
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Adaptive Regression with the Spatially
Adaptive Combination Technique

Maximilian Michallik



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Adaptive Regression with the Spatially
Adaptive Combination Technique

Adaptive Regression mit der
räumlich-adaptiven Kombinationstechnik

Author: Maximilian Michallik
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: M.Sc. Michael Obersteiner
Submission Date: 15.08.2021



I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.08.2021 Maximilian Michallik



Acknowledgments

I would like to thank my advisor, Michael Obersteiner, for his advice and support
throughout the regular meetings. Thank you for your feedback and your suggestions,
they helped me a lot!

I also want to thank my family, my girlfriend, and my friends for the continuous
support.



Abstract

The complexity of reconstructing a function in high dimensions is too complex for
modern computers with regular grids. This curse of dimensionality can be tackled with
the Sparse Grid Combination Technique. By reducing the number of grid points, the
complexity is reduced while still having accurate results.
In this thesis, regression with the spatially adaptive Combination Technique is imple-
mented for different execution options. We introduce and analyze two approaches for
regularization, which tackle the problem of overfitting. Additionally, we implemented
three different versions for Opticom which update the coefficients of the component
grids according to different criteria as additional optimizations. The various execution
options which are implemented in the sparseSpACE1 framework are compared with
each other regarding accuracy and complexity. Moreover, we compare the implementa-
tion to other common regression approaches. The results show that we can outperform
neural networks and polynomial models in certain cases.

1https://github.com/obersteiner/sparseSpACE

iv



Zusammenfassung

Die Komplexität der Rekonstruktion einer Funktion in hohen Dimensionen ist für
moderne Computer mit regelmäßigen Gittern zu komplex. Dieser Fluch der Dimension-
alität kann mit der Sparse-Grid-Combination-Technique angegangen werden. Durch
die reduzierte Anzahl von Gitterpunkten wird die Komplexität reduziert, während
dennoch genaue Ergebnisse erzielt werden.
In dieser Arbeit wird die Regression mit der räumlich-adaptiven Kombinationstechnik
mit verschiedenen Ausführungsoptionen implementiert. Zwei Ansätze zur Regu-
larisierung, die das Problem der Überanpassung angehen, werden vorgestellt und
evaluiert. Zusätzlich kommen drei verschiedene Versionen für Opticom hinzu, die
als zusätzliche Optimierungen die Koeffizienten der Komponentengitter nach unter-
schiedlichen Kriterien aktualisieren. Die verschiedenen Ausführungsmöglichkeiten,
die im sparseSpACE2 Framework implementiert sind, werden hinsichtlich Genauigkeit
und Komplexität miteinander verglichen. Es werden zusätzliche Tests durchgeführt,
die die Implementierung mit anderen gängigen Regressionsmethoden vergleichen. Die
Ergebnisse zeigen, dass die Vorhersagen von Testdaten in bestimmten Fällen besser
sind als neuronale Netze.

2https://github.com/obersteiner/sparseSpACE

v



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Theoretical Background 2
2.1 Numerical approximation of functions . . . . . . . . . . . . . . . . . . . . 2
2.2 Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Regression with Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Opticom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation 15
3.1 sparseSpACE framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Regression class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Methods for normal Combination Technique . . . . . . . . . . . . . . . . 17

3.3.1 Training with the normal Combination Technique . . . . . . . . . 17
3.3.2 Opticom with the normal Combination Technique . . . . . . . . 21
3.3.3 Testing with the normal Combination Technique . . . . . . . . . 24

3.4 Methods for the Spatially Adaptive Combination Technique . . . . . . . 24
3.4.1 Training with the Spatially Adaptive Combination Technique . . 24
3.4.2 Opticom with the Spatially Adaptive Combination Technique . . 27
3.4.3 Testing with the Spatially Adaptive Combination Technique . . . 28

4 Results 29
4.1 Regression with the normal Combination Technique . . . . . . . . . . . 30

4.1.1 Full vs. Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Regularization parameter and term . . . . . . . . . . . . . . . . . 33
4.1.3 Different Opticom options . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Regression with spatially adaptive Combination Technique . . . . . . . 39
4.2.1 Margin and number of grid points . . . . . . . . . . . . . . . . . . 39
4.2.2 Regularization parameter and term . . . . . . . . . . . . . . . . . 45
4.2.3 Different Opticom approaches . . . . . . . . . . . . . . . . . . . . 46

vi



Contents

4.3 Comparison with common regression . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Normal Combination Technique . . . . . . . . . . . . . . . . . . . 50
4.3.2 Spatially adaptive Combination Technique . . . . . . . . . . . . . 52

5 Conclusion and Outlook 55

List of Figures 57

List of Tables 59

Bibliography 60

vii



1 Introduction

With the increasing amount of data that is being gathered, the difficulty of extracting
information gets harder. Especially for humans, it is not easy to handle data sets in
a meaningful way. Therefore computers have to be used to automate this. There are
different tasks that are of interest when handling big data. They all have one thing
in common, namely that they are usually more expensive for higher dimensionalities.
Unfortunately, many data sets are high-dimensional in practice. This is the reason why
a solution that can handle this curse of dimensionality is required.

A remedy for this problem is to use Sparse Grids [1]. The idea of this approach is
to reduce the number of grid points which then leads to faster computation times.
Especially at regions where fewer samples are located, points can be left out without
sacrificing accuracy. This can be done in a static way or by refining towards the data
points.

One task when dealing with a huge amount of data is regression which will be the
focus of the next chapters. Given a data set with many samples with each of them
having a so called target value, the goal is to reconstruct the function that generated
those samples. To achieve this goal of regression, the sparseSpACE framework will be
used that implements the most important operations for Sparse Grids.

After the theoretical background in chapter 2, where Sparse Grids, regression and
Opticom are introduced, the implementation is presented in chapter 3. There, we
present the framework used and the added functionality. All different execution options
are described. In the following chapter 4, we present the experiments and evaluate
certain properties of the adaptive regression with the spatially adaptive Combination
Technique. We take a deeper look into different aspects of the implementation and
compare it with other common regression methods. In the last chapter 5, the conclusion
is drawn and we present ideas on how to further improve the implementation.

1



2 Theoretical Background

In this chapter, the theoretical background of the implementation is explained. First, full
grids and the numerical approximation of functions are explained in section 2.1. Then,
Sparse Grids are introduced in 2.2 as a solution of applications in high dimensions.
Especially the Combination Technique and adaptivity are explained. Then, the goal
of regression is stated in 2.3 with the mathematical background and in the end, the
approach of optimizing regression in the context of Sparse Grids with Opticom will be
explained in section 2.4. The following is mainly based on [2] if not stated otherwise.
For further readings on the numerical approximation of functions and Sparse Grids,
refer to [1], [3].

2.1 Numerical approximation of functions

Consider a function f : Ω→ R with Ω = [0, 1]d being the unit interval in d dimensions.
The classical approach is to represent f using a full grid with n grid points in each
dimension. Altogether this leads to nd points which is usually only practicable to a
dimension up to 4 [2, page 5]. That is the reason why Sparse Grids will be introduced
later in this chapter as a solution for the problem of the curse of dimensionality.

In the beginning, we present the base case with d = 1, the step into multiple
dimensions will be explained later in this section. The discretization level l determines
the number of grid points in the interval [0, 1]. This results in a mesh with 2l − 1 grid
points which have a distance of hl = 2−l to each neighbor. Altogether the points with
indices in Il := [1, 2l − 1] are

xl,i := i · hl , i ∈ Il . (2.1)

For the sake of simplicity, the boundary treatment will not be discussed.
Now with this grid of level l, a function can be represented as a weighted sum of

basis functions

fl(x) = ∑
i∈Il

αl,i ϕl,i(x) (2.2)

which are combined either resulting in the nodal basis or the hierarchical basis. We are
using the first variant now.

2



2 Theoretical Background

The basis functions ϕl,i are centered on the xl,i

ϕl,i(x) = ϕ(
x− i · hl

hl
) (2.3)

and have the support [xl,i − hl , xl,i + hl ]. One possible choice for the basis is the hat
function (see also Figure 2.1) which are combined to form the nodal basis.

Φ(x) = max(1− |x|, 0) (2.4)

−2 −1 0 1 2 x

y

1

2

Figure 2.1: Hat function Φ in the interval [-2,2]

An example of a representation as a weighted sum can be seen in Figure 2.2 where
the discretization level of the grid is 3. The boundary is considered to be zero in this
example.

The second basis representation is the hierarchical basis. Here, the index set is
Ih
l := {i ∈N|1 ≤ i ≤ 2l − 1, i odd}. This leads to the set of hierarchical subspaces

Wl := span{ϕl,i(x)|i ∈ Ih
l } (2.5)

By combining those subspaces in a direct sum

Vn =
⊕
l≤n

Wl (2.6)

the whole space of piecewise linear functions Vn can be obtained (see also Figure 2.3).
Each Wi alone can not represent any arbitrary function because they are always zero at
certain points. But together, they can represent all functions in V3.

Similar to the nodal basis, a function can be represented with the hierarchical basis
as a weighted sum of the basis functions:

fl(x) = ∑
i∈Ih

l

αl,i ϕl,i(x) (2.7)

3



2 Theoretical Background

Figure 2.2: Piecewise linear interpolation u(x) (dashed) of f (x) (solid) using a grid of
level 3. Combination of the hat functions can be seen on the right, taken
from [2].

Figure 2.3: Comparison of the hierarchical basis (left) and the nodal basis (right). Basis
functions ϕl,i and grid points xl,i, taken from [2].

The same example as for the nodal basis can be seen in Figure 2.4. This time, the
hierarchical basis is used.

To extend this to an arbitrary dimension d, a tensor product based approach is used.

4



2 Theoretical Background

Figure 2.4: Piecewise linear interpolation using the hierarchical basis of same function
as in 2.2 (left), basis functions with height αi (right), taken from [2].

The basis functions ϕ are now

ϕ~l,~i(~x) =
d

∏
j=1

ϕlj,ij(xj) (2.8)

with~l and~i indicating level and index for each dimension. The index set is now

I~l := {~i |1 ≤ ij ≤ 2lj − 1, ij odd, 1 ≤ j ≤ d} (2.9)

and the subspaces W~l

W~l := span{ϕ~l,~i(~x)|~i ∈ I~l}. (2.10)

All in all, the function space Vn can be constructed by

Vn =
⊕
|~l|∞≤n

Wl , (2.11)

with |~l|∞ := max1≤i≤d |di|. With every dimension having 2n − 1 grid points, this leads
to an overall number of (2n − 1)d of points. Now a function can be represented as

f (~x) = ∑
|~l|∞≤n,~i∈I~l

α~l,~i ϕ~l,~i(~x). (2.12)

The subspaces in two dimensions can be seen in Figure 2.5, where all basis functions
are created with the tensor product of the 1D hat functions.

5



2 Theoretical Background

Figure 2.5: Two dimensional subspaces with the contained basis functions, taken from
[2].

6



2 Theoretical Background

This interpolation of the function in a regular grid leads to an overall error of

|| f (~x)− u(~x)||L2 ∈ O(h2
n) (2.13)

with a cost of

O(h−d
n ) = O(2nd) (2.14)

function evaluations [1, pages 17-18]

2.2 Sparse Grids

The problem of regular full grids is the curse of the dimensionality meaning that the
complexity of a problem scales exponentially with its dimension. The number of grid
points and therefore the number of function evaluations of a full grid with dimension
d and number of grid points n in each dimension leads to nd points. A solution to
tackle this problem is the use of Sparse Grids. The idea is to reduce the number of
grid points leading to reduced complexity with still high accuracy. There are different
approaches of building a Sparse Grid. Two of them will be presented. The first one
being the normal approach followed by the Combination Technique which is also used
in the implementation.

