation . . . . 19
2.3.2 Boundary conditions . . . . . . . . . . . . . . . . . 21

2.4 Aerodynamic loads 24
2.4.1 Near-field analysis . . . . . . . . . . . . . . . . . . 24
2.4.2 Far-field analysis . . . . . . . . . . . . . . . . . . . 25
2.4.3 Wake potential jump analysis . . . . . . . . . . . . 26

vii



Contents

3 An Embedded Wake Approach for Potential Transonic
Solvers 29
3.1 Strong form, domain, and boundary conditions 29
3.2 Finite element discretization 31
3.3 Artificial compressibility 33

3.3.1 The switching function . . . . . . . . . . . . . . . . 34
3.4 Limit velocity in isentropic flow 35
3.5 Embedded wake approach 37

3.5.1 Wake boundary conditions in two dimensions . . . 39
3.5.2 Wake boundary conditions in three dimensions . . 39
3.5.3 Treatment of the nodes lying on the wake . . . . . 41
3.5.4 Treatment of the trailing edge nodes . . . . . . . . 41
3.5.5 Treatment of small-cut elements . . . . . . . . . . 42

3.6 Implementation in KRATOS Multi-Physics 43
3.6.1 Kratos structure . . . . . . . . . . . . . . . . . . . 44
3.6.2 Potential flow application . . . . . . . . . . . . . . 45

4 Validation, Verification and Numerical Studies 47
4.1 Incompressible flow around NACA 0012 airfoil 48

4.1.1 Mesh refinement study of the reference solution . . 49
4.1.2 Mesh refinement study . . . . . . . . . . . . . . . . 50
4.1.3 Pressure coefficient distribution verification . . . . 55
4.1.4 Domain size study . . . . . . . . . . . . . . . . . . 55
4.1.5 Validation with wind tunnel data . . . . . . . . . . 59

4.2 Verification of the compressible subsonic and transonic
elemental sensitivities 62

4.3 Compressible subsonic flow around NACA 0012 airfoil 63
4.3.1 Mesh refinement study . . . . . . . . . . . . . . . . 63
4.3.2 Pressure coefficient distribution verification . . . . 64
4.3.3 Newton Raphson’s method convergence . . . . . . 69

4.4 Transonic flow around NACA 0012 airfoil 72
4.4.1 Mesh refinement study . . . . . . . . . . . . . . . . 72
4.4.2 Pressure coefficient distribution verification . . . . 75
4.4.3 Newton Raphson’s method convergence . . . . . . 77

4.5 Transonic flow around Korn supercritical airfoil 77
4.5.1 Pressure coefficient distribution verification . . . . 78

4.6 Drag divergence study 80
4.6.1 Critical Mach number verification . . . . . . . . . 83
4.6.2 Multi-fidelity analysis study . . . . . . . . . . . . . 84

4.7 3D rectangular wing with NACA 0012 airfoil section in
incompressible flow 87
4.7.1 Pressure coefficient distribution verification . . . . 88
4.7.2 Potential jump distribution verification . . . . . . 88

4.8 3D ONERA M6 wing transonic validation case 90
4.8.1 Wing’s geometry and mesh . . . . . . . . . . . . . 90
4.8.2 Pressure coefficient validation and verification . . 93

viii



Contents

4.8.3 Aerodynamic loads verification . . . . . . . . . . . 98
4.8.4 Performance comparison . . . . . . . . . . . . . . . 99
4.8.5 Wake potential jump condition and wingtip vortex 100

4.9 NASA Common Research Model transonic validation and
verification case 102
4.9.1 Model description . . . . . . . . . . . . . . . . . . 102
4.9.2 Mesh refinement study . . . . . . . . . . . . . . . . 106
4.9.3 Pressure coefficient validation and verification . . 108
4.9.4 Aerodynamic loads validation and verification . . . 112
4.9.5 Potential jump across embedded wakes . . . . . . 113
4.9.6 Contour plots and wingtip vortices . . . . . . . . . 116
4.9.7 Nacelle-pylon effect . . . . . . . . . . . . . . . . . 116

5 Conclusions 125
5.1 Summary 125
5.2 Outlook 134

A Helmholtz Vorticity Transport Equation 137

B Transonic Full-potential Solver Sensitivities 139
B.1 Residual 139
B.2 Upwind density 139
B.3 Density 140
B.4 Upwinding factor 141
B.5 Mach number squared 141
B.6 Velocity squared 141
B.7 Velocity vector 142

C Verification of the Embedded Wake Approach for In-
compressible Flow 143

Bibliography 163

ix





List of Symbols

Fluid magnitudes and other quantities

u, u Velocity vector and magnitude
ϕ Velocity potential
∆ϕ Potential jump across the wake
α Angle of attack
ρ Density
p Pressure
T Temperature
a Local speed of sound
ω Vorticity
e Specific internal energy
s Specific entropy
h Specific enthalpy
¯̄τ Viscous stress tensor
µ Dynamic viscosity
k Thermal conductivity
Q Thermal heating rate due to radiation or combustion
f Body forces
g Gravity
λ Molecular mean free path
x Position vector (x, y, z)

xi



List of Symbols

t Time
f Frequency
q Mass flow

Dimensionless numbers

M Mach number
Re Reynolds number
St Strouhal number
Fr Froude number
Pr Prandtl number
Kn Knudsen number

Geometric parameters

c Airfoil chord (characteristic length)
c Mean aerodynamic chord
t Airfoil thickness
b Wingspan
η Dimensionless spanwise location (= y/b)
Aref Reference wing area
Λ Aspect ratio
λ Taper ratio
φ25 Sweep angle
dS Differential area

Air constants for aerodynamic flows

γ Ratio of specific heats (= 1.4)
cp Specific heat capacity at constant pressure (= 1.005 kJ/kgK)
cv Specific heat capacity at constant volume (= 0.718 kJ/kgK)
Rg Specific gas constant (= 287 J/kgK)

Subscripts and superscripts

( )0 Initial conditions
( )o Stagnation (total) quantity
( )∞ Far field (or freestream) conditions

xii



List of Symbols

( )u Upper wake
( )l Lower wake
( )D Dirichlet
( )N Neumann
( )W Wake
( )up Upstream’s element quantity
( )∗ Critical value
( )′ Dimensionless magnitude

Aerodynamic loads and coefficients

F Force vector
L Lift
Y Sideforce
D Drag
CL Lift coefficient
CD Drag coefficient
CDpr Pressure drag coefficient
CDsf Skin-friction drag coefficient
Cm Pitching moment coefficient
cl 2D airfoil lift coefficient
cd 2D airfoil drag coefficient
cm 2D airfoil pitching moment coefficient
δcl 2D airfoil lift coefficient relative error
δcm 2D airfoil pitching moment coefficient relative error
Cp Pressure coefficient
Cpmin Minimum pressure coefficient
(Cpmin)inc Minimum pressure coefficient in incompressible flow

Finite element method

N Shape functions
Ri Residual vector
J ij Jacobian matrix
Ω Domain
Γ Boundary
h Minimum element size

xiii



List of Symbols

L Domain size
k Newton Raphson iteration
n̂ Normal unit vector
ϕi
u Upper wake elements velocity potential degrees of freedom

ϕi
l Lower wake elements velocity potential degrees of freedom

ϕi
aux Auxiliary velocity potential degrees of freedom

Π Wake boundary conditions residual energy functional

Artificial compressibility method

ρ̃ Upwind density
µs Switching function
µ Upwinding factor
µc User-defined upwinding factor constant
Mcrit User-defined critical Mach number

List of abbreviations

CFD Computational Fluid Dynamics
FPE Full-Potential Equation
FPS Full-Potential Solver
FEM Finite-Element Method
FVM Finite-Volume Method
2D Two Dimensions
3D Three Dimensions
CAD Computer-Aided Design
STL Standard Triangle Language or Standard Tessellation Language
OpenMP Open Multi-Processing
WTD Wind Tunnel Data
CPU Central Processing Unit
RANS Reynolds-Averaged Navier-Stokes
CRM NASA Common Research Model
DPW Drag Prediction Workshop
AIAA American Institute of Aeronautics and Astronautics
NTF National Transonic Facility

xiv



Chapter 1

Introduction

1.1 Motivation

Despite the increase of computational power and the advances in high-fidelity
methods in the last decades, potential linear solvers, typically panel or vortex
lattice solvers, are still widely used in the industry for aircraft aeroelastic
optimization at the early stages of design. In these design stages, many
configurations have to be explored, ensuring the structural integrity for a large
number of flight conditions. Therefore, the required number of fluid evaluations
scales with the number of configurations, the number of optimization steps,
and the number of aeroelastic iterations needed in each optimization step.
This yields a number that ranges from a couple of hundreds to a couple of
thousands of fluid evaluations. Fast solvers are thus still required for practical
applications [1]. However, commercial aircraft are typically designed to fly
at transonic speeds, and potential linear solvers fail to capture the nonlinear
transonic flow behavior. Full-potential solvers offer an appealing trade-off,
allowing to obtain fast solutions while enlarging the range of application to
capture nonlinear transonic effects.
Nevertheless, standard full-potential solvers require modeling a gap in the
mesh to support a jump in the potential across the wake. This requires
adapting the model to the wake’s topology imposing additional requirements
on the mesh-generation process. The wake model also hinders the effective
use of such solvers for aeroelastic optimization, where the wake’s position
may change due to the structural response and the geometry’s evolutionary
steps.
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1 Introduction

The wake-fitted mesh approach is illustrated in Figure 1.1, which shows a two-
dimensional finite element mesh behind an airfoil. The wake is the straight-line
shed from the trailing edge in the direction of the freestream velocity. Finite
elements are not connected across the wake to support a jump in the potential.

Wake-fitted mesh

u∞

Figure 1.1: Standard full-potential solvers using unstructured meshes require
modeling the wake as a gap in the mesh to support a jump in the potential.

Wake-fitted mesh
u∞

Figure 1.2: Changing the angle of attack involves moving the mesh.
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1.1 Motivation

Elements containing a node at the wake line are thus only attached to one
side of the wake. Hence, wake nodes are present twice. Figure 1.2 shows that
changing the angle of attack modifies the wake’s position, which involves
moving the mesh. Moving the wake can be performed in two dimensions (2D),
but it becomes rather cumbersome and sometimes even impossible in three
dimensions (3D) without regenerating the mesh. To illustrate this, Figure 1.3
shows a 3D aircraft model within a prismatic domain, and the trailing wakes
for two different angles of attack. The zoomed-in area shows that the two
wakes cut the fuselage at two different positions. Therefore, two different
models and meshes are required to define the different cuts in the fuselage in
this case.

u∞

Figure 1.3: The new wake (marked in blue) defines a different cut in the
fuselage compared to the original wake (marked in black). This requires
regenerating the model.

In this work, an embedded wake approach using the finite-element method
(FEM) on unstructured meshes is proposed to enable the effective use of
full-potential solvers in the context of aircraft aeroelastic optimization. The
advantage of using an embedded wake approach is twofold. On the one
hand, this approach avoids having to explicitly create the wake surface in
the computer-aided design (CAD) model and to fit the mesh to the wake.
This greatly simplifies and speeds up the preprocessing stage. On the other
hand, embedding the wake allows automatically capturing its position in
each aeroelastic iteration without moving or regenerating the mesh. The
proposed embedded wake approach is illustrated in Figure 1.4, where the
wake’s position has been added and is indicated in a dashed blue line for
visualization purposes. Note that the wake is no longer explicitly modeled
within the mesh.
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1 Introduction

Embedded wake

u∞

Figure 1.4: Proposed embedded wake approach.

1.2 Developments in numerical potential transonic flow
solvers

This section provides a brief review of the development of full-potential
methods. A thorough survey was published by Stein [2, 3] and by Holst [4].
Mason has also published a lecture giving an overview on this matter [5].
The solution of transonic flow problems is very challenging due to the mixed
elliptic hyperbolic nature of the underlying governing equation and the appear-
ance of shock waves within the domain. A breakthrough in the development
of numerical methods for the solution of potential transonic flows was made
by Murman and Cole in 1970 [6]. Murman and Cole developed a mixed finite
difference method to solve the nonlinear transonic small disturbance potential
equation in 2D. Their method used different formulas in the elliptic and
hyperbolic regions to account for the different local domains of dependence
and capture shock waves during the numerical solution naturally.
Jameson made the following significant contribution in 1974, who was at the
time working for Grumman. Jameson attended Murman’s presentation of
his method at the AIAA Aerospace Sciences Meeting in New York City in
January of 1970 and extended it to solve the full-potential equation (FPE)
in three dimensions. His method added an auxiliary Cartesian coordinate
system locally aligned with the flow to achieve the required rotation of the
upwind differencing at any point [7]. This full-potential solver (FPS) was
implemented in FLO22. In this thesis, a later version of this solver, namely
FLO36, is used to verify the proposed approach.
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1.2 Developments in numerical potential transonic flow solvers

In order to treat arbitrary complex geometries, Jameson and Caughey pub-
lished a finite volume approach in 1977 using an artificial viscosity in the
supersonic flow regions [8]. This artificial viscosity method was then simplified
and reformulated by Hafez, South, and Murman in 1978 and applied to the
full-potential equation in conservation form [9]. The new method modified
the density and was thus labeled the artificial compressibility method. Still,
the density modification was equivalent to an artificial viscosity. About the
same time, Eberle developed a FEM for the solution of transonic flow past
airfoils, which also used an artificial viscosity method [10].
The superposition principle cannot be applied to solve the FPE because it is
nonlinear. Therefore, singularity methods such as Vortex Lattice or Panel
methods cannot be used to solve the FPE. Instead, a grid method is required.
As any other computational fluid dynamics (CFD) technique, the transonic
full potential methods can be categorized into two groups according to the
flow domain discretization approach:

• Structured grids

• Unstructured grids

On the one hand, in structured grids, nodes have the same number of ele-
ments around them. On the other hand, unstructured grids are characterized
by having irregular connectivity. Figure 1.5 shows examples of structured
and unstructured grids both for triangular and quadrilateral meshes in 2D.
Moreover, structured quadrilateral grids can be Cartesian or curvilinear de-
pending on whether the grid lines are always parallel to the coordinate axes
or not. Although historically structured quadrilateral grids are preferred,
unstructured grids have become more common due to their ability to handle
complex geometries. The discretization approaches can be further categorized
depending on how the body is captured in the grid:

• Body-fitted grid

• Embedded grid

• Hybrid grid

• Chimera grids (also called overset grids)

The body-fitted grid explicitly represents the body’s boundaries, whereas, in
embedded grids, the boundaries are implicitly captured. Traditionally body-
fitted grids were used, but recently the use of embedded grids is becoming more
popular because they simplify the meshing process even further and allow for
moving boundaries during the simulation. Hybrid grids combine both former
approaches. Another alternative are chimera grids in which separate body-
fitted meshes are generated about selected features of a complex geometry. A

5



1 Introduction

(a) Structured grids.

(b) Unstructured grids.

Figure 1.5: Examples of body-fitted grids.

background (typically structured) mesh is then employed to connect the near
field meshes to the freestream using an interpolation scheme.
The most popular grid approaches to solve the flow about complex geometries
using transonic full-potential methods are: chimera grids, patched zonal grids,
unstructured Cartesian grids, and unstructured body-fitted grids. While for
the chimera and patched zonal grid approaches, the solver is typically a
finite-difference or finite-volume method, for unstructured grids, it is usually
a finite-volume or finite-element method.
Examples of early chimera grid approaches used to solve the FPE for tran-
sonic flow are presented in Atta [11] for 2D airfoils, Le [12] for wing/body
combinations and Atta and Vadyak [13] for wing/nacelle geometries. Further
developments were presented by Holst [14–16] for three-dimensional wing/-
body/nacelle configurations, and by Bangalore et al. [17] and by Moulton et
al. [18] for hybrid rotorcraft applications.
To mesh complex geometries using structured body-fitted grids, the domain
is typically divided into different zones or blocks. These blocks are meshed

6



1.2 Developments in numerical potential transonic flow solvers

separately and joined together at the interface. Developments for solving the
FPE using these so-called zonal or block structured grid approaches have
been published by Ecer and Spyropoulos [19] for wing/body configurations,
by Epstein et al. [20] for full aircraft applications, by Sankar et al. [21] for
three-dimensional Navier-Stokes/Full-Potential coupled analysis, by Berkman
et al. [22] for rotor flows, and by Nishida and Drela [23]. The latter coupled a
FPS with a boundary layer solver using finite elements and used it to analyze
the flow about the wing of a Boeing 747.
Cartesian unstructured grid techniques employ meshes with quadrilateral
or cubic volumes/elements that are then refined in regions of high solution
gradients. The intersection of the mesh with the body’s surface requires
additional handling by the method (which typically is of FEM type). The
biggest drawback of the Cartesian unstructured grid approach is that extra
refinement is needed in the case of solution gradients at 45° with respect
to the mesh. The most famous and successful Cartesian unstructured grid
approach is perhaps the one used in the TRANAIR code. TRANAIR uses a
FEM discretization procedure. The method is rigorously described in Rubbert
et al. [24], Young et al. [25], and Bieterman et al. [26]. Examples of the
solution of complex aerodynamic applications using TRANAIR have been
reported by Cenko and Piranian [27] to predict the flow field about the F-18E
aircraft, by Ridlon et al. [28] for coupled aeroelastic analysis, by SenGupta et
al. [29] for the unsteady aerodynamic and flutter characteristics analysis of an
aeroelastic model in transonic flow, by Madson [30] to analyze the transonic
flow about the F-16A with under-wing fuel tanks, by Goodsell et al. [31] to
validate TRANAIR with experimental data using a generic fighter geometry,
by Chen et al. [32] for engine/airframe integration applications, by Madson
[33] for sonic boom predictions, and by Jou et al. [34] for aerodynamic design
optimization.
Finally, the unstructured body-fitted grid approach typically uses triangles
(in 2D) or tetrahedra (in 3D) to discretize the domain (see Figures 1.1, 1.2
and 1.4). A significant advantage of this unstructured approach compared
to structured approaches is its flexibility to handle complex configurations
relatively easily. With this approach, the volume mesh generation difficulties
are simplified for complex geometries. Furthermore, since the mesh conforms
with the body’s boundary, the boundary conditions are accurately applied. The
unstructured grid approach has been used in many full aircraft configuration
applications, which is the reason why it is the selected approach in this work.
Early examples of unstructured mesh FEM approaches using in full-potential
flow solvers are presented in Ecer and Akay [35] and Glowinski et al. [36].
The artificial compressibility method employed by Eberle was also used by
Deconinck and Hirsch [37, 38], and by Akay and Ecer [39]. Based on the
work of Nishida and Drela, Eller presented in 2012 a high-order finite-element
method for the solution of the FPE [40]. With his method, Eller successfully
computed the flow about the DLR F4 wing/body configuration. However, in
his conclusions, Eller states: ‘‘At the time of writing, there is limited support
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1 Introduction

for the automatic generation of unstructured meshes with embedded wake
surfaces. Including embedded wakes is a necessary prerequisite for the effective
use of the method presented here’’.
Based on Eller’s work and conclusions, the present work proposes an unstruc-
tured grid approach for the solution of the FPE for transonic flow using FEM
in which the wake is implicitly represented in the mesh. The proposed method
can be used to initialize the flow field and speed up the convergence of higher
fidelity solvers.

1.3 Outline

This thesis is organized into five chapters. After the introduction presented
in Chapter 1, Chapter 2 provides an overview of the assumptions that allow
modeling flows using the FPE. The main purpose of this chapter is to show
that high Reynolds numbers characterize typical aerodynamic flows. This
allows simplifying the Navier-Stokes equations under the assumption that
the body is streamlined and flying at small angles of attack with attached
boundary layers. To this end, the first part of the chapter starts by introducing
the Navier-Stokes equations and using dimensional analysis to compare the
relative importance of their different terms. The second part of the chapter
shows that without heat addition due to combustion, high Reynolds number
flows can be assumed to be isentropic and irrotational. Thus, the velocity can
be written in terms of a potential gradient. Finally, the chapter’s last part
introduces the FPE together with its mixed type nature and the necessary
boundary conditions.
The proposed embedded wake approach is described in Chapter 3. The first
two sections review the FPE strong form and the boundary conditions. Then, a
standard Galerkin approach is used to discretize the equation, and an artificial
compressibility method is presented to stabilize the problem in supersonic
flow regions preventing the Jacobian from becoming singular and allowing to
capture shock waves. Next, a remedy is described to avoid having ill-defined
expressions in areas of high flow curvature. This problem is related to the
limit velocity in isentropic flow.
Furthermore, the proposed embedded wake approach is presented in Sec-
tion 3.5 and the method used to apply the wake boundary conditions is
described. Using an embedded wake approach requires specific care, especially
when dealing with small-cut elements that yield ill-conditioned systems. In
this section, the cause leading to large condition numbers is analyzed, and
the solution developed in this work is presented. Finally, the implementation
in KRATOS Multiphysics is briefly described.
Chapter 4 presents the validation and verification of the proposed embedded
wake approach together with some numerical studies. In total, five models have
been investigated: the NACA 0012 airfoil in all flow regimes (incompressible,
compressible subsonic, and compressible transonic), the Korn supercritical
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1.3 Outline

airfoil in transonic flow, a rectangular wing in incompressible flow, and Onera
M6 wing and NASA NASA Common Research Model (CRM) in transonic
flow. To evaluate the proposed approach, lift, drag, pitching moment, and
pressure coefficients are compared with reference data from other codes and
wind tunnel tests. Finally, the main conclusions and outlook are summarized
in Chapter 5.
Throughout the thesis, the following footnotes are used to reference the
original publications and to mark literal transposition. a b c d

a The following chapter/section/paragraph is based on [41]. The main scientific
research as well as the textual elaboration of the publication were performed by the
author of this work.

b The following chapter/section/paragraph is based on [42]. The main scientific
research as well as the textual elaboration of the publication were performed by the
author of this work.

c The following chapter/section/paragraph is based on [43]. The main scientific
research as well as the textual elaboration of the publication were performed by the
author of this work.

d The following chapter/section/paragraph is based on [44]. The main scientific
research as well as the textual elaboration of the publication were co-authored by the
author of this work.
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Chapter 2

Fundamentals of Potential Flow

This chapter aims to review the assumptions that allow simplifying the
Navier-Stokes equations to the full-potential equation. These assumptions
determine the range of application of the proposed potential solver. To this end,
Section 2.1 starts introducing the Navier-Stokes equations, and dimensional
analysis is used to compare the relative importance of their different terms.
It also shows that typical aerodynamic flows have high Reynolds numbers.
Section 2.2 explains how the high Reynolds number property allows neglecting
the viscous terms outside of boundary layers, wakes, and shock waves. In the
absence of heat addition due to radiation or combustion, this permits assuming
that the flow is isentropic. Moreover, it is shown that these same conditions
are enough to assume that the flow is irrotational, which means that the
velocity vector can be expressed as the gradient of a scalar potential value.
Section 2.3 introduces the full-potential equation, its mixed type nature, and
the necessary boundary conditions for closure. Finally, Section 2.4 introduces
the three main approaches to compute the aerodynamic loads acting on a
body.

2.1 Navier-Stokes equations

In most aerodynamic applications regarding aircraft design, the geometry
representative length scale c (e.g., the wing’s chord) is much larger than the
air’s molecular mean free path λ, as measured by the Knudsen number:

Kn =
λ

c
≪ 1 (2.1)
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2 Fundamentals of Potential Flow

Under this condition, air can be regarded as a continuum fluid, and it can be
described at every point in space and time with the following magnitudes:
velocity u, density ρ, pressure p, temperature T , and specific internal energy
e. The air’s motion is governed by the Navier Stokes equations, which in
Cartesian coordinates can be written as:

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

ρ
∂u

∂t
+ ρu · ∇u = −∇p+∇ · ¯̄τ + ρf (2.3)

ρ
∂e

∂t
+ ρu · ∇e = −p∇ · u+∇ · (k∇T ) + ¯̄τ : ∇u+Q (2.4)

where t represents time, ¯̄τ the viscous stress tensor, f the body forces, k
the thermal conductivity, and Q the thermal heating rate due to radiation
or combustion. In the following, adiabatic flow is considered (Q = 0). For
Newtonian isotropic fluids, the viscous stress tensor is typically written as:

¯̄τ = µ

[
∇u+ (∇u)T − 2

3
∇ · u

]
(2.5)

where µ is the dynamic viscosity.
The Navier Stokes equations express the conservation laws of mass (Eq. (2.2)),
momentum (Eq. (2.3)), and energy (Eq. (2.4)). They are a set of 5 coupled
differential equations with 7 unknowns (u, ρ, p, T , and e). Thus, an additional
2 equations are necessary for closure (7 equations for 7 unknowns). Over a
wide range of temperatures and pressures, air can be considered an ideal gas.
Thus, it can be described by 2 equations of state: the ideal gas law and Joule’s
second law. The ideal gas law reads:

p = ρRgT (2.6)

where Rg is the specific gas constant. Moreover, Joule’s second law states
that the internal energy of an ideal gas depends only on its temperature. For
external aerodynamic flows, air behaves as a calorically perfect gas, so Joule’s
second law can be written as:

e = eref + cvT (2.7)

where eref is a reference value, and cv is the specific heat at constant volume.

2.1.1 Initial and boundary conditions

In addition to the above equations, appropriate initial and boundary conditions
have to be specified. Note that in the Navier Stokes appear first derivatives

12



2.1 Navier-Stokes equations

of velocity, density and specific internal energy with respect to time. Hence,
the initial distribution of these variables has to be given:

u = u0(x), ρ = ρ0(x) and T = T 0(x) in t = 0 (2.8)

Alternatively, the initial distribution of two variables other than ρ and T can
be given, since all of the thermodynamic variables of an homogeneous fluid
can be obtained as a function of another two using the state equations.
The number of boundary conditions necessary to define a problem is de-
termined by the highest order of the spatial derivatives that appear in the
governing equations. In the Navier Stokes equations, the terms that contain
higher spatial derivatives are the viscous term in the momentum equation
and the heat conduction term in the energy equation. The former contains
second-order derivatives of the velocity, and the latter contains second-order
derivatives of the temperature. There are many types of possible boundary
conditions depending on the type of flows under consideration. In general,
the boundary conditions are combinations of the two following types:

1. When the fluid extends to infinity, the far-field (or freestream) conditions
of the velocity and two thermodynamic variables have to be given:

u → u∞, ρ → ρ∞, T → T∞ (2.9)

2. When the fluid is limited by a solid or by another fluid, local thermody-
namic equilibrium between both phases requires continuity of velocity
and temperature across the boundary:

u = ui(x, t) and T = T i(x, t) at the interface between phases.
(2.10)

2.1.2 Non-dimensionalization

It is convenient to write the Navier Stokes equations in dimensionless form to
compare the orders of magnitude of the different terms. Using the freestream
conditions, a reference length scale c, a reference time scale tref , and the
gravity g as representative magnitudes, the following dimensionless variables
and gradient operator can be defined:

u′ =
u

u∞
, ρ′ =

ρ

ρ∞
, p′ =

p

p∞
, µ′ =

µ

µ∞
, f ′ =

f

g
,

e′ =
e

e∞
, T ′ =

T

T∞
, k′ =

k

k∞
, t′ =

t

tref
, ∇′( ) = c∇( )

(2.11)
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2 Fundamentals of Potential Flow

Substituting Eq. (2.11) in the Navier Stokes equations (Eqs. (2.2) to (2.4))
yields:

St
∂ρ′

∂t′
+∇′ · (ρ′u′) = 0 (2.12)

Stρ′
∂u′

∂t′
+ ρ′u′ · ∇′u′ = − 1

M2
∞γ

∇′p′ +
1

Re
∇′ · ¯̄τ ′ +

1

Fr
ρ′f ′ (2.13)

Stρ′
∂e′

∂t′
+ ρ′u′ · ∇e′ = −(γ − 1)p′∇′ · u′ +

γ

RePr
∇′ · (k′∇′T ′) (2.14)

+
M2

∞γ(γ − 1)

Re
¯̄τ ′ : ∇u′

where St, M , γ, Re, Fr, and Pr are dimensionless numbers introduced in the
following.

Strouhal number

The Strouhal number St (also called reduced frequency) is a dimensionless
quantity that compares the unsteady terms with the convective terms in
Eqs. (2.12) to (2.14). It is defined as:

St =
unsteady term
convective term

=
1/tref
u∞/c

=
c

u∞tref
(2.15)

Note that in this definition a reference frequency f ref can be used instead of
the reference time f ref = 1/tref . The Strouhal number can also be interpreted
as the ratio between the residence time tr = c/u∞ and the reference time tref :

St =
residence time
reference time

=
tr
tref

=
c/u∞
tref

=
c

u∞tref
(2.16)

The residence time is the time that takes a fluid particle, moving at the
freestream velocity u∞, to travel across a region of length c. Note that both
definitions are equivalent. In this work steady state flows are considered (i.e.
St ≪ 1) and so, the unsteady terms in Eqs. (2.12) to (2.14) are neglected.

Reynolds number

The Reynolds number Re is a dimensionless quantity that compares the
convective terms and the viscous terms in Eqs. (2.13) and (2.14). It is defined
as:

Re =
convective term

viscous term
=

ρ∞u∞c

µ∞
(2.17)
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2.1 Navier-Stokes equations

For typical aerodynamic applications, outside of boundary layers, wakes, and
shock waves, the reference values have the following orders of magnitude:

ρ∞ ∼ 1 kg/m3, u∞ ∼ 102m/s, c ∼ 1m, µ∞ ∼ 10−5Ns/m2 (2.18)

which yields:

Re ∼ 1 kg/m3 · 102m/s · 1m
10−5Ns/m2

= 107 ≫ 1 (2.19)

Mach number

The Mach number M is a dimensionless quantity defined as the ratio between
the local velocity and the local speed of sound:

M =
u

a
(2.20)

where the local speed of sound a is given by [45]:

a2 =
∂p

∂ρ

∣∣∣∣
s=const

(2.21)

The Mach number measures the compressibility of the fluid. Table 2.1 shows
that flight can be classified in different categories according to the Mach
number.

Regime Mach number

Incompressible < 0.3

Subsonic 0.3− 0.7

Transonic 0.7− 1.2

Supersonic 1.2− 5.0

Hypersonic 5.0− 10.0

High-hypersonic 10.0− 25.0

Re-entry speeds > 25.0

Table 2.1: Flight categories.

In this work, the incompressible, the subsonic, and the low transonic (0.7−0.9)
flight regimes are considered.
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2 Fundamentals of Potential Flow

Ratio of specific heats

The ratio of specific heats γ is defined as:

γ =
cp
cv

(2.22)

where cp and cv are the specific heat capacities at constant pressure and
volume respectively. For air γ is:

γ =
cp
cv

=
1.005 kJ/kgK

0.718 kJ/kgK
= 1.4 (2.23)

Froude number

The Froude number Fr measures the relative importance of the gravity forces
with respect to the convective term:

Fr =
convective term

gravity term
=

u2
∞
gc

(2.24)

For typical aerodynamic flows g ∼ 10m2/s, which results in the following
Froude number’s order of magnitude:

Fr ∼ 104m/s

10m2/s · 1m = 103 ≫ 1 (2.25)

so the body forces term can be neglected in Eq. (2.13).

Prandtl number

The Prandtl number Pr compares the momentum diffusivity to the thermal
diffusivity:

Pr =
momentum diffusivity

thermal diffusivity
=

cpµ∞
k∞

(2.26)

For air the Prandtl number is Pr = 0.72.

2.2 High Reynolds number flow

As shown in Section 2.1, for typical aerodynamic applications, the Reynolds
number outside boundary layers, wakes, and shock waves is very large (Re ≫
1). Therefore, the viscous and heat convection terms in the momentum and
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2.2 High Reynolds number flow

energy Navier Stokes equations (Eqs. (2.13) and (2.14)) are typically neglected.
The Navier Stokes equations can be then simplified to:

∂ρ

∂t
+∇ · (ρu) = 0 (2.27)

ρ
∂u

∂t
+ ρu · ∇u = −∇p (2.28)

ρ
∂e

∂t
+ ρu · ∇e = −p∇ · u (2.29)

where adiabatic flow (Q = 0) and negligible body forces (Fr ≫ 1) are assumed.
Eqs. (2.27) to (2.29) are a simplified version of Euler equations. Figure 2.1
illustrates the different flow regions outside streamlined bodies with attached
boundary layers flying at large Reynolds numbers. Under these conditions,
boundary layers, wakes, and shock waves are so thin that they are typically
modeled as discontinuities (lines in 2D or surfaces in 3D). Across these
discontinuities, the fluid magnitudes and their derivatives can present finite
jumps.

Shock

Wake

Boundary layer

Inviscid outer region

Figure 2.1: Inviscid and viscous flow regions. For large Reynolds numbers
viscous and heat convection effects only remain in the boundary layer, the
wake, and the shock waves.

2.2.1 Isentropic flow

Euler’s energy equation (Eq. (2.29)) can be written in terms of the specific
entropy s as:

∂s

∂t
+ u · ∇s = 0 → s = constant (2.30)

which means that inviscid adiabatic flows are isentropic. The following relation
holds between pressure and density for isentropic calorically perfect gases:

p

ργ
= constant (2.31)
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2 Fundamentals of Potential Flow

2.2.2 Steady compressible Bernoulli equation

Projecting Euler’s momentum equation (Eq. (2.28)) along the streamlines
and assuming steady flow (i.e. St ≪ 1) yields:

1

2

∂u2

∂l
+

1

ρ

∂p

∂l
= 0 (2.32)

which can be integrated using the isentropic relation Eq. (2.31) to obtain the
compressible Bernoulli equation:

1

2
u2 +

a2
∞

γ − 1

(
p

p∞

) γ−1
γ

= constant (2.33)

Using the freestream conditions to evaluate the integration constant results
in:

p

p∞
=

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] γ
γ−1

(2.34)

2.2.3 Irrotational flow

Vorticity is defined as:

ω = ∇× u (2.35)

Irrotationality (ω = 0) allows greatly simplifying the flow modeling. It is
thus important to study the behavior of vorticity to determine under which
conditions the flow is irrotational. The change of vorticity is governed by
Helmholtz vorticity transport equation:

D

Dt

(
ω

ρ

)
=

ω

ρ
· ∇u+

∇ρ×∇p

ρ3
+

1

ρ
∇×

(∇ ¯̄τ

ρ

)
(2.36)

which can be derived by taking the curl of the momentum equation (Eq. (2.3))
as shown in Appendix A. Substituting Eq. (2.11) in Eq. (2.36) yields the
dimensionless form of Helmholtz vorticity transport equation:

St
∂
(

ω′
ρ′

)
∂t′

+ u′ · ∇′
(
ω′

ρ′

)
=

ω′

ρ′
· ∇′u′ +

1

M2
∞γ

∇′ρ′ ×∇′p′

ρ′3
(2.37)

+
1

Re
1

ρ′
∇′ ×

(∇′ ¯̄τ ′

ρ′

)
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2.3 Full-potential equation

Note that for high Reynolds numbers the viscous term can be neglected.
For isentropic flow the gradients of pressure and density are parallel and
thus the baroclinic term ∇ρ×∇p vanishes. Moreover, if the flow upstream
aerodynamic bodies is uniform, the vorticity is initially zero (ω∞ = 0) and
the term ω · ∇u also vanishes. Thus, for high Reynolds numbers Helmholtz
vorticity transport equation (Eq. (2.36)) can be simplified to:

D

Dt

(
ω

ρ

)
= 0 → ω = 0 (2.38)

The physical meaning of Eq. (2.38) is that for high Reynolds numbers, the
vorticity that is created at the body’s boundary is convected along with the
flow at a much faster rate than it is diffused out across the flow. Thus, the
vorticity remains confined in the boundary layer and the wake if the boundary
layer is attached. Eq. (2.38) states that under the assumption of initial zero
vorticity (ω∞ = 0), isentropic flows are also irrotational ω = 0. If the flow is
irrotational, it can be shown that by definition, the velocity is the gradient of
a velocity potential ϕ:

u = u∞ +∇ϕ (2.39)

2.3 Full-potential equation

In the previous sections it is shown that typical aerodynamic flows can be
assumed to be steady, irrotational and isentropic. This allows reducing the five
coupled Navier Stokes equations (Eqs. (2.2) to (2.4)) to a single scalar partial
differential equation, namely the full-potential equation. The full-potential
equation is derived from the continuity equation (Eqs. (2.2) and (2.27)), and
can be written as:

∇ · (ρ(u∞ +∇ϕ)) = 0 (2.40)

where the following density expression can be derived from the compressible
Bernoulli equation (Eq. (2.34)) and the isentropic relation for calorically
perfect gases (Eq. (2.31)):

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 1
γ−1

(2.41)

2.3.1 Classification of the full-potential equation

To classify the full-potential equation, consider first the standard form of
second-order partial differential equations, which is:

A
∂2f

∂x2
+B

∂2f

∂xy
+ C

∂2f

∂y2
= F (2.42)
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2 Fundamentals of Potential Flow

where f is the sought function, and A, B, C and F are functions of x,
y, f , ∂f/∂x, and ∂f/∂y. Eq. (2.42) can be classified by considering the
corresponding characteristic equation:

A

(
dy

dx

)2

−B

(
dy

dx

)
+ C = 0 (2.43)

where the two characteristic directions associated with Eq. (2.42) can be
determined using the quadratic formula:(

dy

dx

)
=

B ±
√
B2 − 4AC

2A
(2.44)

The sign of the discriminant B2 − 4AC determines the equation classification.
The equation is elliptic if the discriminant is smaller than zero (B2−4AC < 0),
parabolic if the discriminant is zero (B2 − 4AC = 0), and hyperbolic if the
discriminant is larger than zero (B2 − 4AC > 0).
The full-potential equation (Eq. (2.40)) is a second-order partial differential
equation. However, it is difficult to classify because it is not in standard
form (Eq. (2.42)). The standard form is achieved by transforming Eq. (2.40)
into nonconservative form, which in two-dimensional Cartesian coordinates
is written as:[

a2 −
(
∂ϕ

∂x

)2
]
∂2ϕ

∂2x
− 2

∂ϕ

∂x

∂ϕ

∂y

∂2ϕ

∂x∂y
+

[
a2 −

(
∂ϕ

∂y

)2
]
∂2ϕ

∂2y
= 0 (2.45)

where the local speed of sound is:

a = a∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 1
2

(2.46)

The dimensionless discriminant of Eq. (2.45) is:

B2 − 4AC

a4∞
= 4

a2(u2 − a2)

a4∞
= 4

a4

a4∞
(M2 − 1) (2.47)

which is plotted in Figure 2.2 over the local Mach number. Note that the
discriminant is negative for subsonic flow (M < 1), zero for sonic flow (M = 1),
and positive for supersonic flow (M > 1) [46]. Hence, the full-potential
equation is elliptic for subsonic flow, parabolic for sonic flow, and hyperbolic
for supersonic flow (see Table 2.2).
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Figure 2.2: The discriminant is negative for subsonic flow (M < 1), zero for
sonic flow (M = 1), and positive for supersonic flow (M > 1).

Regime Mach number Discriminant Classification

Subsonic < 1 < 0 Elliptic

Sonic = 1 = 0 Parabolic

Supersonic > 1 > 0 Hyperbolic

Table 2.2: Classification of the full-potential equation.

2.3.2 Boundary conditions

Figure 2.3 illustrates the fluid domain and its boundaries. The far-field
boundary is divided into inlet and outlet using the following criteria:

Far field =

{
Inlet if u∞ · n̂ < 0

Outlet if u∞ · n̂ > 0
(2.48)
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2 Fundamentals of Potential Flow

where n̂ is the far-field boundary outer normal vector. In Figure 2.3 it is
shown that the wake intersects the outlet.

Far field

Wake

Body

Domain

u∞

Figure 2.3: Fluid domain and its boundaries in 2D.

Dirichlet condition

A Dirichlet condition is necessary because the full-potential equation and
the remaining boundary conditions are only defined in terms of the velocity
potential derivatives. The Dirichlet condition cannot be applied at the outlet
because the wake intersects the outlet and there is a jump in the potential
across the wake. Instead, the Dirichlet condition is applied at the inlet:

ϕ = ϕ∞ on the inlet (2.49)

where ϕ∞ is an arbitrary value.

Freestream conditions

At infinity, the disturbance ∇ϕ induced by the body on the flow vanishes:

lim
x→∞

∇ϕ = 0 (2.50)

This condition is applied at the outlet as a Neumann condition:

n̂ · (ρu) = n̂ · (ρ∞u∞) on the outlet (2.51)

Note that the far-field boundary is illustrated in Figure 2.3 as a circle with
finite radius but is theoretically at an infinite distance away from the body.
In practice, the far-field boundary is typically modeled at a distance 50 times
the reference length of the body [47].
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2.3 Full-potential equation

Slip condition

Without viscosity, the no-slip boundary condition at the interface between the
flow and the body cannot be enforced. Instead, a slip condition is applied. The
slip boundary condition is illustrated in Figure 2.4. The slip condition sets
the velocity component normal to the body to zero, remaining the tangential
velocity component arbitrary:

n̂ · (ρu) = 0 on the body (2.52)

Body

Boundary layer

Inviscid outer region

No slip boundary condition

Slip boundary condition
n̂ · u = 0

u = 0

Figure 2.4: The no-slip boundary condition cannot be enforced in inviscid
flows. A slip boundary condition is applied instead.

Wake boundary conditions

The wake is modeled as a straight surface in the freestream direction. This
assumption neglects the roll-up and downwash effects but avoids iteratively
computing the wake’s geometry, which is an expensive process. In order to
relax the straight wake assumption, mass flux is allowed across the wake. The
conservation of mass across the wake is enforced by applying:

n̂ · (ρuuu − ρlul) = 0 across the wake (2.53)

where n̂ is the normal vector to the wake pointing upwards and the subscripts
u and l stand for the upper and lower wake. Because the wake is thin, it
cannot support pressure jumps. The pressure equality condition is imposed
by:

|uu|2 − |ul|2 = 0 across the wake (2.54)
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2 Fundamentals of Potential Flow

2.4 Aerodynamic loads

This section introduces three different approaches to compute the forces
acting on a body. For a detail discussion see [48].

2.4.1 Near-field analysis

In potential flow, the aerodynamic force vector F depends only on the pressure
normal forces because the viscous stress forces are neglected. As illustrated
in Figure 2.5, the force can be computed by integrating the pressure forces
over the body’s surface:

F =

˛
body

p n̂ dS =

˛
body

(p− p∞) n̂ dS (2.55)

where n̂ is the unit normal vector pointing outside of the domain. Lift, drag,
and sideforce can be computed by projecting the body force:

L = F · k̂ =

˛
body

(p− p∞) n̂ · k̂ dS (2.56)

Y = F · ĵ =
˛

body
(p− p∞) n̂ · ĵ dS (2.57)

D = F · î =
˛

body
(p− p∞) n̂ · î dS (2.58)

where a wind coordinate system is chosen in which the x-axes points in
the direction of the freestream, u∞ = u∞ î, the y-axes is in the body span

Figure 2.5: Sketch of the pressure forces acting on an airfoil.
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2.4 Aerodynamic loads

direction, and the z-axes points upwards. D’Alambert’s paradox states that
in 2D inviscid flow drag is zero:

D = 0 (2D inviscid flow) (2.59)

2.4.2 Far-field analysis

Another way to compute the aerodynamic loads is by considering a control
volume enclosing the body such as the one illustrated in Figure 2.6. The
integral form of Eq. (2.28) can be obtained using Gauss’s Theorem:
˛ [

ρ(u · n̂)u+ p n̂
]
dS = 0 (2.60)

where steady flow is assumed. The integral can be split into three parts:

˛
[ ] dS =

˛
body

[ ] dS +

˛
outer

[ ] dS +

˛
cut

[ ] dS = 0 (2.61)

The cut contribution vanishes because the contributions corresponding to the
two boundaries defining the cut cancel each other:
˛

cut
[ ] dS = 0 (2.62)

u∞

Sbody

Souter

Scut

Figure 2.6: Control volume enclosing the body.
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Moreover, the contribution corresponding to the body’s surface is:˛
body

[
ρ(u · n̂)u+ p n̂

]
dS =

˛
body

p n̂ dS = F (2.63)

where the slip boundary condition has been used (u · n̂ = 0). Substituting
Eqs. (2.62) and (2.63) in Eq. (2.60) yields the integral momentum theorem,
which relates the forces acting on the body with the fluid magnitudes on the
control volume’s outer surface:

F = −
˛

outer

[
(p− p∞) n̂+ ρ(u · n̂)(u− u∞)

]
dS = 0 (2.64)

2.4.3 Wake potential jump analysis

A third way to compute the forces is by considering the link between the
forces and the potential jump across the wake in its intersection with the
Trefftz plane. The Trefftz plane, or wake integration plane, is situated aft of
the wing and orientated perpendicular to the freestream (i.e., parallel to the
yz-plane), as illustrated in Figure 2.7. The pressure equality condition across
the wake (Eq. (3.6)) can be expressed as:

uu · uu − ul · ul = 0

1

2
(uu + ul) · (uu − ul) = 0

ua · (uu − ul) = 0

ua ·∆u = 0

ua · ∇(∆ϕ) = 0 (2.65)

where ua is the average wake velocity, which for a straight wake can be
approximated with u∞. This results in:

u∞ · ∇(∆ϕ) = 0 (2.66)

which states that the potential jump is constant along the wake streamlines.
Using this result, it can be shown that the forces are [48]:

L = ρ∞u∞

ˆ ymax

ymin

∆ϕ dy (2.67)

Y = −ρ∞u∞

ˆ zmax

zmin

∆ϕ dz (2.68)

D = −1

2
ρ∞

ˆ b/2

−b/2

∆ϕ u · n̂ ds (2.69)

The integrals in Eqs. (2.67) to (2.69) are defined along the intersection between
the wake and Trefftz plane.
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Wake

Trefftz plane

u∞

∆ϕ = constant

x

y

z

Figure 2.7: The potential jump ∆ϕ is constant along the wake streamlines
and is used in the Trefftz plane to compute the aerodynamic loads.
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Chapter 3

An Embedded Wake Approach for
Potential Transonic Solversab

This chapter presents the proposed embedded wake approach for the solution of
potential transonic flow using the finite element method. Section 3.1 introduces
the strong form, the domain’s model considered in this work, and the boundary
conditions. Section 3.2 presents the finite element discretization using a
Galerkin approach. Section 3.3 briefly describes the artificial compressibility
method used to stabilize the problem in supersonic flow regions and to capture
shock waves. Section 3.4 explains the problem of having areas of high velocity
when assuming isentropic flow and the remedy used in the proposed approach.
Section 3.5 presents the embedded wake approach in detail, which is the
novelty of this work. Finally, Section 3.6 describes the implementation of the
potential transonic solver, using the proposed embedded wake approach, in
KRATOS Multiphysics.