The difference of the first approach (normal way of constructing Sparse Grids) to the
full grid approach is to leave out some subspaces from the full grid which contribute
little to the overall accuracy. The Sparse Grid space is then

V1
n =

⊕
|~l|1≤n+d−1

W~l , (2.15)

and a function in this space can be formulated as

f (~x) = ∑
|~l|1≤n+d−1,~i∈I~l

α~l,~i ϕ~l,~i(~x). (2.16)

An example for n = 3 can be seen in Figure 2.6. The resulting grid has significantly
less grid points. In comparison to the full grid of the same level (see also 2.14), Sparse
Grids only have

O(h−1
n (log h−1

n )d−1) points, (2.17)

while the accuracy only slightly reduces to

O(h2
n(log h−1

n )d−1), (2.18)

7



2 Theoretical Background

Figure 2.6: Subspaces in two dimensions and the resulting Sparse Grid, taken from [2].

(see equations 2.13 and 2.14 for comparison) [2, page 12].
Another approach, which is different to the first one, is to use the Combination

Technique [4], [5]. The idea is to combine different anisotropic full grids by addition
and subtraction to get a Sparse Grid. Those grids Ωl have uniform mesh sizes ht = 2−lt

in the t-th coordinate direction. The grids that are important for the combination
technique have

l1 + ... + ld = n + (d− 1)− q, q = 0, ..., d− 1, lt > 0. (2.19)

The different grids and the resulting Sparse Grid for level 5 are shown in Figure 2.7.
An interpolated function would then be given by adding all weights of the basis

functions of the green grids and subtracting those from the orange grids

f (~x) =
d−1

∑
k=0

(−1)k
(

d− 1
k

)
∑

|~l|1≤n+(d−1)−k

f~l(~x). (2.20)

In this case with n = 5 and dimension 2, the ones with |~l|2 = 6 are added (green) and
the orange grids with |~l|2 = 5 are subtracted. This is necessary because we have to
remove duplicated points. This results in an overall number of

O(d(log h−1
n )d−1)×O(h−1

n ) grid points (2.21)

8



2 Theoretical Background

Figure 2.7: Example for a combination scheme with minimum level 1 and maximum
level 5. The green component grids are added and the orange ones are
subtracted. On the right, the resulting Sparse Grid.

and an error of

O(h2
n(log h−1

n )d−1) (2.22)

[2, page 20].
An addition to this approach is to use refinement. The idea is to adapt the grid to be

asymmetric so that it fits the data set well. Local error estimations indicate where the
grid has to be refined. There, the hierarchical children of the local grid point are also
added to the grid (see Figure 2.8). In the Figure, the red grid points are refined leading

Figure 2.8: Example for adaptivity. The red points are refined and the grey points have
to be added because they are the hierarchical parents of the added points,
taken from [2].

9



2 Theoretical Background

to a higher density of the grid in the bottom left corner. The gray grid points of the
right grid had to be added recursively because they represent hierarchical parents of the
newly added grid points. Those hierarchical parents are usually needed to transform
the grid values to the hierarchical basis.

The grid is then refined in several steps. In each step, the error in the different regions
is computed. At those grid points where the current error is still high, refinement
should target this error. A more detailed description can be found in [6]. This is done
until a stopping criterion is fulfilled. An example of this is a limit of the overall number
of grid points or a tolerance of the error. An example for such a refinement with the
Combination Technique can be seen in figure 2.9.

Figure 2.9: Example for the spatially adaptive Combination Technique. The scheme
with the component grids on the left and the resulting Sparse Grid on the
right. The green ones are added and the orange grids are subtracted.

The function and the samples are depicted in figure 2.10. The maximum of this
function is at (0.2, 0.3) and around this point, the error is still high. That is the reason
why the grid is refined in this region.

2.3 Regression with Sparse Grids

Given a data set S of m data points of dimension d with target values

S = {(~xi, yi) ∈ Rd ×R}m
i=1, (2.23)

which are samples of a specific function f with possible noise on a certain grid with
specified basis functions, the goal of regression is to reconstruct f . In the case of Sparse

10



2 Theoretical Background

Figure 2.10: Example function (Gaussian function) as a plot on the left and data samples
on the right.

Grids, the domains of the data points can be adapted to be Ω = [0, 1]d by scaling. The
following is mainly based on [4] if not stated otherwise.

A first simple approach to solve this problem is to use the basis functions ϕ of the
function space in the following way. With the matrix A and the vector ~y, the coefficients
~α for the ϕ can be found by solving

arg min
~α
|A~α−~y| (2.24)

with a least squares approach. Here, Ai,j = ϕj(~xi) and ~y denotes the vector of all
target values. With A ∈ Rm×d (with m number of data points and d dimension and
d << m), this is an overdetermined system of linear equations. This can be solved by
least squares. The goal is to minimize the sum of the squared residuals

S =
m

∑
i=1

r2
i , with ri = yi −

d

∑
j=1

αjφj(xi). (2.25)

The approximation u of f is then the sum of the basis functions which are weighted
according to~α. Until now, the reconstructed function is only based on the data points.
This can lead to overfitting if the solution that is found is too exact. To overcome this
problem, we present a refined approach with regularization. This tackles the problem
of overfitting by making the reconstructed function smooth.

By adding a regularization term to this regression problem, the minimization

u = arg min
u∈V

(
1
m

m

∑
i=1

(yi − u(~xi))
2 + λC(u)) (2.26)

11



2 Theoretical Background

with V being a function space over Ω and a regularization functional C(u) results.
The problem consists of two parts. The first term ensures that the approximation u
is similar to f . The second term is used for regularization. It prevents overfitting by
penalizing non-smooth function shapes. With the regularization parameter λ, which is
dependent on the application data set, a trade off between exactness and smoothness
can be determined. For this regularization, we are using two different approaches.

One first approach for C is

C(u) := ||∇ f ||2L2
(2.27)

with || f (~x)||2L2
=
∫

Ω f 2d~x. Another possibility is to use the Euclidean norm of the
vector of surpluses in case of using Sparse Grids

C(u) := ||~α||22. (2.28)

By minimizing 2.26 with regularization functional 2.28, the linear system

(
1
m

BBT + λI)~α =
1
m

B~y (2.29)

has to be solved with B = AT (with A from the first approach), I being the identity
matrix and the vector ~y the target values. This is also a least squares problem, this time
with a regularization term.

The choice of the second regularization functional (2.28) is an approximation of the
solution with 2.27 instead. This can be useful as the computational cost is lower than it
is for using 2.27. Although, the results of some applications are less accurate and the
failure rates can be higher. So with the regularization functional 2.27, the minimization
of 2.26 leads to the system of linear equations

(
1
m

BBT + λC)~α =
1
m

B~y. (2.30)

Note that 2.29 and 2.30 only differ in the matrix of the regularization functional. In the
more accurate case, the matrix consists of (C)i,j = 〈∇ϕi,∇ϕj〉L2 .

Now in the case of using the Combination Technique, the regression is solved
independently on each component grid. The resulting functions are then combined
to the overall solution. An example can be seen in Figure 2.11. The functions of the
component grids (1,4), (2,3), (3,2), (4,1) are simply added and the others are subtracted.

2.4 Opticom

The result being a combination of partial solutions can now still be optimized. The
classical Combination Technique combines the component grids with weights that are

12



2 Theoretical Background

Figure 2.11: Results of the regression on the component grids on the left. The results of
grids (1,4), (2,3), (3,2) and (4,1) are added, the others are subtracted. The
resulting overall solution is on the right.

integers. This can be improved by finding better coefficients of the single grids that are
combined. The resulting weights do not necessarily have to be integers. This results in
the Opticom that was introduced in [7]. In the scope of this paper, three approaches
are implemented and tested.

For the first approach, a linear system is solved for the coefficients ~c. The idea is
based on the fact that for each point ~x, the resulting target point can be computed as
weighted sum

y =
k

∑
i=1

ciui(~x) (2.31)

with ci being the weight or coefficient of the ith component grid and ui(~x) the predicted
target value of the point ~x on this grid.

To optimize those coefficients so that the function is reconstructed as good as possible,
this equation has to hold true for all available data points. This leads to the problem

arg min
~c
|A~c−~y| (2.32)

with ~y being the vector with all available target values and Ai,j = ui(xj) (from the ith

component grid). We can solve it using a least squares approach. No smoothness is
guaranteed in this variant of Opticom which possibly leads to an overfitted solution

13



2 Theoretical Background

because we are only considering the data points that are available at this time (training
and validation set).

In contrast, the second approach introduced by [8] has a regularization which
guarantees smoothness. This approach also results in a problem that can be solved
with a least squares approach with

||P1 f ||2G ... 〈P1 f , Pm f 〉G
〈P2 f , P1 f 〉G ... 〈P2 f , Pm f 〉G

... ... ...
〈Pm f , P1 f 〉G ... ||Pm f ||2G




c1

c2

...
cm

 =


||P1 f ||2G
||P2 f ||2G

...
||Pm f ||2G

 . (2.33)

We denote the function on the component grid i with Pi f . The scalar product is defined
as 〈 f , g〉G := 〈 f , Gg〉2 with the matrix G := BT · B + λM · C. This leads to the term

〈 f , g〉G =
1
m

m

∑
i=1

f (xi)g(xi) + λOpticom 〈∇ f ,∇g〉2 (2.34)

for each cell of the matrix.
The third approach uses the error of the component grids for finding suitable

coefficients. For this approach we assign smaller coefficients to the component grids
where the error is high. The ci are then computed with

ci =
ci

errori
. (2.35)

Notice that this approach does not directly depend on the data set used. We also do
not optimize in any way, i.e. the resulting error could possibly be worse than before.

As a last step of all three different approaches, the vector of the ci has to be rescaled
so that the sum equals one.

14



3 Implementation

The theoretical background explained so far is the foundation for the implementation.
This chapter gives an overview of the usage and functionalities of the framework.
Furthermore, the implementation of the regression using the Sparse Grid Combination
Technique will be presented.

3.1 sparseSpACE framework

The sparseSpACE framework created by Michael Obersteiner offers many functionalities
in the context of Sparse Grids. Especially when dealing with high dimensional data,
the use of the framework leads to faster and more efficient solutions than using full
grids. In the beginning, it was intended to integrate high dimensional functions. By
now, many other functionalities were added, like Density Estimation by M. Fabry [9]
and general Machine Learning tasks by C. Moser [10].

All the operations can be used in the context of the normal Sparse Grid Combination
Technique or an adapted version that is spatially adaptive to the data points. Every
operation is a subclass of GridOperation such as the existing class DensityEstimation.
For more information about this class and the functionality, refer to [9].

To add the possibility of performing regression on an arbitrary data set, the class
Regression as a subclass of GridOperation was added to the framework. Due to
many similar functions that Regression and DensityEstimation share, these methods
were moved to a more general class MachineLearning which is now the superclass of
DensityEstimation and Regression.

In the following, the different ways of using the class will be introduced with
information about how the methods are implemented. First, the general details about
how the class stores data and how it can be used is explained in the beginning of
section 3.2. Then the description of the operation will be split into two parts, the one
using the normal Combination Technique (section 3.3) and the case of with the spatially
adaptive version in section 3.4.