3.1 Strong form, domain, and boundary conditions

The strong form is the full-potential equation, which is presented together
with its boundary conditions in Section 2.3, and they are briefly repeated
here for completeness. The full-potential equation is the continuity equation:

∇ · (ρu) = 0 (3.1)

29



3 An Embedded Wake Approach for Potential Transonic Solvers

where, assuming irrotational flow, the velocity can be expressed using the
freestream velocity u∞ and the gradient of the scalar potential ϕ as:

u = u∞ +∇ϕ (3.2)

For compressible isentropic flow, the density is:

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 1
γ−1

(2.41 revisited)

In this dissertation, the flow field is modeled using rectangular domains.
Figures 3.1 and 3.2 illustrate the fluid domain and its boundaries in two and
three dimensions, respectively.

Wall, ΓN

Inlet, ΓD

Wake, ΓW

Wall, ΓN

Outlet, ΓN

Airfoil, ΓN

Domain, Ω

u∞

Figure 3.1: Fluid domain and its boundaries in 2D.

Wall, ΓN

Inlet, ΓD

Wake, ΓW

Wall, ΓN

Outlet, ΓN

Aircraft, ΓN

Domain, Ω

u∞

Figure 3.2: Fluid domain and its boundaries in 3D.
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3.2 Finite element discretization

The boundary conditions are (see Section 2.3.2):

ϕ = ϕ∞ on ΓD (3.3)
n̂ · (ρu) = q on ΓN (3.4)

n̂ · (ρuuu − ρlul) = 0 on ΓW (3.5)

|uu|2 − |ul|2 = 0 on ΓW (3.6)

At the outlet, the freestream conditions are specified as a Neumann condition
using Eq. (3.4) and setting q = n̂ · (ρ∞u∞). On the body and walls, a slip
condition is applied (q = 0).

3.2 Finite element discretization

Equation (3.1) is discretized using a standard Galerkin approach. Here un-
structured meshes with linear triangular and tetrahedral elements are used.
Weighting Eq. (3.1) with the test function N and discretizing into finite
elements results in:

∑
e

ˆ
Ωe

N∇ · (ρu) dΩe = 0 (3.7)

being Ωe each element’s domain. Using integration by parts, applying the
divergence theorem, and inserting Eq. (3.4) yields:

∑
e

ˆ
Ωe

∇N · (ρu) dΩe =
∑
c

ˆ
Γc

Nq dΓc (3.8)

where Γc is the boundary of element c. Equation (3.8) can be rewritten in
residual form using Einstein notation as:

Ri =
∑
e

ˆ
Ωe

∂N i

∂xa
ρua dΩe −

∑
c

ˆ
Γc

N iq dΓc = 0 (3.9)

where Ri is the residual at each node i. Equation (3.9) is solved using Newton’s
method:

J ij∆ϕj = −Ri (3.10)

being ∆ϕj the solution update and J ij the corresponding Jacobian.
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Figure 3.3: The Jacobian is positive for subsonic flow (M < 1), zero for
sonic flow (M = 1), and negative for supersonic flow (M > 1).

The Jacobian is defined as:

J ij =
∂Ri

∂ϕj
=
∑
e

ˆ
Ωe

∂N i

∂xa

(
ρ
∂ua

∂ϕj
+

∂ρ

∂ϕj
ua

)
dΩe (3.11)

=
∑
e

ˆ
Ωe

ρ
∂N i

∂xa

∂N j

∂xa
dΩe (3.12)

+
∑
e

ˆ
Ωe

2
∂ρ

∂u2

(
∂N i

∂xa
ua ub ∂N j

∂xb

)
dΩe (3.13)

where:

∂ρ

∂u2
= − ρ∞

2a2∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 2−γ
γ−1

(3.14)

For compressible flows, the Jacobian has two terms (Eqs. (3.12) and (3.13)).
For a given finite element, the first term (Eq. (3.12)) is proportional to the
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3.3 Artificial compressibility

local density ρ, and the second term (Eq. (3.13)) is proportional to 2u2∂ρ/∂u2.
In Figure 3.3 the Jacobian and its terms are plotted over the local Mach
number. Note that the second term is negative, and Figure 3.3 shows its
absolute value.
For a local Mach number equal to zero (i.e., incompressible flow), the second
term vanishes, and the Jacobian is equal to the first term (see Eq. (3.16)).
As the Mach number increases, the second term increases, and the first
term decreases, yielding a decreasing Jacobian. Reaching the speed of sound
(M = 1), the first and second terms are equal, resulting in a vanishing
Jacobian. Finally, for velocities beyond the speed of sound (M > 1), the
Jacobian becomes negative. This shows that, as the full-potential equation
is elliptic for subsonic flow, the Jacobian is well defined. However, for sonic
and supersonic flow, the full-potential equation is respectively parabolic and
hyperbolic (see Figure 2.2), and the Jacobian becomes singular.
For incompressible flows, the residual and the Jacobian become:

Ri =
∑
e

ˆ
Ωe

ρ∞
∂N i

∂xa
ua dΩe −

∑
c

ˆ
Γc

N iq dΓc = 0 (3.15)

J ij =
∂Ri

∂ϕj
=
∑
e

ˆ
Ωe

ρ∞
∂N i

∂xa

∂N j

∂xa
dΩe (3.16)

3.3 Artificial compressibility

In order to stabilize the problem in supersonic flow regions, an artificial
compressibility method is employed. This method prevents the Jacobian from
becoming singular and allows capturing shock waves. The method is presented
in detail in [9] and is briefly described in this section. Writing the steady
adiabatic energy Navier-Stokes equation (Eq. (2.4)) in terms of the total
enthalpy ho = h+u2/2, neglecting heat conduction, and retaining the viscous
effects yields:

ρu · ∇ho = ∇ · (¯̄τ · u) (3.17)

which can be rewritten as:

ρu · ∇(ho − h′
o) = 0 (3.18)

where h′
o is due to the viscous terms. Eq. (3.18) suggests modifying the density.

In [23] the following upwind scheme is proposed to compute the density:

ρ̃ = ρ− µs

(
∂ρ

∂s

)
∆s ≈ ρ− µs(ρ− ρup) (3.19)

where ρup is the upstream element’s density. The factor µs is defined as the
switching function:

µs = µc max(0, µ, µup) (3.20)

33
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where µc is the user-defined upwinding factor constant, and µ and µup are
respectively the upwinding and upstream upwinding factors. The upwinding
factors are defined as:

µ = 1− M2
crit

M2
(3.21)

µup = 1− M2
crit

Mup
(3.22)

where Mcrit is the user-defined critical Mach number. The user-defined up-
winding factor and critical Mach number control the amount of artificial
dissipation introduced into the system. Substituting the upwind density ρ̃
(Eq. (3.19)) for the density ρ in the residual and Jacobian derived in the
previous section (Eqs. (3.9) and (3.11)) yields:

Ri =
∑
e

ˆ
Ωe

∂N i

∂xa
ρ̃ua dΩe −

∑
c

ˆ
Γc

N iq dΓc = 0 (3.23)

J ij =
∂Ri

∂ϕj
=
∑
e

ˆ
Ωe

∂N i

∂xa

(
ρ̃
∂ua

∂ϕj
+

∂ρ̃

∂ϕj
ua

)
dΩe (3.24)

The sensitivities related to the derivative of the upwind density with respect
to the degrees of freedom ∂ρ̃/∂ϕj appearing in the second term of the Jacobian
are presented in Appendix B.

3.3.1 The switching function

The switching function µs (Eq. (3.20)) allows distinguishing between three
types of flow:

• Subsonic flow: M < Mcrit

• Supersonic and accelerating flow: M > Mcrit and M > Mup

• Supersonic and decelerating flow: M > Mcrit and M < Mup

Subsonic flow

If for a given finite element the flow is subsonic, then the upwind density is
equal to the density:

M < Mcrit → µ < 0 → µs = 0 → ρ̃ = ρ (3.25)

Supersonic and accelerating flow

For supersonic and accelerating flow the density is:

M > Mcrit → M > Mup → µs = µ → ρ̃ = ρ− µ(ρ− ρup) (3.26)
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3.4 Limit velocity in isentropic flow

Supersonic and decelerating flow

For supersonic and decelerating flow the density is:

M > Mcrit → M < Mup → µs = µup → ρ̃ = ρ− µup(ρ− ρup) (3.27)

3.4 Limit velocity in isentropic flow

Because of the assumption of isentropic flow, for large local velocities the
term in square brackets:

Square brackets term =

[
1 +

γ − 1

2

u2
∞

a2∞

(
1− u2

u2∞

)]
(3.28)

falls below zero. Hence, the density (Eq. (2.41)) and its derivative ∂ρ/∂u2

(Eq. (3.14)) become ill-defined. This is illustrated in Figure 3.4, where the
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Square brackets term
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Limit velocity

Figure 3.4: For large local velocities the term in square brackets falls below
zero, yielding the density ill-defined.
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square brackets term and the dimensionless density are plotted over the
velocity.
In Figure 3.4 the limit velocity (or vacuum speed) is indicated with a dotted
line. The limit velocity ulim can be computed by equating the square brackets
term in Eq. (3.28) to zero, which yields:

ulim = u2
∞

(
1 +

2

(γ − 1)M2
∞

)
(3.29)

The concept of limit velocity is best explained in [49], and is briefly described in
this section. For steady and adiabatic flow, the total (or stagnation) enthalpy
is constant:

ho = h+
u2

2
≡ constant (3.30)

Thus, the velocity can be expressed as:

u =
√

2(ho − h) (3.31)

Expanding the flow to the vacuum (i.e. h = 0) yields:

ulim =
√
2ho (3.32)

The limit velocity is a measure of the flow’s stagnation enthalpy. It is used
to estimate the maximum velocity that can be achieved by expanding a gas
close to vacuum conditions. Physically, the flow does not fulfill the isentropic
assumptions close to vacuum. Still, in practice the velocity can reach large
values close to the limit velocity before yielding the above formulation outside
of its range of applicability.
When computing the full-potential flow around streamlined bodies, velocities
beyond the limit velocity can be reached in regions of high flow curvature
even for subsonic freestream conditions. High flow curvature can happen due
to insufficient mesh quality resulting in large dihedral angles, or due to the
geometry [40]. A typical region where high flow curvature is reached are the
wingtips’ trailing edges, which are singular points where the velocity should
theoretically be infinite. This singularity is illustrated in Figure 3.5, which
shows the resulting magnitude of the velocity modulus in m/s on the surface
elements in the vicinity of the wingtip trailing edge. Note how the velocity
modulus locally reaches very high velocities at the wingtip trailing edge.
To compute the residual and the Jacobian in the presence of this singularity,
a maximum local Mach number squared M2

max ∼ O(3.0) is set and the density
is kept constant from this value on. As presented in [23], other modifications
of the density are also possible. Note that only local parts of the boundary
are affected by this modification.
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Figure 3.5: The wingtips’ trailing edges are singular points where the velocity
theoretically is infinite.

3.5 Embedded wake approach

In the analytic solution to Eq. (3.1), there is a jump of the potential across
the wake. To support this jump, the method presented in [23, 40] models the
wake explicitly within the mesh. The nodes defining the wake surface are
duplicated to disconnect the elements across the wake. Without any further
treatment, the wake would act as a solid wall. The mass boundary condition
(Eq. (3.5)) is then applied by adding the rows corresponding to each pair of
duplicated wake nodes and a pressure equality equation (Eq. (3.6)) is added
for each pair of nodes. This approach has two major disadvantages. First,
it requires modeling the wake explicitly, which can be a rather cumbersome
and lengthy process for complex geometries. Second, it hinders the effective
use of the solver for aeroelastic optimization, where the wake’s position may
change due to the structural response and the geometry’s evolutionary steps.
Even a simple change in the parameters, such as the variation of the angle of
attack, would involve remaking the finite-element mesh from the beginning
(note that the angle of attack defines the wake direction).
To achieve efficiency, an embedded approach that defines the wake implicitly
within the finite-element mesh is proposed. In this approach, the wake geom-
etry is defined as a straight line (in 2D) or surface (in 3D) that extends from
the trailing edge into the outlet (see Figures 3.1 and 3.2). In this context, wake
elements are all elements intersected (i.e., cut) by the wake. Figure 3.6 shows
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(a) Mesh around the trailing edge.

ϕi

ϕi
aux

(b) Elements above the wake.

ϕi

ϕi
aux

(c) Elements below the wake.

Figure 3.6: Wake elements (in light grey) are disconnected across the wake
to support a jump in the potential.

the wake elements behind the trailing edge, which are marked in light grey.
In order to support a jump in the potential, wake elements are enriched with
auxiliary degrees of freedom and disconnected across the wake so that they
are present twice. This is illustrated in Figure 3.6, where the auxiliary degrees
of freedom are denoted by ϕi

aux. Note that the separation between upper
and lower mesh presented in Figure 3.6 is only for visualization purposes; in
practice, there is only one mesh as shown at the top of Figure 3.6, and the
separation is achieved via the auxiliary degrees of freedom.
As shown in Figure 3.6, the degrees of freedom ϕi

u and ϕi
l corresponding

respectively to the upper and lower wake elements are:

ϕi
u =

{
ϕi if ith node above the wake
ϕi

aux if ith node below the wake
(3.33)

ϕi
l =

{
ϕi

aux if ith node above the wake
ϕi if ith node below the wake

(3.34)
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3.5 Embedded wake approach

The additional equations stemming from these auxiliary degrees of freedom
are then used to apply the wake boundary conditions (Eqs. (3.5) and (3.6)).

3.5.1 Wake boundary conditions in two dimensionscd

In two dimensions Eqs. (3.5) and (3.6) can be written as a single vector
equation:

ua
u − ua

l = 0 on ΩW (3.35)

where ΩW is the domain covered by the wake elements. Applying a least
squares finite element approach yields the residual energy functional:

Π =
1

2

ˆ
ΩW

(ua
u − ua

l )
2 dΩW (3.36)

Deriving with respect to the degrees of freedom results in the upper and lower
wake conditions’ residuals:

Ri
u =

∂Π

∂ϕi
u

=
∑
Wu

ˆ
ΩWu

∂N i
u

∂xa
(ua

u − ua
l ) dΩWu (3.37)

Ri
l =

∂Π

∂ϕi
l

=
∑
Wl

ˆ
ΩWl

∂N i
l

∂xa
(ua

l − ua
u) dΩWl (3.38)

and their corresponding Jacobians:

J ij
uu =

∂Ri
u

∂ϕj
u

=
∑
Wu

ˆ
ΩWu

∂N i
u

∂xa

∂N j
u

∂xa
dΩWu (3.39)

J ij
ul =

∂Ri
u

∂ϕj
l

= −
∑
Wu

ˆ
ΩWu

∂N i
u

∂xa

∂N j
l

∂xa
dΩWu (3.40)

J ij
lu =

∂Ri
l

∂ϕj
u

= −
∑
Wl

ˆ
ΩWl

∂N i
l

∂xa

∂N j
u

∂xa
dΩWl (3.41)

J ij
ll =

∂Ri
l

∂ϕj
l

=
∑
Wl

ˆ
ΩWl

∂N i
l

∂xa
,
∂N j

l

∂xa
dΩWl (3.42)

3.5.2 Wake boundary conditions in three dimensions

In the proposed method, first, Eq. (3.5) is linearized by substituting the
freestream density ρ∞ for ρu and ρl, which yields:

g1 = n̂ · (uu − ul) = 0 on ΩW (3.43)
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where n̂ is the normal vector to the wake defined upwards, and ΩW is the
domain covered by the wake elements. Second, approximating the average
wake sheet velocity with the freestream velocity allows linearizing Eq. (3.6)
as:

g2 = û∞ · (uu − ul) = 0 on ΩW (3.44)

where û∞ is a unit vector defined as û∞ = u∞/u∞. Eq. (3.44) is a homo-
geneous linear convection equation for the potential jump across the wake.
It states that the potential jump is constant along the freestream sheet
streamlines. Applying a least squares finite element approach on Eqs. (3.43)
and (3.44), yields the following residual energy functional:

Π =
1

2

ˆ
ΩW

g21 + g22 dΩW (3.45)

Deriving with respect to the degrees of freedom results in the upper and lower
wake conditions’ residuals:

Ri
u =

∂Π

∂ϕi
u

=
∑
Wu

ˆ
ΩWu

∂N i
u

∂xb

(
n̂bg1 + ûb

∞g2
)

dΩWu (3.46)

Ri
l =

∂Π

∂ϕi
l

=
∑
Wl

ˆ
ΩWl

∂N i
l

∂xb

(
n̂bg1 + ûb

∞g2
)

dΩWl (3.47)

and their corresponding Jacobians:

J ij
uu =

∂Ri
u

∂ϕj
u

=
∑
Wu

ˆ
ΩWu

∂N i
u

∂xb

(
n̂bn̂a + ûb

∞ûa
∞
) ∂N j

u

∂xa
dΩWu (3.48)

J ij
ul =

∂Ri
u

∂ϕj
l

= −
∑
Wu

ˆ
ΩWu

∂N i
u

∂xb

(
n̂bn̂a + ûb

∞ûa
∞
) ∂N j

l

∂xa
dΩWu (3.49)

J ij
lu =

∂Ri
l

∂ϕj
u

= −
∑
Wl

ˆ
ΩWl

∂N i
l

∂xb

(
n̂bn̂a + ûb

∞ûa
∞
) ∂N j

u

∂xa
dΩWl (3.50)

J ij
ll =

∂Ri
l

∂ϕj
l

=
∑
Wl

ˆ
ΩWl

∂N i
l

∂xb

(
n̂bn̂a + ûb

∞ûa
∞
) ∂N j

l

∂xa
dΩWl (3.51)

Eqs. (3.46) to (3.51) are assembled in the global equation system together
with Eqs. (3.9) and (3.11). The wake surface can be automatically generated
by shedding it from the trailing edge in the freestream velocity direction. A
robust and accurate capturing of the potential jump across the wake can be
achieved by automatically refining the mesh with a metric-based technique [50].
This implicit representation of the wake within the domain saves modeling
time and allows to perform aeroelastic optimization in practical applications
efficiently.
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3.5.3 Treatment of the nodes lying on the wake

The problem

For a given mesh, it can happen that some nodes are lying exactly on the wake.
Without further modification, these nodes would have the same potential
values from the top and from the bottom of the wake, yielding a zero potential
jump and thus a wrong solution.

A solution

In the proposed method, nodes lying on the wake or very close to it are
assigned a positive tolerance distance (e.g., ϵ = 10−6 m), such that they are
treated as if they were above the wake. This is illustrated in Figure 3.7, where
it is shown that assigning a positive distance is equivalent to locally moving
the wake downwards. Note that this decision is arbitrary, and the nodes could
also be assigned a negative distance (i.e., locally moving the wake upwards).

Node lying on the wake

(a) The problem.

Moved wake

(b) A solution.

Figure 3.7: Nodes lying on the wake are assigned a tolerance positive
distance.

3.5.4 Treatment of the trailing edge nodes

Trailing edge nodes are nodes belonging both to wake elements and to the
body. Because these nodes belong to the body, the slip boundary condition
(Eq. (3.4) with q = 0) is applied instead of the wake boundary conditions. This
means that the auxiliary degrees of freedom corresponding to the trailing edge
nodes are only used to disconnect the elements above and below the trailing
edge and that they implement the conservation of mass equation (Eq. (3.9))
instead of the wake boundary conditions (Eqs. (3.37) and (3.38) in 2D or
Eqs. (3.46) and (3.47) in 3D). Thus, these auxiliary degrees of freedom are
effectively treated as a normal velocity potential degree of freedom belonging
to the elements below the trailing edge. This is illustrated for two dimensions
in Figure 3.6, where the trailing edge is marked in grey for the elements below
the wake, indicating that it corresponds to the auxiliary degree of freedom.
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In two dimensions, there is only one wake element containing the trailing
edge node.
Note that this is an exception to the treatment introduced in the previous
section. For sharp trailing edges, trailing edge nodes are another example
of nodes lying on the wake. Note that in two dimensions, there is only one
trailing edge node per airfoil. Moving these nodes upwards would result in
cutting all wake elements under the wake that are in touch with the trailing
edge, which yields inaccurate results in some cases.

3.5.5 Treatment of small-cut elements

The problem

The first version of the proposed embedded wake approach was first published
in [44]. In this first version, wake elements were divided into upper and
lower parts, and the integrals stemming from the wake boundary conditions
(Eqs. (3.37) to (3.42) and (3.46) to (3.51)) where only evaluated for the upper
and lower domains. The shape functions’ derivatives were not recomputed,
so the only difference (compared to not cutting the elements) was that the
integrands were integrated over a smaller domain. This approach yielded
ill-conditioned systems when nodes were lying on or close to the wake due
to the so called small-cut problem. The small-cut problem is illustrated in
Figure 3.8, where the elements below the wake are presented as an example
and the small cut wake elements are marked in red. Note that the small-cut
elements have a very small area, which when performing the integrals in
Eqs. (3.37) to (3.42) and (3.46) to (3.51), yields contributions to the Jacobian
and the residual that are very close to zero. These small entries in the Jacobian
is what causes the system to be ill-conditioned:

J ij
uu =

∂Ri
u

∂ϕj
u

=
∑
Wu

ˆ
ΩWu

∂N i
u

∂xa

∂N j
u

∂xa
dΩWu ≈ 0 (3.52)

Small-cut elements

Figure 3.8: Nodes lying close to the wake lead to ill-conditioned systems.
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Recomputing the shape functions’ derivatives for the small cuts does not solve
this problem. The shape functions’ derivatives are proportional to the inverse
to the element area (or volume in 3D), which results in very large entries in
the Jacobian. These large entries also yield ill-conditioned systems:

∂N i

∂xa
∝ 1

A
≫ 1 (3.53)

where A is the element area in 2D or volume in 3D.