15



3 Implementation

3.2 Regression class

There are different approaches and various parameters that can be selected when
performing regression. These different possibilities can be set in the constructor of the
class. The most important parameters are the following:

• data: list of vectors ~x of the data set

• target_values: list of target values y of the data set

• regularization: regularization parameter λ

• regularization_matrix: choice of the regularization matrix (I or C)

• range: specification of the range, to which the data will be scaled to

The data set of the constructor contains all data points of the different phases in
machine learning. Therefore, the variables training_data, training_target_values,
validation_data, validation_target_values, test_data and test_target_values

store the set of each corresponding phase. In the constructor, the method scale_data

is called which scales the data to the provided range. This is always a subrange of the
hypercube as described in chapter 2.

The training data set is used for finding suitable weights for the basis functions of
the grid during regression. For the Opticom, which is optional, the validation set is
used. With these points, which also contain the training set, the weights of the single
component grids are optimized which can be interpreted as hyperparameters. Finally,
the error is measured with the test set. The mean squared error is used as error norm.

All in all, the following possibilities can be chosen to perform regression:

Normal Combination Technique Spatially adaptive version
without regularization without regularization

matrix I matrix I
matrix C matrix C

Opticom (3 different variants) Opticom (3 different variants)

In the next subsections, the pipeline of the regression object is presented. First, the
case for the normal Combination Technique is explained, which will be followed by
the spatially adaptive methods. In both cases, the single steps are training the object,
optimizing the coefficients with Opticom, and finally computing the test error.

16



3 Implementation

3.3 Methods for normal Combination Technique

To provide a simple possibility to perform the single steps of the pipeline, the detailed
steps are encapsulated in three functions for training, the Opticom and testing.

3.3.1 Training with the normal Combination Technique

After the initialization of the Regression object, the method

train(percentage_of_testdata, minimum_level, maximum_level, noisy_data)

can be invoked. More detailed, the function initializes the member variables storing
the different data sets of the three phases (training, validation, and testing). The whole
data set is partitioned as follows. We take percentage_of_testdata% as test data.
The remaining part is used as validation set. Additionally, 85% of this set is used in
the training phase. We also add white noise to the target values of the training and
validation set if the boolean parameter noisy_data is set to true. The disturbance is
dependent on the data. We first find the highest of all target values in terms of amount
and then add gaussian noise with zero mean and 1% of the highest value as standard
deviation. This increases the complexity of the regression task and allows to mimic
real world problems that are often noisy. After this splitting and adaption of the target
values, an object (combiObject) of class StandardCombi is initialized and the operation
is performed on each component grid independently. That is where the weights of
the basis functions are computed. The function returns the combiObject so that the
invoker of train can also get further information about this object.

As mentioned in chapter 2, the regression is performed on every single component
grid. This is done in the next step by the method solve_regression(levelvec) when
performing without regularization term or solve_regression_smooth(levelvec) in
case of λ 6= 0. The first variant can be seen in figure 3.1.

1 def solve_regression(levelvec) :
2 A = self . build_A_matrix(levelvec)
3 y = self . training_target_values
4 alphas, res, rank, s = np.linalg. lstsq (A, y, rcond=None)
5 return alphas

Figure 3.1: Pseudo code to solve the regression without regularization

solve_regression refers to the simplest case which is described in equation 2.24.
After calculating the matrix and the vector (3.1, lines 2 and 3), the alphas are found

17



3 Implementation

with the help of the function lstsq from the library np.linalg (np short for numpy)
[11]. This method solves the least squares problem and returns the solution called
alphas, the residuals, rank of the matrix A and the singular values of A which are not
needed in this case.

1 def solve_regression_smooth(levelvec):
2 left = self . build_left_matrix(levelvec)
3 right = self . build_right_vector(levelvec)
4 alphas, res, rank, s = np.linalg. lstsq ( left , right, rcond=None)
5 return alphas

Figure 3.2: Pseudo code to solve the regression with regularization

If the regularization parameter lambda is not zero, solve_regression_smooth is
called (see figure 3.2). build_left_matrix and build_right_vector (3.2, lines 2 and
3) calculate the left and the right part of the linear system described in equation 2.29
or 2.30. This decision is made in the method build_left_matrix and depends on the
chosen matrix when the regression object was initialized. The matrix C is built with
the help of the method build_C_matrix. With the entries (C)i,j = 〈∇ϕi,∇ϕj〉L2 which
were described in section 2.3, the matrix is built as it can be seen in 3.3.

The method is based on the following idea. We can also write the entries of the
matrix as

(C)i,j = 〈∇ϕi,∇ϕj〉L2 =
∫

Ω
∇ϕi(~x)T∇ϕj(~x)d~x =

d

∑
k=1

∫
Ω

δϕi(~x)
δxk

δϕj(~x)
δxk

d~x (3.1)

with δϕi
δxk

being the partial derivative of the basis function of the kth dimension. This can
be further simplified to

d

∑
k=1

∫
Ω

δϕi(~x)
δxk

δϕj(~x)
δxk

d~x =

d

∑
k=1

d

∏
m=1

∫
Ωm

δkm ϕ′im
(xm)ϕ′jm(xm) + (1− δkm)ϕim(xm)ϕjm(xm)dxm

(3.2)

with δkm being the Kronecker delta and ϕi(~x) = ∏d
m=1 ϕim(xm). As a consequence we

only have one-dimensional integrals over the 1d hat functions.
The two loops in lines 7 and 8 iterate over all cells Ci,j of the matrix. Only one half of

the matrix is calculated explicitly because of the symmetry of C. The third loop (line 10)

18



3 Implementation

1 def build_C_matrix(levelvec):
2 dim = len(levelvec)
3 grid_size = self . grid. get_num_points()
4 C = np.zeros((grid_size, grid_size) )
5 index_list = np.array(get_cross_product_range_list(grid.numPoints)) + 1
6 # loop over all combinations of indices of basis functions
7 for i in range(grid_size):
8 for j in range(i, grid_size) :
9 res = 0.0

10 for k in range(dim):
11 temp_res = 1.
12 for m in range(dim):
13 index_im = index_list[i][ m]
14 index_jm = index_list[j ][ m]
15 if m == k:
16 # basis function overlap fully
17 if index_im == index_jm:
18 temp_res *= (2 ** ( levelvec[k] + 1))
19 # basis function do not overlap
20 elif abs(index_jm − index_im) > 1:
21 temp_res = 0
22 break
23 # basis functions overlap partly
24 else :
25 temp_res *= −(2 ** (levelvec[k]) )
26 else :
27 # basis function overlap fully
28 if index_im == index_jm:
29 temp_res *= 1 / (2 ** ( levelvec[k] − 1) * 3)
30 # basis function do not overlap
31 elif abs(index_jm − index_im) > 1:
32 temp_res = 0
33 break
34 # basis functions overlap partly
35 else :
36 temp_res *= 1 / (2 ** ( levelvec[k] − 1) * 12)
37 res += temp_res
38 C[i, j ] = res
39 C[j, i ] = res
40 return C

Figure 3.3: Pseudo code to build the matrix C

19



3 Implementation

iterates over the dimensions to reference each level of the levelvec which stores the
level of each dimension. With variable m and the fourth loop (line 12), each dimension
of the basis functions is referenced. There are then two main cases. The first one where
m == k (lines 16-25) and the second one from lines 27 to 36. In the former case, the
derivative of the mth dimension is multiplied for both basis functions. In the other case,
the product of the two 1D basis functions in this dimension is multiplied. This idea
is based on the fact that the basis functions are built with the tensor product which
makes it possible to split the calculation in 1D opertions.

In both cases, there are three different possibilities. Either the basis functions overlap
(completely or partly) or they do not. The different calculations deduce as follows.
In line 18, the derivative of the product of fully overlapping basis functions has to be
calculated. With the hat functions, this results in (2l)2 · 1

2l−1 = 22l · 2−l+1 = 2l+1 with l
the level of the dimension, 2l the gradient of the basis function and 1

2l−1 the width. An
example for exactly overlapping basis functions can be seen in figure 3.4. There, the
gradient reads 22 = 4 and the width is 1

22−1 = 0.5.

0 0.25 0.5 0.75 1 x

y

0

0.5

1

Figure 3.4: Examples for overlapping basis functions, in this example l = 2, gradient 4
and width 0.5.

In lines 20 and 21, ϕi and ϕj do not overlap which means that the product is zero.
An example of two hat functions that do not overlap can be seen in figure 3.5. There,
the product of the functions is zero leading to the gradient also being zero.

0 0.25 0.5 0.75 1 x

y

0

0.5

1

Figure 3.5: Examples for not overlapping basis functions, in this example the level is 2.
The product of the basis functions is zero.

20



3 Implementation

In line 25, the basis functions patially overlap. Therefore, one gradient is positive and
one gradient is negative resulting in a product of gradients less than zero. The width
is this time half as big as in the completely overlapping case. All in all this result in
−(2l)2 · 1

2 ·
1

2l−1 = −22l · 2−1 · 2−l+1 = −2l . An example for two partly overlapping hat
functions can be seen in figure 3.6.

0 0.25 0.5 0.75 1 x

y

0

0.5

1

Figure 3.6: Examples for partly overlapping basis functions. In this example, the level
is 2, the gradient −4 and the width of the overlapping interval is 1

4

The cases from line 27 to 36 are from the right part of equation 3.2. Here, we directly
multiply the hat functions without taking the derivative. The results can be summarized
by

∫
Ωm

ϕim(xm)ϕjm(xm)dxm =


1

2l−1·3 fully overlapping
1

2l−1·12 partly overlapping

0 not overlapping

. (3.3)

After calculating the values for each dimension, the results are added to the variable
res. The corresponding cells are then assigned to this variable (lines 38, 39). Note that
both Ci,j and Cj,i are assigned the same value because of the symmetry. This makes the
method more performant.

3.3.2 Opticom with the normal Combination Technique

After the training phase, predictions can already be made. With the calculated alphas,
data points can be interpolated with the combiObject. The next step in the pipeline
is Opticom, where the hyperparameters can be optimized in the validation phase.
Therefore, the method

optimize_coefficients(combiObject, option)

can be performed on the regression object. This function finds suitable coefficients of
the component grids (Opticom). The option parameter determines, which approach is

21



3 Implementation

used for Opticom. There are three possible values to choose from:

• 1: Least squares based approach with regularization term (described in equation
2.33)

• 2: Least squares based approach without regularization (based on the validation
set, described in equation 2.32)

• 3: Error based approach (based on the errors of the component grids, described
in equation 2.35)

For the first option, the matrix and vector described in 2.33 are built and the suitable
coefficients for the component grids are then found with lstsq from numpy, a package
with many functionalites for scientific computing in python. The entries of the matrix
are computed as it can be seen in figure 3.7.