A solution

To solve the small-cut problem, a full integration approach has been developed.
This approach consists on integrating Eqs. (3.37) to (3.42) and (3.46) to (3.51)
over the full element. The proposed full integration approach is a very simple
yet effective way to maintain similar system condition numbers as in a body
fitted method, making the embedded wake approach very robust.

3.6 Implementation in KRATOS Multi-Physics

The potential transonic solver using the proposed embedded wake approach
is implemented in KRATOS Multiphysics [52]. Kratos is an open-source
finite-element framework for building parallel, multi-disciplinary simulation
software [53, 51]. It aims at modularity, extensibility, and high performance.
Kratos is available under a BSD license.
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Figure 3.9: Main classes defined in Kratos [51].
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3.6.1 Kratos structure

Kratos uses an objected-oriented structure to solve problems with the finite-
element method. This structure allows splitting the problem into several
objects and defining their interfaces [53]. Figure 3.9 shows the main classes of
Kratos. Kratos multi-layer design is illustrated in Figure 3.10. This approach
reduces dependencies inside Kratos because an object can only interface with
another object in the same layer or a layer below. This allows the developers
to only work in specific layers without knowing the whole Kratos. These
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Figure 3.10: Kratos is designed in a multi-layer approach [51].
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layers also reflect the working space of developers with different fields of
expertise.
To increase performance and efficiency, Kratos uses a kernel and application
approach, which is illustrated in Figure 3.11. The kernel is the framework
that manages the whole Kratos. It does not contain physics. Kratos data
structure is defined in the kernel. The kernel initializes Kratos’ different parts,
it provides the necessary interface to communicate with the applications, and
it contains the IO scripts. The kernel can also synchronize the variables num-
bering between different applications. The applications contain the physics.
For instance, the variables, elements, and conditions are registered in the
applications. This separation between kernel and applications also avoids
recompiling the whole code when only one application is changed.

Kernel

Potential Flow
Application

Fluid Dynamics
Application

Structural
Mechanics
Application

Shape
Optimization
Application

Meshing
Application

Co-Simulation
Application

Figure 3.11: Kratos uses a kernel and application approach.

3.6.2 Potential flow application

In total, three potential solvers corresponding to three different fidelity levels
have been implemented: a linear incompressible, a nonlinear compressible
subsonic, and a nonlinear compressible transonic potential solver. The solvers
are implemented in the Potential Flow Application. The incompressible
solver uses a linear strategy and the Incompressible Potential Flow Element,
which implements the residual and Jacobian from Eq. (3.15) and Eq. (3.16).
The compressible subsonic and transonic solvers use Newton Raphson strategy,
and the Compressible Potential Flow Element and Transonic Potential
Flow Element respectively.
The Compressible Potential Flow Element implements the residual and
Jacobian from Eqs. (3.9) and (3.11) without the density modification intro-
duced with the artificial compressibility method. Thus, this element’s range
of application is limited to subsonic (elliptic) flow. To be able to compute
the residual and the Jacobian in localized pockets of supersonic flow, the
isentropic density relation (Eq. (2.41)) is clamped to a user-defined limit
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3 An Embedded Wake Approach for Potential Transonic Solvers

Mach number Mmax ∼ O(0.98). This clamping approach introduces an error
in supersonic flow regions but is very effective in maintaining the elliptic
character of the problem [40]. Still, the solution is very accurate as long as
these pockets of supersonic flow are localized in small regions (e.g., in the
wingtip trailing edges).
The Transonic Potential Flow Element implements the residual and Jaco-
bian from Eqs. (3.23) and (3.24) with the density modification introduced
with the artificial compressibility method (Eqs. (3.19) and (3.20)).
The three elements are templated to work in both two and three dimensions.
All elements implement the proposed embedded wake approach and the wake
boundary conditions described in Sections 3.5.1 and 3.5.2. A Define Wake
Process has been implemented to identify the wake elements (i.e. elements
cut by the wake), and the elements below the trailing edge requiring the
special treatment described in Section 3.5.4. Two different approaches to
define the wake in 3D have been implemented. The first one imports the wake
model as an Standard Triangle Language (STL) file format that has to be
previously generated from a CAD model. The import is done at python level
using numpy-stl. The second one automatically generates the wake triangular
mesh. This is implemented in parallel using open multi-processing (OpenMP)
at C++ level for performance.
An Apply Far Field Process has been implemented to apply the boundary
conditions (Eqs. (3.3) to (3.6)). This process fixes the potential value of the
nodes within the inlet boundary, it assigns the freestream velocity and density
values to the conditions within the outlet boundary, and it assigns the rest
of the freestream conditions and user defined parameters to the Fluid Root
Modelpart Process Info.
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Chapter 4

Validation, Verification and
Numerical Studies

This chapter presents the validation and verification of the embedded wake
approach introduced in Chapter 3. In total, five models are investigated: the
NACA 0012 airfoil, the Korn supercritical airfoil, a rectangular wing with
NACA 0012 airfoil section, the Onera M6 wing, and NASA CRM. To evaluate
the proposed approach, lift, drag, pitching moment, and pressure coefficients
are compared with reference data from other codes and wind tunnel tests.
Sections 4.1, 4.3 and 4.4 present the validation and verification cases over the
NACA 0012 airfoil. A set of mesh refinement studies and a domain size study
are performed to establish confidence with the numerical results. Furthermore,
the embedded wake approach is verified in the incompressible, compressible
subsonic, and compressible transonic flight regimes. Section 4.2 presents the
verification of the compressible subsonic and transonic elemental sensitivities.
In Section 4.5 the transonic solver using the Korn supercritical airfoil is verified.
Section 4.6 includes a drag divergence study comparing the NACA 0012 with
the Korn airfoil, the verification of the resulting critical Mach number, and a
multi-fidelity analysis comparing the incompressible, compressible subsonic,
and transonic solvers. Section 4.7 presents the verification of the three-
dimensional incompressible solver using the rectangular wing, and Section 4.8
provides the three-dimensional Onera M6 wing transonic validation and
verification case. Finally, the results on a full aircraft configuration are
presented in Section 4.9.
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Salome is used to generate the geometries and the meshes [54]. Salome
is an open-source software providing a generic pre-processing platform for
numerical simulation. A significant advantage of using an embedded wake
approach is that the wake does not need to be explicitly modeled in the
domain, substantially reducing the modeling time. In the numerical studies
presented here, square and cubic domains are considered, where the inlet,
outlet, and walls’ dimensions are equal. Triangular and tetrahedral meshes
are created using the NETGEN algorithm [55]. The main parameters defining
the meshes are the maximum element size, the minimum element size, and
the growth rate, which is the maximum ratio by which two adjacent elements
can differ (e.g. a growth rate of 0.1 means that the linear dimensions of two
adjacent elements can differ by 10%).
Salome has a python interface that allows to easily modify the model pa-
rameters, such as mesh or domain sizes. In order to convert Salome’s output
mesh format into Kratos’ input mesh format, Kratos Salome Plugin devel-
oped by Philipp Bucher is employed [56]. Using these components, a tool to
automatically perform parameter studies has been developed.

4.1 Incompressible flow around NACA 0012 airfoila

In this section, a mesh refinement study and a domain size study are presented
for a NACA 0012 airfoil at an angle of attack of 5° using the incompressible
potential flow element. Since the incompressible element implements the
Laplace equation, the results can be compared with the solution provided
by XFOIL [57]. XFOIL is a panel solver developed by Professor Mark Drela
at the Massachusetts Institute of Technology. At the end of the section, the
resulting lift coefficient is compared with wind tunnel test data for different
angles of attack.
NACA 0012 airfoil’s geometry was selected due to the large number of reference
data available in the literature. The airfoil’s shape is described by:

z = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4) (4.1)

where z is the half thickness, and x the position along the chord (x ∈ [0, 1]).
This description results in a blunt trailing edge. For the purposes of this
study, the last coefficient was slightly modified to achieve a sharp trailing
edge:

z = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4) (4.2)

This modification is specified by the AIAA Aerodynamic Design Optimization
Discussion Group [58]. The airfoil was generated using Salome’s parametric
curve generator, which allows specifying a parametric equation for each
coordinate.
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4.1 Incompressible flow around NACA 0012 airfoil

4.1.1 Mesh refinement study of the reference solution

First, to ensure that the reference solution is mesh independent, a refinement
study is performed using XFOIL. The coordinates defining the panels were
computed with Airfoil Tools using cosine spacing and a closed trailing edge.
Figures 4.1 and 4.2 show the convergence of the lift coefficient and its relative
error for an increasing number of panels. The lift coefficient relative error is
expressed as a percentage using:

δcl =
|cl − clref|

|clref|
· 100% (4.3)

where the reference lift coefficient clref is the value obtained for 200 panels
(clref = 0.603). Since the lift coefficients obtained with 180 and 200 panels
are equal up to the precision provided by XFOIL, the solution is considered
to be converged. XFOIL rounds the solution to the fourth decimal, which for
this case yields the following precision expressed as relative error:

δcl =
10−4

0.603
· 100 = 0.017% (4.4)
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Figure 4.1: Mesh refinement study using XFOIL (α = 5.0°).
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Figure 4.2: Mesh refinement study using XFOIL (α = 5.0°).

4.1.2 Mesh refinement study

In the following, the solution provided by XFOIL for 200 panels is used
as a reference. In order to verify the proposed embedded wake approach,
the convergence of the lift and pitching moment coefficients is investigated.
In total, six meshes with a domain size of 100m and a chord length of
1m are considered. Figure 4.3 shows the domain’s far-field mesh and two
meshes in the vicinity of the airfoil for different mesh refinements, where the
minimum element size is denoted by h. Note the substantial benefit of using
an embedded wake approach, where the wake does not need to be explicitly
represented by the mesh. The meshes are refined towards the leading and
trailing edges, where the solution’s gradients are the largest. This refinement
also allows to accurately capture the geometry at the leading edge, where
the radius of curvature is the smallest. The airfoil is discretized using a
geometric progression where the common ratio is set to 1.01. The domain’s
boundary is discretized using a uniform distribution with an element size
of 2m (1/50th of the domain size). The domain’s maximum element size
matches the boundary’s element size, and the mesh growth rate is set to 0.05
to ensure a smooth element size transition.
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4.1 Incompressible flow around NACA 0012 airfoil

(a) Domain’s far-field mesh.

(b) Mesh around the airfoil for h = 1 × 10−2 m (left) and h = 1 × 10−3 m (right).

(c) Mesh around the leading edge for h = 1 × 10−2 m (left) and h = 1 × 10−3 m
(right).

Figure 4.3: Meshes around NACA 0012.
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In the following, the convergence of lift and pitching moment coefficients and
their relative errors for a decreasing minimum element size is examined. The
reference point to compute the moment is the leading edge. The pitching
moment coefficient’s relative error is expressed as a percentage in the same
way as for the lift using:

δcm =
|cm − cmref|

|cmref|
· 100% (4.5)

where the reference moment coefficient cmref is the value obtained with XFOIL
for 200 panels (cmref = −0.1570). The moment coefficient is computed using
a near-field analysis, whereas the lift coefficient is computed using three
approaches:

1. Near-field analysis, integrating the pressure force over the airfoil:

cl =
1

c

˛
airfoil

Cp n̂ · ŷ ds (4.6)

2. Wake potential jump analysis, using Kutta-Joukowski theorem:

cl =
2∆ϕ

u∞c
(4.7)

3. Far-field analysis, using the integral momentum theorem:

cl = −1

c

˛
far-field

[
Cp n̂− ρ(u · n̂)(u− u∞)

1
2
ρ∞u2∞

]
· ŷ ds (4.8)

Figures 4.4 and 4.5 present the lift and pitching moment coefficients and
their relative errors over the minimum element size. Figure 4.4 shows that
the solution accurately matches the reference. For a minimum element size
smaller than 10−2, the lift and moment relative errors are below 2% and 4%,
respectively. However, the solution does not converge towards the reference
solution. The smallest lift relative error is around 0.44%, larger than the
0.017% precision provided by XFOIL. A contribution to this error comes
from the influence of the far-field boundary conditions, which are applied at
a finite distance from the airfoil. This approximation is a major disadvantage
of the grid methods compared to the singularity methods, in which Green’s
functions automatically satisfy the far-field boundary conditions. Nevertheless,
this error can be estimated via domain size studies, as presented in the next
section. For a quantitative comparison, the lift and moment coefficient values
obtained for the different mesh refinements are presented in Table 4.1, where
the values are rounded to the sixth decimal to show the difference between
the force analysis approaches. To verify that the embedded wake approach
delivers robust results for an arbitrary angle of attack, this mesh refinement
study was repeated for eight additional angles of attack. The results can be
found in Appendix C.
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Figure 4.4: NACA 0012 mesh refinement study (α = 5.0°).
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Figure 4.5: NACA 0012 mesh refinement study (α = 5.0°).
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4.1 Incompressible flow around NACA 0012 airfoil

cl [-] cm [-]

h [m] Near-field Potential jump Far-field Near-field

10−2 0.576844 0.578281 0.578285 -0.146222

10−3 0.591746 0.591927 0.591931 -0.152239

10−4 0.598230 0.598367 0.598371 -0.155324

10−5 0.600002 0.600126 0.600131 -0.156180

10−6 0.600525 0.600662 0.600667 -0.156423

10−7 0.600607 0.600746 0.600751 -0.156470

Reference 0.6030 0.6030 0.6030 -0.1570

Table 4.1: NACA 0012 mesh refinement study (α = 5.0°).

4.1.3 Pressure coefficient distribution verification

Figure 4.6 compares the resulting and reference pressure coefficient distri-
butions along the upper and lower airfoil’s surfaces for the different mesh
refinements. The pressure coefficient is computed using the incompressible
Bernoulli equation:

Cp ≡ p− p∞
1
2
ρu2∞

= 1− u2

u2∞
(4.9)

where the velocity is evaluated at the edges constituting the discretized airfoil.
The velocity at the edges is equal to the velocity at the edges’ parent elements
because linear shape functions are considered.
Figure 4.6 shows that the resulting pressure coefficient distribution is that of
a typical subsonic solution, where the flow expands around the leading edge
and then slowly starts to compress. Note that despite using an embedded
wake approach, the stagnation point and the equality of pressures at the
trailing edge are accurately captured. The largest disagreements with the
reference solution occur for h = 10−2, at the suction peak point. The smaller
the mesh size, the better the pressure gradients at the leading and trailing
edges are resolved. The solution matches the reference very accurately, such
that it is difficult to observe the difference by the naked eye.

4.1.4 Domain size study

In order to estimate the error introduced by applying the far-field boundary
conditions at a finite distance from the airfoil, a domain size study is performed.
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Figure 4.6: Pressure coefficient distribution for different mesh refinements.
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4.1 Incompressible flow around NACA 0012 airfoil

In total, six domain sizes are investigated. The minimum element size is
h = 1× 10−6 m, and the ratio between the domain’s size and the maximum
element size is 50. The mesh growth rate is set to 0.05. Figure 4.7 shows the
value of the lift coefficient relative error over the domain sizes. Note that
all the values are below 0.5%. For a domain size larger than 1× 103 m the
relative error varies less than 0.01%, and the solution can be considered to be
converged. The difference between the relative error at L = 1× 103 m and
the converged value yields an estimation of the error due to applying the
far-field boundary conditions at a finite distance from the airfoil, which for
L = 1× 103 m is around 0.3%. However, the solution still does not converge
towards the reference. The smallest lift relative error is around 0.17%, which
is still larger than the 0.017% precision provided by XFOIL.
One possible explanation for this error may be the difference in the wake’s
geometry definition between both methods. In two dimensions, panel methods
do not require an explicit definition of the wake’s geometry since it is sufficient
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Figure 4.7: NACA 0012 domain size study (α = 5.0°, h = 1× 10−6 m).
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to apply the Kutta condition at the trailing edge, and the wake’s location is a
product of the solution. However, finite element potential solvers require the
modeling of the wake to specify the potential jump location. In the proposed
approach, the wake is assumed to be straight in the direction of the freestream
velocity. This assumption is relaxed by allowing mass flow through the wake.
Still, it has been shown that the wake’s geometry affects the solution [47].
A further possible contribution to the small disagreement between the solutions
is the lack of refinement in the airfoil’s middle and the far-field, where the
mesh size is kept constant. Finally, another contribution could be that the
modification used in Airfoil Tools to close the trailing edge is perhaps different
than the one presented in Section 4.1, and so, the solution and the reference
might be related to slightly different geometries. In any case, bearing in
mind that the comparison involves two different software implementing
different methods, the solution obtained with the embedded wake approach is
considered to accurately match the reference within an error of ∼ O(10−1%).
Note that each force analysis approach yields different results. In order to
assess this difference, the lift coefficient values are presented in Table 4.2,
where the values are rounded to the 11th decimal to capture the difference for
the whole domain size range. In order to analyze this difference in more detail,
the relative difference between each force analysis approach is computed as

∆cl =
|cl1 − cl2|
|clref|

· 100% (4.10)

where cl1 and cl2 are the lift coefficients corresponding to two different
approaches. The results are presented in Table 4.3. The results obtained
with the potential jump and the far-field approaches are closer to each other

Domain size cl [-]

L [m] Near-field Potential jump Far-field

102 0.60052549154 0.60066222393 0.60066679183

103 0.60205576097 0.60219717746 0.60219722243

104 0.60225177462 0.60238828036 0.60238828087

105 0.60224545055 0.60237499288 0.60237499287

106 0.60225121829 0.60238680718 0.60238680722

107 0.60224749338 0.60238062378 0.60238062386

Table 4.2: NACA 0012 domain size study (α = 5°, h = 1× 10−6 m).
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4.1 Incompressible flow around NACA 0012 airfoil

Domain size ∆cl [%]

L [m] Near-field vs.
Potential jump

Near-field vs.
Far-field

Potential jump
vs. Far-field

102 2.27 · 10−2 2.34 · 10−2 7.57 · 10−4

103 2.34 · 10−2 2.34 · 10−2 7.45 · 10−6

104 2.26 · 10−2 2.26 · 10−2 8.45 · 10−8

105 2.15 · 10−2 2.15 · 10−2 1.82 · 10−9

106 2.25 · 10−2 2.25 · 10−2 5.47 · 10−9

107 2.21 · 10−2 2.21 · 10−2 1.39 · 10−8

Table 4.3: Relative difference between the force analysis approaches.

(< O(10−3%) error) than to the ones obtained with the near-field approach
(∼ O(10−2%) error). This result is to be expected since the potential jump
approach is an alternative far-field analysis. In fact, the difference between
the potential jump and the far-field results is smaller than the precision
provided by XFOIL and is close to single precision for a domain size larger
than 1× 104 m. Note that here a relative error of O(10−8%) is equivalent to
a difference in the 9th decimal. The difference between the near-field and the
other approaches is of the same order of magnitude as the precision provided
by XFOIL and may be related to the discretization error introduced in the
areas that are not refined.

4.1.5 Validation with wind tunnel data

To validate the proposed embedded wake approach, the lift and pressure
coefficients are compared with wind tunnel data (WTD) for different angles
of attack in Figures 4.8 and 4.9. The wind tunnel data is taken from [59–
61]. There are some differences between the experimental data, especially
near stall where the experiments are not two-dimensional anymore. Thus,
since two-dimensional experiments are very difficult to achieve, especially
at high angles of attack approaching stall, the experimental data should
be interpreted carefully. The experimental data presented in [60] is likely
more two-dimensional and thus is used for the validation of surface pressures.
Figure 4.8 also displays XFOIL’s solution as an incompressible potential flow
numerical reference. The lift polar shows that the lift coefficient obtained
with the incompressible potential flow solvers is proportional to the angle of
attack. Numerical and experimental results present an accurate agreement for
smalls angles of attack, where the flow is still attached. As the angle of attack
increases, the disagreement between data grows because viscous effects are
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Figure 4.8: Lift polar (h = 1× 10−3 m, L = 1× 102 m).
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Figure 4.9: Pressure coefficient distribution validation.
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neglected in the proposed solver. Thus, the potential flow solver cannot capture
the separation of the boundary layer, causing stall. The pressure coefficient
distributions show the same behavior; an accurate agreement is achieved for
α = 0°, whereas for α = 10° and α = 15° the pressure is underestimated in the
suction peak. This pressure underestimation explains the lift overestimation
observed in the lift polar. To account for viscous effects, instead of setting the
mass flow at the airfoil’s surface to zero, it can be set to a known transpiration
value (e.g., to model displacement or wall transpiration effects). Methods to
couple potential flow and boundary layers are presented in [23, 48].

4.2 Verification of the compressible subsonic and
transonic elemental sensitivities

To verify that the Jacobian of the compressible subsonic and transonic ele-
ments is correctly implemented, the method proposed by Nishida and Drela
is applied [62]. This method compares the Jacobian values obtained by eval-
uating the implemented analytical formulas with the values obtained by
computing the Jacobian using finite differences.
This verification has been carried out both in 2D and 3D using triangular and
tetrahedral elements like the ones depicted in Figure 4.10. The first step of
this method is to assume a random nodal potential field ϕj . With this field,
the original analytical value of the Jacobian can be evaluated:

(J ij)original =

(
∂Ri

∂ϕj

)
original

(4.11)

The second step is to perturb the assumed potential field with a small value
∆ϕj :

ϕj
perturbed = ϕj +∆ϕj (4.12)

Third, the Jacobian can be computed using finite differences:(
∂Ri

∂ϕj

)
f.d.

=
(Ri)perturbed − (Ri)original

(ϕj)perturbed − (ϕj)original
(4.13)

Finally, the average analytic Jacobian is:(
∂Ri

∂ϕj

)
average

=
1

2


(
∂Ri

∂ϕj

)
original

+

(
∂Ri

∂ϕj

)
perturbed

 (4.14)

Comparing the results obtained with Eqs. (4.13) and (4.14) allows establish-
ing whether the Jacobian is correctly implemented. This method has been
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Figure 4.10: Triangular and tetrahedral elements and local nodal ids.

implemented as a unit test in Kratos. The results match up to a tolerance
of 10−10 with a perturbation step of 10−3. This small error means that the
Jacobian accurately matches the derivative of the implemented residual. Note
that it can be that the residual is implemented incorrectly, but the Jacobian
correctly represents its derivative. In this case, the test presented in this
section would pass, and the solver would converge quadratically but to the
wrong solution. In order to check whether the solver converges towards the
right solution, the following sections present the comparison between the
obtained results and the reference data.