1 def build_matrix_opticom(combiObject):
2 matrix = np.zeros((len(combiObject.scheme), len(combiObject.scheme)))
3 vector = np.zeros((len(combiObject.scheme)))
4 # loop over all cells of the matrix
5 for i in range(len(combiObject.scheme)):
6 for j in range(i, len(matrix)):
7 # interpolate the validation set on component grid i and j
8 vec_i = self . interpolate_points_component_grid(combiObject.scheme[i], self.validation_data)
9 vec_j = self . interpolate_points_component_grid(combiObject.scheme[j], self.validation_data)

10 # sum the component wise product and scale
11 var_sum = np.dot(vec_i.flatten() , vec_j. flatten () )
12 var_sum *= 1 / len(self. validation_data)
13 # add regularization term
14 var_sum += self.regularization_opticom * self. compute_regularization_term_opticom(

combiObject.scheme[i], combiObject.scheme[j])
15 # fill matrix and vector
16 matrix[i][ j ] = var_sum
17 matrix[j ][ i ] = var_sum
18 if i == j:
19 vector[ i ] = var_sum
20

21 return matrix, vector

Figure 3.7: Code to build the matrix and the vector of Opticom

22



3 Implementation

In this method, the vector is computed at the same time as the matrix because the
values from the diagonal are the same as the entries in the vector. Otherwise, this
would be calculated more than one time. Again, the two loops (lines 5,6) iterate over all
cells in the matrix. The two vectors vec_i and vec_j store the interpolated validation
points. They are then combined with the scalar product and the factor 1

m with m being
the size of the validation set. In the function compute_regularization_term_opticom,
the same matrix C is built as in the regression, with the difference that the weights of
the basis functions are multiplied with the single expressions. The method then sums
up all entrties of the matrix and the result is then added in line 13. The regularization
parameter is the same as the one used in the regression if it is not set explicitly. In most
cases, we have change its value to obtain a reasonable result.

For the second option, also the matrix and the vector are built as described in equation
2.32. The cells of the matrix are simply filled with the validation points interpolated on
the different component grids. In this case, also lstsq from numpy is used to solve
this least squares problem. The coefficients are then updated and scaled so that their
sum equals one.

The last approach that can be used for Opticom can be seen in figure 3.8.

1 def optimize_coefficients_error_per_grid(self , combiObject):
2 error_vec = np.zeros(len(combiObject.scheme))
3 coefficients = np.zeros(len(combiObject.scheme))
4 # interpolate on each component grid and calculate the error
5 for i in range(len(combiObject.scheme)):
6 learned_targets = self . interpolate_points_component_grid(combiObject.scheme[i], validation_data)
7 error_vec[i ] = sklearn.metrics.mean_squared_error(self.validation_target_values, learned_targets)
8 coefficients [ i ] = combiObject.scheme[i].coefficient
9 # update the coefficients of the grids depending on the error

10 for i in range(len(combiObject.scheme)):
11 coefficients [ i ] = coefficients [ i ] / error_vec[i ]
12 # scale the coefficients so that the sum of the vector equals one
13 length = np.sum(coefficients)
14 for i in range(len(combiObject.scheme)):
15 combiObject.scheme[i].coefficient = coefficients [ i ] / length

Figure 3.8: Code to update the coefficients according to the errors per component grids

The first loop (lines 5 to 8) interpolates the validation set on each component grid
and calculates the error with the actual target values. We use the mean squared error.
It is calculated with a method from the scikit-learn library [12]. Some other func-
tionalities from this library are used in other parts. In the second loop (lines 10, 11), the

23



3 Implementation

coefficients are updated like it is described in 2.35. The other lines 13, 14 and 15 set the
coefficients which are also scaled so that the sum equals one. This is necessary because
after the update in line 11, this is not guaranteed anymore.

3.3.3 Testing with the normal Combination Technique

The last method in the pipeline which finally tests and evaluates the regression object
is the function

test(combiObject).

The predicted target values ỹi, which can be found using the combiObject and the
actual yi are evaluated using the mean squared error. It is calculated with

MSE =
1
m

m

∑
i=1

(yi − ỹi)
2. (3.4)

These three functions make it easy to use the Regression class by encapsulating the
methods that are used to reconstruct the function given by the data points.

3.4 Methods for the Spatially Adaptive Combination
Technique

For this use case, similar functions are implemented. The pipeline consists of the
same three functionalities. This time, the object that performs the operation has to
be of type SpatiallyAdaptiveBase or a subclass of it. The class itself inherits from
StandardCombi but implements more functionality which makes it possible to adapt
the grid to the dataset.

3.4.1 Training with the Spatially Adaptive Combination Technique

The first method that has to be called is train_spatially_adaptive(). It has the
parameters percentage_of_testdata which specifies how the data set is split, the
margin, which is responsible for the adaptivity and the stopping criteria tolerance

(for current error), and max_evaluations (refinement stops when current number
of evaluations is greater or equal than the value of this parameter). The value of
do_plot specifies whether the grid of each step of the refinement should be plotted and

24



3 Implementation

noisy_data determines whether we add white noise to the target values of the training
and validation set.

In the beginning of the function, the data set is split according to the specified
sizes. The percentages for the training, validation, and test set are the same as in
the case of the normal Combination Technique. In the following, variables that the
SpatiallyAdaptiveSingleDimensions2 object uses are instantiated. These are then,
together with the second, third and fourth parameter, forwarded to this instance and
they determine the behavior of the adaptivity. The grid refines in all regions where the
error is greater than or equal to a percentage of the highest error. This number can be
specified with margin which is always in the interval [0, 1]. The higher the margin the
more fine-grained we refine. With a margin of 0 everything is refined equally. With
tolerance and max_evaluations, the stopping criteria are set. If the whole error is
smaller or equal than the tolerance or the number of evaluations exceeds the third
parameter, the refinement stops and the weights of the basis functions are found.

After the initialization of the object with these parameters, the regression is performed.
Again in this case, there are two major methods that perform the regression. The
case without regularization is done by solve_regression_dimension_wise. It does
essentially the same as the one performing regression on the normal Combination
Technique. The matrix and the vector are built according to equation 2.24. The system
is then solved using lstsq from numpy.

The other possibility is to use a regularization matrix I or C. This is the case when
λ 6= 0. Then the method solve_regression_dimension_wise_smooth will be called.
Again, the steps are the same as in the respective case with the normal Combination
Technique. The difference is the calculation of the C matrix. This can be seen in the
part of the method build_C_matrix_dimension_wise in figure 3.9.

In this method, the calculation of the integrals is a bit more complex because of the
adaptivity. For example basis functions might have different widths in the adaptive
case. And also the comparison of the indexes of hat functions is not sufficient because
they might not overlap even though they have the same index. Another problem is that
the hat function can also be asymmetric because the grid point is not exactly in the
center of the interval anymore. An example can be seen in figure 3.10.

Although, the general structure is the same as with the normal combination tech-
nique. The whole block is splitted in the first part (where m == k) where the actual
derivatives of the functions are computed and the second part where the normal hat
functions are used. The calculation is again according to 3.2.

25



3 Implementation

1 [...] if m == k: # derivatives of the basis functions are taken
2 if no overlap:
3 temp_res *= 0
4 elif fully overlapping:
5 b1 = point_i[k] − domain_i[k][0]
6 m1 = 1 / b1
7 b2 = domain_i[k][1] − point_i[k]
8 m2 = 1 / b2
9 temp_res *= b1 * m1 ** 2 + b2 * m2 ** 2

10 else : # partially overlapping
11 if point_i[k] < point_j[k]:
12 b = point_j[k] − point_i[k]
13 m = 1 / (point_j[k] − point_i[k])
14 temp_res *= −(m * m * b)
15 else :
16 b = point_i[k] − point_j[k]
17 m = 1 / (point_i[k] − point_j[k])
18 temp_res *= −(m * m * b)
19 else : # no derivatives of the basis functions are taken
20 if kth coordinate of the points are not the same:
21 m = 1.0 / abs(point_i[k] − point_j[k])
22 a = min(point_i[k], point_j[k]) # lower end of integral
23 b = max(point_i[k], point_j[k]) # upper end of integral
24 integral_calc = lambda x, m, p, q: 0.5 * (m ** 2) * (x ** 2) * (p + q) − (1 / 3) * (
25 m ** 2) * (x ** 3) − x * (m * p + 1) * (m * q − 1)
26 integral = integral_calc (b, m, a, b) − integral_calc(a, m, a, b)
27 temp_res *= integral
28 else : # kth coordinate are the same
29 if point_i[k] != domain_i[k][0]: #kth coordinate of p_i is not the left boundary
30 m1 = 1.0 / abs(point_i[k] − domain_i[k][0]) # left slope
31 integral_1 = lambda x, m, p: −((m * (p − x) − 1) ** 3 / (3 * m))
32 else : #kth coordinate of p_i is the left boundary
33 integral_1 = lambda x, m, p: 0
34 m1 = 0
35 if point_i[k] != domain_j[k][1]: #kth coordinate of p_j is not the right boundary
36 m2 = 1.0 / abs(domain_j[k][1] − point_j[k]) # right slope
37 integral_2 = lambda x, m, p: −((m * (p − x) + 1) ** 3 / (3 * m))
38 else : #kth coordinate of p_j is the right boundary
39 integral_2 = lambda x, m, p: 0
40 m2 = 0
41 a = domain_i[k][0] # lower end of first integral
42 p = point_i[k] # upper end of first integral , lower end of second integral
43 c = domain_i[k][1] # upper end of second integral
44 integral = ( integral_1(p, m1, p) − integral_1(a, m1, p)) + (
45 integral_2(c, m2, p) − integral_2(p, m2, p))
46 temp_res *= integral [...]

Figure 3.9: Code snippet to calculate the C matrix for the spatially adaptive use case
26



3 Implementation

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 x

y

0

0.5

1

Figure 3.10: An example for an adaptive grid in one dimension is above. The corre-
sponding hat function can be seen right below.

3.4.2 Opticom with the Spatially Adaptive Combination Technique

The next step after training the regression object in the pipeline is to optimize the
coefficients of the component grids with Opticom. This can again be done with
three options. The different possibilities are the same as in the case with the normal
Combination Technique. Only the implementations differ slightly. The optimiza-
tion can be started with the method optimize_coefficients_spatially_adaptive(

adaptiveCombiInstance, option). The numbers 1− 3 for option are the same as for
optimize_coefficients(...).

For the first approach which is the one described in equation 2.33, the matrix and the
vector are built. The overall system is then solved with lstsq from numpy. The part
that is different is the projection of the basis functions on the same grid. Remember that
for the entries of the matrix in 2.33 possibly a higher level has to be used. This is imple-
mented in the function compute_regularization_term_opticom_spatially_adaptive

which can be seen in figure 3.11.
In lines 6 and 7, the maximum level in each dimension is calculated. The adap-

tiveCombiSingleDim object stores the information, how the grid is refined in which
levels. The list of points per dimension can then be retrieved with the method
get_point_coord_for_each_dim(levelvec_new) (line 10). With that information, all
grid points can be calculated in lines 11-13. Therefore, the weights of all basis functions
can be calculated which are important for the sum of the matrix. As a result, the
function returns the sum of the matrix which is the regularization term for this opticom
method.

As second option for opticom (see also equation 2.32), the method

27



3 Implementation

1 def compute_regularization_term_opticom_spatially_adaptive(adaptiveCombiInstanceSingleDim,
component_grid_i, component_grid_j):

2 levelvec_i = component_grid_i.levelvector
3 levelvec_j = component_grid_j.levelvector
4 levelvec_new = np.array((levelvec_i) )
5 # calculate the highest level in each dimension
6 for i in range(len(levelvec_i ) ) :
7 levelvec_new[i] = max(levelvec_j[i ], levelvec_i [ i ])
8 # calculate the concrete grid points depending on the levels
9 points_per_dimensions_list = []

10 point_coords, point_levels, children_indices = adaptiveCombiInstanceSingleDim.
get_point_coord_for_each_dim(levelvec_new)

11 for d in range(len(levelvec_new)):
12 points_per_dimensions_list.append(point_coords[d])
13 evaluation_points = get_cross_product_list(points_per_dimensions_list)
14 # calculate the weights of the basis functions (needed for matrix C)
15 alphas_i = adaptiveCombiInstanceSingleDim.interpolate_points(evaluation_points, scheme_i)
16 alphas_j = adaptiveCombiInstanceSingleDim.interpolate_points(evaluation_points, scheme_j)
17 sum_all = self . sum_C_matrix_with_alphas_spatially_adaptive(point_coords, alphas_i, alphas_j)
18 return sum_all

Figure 3.11: Code to calculate the regularization term for Opticom in the spatially
adaptive case

optimize_coefficients_minimize_whole_error_spatially_adaptive adapts the co-
efficients of the component grids with the help of the validation set. The steps are the
same as in the version without the spatial adaptivity. Only the interpolation of the
points is slightly different.

Also the third option is similar to the version without spatially adaptivity. In this case
it also holds that lower errors in a grid result in higher coefficients of this component
grid. This option is used when the value of the second parameter is is set to 3.

3.4.3 Testing with the Spatially Adaptive Combination Technique

The last step in the pipeline of the spatially adaptive Combination Technique is testing.
The method test_spatially_adaptive(adaptiveCombiInstanceSingleDim) has to be
called therefore. As function parameter, an object of type SpatiallyAdaptivBase has to
be passed. With this, the interpolation of the validation set is possible. The resulting
predictions of these points are then again compared with the actual target values. The
same norm as in the case with the normal Combination Technique is used (see also 3.4).

28



4 Results

The implementation of the different regression options is evaluated in this chapter.
Therefore, different configurations are tested regarding how well the regression per-
forms. One big advantage of Sparse Grids is the reduction of the complexity while still
producing sufficiently good results as already mentioned in chapter 2. This property
will be tested in the beginning followed by different configurations and options of the
regression. We will use various functions and datasets to evaluate certain properties
of the implementation. In some cases, we add white noise to the target values of the
training and validation set. The test functions will be the following:

fgauss(~x) = e−∑d
i=1 ki ·|xi−pi |

fdiscont(~x) =

{
0 , if ~x ≥ ~p

e−∑d
i=1 ki ·xi , otherwise

fexpvar(~x) = (1 +
1
d
)d · (

d

∏
i=1

x
1
d
i )

fpoly(~x) =
d

∏
i=1

ci · xa
i

foszillatory(~x) = cos(2π · b +
d

∑
i=1

ci ∗ xi)

fC0(~x) = −
d

∑
i=1

ci · |xi − pi|

With the parameters~k and ~p, the width and location of the function maximum can
be specified for the first one. The vector ~p in the second (discontinuous) function
determines where the function is not continuous. With the ~k, the gradient can be
adapted. The third function (expvar) does not have additional parameters. Only
the dimension can be changed. For the polynomial function, the degree a and the
coefficients ~c in each dimension can be specified. The b in the oszillatory function
describes the offset, whereas the ~c specifies the frequency of each dimension. The last

29



4 Results

function (C0 or star function) can be adapted by changing the maximum point (~p) and
the coefficients (~c).

Additionally, the following three data sets which are available in the scikit-learn
library are used. The dimensionality of the data points is denoted with d.

Name of data set d Number of samples Interval (target values)
Boston house-prices 13 506 [5, 50]

Diabetes 10 442 [25, 346]
California housing 8 20640 [0.15, 5]

Table 4.1: Data sets available at the library scikit-learn

4.1 Regression with the normal Combination Technique

4.1.1 Full vs. Sparse Grids

The first aspect that will be evaluated is how the regression with the Sparse Grid Com-
bination Technique performs in comparison with full grids. Therefore, two functions
are used to compare the results of the regression. The Sparse Grid is built with the
Combination Technique with minimum level 1 and maximum level of 3. The full grid
is also built with the Combination Technique but with both levels 3. The resulting grids
in two dimensions can be seen in figure 4.1.

Figure 4.1: On the left, the Sparse Grid can be seen. It is the result of the Combination
Technique with minimum level 1 and maximum level 3. On the right, the
full grid with level 3 is depicted. The number of grid points is much higher
than left.

30



4 Results

The focus of this comparison will lay on the impact of the dimension on the error
of the regression and the time used for this computation. Two functions are used for
this evaluation. The dimensions range from 2 to 5 and for each data set, the error
of the predictions and the time is measured. The functions do not have noisy data
and for each grid, no regularization term (regularization parameter λ = 0) is used.
The size of the data set is 200 in each case. The results of the predictions using the
oszillatory function (parameters (5, 5) and 0) and the polynomial function (degree 2,
and coefficients 2 in each dimension) can be seen in figure 4.2 in the left column. For
both functions, the plot is depicted on the left in two dimensions, the error is shown in
the center and the comparison of the time is on the right.

2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

dimension

Te
st

in
g

Er
ro

r

Sparse grid
Full grid

2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

dimension

C
om

pl
ex

it
y

Sparse grid
Full grid

2 2.5 3 3.5 4 4.5 5
0

5 · 10−2

0.1

0.15

0.2

0.25

dimension

Te
st

in
g

Er
ro

r

Sparse grid
Full grid

2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

dimension

C
om

pl
ex

it
y

Sparse grid
Full grid

Figure 4.2: Error of predictions and time used with respect to different dimensions
for full and Sparse Grids. Oszillating function on top and the polynomial
function in the bottom.

For both functions, the results are similar. With increasing dimension, the complexity
of the regression on full grids scales much higher than in the case with Sparse Grids.
Already at dimension 5, the time is approximately 65− 70 times higher than using
Sparse Grids. Although the times of both grids differ so much, the accuracies do not.
Notice that the times of the Sparse Grids are not zero. This plot only depicts the high
difference between those two fundamental grid types.

In figure 4.3, the combination scheme can be seen for the first function in the second

31



4 Results

dimension. The result of the whole scheme is at the bottom.

Figure 4.3: Regression on each component grid of the combination scheme for the
oszillating function (top). Combined result in the bottom.

The reason for the big differences of the times in higher dimension is the curse of the
dimensionality. In the one dimensional case, the full grid has 23− 1 = 7 grid points. This
scales exponentially with the dimension leading to much slower computation times
than using Sparse Grids. In general, the dimension of the data sets for the regression
tasks will be much higher, but this is not feasible for full grids. This is why the upper
bound of the dimension in this example is 5.

What is especially interesting in this comparison of full and Sparse Grids is the direct

32



4 Results

dependency of the accuracy and the time. In figure 4.4, the time used to reconstruct
the ExpVar function is plotted depending on the testing error. We compare how this
develops in different dimensions (2, 3, and 5). In each case, 1000 data samples without
additional noise are used. In the first two dimensions, the minimum level lmin = 1
and lmax is variable reaching from 2 to 5 for the Sparse Grids. The full grid has also
the levels two, three, four, and five. We only use the levels two and three for the five
dimensional case because of memory limitations.

10−3 10−2 10−1
10−3

10−2

10−1

100

101

Time

Er
ro

r

dimension: 2

Sparse grid
Full grid

10−3 10−2 10−1 100 101

10−1

100

Time

Er
ro

r
dimension: 3

Sparse grid
Full grid

10−3 10−2 10−1 100

10−0.4

10−0.2

100

Time

Er
ro

r

dimension: 5

Sparse grid
Full grid

Figure 4.4: Time-error-plot for regression of the polynomial function in three dimen-
sions with 1000 data points, full grids and Sparse Grids are compared in
dimension 2 (left), dimension 3 (center) and dimension 5 (right).

In this diagram, an ideal method would be located in the bottom left corner. In
general, a curve laying more bottom left than another one is dominating another one
laying more in the top right corner. In this comparison, we can see a clear trend. The
higher the dimension is, the more dominating is the curve of the Sparse Grid. While in
the two dimensional case, only parts of the blue curve are dominating the orange one,
the advantages of the Sparse Grids get clearer in the three and five dimensional case.
Notice that in lower dimensions, full grids can possibly dominate Sparse Grids. We can
observe that in the center, the curves are still located next to each other whereas in the
right case with dimension 5, the Sparse Grids curve clearly dominates the orange one
from full grids. The reason therefore is again the curse of the dimensionality which is
tackled by the reduced number of grid points in the Sparse Grid case. We can obviously
follow that using Sparse Grids makes much more sense in high dimensions.

4.1.2 Regularization parameter and term

The next criterion that has to be evaluated is the comparison of the two regularization
terms. These are implemented as matrices I and C and are described in 2.29 and 2.30.
For this comparison, the regularization parameter is variable and increasing. Again, the
interesting results are the error of the predictions and the time used for the operation.

33



4 Results

As already mentioned in chapter 2, the regularization parameter depends on the data
set used. Two functions are evaluated to investigate the advantages and caveats of both
matrices and also the optimal λ for each data set. The samples are in the first case from
the discontinuous function (parameters (4, 4) and (0.9, 0.9), only a small difference of
the target points in the discontinuous region) and in the second one from the gaussian
function (maximum at (0.5, 0.5) and parameters (5, 5)). For both tests, the number of
data points is 1000 and a grid with minimum level 1 and maximum level 5 is used. The
percentage of test data is 20% and no noise is added to the target values. The results of
the tests can be seen in figure 4.5.

10−6 10−5 10−4 10−3

2

3

4

5

6

7

·10−4

lambda

Te
st

in
g

Er
ro

r

matrix C
matrix I

10−6 10−5 10−4 10−3
0

0.2

0.4

0.6

lambda
C

om
pl

ex
it

y

matrix C
matrix I

10−6 10−5 10−4 10−3

10−3

10−2

lambda

Te
st

in
g

Er
ro

r

matrix C
matrix I

10−6 10−5 10−4 10−3
0

0.2

0.4

0.6

lambda

C
om

pl
ex

it
y

matrix C
matrix I

Figure 4.5: Plots of the error and time with respect to the regularization parameter λ

and the function used as data set on the left. Functions discontinuous (top
row) and gaussian (bottom row) used.

From these tests, we can observe different properties for the matrices C and I, but
also for the regularization term and the parameter. The first one is that the error with
matrix C and a suitable λ is slightly smaller than when using the matrix I, as expected.
This is due to the fact that the matrix is better adapted to the basis functions when
using this matrix. Although, regression with matrix I also performs very well (no
significant difference to the error with matrix C).

Another finding from these tests is that the complexity of matrix C is very high. With
O(n2)×O(d2) with n being the number of grid points and d being the dimension, this

34



4 Results

especially increases with higher levels. Although the time used is much higher than
for matrix I, the accuracy is not much better. That is a big disadvantage of C and an
argument to choose I for regression tasks in high dimensions with many grid points
where the use of C lead to too high computation times.

The last observation from this test is that the parameter λ really depends on the data
set. In this case, the best choice is λ = 5 ∗ 10−4 for the first data set and λ = 5 ∗ 10−5

for the gaussian function. An example for the impact of λ on the result can be seen in
figure 4.6. The left plot is the same function from above, the graph in the center is the
plot of the solution with the best parameter and the right one is the result of a λ that is
not suitable for this data set.

Figure 4.6: Example plots for different regularization parameters. On the left the
function that has to be reconstructed (discontinuous). In the center the
result for λ = 0.0005 and on the right with λ = 10−5.

4.1.3 Different Opticom options

With the regularization parameter λ, there already comes a possibility to improve the
result of the regression in the training phase. The step in the pipeline that was left
out so far is to adapt the coefficients of the component grids. This optimization of the
combination scheme was not made so far. In this section, the three different approaches
for Opticom that are explained in chapter 2 are compared with each other and the
normal regression. The error of the test set as well as the complexity will be the focus
of the following.