4.3 Compressible subsonic flow around NACA 0012
airfoil

4.3.1 Mesh refinement study

This section presents the verification of the embedded wake approach for
compressible subcritical flow. In order to do so, a mesh refinement is performed
for the test cases indicated in Table 4.4. The first case is lifting, and the
second one is non-lifting. The solution is compared to the finite-difference
reference solution from Lock [63]. Lock uses Sells’ method to solve subsonic
compressible flows mapping the region external to the airfoil conformally
into the interior of a unit circle [64]. It is reported that this method yields

Case Airfoil α M∞ Chord length

(1) NACA0012 2.0 0.63 1.0089
(2) NACA0012 0.0 0.72 1.0089

Table 4.4: Subsonic compressible test cases.
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an accuracy of the order of 1% of the maximum perturbation velocity. The
method is limited to a maximum local Mach number of about 0.98.
Lock does not use the modification introduced in Eq. (4.2) to close the
trailing edge. Instead, the original NACA0012 airfoil (Eq. (4.1)) is extended
to x = 1.0089. For the purposes of this study, the same approach is used
in this section. For these examples, the critical Mach number is set to 0.99.
Figures 4.11 and 4.12 show the convergence of the lift coefficient for both
test cases, its relative error for the lifting case, and its absolute error for the
non-lifting case. The convergence characteristics are close to the ones observed
for the incompressible case. The three force analysis approaches yield very
similar results. The relative error converges towards a value less than 1%
in the first case. The absolute error does not converge for the second case.
Note that the value corresponding to h=10−7 is slightly off. Since this case is
symmetric, the resulting lift coefficient is very sensitive to mesh asymmetries.
Still, the absolute error of the three smaller meshes is smaller than 10−4,
which is deemed very accurate.

4.3.2 Pressure coefficient distribution verification

The pressure coefficient distribution for the different mesh refinements is
compared to Lock’s solution in Figures 4.13 and 4.14. The critical pressure
coefficient is indicated with a dashed line as reference. The critical value is
the pressure coefficient corresponding to a local Mach number of 1.0. The
pressure coefficient is computed using Bernoulli’s compressible equation:

Cp ≡ p− p∞
1
2
ρu2∞

=
2

γM2
∞

(
p

p∞
− 1

)
(4.15)

=
2

γM2
∞


[
1 + γ−1

2
M2

∞

1 + γ−1
2

M2

] γ
γ−1

− 1

 (4.16)

=
2

γM2
∞


1 + γ − 1

2
M2

∞

(
1− u2

u2∞

)
γ

γ−1

− 1

 (4.17)

Note that the pressure is under the critical pressure over the whole airfoil,
meaning that both cases are subcritical. As for the incompressible case, an
accurate matching with the data is achieved. The smaller refinements capture
the pressure gradients more precisely. This is particularly visible in the trailing
edge, where the rear stagnation point consequence of Kutta’s condition is
resolved better the smaller the minimum element size.
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Figure 4.11: Mesh refinement study for compressible subsonic flow conditions
(Case 1: α = 2° and M∞ = 0.63).
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Figure 4.12: Mesh refinement study for compressible subsonic flow conditions
(Case 2: α = 0° and M∞ = 0.72).
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Figure 4.13: Pressure coefficient distribution (Case 1: α = 2°, M∞ = 0.63).
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Figure 4.14: Pressure coefficient distribution (Case 2: α = 0°, M∞ = 0.72).
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4.3.3 Newton Raphson’s method convergence

To verify that the Jacobian is implemented correctly, the Newton Raphson
method’s convergence is evaluated. The residual’s L2 norm is presented in
Tables 4.5 and 4.6, and displayed in Figures 4.15 and 4.16 over the nonlinear
iteration number for each mesh refinement. Note that the residual converges
quadratically once it is within the region of quadratic convergence so that the
nonlinear problem converges in five to ten iterations with a tolerance of 10−10.
Interestingly, case one converges in five iterations for all mesh refinements,
whereas case two shows different convergence for different mesh refinements.

h [m] 10−2 10−3 10−4 10−5 10−6 10−7

k Resiual L2 norm: |R|
1 2 · 100 1 · 100 7 · 10−1 7 · 10−1 7 · 10−1 7 · 10−1

2 5 · 10−2 1 · 10−1 9 · 10−2 8 · 10−2 8 · 10−2 8 · 10−2

3 2 · 10−4 5 · 10−4 5 · 10−4 4 · 10−4 4 · 10−4 4 · 10−4

4 9 · 10−9 1 · 10−8 9 · 10−9 8 · 10−9 8 · 10−9 8 · 10−9

5 8 · 10−12 8 · 10−12 8 · 10−12 8 · 10−12 8 · 10−12 9 · 10−12

Table 4.5: Newton Raphson convergence (Case 1: α = 2°, M∞ = 0.63).

h [m] 10−2 10−3 10−4 10−5 10−6 10−7

k Resiual L2 norm: |R|
1 3 · 100 2 · 100 1 · 100 1 · 100 1 · 100 1 · 100

2 1 · 10−1 8 · 10−1 6 · 10−1 5 · 10−1 5 · 10−1 5 · 10−1

3 4 · 10−4 2 · 10−1 1 · 100 1 · 100 1 · 100 1 · 100

4 2 · 10−8 3 · 10−3 3 · 10−1 3 · 10−1 3 · 10−1 4 · 10−1

5 9 · 10−12 1 · 10−7 8 · 10−2 4 · 10−1 2 · 10−1 2 · 10−1

6 8 · 10−12 5 · 10−3 8 · 10−2 5 · 10−2 5 · 10−2

7 6 · 10−6 1 · 10−2 3 · 10−3 2 · 10−3

8 1 · 10−11 5 · 10−5 3 · 10−6 8 · 10−7

9 3 · 10−10 9 · 10−12 9 · 10−12

10 7 · 10−12

Table 4.6: Newton Raphson convergence (Case 2: α = 0°, M∞ = 0.72).
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Figure 4.15: Newton Raphson convergence (Case 1: α = 2°, M∞ = 0.63).
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Figure 4.16: Newton Raphson convergence (Case 2: α = 0°, M∞ = 0.72).
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4.4 Transonic flow around NACA 0012 airfoila

In order to verify the transonic element, the four test cases presented in
Table 4.7 are considered. These cases are highly nonlinear, and a load step-
ping control is required to achieve convergence (Table 4.8). Note that as
the freestream Mach number and the angle of attack are increased, more
dissipation and load steps are required to achieve convergence.

Case α M∞ Mcrit µc

(1) 1.0 0.72 0.99 1.0
(2) 1.0 0.73 0.99 1.0
(3) 1.0 0.75 0.95 1.1
(4) 2.0 0.75 0.90 1.1

Table 4.7: Transonic test cases.

Case (1) (2) (3) (4)
Step M∞

1 0.70 0.70 0.70 0.70
2 0.71 0.71 0.71 0.71
3 0.72 0.72 0.72 0.72
4 0.73 0.73 0.73
5 0.74 0.74
6 0.75 0.75

Table 4.8: Solution load stepping.

4.4.1 Mesh refinement study

The lift and moment coefficient’s convergence is assessed for case 1 in Fig-
ures 4.17 and 4.18. The solution is compared with the reference data provided
in [65]. The same level of accuracy as for the incompressible and the com-
pressible subsonic cases is achieved. For a minimum element size smaller than
10−2, the lift relative error is below 2%. Note that the three force analyses
yield very similar results.
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Figure 4.17: NACA 0012 mesh refinement study (α = 1°, M∞ = 0.72).
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Figure 4.18: NACA 0012 mesh refinement study (α = 1°, M∞ = 0.72).
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4.4.2 Pressure coefficient distribution verification

The resulting pressure coefficient distribution is compared with the reference
data in Figure 4.19 for the four test cases. In the transonic regime, subsonic
and supersonic regions coexist in the vicinity of the profile. The supersonic
regions can be identified by comparing the value of the pressure coefficient
to the critical value, marked with a dashed line. If the pressure coefficient is
smaller than the critical value at a given point, the flow is supersonic. Note
that the pressure distribution trend on the upper surface is different from
the subsonic cases, where the flow expands around the leading edge and then
starts compressing. In these cases, the flow continues to expand after going
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Figure 4.19: Pressure coefficient distributions for transonic test cases.
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around the leading edge and returns to subsonic speed through a shock wave.
Figure 4.20 shows the pressure coefficient contour plot in the vicinity of the
airfoil for case 4. In this figure, the stagnation points are indicated in red.
The shock wave can be observed on top of the airfoil.
What is a shock wave? Anderson describes shock waves as extremely thin
regions across which the flow variables can change drastically [66]. This is
precisely what is represented in Figure 4.19, where the pressure coefficient
drastically changes across the shock wave on the upper surface. Note that
an explosive compression process occurs within the shock wave, where the
pressure coefficient increases rapidly across the wave. Also, note that the
flow ahead of the shock is supersonic, whereas the flow is subsonic behind
the shock.
But how does the shock wave appear in the first place? If the freestream
Mach number is progressively increased, at some point, a region of local
supersonic flow appears on the upper surface. Because the flow is supersonic,
pressure waves coming towards this region from behind cannot penetrate the
supersonic pocket, and pressure progressively starts to build at the interface
between the supersonic and subsonic regions.
For M∞ = 0.72, the shock is relatively weak, and the supersonic region is
small. As the Mach number and the angle of attack are increased, the shock
moves aft and becomes stronger, increasing the size of the supersonic region
and requiring more dissipation and more load steps to achieve convergence

Figure 4.20: Pressure coefficient contour plot (α = 2.0°, M∞ = 0.75).

76



4.5 Transonic flow around Korn supercritical airfoil

(Tables 4.7 and 4.8). The results obtained for cases 3 and 4 should be inter-
preted cautiously. Such strong shock waves typically cause the separation
of the boundary layer, deeming the solution outside of the method’s limits
of application. Also, note that the solution’s sensitivity with respect to the
freestream Mach number and angle of attack is very large, leading small
changes of M∞ and α to large changes in the solution.
For all cases, the shock is captured within one element. This gives a sharp
definition of the shock compared to other reference solutions, where the shock
is typically smeared over several grid points. This is probably not because
of the artificial compressibility method but rather a consequence of using
a coarse mesh at the shock’s position. Note that the pressure coefficient is
continuous across the wake, meaning that the wake pressure equality condition
is satisfied.

4.4.3 Newton Raphson’s method convergence

To verify that the Jacobian is also implemented correctly for the transonic
element, the Newton Raphson method’s convergence is evaluated. The resid-
ual’s L2 norm is presented in Table 4.9 for all cases second load step. As for
the compressible subsonic cases, the residual converges quadratically once it
is within the region of quadratic convergence.

Case (1-2) (3) (4)

k Resiual L2 norm: |R|
1 1 · 10−2 1 · 10−2 5 · 10−1

2 4 · 10−3 5 · 10−4 3 · 10−1

3 4 · 10−5 1 · 10−6 9 · 10−2

4 4 · 10−9 9 · 10−12 2 · 10−2

5 9 · 10−12 7 · 10−5

6 8 · 10−10

Table 4.9: Newton Raphson convergence (Step 2: M∞ = 0.71).

4.5 Transonic flow around Korn supercritical airfoil

Supercritical airfoils are designed to delay the onset of wave drag in transonic
flow. During the late 1960s, Richard Whitcomb developed airfoils using
an experimental approach to control the flow’s expansion to supersonic
conditions and its following recompression [67]. Dave Korn made another
major contribution to the development of supercritical airfoils at the NYU
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Courant Institue in the early 1970s when he developed the Korn equation to
estimate transonic airfoils’ performance [68].

4.5.1 Pressure coefficient distribution verification

To further verify the embedded wake approach in transonic conditions, the
flow solution around the Korn supercritical airfoil is compared to the reference
data presented in [65]. The mesh used in this study is shown in Figure 4.21,
where the main characteristics of supercritical airfoils can be observed:

- A relatively large leading edge radius to expand the flow towards the upper
surface.

- A flat upper surface to maintain the supersonic flow at constant pressure
and, in some cases, slow it down slightly before the shock.

- An aft camber to increase the lift.
- An almost parallel upper and lower surfaces at the trailing edge to avoid

flow separation.

The test cases considered in this section are presented in Table 4.10. Note
that the required artificial dissipation increases with the angle of attack and
the Mach number like for the NACA 0012. The resulting pressure coefficient
distribution is compared with the reference data in Figure 4.22. For case 1,
the shock on the upper surface is very weak. After recompression, the pressure

Figure 4.21: Mesh around Korn’s supercritical airfoil.
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Case α M∞ Mcrit µc

(1) 1.0 0.70 0.99 1.0
(2) 2.0 0.70 0.93 1.0
(3) 0.2 0.75 0.91 1.0
(4) 0.7 0.75 0.88 1.6

Table 4.10: Korn supercritical airfoil transonic test cases.
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Figure 4.22: Pressure coefficient distributions for transonic test cases.
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coefficient remains constant and slightly below the critical value. The shock
is captured sharply, and the results are in good agreement with the reference
data. The consequences of increasing the angle of attack by just one degree
are presented at the top right for case 2. The shock has become stronger and
has moved aft by around 20% of the chord. In this case, the area of constant
pressure is no longer after but before the shock. A good agreement is found in
general between the obtained pressure coefficient and the reference, being the
largest disagreements in the vicinity of the shock wave where the solution is
most sensitive. Similar results can be observed for cases 3 and 4, where even
though the angle of attack has been decreased, the freestream Mach number
has been increased, moving the shock even after, increasing the region of
constant pressure, and reducing the critical pressure coefficient. The shock in
case 4 is relatively strong and could lead to the separation of the boundary
layer, meaning that the results would be outside of the range of applicability
of the potential approximation.

4.6 Drag divergence study

Drag divergence is a transonic effect that refers to the rapid increase of the
drag coefficient as the freestream Mach number increases, caused by the
development of a shock wave on the airfoil’s upper surface. The Mach number
at which the onset of drag divergence occurs is denoted drag-divergence Mach
number. In order to verify that the implemented solver can capture this effect
and show the difference between using conventional and supercritical airfoils,
the flow over the NACA 0012 and Korn airfoils is computed for an increasing
freestream Mach number at a constant angle of attack. The resulting drag and
lift coefficients are plotted over the freestream Mach number and against each
other in Figure 4.23, where the critical Mach numbers are marked with black
dashed lines. The critical Mach number is defined as the minimum Mach
number at which the first point on the flow field, typically on the airfoil’s upper
surface, reaches sonic conditions. In order to make the comparison fair, the
angles of attack have been chosen such that both airfoils have approximately
the same lift coefficient under subcritical conditions. The dashed green curve
indicates the theoretical trend that the curves follow after separation occurs
outside the potential solver range of application. This trend is based on wind
tunnel experiments of a symmetric airfoil with a relative thickness of 10%,
so it should not be interpreted quantitatively but rather qualitatively. In
order to discuss the results presented in Figure 4.23, the pressure coefficient
distribution change over the NACA 0012 for an increasing freestream Mach
number is shown in Figure 4.24.
Figure 4.23 shows that in the incompressible and compressible subsonic
regime, below the critical Mach number, the lift increases slowly due to the
flow compressibility effects, while the drag values are zero. This zero drag
result is in accordance with D’Alambert’s paradox. Kutta-Joukowski theorem
shows that the drag over a two-dimensional body under potential flow is
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Figure 4.23: Drag divergence study.
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Figure 4.24: Pressure coefficient change for increasing freestream Mach
number (NACA 0012 α = 2.7°).

zero [66]. The increase in lift can be explained by looking at Figure 4.24
and comparing the change in the pressure coefficient distributions between
M∞ = 0.3 and M∞ = 0.6. Note that the area enclosed by the red data is
larger than the area enclosed by the blue one. The largest changes occur on the
airfoil’s upper surface, where the compressibility effects are more noticeable,
whereas the pressure coefficient remains practically constant on the lower
surface.
Once the critical Mach number is reached, a shock wave starts to develop on
the airfoils’ upper surface, indicating the transonic regime’s beginning. The
top plot in Figure 4.23 shows that right after surpassing the critical Mach
number, the drag coefficient increases relatively slowly. This is because the
shock is fairly weak, and so the associated wave drag is small. If the freestream
Mach number is further increased, the area covered by the supersonic flow on
top of the airfoil grows, and the shock wave moves after becoming stronger
(see the green data corresponding to M∞ = 0.66 in Figure 4.24). In the
beginning, this movement and strengthening of the shock wave happen slowly,
explaining the small increase of drag observed in Figure 4.23.
Nevertheless, there is a freestream Mach number, at which the shock’s move-
ment and strengthening accelerate, causing the drag coefficient to increase
rapidly (see the black data corresponding to M∞ = 0.73 in Figure 4.24 and the
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corresponding change in the NACA 0012 drag coefficient between M∞ = 0.66
and M∞ = 0.73 in the top plot of Figure 4.23). The freestream Mach number
at which this happens is the so-called drag-divergence Mach number, which
for the considered angles of attack is predicted to be around M∞ = 0.66
and M∞ = 0.75 for the NACA 0012 and Korn airfoils, respectively. The
fact that the drag-divergence Mach number is larger for the supercritical
airfoil than for the conventional one shows the substantial benefit of using
supercritical airfoils in the transonic regime. One could argue that this is
not a fair comparison because even though the drag coefficient is larger for
the NACA 0012 than for the Korn airfoil for any given Mach number in the
transonic regime, the lift coefficient is also larger. However, the bottom plot
in Figure 4.23 shows that for the same lift coefficient, the associated drag
is much smaller for the Korn airfoil than for the NACA 0012. Supercritical
airfoils are designed to have significantly better transonic performance than
conventional airfoils, allowing them to fly at larger Mach numbers with less
drag.
If the freestream Mach number is further increased, there is a point in which the
pressure increment across the shock is high enough to produce the separation
of the boundary layer at the shock’s base. Typically, separation occurs when
the local Mach number before the shock is between 1.25 and 1.30, and as
the Reynolds number is high, separation happens when the boundary layer
is already turbulent. Beyond this point, the implemented potential solver
is not applicable anymore, and a solver capturing the viscous effects of the
boundary layer is required.
This study shows that the potential transonic solver with an embedded wake
approach can capture the phenomenon of drag divergence.

4.6.1 Critical Mach number verification

To further verify the transonic solver, the predicted critical Mach number
is compared with the solution obtained via the graphical method illustrated
in Figure 4.25 for the Korn airfoil. This method consists of first plotting the
critical pressure coefficient:

C∗
p =

2

γM2
∞

(1 + γ−1
2

M2
∞

1 + γ−1
2

) γ
γ−1

− 1

 (4.18)

over the freestream Mach number. This curve is marked in blue in Figure 4.25.
Second, the minimum pressure coefficient obtained from the incompressible
solution (Cpmin)inc is used to estimate the minimum pressure coefficient in
compressible flow predicted with the Prandtl-Glauert transformation:

Cpmin =
(Cpmin)inc√
1−M2

∞
(4.19)
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Figure 4.25: Graphical Solution to find M∗
∞ for the Korn airfoil (α = 0°).

Eq. (4.19) is plotted in red over the freestream Mach number in Figure 4.25.
The intersection between both curves yields the sought solution, which is
marked with a dashed line. In this case, the solution obtained with the
graphical method is M∗

∞ = 0.69, which is very close to the value predicted
by the solver (M∗

∞ = 0.67). The solutions are not expected to be the same
because this method uses Prandtl-Glauert transformation, which assumes
that the airfoil is slender (t/c ≪ 1) and that the problem is linear. Still, the
problem at hand fulfills these assumptions (at least to a certain degree), and
so the solutions provided by both methods are very close to each other.

4.6.2 Multi-fidelity analysis study

In total, three different solvers corresponding to three different fidelity levels
have been implemented (Table 4.11). Figure 4.26 and Table 4.12 compare
respectively the pressure coefficient distribution and the aerodynamic co-
efficients obtained with each of the solvers in different flow regimes. To
compare the computational cost between the different fidelities, Table 4.12
also presents the central processing unit (CPU) times required by each solver.
All cases presented in this section were run in serial in a desktop machine
fitted with an Intel Xeon E5-1650 processor (3.5 GHz).
The three solvers are expected to yield identical results in the incompressible
regime (M∞ = 0.01) because they all solve the same equation. Indeed,
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4.6 Drag divergence study

Fidelity level Solver

Low-fidelity Linear incompressible solver

Medium-fidelity Nonlinear compressible subsonic solver

High-fidelity Nonlinear compressible transonic solver

Table 4.11: Fidelity levels implemented in KRATOS.
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Figure 4.26: Pressure coefficient for different fidelity solvers (NACA 0012
α = 2.7°).
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Incompressible flow M∞ = 0.01

Solver cl cd cm Time [s]

Incompressible 0.320 2 · 10−5 2.7 · 10−3 1.8

Subsonic 0.320 2 · 10−5 2.7 · 10−3 2.0

Transonic 0.320 2 · 10−5 2.7 · 10−3 2.3

Compressible subsonic flow M∞ = 0.60

Solver cl cd cm Time [s]

Incompressible 0.320 2 · 10−5 2.7 · 10−3 1.8

Subsonic 0.425 1 · 10−5 1.8 · 10−3 2.3

Transonic 0.425 1 · 10−5 1.8 · 10−3 2.8

Transonic flow M∞ = 0.73

Solver cl cd cm Time [s]

Incompressible 0.320 2 · 10−5 2.7 · 10−3 1.8

Subsonic 0.511 3 · 10−3 1.2 · 10−2 2.5

Transonic 0.677 2 · 10−2 1.5 · 10−2 19.4

Table 4.12: Aerodynamic coefficients and computational time.

the pressure coefficient data lay on top of each other, and the resulting
aerodynamic coefficients are identical. The drag coefficient is not exactly zero
due to the discretization error. The subsonic and transonic solvers require more
time than the incompressible one because they need two Newton Raphson
iterations to converge. The transonic solver takes longer than the subsonic
one due to the larger amount of internal checks inside the element, penalizing
the time it takes to assemble the global Jacobian system matrix.
The nonlinear solvers give the same result in the compressible subsonic regime
(M∞ = 0.60) but different from the linear solver solution. This case is outside
of the range of application of the linear solver, which cannot capture nonlinear
compressibility effects that are especially significant on the airfoil’s upper
surface, as shown in Figure 4.26.
In the transonic regime (M∞ = 0.73), all solvers provide a different prediction.
Note that the linear solver solution is the same as in the incompressible
and compressible subsonic regimes since this solution is independent of the
freestream Mach number. The nonlinear subsonic solver does not implement
an artificial compressibility method and thus cannot capture shock waves.
The transonic solver can capture the shock wave on the upper surface and
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the associated wave drag. The difference between the computational time is
much more noteworthy in this regime. The linear solver only requires one
linear solve and the nonlinear solver converges within seven Newton Raphson
iterations, whereas the transonic solver needs eight load steps to converge,
each step requiring from five to nine Newton Raphson iterations. Note that a
large freestream Mach number was selected for this case to show the difference
between the solvers. However, it may well be that the shock wave is too
strong and causes the separation of the boundary layer, making the transonic
solver also outside of its range of applicability.
In conclusion, the linear solver is always the fastest but provides only accurate
solutions in the incompressible flow regime. The nonlinear subsonic and
transonic solvers require a similar amount of time in the subsonic regime
and provide the same solution. In general, this might make the transonic
solver more appealing than the subsonic one since it provides more accurate
solutions in the low transonic regime.