The first measurement compares the three Opticom variants using a small example.
The dataset used consists of samples of the oszillatory function in two dimensions
and coefficients (20, 5) with white noise added to the target values of the training and
validation set. The number of points is 200. The regression is performed on a grid

35



4 Results

resulting from the Combination Technique with lmin = 1 and lmax = 3. For the first
Opticom approach, two test runs are made. We compare the method once without
optimizing its λOpticom and the second time with an optimized parameter λOpticom. The
matrix used as regularization term is I. The results can be seen in table 4.2. We only
compare the times of Opticom.

Opticom variant error (MSE) time of Opticom (s)
Without 0.49425 0.0

Garcke optimized 0.42505 0.26471
Garcke without optimization 0.46344 0.28221

Least squares based without regularization 0.47546 0.05977
Error based 0.47648 0.00213

Table 4.2: Comparison (with function Oszillatory) of the different Opticom versions
with regression with the normal combination technique (without additional
Opticom). Error and time are measured.

The same experiments are also made with the polynomial function (coefficients 0.8
in each dimension). The results are depicted in table 4.3.

Opticom variant error (MSE) time of Opticom (s)
Without 0.00369 0.0

Garcke Optimized 0.00354 0.28006
Garcke without optimization 0.00355 0.26735

Least squares based without regularization 0.00357 0.14903
Error based 0.00426 0.00206

Table 4.3: Comparison (with polynomial function) of the different Opticom versions
with regression with the normal combination technique (without additional
Opticom). Error and time are measured.

The most important findings from this experiment are that the regularization pa-
rameter for Opticom has to be adapted for good predictions and that the overhead
that the variant introduced by Garcke [8] brings is very high. Without the additional
optimization of λOpticom, the errors of all three variants can be compared. But after the
adaption, the predictions are much better. It can be observed that the complexity of the
first method (Garcke) is especially for high dimensional problems too high because of
the regularization term of each entry in the matrix described in 2.33. The computation
of the matrix and the vector is in O(|grids|2 · |grids| · |grid_points|2 · dim2) with dim

36



4 Results

being the dimension. That is the reason why further experiments will be made with
the least squares based opticom ansatz without regularization.

To also evaluate the accuracy of regression with the optimization of the coefficients
of the component grids in higher dimensions and with more data points, the two data
sets diabetes and boston housing from sklearn were used. This time, the focus will be
on the evaluation of Opticom as well. Additionally, the impact of the regularization will
also be assessed. Two tests are made with the difference that one uses regularization
and the other one does not. Each time and for each dataset, the regression is performed
once with the Opticom and the other time without it. Additionally to the two datasets
from the library, artificial function datasets in dimension 7 are used. The C0 function
(star function) has parameters (2, 2, 2, 2, 2, 2, 2) and the maximum is located at the exact
center. The coefficients for the oszillatory function are (20, 20, 20, 20, 20, 20, 20) and
0. For both functions, 400 samples are taken. In all experiments, the training and
validation sets are disturbed with gaussian noise. The results are shown in figure 4.7.

For all data sets, the results look slightly different. This is because of certain properties
of the data sets and the Opticom. For the first set in the top left corner, the Opticom
optimizes the coefficients very well. In both cases, the red bar is much smaller than the
blue one. What you can also see is that the error of predictions with regularization term
is in general smaller than the ones where λ = 0. In this case, performing the Opticom
brings a big advantage.

For the second dataset (boston, top right corner) this is not always the case. The
accuracy of the regression with regularization decreases when performing opticom. The
red bar is slightly higher than the blue one for the case with λ 6= 0 and matrix I with
one exception in the top left diagram. The reason is that the regularization parameter
already improves the results very much so that an optimization of the combination
scheme does not optimize the results and also the grid level is suitable for a very
accurate result. This is indicated by the very high blue bar without regularization and
the small blue bar in the case with I.

All in all the two data sets in the top row have much higher errors than the other two
datasets. This is due to the fact that the target values of them have higher values while
the ones from the data sets at the bottom row are in the interval [−1, 1]. This generally
leads to higher deviations.

The two data sets at the bottom have similar behavior. For both, the Opticom
improves the accuracy in every case, and also the regularization leads to smaller errors.

In general, the Opticom is very useful to improve the coefficients of the component
grids leading to higher accuracies in predicting new data points. Only few exceptional
cases exist where no improvement is made with the Opticom.

37



4 Results

with I λ = 0

1

1.5

2

2.5

3

3.5

·104

er
ro

r
(M

SE
)

diabetes

No Opticom
With Opticom

with I λ = 0
0

0.5

1

1.5

2

·105

er
ro

r
(M

SE
)

boston

No Opticom
With Opticom

with I λ = 0

1

2

3

4

5

·10−3

er
ro

r
(M

SE
)

star function

No Opticom
With Opticom

with I λ = 0

0.55

0.6

0.65

0.7

0.75

er
ro

r
(M

SE
)

oszillatory function

No Opticom
With Opticom

Figure 4.7: Errors of regression with/ without regularization, each with or without
Opticom plotted for four data sets.

38



4 Results

4.2 Regression with spatially adaptive Combination Technique

4.2.1 Margin and number of grid points

While the previous experiments showed results for the regression with the normal
Combination Technique, the following ones use the spatially adaptive version. As
already mentioned in chapter 2, the grids now adapt to the data set that is being
processed. This happens through iteratively refining the grid in the regions where the
error is still high. One important parameter in this setting is the margin. With this
value from the interval [0, 1], it can be specified where the grid has to refine in each
step. At each grid point, the current error is computed. Now all points where this
error is greater or equal than margin · errormax are being refined. This means that for
margin = 0, a normal Combination Technique is used and the higher this value is, the
more localized the refinement. With the first experiment, this impact of the parameter
margin on the error is evaluated. It will also be important for further experiments.

As data set, random samples of a gaussian function with maximum at the point
(0.8, 0.8) are used. The plot of the function and the samples can be seen in figure 4.8.

Figure 4.8: The gaussian function with maximum at (0.8, 0.8) and coefficients 15 in each
dimension plotted (left) and the samples of the function on the right.

The 400 data samples of the function are used with additional white noise. As
stopping criteria, the maximal number of evaluations is set to 90 and the tolerance is
chosen to be 10−3. 20% of the data set is used for testing. For each case, a suitable
regularization parameter λ is computed and used. In figure 4.9, the impact of the
margin on the error can be seen.

39



4 Results

0 0.2 0.4 0.6 0.8 1

2

4

6

8

·10−3

margin

er
ro

r
(M

SE
)

Matrix C
Matrix I

without reg.

Figure 4.9: Error of the regression (MSE) depending on the margin. Comparison of
regression with regularization (I and C) and without. Gaussian function
was used.

The best value for the parameter margin is between 0.7 and 1. If it is chosen too
small, then the grid is not adaptive enough to produce suitable results and the grid
is too similar to the normal Sparse Grid. The special case is when margin = 0. Then
the normal Combination Technique is used. An example for the spatially adaptive
combination scheme with the resulting Sparse Grid and the solution of the regression
can be seen in figure 4.10. Notice that no exact number of evaluations is taken into
account in this experiment. It might be the case here that the final grid of the different
cases with the various margins have not the same number of grid points. This might be
lead to misleading interpretations regarding the amount of function evaluations. The
refinement stops as soon as the current number of grid points is higher or equal than
the given parameter which is in this case 90.

In this example, the errors first increase with increasing margin. However, then
the errors constantly decrease until they reach a value of about half the error of the
normal Combination Technique. This shows that an adaptive scheme can outperform
the standard combination with margin = 0.

This can not be generalized because for most data sets, a value of 1 for margin does
not lead to the highest accuracy. This can be observed in the next example. The data set
used is based on the gaussian function again but this time with maximum at (0.7, 0.7)
and higher coefficients in each dimension leading to a higher width. The plot of the

40



4 Results

Figure 4.10: Example for spatially adaptive combination scheme with the gaussian
function as data set. Regression was executed with regularization matrix I
and margin = 0.7.

function and the samples used can be seen in figure 4.11.
The results of the regression with the same parameters as the previous gaussian

example can be seen in figure 4.12.
In this example where the maximum is more centered, the error of regression does

not decrease again for all regularization versions. For matrix I, the accuracy even gets
worse for margin set to 1. Again notice that the exact number of grid points is not
considered here. In general, this example is not as suitable for the adaptivity as the

41



4 Results

Figure 4.11: The gaussian function with maximum at (0.7, 0.7) and parameter (8, 8)
plotted (left) and the samples of the function on the right.

0 0.2 0.4 0.6 0.8 1
2

3

4

5

·10−3

margin

er
ro

r
(M

SE
)

Matrix C
Matrix I

without reg.

Figure 4.12: Error of the regression (MSE) compared to margin. This time, gaussian
function with higher parameters in each dimension was used.

other gaussian function because of the slower descent and the more centered location
of the maximum. That is also the reason why the normal Combination Technique
brings the best results in this example. Another reason could be that the adaptive
Combination Technique already leads to an overfitted solution. We focus on this aspect

42



4 Results

in the following experiment. However, it seems to be consistent that it is sufficient to
use the cheaper regularization matrix I in most cases.

All in all the parameter margin has big impact on the results of the regression and a
suitable value has to be chosen to obtain good predictions. By now, no concrete number
of refinement steps or grid points were considered. This is now done in the following
test. It compares six different values for margin how the error of the regression develops
after each refinement step. Figure 4.13 depicts the results. The gaussian function is
used with dimension 5, and a maximum at (0.8, 0.8, 0.8, 0.8, 0.8). The parameter is 20 in
each dimension and 1000 samples are used.

101 102 103

1

1.5

2

2.5

3
·10−3

number evaluations

er
ro

r

margin = 0
margin = 0.2
margin = 0.4
margin = 0.6
margin = 0.8
margin = 1

Figure 4.13: Testing error depending on the number of evaluations for different values
of margin.

All curves first go down with increasing number of evaluations. This is where
the best solution is found. After this minimum, the error increases again because an
overfitted solution is found. This is caused by the too high number of grid points of the
grid. The higher the margin is, the smaller is the minimum error. The reason therefore
is that the grid adapts best to the given training points. Compared to the smaller values
for margin, the minimum is found with a smaller number of evaluations because no
unnecessary grid points are added. In general, a higher value for margin means a
minimum error with fewer evaluations. But the accuracy decreases faster after this
point again because the grid finds a highly overfitted solution faster than with smaller
values for margin.

The impact of the number of grid points on the results of the regression can already

43



4 Results

be seen in figure 4.13. A more detailed focus is laid on the maximal evaluations in
the following experiment. To evaluate this behavior, the error of the regression using
the spatially adaptive Combination Technique is measured for three variants of the
gaussian distribution. The plots can be seen in figure 4.14. The maximum is located
at (0.7, 0.7) for all three data sets and the parameters are 10, 20, and 30 respectively.
For all tests, 600 samples are taken without any additional noise. The margin is set
to 0.7 and 20% of the samples are used as test set. Different values are taken for the
max_evaluations parameter as it can be seen in the results from figure 4.15.

Figure 4.14: The three gaussian function with parameters 10, 20 and 30 plotted.

0 50 100 150 200 250 300

10−2.5

10−2

10−1.5

number grid points

er
ro

r
(M

SE
)

10
20
30

Figure 4.15: Testing error depending on the number of grid points (evaluations) plotted
for the three gaussian functions.

We can observe in this plot that up to a distinct number of gird points, the error of
the regression decreases. Until this point, the function can be reconstructed well. A
higher number of evaluations then leads to an overfitted grid that can only predict the
training data well. The error of the test set increases again like in figure 4.15.

44



4 Results

An example for different refinement steps of the case with the function with parame-
ter 20 in each dimension can be seen in figure 4.16.