4.7 3D rectangular wing with NACA 0012 airfoil
section in incompressible flowa

In order to verify the embedded wake approach in three dimensions, first,
the incompressible flow solution around a rectangular wing of aspect ratio
4 at an angle of attack of α = 5° is compared with the solution provided
by XFLR5. XFLR5 is an analysis tool for streamlined bodies flying at low

Figure 4.27: Rectangular NACA 0012 wing’s mesh.
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Reynolds numbers [69]. Figure 4.27 shows the wing’s surface mesh and a clip
of the tetrahedral volume mesh along the symmetry plane. The wake surface is
indicated in black triangles with transparent faces. Note that the wake’s STL
mesh is only used to define the wake’s geometry. The mesh is refined towards
the leading and trailing edges to capture the geometry and the solution
gradients as in the airfoil cases. In contrast to the two-dimensional cases, a
refinement towards the wake is necessary to capture the velocity potential’s
spanwise variation. This requirement is not specific to the embedded wake
approach but also applies to body-fitted wake approaches. The clip of the
tetrahedral mesh in Figure 4.27 shows that the computational mesh in the
vicinity of the wake is much finner. The parameters defining the mesh are
the mesh minimum element size (0.002m), the wing surface mesh growth
rate (0.2), and the volume mesh growth rate (0.64). The domain’s size is
25 meters. The volume mesh has a total of 1.4 · 106 degrees of freedom and
8 · 106 elements. The wing’s surface mesh has 1.2 · 105 degrees of freedom and
2.4 · 105 triangular conditions.

4.7.1 Pressure coefficient distribution verification

Figure 4.28 compares the resulting pressure coefficient distribution with the
solution of XFLR5 at four different wing sections, where each section spanwise
location y is nondimentionalized using the half span b (η = y/b). Note that
the embedded wake approach captures the stagnation point at the trailing
edge in this three-dimensional case.

4.7.2 Potential jump distribution verification

Figure 4.29 shows the potential jump spanwise distribution at the trailing
edge and at the intersection between the wake and a Trefftz plane positioned
at the outlet, justifying the need to refine towards the wake. The linearized
pressure equality condition imposes the potential jump to be constant in the
direction of the freestream velocity. Figure 4.29 shows that this condition is
fulfilled accurately. The largest disagreements occur in the vicinity of the wake
tips, where the mesh at the outlet is too coarse and cannot capture the largest
solution gradients. Note that as the potential jump tends to zero towards
the wake tips, the error introduced in the formulation due to the lack of
conformity between the elements is small. Figure 4.30 presents the potential
jump contour plot at the wake surface, showing that the potential jump
remains constant in the direction of the freestream velocity. In order to show
that the embedded wake approach is also capable of capturing the wingtip
vortices, Figure 4.31 shows a front view of the wing where the streamlines
shed from the wingtips are displayed.
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Figure 4.28: Pressure coefficient distribution at different wing sections.
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Figure 4.29: Potential jump spanwise distribution.
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Figure 4.30: Potential jump contour plot at the wake surface.

Figure 4.31: wingtip vortices.

4.8 3D ONERA M6 wing transonic validation caseb

This section presents the validation and verification of the three-dimensional
potential transonic solver using the proposed embedded wake approach. In
order to do so, the flow solution over the ONERA M6 wing is compared
with wind tunnel test data and with reference solutions from other solvers
using different fluid fidelity levels. The Onera M6 wing is a standard CFD
validation case for external transonic flows due to the complex double shock
appearing on the upper surface and the underlying local supersonic flow. In
this case, the wing is at an angle of attack of α = 3.06° and a freestream Mach
number of M∞ = 0.84. These conditions correspond to Test 2308 described
in [70].

4.8.1 Wing’s geometry and mesh

Onera M6 is a swept, semi-span wing with no twist. The wing’s surface is
constructed via conical generation from the symmetrical ONERA-D airfoil,
i.e., all airfoil sections are homothetical. Figure 4.32 presents the parameters
describing the wing’s planform geometry. The numbers 1 to 6 in Figure 4.32
indicate the position of the sections where the pressure coefficient distribution
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Parameter Value

Span b 1.1963 m

Mean aerodynamic chord c 0.64607 m

Aspect ratio Λ 3.8

Taper ratio λ 0.562

Sweep angle φ25 26.7◦

Leading edge sweep 30.0◦

Trailing edge sweep 15.8◦
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N y/b

1 0.20

2 0.44

3 0.65

4 0.80

5 0.90

6 0.95

Figure 4.32: ONERA M6 planform layout [70].
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is analyzed. The reference area for the computation of the aerodynamic
coefficients is Aref = 0.7532m2. The ONERA-D airfoil coordinates can be
found in [70], where it can be seen that the trailing edge has a finite thickness.
For the purposes of this study, the CAD geometry is taken from [71], where
the trailing edge has been made sharp, as described in [72].

(a) Wind tunnel model [70]. (b) CAD model [72].

Figure 4.33: ONERA M6 models.

Figure 4.34: ONERA M6 wing mesh.
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Figure 4.33 shows the wind tunnel and CAD models. Around the wing’s
surface, a volumetric domain of 25m has been generated, which is discretized
using a tetrahedral mesh. A minimum element size of 0.002m is set at
the leading and trailing edges and the wingtip. The wing’s surface and the
domain’s volume growth rates are 0.2. Figure 4.34 shows the wing’s surface
mesh in blue together with a cut of the tetrahedral volume mesh along η = 0.2
in green. Transparent black triangles indicate the embedded wake surface.
The volume mesh has a total of 1.7 · 105 degrees of freedom and 8.7 · 105
elements. The wing’s surface mesh has 2.7 · 104 nodes and 5.4 · 104 triangular
conditions.

4.8.2 Pressure coefficient validation and verification

Figures 4.35 to 4.38 compare the pressure coefficient distribution, at the
sections indicated in Figure 4.32, with the finite volume potential transonic
solution from [73], the Reynolds-averaged Navier-Stokes (RANS) reference
solution from [74], and the wind tunnel data from [70]. The accuracy of the
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Figure 4.35: Pressure coefficient distribution at different wing sections.
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Figure 4.36: Pressure coefficient distribution at different wing sections.
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Figure 4.37: Pressure coefficient distribution at different wing sections.
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Figure 4.38: Pressure coefficient distribution at different wing sections.

wind tunnel data is +/-0.02. In order to quickly identify the regions where
the flow is locally supersonic, the critical pressure coefficient is indicated with
a dashed line. All data predict the appearance of a double-shock pattern on
the upper surface.
In general, the solution is close to the RANS data, except in the vicinity of
the shock wave in sections 1 to 4 (Figures 4.35 to 4.37). In these sections, the
computed shock wave position is closer to the other full potential solution,
and both full potential solutions predict a shock that is stronger and located
after compared to the RANS and wind tunnel data. As a general rule, the
RANS solution lays closer to the wind tunnel data than the full potential
solutions. In fact, the cp predicted by RANS matches with the wind tunnel
data, except in section 1 (Figure 4.36), where the shock appears to be stronger
and after, and in section 4 (Figure 4.37), where RANS predicts the coalescence
of the two shocks whereas for the wind tunnel measurements this coalescence
happens at a further spanwise location. In sections 5 and 6, the solution
predicted by Kratos accurately matches with the RANS and wind tunnel
data, even regarding the shock’s strength and position. It seems that the other

96



4.8 3D ONERA M6 wing transonic validation case

potential solution has too much artificial dissipation, which would explain
why this curve appears below the rest in the supersonic region, and why the
shock is not as sharply captured as for the rest of the solutions. Note that
the proposed potential solver with an embedded wake approach successfully
captures the pressure gradients and the pressure equality condition in the
vicinity of the trailing edge.

Step M∞ Mcrit µc

1 0.50 0.95 2.0
2 0.60 0.95 2.0
3 0.70 0.95 2.0
4 0.80 0.95 2.0
5 0.81 0.95 2.0
6 0.82 0.95 2.0
7 0.83 0.95 2.0
8 0.84 0.95 2.0
9 0.84 0.95 1.9
10 0.84 0.95 1.8
11 0.84 0.95 1.7
12 0.84 0.95 1.6

Table 4.13: Load steps required to solve the ONERA M6 case.
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Figure 4.39: Contour plots over ONERA M6.
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Onera’s validation case is highly nonlinear, Table 4.13 shows the load steps
used to achieve convergence. Figure 4.39 presents the pressure coefficient and
Mach contour distributions on the wing’s upper surface. Both distributions
capture the three-dimensional lambda-type shock structure formed by the
double-shock pattern on top of the wing.

4.8.3 Aerodynamic loads verification

Crovato et al. provide a rigorous study on the impact of the aerodynamic
fidelity level used in preliminary aircraft design [75]. Following their results,
the solution obtained with the proposed embedded wake approach is compared
to the reference data from five other solvers, including five fidelity levels.
Table 4.14 presents the naming convention used to refer to the fidelity
levels and the corresponding software packages. The aerodynamic coefficients
resulting from the pressure coefficient integration over the wing are given in
Table 4.15. The reference point for the computation of the moment coefficient
is taken at the root’s chord leading edge. Note that Kratos accurately matches
the solution predicted by Tranair. In fact, the lift coefficient is the same up
to the precision used, and the drag and moment coefficients relative errors
lay within 1% and 2%, respectively.
Compared with the other models, the linear inviscid solvers (PAN and NAS)
underestimate the lift and moment coefficients. The drag coefficient predicted
by Panair is very small because it cannot capture the wave drag. Correcting
NAS solution with Euler (NASC) yields results closer to the nonlinear inviscid
models. The nonlinear inviscid solvers (TRN, KRATOS, FLO, and SU2)
overestimate the lift and moment coefficients and underestimate the drag

Model Solver Aerodynamic fidelity level (Equations)

PAN Panair Linear Potential

NAS NASTRAN Linear Potential

NASC NASTRAN Linear Potential corrected by Euler

TRN Tranair Full Potential

KRATOS Kratos Full Potential with Embedded Wake

FLO Flow Full Potential

SU2 SU2 Euler

TRNV Tranair Full Potential and Boundary Layer

SU2V SU2 Reynolds-Averaged Navier-Stokes

Table 4.14: Naming convention [75].
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Model CL CD Cm

PAN 0.247 0.0047 -0.181

NAS 0.248 -0.181

NASC 0.271 -0.201

TRN 0.288 0.0111 -0.212

KRATOS 0.288 0.0112 -0.208

FLO 0.294 0.0110 -0.217

SU2 0.286 0.0130 -0.212

TRNV 0.255 0.0161 -0.181

SU2V 0.272 0.0181 -0.196

Table 4.15: Aerodynamic coefficients obtained with different levels of fidelity
for the Onera M6 wing (α = 3.06°, M∞ = 0.84) [75].

coefficient compared to the viscous solvers (TRNV and SU2V) because they
do not solve the boundary layer, which changes the pressure coefficient
distribution and includes the skin friction drag effect.

4.8.4 Performance comparison

In order to compare the computational cost of the proposed approach with
other solvers, the wall-clock and CPU times required to obtain the solutions
presented in Section 4.8.3 are given in Table 4.16 along with the mesh sizes.
Kratos was run in serial in a desktop machine fitted with an Intel Xeon
E5-1650 processor (3.5 GHz), SU2 was run on a cluster with Intel Xeon X5650
processors (2.7 GHz), and the rest of the solvers were run in serial on a laptop
equipped with an Intel Core i7-7700HQ processor (2.8GHz). According to
Table 4.16, KRATOS performs slightly faster than FLO and slightly slower
than TRN. Note that the comparison is not completely fair since the solvers
were run in different machines. However, this comparison allows assessing
that the time required by KRATOS, TRN, and FLOW is of the same order
of magnitude. This shows that the capability of embedding the wake does not
come at the cost of increasing the computational time nor losing accuracy.
Table 4.16 shows that the linear inviscid solvers provide a much faster solution
compared to the other solvers. This is because they only solve a comparatively
small linear system of equations once, whereas the nonlinear inviscid solvers
require finer meshes and several Newton iterations. The highest fidelity
solvers (SU2 and SU2V) need more time because they have more degrees of
freedom per cell (corresponding to the 5 and 6 equations models) compared
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Model n. Cells 1 n. Threads Wall-Clock Time CPU Time

PAN 1.0 · 103 1 10 s 10 s

NAS 5.0 · 102 1 20 s 20 s

NASC 5.0 · 102 1 20 s 20 s

TRN 5.0 · 105 1 7min 7min

KRATOS 8.7 · 105 1 10min 10min

FLO 5.9 · 105 1 13min 13min

SU2 5.1 · 105 12 14min 3 h

TRNV 5.0 · 105 1 15min 15min

SU2V 1.5 · 106 36 24 h 36 d

Table 4.16: Models mesh size and computational time [75].

to the potential solvers, which only solve for one degree of freedom per cell
(corresponding to the scalar potential equation).

4.8.5 Wake potential jump condition and wingtip vortex

Figure 4.40 shows the potential jump contour plot over the wake surface. Note
that the potential jump is constant along the freestream sheet streamlines,
which means that Eq. (3.44) is applied correctly with the proposed embedded
wake approach. This result is also shown in Figure 4.41, where the potential
jump at the trailing edge and the intersection between the wake and a Trefftz
plane positioned at the outlet is plotted over the dimensionless spanwise
location. The largest disagreements occur in the vicinity of the wake tips
at the outlet, where the mesh is too coarse and cannot capture the largest
solution gradients. As the potential jump tends to zero towards the wake
tips, the error introduced by the lack of conformity between elements can be

Figure 4.40: Potential jump contour plot over the wake surface.

1 For Kratos it is number of elements.
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Figure 4.41: Potential jump spanwise distribution.
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Figure 4.42: Wingtip vortex behind the ONERA M6 wing rolling up from
the trailed vorticity sheet.

neglected.
Four different perspectives of the wingtip vortex behind the ONERA M6
wing are shown in Figure 4.42 to demonstrate that the proposed embedded
wake approach can also capture the wingtip vortices. The top right figure
also shows the pressure coefficient contour plot at the plane x = 1.2m, where
the low-pressure core of the vortex can be identified. This low-pressure core
is related to the high-speed spin reached in the vortex center.
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4.9 NASA Common Research Model transonic
validation and verification case

The Common Research Model (CRM) is a modern commercial aircraft geom-
etry that was developed in a joint effort between Boeing and NASA to assess
the state of the art in CFD [76]. The CRM was developed in the context of
the Drag Prediction Workshops (DPW) initiated by the American Institute
of Aeronautics and Astronautics (AIAA) Applied Aerodynamics Technical
Committee [77]. In order to enable the widest cooperation, the geometries
under study as well as experimental and numerical data for validation and
verification are open source and can be found in the DPW, and the CRM
official websites [78]. The CRM was selected in the context of this thesis in
order to validate the proposed embedded wake approach for an industrial size
full aircraft configuration under transonic conditions and to verify that the
method works for multiple lifting surfaces and trailing wakes. It was also of
interest to investigate whether the method works on blunt and curved trailing
edges. In this section the wing/body/horizontal-tail (WBH) configuration
used in the 4th AIAA CFD DPW is considered [79]. Unless otherwise stated,
the following results were obtained for an angle of attack of α = 2.31° and a
freestream Mach number of M∞ = 0.85 for comparison purposes with the
RANS reference data provided in [80].

4.9.1 Model description

The detailed aerodynamic design of the CRM was developed by the Boeing
Company, whereas the model design, fabrication, and wind tunnel testing of
the CRM were undertaken by NASA’s Subsonic Fixed Wing Project within
the Fundamental Aerodynamics Program. Figure 4.43 shows CRM’s CAD
model and Figure 4.44 shows a photo of the wind tunnel model in the National
Transonic Facility (NTF). Note that since the WBH configuration has two
lifting surfaces, two trailing wakes must be taken into account. Figure 4.45
illustrates the trailing wakes behind the wing and the horizontal stabilizer.

Figure 4.43: CAD model of the CRM.
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Figure 4.44: CRM in the National Transonic Facility [81].

Figure 4.45: The WBH CRM configuration has two trailing wakes.
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The CRM was designed to fly at a cruise Mach number of M∞ = 0.85 and a
lift coefficient of CL = 0.5. Figure 4.46 shows the CRM planform dimensions
and illustrates the yehudi break at 37% of the semispan. It also indicates the
spanwise position of the sections where the pressure coefficient distribution
will be monitored in the following sections. The reference quantities of the
full-scale model are presented in Table 4.17. Details about airfoil information
at the wing’s 21 defining stations are provided in [76]. As described in [76],

58.76m

62.79m

Section 6 η = 0.8456

Section 5 η = 0.7268

Section 4 η = 0.5024

Section 3 η = 0.3700

Section 2 η = 0.2828

Section 1 η = 0.1306

Figure 4.46: CRM planform dimensions.
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Parameter Value

Reference area Aref 383.69m2

Span b 58.76m

Mean aerodynamic chord c 7.00m

Taper ratio λ 0.275

Leading edge sweep φ 35.0◦

Aspect ratio Λ 9.0

Table 4.17: Reference quantities of the CRM [76].

the contemporary transonic supercritical wing was designed to have high
performance for both configurations: with and without the nacelle/pylon group.
The wing’s design was achieved using SYN107 to optimize the wing taking
the fuselage’s effect into account. SYN107 is a wing/body Navier-Stokes code
for analysis and design developed by Jameson [82]. The wing has a blunt
trailing edge to allow for a minimum-gauge fabrication constraint. Further
details about the wing’s geometry such as maximum thickness, maximum
camber and twist distributions can be found in [76].
The horizontal stabilizer was sized following characteristic control and stabil-
ity specifications and was designed for dive Mach number conditions. The
parameters describing its planform are presented in Table 4.18. The tail is
defined by two symmetric airfoil sections, a 10%-thick section at the symmetry
plane, and an 8%-thick airfoil at the tip. The fuselage is typical of a wide/body
commercial aircraft. It includes a wing-body fairing and a scrubbing seal for
the horizontal stabilizer.

Parameter Value

Area A 92.90m2

Span b 21.34m

Mean aerodynamic chord c 4.70m

Taper ratio λ 0.35

Quarter-chord sweep φ25 37.0◦

Aspect ratio Λ 4.90

Table 4.18: Parameters describing the horizontal stabilizer’s planform [76].
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For the purpose of this study, the CAD geometry was downloaded directly
from the 4th AIAA CFD DPW official website [79]. The downloaded CAD
contained several holes between the surfaces that were closed using GiD [83].
Exploiting the symmetry of the geometry and boundary conditions, only half
of the aircraft was modelled. Based on the domain size studies presented
in Section 4.1.4, a volumetric domain of 1000m was generated around the
vehicle.

4.9.2 Mesh refinement study

In order to study the sensitivity of the solution with respect to the mesh size,
a mesh refinement study is presented. The meshes were first generated using
Salome and they were then automatically refined towards the wake using a
metric-based technique. Table 4.19 presents the mesh information for each
refinement level before and after the wake refinement. Note that the wake
refinement involves adding approximately the same number of nodes and
elements for each refinement level, namely about 726,000 nodes and 4,320,000
elements.
Figure 4.47 shows a side view of the finest mesh generated in Salome before
the wake refinement. The clip of the tetrahedral volume mesh is indicated in
light red, the model’s surface mesh is indicated in grey, and the mesh used for
the wing and tail wakes are indicated in light yellow and blue, respectively.
The tetrahedral volume mesh was achieved using the NETGEN algorithm
allowing for a maximum element size of 50m in the far-field and using an
element growth rate of 0.2. The triangular surface meshes were also generated
with the NETGEN algorithm. The minimum element size was set at the
wingtips and the leading and trailing edges, and is denoted as h in Table 4.19.
The maximum element sizes at the wing and tail surfaces were set to 0.1m
(but for the very coarse grid, where they were set at 0.16m). The maximum
element size at the fuselage was set to 0.25m.

CRM surface mesh
Volume mesh before/after wake refinement

Before refinement After refinement

Mesh label h [m] Nodes Triangles Nodes Tetrahedra Nodes Tetrahedra

Very coarse 0.16 29,726 58,928 142,769 736,658 869,255 5,061,239

Coarse 0.08 65,957 131,390 300,847 1,562,546 1,026,420 5,881,704

Medium 0.04 76,135 151,746 349,563 1,817,714 1,077,844 6,152,143

Fine 0.02 109,044 217,564 514,495 2,689,007 1,240,153 7,008,497

Very fine 0.01 173,046 345,568 828,145 4,345,664 1,554,135 8,667,159

Table 4.19: Mesh sequence used for the convergence study.
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Figure 4.47: CRM surface and volume mesh including wake (h = 0.01m).
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Figure 4.48: Pressure coefficient distribution convergence.
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Figure 4.49: Pressure coefficient distribution convergence.

The resulting pressure coefficient distribution is presented in Figures 4.48
and 4.49 at two wing sections for each refinement level. In order to stop the
Newton Raphson iterations, a tolerance of 10−8 for the residual L2 norm was
set as a convergence criteria. The critical pressure coefficient is indicated with
a dashed line. The largest sensitivity of the solution occurs in the vicinity of
the shock wave. Lower mesh resolutions predict the shock wave to be further
upstream. The finest grid was selected for the subsequent sections.

4.9.3 Pressure coefficient validation and verification

To validate and verify the proposed method, the resulting pressure coefficient
distribution is compared with RANS and wind tunnel reference data at
six different wing sections along the span. The comparison is presented in
Figures 4.50 to 4.52. The RANS data corresponds to the CFL3D results
presented in [80, 84], and the wind tunnel measurements are presented in
[85]. There is no wind tunnel data for section 3. As in the other examples,
the proposed method accurately matches with the RANS data in most of
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Figure 4.50: Pressure coefficient distribution at different wing sections.
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Figure 4.51: Pressure coefficient distribution at different wing sections.
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Figure 4.52: Pressure coefficient distribution at different wing sections.
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the domain. The largest discrepancies occur close to the shock wave and the
trailing edge. As expected, the full-potential solver predicts the position of
the shock wave further downstream compared to RANS and the experiments.
The differences at the trailing edge are associated with the fact that the
potential solver cannot predict the separation at the blunt trailing edge.
Instead, the potential solver enforces the wake boundary conditions, leading
to an overestimation of the pressure coefficient. The discrepancies between
the RANS and wind tunnel data are related to the effects of the model support
system and the static aeroelastic deformation presented in [86].

4.9.4 Aerodynamic loads validation and verification

The aerodynamic loads obtained with the proposed FPS are compared with
RANS and wind tunnel reference data in Table 4.20. The RANS data corre-
sponds to the CFL3D results presented in [80, 84] and the statistical analysis
of continuum data presented in the 4th DPW [87]. The NTF wind tunnel
data is also presented in [87]. For comparison purposes, the same angle of
attack as the one obtained with CFL3D is used. As expected and as for the
Onera M6 wing validation case, the full-potential solver overestimates the
value of the lift coefficient compared to the reference data. This result can be
explained by looking at the pressure coefficient distributions presented in the
previous section (see Figures 4.50 to 4.52). Since the FPS predicts the shock
wave’s position on the upper surface further downstream compared to the
RANS solution, the area enclosed by the pressure distribution curve and thus
the lift coefficient are larger for FPS than for RANS. Opposingly, the total
drag coefficient CD is underestimated and the skin-friction drag coefficient is

Model α CL CD CDpr CDsf Cm

KRATOS FPS 2.31° 0.568 0.0137 0.0137 0.0 -0.060

CFL3D [80] RANS 2.31° 0.500 0.0267 0.0140 0.0127 -0.039

NTF wind tunnel [87] 3.02° 0.500 0.0272 - - +0.038

4th DPW RANS 4th DPW statistical analysis of continuum data [87]

Average 2.34° 0.500 0.0270 0.0147 0.0123 -0.040

σ 0.097° - 0.0008 0.0008 0.0005 0.016

Avg + σ 2.44° - 0.0278 0.0155 0.0128 -0.024

Avg − σ 2.24° - 0.0262 0.0139 0.0119 -0.056
σ

|Avg| 0.04 - 0.0300 0.0564 0.0381 0.400

Table 4.20: CRM aerodynamic coefficients (M∞ = 0.85). Comparison
between different models [80, 87].
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zero because the potential solver cannot capture the viscous effects. However,
the predicted drag pressure coefficient CDpr accurately matches the reference
data, being only four counts apart from the CFL3D result and ten counts from
the 4th DPW average value. Regarding the pitching moment coefficient Cm,
even though the obtained value underestimates the reference value obtained
with CFL3D, it lies close to the 4th DPW lower bound determined by the
pitching moment coefficient average value minus one standard deviation. The
fact is that in the 4th DPW a large spread among the pitching moment coef-
ficient values obtained with different RANS solvers and a large discrepancy
between numerical and experimental data were found [87]. As mentioned in
the previous section, the discrepancies between the RANS and wind tunnel
data are attributed to the effects of the model support system and the static
aeroelastic deformation presented in [86].

4.9.5 Potential jump across embedded wakes

Figure 4.53 presents the resulting velocity potential contour plot on the
aircraft’s surface and the symmetry plane. The proposed method is capable
of capturing the jump in the potential across both embedded wakes. Note
that the jump is also captured at the intersection between the wake and the
fuselage. This shows the substantial benefit of using the proposed embedded
wake approach, where the wake does not need to be explicitly represented in
the mesh.

Figure 4.53: Potential jump across the embedded wakes.
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Upper surface

Lower surface

Figure 4.54: Isobars of the CRM wing/body/horizontal-tail (α = 2.31°,
M∞ = 0.85).
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Upper surface

Lower surface

Figure 4.55: Local Mach number contour plot (α = 2.31°, M∞ = 0.85).
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4.9.6 Contour plots and wingtip vortices

Figures 4.54 and 4.55 provide the upper and lower surface pressure coefficient
and the local Mach number contour plots, respectively. The upper-surface
shock system is swept along constant x/c in the mid-span area, reducing
strength on the outboard. This behavior can also be observed in the detailed
pressure coefficient distributions presented in the previously in Figures 4.50
to 4.52. These results are qualitatively in accordance with the findings reported
in [87]. Figure 4.56 presents the resulting streamlines forming the wingtip
vortices.

Figure 4.56: Wingtip vortices behind the CRM (α = 2.31°, M∞ = 0.85).

4.9.7 Nacelle-pylon effect

In order to show that the proposed solver can be used for more complex
configurations, this section presents the effects of installing the nacelle/pylon
(NP) group. A similar study is presented in [76] without the horizontal-tail.
Figure 4.57 shows the full CRM wing/body/nacelle/pylon/horizontal-tail

Figure 4.57: CRM wing/body/nacelle/pylon/horizontal-tail CAD model.
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Figure 4.58: Large-diameter flow-through nacelle and pylon CAD models.

configuration and Figure 4.58 presents a detailed view of the NP group’s
CAD model. The CRM nacelle’s design consists of a single-cowl, high by-pass
ratio, flow-through concept. The exit area has been sized to achieve a natural,
unforced mass-flow-ratio representative of commercial aircraft engines at
cruise [76]. The nacelle/pylon (NP) group is located at y = 9.67m (η = 0.33)
and has been meshed using an element size of 0.05m. Figure 4.59 shows the
surface mesh as well as the volume mesh surrounding the nacelle.
Table 4.21 presents a comparison of the lift and drag coefficients between both
configurations. The addition of the NP group yields a decrease in lift and an in-
crease in drag. These trends are the same as the ones measured in the NTF as
reported in [81]. The comparison between the pressure coefficient distribution
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Figure 4.59: Nacelle and pylon mesh.

Configuration CL CDpr

WBH 0.5117 0.0107

WBNPH 0.4850 0.0189

Table 4.21: CRM aerodynamic coefficients obtained with the proposed solver
(α = 2.0° and M∞ = 0.85). Nacelle-pylon effect.

of the wing/body/horizontal-tail (WBH) and the wing/body/nacelle/pylon/-
tail (WBNPH) configuration is presented in Figures 4.60 to 4.64 for an angle
of attack of α = 2.0° and a freestream Mach number of M∞ = 0.85. Note that
the NP group is located between sections 2 and 3. Consequently, the resulting
pressure coefficient distributions show that the largest effect induced by the
NP group occurs in the inboard section (Sections 1, 2 and 3 in Figures 4.60
and 4.61), especially on the lower surface at section 2. In this section, the NP
group leads to flow acceleration, which results in the development of a shock
wave on the lower surface (see Figure 4.61). The outboard sections (4, 5 and
6) are less affected by the inclusion of the NP group, decreasing its effect
with increasing spanwise position. These findings are in accordance with the
comparison between WB and WBNP presented in [76].
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Figure 4.60: Pressure coefficient distribution at different wing sections
(α = 2.31°, M∞ = 0.85).
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Figure 4.61: Pressure coefficient distribution at different wing sections
(α = 2.31°, M∞ = 0.85).

120



4.9 NASA Common Research Model transonic validation and verification case

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

Cp
Section 5 η = 0.7268

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x/c

Cp
Section 6 η = 0.8456

WBH WBNPH C∗
p

Figure 4.62: Pressure coefficient distribution at different wing sections
(α = 2.31°, M∞ = 0.85).
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Wing/body/horizontal-tail

Wing/body/nacelle/pylon/horizontal-tail

Figure 4.63: Nacelle-pylon effect on wing upper surface isobars.
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Wing/body/horizontal-tail

Wing/body/nacelle/pylon/horizontal-tail

Figure 4.64: Nacelle-pylon effect on wing lower surface isobars.
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Chapter 5

Conclusions

5.1 Summary

This dissertation presents an embedded wake method for potential transonic
solvers. The method works both in two and three dimensions. The solver
is intended to be used in the context of multidisciplinary optimization at
the early stages of aircraft design, where fast, fluid solutions are required
due to the large number of fluid evaluations involved. To this end, the
finite-element method is utilized to discretize the flow field. Unstructured
meshes are employed to simplify the handling of complex geometries. The
idea of using an embedded wake approach is motivated by the difficulties
stemming from explicitly representing the wake within the mesh that have
been reported in previous publications and that are introduced in Section 1.1.
The proposed method resolves the full-potential equation, the lowest fidelity
fluid model capable of capturing transonic effects without assuming slender
bodies. This method can also be used to initialize the flow field and speed up
the convergence of higher fidelity solvers.
A brief review of the main developments in numerical potential transonic
solvers is presented in Section 1.2. This survey goes from the key breakthrough
by Murman and Cole in 1970 to the recent developments published by Eller in
2012. The survey shortly discusses the different grid approaches and motivates
the use of the unstructured discretization technique used in this thesis to
handle complex shapes.
The aspects of the behavior of typical aerodynamic flows that allow reducing
the Navier-Stokes equations to the full-potential equation are introduced in

125



5 Conclusions

Chapter 2. It is shown that typical aerodynamic flows are characterized by
high Reynolds numbers, which allows neglecting the viscous effects outside of
attached boundary layers, trailing wakes, and shock waves. With the further
assumption of no heat addition due to radiation or chemical reactions, the flow
can be assumed to be isentropic. Moreover, it is shown using the Helmholtz
vorticity transport equation that for isentropic flows, the vorticity is confined
in the boundary layer and the wake if the freestream is irrotational. This
means that the outer inviscid flow can be assumed to be irrotational, and
thus the velocity may be expressed as the gradient of the potential.
Furthermore, the continuity equation can be expressed as the full-potential
equation considering steady-state flow. The numerical solution of the FPE
is very challenging due to its mixed-type nature. The classification of the
FPE according to the different flow regimes is described in Section 2.3.1. The
characteristic equation and the FPE in the nonconservative form are used to
derive the discriminant of the quadratic solution, which shows that the FPE
is elliptic, parabolic and hyperbolic, for subsonic, sonic, and supersonic flow,
respectively.
The boundary conditions are presented in Section 2.3.2. Since the FPE and
the remaining boundary conditions are only defined in terms of the velocity
potential derivatives, a Dirichlet condition is required to define the value
of the potential. Moreover, because the wake intersects the outlet and the
value of the potential jump across the wake is unknown a priori, the Dirichlet
condition must be applied at the inlet. At infinity, the disturbance introduced
by the body on the flow decays to zero. In practice, in the presented method,
the infinity condition is applied as a Neumann condition at the outlet by
imposing the outflow flux to be the freestream flux. This approximation
introduces an error related to the fact that the infinity condition is applied at
a finite distance from the body. Because the viscosity effects are neglected, the
standard no-slip boundary condition is replaced by a slip condition where the
normal velocity component to the body is set to zero, leaving the tangential
component arbitrary. In this approach, the wake roll-up is not computed, and
the wake is modeled as a straight line (in 2D) or surface (in 3D) extending
from the trailing edge in the direction of the freestream velocity. In order to
relax this assumption, flux is allowed across the wake. The wake boundary
conditions then become conservation of mass and equality of pressures across
the wake. The equality of pressures condition stems from the fact that the
wake is thin and can thus not support pressure jumps.
Based on the theory introduced in the preceding chapter, the proposed po-
tential transonic solver is described in Chapter 3. First, the strong form
and boundary conditions are defined over the specific domains considered
in this work. The finite-element discretization is introduced in Section 3.2,
emphasizing the problems that appear when the flow becomes supersonic
and motivating the use of the artificial compressibility method explained
in Section 3.3. For large local velocities, the isentropic relations become ill-
defined, and a remedy is required for the regions of large flow curvature, such
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as the wingtips’ trailing edge. The problem and a remedy are described in
Section 3.4.
After introducing the specifics of all required methodologies required to solve
transonic flow using the FPE, the proposed embedded wake approach is pre-
sented, which is the novelty of this work. The embedded wake approach uses
additional degrees of freedom to enrich the finite-element space to support
a jump in the potential across the wake. This approach allows efficiently
representing the wake implicitly within the mesh. The wake boundary con-
ditions are then applied using a least-squares finite-element approach. The
differences between two- and three dimensions are highlighted. Several points
require special attention when using this method. In particular, three problems
stemming from embedding the wake and the solutions developed within this
dissertation are described. The most crucial issue is probably related to the
small-cut elements that deteriorate the system’s conditioning. Divisions by
close to zero values in the computation of the shape functions’ derivatives
cause the system’s large condition numbers. In order to solve this problem, a
full integration approach has been developed. This approach has proven to
be very effective in maintaining the systems condition number well defined,
increasing the method’s robustness. Another issue is related to the nodes
lying on the wake. This yields a zero potential jump on those nodes resulting
in a wrong overall solution. In the proposed method, nodes lying on the
wake are displaced a small distance to ensure the correct definition of the
potential jump. Trailing edge nodes are also lying on the wake. However,
these nodes require special treatment. Because these nodes are also on the
surface describing the body, the slip boundary condition is applied instead of
the wake boundary conditions. Still, two degrees of freedom are required in
the trailing edge nodes to support the potential jump. In the course of the
thesis, it has been noted that the obtained flow solution is highly sensitive to
the implementation used at the trailing edge. All these aspects are described
in detail in Section 3.5.
With the entire potential transonic solver methodology presented, the last
part of Chapter 3 describes the implementation of the proposed method in the
finite-element framework KRATOS Multiphysics. After introducing Kratos’
structure, the potential flow application is presented. In total, three solvers
have been implemented: an incompressible solver, a compressible subsonic
solver, and a transonic solver. The incompressible solver uses a linear strategy
and the implemented incompressible potential flow element. The compressible
solvers use the Newton Raphson strategy and the implemented compressible
subsonic and transonic elements, respectively. The embedded wake is detected
and defined via a process at the initial stage of the simulation. The freestream
conditions are applied via the implemented apply far-field process. The wake
boundary conditions are automatically handled within the element exploiting
the proposed residual formulation. The description of the implementation in
KRATOS Multiphysics can be found in Section 3.6.
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In order to establish confidence with the numerical results, the proposed
method is validated and verified in Chapter 4. A tool has been developed
using bash and python to automatically run parameter studies and compare
the results with reference data. The tool uses the open-source software Sa-
lome to generate the CAD model and the triangular and tetrahedral meshes
using the NETGEN algorithm. Salome’s output mesh format is converted
into Kratos’ input mesh format using Kratos Salome Plugin’s open-source
software. Additionally to the validation and verification test cases, a drag
divergence study and a multi-fidelity study are presented to examine the
solver’s capabilities. In total, two 2D models and two 3D models have been in-
vestigated: the NACA 0012 airfoil, the Korn supercritical airfoil, a rectangular
wing with NACA 0012 airfoil section, and Onera M6 wing.
The flow solution about NACA 0012 airfoil is computed in three flight regimes:
incompressible, compressible subsonic, and transonic. For the incompressible
case, a mesh refinement study and a domain size study are presented for
an angle of attack of 5°. In the mesh refinement study, the pressure, lift,
and pitching moment coefficients are compared to the solution provided
by XFOIL. XFOIL is a panel solver. The meshes are refined towards the
leading and the trailing edge, where the solution gradients are the largest.
The resulting pressure coefficient distribution presents an accurate matching
with the reference data. The lift coefficient is computed in three different
ways: using a near-field analysis, using the Kutta-Joukowski theorem, and
using a far-field analysis.
The near-field analysis consists of integrating the pressure coefficient over the
airfoil. The Kutta-Joukowski theorem makes use of the value of the potential
jump across the wake. The far-field analysis uses the integral momentum
theorem. The solution converges to a value close to the reference data. The
relative error lies below 7% for all meshes and below 1% for the three most
refined meshes. This small disagreement is associated with the fact that two
different methods are being compared. On the one hand, the panel method is
a singularity method in which the far-field conditions are satisfied exactly. On
the other hand, the proposed approach is a grid method where the far-field
boundary conditions are applied at a finite distance from the airfoil. In order
to determine the impact of the far-field boundary conditions on the solution,
a domain size study is presented.
In the domain size study, the size of the fluid field is gradually increased.
The solution shows how the relative error drops from 0.5% to a value below
0.2% using a constant minimum element size of h = 10−6. 0.2% is a very
small error that can be related to discretization errors, the different wake
models between both methods, and differences between the models’ geometries.
Furthermore, the far-field and potential jump analysis yield the same relative
error, which is 0.02% apart from the error predicted with the near-field analysis.
This difference might also be related to the discretization error. In fact, the
mesh refinement study shows that this difference decreases by decreasing the
minimum mesh size.
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Interestingly, the results show that in 2D the proposed embedded wake
approach does not require a refinement towards the wake. This property
constitutes another advantage of this approach.
The value of the lift coefficient is compared with wind tunnel data for different
angles of attack to validate the solution. As expected, a better matching is
observed for small angles of attack, where the boundary layer is fully attached,
and the potential flow assumptions are fulfilled. The same behavior is observed
when looking at the pressure coefficient distribution. For an angle of attack
of 0° an accurate agreement is achieved. For 10° and 15° the pressure is
underestimated in the suction peak, yielding an overestimation of the lift
coefficient. The pressure underestimation is related to the overestimation of
the velocity magnitude because viscous effects are neglected, and the boundary
layer is not resolved. Beyond 15° stall occurs, which cannot be captured with
the current method.
To verify that the Jacobian is correctly implemented for the compressible
subsonic and transonic solvers, the Jacobian entries obtained for a single
triangular and tetrahedral elements are compared with the finite difference
calculation. This comparison shows that the results match up to a tolerance
of 10−10, meaning that the Jacobian represents the residual’s derivative.
The compressible subsonic solution around the NACA 0012 is verified by
means of a mesh refinement study for two cases: a lifting case with α = 2°
and M∞ = 0.63, and a non-lifting case with α = 0° and M∞ = 0.72. The
results are compared with reference data. The resulting pressure coefficient
distribution accurately matches the reference data. For the lifting case, the
relative error converges to a value below 1%. For the non-lifting case, the
absolute error lies below 5 · 10−4. Newton Raphson’s method converges
quadratically when the solution is in the region of quadratic convergence,
which gives further confidence that the Jacobian is correctly implemented.
The solution converges within five to ten iterations with an absolute tolerance
of 10−10.
In order to verify the solver in the lower transonic flight regime, the flow
solution around the NACA 0012 is compared to the results predicted by
FLO36 for four test cases. The pressure coefficient distribution presents an
accurate matching with the reference data, including the shock wave position
and strength. The lift coefficient relative error converges to a value below
0.5%, and Newton’s method exhibits quadratic convergence. The transonic
solver is further verified by comparing the pressure coefficient distribution
obtained about Korn supercritical airfoil with the solution provided by FLO36
for four test cases. In general, a good agreement with the reference solution
is observed. The most significant disagreements occur in the vicinity of the
shock wave, where the solution is most sensitive to the selected values of
artificial dissipation.
The variation of the drag coefficient with the freestream Mach number is
presented in Section 4.6 for both airfoils at a constant angle of attack for

129



5 Conclusions

the different flight regimes. This study allows checking whether the imple-
mented solver is capable of capturing the phenomenon of drag divergence. As
expected, the results predict a larger drag-divergence Mach number for Korn
supercritical airfoil compared to the NACA 0012 airfoil. In order to compare
the performance of both airfoils, the variation of the lift coefficient is also
presented.
In the incompressible and compressible subsonic regime, below the critical
Mach number, the lift increases slowly with the freestream Mach number due
to the flow compressibility effects. In these regimes, drag values are zero, as
expected from the potential flow theory. The pressure coefficient distribution
shows small changes on the lower surface compared to the upper surface. On
the upper surface, the expansion of the fluid yields a decrease in pressure,
which explains the observed increase of the lift coefficient.
Once the critical Mach number is reached, a shock wave starts to develop
on the airfoils’ upper surface, indicating the transonic regime’s beginning.
Right after surpassing the critical Mach number, the drag coefficient starts
to increase. Initially, the drag coefficient is small because the shock wave
is relatively weak, so the associated wave drag is small. If the freestream
Mach number is further increased, the solver predicts that the area covered
by supersonic flow on top of the airfoil grows, and the shock wave moves
after becoming stronger. In the beginning, this movement and strengthening
of the shock wave happen slowly, explaining the slight increase of the drag
coefficient. At a certain freestream Mach number, the shock’s movement and
strengthening accelerate, causing the drag coefficient to increase rapidly. The
freestream Mach number at which this happens is the so-called drag-divergence
Mach number. For the considered angles of attack, the drag-divergence Mach
number is predicted to be around M∞ = 0.66 for the NACA 0012 and
M∞ = 0.75 for the Korn airfoil. The fact that the drag-divergence Mach
number is larger for the supercritical airfoil than for the conventional one
shows the substantial benefit of using supercritical airfoils in the transonic
regime. One could argue that this is not a fair comparison because even though
the drag coefficient is larger for the NACA 0012 than for the Korn airfoil for
any given Mach number in the transonic regime, the lift coefficient is also
larger. However, simultaneous comparison of the lift and drag coefficients
shows that for the same lift coefficient, the associated drag is much smaller for
the Korn airfoil than for the NACA 0012. Supercritical airfoils are designed
to have significantly better transonic performance than conventional airfoils,
allowing them to fly at larger Mach numbers with less drag.
If the freestream Mach number is further increased, there is a point in which the
pressure increment across the shock is high enough to produce the separation
of the boundary layer at the shock’s base. Typically, separation occurs when
the local Mach number before the shock is between 1.25 and 1.30, and as
the Reynolds number is high, separation happens when the boundary layer
is already turbulent. Beyond this point, the implemented potential solver
is not applicable anymore, and a solver capturing the viscous effects of the
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boundary layer is required.
In order to further verify the transonic solver, the predicted critical Mach
number is compared with the solution obtained via a graphical method. The
method consists of plotting the critical pressure coefficient and the minimum
pressure coefficient obtained with Prandtl-Glauert’s transformation for a
range of freestream Mach numbers. The intersection between both curves
yields an estimation of the critical Mach number that can be compared with
the value predicted by the solver. Both predictions are close to each other,
establishing further confidence with the numerical results.
The limits of application of the incompressible, compressible subsonic, and
transonic solvers are compared in a multi-fidelity analysis study. To this end,
the resulting pressure coefficient distribution, aerodynamic coefficients, and
computational time are contrasted at different flight regimes. Expectedly, in
the incompressible regime (M∞ = 0.01), all solvers predict the same result
in approximately the same time. In the compressible regime (M∞ = 0.6),
the subsonic and transonic solvers yield the same results. The incompressible
solver underestimates the value of the lift coefficient because it cannot capture
the compressibility effects on the top airfoil’s surface. In the transonic regime
(M∞ = 0.73), the transonic solver takes longer to converge but is expected to
deliver more accurate results compared to the compressible and incompressible
solvers. The compressible solver underpredicts the aerodynamic coefficients
because it cannot capture the transonic effects. The incompressible solver
yields the same result in all regimes since the aerodynamic coefficients are
independent of the freestream Mach number. In conclusion, the transonic
solver is preferred because it yields the same solution as the other solvers in
subsonic conditions without major extra cost and can also capture transonic
effects in the lower transonic regime as long as the boundary layer is still
attached. If fast solutions are preferred in the transonic regime and accuracy
is not essential, the subsonic solver can be used, bearing in mind that the
aerodynamic coefficients are underestimated and that the solution does not
represent the physics where the flow is supersonic.
The first verification case in three dimensions considers a rectangular wing
with NACA 0012 airfoil section and aspect ratio 4 at an angle of attack of
5° in incompressible flow. The solution predicted with the proposed method
is compared with the result provided by XFLR5. The resulting pressure
coefficient at different span sections shows that the proposed solver reproduces
the reference data. In contrast to the two-dimensional cases, a refinement
towards the wake is necessary to capture the velocity potential spanwise
variation. However, this refinement is not required due to the presented
embedded approach but is a general requirement that applies to all CFD
solvers. Furthermore, the results show that the embedded wake approach
successfully imposes the linearized pressure equality condition. The predicted
potential jump distribution shows that the nonconformity at the wake tips
does not introduce large errors because the potential jump is zero. The
proposed embedded wake approach can also predict the wingtip vortices,
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which are highly related to induced drag.
The second three-dimensional example is ONERA M6 wing transonic valida-
tion case. In this case, the wing is at an angle of attack of α = 3.06° and a
freestream Mach number of M∞ = 0.84. Since this case is highly nonlinear,
a load control approach is necessary to achieve the convergence of Newton
Raphson’s method. The pressure coefficient and local Mach number contour
plots show that the proposed solver predicts the double-shock pattern on the
wing’s upper surface. The pressure coefficient distribution is compared at six
different sections with reference data from another finite volume potential
transonic solver, a RANS solver, and wind tunnel measurements. The solution
predicted with the proposed approach lies close to the RANS data over most
of the surface. The stronger shock is predicted at the same position as the
other full-potential solver, which is further downstream than the position
predicted by the RANS and experimental data. The reason for this result is
that the potential solvers cannot capture the viscous effects. The aerodynamic
coefficients are obtained by integrating the pressure coefficient over the wing’s
surface, and they are compared with the solution provided by other solvers
using different fidelity levels. The predicted coefficients are close to the other
full-potential solvers’ predictions.
Compared to Tranair’s solution, the value of the lift coefficient is the same up
to the precision used, and the drag and moment coefficients relative errors lay
within 1% and 2%, respectively. The predicted solution is closer to the RANS
solution compared to the linear inviscid solvers, which underestimate the lift
and moment coefficients because they cannot capture the transonic effects.
However, the FPSs overestimate the values of lift and moment coefficient
compared to the RANS solver. This lift overestimation is related to the
delayed predicted shock wave position mentioned above, which yields a larger
area enclosed by the pressure coefficient distribution for the FPSs. The drag
coefficient is underestimated compared to the RANS prediction because the
FPSs do not capture the viscous effects. When comparing the computational
cost, it is observed that the potential linear solvers are the cheapest, followed
by the full-potential solvers. The Euler solver comes in third place, and the
most expensive solution is provided by the RANS solver. This comparison
shows that the FPSs are still an attractive alternative to provide fast flow
solutions capturing nonlinear transonic effects at the early stages of aircraft
design, where a large number of fluid evaluations are required.
The last three-dimensional example is NASA Common Research Model (CRM).
NASA CRM is a modern commercial aircraft geometry. In this case, the
aircraft is at an angle of attack of α = 2.31° and a freestream Mach number
of M∞ = 0.85. This study aims to validate and verify that the solver also
works for a complete aircraft configuration with two trailing wakes and that
it can cope with blunt and curved trailing edges. The pressure coefficient and
local Mach number contour plots show that the proposed embedded solver
can capture the swept-shock pattern on the wing’s upper surface. As for
the ONERA M6 wing, the pressure coefficient distribution is compared at
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six wing sections with reference data from a RANS solver and wind tunnel
measurements. The most significant differences between the data appear
in the vicinity of the shock wave, which is predicted further downstream
with the proposed solver compared to the reference data. As for the previous
validation case, this explains the overestimation of the lift coefficient. The
total drag coefficient is underestimated because the skin friction is neglected
in the potential flow theory. However, the resulting pressure drag coefficient
lies close to the reference values with a relative error of 2.1% compared to the
CFL3D reference value and of 6.8% compared to the average value provided
in the 4th DPW. The error related to the pitching moment coefficient is very
large compared to the CFL3D and wind tunnel test’s reference values, but
it lies within a 6.7% relative error with respect to the lower bound provided
by 4th DPW. Taking into account that the agreement between the RANS
and wind tunnel data is very poor, and that the spread among the values
predicted with different RANS solvers is very large, the suitability of this
comparison is questionable. Still, this validation and verification case shows
that the proposed solver can capture nonlinear transonic effects for a full
aircraft configuration with blunt and curved trailing edges, making it a tool
that could potentially be used at the early stages of aircraft design.
The resulting potential contour plot around NASA CRM demonstrates the
substantial benefit of using the proposed embedded wake approach, which can
successfully capture the discontinuity across both trailing wakes. Furthermore,
a nacelle-pylon effect study shows that the solver can be used for more complex
configurations.
In conclusion, this thesis treated the problem of developing a method to
embed trailing wakes within unstructured grids for the effective application of
finite-element transonic potential solvers in the context of aircraft aeroelastic
optimization during the conceptual stages of design. The method works both
in two and three dimensions. The jump in the potential across the wake
is enabled by enriching the finite-element space with auxiliary degrees of
freedom in the wake elements. These auxiliary degrees of freedom are also
used to impose the wake boundary conditions. A full-integration approach is
proposed to avoid the bad system conditioning stemming from the small-cut
elements. The validation and verification cases show that the method yields
a similar accuracy compared to other potential solvers without requiring an
additional refinement to capture the embedded wake. Thus, the proposed
embedded wake approach does not entail extra computational cost compared
to the standard wake-mesh-fitted approaches.
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5.2 Outlook