Figure 4.16: Three different refinement steps for the gaussian function with standard
deviation 20. Number of grid points are 7 (left), 18 (center) and 52 (right)
in the top row. In the bottom row the number of evaluations are 149, 255
and 297 (left, center and right respectively) where the effect of overfitting
is getting more significant.

The number of evaluations are 7, 18, 52 in the top row (left, center, and right plot).
In the bottom row, the number of evaluations are 149, 255, and 297 (left, center and
right respectively). It can be observed that the function gets reconstructed better with
increasing number of evaluations until a certain border point (52). If the number gets
bigger than that, the result gets worse and the error increases. The bottom row of figure
4.16 shows this behavior.

4.2.2 Regularization parameter and term

The next parameter that we want to evaluate is the regularization parameter λ. In the
following experiments, the impact of the parameter on the accuracy of the regression
with the spatially adaptive Combination Technique is of interest. In chapter 2, it was

45



4 Results

already mentioned that it is responsible for the trade off between smoothness of the
function and exactness. To observe its impact, four different data sets are used. The first
two being the boston housing and diabetes sets from the sklearn library. They were
already used in previous experiments. The second two are samples of the discontinuous
function and the gaussian function. For the latter ones, the dimension is set to 6, and
1000 random data points are taken. Additional white noise is added to the target values
of the last two data sets. The discontinuous function has parameters (2, 2, 2, 2, 2, 2)
and (0.7, 0.7, 0.7, 0.7, 0.7, 0.7). The maximum of the gaussian function is centered at
(0.5, 0.5, 0.5, 0.5, 0.5) and it has parameters 3 in each dimension.

For each test, 20% of the data set is taken as test data, and margin is set to 0.7. The
refinement stops when the error is smaller or equal to the tolerance of 10−3 or the
number of evaluations is higher than 200. As a regularization matrix, I is chosen in
each case. The results can be seen in figure 4.17.

All four data sets have one thing in common. First, the error decreases with λ getting
higher. And after reaching its own minimum, the error increases again without getting
as small as the minimum again. In general, a regularization that is too small leads to an
overfitted solution where unknown data points from the test set can not be predicted
very well. In this case, the solution is adapted too much to the training set.

For both data sets in the top row (boston and diabetes from sklearn), the smallest
error is reached with λ = 10−8. For the other two cases in the bottom row, the optimal
value is slightly higher, i.e. at 10−4 and 10−5 respectively. This is again dependent on
the concrete data set used and the reason why this parameter has to be optimized for
each regression task.

In general, we can observe that the optimal λ is smaller for higher dimensional data
sets. The reason therefore is that the values of the system matrix B get smaller. A higher
value for the regularization parameter would lead to a dominating matrix I or C and
that would increase the overall error.

4.2.3 Different Opticom approaches

The use of the Combination Technique in the spatially adaptive case leads room to
optimization of the coefficients. Just like in the previous case without refinement,
the second step of the pipeline which is the Opticom leads to better coefficients of
the component grids after the regression was already performed. These optimized
hyperparameters then lead to a better overall solution and to a smaller error in the
predictions of test data.

In the following, the three different Opticom approaches are compared. The focus
lays on the accuracy and the time used to compute suitable values. As a data set, 700

46



4 Results

10−11 10−9 10−7 10−5 10−3 10−1 101

102.8

103

103.2

lambda

er
ro

r
(M

SE
)

boston

10−11 10−9 10−7 10−5 10−3 10−1 101

104.2

104.4

lambda

er
ro

r
(M

SE
)

diabetes

10−11 10−9 10−7 10−5 10−3 10−1 101

10−3.62

10−3.6

10−3.58

lambda

er
ro

r
(M

SE
)

discontinuous

10−11 10−9 10−7 10−5 10−3 10−1 101

10−1.5

10−1

lambda

er
ro

r
(M

SE
)

gaussian

Figure 4.17: Error of the test set depending on the regularization parameter λ for data
set boston housing and diabetes from sklearn library and samples for the
two functions discontinuous and gaussian.

samples of the oszillatory function with additional white noise are used. The plot of the
function and the samples can be seen in figure 4.18. The parameter max_evaluations
is set to 100 and margin is chosen as 0.7. The error tolerance is 10−3. The regularization
consists of an optimized λ and the matrix I. The comparison of the three Opticom
approaches can be seen in table 4.4. Two tests were made for the first ansatz, one with
λOpticom = λ and the other one with an optimized parameter for the Opticom.

The accuracy of the regression with the first and second (Garcke and least squares
based without regularization) approach is better than without Opticom. For the first one,
the tuning of the regularization parameter brings further improvements of predictions.
For the last approach which is not based on the data but rather only on the solutions of
the component grids, the error of the test set increases. This is not always the case but
here, the errors of the partial solutions already cancel out quite well leading to worse
predictions when changing the coefficients.

47



4 Results

Figure 4.18: Oszillatory function (left) and samples (right) plotted.

opticom variant error (MSE) time of Opticom (s)
Without 0.03270 0.0

Garcke optimized 0.03196 2.40577
Garcke without optimization 0.03201 2.46801

Least squares based without regularization 0.02853 2.00643
Error based 0.03903 0.01922

Table 4.4: Comparison of the three Opticom variants regarding testing error and time
used. For the first approach, the regularization parameter λOpticom is opti-
mized in one case.

The complexity of the first approach is the worst one. Especially in cases of a high
number of evaluations, this leads to problems. This is especially the case for higher
dimensional problems. The time needed for the second optimization mainly depends
on the number of data points and is therefore not critical. The fastest approach is the
third one, but because of the fact that it does not depend on the validation set makes
this third approach the worst one in general. Because of the high complexity of the
first approach, the next tests are made with the second one. In general, the first two
approaches take much more time than the regression without Opticom needs. The
computation of the weights of the basis functions on the component grids takes much
less than one second (measured approximately 0.1s).

The next tests aim to compare the normal regression with the spatially adaptive
Combination Technique with the one with optimized coefficients of the component
grids. The results in table 4.6 show how the accuracy of predictions is improved. For all

48



4 Results

four tests, the configurations can be seen in table 4.5. The column of Opticom indicates
that for all four data sets, the second Opticom approach (least squares based without
regularization) is used.

Data set margin max_evaluations Opticom
Diabetes 0.6 400 2

Discontinuous 0.8 50 2
Gaussian 0.6 100 2

Oszillatory 0.5 50 2

Table 4.5: Configurations of the regression methods for the evaluation of Opticom in
the spatially adaptive case.

data set without Opticom with Opticom Reduction
Diabetes 13259.25 12915.17 3%

Discontinuous 0.00017504 0.00015756 10%
Gaussian 0.068371 0.047443 30%

Oszillatory 0.482316 0.476549 2%

Table 4.6: Comparison of the testing error with and without performing Opticom.

As the table shows, the errors decrease after the optimization. The percentage in
the right column shows how big the impact of the Opticom is. It is calculated with
1− error with Opticom

error without Opticom . These values differ among the data sets. The reason for this is
that with the Opticom, only the hyperparameters are tuned. If the solution is already
very close to the actual function, then the improvement can not be that high. The high
reduction of the error happens when the coefficients of the component grids in the
normal Combination Technique are not yet suitable. This is the case where high values
in the third column appear.

49



4 Results

4.3 Comparison with common regression

The implementation of the regression with the (optimized) Combination Technique
was described and evaluated so far with different parameter settings and data sets. In
this chapter, the implementation is compared with other common implementations
for regression. The already mentioned library sklearn also offers the possibility to
perform regression with different implementations. These are the following:

• Linear Regression

• Polynomial Regression

• Neural Network

The first one is an ordinary linear regression technique. The polynomial regression is
an extension of it with more parameters that are optimized. Nonlinear functions can be
reconstructed better with it. The third one is a neural network and uses a multi-layer
perceptron.

4.3.1 Normal Combination Technique

To compare the implementation using the Sparse Grid Combination Technique with the
one from the library, two different functions were used. The first one is the polynomial
function and the second one is the discontinuous function. Both can be seen in figure
4.19. For both functions, lmin = 1 and for the first one lmax = 5 and the latter one
lmax = 4 for the Combination Technique. The degree of the polynomial regression
method is set to the number of grid points used in the own implementation to set
similar conditions in all methods. The neural network performs 500 iterations and
contains one hidden layer. The results of the comparison can be seen in figure 4.20.

It can be observed that depending on the data set or the function used, different
methods reconstruct this function best. In the left diagram, where samples of the
polynomial function are used, the Sklearn Polynomial regression outperforms the other
methods with fewer data points. The neural network then has a smaller error which
is due to the increasing number of data points. The regression with the Sparse Grid
Combination Technique and the optimized version perform worse than those two
library implementations for this data set. The linear regression from Sklearn has in
general the highest error. The reason for the high accuracy of the Polynomial regression
is that the function used can be reconstructed very well because it is polynomial. For
the neural network, it is important that it has many training points so that predictions

50



4 Results

Figure 4.19: The polynomial function with coefficients (2, 2) on the left and the discon-
tinuous function on the right.

0 100 200 300 400 500 600 700

10−2

10−1

Number of data points (testing and training)

Te
st

in
g

Er
ro

r

polynomial function

Matrix C
Matrix C with Opticom

Sklearn Linear
Sklearn Polynomial

Sklearn Neural Network

0 100 200 300 400 500 600 700
10−3

10−2

Number of data points (testing and training)

Te
st

in
g

Er
ro

r

discontinuous function

Matrix C
Matrix C with Opticom

Sklearn Linear
Sklearn Polynomial

Sklearn Neural Network

Figure 4.20: Testing Error (MSE) depending on the number of data points using the
polynomial function (left) and the discontinuous function (right).

are more accurate. This is the reason why the error decreases very fast with growing
number of data points.

For the second function, the best results are made with the regression with the

51



4 Results

optimized Combination Technique followed by the one without Opticom. This time, the
polynomial regression is always better than the neural network and the worst accuracy
has the linear regression. The reason why the Sparse Grids implementation outperforms
the other methods is that the function used to draw samples is discontinuous. This can
not be reconstructed very well with polynomials. For the Sparse Grid implementation
using weighted sums of hat functions, this is not a big problem and the testing errors
are very low.

All in all, it really depends on the data set which implementation of regression has
the lowest error.

4.3.2 Spatially adaptive Combination Technique

With the spatially adaptive Combination Technique, the regression improves compared
to the normal one. In the following experiments, this version is included in the
comparison. This time, the neural network and the polynomial regression from sklearn
are used. Four different data sets are used. The gaussian function with maximum at
0.7 and parameters 20 in each dimension, the discontinuous function (discontinuous at
(0.8, 0.8, 0.8, 0.8) and parameters (2, 2, 2, 2)) and polynomial function with parameters
2 in each dimension and degree 2. All data samples of these data sets are four
dimensional and no additional noise is added. We take 400 samples for each function.
The fourth data set is the real-world data set California housing from the library sklearn.
It has 20640 samples with dimension 8. For the own implementation, I is chosen as
regularization matrix. In all cases, we optimize the regularization parameter λ to its
optimum. The configurations can be seen in table 4.7. The number in the column of
Opticom stands for the options described in chapter 3 (1: least squares based approach
with regularization, 2: least squares based without regularization, 3: error based, 0: no
Opticom).

CT adaptive CT
Data set lmin lmax Opticom margin max_evaluations Opticom
Gaussian 1 5 2 0.7 300 2

Discontinuous 1 5 2 0.8 400 2
Polynomial 1 5 2 0.7 400 2

California housing 1 3 0 0.7 400 3

Table 4.7: Configurations of the regression methods for the comparison with the ones
from sklearn.