This section makes several suggestions on how the work presented in this
thesis could be continued. The suggestions can be summarized in four points:

• Aeroelastic analysis validation and verification by coupling the presented
solver with a structural solver.

• Development, implementation, and verification of aerodynamic and
coupled sensitivities for aircraft aeroelastic optimization.

• Embed the complete aircraft’s geometry within the grid to further
simplify the mesh generation process.

• Coupling of the full-potential equation and the boundary layer equations
to include viscous effects.

In order to perform aeroelastic analysis with the proposed approach, a multi-
physics tool can be used to couple the FPS with a structural solver. The most
straightforward way to do the coupling is directly using KRATOS Multi-
physics. Kratos counts with a library called CoSimIO to perform interprocess
communication in CoSimulation contexts [88, 89]. Furthermore, Kratos has
a co-simulation and a structural mechanics application. The co-simulation
application allows coupling solvers within Kratos Multi-physics [90]. Both
CoSimIO and co-simulation application are mainly being developed by Philipp
Bucher. These tools have already been validated and verified for the aeroelastic
analysis of flexible lifting surfaces [91]. Sill, there exist other open-source tools
for coupling numerical solvers such as OpenMDAO [92, 93].
Special care is required to define the wake within an aeroelastic analysis.
Since the trailing edge position may change from iteration to iteration, the
wake elements need to be newly defined. Moreover, there are two possibilities
to achieve the mesh refinement required to capture the solution gradients
in the span direction along the wake. One option is to automatically refine
the mesh using a metric-based technique [50]. Another option is to move
the wake elements along with the trailing edge. This operation can be easily
implemented by searching for the closest trailing edge node to each wake
element and assigning the node’s computed displacement. The second option
is expected to be faster but cannot be applied to the wake elements in the
fuselage’s vicinity, which are typically fixed. Still, since the fuselage is already
typically refined, this can be easily overcome by defining a threshold distance
to the fuselage where wake elements are not explicitly moved.
In order to use the proposed solver in the context of aeroelastic optimization,
aerodynamic and coupled sensitivities need to be developed, implemented, and
verified using, for example, the discrete adjoint method. However, in industrial
aircraft optimization, it is still challenging to apply trim constraints using the
ailerons, elevators, or rudder when employing grid methods without excessive
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mesh distortion. A possible approach could be to use a hybrid method in
which ailerons, elevators, and rudders are embedded within the mesh while
the rest of the aircraft is body-fitted or to completely embed the aircraft’s
geometry within the mesh [94, 95]. A further approach could be to use a
chimera approach for these parts.
Finally, the proposed FPS can be coupled to a boundary layer solver. Although
this approach still would not be as general as a RANS solver, it would allow
accounting for viscous effects to compute more accurate solutions than the
single FPS at a lower cost [23].
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Appendix A

Helmholtz Vorticity Transport
Equation

In this appendix the equation governing the change of vorticity is derived.
Taking the curl of the momentum equation (Eq. (2.3)) yields:

∂ω

∂t
−∇× (u× ω) = −∇

(
1

ρ

)
×∇p+∇×

(∇ · ¯̄τ
ρ

)
(A.1)

where the following identities have been used:

u · ∇u ≡ ∇u2

2
− u× ω (A.2)

∇×∇u2 ≡ 0 (A.3)

and the body force is assumed to be conservative ∇ × f = 0. Also, note
that the curl commutes with the partial time derivative operation ∂/∂( ). To
simplify Eq. (A.1), the following vector identity is used:

∇× (u× ω) = u∇ · ω − u · ∇ω + ω · u− ω∇ · u (A.4)

where the first term of the right-hand side (u∇·ω) vanishes due to the vector
identity ∇ · ∇ω = 0. The last term in Eq. (A.4) can be written as:

ω∇ · u = ρω
D(1/ρ)

Dt
(A.5)
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by using the continuity equation (Eq. (2.2)):

1

ρ

Dρ

Dt
= −ρ

D(1/ρ)

Dt
= −∇ · u (A.6)

which gives:

∇× (u× ω) = u · ∇ω + ω · u− ρω
D(1/ρ)

Dt
(A.7)

Substituting Eq. (A.7) in Eq. (A.1), dividing by ρ, and combining and rear-
ranging terms yields:

D

Dt

(
ω

ρ

)
=

ω

ρ
· ∇u+

∇ρ×∇p

ρ3
+

1

ρ
∇×

(∇ ¯̄τ

ρ

)
(A.8)

which is Helmholtz vorticity transport equation.
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Appendix B

Transonic Full-potential Solver
Sensitivities

This appendix presents the sensitivities required to implement the transonic
full-potential solver in KRATOS Multi-physics.

B.1 Residual

As derived in Section 3.3, the full-potential solver residual and Jacobian are:

Ri =
∑
e

ˆ
Ωe

∂N i

∂xa
ρ̃ua dΩe −

∑
c

ˆ
Γc

N iq dΓc = 0 (3.23 revisited)

J ij =
∂Ri

∂ϕj
=
∑
e

ˆ
Ωe

∂N i

∂xa

(
ρ̃
∂ua

∂ϕj
+

∂ρ̃

∂ϕj
ua

)
dΩe (3.24 revisited)

B.2 Upwind density

The upwind density is defined as:

ρ̃ = ρ− µs(ρ− ρup) (3.19 revisited)

Note that since the upwind density depends on the upstream density, it does
not only depend on the degrees of freedom of the current element ϕj , but also
on the ones of the upstream element, which will be denoted in the following
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as ϕj
up. Furthermore, because of the switching function, the upwind density

sensitivities depend on the type of flow:

Subsonic flow (M < Mcrit)

∂ρ̃

∂ϕj
=

∂ρ

∂ϕj
(B.1)

∂ρ̃

∂ϕj
up

= 0 (B.2)

Supersonic and accelerating flow (M > Mcrit and M > Mup)

∂ρ̃

∂ϕj
=

∂ρ

∂ϕj
−
[
∂µ

∂ϕj
(ρ− ρup) + µ

∂ρ

∂ϕj

]
(B.3)

∂ρ̃

∂ϕj
up

= 0 −
[

0 − µ
∂ρup

∂ϕj
up

]
(B.4)

Supersonic and decelerating flow (M > Mcrit and M < Mup)

∂ρ̃

∂ϕj
=

∂ρ

∂ϕj
−
[

0 + µup

∂ρ

∂ϕj

]
(B.5)

∂ρ̃

∂ϕj
up

= 0 −
[
∂µup

∂ϕj
up

(ρ− ρup)− µup

∂ρup

∂ϕj
up

]
(B.6)

B.3 Density

The density can be derived from the isentropic relation for calorically perfect
gases (Eq. (2.31)) and the compressible Bernoulli equation (Eq. (2.34)):

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 1
γ−1

(2.41 revisited)

And its sensitivities are:

∂ρ

∂ϕj
=

∂ρ

∂u2

∂u2

∂ϕj
(B.7)

∂ρ

∂u2
= − ρ∞

2a2∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)] 2−γ
γ−1

(B.8)
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B.4 Upwinding factor

B.4 Upwinding factor

The upwinding factor is:

µ = 1− M2
crit

M2
(3.21)

Deriving with respect to the degrees of freedom and applying the chain rule
yields:

∂µ

∂ϕj
=

∂µ

∂M2

∂M2

∂u2

∂u2

∂ϕj
(B.9)

∂µ

∂M2 = −M2
crit

M4 (B.10)

B.5 Mach number squared

As for the density, the expression from the local Mach number can also
be derived from the isentropic relation (Eq. (2.31)) and the compressible
Bernoulli equation (Eq. (2.34)):

M2 =
u2

a2∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)]−1

(B.11)

Its derivative with respect to the velocity squared is:

∂M2

∂u2
= M2

{
1

u2
+

γ − 1

2

1

a2∞

[
1 +

γ − 1

2
M2

∞

(
1− u2

u2∞

)]−1
}

(B.12)

B.6 Velocity squared

The velocity squared is:

u2 = u · u = uaua (B.13)

and its derivative with respect to the degrees of freedom can be written as:

∂u2

∂ϕj
=

∂u2

∂ua

∂ua

∂ϕj
(B.14)

∂u2

∂ua
= 2ua (B.15)
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B.7 Velocity vector

The velocity vector is:

u = ua = ua
∞ +

∂N j

∂xa
ϕj (B.16)

and its sensitivity with respect to ϕj is:

∂ua

∂ϕj
=

∂N j

∂xa
(B.17)
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Appendix C

Verification of the Embedded Wake
Approach for Incompressible Flow

In order to verify that the proposed embedded wake approach delivers robust
results for arbitrary angles of attack, the mesh refinement study presented
in Section 4.1.2 has been performed for eight additional angles of attack for
the NACA 0012 airfoil. The results are summarized in Tables C.1 and C.2.
To visualize the convergence of the solution, the lift and pitching moment
coefficients are plotted in Figures C.1 to C.16 along with their relative errors.
As in Section 4.1.2 a domain size of 100 m and a chord of length of 1 m are
considered. The lift coefficient relative error lays below 7% for all meshes.
The maximum error is 6.2% and occurs for the coarsest mesh using the
near-field analysis for an angle of attack of 3°. Furthermore, for all angles
of attack the relative error lays below 2.3% and 1% for a minimum element
size smaller than 10−3 m and 10−4 m, respectively. For all cases the relative
error converges to a value of about 0.4%. This error is mostly related to the
approximation introduced by applying the far-field boundary conditions at
a finite distance and can be decreased by making the domain size larger as
shown in Section 4.1.4. For a further discussion regarding the possible sources
of error see Section 4.1.4. Moreover, note that the difference between the
values yielded by the different approaches decreases with the element size for
all angles of attack.
Similar results are observed for the pitching moment coefficient. For all cases,
the error converges to a value below 0.4%. These results show that the
embedded wake approach accurately matches the reference data.
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Angle of attack α = 1.0°

Minimum Lift Pitching moment

mesh size Near-field Potential jump Far-field Near-field

h [m] cl [-] δcl [%] cl [-] δcl [%] cl [-] δcl [%] cm [-] δcm [%]

10−2 0.1153 4.5544 0.1154 4.4575 0.1154 4.4568 -0.0292 7.2334

10−3 0.1182 2.1225 0.1183 2.0900 0.1183 2.0893 -0.0305 3.2726

10−4 0.1197 0.9174 0.1197 0.8954 0.1197 0.8947 -0.0312 1.0553

10−5 0.1201 0.5391 0.1202 0.5177 0.1202 0.5169 -0.0314 0.3523

10−6 0.1203 0.4385 0.1203 0.4128 0.1203 0.4121 -0.0314 0.1589

10−7 0.1203 0.4298 0.1203 0.4078 0.1203 0.4071 -0.0315 0.1488

Reference 0.1208 0.0 0.1208 0.0 0.1208 0.0 -0.0315 0.0

Angle of attack α = 2.0°

10−2 0.2297 4.9105 0.2300 4.8142 0.2300 4.8135 -0.0580 8.1336

10−3 0.2367 2.0319 0.2368 2.0003 0.2368 1.9996 -0.0610 3.2768

10−4 0.2398 0.7533 0.2398 0.7307 0.2398 0.7300 -0.0625 0.9375

10−5 0.2403 0.5336 0.2404 0.5105 0.2404 0.5098 -0.0628 0.5346

10−6 0.2405 0.4606 0.2405 0.4382 0.2405 0.4375 -0.0628 0.3969

10−7 0.2405 0.4499 0.2406 0.4297 0.2406 0.4290 -0.0629 0.3867

Reference 0.2416 0.0 0.2416 0.0 0.2416 0.0 -0.0631 0.0

Angle of attack α = 3.0°

10−2 0.3399 6.1779 0.3403 6.0600 0.3403 6.0593 -0.0847 10.3848

10−3 0.3556 1.8465 0.3557 1.8120 0.3557 1.8112 -0.0918 2.8687

10−4 0.3594 0.7896 0.3595 0.7682 0.3595 0.7675 -0.0936 0.9594

10−5 0.3603 0.5605 0.3604 0.5381 0.3604 0.5374 -0.0940 0.5304

10−6 0.3606 0.4760 0.3607 0.4551 0.3607 0.4544 -0.0941 0.3785

10−7 0.3607 0.4460 0.3608 0.4249 0.3608 0.4242 -0.0942 0.3229

Reference 0.3623 0.0 0.3623 0.0 0.3623 0.0 -0.0945 0.0

Angle of attack α = 4.0°

10−2 0.4536 6.0652 0.4542 5.9478 0.4542 5.9471 -0.1130 10.1687

10−3 0.4734 1.9681 0.4735 1.9379 0.4735 1.9372 -0.1219 3.0868

10−4 0.4790 0.8139 0.4791 0.7911 0.4791 0.7903 -0.1246 0.9783

10−5 0.4801 0.5795 0.4802 0.5593 0.4802 0.5585 -0.1251 0.5532

10−6 0.4806 0.4744 0.4807 0.4527 0.4807 0.4519 -0.1253 0.3616

10−7 0.4807 0.4496 0.4808 0.4281 0.4808 0.4274 -0.1254 0.3058

Reference 0.4829 0.0 0.4829 0.0 0.4829 0.0 -0.1258 0.0

Table C.1: Mesh refinement studies.
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Angle of attack α = 6.0°

Minimum Lift Pitching moment

mesh size Near-field Potential jump Far-field Near-field

h [m] cl [-] δcl [%] cl [-] δcl [%] cl [-] δcl [%] cm [-] δcm [%]

10−2 0.6811 5.8594 0.6822 5.7033 0.6822 5.7026 -0.1696 9.7205

10−3 0.7095 1.9330 0.7098 1.9000 0.7098 1.8992 -0.1822 3.0310

10−4 0.7175 0.8242 0.7177 0.8032 0.7177 0.8024 -0.1860 1.0158

10−5 0.7196 0.5401 0.7197 0.5190 0.7198 0.5182 -0.1870 0.4842

10−6 0.7201 0.4651 0.7203 0.4418 0.7203 0.4411 -0.1873 0.3434

10−7 0.7204 0.4321 0.7205 0.4103 0.7205 0.4096 -0.1874 0.2839

Reference 0.7235 0.0 0.7235 0.0 0.7235 0.0 -0.1879 0.0

Angle of attack α = 7.0°

10−2 0.7981 5.3987 0.8003 5.1359 0.8003 5.1351 -0.1997 8.6756

10−3 0.8287 1.7682 0.8289 1.7369 0.8290 1.7361 -0.2127 2.7382

10−4 0.8365 0.8393 0.8367 0.8188 0.8367 0.8180 -0.2164 1.0519

10−5 0.8385 0.6059 0.8387 0.5848 0.8387 0.5840 -0.2173 0.6269

10−6 0.8396 0.4685 0.8398 0.4467 0.8398 0.4459 -0.2179 0.3629

10−7 0.8399 0.4377 0.8401 0.4168 0.8401 0.4160 -0.2180 0.3098

Reference 0.8436 0.0 0.8436 0.0 0.8436 0.0 -0.2187 0.0

Angle of attack α = 8.0°

10−2 0.9167 4.8439 0.9190 4.6106 0.9190 4.6098 -0.2301 7.6770

10−3 0.9421 2.2089 0.9424 2.1749 0.9425 2.1741 -0.2403 3.5550

10−4 0.9559 0.7797 0.9561 0.7575 0.9561 0.7567 -0.2468 0.9433

10−5 0.9579 0.5663 0.9581 0.5463 0.9581 0.5455 -0.2478 0.5547

10−6 0.9589 0.4687 0.9591 0.4498 0.9591 0.4490 -0.2483 0.3790

10−7 0.9591 0.4456 0.9593 0.4246 0.9593 0.4238 -0.2484 0.3305

Reference 0.9634 0.0 0.9634 0.0 0.9634 0.0 -0.2492 0.0

Angle of attack α = 9.0°

10−2 1.0329 4.6057 1.0355 4.3670 1.0355 4.3662 -0.2591 7.2224

10−3 1.0642 1.7179 1.0646 1.6854 1.0646 1.6845 -0.2719 2.6327

10−4 1.0738 0.8299 1.0740 0.8081 1.0741 0.8072 -0.2764 1.0209

10−5 1.0767 0.5674 1.0769 0.5469 1.0769 0.5460 -0.2778 0.5354

10−6 1.0779 0.4545 1.0781 0.4340 1.0781 0.4331 -0.2784 0.3367

10−7 1.0781 0.4301 1.0784 0.4092 1.0784 0.4084 -0.2785 0.2862

Reference 1.0828 0.0 1.0828 0.0 1.0828 0.0 -0.2793 0.0

Table C.2: Mesh refinement studies.
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Figure C.1: NACA 0012 mesh refinement study (α = 1.0°).
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Figure C.2: NACA 0012 mesh refinement study (α = 1.0°).
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Figure C.3: NACA 0012 mesh refinement study (α = 2.0°).
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Figure C.4: NACA 0012 mesh refinement study (α = 2.0°).

149



C Verification of the Embedded Wake Approach for Incompressible Flow

10−7 10−6 10−5 10−4 10−3 10−2

0.340

0.345

0.350

0.355

0.360

h [m]

c l

Lift coefficient

Near-field load analysis
Potential jump load analysis
Far-field load anaylsis
XFOIL 200 panels

10−7 10−6 10−5 10−4 10−3 10−2

0%

2%

4%

6%

h [m]

δ c
l

Lift coefficient relative error

Figure C.5: NACA 0012 mesh refinement study (α = 3.0°).
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Figure C.6: NACA 0012 mesh refinement study (α = 3.0°).
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Figure C.7: NACA 0012 mesh refinement study (α = 4.0°).
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Figure C.8: NACA 0012 mesh refinement study (α = 4.0°).
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Figure C.9: NACA 0012 mesh refinement study (α = 6.0°).
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Figure C.10: NACA 0012 mesh refinement study (α = 6.0°).
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Figure C.11: NACA 0012 mesh refinement study (α = 7.0°).
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Figure C.12: NACA 0012 mesh refinement study (α = 7.0°).
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Figure C.13: NACA 0012 mesh refinement study (α = 8.0°).
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Figure C.14: NACA 0012 mesh refinement study (α = 8.0°).
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Figure C.15: NACA 0012 mesh refinement study (α = 9.0°).
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Figure C.16: NACA 0012 mesh refinement study (α = 9.0°).
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