The polynomial regression is always adapted to the grid, i.e. the degrees of freedom
are always chosen to be similar to the number of grid points of our regression method.

52



4 Results

The results of the comparisons can be seen in figure 4.21.

CT NN Poly adaptive CT
0

0.2

0.4

0.6

0.8

1

·10−2

er
ro

r
(M

SE
)

Gaussian

CT NN Poly adaptive CT
0

0.5

1

1.5

2

2.5
·10−3

er
ro

r
(M

SE
)

Discontinuous

CT NN Poly adaptive CT
0

0.1

0.2

0.3

er
ro

r
(M

SE
)

Polynomial

CT NN Poly adaptive CT
0

1

2

3

4

5

er
ro

r
(M

SE
)

California housing

Figure 4.21: Comparison of the regression with the normal Combination Technique
(CT), the neural network, the polynomial regression (Poly) and the adaptive
regression with the spatially adaptive Combination Technique (adaptive
CT). Data sets used are the gaussian, discontinuous and polynomial func-
tion and the real world data set California housing.

In all cases, the adaptive regression performs better than the one using the normal
Combination Technique. For the gaussian and discontinuous functions, the adaptive
regression with the spatially adaptive Combination Technique performs better than the
two implementations from sklearn. For the polynomial function, the neural network
achieves the smallest test error. In general, the regression with the Combination

53



4 Results

Technique performs worse than the other implementations for the California housing
data set. Notice that in all cases, the parameters for the polynomial regression had to be
adapted and optimized to the data set. We do not have to choose a specific degree but
only set the maximum number of points in the (adaptive) Combination Technique. This
is one advantage of the regression with the spatially adaptive Combination Technique.

54



5 Conclusion and Outlook

In this work, many different possibilities for using the Combination Technique for
regression were presented and evaluated. In the following, the results are summa-
rized and an outlook on further improvements is given with some ideas for future work.

The simplest case of regression using the Combination Technique is based on the
least squares problem. The first optimization is to add the regularization term with two
different possibilities. We found out that C is slightly more accurate than matrix I, but
with the second one being much less complex to compute, we came to the conclusion
that I is the better choice. Additionally, the Combination Technique can be optimized
with three different Opticom approaches. The two first ones are real optimizations
using least squares and the third one updates it according to the error of the component
grids. We observed that the approach introduced by Garcke ([8]) performs best with
an optimized regularization parameter. Because of the complexity of this method, the
second one based on the least squares problem optimizing the coefficients is used in
most cases.

The next improvement is to use the spatially adaptive Combination Technique which
refines depending on the data set. Again, a normal regression without regularization is
introduced, followed by the two possibilities of I and C. Similar to the normal Combi-
nation Technique, the choice of using I is the best. Again, the three Opticom methods
are presented, with the second option (based on least squares) being the best one for
high dimensional data. The results of the experiments showed that in certain cases, the
implementation can produce better results than common regression methods from the
library sklearn.

Of course, there is still room for improvement. For example, the computation of the
matrix C does not depend on the data set used but only on the grid. This brings the
possibility of splitting the pipeline further into an offline and an online phase like it is
done in [13]. In the first phase where no data is available, the matrix can be computed
and stored. When the samples can be used in the online phase, the right matrix can
then be fetched depending on the grid used. This tackles the problem of the high
complexity of the computation of the matrix. For this purpose, it would be possible to
implement a data base that stores different matrices for common scenarios.

55



5 Conclusion and Outlook

Another optimization is to further improve the error based Opticom method. This is
the fastest one only depending on the errors of the component grids. By comparing the
error of the combined solution, a decision can be made telling whether the update of
the coefficients should be performed or not. This can prevent a high increasing error.
In general, this can not be applied to the other opticom methods because only the
validation set is available in this phase and they use a real optimization which can not
lead to worse errors regarding the validation set. In all cases, a reduced accuracy can
be observed because of possible noise of the data and the fact that the overall error is
measured with the test set which is not available to this time.

56



List of Figures

2.1 Hat function Φ in the interval [-2,2] . . . . . . . . . . . . . . . . . . . . . 3
2.2 Piecewise linear interpolation with hat functions . . . . . . . . . . . . . . 4
2.3 Comparison of the hierarchical basis and the nodal basis . . . . . . . . . 4
2.4 Piecewise linear interpolation using the hierarchical basis . . . . . . . . 5
2.5 Two dimensional subspaces with the contained basis functions . . . . . 6
2.6 Subspaces in two dimensions and the resulting Sparse Grid, taken from

[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Combination scheme with lmin = 1 and lmax = 5 . . . . . . . . . . . . . . 9
2.8 Example for adaptive refinement . . . . . . . . . . . . . . . . . . . . . . . 9
2.9 Example for the spatially adaptive Combination Technique . . . . . . . 10
2.10 Gaussian function and samples . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11 Results of the regression on component grids and combined . . . . . . . 13

3.1 Pseudo code to solve the regression without regularization . . . . . . . 17
3.2 Pseudo code to solve the regression with regularization . . . . . . . . . 18
3.3 Pseudo code to build the matrix C . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Examples for overlapping basis functions . . . . . . . . . . . . . . . . . . 20
3.5 Examples for not overlapping basis functions . . . . . . . . . . . . . . . . 20
3.6 Examples for partly overlapping basis functions . . . . . . . . . . . . . . 21
3.7 Code to build the matrix and the vector of Opticom . . . . . . . . . . . . 22
3.8 Code to update the coefficients according to the errors per component

grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Code snippet to calculate the C matrix for the spatially adaptive use case 26
3.10 Example for adaptive grid its the basis functions . . . . . . . . . . . . . . 27
3.11 Code to calculate the regularization term for Opticom in the spatially

adaptive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Comparison of a sparse and a full grid . . . . . . . . . . . . . . . . . . . 30
4.2 Evaluation of the error and time depending on dimension . . . . . . . . 31
4.3 Regression on each component grid of the combination scheme and

combined result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Evaluation of error depending on the time for different dimensions . . 33
4.5 Evaluation of the time and error depending on lambda . . . . . . . . . . 34

57



List of Figures

4.6 Results of the regression for different values of lambdas . . . . . . . . . 35
4.7 Evaluation of testing error depending on Opticom and regularization . 38
4.8 Plot of gaussian function and samples . . . . . . . . . . . . . . . . . . . . 39
4.9 Evaluation of testing error depending on margin for different regulariza-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 Example for spatially adaptive combination scheme . . . . . . . . . . . . 41
4.11 Plot of gaussian function and samples . . . . . . . . . . . . . . . . . . . . 42
4.12 Evaluation of testing error depending on margin with different regular-

izations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.13 Testing error depending on the number of evaluations for different values

of margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.14 The three gaussian function with parameters 10, 20 and 30 plotted. . . 44
4.15 Evaluation of testing error depending on number of grid points . . . . . 44
4.16 Results of the regression in different refinement steps . . . . . . . . . . . 45
4.17 Evaluation of testing error depending on value of lambda . . . . . . . . 47
4.18 Oszillatory function (left) and samples (right) plotted. . . . . . . . . . . 48
4.19 Polynomial function and discontinuous function . . . . . . . . . . . . . . 51
4.20 Evaluation testing error depending on number of data points . . . . . . 51
4.21 Comparison of the testing error for different methods . . . . . . . . . . . 53

58



List of Tables

4.1 Data sets available at the library scikit-learn . . . . . . . . . . . . . . . . . 30
4.2 Comparison of the different Opticom versions (with oszillatory function) 36
4.3 Comparison of the different Opticom versions (with polynomial function) 36
4.4 Comparison of the different Opticom versions (spatially adaptive case) 48
4.5 Configurations of the regression methods for the evaluation of Opticom

in the spatially adaptive case. . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Comparison of the testing error with and without performing Opticom. 49
4.7 Configurations of the regression methods for the comparison with the

ones from sklearn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

59



Bibliography

[1] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numerica, vol. 13, pp. 147–269,
2004. doi: 10.1017/S0962492904000182.

[2] D. Pflüger, “Spatially adaptive sparse grids for high dimensional problems,”
vol. 13, 2010.

[3] J. Garcke, “Sparse grids in a nutshell,” in Sparse Grids and Applications, J. Garcke
and M. Griebel, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 57–
80, isbn: 978-3-642-31703-3.

[4] J. Garcke, M. Griebel, and M. Thess, “Data mining with sparse grids,” Computing,
vol. 67, 2001. doi: 10.1007/s006070170007.

[5] M. Griebel, M. Schneider, and C. Zenger, “A combination technique for the
solution of sparse grid problems,” 1990.

[6] M. Obersteiner and H.-J. Bungartz, “A generalized spatially adaptive sparse
grid combination technique with dimension-wise refinement,” SIAM Journal on
Scientific Computing, vol. 43, no. 4, A2381–A2403, 2021. doi: 10.1137/20M1325885.
eprint: https://doi.org/10.1137/20M1325885.

[7] M. Hegland, J. Garcke, and V. Challis, “The combination technique and some
generalisations,” Linear Algebra and its Applications, vol. 420, no. 2, pp. 249–275,
2007, issn: 0024-3795. doi: https://doi.org/10.1016/j.laa.2006.07.014.

[8] J. Garcke, “Regression with the optimised combination technique,” in Proceedings
of the 23rd International Conference on Machine Learning, ser. ICML ’06, Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 2006, pp. 321–328,
isbn: 1595933832. doi: 10.1145/1143844.1143885.

[9] M. Fabry, “Spatially adaptive density estimation with the sparse grid combination
technique,” Masterarbeit, Technical University of Munich, Sep. 2020.

[10] C. C. Moser, “Machine learning with the sparse grid density estimation using
the combination technique,” Bachelorarbeit, Technical University of Munich, Sep.
2020.

60

https://doi.org/10.1017/S0962492904000182
https://doi.org/10.1007/s006070170007
https://doi.org/10.1137/20M1325885
https://doi.org/10.1137/20M1325885
https://doi.org/https://doi.org/10.1016/j.laa.2006.07.014
https://doi.org/10.1145/1143844.1143885


Bibliography

[11] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D.
Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830,
2011.

[13] B. Peherstorfer, D. Pflüge, and H.-J. Bungartz, “Density estimation with adaptive
sparse grids for large data sets,” in Proceedings of the 2014 SIAM International
Conference on Data Mining (SDM), pp. 443–451. doi: 10.1137/1.9781611973440.
51. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.51.

61

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1137/1.9781611973440.51
https://doi.org/10.1137/1.9781611973440.51
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.51

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theoretical Background
	Numerical approximation of functions
	Sparse Grids
	Regression with Sparse Grids
	Opticom

	Implementation
	sparseSpACE framework
	Regression class
	Methods for normal Combination Technique
	Training with the normal Combination Technique
	Opticom with the normal Combination Technique
	Testing with the normal Combination Technique

	Methods for the Spatially Adaptive Combination Technique
	Training with the Spatially Adaptive Combination Technique
	Opticom with the Spatially Adaptive Combination Technique
	Testing with the Spatially Adaptive Combination Technique


	Results
	Regression with the normal Combination Technique
	Full vs. Sparse Grids
	Regularization parameter and term
	Different Opticom options

	Regression with spatially adaptive Combination Technique
	Margin and number of grid points
	Regularization parameter and term
	Different Opticom approaches

	Comparison with common regression
	Normal Combination Technique
	Spatially adaptive Combination Technique


	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography

